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Abstract

Drogue Parachute Computational Structural and Fluid

Mechanics Analysis with Isogeometric Discretization

by

Aaron Hartmann

During the Orion spacecraft’s return, at higher altitudes drogue parachutes will

be used for deceleration. These parachutes are made of ribbons and have 24 gores,

with 52 ribbons in each gore, where a gore is the slice of the parachute between two

radial reinforcement cables extending from the parachute apex to the skirt. There

are hundreds of gaps that the flow goes through, and there are also three wider gaps

created by removing ribbons. Computational analysis can help reduce the number of

costly drop tests in comprehensive evaluation of the parachute performance. Reliable

analysis requires accurate computation of the parachute fluid–structure interaction

(FSI) between the drogue and the compressible flow it is subjected to. The FSI com-

putation is challenging because of the geometric and flow complexities and requires

first creation of a starting parachute shape and flow field. This is a process that by

itself is rather challenging, and that is what we are focusing on here. In our structural

and fluid mechanics computations, for spatial discretization, we use isogeometric dis-

cretization with quadratic NURBS basis functions. This gives us a parachute shape

that is smoother than what we get from a typical finite element discretization. In the

flow analysis, we use the NURBS basis functions in the context of the compressible-

flow Space–Time SUPG (ST SUPG) method. The combination of the ST framework,
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NURBS basis functions, and the SUPG stabilization assures superior computational

accuracy.
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Chapter 1

Introduction

Computational analysis has become an important aspect of most engineering work.

However, even with widespread use and advanced computational techniques, research

must continue to address shortcomings with current techniques and solve more com-

plex problems in the future. One class of challenging problems that continues to be

studied is fluid–structure interaction (FSI). In FSI problems, the fluid and structural

mechanics are coupled together. The coupling leads to challenges in maintaining

accuracy because of the moving interface, need to maintain mesh resolution near

the surface, and the different computational properties between the solid and fluid

calculations.

While the Team for Advanced Flow Simulation and Modeling (TFAFSM) has de-

veloped, brought to maturity, and used space–time (ST) methods to solve numerous

FSI problems in the incompressible-flow regime, such as flapping wings, turbocharg-

ers, arteries, wind turbines and parachutes [32, 38, 33, 37, 35], compressible-flow FSI

methods are not as mature and still require development. As interest in space con-

tinues to grow, companies and agencies seek various ways to make space travel more

affordable, practical, safe, and useful. While there are several methods a spacecraft

can use to decelerate and land, parachutes provide a relatively simple, economical,

1
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and effective option, and more research into modeling parachutes can lead to better

designs and reduce the amount of testing necessary in turn reducing costs.

The Orion spacecraft being developed by NASA will use parachutes to decelerate

on its return to Earth. A cluster of three main parachutes will be deployed for the

final descent but two drogue parachutes will be deployed at high speed for its initial

deceleration and to stabilize it. These drogue parachutes must be able to handle

the large forces required for slowing down and stabilizing the capsule over a large

range of altitudes and Mach numbers up to 0.7 in order to safely and accurately land

the Orion spacecraft and its crew. While NASA has completed some full-scale tests,

computational analysis can further progress the design and safety of the parachutes

so that the Orion spacecraft can safely carry its crew regardless of which planet it

might be used.

In preparation for fully-coupled parachute FSI computations, which are particu-

larly challenging because of the geometric and flow complexities, a deformed shape

and developed flow must first be created, which in itself is a challenging problem that

this thesis will address.

As explained in detail in [34], the core numerical technology used by the TFAFSM

for parachute modeling is based on the Deforming-Spatial-Domain/Stabilized ST

(DSD/SST) method [48, 49, 41, 43], which was upgraded in [51, 27]. The Streamline-

Upwind/Petrov-Galerkin (SUPG) [9] and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [41]

methods are used as stabilization parts for the DSD/SST method, and for that the

method is now called “ST-SUPS”. The variational multiscale version of the DSD/SST

method includes turbulence modeling and is called the ST-VMS method [27, 29],

where the VMS terms come from the residual-based VMS method [12, 3, 2].

Compressible-flow computational methods have been developed similar to the

incompressible-flow methods described in the preceding paragraph. The core compressible-

flow method is called ST SUPG method, which is the DSD/SST method for compressible-
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flow [40, 56, 58, 57, 19, 34]. It combines the DSD/SST concept with the compressible-

flow SUPG method [14]. The compressible-flow ST SUPG method includes shock-

capturing like “YZβ” shock-capturing [57, 58, 56, 19].

Parachutes pose particular challenges, which require special techniques. Many of

these difficulties have been addressed through the use of specialized techniques beyond

the core FSI methods. Some of these techniques include contact algorithms [51, 26],

interface projection methods [51, 54, 25], gore curvature calculations [36], “disreef-

ing” [22, 31], and parachute designs with modified “geometric porosity” [22, 30, 34].

Slip-interface (SI) techniques were first developed to deal with spinning solid sur-

faces to keep the high-resolution boundary layer mesh, but is useful in many areas such

as being able to have nonmatching meshes at an interface, allowing for greater flexi-

bility and in the use of porosity modeling [37]. The complex geometry of parachutes

means there are hundreds of small gaps interspersed between patches of fabric that

is permeable. Resolving the flow through every gap would be infeasible and require

very large meshes and computational costs. Modeling the geometric porosity cre-

ated by the gaps makes it possible to still compute the parachutes FSI with accuracy

while greatly reducing the computational costs. Homogenized Modeling of Geometric

Porosity (HMGP) [54, 22] is the method used by the TFAFSM, and a new version

developed in [34]

Isogeometric Analysis (IGA) [13] has been progressing and the use of non-uniform

rational B-spline (NURBS) basis functions has been adopted in both time and spatial

dimensions. The methods are able to use higher-order functions including NURBS

functions. With NURBS basis functions, we can represent the geometry more ac-

curately, and possibly perfectly, which the standard finite elements fail to do. The

usefulness of NURBS functions have already been demonstrated in accurately mod-

eling flow problems [5, 4, 6].

