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Conspectus

Functional polymers have a wide variety of applications ranging from energy storage to drug 

delivery. For energy storage applications, desirable material properties include low cost, high 

charge storage and/or mobility, and low rates of degradation. Isotropic thin films have been used 

for many of these types of applications, but research suggests that different structures such as 

polymer brushes can improve charge transport by an order of magnitude. Supported polymer 

brush structures produced by ‘grafting-from’ polymerization methods offer a framework for a 

controlled study of these materials on the molecular-scale. Using these materials, researchers can 

study the basis of hindered diffusion because they contain a relatively homogeneous 

polyelectrolyte membrane. In addition, researchers can use fluorescent molecular probes with 

different charges to examine steric and Coulombic contributions to transport near and within 

polymer brushes.

In this Account, we discuss recent progress in using fluorescence correlation spectroscopy, single-

molecule polarization-resolved spectroscopy, and a novel 3-dimensional orientational technique to 

understand the transport of charged dye probes interacting with the strong polyanionic brush, 

poly(styrene sulfonate). Our preliminary experiments demonstrate that a cationic dye, Rhodamine 

6G, probes the brush as a counterion, and diffusion is therefore dominated by Coulombic forces, 

which results in a ten-thousand-fold decrease in the diffusion coefficient in comparison with free 

diffusion. We also support our experimental results with molecular dynamics simulations. Further 

experiments show that up to 50 percent of the time, Rhodamine 6G translates within the brush 

without significant rotational diffusion, which indicates a strong deviation from Fickian transport 

mechanisms (In which translational and rotational diffusion are related directly through 

parameters such as chemical potential, size, solution viscosity, and thermal properties). To 

understand this oriented transport, we discuss the development of an experimental technique that 

allows us to quantify the 3-dimensional orientation on the time scale of intra-brush transport. This 

method allowed us to identify a unique orientational transport direction for Rhodamine 6G within 

the poly(styrene sulfonate) brush and to report preliminary evidence for orientational dye 

‘hopping.’
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Introduction

Functional polymer films1-5 are used in a wide variety of applications. One example is 

Nafion® (Dupont), a sulfonated polytetrafluoroethylene, as a proton exchange medium in 

polyelectrolyte membrane fuel cells6. An advantage of polymeric materials is that their 

composition can be engineered to exhibit dynamic or switchable physical, chemical, or 

electrical properties, particularly in the case of supported polymer brushes. It is therefore 

valuable to understand how chemical properties such as grafting density, polymer length, 

phase segregation, and polyelectrolyte strength relate to mass and ion transport within 

polymer brushes.

Desirable properties for energy storage applications include low cost, high charge storage 

and/or mobility, and low rates of degradation. Nafion® (Dupont) exhibits high charge 

mobility and low tendency to degrade. Unfortunately, it is also expensive and not 

environmentally friendly. There are a variety of possible polyelectrolyte alternatives7-10, 

including poly(styrene sulfonate) (PSS)11-14. It has been shown that both polyelectrolyte 

nanostructure and local solvation dynamics affect ion transport efficiencies15, and these 

properties are targets for potential fuel cell membrane design improvements16,17. Potential 

problems include loss of conductivity due to excessive swelling or higher order charge 

interactions11,18,19. Various synthetic strategies have been employed to overcome these 

problems and optimize properties, including polymer crosslinking11,20, functionalization21, 

and advanced grafting techniques22-24.

Our practical knowledge of how to prepare polymeric materials vastly exceeds our 

understanding of the molecular-scale processes that govern transport in charged and 

crowded media. For example, it has been shown that by switching from isotropic thin films 

(Figure 1A) to supported polymer brushes (Figure 1B) it is possible to improve transport 

efficiencies by over an order of magnitude. This effect is thought to be due to the increase in 

molecular ordering25 achieved in a polymer brush by end-grafting polymer chains to a 

surface.

The highly disparate experimental and theoretical studies of complex fluid networks in 

general and polyelectrolyte films in particular share a general overall conclusion: their 

chemical properties depend strongly on the local polymer structure and degree of water 

solvation12,18,26-43. One suggested Nafion film morphology, a lamellar structure26, is 

depicted in Figure 1C, in which the hydrophilic water-solvated sulfonate regions phase-

separate from the hydrophobic fluorinated polymer backbone. Also, the mechanism of solute 

hopping36 within and between hydrophilic networks has been theoretically suggested as a 

viable transport mechanism within polyelectrolyte films. Despite advances in both the 

measurement of ion/polymer brush interactions18,19, and the modeling of complex 
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fluids44-47, there remains a lack of mechanistic detail about the interplay of local solvation 

dynamics, cooperativity, pore size, and transport efficiency.

Mechanistic details can be acquired by studying transport in polyelectrolyte brushes at the 

single molecule level. In this account, we discuss our recent findings regarding transport in 

charged and crowded PSS brushes, and the development of analytical techniques required 

for these experiments. First, the basic sample and experimental system are described. Next, 

we discuss our initial finding that transport of counterion probes in the presence of the PSS 

brush is slowed by orders of magnitude, and that this is primarily due to electrostatic 

interactions. Further, single molecule polarization anisotropy analysis reveals heterogeneous 

transport mechanisms, and suggests that oriented transport occurs in the brushes. This 

finding necessitates the development of a novel technique that allows three-dimensional 

orientational dynamics to be extracted, and we detail the progress towards this goal. Finally, 

we offer some insights on the outstanding questions that must be addressed in order to 

engineer molecular ion transport in these systems.

Description of Samples and Basic Experimental Setup

We conducted some of the first work using FCS to evaluate diffusion near and in ordered 

polymer brush thin films, reporting on diffusion characteristics of charged molecular ions 

interacting with PSS polymer brushes. A schematic of the epiflourescence microscope is 

shown in Figure 2.a, and details of the method are provided in the literature39,48,49. The 

polymer brushes are supported on a glass surface, and grown via an asymmetric surface-

grafted initiator into thin films that are densely packed and more homogeneous in length and 

density than can be accomplished with alternate thin-film preparation methods. The surface-

initiated polymerization of PSS used in these studies yields grafting densities of 

approximately 0.05 nm2,37,50,51. As can be seen in the cartoon in Figure 2b, for densely 

grafted polymer strands, the distance between grafting spots is smaller than the radius of 

gyration of the polymer strand, and therefore inter-strand repulsion causes the polymer 

chains to extend and adopt a general orientation vector that is normal to the surface. PSS, a 

strong polyelectrolyte, is deprotonated at all pHs reported in this work (pH > 1), and 

Coulombic repulsion contributes to extension and ordering of the polymer strands. Figures 

2.d and 2.e show representative surfaces as evaluated by AFM for a clean coverslip (2.c) and 

a surface modified with polymer brush (2.d).

For FCS measurements on thin films, it is important to address the heterogeneous 

environment that exists in the laser focal volume. Figure 2.b depicts the intersection of a 

laser focal volume with the polymer brush thin film. What is evident from the cartoon is that 

the laser focal volume encompasses: 1) the polymer brush, 2) an interfacial region, and 3) 

bulk solvent. Note that in this image, the dimension of the thin film normal to the surface 

(along the z axis) is exaggerated; the thin films we study have dry thicknesses from 10 to 50 

nm, while the focal volume dimension along the z axis is ∼ 2 μm. For details as to data 

acquisition and analysis, the reader is directed towards the published original work and 

associated Supplementary Information39. The overall results are described briefly below.

Reznik and Landes Page 3

Acc Chem Res. Author manuscript; available in PMC 2015 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Transport of Fluorescent Probes in Pss Brush

The most significant initial result is that diffusion of a counterion probe is slowed by orders 

of magnitude in the presence of the PSS brush. Three fluorescent dyes, cationic Rhodamine 

6G, neutral Bodipy-R6G, and anionic Alexa 555, differ in their extent and intensity of 

interaction with the polyanionic PSS polymer brush, as indicated by extracted diffusion 

times. The fitted autocorrelation expression is used to extract the characteristic diffusion 

time for each analyte48,52. Average diffusion times for the dyes through the FCS confocal 

laser volume in bulk solution are in the 20 to 30 μs time scale (R6G 25 μs, Bodipy 22 μs, 

Alexa 32 μs). When the dyes diffuse in the presence of polymer brush, multiple diffusion 

times are observed, as reported in Table 1. From the table, we see that only anionic Alexa 

555 exhibits a detectable level of bulk-like diffusion, in contrast to R6G and Bodipy, which 

show a negligible level of bulk-like diffusion when the brush is present. The strong 

interaction between positively charged R6G and the negatively charged polymer brush 

causes R6G to interact almost exclusively with the brush. Assuming equivalent brightness 

for all R6G molecules regardless of diffusion time, an evaluation of the autocorrelation 

amplitudes of the diffusion components suggests that 92% of the diffusion occurs at 

timescales that are four orders of magnitude slower than bulk diffusion.