The defining characteristic of FSI problems is the coupling between the fluid and
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structure, and any FSI computation must control how to couple these and deal with

mesh motion as well. The DSD/SST method first used block-iterative coupling for

FSI (see [51, 45, 53] for the terminology) before progressing to quasi-direct and direct

coupling [53] with additional improvements as well [51, 54, 59, 24, 25]. The pro-

gression to direct coupling and special techniques has enabled modeling complicated

parachutes [54, 55, 59, 28, 25, 23, 39, 22]. Sequentially-coupled FSI (SCFSI) technique

is a simple method for coupling, albeit useful method for progressing to fully-coupled

FSI, where the structure and fluid are computed separately and then the results from

either one are applied to the other to compute another round. This method is not as

accurate as fully-coupled FSI, but it provides a good starting points for fully-coupled

FSI without the limitations and resources necessary for fully-coupled FSI. The SCFSI

technique has been used in parachute computations before [59, 39]. This thesis will

examine some of the techniques described above, particularly porosity modeling in

the compressible-flow regime using NURBS basis functions, as applied to the drogue

parachute for the Orion spacecraft, to be used for starting parachute shape and flow

field in fully-coupled FSI.

Chapters 2 and 3 cover governing equations and formulations for the computa-

tions in the thesis, starting with structural mechanics followed by fluid mechanics.

The structural mechanics formulations are based on a semi-discrete formulation while

the fluid mechanics are governed by Navier–Stokes equations of compressible flows and

use the compressible-flow ST SUPG formulation. Chapter 4 describes the problem

and computational setup including a description of the parachute and flight condi-

tions used for the structural, single-gore fluid, and full-canopy fluid computations.

Chapter 5 takes a look at the results of the computations and Chapter 6 provides

some concluding remarks.



Chapter 2

Governing Equations and Porosity

Models

2.1 Structural Mechanics

The material in this section is from [23].

Let Ωs
t ⊂ Rnxd be the spatial domain with boundary Γst , where nxd = 3 for the

continuum element, nxd = 2 for membranes, and nxd = 1 for cables. The superscript

“s” indicates the structure. The parts of Γst corresponding to the essential and natural

boundary conditions are represented by (Γst)g and (Γst)h. The equations of motion are

written as

ρs
(
d2y

dt2
+ η

dy

dt
− f s

)
−∇∇∇ · σσσs = 0, (2.1)

where ρs, y, η, f s and σσσs are the material density, structural displacement, damping

coefficient, external force and the Cauchy stress tensor, respectively. The stresses

are expressed in terms of the second Piola–Kirchoff stress tensor S, which is related

to the Cauchy stress tensor through a kinematic transformation. For the classes of

FSI problems the TFAFSM has been focusing on, what makes one structural element

5
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model different from the other is the manner in which S is defined. These definitions

can be found in earlier TFAFSM publications [51, 52, 28].

2.2 Fluid Mechanics

The material in this section is from [34].

Let Ωt ⊂ Rnsd be the spatial domain with boundary Γt at time t ∈ (0, T ). The sub-

script t indicates the time-dependence of the domain. The symbols ρ, u and p will rep-

resent the density, velocity and pressure, respectively, and εεε(u) =
(
(∇∇∇u) + (∇∇∇u)T

)
/2

is the strain-rate tensor. The stress tensor is defined as σσσ(u, p) = −pI + T, where I is

the identity tensor, and T is the Newtonian viscous tensor: T = λ(∇∇∇ · u)I + 2µεεε(u).

Here λ and µ (= ρν) are the viscosity coefficients, ν is the kinematic viscosity, and it

is assumed that λ = −2µ/3. The Navier–Stokes equations of compressible flows can

be written on Ωt and ∀t ∈ (0, T ) as

∂U

∂t
+
∂Fi

∂xi
− ∂Ei

∂xi
−R = 0, (2.2)

where U = (ρ, ρu1, ρu2, ρu3, ρe) is the vector of conservation variables, e is the total

energy per unit volume, and Fi and Ei are, respectively, the Euler and viscous flux

vectors:

Fi =



uiρ

uiρu1 + δi1p

uiρu2 + δi2p

uiρu3 + δi3p

ui(ρe+ p)


, Ei =



0

Ti1

Ti2

Ti3

−qi + Tikuk


. (2.3)

Here δij are the components of I, qi are the components of the heat flux vector, and

Tij are the components of T. The equation of state typically corresponds to the ideal



7

gas assumption. The term R represents all other components that might enter the

equations, including the external forces.

Equation (2.2) can further be written in the form

∂U

∂t
+ Ai

∂U

∂xi
− ∂

∂xi

(
Kij

∂U

∂xj

)
−R = 0, (2.4)

where

Ai =
∂Fi

∂U
, Kij

∂U

∂xj
= Ei. (2.5)

The essential and natural boundary conditions for Eq. (2.4) are represented as U =

G on (Γt)G and ni

(
Kij

∂U
∂xj

)
= H on (Γt)H, where (Γt)G and (Γt)H are complementary

subsets of the boundary Γt, ni are the components of the unit normal vector n, and

G and H are given functions. A function U0(x) is specified as the initial condition.

2.3 Porosity Model

The material in this section is from [34].

Consider a porous media as shown in Figure 2.1. The flow is only in the normal

xB xA

UB UA

ṁ ≡ ρuR

p

x

Figure 2.1: Schematic representation a porous media. The coordinates xB and xA
represent the “B” (“below”) and “A” (“above”) sides of the media. The flow direction
from the B side to the A side is taken as the positive flow direction. The flow is only
in the normal direction, and across the media, the mass flow rate is invariant and the
pressure is continuous. The temperature-related condition will be described later.

direction, and across the media, the mass flow rate is invariant and the pressure is

continuous. The temperature-related condition will be described later. We assume
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that, compared to the fluxes, the term

d

dt

(∫ xA

xB

Udx

)
(2.6)

is negligible. Then, the mass flow rate across the media,

ṁ = ρuR, (2.7)

is constant. Here, uR is the velocity relative to the porous media, which is only in

the normal direction.