Although Alexa is anionic, it does exhibit interaction with the polymer brush, as indicated 

by the presence of a diffusion component ∼ 75 times slower than bulk diffusion. Again, 

assuming equivalent brightness for the molecules, Alexa 555 interaction with the brush 

constitutes about 45% contribution to diffusion. The neutral Bodipy's interaction with the 

polymer brush is strong enough to render bulk-like diffusion undetectable. Relative 

amplitudes for slow and intermediate diffusion are 58% and 42%, consistent with a weaker 

interaction with the brush than observed for R6G.

The data suggests that with the three dyes, we measure diffusion occurring across three 

distinct environments that exist in this system: diffusion within the body of the brush, at the 

interface, and in bulk solution. Bulk solvent diffusion can be assumed for the μs time scale 

component, due to consistency with measurements made in the absence of polymer brush. 

We assign the slowest transport for both R6G and Bodipy to diffusion of the dyes within the 

brush membrane39, whereas the small contribution of intermediate diffusion on the 

millisecond time scale could be due to surface interactions. Single molecule intensity 

fluctuations and rotational anisotropy data, discussed later, support these assignments53. In 

the case of Alexa diffusion, the slow diffusion component may be attributed to an interaction 

of the negatively charged dye with an electrical double layer formed at the surface of the 

negatively charged polymer brush thin film54-56. Other diffusion studies, performed on a 

variety of polymer brushes prepared by different techniques, find that slow counterion probe 

diffusion may primarily be due to interactions with the outermost portions of the polymer 

brush41. Overall, the investigation of diffusion of counterion probes interacting with PSS 

brushes might provide needed insight on ion storage/release.

Additionally, that the slowest diffusion component of R6G is four times slower than that of 

BODIPY, is an indication that in addition to steric factors, electrostatic forces are involved 
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in the diffusion of the cationic R6G in the PSS brush. pH-dependent experimental analysis 

and simulations support a role for electrostatic-mediated transport39.

Decoupling of Translational and Rotational Diffusion in Pss Brush

Polarization resolved spectroscopy of single molecules provides a means to evaluate 

molecular orientation, and thus provides an added tool for evaluating molecular interactions 

within the polymer brush system. Previously, this tool has been used extensively to evaluate 

rotational behavior of molecules embedded in materials where molecules are translationally 

stationary and where rotational diffusion is on the order of hundreds of milliseconds to tens 

of seconds. By employing two detectors and a polarization beam splitting cube in the FCS 

detection path (Figure 1.a), we evaluated the orientation adopted by translationally diffusing 

single molecules in solvated PSS polymer brushes. A quantity known as the linear 

dichroism, given in equation (1), can be calculated from orthogonal fluorescence intensity 

traces, Ip and Is, collected for diffusing molecules as a function of time:

(1)

Figure 3.a shows specific details of the detection scheme employed. The probability that a 

photon with a certain orientation will pass through the polarization beam splitting cube and 

proceed either to the s or p detector is dependent on its orientation with respect to the x-y 

plane, as cos2Φ.

Time dependent intensity traces of the orthogonal polarization data are shown in Figures 

3.b-d, and the data is used to calculated A(t). A(t) can be used as a metric to follow the 

change in time of single molecule orientation.

Diffusion of R6G in the polymer brush provides an opportunity for evaluation of the 

rotational motion of translating single molecules in the brush medium, because of the strong 

interaction between R6G and PSS. The time scale for translational diffusion when R6G is 

associated with the brush is slow enough to allow collection of adequate signal for 

evaluation of the linear dichroism, and as our data shows, the rotational diffusion time scale 

is often also slow enough as well, to be resolved with the detection system employed. It 

should be noted that a typical rotational time scale for a molecule interacting with a medium 

possessing viscosity as calculated for the polymer brush, is fast enough to be well beyond 

the time scale of our data binning; (rotational time scales can be estimated to be at maximum 

on the order of 100 us, with data binning at 1 ms53.

The single R6G diffusion trajectories in PSS reveal the existence of multiple distinct modes 

of motion. It should be noted that of the trajectories shown in Figure 3 are representative of 

many thousands of diffusion events observed in data collected over more than 30 minutes, 

and evaluated via automated algorithms53. In the trajectories shown in Figure 3, individual 

detector traces are shown in the bottom panel and the total intensity traces are plotted in the 

top panel. For molecules rotating faster than the data collection time scale, signal counts on 

all channels will be approximately equal, and the mean values of A(t) will approach 0. This 
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is the case for the region numbered 2 in Figure 3.c., indicating fast rotation of the molecule, 

while diffusion in the focal volume over this region is indicated by the changing intensity 

profile. In the regions numbered 1 and 3 in Figures 3.c and d, the value of A(t) is 0.4663 and 

0.4508, indicating orientation is maintained over long time periods. At region 1, we observe 

an example of a trajectory for which the total intensity profile is changing while significant 

orientation is maintained. There are multiple causes for changing total intensity with 

maintained orientation, namely a molecule that is translationally stationary but rotating 

slowly with respect to the z axis (see the coordinate system defined in Figure 3.a), or a 

translationally diffusing molecule that maintains a significant degree of orientation, as may 

occur via interaction of R6G with polymer strands that exhibit an average orientation vector. 

In Figures 3.b, and d, the total intensity profile remains stable for many tens of milliseconds, 

indicating adsorption of the dye molecules on the polymer brush. In Figure 3.b, rapid 

switching between polarization states for the molecule is observed during the adsorption 

event. In this figure, the linear dichroism is plotted in the center panel, and it can be seen 

that the linear dichroism shows long periods with an essentially stationary value consistent 

with adsorption. However, the linear dichroism also shows rapid switching of values that 

occurs in discrete steps. Such switching suggests that in between adsorbed states, there are 

brief moments when the molecule is released to rotate on a time scale that is more rapid that 

the 1 ms time resolution of the detection system, after which it readsorbs.

The single molecule studies evaluating orthogonal polarization of emitted light reveal 

heterogeneous modes of transport within the PSS brush system, and also demonstrate a 

dynamic association between the dye and the PSS brush. That we observe oriented transport 

initiates the question: in which direction does oriented transport occur? In order to answer 

this question, it is necessary to develop a method to monitor transport in three dimensions, 

with micro to millisecond time resolution, a time scale inaccessible by established wide-field 

methods for monitoring such motion.

3D Orientational Dynamics of Probes in Pss Brush

By observing diffusion of R6G using 3-angle polarization resolved detection57, we are able 

to uncover further details of the transport mechanisms because this technique provides 

information about molecular orientation with respect to the z axis in addition to orientation 

with respect to the x-y plane. Figure 4.a shows the spherical coordinate scheme used. The 

use of high numerical aperture optics along with three detectors equipped with polarization 

filters so as to detect emission light at three different polarization angles allows discernment 

of the spherical coordinates58,59. Details of the equations used to determine these 

coordinates as a function if intensity measured at the three detectors are outlined in our 2011 

publication on this work57.

The method provides a significant advantage in evaluating transport in structurally ordered 

systems in which orientation vectors lay along the z axis. In addition to resolving the full 

orientational details for individual molecules, another advantage of this technique is that the 

time resolution is determined by photon collection hardware and is thus greatly increased 

over the time resolution of imaging hardware that has been traditionally used for 3-D 

orientation mapping of translationally stationary single molecules.
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The detection scheme is as shown in Figure 2.a, with the addition of a 50/50 beam splitter 

before the two detectors shown, splitting light to an additional detector with a polarization 

filter set to 45° (for full details, see Ref. #57). Representative data acquired from the 3-

detectors for a single diffusion event with R6G diffusing in the polymer brush are shown in 

Figure 4.b. For the purpose of analysis, rapid rotation/reorientation, which is evident in 

regions for which there is equal signal on all three channels, is termed ‘Type 1’ 

reorientation. Oriented periods marked by significant inequality among the three channels 

indicating restricted rotation, is termed ‘Type 2’ reorientation. Note that Type 1 traces can 

arise from freely rotating molecules and also from molecules that are oriented with polar 

angle Θ close to 0, with Θ = 0 assigned as the excitation and observation axis of the 

microscope.

Based on the characteristics of the intensity traces, it is possible to build trajectory analysis 

algorithms using the equations outlined in our previous work in order to automate evaluation 

of full trajectories lasting many minutes and which are composed of thousands of diffusion 

events. The algorithms find, identify and isolate Types 1 (rapid rotational diffusion) and 

Type 2 (restricted rotational diffusion) motions. By using these algorithms, we were able to 

collect data on the distribution of angles experienced by single molecules during the two 

distinctive Type 1 and Type 2 reorientation regimes. These data are shown in Figure 4.c, 

where histograms of the spherical coordinates for Type 1 (in purple) and Type 2 (in red) are 

plotted for a five minute diffusion trace. The calculated azimuthal angles (left) and polar 

angles (right) are shown.