We assume that the pressure gradient can be expressed as

−dp
dx

=
µ

S
uR +

ρ

L
uR |uR| , (2.8)

where S and L are model parameters. This is know as the Darcy–Forchheimer model.

We assume a polytropic process in the media:

ρ = Cp
1
n , (2.9)

where n is the exponent constant, and C is a constant. This is general enough to

cover most processes.

2.3.1 Relationship between the fluid inside the media and

the surrounding fluid

Multiplying Eq. (2.8) with the density, we obtain

−ρdp
dx

= sgn (ṁ)

(
µ

S
|ṁ|+ 1

L
|ṁ|2

)
, (2.10)
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and using Eq. (2.9), we can integrate in the normal direction:

−
∫ xA

xB

Cp
1
n
dp

dx
dx =

∫ xA

xB

sgn (ṁ)

(
µ

S
|ṁ|+ 1

L
|ṁ|2

)
dx. (2.11)

With the transformed model parameters defined as

D =
S

(xA − xB)
, (2.12)

1

β
=

L

(xA − xB)
, (2.13)

the integration yields

−C n

1 + n

(
p

1+n
n

A − p
1+n
n

B

)
= sgn (ṁ)

( µ
D
|ṁ|+ β |ṁ|2

)
. (2.14)

Substituting for C from Eq. (2.9), we obtain

− n

1 + n
(ρApA − ρBpB) = sgn (ṁ)

( µ
D
|ṁ|+ β |ṁ|2

)
. (2.15)

2.3.2 Mass flux

We define M2 as

M2 ≡ − n

1 + n
(ρApA − ρBpB) sgn (ṁ), (2.16)

and because

sgn(ṁ) = −sgn (ρApA − ρBpB) , (2.17)
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the definition translates to

M2 ≡ n

1 + n
|ρApA − ρBpB| . (2.18)

With that, we rewrite Eq. (2.15) as

β |ṁ|2 +
µ

D
|ṁ| −M2 = 0, (2.19)

and this is the equation we solve for |ṁ|. We obtain

|ṁ| =
− µ
D

+
√(

µ
D

)2
+ 4βM2

2β
(2.20)

for β 6= 0, and the form

|ṁ| = 2M2

µ
D

+
√(

µ
D

)2
+ 4βM2

(2.21)

would be applicable also when β = 0. From that, we can get

ṁ = − 2M2

µ
D

+
√(

µ
D

)2
+ 4βM2

sgn (ρApA − ρBpB) . (2.22)

Remark 1 Setting n = γ gives us M2 for adiabatic process:

M2 =
γ

1 + γ
|ρApA − ρBpB| . (2.23)

Remark 2 Setting n =∞ gives us M2 for incompressible-flow process:

M2 = ρ |pA − pB| . (2.24)
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2.3.3 Momentum flux

The force acting on the fluid per unit area due to the media, hM, is expressed in terms

of the momentum-conservation fluxes on the two sides:

(ṁuA + pA)− (ṁuB + pB) = hM. (2.25)

2.3.4 Energy flux

Neglecting the energy exchange due to viscous forces, the heat leaving from the fluid

to the media, qM, is expressed in terms of the energy-conservation fluxes on the two

sides:

(
ṁ

(
eA +

pA
ρA

)
+ n · qA

)
−
(
ṁ

(
eB +

pB
ρB

)
+ n · qB

)
= −qM, (2.26)

where the unit normal vector n is pointing from the B side to the A side. Heat flux

condition between a thin porous structure and the surrounding fluid specifies qM to a

given value. As a special case of that, the adiabatic condition between a thin porous

structure and the surrounding fluid specifies qM to zero.



Chapter 3

Finite Element Formulations

3.1 Semi-discrete Formulation of Structural Me-

chanics

The material in this section is from [23].

With yh and wh coming from appropriately defined trial and test function spaces,

respectively, the semi-discrete finite element formulation of the structural mechanics

equations (see [17, 8, 21]) is written as

∫
Ωs

0

wh · ρsd
2yh

dt2
dΩ +

∫
Ωs

0

wh · ηρsdy
h

dt
dΩ +

∫
Ωs

0

δEh : S dΩ =∫
Ωs

t

wh ·
(
th + ρsf s

)
dΩ. (3.1)

The fluid mechanics forces acting on the structure are represented by vector th. The

above formulation is for structures represented by a membrane model. The left-

hand-side terms of Eq. (3.1) are referred to in the original configuration and the

right-hand-side terms in the deformed configuration at time t. Time discretization of

Eq. (3.1) is based on the Hilber–Hughes–Taylor scheme [11].

12
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Remark 3 In the computations reported here and those reported earlier by the TFAFSM,

the mass matrix associated with the first term of Eq. (3.1) is lumped.

3.2 Compressible-Flow ST SUPG Method

The material in this section is from [34].

The compressible-flow ST SUPG method is essentially the same as the compressible-

flow DSD/SST method, but without necessarily implying a mesh motion. The compressible-

flow DSD/SST method is a straightforward mixture of the DSD/SST concept and the

compressible-flow SUPG method. The compressible-flow SUPG method [50, 14, 16,

15] was introduced in 1982 and evolved over the years (see Chapter 1). The DSD/SST

method [41, 43, 51, 27, 29, 7], introduced in 1990, also evolved over the years (see

Chapter 1 and [7]).

In the DSD/SST method, the finite element formulation is written over a sequence

of N ST slabs Qn, where Qn is the slice of the ST domain between the time levels tn

and tn+1. The lateral boundary Pn will have complementary subsets where essential

and natural boundary conditions are enforced, just like how it is with Γt. At each time

step, the integrations are performed over Qn. The functions are continuous within an

ST slab, but discontinuous from one ST slab to another, and the superscripts “−”

and “+” will indicate the values of the functions just below and just above the time

level. The trial solution and test function spaces are defined over Qn by using ST

polynomials that are typically first-order, but sometimes higher-order. Each Qn is

decomposed into elements Qe
n, where e = 1, 2, . . . , (nel)n. The subscript n used with

nel is for the general case where the number of ST elements may change from one ST

slab to another.

We assume that we have constructed some suitably-defined finite-dimensional trial

solution and test function spaces (ShU)n and (VhU)n. The DSD/SST formulation [47,
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42, 44, 46, 56, 57, 58, 18] of Eq. (2.4) can be written as follows: given (Uh)−n , find

Uh ∈ (ShU)n, such that ∀Wh ∈ (VhU)n:

∫
Qn

Wh ·
(
∂Uh

∂t
+ Ah

i

∂Uh

∂xi
−Rh

)
dQ

+

∫
Qn

∂Wh

∂xi
·Kh

ij

∂Uh

∂xj
dQ−

∫
(Pn)H

Wh ·HhdP

+

∫
Ωn

(Wh)+
n ·
(
(Uh)+

n − (Uh)−n
)
dΩ

+

(nel)n∑
e=1

∫
Qe

n

τττSUPG

(
∂Wh

∂t
+
∂Wh

∂xk
Ah
k

)
·RA(Uh)dQ

+

(nel)n∑
e=1

∫
Qe

n

νSHOC
∂Wh

∂xi
· ∂Uh

∂xi
dQ = 0, (3.2)

where

RA(Uh) =
∂Uh

∂t
+ Ah

i

∂Uh

∂xi
− ∂

∂xi

(
Kh
ij

∂Uh

∂xj

)
−Rh, (3.3)

τττSUPG is the SUPG stabilization matrix, and νSHOC is the shock-capturing parameter.

The stabilization is residual-based because the residual of the compressible-flow equa-

tions, RA(Uh), appears as a factor in the stabilization term. We start with (Uh)−0 =

U0(x) and apply the formulation sequentially to all ST slabs Q0, Q1, Q2, . . . , QN−1.

3.3 Compressible-Flow ST-SI Method

The material in this section is from [34].
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3.3.1 ST-SI base version

First we define a new function and introduce a notation based on that:

FFF(U) = niFi(U)− niviU, (3.4)

FFFh = FFF(Uh), (3.5)

where v is the mesh velocity and vi is its ith component. In the ST-SI method

associated with the formulation given by Eq. (3.2), we will have added boundary

terms corresponding to the SI. We will use the labels “Side A” and “Side B” to

represents the two sides of the SI. The boundary terms for the two sides will first

be added separately, using test functions Wh
A and Wh

B. Then, putting together the

terms added for each side, the complete set of terms added will be obtained. We give

the boundary terms for only Side B:

−
∫

(Pn)SI

Wh
B · FFFhB dP

+

∫
(Pn)SI

Wh
B ·

1

2

(
FFFhB +FFFhA + αh

(
Uh

B −Uh
A

))
dP

−
∫

(Pn)SI

Wh
B ·

1

2

(
nhB
)
i

((
Eh

B

)
i
+
(
Eh

A

)
i

)
dP

− γACI

∫
(Pn)SI

∂Wh
B

∂xj
· 1

2

(
nhB
)
i

((
Kh

B

)T
ij

+
(
Kh

A

)T
ij

) (
Uh

B −Uh
A

)
dP

+

∫
(Pn)SI

Wh
B ·

Ch

h

(
Uh

B −Uh
A

)
dP, (3.6)
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where

αh = max
(∣∣nhB · (uhB − vh

)∣∣+ chB,
∣∣nhA · (uhA − vh

)∣∣+ chA
)
, (3.7)

h = min(hB, hA), (3.8)

hB = 2

(
nent∑
α=1

nens∑
a=1

|nB · ∇∇∇Nα
a |
)−1

(for Side B), (3.9)

hA = 2

(
nent∑
α=1

nens∑
a=1

|nA · ∇∇∇Nα
a |
)−1

(for Side A). (3.10)

Here, (Pn)SI is the SI in the ST domain, c is the acoustic speed, nens and nent are

the number of spatial and temporal element nodes, Nα
a is the basis function associated

with spatial and temporal nodes a and α, and Ch is a tensor that will be defined later.

Side A counterpart of Eq. (3.6) can be written by just interchanging subscripts A and

B.

Remark 4 The first and second integrations set the Euler flux at the boundary to

the Lax–Friedrichs flux.

Remark 5 The third integration contains the average viscous terms.

Remark 6 The fourth integration, with γACI = 1, is the adjoint consistency term

introduced in the symmetric-interior-penalty discontinuous Galerkin method [1]. The

other choice is γACI = −1, resulting in a method that is adjoint inconsistent, which

is known as the nonsymmetric-interior-penalty discontinuous Galerkin method [20].

Remark 7 The fifth integration is a penalty-like term. Several forms of the tensor

Ch have been proposed and we use the one from [10]:

Ch =
C

2

(
nhB
)
i

(
nhB
)
j

((
Kh

B

)
ij

+
(
Kh

A

)
ij

)
, (3.11)

where C is a nondimensional positive constant, which is 1.0 in the computations

reported in this article.
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Putting together the boundary terms added for each side, the complete set of

terms added becomes

∫
(Pn)SI

(
Wh

B −Wh
A

)
· 1

2

(
FFFhA −FFFhB − αh

(
Uh

A −Uh
B

))
dP

−
∫

(Pn)SI

((
nhB
)
i
Wh

B +
(
nhA
)
i
Wh

A

)
· 1

2

((
Eh

B

)
i
+
(
Eh

A

)
i

)
dP

−γACI

∫
(Pn)SI

((
nhB
)
i

∂Wh
B

∂xj
−
(
nhA
)
i

∂Wh
A

∂xj

)
· 1

2

((
Kh

B

)T
ij

+
(
Kh

A

)T
ij

) (
Uh

B −Uh
A

)
dP

+

∫
(Pn)SI

(
Wh

B −Wh
A

)
· C

h

h

(
Uh

B −Uh
A

)
dP. (3.12)

3.3.2 ST-SI version where the SI is a fluid–solid interface

with weakly-imposed flow velocity and temperature con-

ditions

The boundary terms added for Side B are given as

−
∫

(Pn)SI

Wh
B · FFFhB dP

+

∫
(Pn)SI

Wh
B · FFF

(
Gh

ISO

)
dP

−
∫

(Pn)SI

Wh
B ·
(
nhB
)
i

(
Eh

B

)
i
dP

− γACI

∫
(Pn)SI

∂Wh
B

∂xj
·
(
nhB
)
i

(
Kh

B

)T
ij

(
Uh

B −Gh
ISO

)
dP

+

∫
(Pn)SI

Wh
B ·

Ch
ISO

h

(
Uh

B −Gh
ISO

)
dP, (3.13)
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where

Gh
ISO =



ρhB

ρhBg
h
1

ρhBg
h
2

ρhBg
h
3

ρhB

(
Cvg

h
θ + 1

2

∥∥gh∥∥2
)


, (3.14)

Ch
ISO = C

(
nhB
)
i

(
nhB
)
j

((
Kh

B

)
ij

)
, (3.15)

and gh and ghθ are given functions.

3.3.3 ST-SI version where the SI is a fluid–solid interface

with weakly-imposed flow velocity and adiabatic con-

ditions

The boundary terms added for Side B are given as

−
∫

(Pn)SI

Wh
B · FFFhB dP

+

∫
(Pn)SI

Wh
B · FFF

(
Gh

ADI

)
dP

−
∫

(Pn)SI

Wh
B ·
(
nhB
)
i

((
Eh

B

)
ADI

)
i
dP

− γACI

∫
(Pn)SI

∂Wh
B

∂xj
·
(
nhB
)
i

(((
Kh

B

)
ADI

)
ij

)T (
Uh

B −Gh
ADI

)
dP

+

∫
(Pn)SI

Wh
B ·

Ch
ADI

h

(
Uh

B −Gh
ADI

)
dP, (3.16)
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where

((
Eh

B

)
ADI

)
i

=
(
Eh

B

)
i
+



0

0

0

0(
qhB
)
i


, (3.17)

((
Kh

B

)
ADI

)
ij

=
(
Kh

B

)
ij

+



0T

0T

0T

0T(
∂qi
∂U,j

)
B


, (3.18)

Gh
ADI =



ρhB

ρhBg
h
1

ρhBg
h
2

ρhBg
h
3

ρhB

(
Cvθ

h
B + 1

2

∥∥gh∥∥2
)


, (3.19)

Ch
ADI = C

(
nhB
)
i

(
nhB
)
j

(((
Kh

B

)
ADI

)
ij

)
, (3.20)

and gh is a given function. Note that U,j = ∂U
∂xj

.
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3.3.4 ST-SI version where the SI is the interface between a

thin porous structure and the surrounding fluid with

weakly-imposed flow velocity and adiabatic conditions

In general, the adiabatic condition (qM = 0) between the thin structure and the

surrounding fluid implies

− κn · ∇∇∇θ|B = − κn · ∇∇∇θ|A . (3.21)

As a special case of that, we might have

− κn · ∇∇∇θ|B = 0, (3.22)

− κn · ∇∇∇θ|A = 0. (3.23)

Special case

From Eq. (2.22) with Eq. (2.23), we obtain the mass flux as a function of the two

conservation variables:

ṁB = ṁ (UB,UA) . (3.24)

The boundary terms added for Side B are given as

−
∫

(Pn)SI

Wh
B · FFFhB dP

+

∫
(Pn)SI

Wh
B · DDD

(
Uh

B,U
h
A

)
dP −

∫
(Pn)SI

Wh
B · EEEVIS

(
Uh

B

)
dP

− γACI

∫
(Pn)SI

∂Wh
B

∂xj
·
(

(KKKVIS)Tj
(
Uh

B

))
·
(
Uh

B −GPORO

(
Uh

B,U
h
A

))
dP

+

∫
(Pn)SI

Wh
B ·

CPORO

(
Uh

B,U
h
A

)
h

(
Uh

B −GPORO

(
Uh

B,U
h
A

))
dP. (3.25)
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Here the normal components of the Euler flux vectors are taken as

DDD (UB,UA) =



ṁB

ṁB

(
ṁB

ρB
nB + v

)
+ nBpB

1
2

(Fe (UB, ṁB) + Fe (UA, ṁB)

+ |ṁB| (ge (UB, ṁB)− ge (UA, ṁB))) + nB · vpB


, (3.26)

where

Fe (U, ṁB) = ṁB

(
ge (U, ṁB) +

p

ρ

)
, (3.27)

ge (U, ṁB) = e− 1

2
‖u‖2 +

1

2

∥∥∥∥ṁB

ρ
n + v

∥∥∥∥2

. (3.28)

The normal components of the viscous flux vectors, not including the heat con-

duction flux, are taken as

EEEVIS (U) =


0

hT (U)

hT (U) · v

 , (3.29)

where

hT (U) = (I− nn) (n ·T) . (3.30)

The vectors and tensors involved in the fourth and fifth integrations of Eq. (3.25) are

given as

(KKKVIS)j (U) = (δjk − njnk)ni (KADI)ik , (3.31)
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GPORO (UB,UA) =


ρB

ṁBnB + ρBv

ρBge (UB, ṁB)

 , (3.32)

CPORO (UB,UA) = C (nB)i (nB)j ((KB)ADI)ij . (3.33)

General case

The boundary terms added for Side B are given as

−
∫

(Pn)SI

Wh
B · FFFhBdP

+

∫
(Pn)SI

Wh
B · DDD

(
Uh

B,U
h
A

)
dP

−
∫

(Pn)SI

Wh
B ·
(
EEEVIS

(
Uh

B

)
+

1

ρhB + ρhA

(
ρhBEEEHEA

(
Uh

B

)
− ρhAEEEHEA

(
Uh

A

)))
dP

− γACI

∫
(Pn)SI

∂Wh
B

∂xj
·
(

(KKKVIS)Tj
(
Uh

B

)
+

1

ρhB + ρhA

(
ρhB (KKKHEA)Tj

(
Uh

B

)
−ρhA (KKKHEA)Tj

(
Uh

A

)))
·
(
Uh

B − G̃PORO

(
Uh

B,U
h
A

))
dP

+

∫
(Pn)SI

Wh
B ·

C̃PORO

(
Uh

B,U
h
A

)
h

(
Uh

B − G̃PORO

(
Uh

B,U
h
A

))
dP, (3.34)

where the normal component of the heat conduction part of the viscous flux vectors

are taken as

EEEHEA (U) =


0

0

−n · q

 . (3.35)
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The vectors and tensors involved in the fourth and fifth integrations of Eq. (3.34) are

given as

(KKKHEA)j (U) =



0T

0T

0T

0T

−ni ∂qi∂U,j


, (3.36)

G̃PORO (UB,UA) =


ρB

ṁBnB + ρBv

ρB

(
ge (UA, ṁA) + pA

ρA
− pB

ρB

)
 , (3.37)

C̃PORO (UB,UA) = C (nB)j

(
(nB)i ((KB)ADI)ij

+
1

ρB + ρA

(
ρB (KKKHEA)j (UB)− ρA (KKKHEA)j (UA)

))
. (3.38)



Chapter 4

Problem and Computational Setup

4.1 Drogue Parachute and Flight Conditions

The material in this section is taken in part from [35, 34].

The Orion drogue parachute is a Variable Porosity Conical Ribbon parachute with

a nominal diameter of 23 ft. Each of its 24 gores are made up of 52 2-inch ribbons

that are kept closely spaced by seven parallel, equidistant vertical tapes. The primary

longitudinal stiffness comes from the ribbon ends which are stitched to the radial lines.

A vent band connects the 24 radial lines at the vent. The configuration can be seen

in Figure 4.1.

The spacing between the horizontal ribbons is varied starting at 0.3 inches for

the first 13 ribbons closest to the vent. The subsequent groups of 13 ribbons are

spaced 0.4, 0.5, and 0.6 inches apart, respectively. Stability of the parachute is

increased by removing ribbons in three locations. The ribbons are modeled with

membrane elements. The upper, middle, and lower ribbons have slightly different

material properties which were provided by NASA. The remaining lines, tapes, and

bands are modeled with cable elements with varying properties depending on their

actual function.

24
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Vent band

Skirt band

Radial lines

Vertical tapes

3 ft

11 ft

Upper ribbons
1-16

Middle ribbons
17-35

Lower ribbons
36-52

3 wider gaps

48 gaps

Gores

Suspension lines

Riser

Payload

65.4 ft

46 ft

5 ft

23 ft

26◦

Figure 4.1: Parachute configuration (from [35, 34])

The parachute is designed to deploy over a large range of altitudes and speeds,

so three altitudes: 10, 000, 20, 000 and 35, 000 ft, and three Mach numbers: 0.3, 0.5

and 0.7 were chosen for modeling resulting in a total of nine different flight conditions

referred to as AM11–AM33, where the first digit denotes the altitude and the second

denotes the Mach number. Standard-day air properties are assumed for each flight

condition and the relevant properties can be seen in Table 4.1.

Table 4.1: Flight conditions

AM Altitude θ∞ ρ∞ µ∞ M∞ ‖u∞‖ 1
2
ρ∞‖u∞‖2

(–) (ft) (K) (kg/m3) (Pa · s) (–) (m/s) (Pa)

11 0.3 98.5 4, 386
12 10, 000 268 0.90 1.69×10−5 0.5 164.2 12, 185
13 0.7 229.9 23, 882

21 0.3 94.8 2, 931
22 20, 000 249 0.65 1.59×10−5 0.5 158.0 8, 141
23 0.7 221.2 15, 957

31 0.3 88.9 1, 500
32 35, 000 218 0.38 1.43×10−5 0.5 148.2 4, 166
33 0.7 207.5 8, 166
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Figure 4.2: Structural mechanics control mesh with 91, 612 control points (nn) and
19, 826 elememnts (ne)

4.2 Parachute Structure Computational Setup

The structural mechanics mesh, shown in Figure 4.2, has 91, 612 control points with

19, 826 cubic NURBS elements. The elements are further divided into 6, 648 mem-

brane elements, 13, 177 cable elements, and 1 payload element. A uniform pressure

equal to the free-stream dynamic pressures in Table 4.1 is applied to the structure

to deform the structure while fixing the payload element. The computations are run

until a steady-state solution is obtained with 100 GMRES iterations, 4 nonlinear

iterations, and a time step size of 0.001 s.

4.3 Single-Gore Fluid Computational Setup

The single-gore fluid mechanics mesh, shown in Figure 4.3 is built around the de-

formed structure shape obtained from the structural mechanics computations from

flight condition AM31 with resolved gaps. The mesh consists of 198, 112 control points
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making 111, 500 quadratic NURBS elements. In the radial direction, the ribbons are

covered by 4 elements, the gap by 2 elements, and the missing ribbons by 6 elements.

There are 9 elements in the circumferential direction of the gore.

A slip interface is placed away from the parachute interface with nonmatching

interfaces so the number of control points and elements can be reduced and the total

number of control points and elements for the mesh kept within reason. The mesh is

moved using a separate structural mechanics computation to obtain meshes for the

other flight conditions.

The free-stream velocity and temperature are prescribed at the inflow, zero stress

and heat flux at the outflow, and weak slip and zero heat flux on the side boundaries.

The fabric porosity of 40 CFM is modeled using Eqs. (2.19) and (2.23) where the β

term equals zero because of the fully resolved gaps, and Sutherland’s Law is used to

model viscosity. Flight condition AM31 is computed first and later flight conditions

use previous results as initial data to decrease the time for each computation. Com-

putations are run with GMRES iterations starting with 10 and increasing to 60 later,

3 nonlinear iterations, and time step sizes of 2.0×10−5 for AM31 and 2.0×10−4 s for

AM11 and AM32. Only flight conditions AM11, AM31, and AM32 were completed

for this thesis.

4.4 Full-Canopy Fluid Computational Setup

The full-canopy fluid mechanics mesh, shown in Figure 4.5 is built in a similar way

as the single-gore mesh if it was rotated 24 times to make a full canopy, but the

gaps are not full resolved. Instead they are combined into four patches as shown

in Figure 4.4. The mesh consists of 223, 934 control points forming 116, 248 quadratic

NURBS elements.

A slip interface is placed away from the parachute interface and in the center
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Figure 4.3: Canopy fluid mechanics control mesh for AM31 single-gore fluid compu-
tations with 198, 112 control points (nn) and 111, 500 elements (ne), and a close-up
view

Patch 1

Patch 2

Patch 3

Patch 4

3 wider gaps

Figure 4.4: Patch definition (from [35, 34])
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Table 4.2: Number of control points (nn) and number of elements (ne) in meshes

nn ne

Structure mesh 91, 612 19, 826
Membrane 6, 648

Cable 13, 177

Single-gore fluid mesh 198, 112 111, 500
Full-canopy fluid mesh 223, 934 116, 248

with nonmatching interfaces so the number of control points and elements could be

reduced and the total number of control points and elements for the mesh kept within

reason. The mesh is moved like the single-gore mesh to obtain meshes for the other

flight conditions.

The same boundaries are set as in the single-gore computations. The porosity

is modeled using Eq. (2.19) and (2.23) where the β term accounts for the geometric

porosity. First, the porosity parameters from [34] followed by the porosity parame-

ters calculated from the single-gore results. Sutherland’s Law is again used to model

viscosity. Flight condition AM31 is computed first and later flight conditions use pre-

vious results as initial data to decrease the time for each computation. Computations

are run with GMRES iterations varying starting with 10 and increased to 60 later, 3

nonlinear iterations, and a time step size of 2.0×10−4 s. Only flight condition AM31

was completed for this thesis.
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Figure 4.5: Fluid mechanics control mesh for AM31 full-canopy fluid computations
with 223, 934 control points (nn) and 116, 248 elements (ne), and a close-up view



Chapter 5

Computational Results

5.1 Parachute Structure Results

Figure 5.1 shows the full parachute results for each flight condition. Although the

results look similar, the parachute elongates more by a small amount with higher

dynamic pressure as expected. The differences in diameter are also noted in Table 5.1

where the diameter is largest for AM13, the highest dynamic pressure, and smallest for

AM31, the lowest dynamic pressure. The results are similar to previous computations

by the TFAFSM using FEM meshes.

The area ratios of the fabric area and slits area, referred to by the subscript F and

G respectively, to the combined area, referred to by the subscript 1, for the patches

are shown in Table 5.2. The area ratios will be discussed later when they are used

for modeling the porosity for the full-canopy computations. Generally, the fabric

area ratio for each patch increased with higher dynamic pressure except Patch 4 for

flight condition AM22. While the results are assumed to be steady, there is a slight

breathing motion near the skirt which may account for this.

31
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AM11 AM12 AM13 AM21 AM22 AM23 AM31 AM32 AM33

Figure 5.1: Structural mechanics parachute deformations

Table 5.1: Deformed parachute diameters

D (ft) D/D0 (%)

D0 23.0 100.0
AM11 17.8 77.2
AM12 18.1 78.8
AM13 18.6 80.7
AM21 17.6 76.5
AM22 17.9 78.0
AM23 18.2 79.2
AM31 17.4 75.8
AM32 17.8 77.2
AM33 18.0 78.1
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AM11 AM12 AM13

AM21 AM22 AM23

AM31 AM32 AM33

Figure 5.2: Canopy shape from structural mechanics computations looking in the
vertical direction
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Table 5.2: Fabric and geometric area ratios for each patch

Patch AF/A1 AG/A1 AF/A1 AG/A1 AF/A1 AG/A1

AM11 1 0.854 0.146 AM12 0.849 0.151 AM13 0.842 0.158
2 0.813 0.187 0.803 0.197 0.792 0.208
3 0.796 0.204 0.782 0.218 0.766 0.234
4 0.783 0.217 0.781 0.219 0.776 0.224

AM21 1 0.855 0.145 AM22 0.851 0.149 AM23 0.846 0.154
2 0.816 0.184 0.808 0.192 0.799 0.201
3 0.799 0.201 0.789 0.211 0.777 0.223
4 0.782 0.218 0.783 0.217 0.780 0.220

AM31 1 0.856 0.144 AM32 0.854 0.146 AM33 0.851 0.149
2 0.818 0.182 0.814 0.186 0.808 0.192
3 0.801 0.199 0.796 0.204 0.789 0.211
4 0.770 0.230 0.782 0.218 0.782 0.218

AM11 AM12 AM13

AM21 AM22 AM23

AM31 AM32 AM33

Figure 5.3: Canopy shape from structural mechanics computations looking in the
y-direction
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5.2 Single-Gore Fluid Results

Using the adiabatic porosity model, Figure 5.4 shows the mass flow through the the

gaps as a function of time. As seen in previous FEM computations, the mass flow

increases while Mach number increases and altitude decreases. The same trend is seen

in Figure 5.5 for M2. A least-squares curve fitting is applied to the final values |ṁ|

andM2 shown in Figure 5.4 and Figure 5.5, where the output coefficients are µ
D

and

β from Eq. (2.19) and (2.23) for the geometric part of the porosity model. Figure 5.6

shows graphically the results of the curve fitting while Table 5.3 lists the coefficients

obtained along with the correlation factor.

Note that only flight conditions AM11, AM31, and AM32 were completed for this

analysis. Other cases with higher dynamic pressures were not completed. The results

from the computed flight conditions have a similar trend to the previous FEM results,

but the values for the NURBS calculations tend to be lower for |ṁ|. This becomes

apparent in the coefficient β which is almost double the values previously obtained.

Because the total porosity is split between the fabric and geometric parts according

to the equation

M2 =
µ

D
|ṁ|+ β|ṁ|2,

=

(
AF

A1

( µ
D

)
F

+
AG

A1

( µ
D

)
G

)
|ṁ|+

(
AF

A1

βF +
AG

A1

βG

)
|ṁ|2, (5.1)

the differences are not as apparent for µ
D

because the fabric property dominates both

because of its large value compared to the
(
µ
D

)
G

and the area ratio also being larger.

This is not the case for the β term because the fabric portion does not contribute to

it. The calculated porosity parameters for the gaps are shown in Table 5.3 along with

the coefficients of determination. Figure 5.7, Table 5.5, and Table 5.6 summarize the

differences between the two results.
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Figure 5.4: Patch-averaged values of |ṁ| through the gaps
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Figure 5.5: Patch-averaged values of M2

Table 5.3: Calculated geometric porosity parameters

Patch
(
µ
D

)
G

(kg/(m2 · s)) βG (−) R2

1 15.5 1.84 0.991
2 39.6 1.55 0.989
3 44.5 2.69 0.990
4 0 7.89 0.998

Table 5.4: Geometric porosity parameters from [34]

Patch
(
µ
D

)
G

(kg/(m2 · s)) βG (−) R2

1 30.0 0.97 0.999
2 21.6 1.02 0.999
3 13.5 1.17 0.999
4 0 3.08 0.891
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Figure 5.6: Patch-averaged values of |ṁ|, M2, and M2 with the least-squares curve
fitting lines where the dashed line for Patch 4 excludes the µ

D
because it results in

negative values for some M2
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|ṁ| (kg/(m2 · s))

M
2
(k
g
/
(m

2
·s
))

2

Patch4 (FEM)

Fabric
Geometric

AM11
AM31
AM32

Figure 5.7: Comparison between using the parameters from the NURBS results and
previous FEM results forM2 and |ṁ| for each patch with the NURBS results on the
left and FEM results on the right
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Table 5.5: Porosity values from NURBS single-gore results

Patch µ
D

(kg/(m2 · s)) β (−) µ (×10−5 Pa · s) D (×10−8m)

AM11 1 525.5 0.269 1.69 3.22
2 505.7 0.289 3.34
3 496.6 0.549 3.41
4 479.5 1.717 3.53

AM31 1 527.0 0.264 1.43 2.72
2 508.7 0.281 2.82
3 499.8 0.534 2.87
4 471.8 1.816 3.04

AM32 1 525.6 0.269 1.43 2.73
2 505.9 0.288 2.83
3 496.9 0.548 2.89
4 479.4 1.718 2.99

Table 5.6: Porosity values from [34] applied to new NURBS mesh

Patch µ
D

(kg/(m2 · s)) β (−) µ (×10−5 Pa · s) D (×10−8m)

AM11 1 527.3 0.142 1.69 3.24
2 502.4 0.190 3.40
3 490.3 0.239 3.49
4 479.5 0.670 3.56

AM31 1 529.1 0.139 1.43 2.74
2 505.4 0.185 2.86
3 493.6 0.233 2.93
4 471.8 0.708 3.07

AM32 1 527.7 0.142 1.43 2.74
2 502.6 0.190 2.88
3 490.6 0.239 2.95
4 479.4 0.670 3.02
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5.3 Full-Canopy Fluid Results

The full-canopy computations modeled the porosity according to Eqs. (2.19) and (2.23)

accounting for the area ratios by Eq. (5.1. The computations are first run using the

porosity coefficients obtained in earlier studies by the TFAFSM in [34] and shown

in Table 5.6 after applying Eq. (5.1). Despite the seemingly large differences in β

between the two cases, the results are very similar as seen in Figure 5.8, Figure 5.9

and 5.10.

0 40 85 125
VelocityMagnitude (m/s)

Figure 5.8: Velocity vectors around the canopy on a vertical slice plane scaled and
colored to magnitude for AM31 using porosity parameters obtained from FEM on
top and those obtained by NURBS below
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Density (kg/m3)

Figure 5.9: Density around the canopy on a vertical slice plane for AM31 using
porosity parameters obtained from FEM on top and those obtained by NURBS below
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19.6 23.5 27.4
Pressure (kPa)

Figure 5.10: Pressure distribution above the canopy (left) and pressure distribution
below the canopy (right) for AM31 using porosity parameters obtained from FEM on
top and those obtained by NURBS below



Chapter 6

Concluding Remarks

Parachutes pose particular challenges that can be addressed as demonstrated by the

computations and results in this thesis. Specifically, the use of IGA discretization

can be used to successfully model the drogue parachute allowing for greater accuracy

while limiting the computing resources necessary.

First, an initial parachute shape using a NURBS mesh was computed with the

dynamic pressure for each flight conditions. The deformed shapes were used to make

high resolution NURBS fluid meshes to calculate the geometric part of the porosity

model. Full-gore fluid computations were then computed to obtain a starting flow

field for future FSI computations. This thesis shows that IGA discretization is useful,

practical, and accurate for use with the Orion drogue parachute and the porosity

model used. This will be useful for future FSI research on the drogue parachute.
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