The azimuthal angle distribution for Type 1 diffusion is relatively smooth, with peaks at 

±45°, as expected for a freely rotating dipole. The polar angle distribution is centered at 

values around ∼23°, also typical for free rotation. The polar angle distribution center occurs 

due to a combination of fast rotation, averaged over all angles, and contributions from 

molecular orientations near Θ = 0°. The azimuthal angle distribution arises from some 

instances of molecular orientations near Φ = 45°, and predominantly from fast rotation 

which, again, presents the same intensity profile.

Distributions for oriented, Type 2 diffusion, on the other hand, are non-uniform, with the 

azimuthal distribution centered at 12° for one brush sample, and shifted polar angle 

distribution centered at 39°. Over all, the clustering of angle values for Type 2, oriented, 

diffusion events, suggests a strong preferential orientation for R6G dye molecules that are 

interacting strongly with the PSS brush. Such preferential orientation is not observed for 

R6G imbedded in an isotropic PMMA polymer film57; and thus the observed orientational 

preference in the PSS film can be ascribed to an orienting director of the polymer brush. 

Both steric and Coulomb interactions between the dye and brush potentially contribute to an 

average alignment of R6G with the brush orientation vector. Support for this conclusion is 

provided by simulations, as discussed below.

As depicted in Figure 5, orientational switching, outside of the changes that would be 

expected for instrumental noise, can be observed for R6G in PSS. Observed reorientation of 

translationally stationary R6G molecules embedded in a spun-cast, isotropic PMMA thin 

film serves as a control. In Figure 5, three kinds of data are plotted: 1) intensity as a function 
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of time (parts a and d), 2) angle distributions over the events shown in a and d (parts b and 

e), and 3) a time progression of orientation (parts c and f). On the left, the data is collected 

over several translationally stationary single molecules embedded in PMMA (parts a-c), and 

on the right, the data shown is for several single molecule diffusion events in PSS brush 

(parts d-f).

It is known that molecules embedded in PMMA thin films exhibit very slow rotation60, and 

our data confirm that we can detect such behavior. The angle distributions shown for the 

rotationally restricted molecules in PMMA in 5.b are narrower than those for diffusing 

molecules in the PSS brush, plotted in 5.e. In Figures 5.c and f, the time progressions of 

molecular orientation for the traces in the top panels of 3.a and c are plotted. For PMMA, 

(5.c) we observe a 56 ms span in which the probe is stationary (highlighted). Over this 

period of time, θ and φ fluctuate by ∼5% with mean values of <θ> = 6.2 ° and <φ> = 56.9°. 

By evaluating rotationally stationary regions identified across several events, an estimation 

of experimental noise limits for angle resolution can be made and is ±5° for angles from 

-45°< φ <45° and 23°< θ < 75°.

Dipole reorientation can be identified for angle movements that extend beyond noise-limited 

fluctuations. Switching of dipole orientation is observed in a class of single molecule events 

observed in the PSS system. The transient oscillations of dipole orientation in the θ /φ space 

are seen to occur during strong interactions where rotation is restricted, which is highlighted 

in 5.f, over a span of 56 ms in which oscillations occur with an approximate period of 9 ms. 

Transient occupation of local energy ‘metabasins’ in the PSS thin film structure may 

contribute to oscillatory behavior.61,62

Summary and Outlook

The most important general conclusion of this work is that, although fluorescent probes are 

large compared with protons shuttled in fuel cell applications, the study of inter-brush 

solvation of single counterion probes provides a method by which to test the disparate 

hypotheses about transport inside polymer films. Transport of counterion probes within an 

ordered strong polyelectrolyte film is strongly influenced by both electrostatics and sterics. 

Oriented translation and orientational hopping have been experimentally identified. Such 

heterogeneous transport behavior raises the question as to whether such oriented motion 

occurs between polymer chains, in lateral solute hopping, or along chains, in axial hopping. 

In order to answer this question, a 3-D polarization resolved single molecule apparatus is 

constructed. The preliminary results from this experiment demonstrate the utility of the 

method for acquiring 3D orientational dynamics and identifying a unique orientational 

direction for each PSS brush. Other important results are provided by detailed simulations, 

which make possible the identification, quantification, and classification of oriented 

translational diffusion mechanisms.

Now that we have identified oriented transport dynamics and established methods to 

quantify this property in supported polyelectrolyte films, two open questions must be 

addressed. First, it is important to experimentally determine the relative contribution of axial 

vs. lateral transport as a function of brush density, hydration, and length, and to establish if 
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oriented transport can be optimized for charge storage/release properties. Also, detailed 

molecular dynamics simulations that address the multiscalar relationships between solute 

mobility and higher order polymer motions are necessary. Current efforts are underway to 

address these questions.
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Figure 1. Polymer thin films
A) isotropic film, with varied internal structure; B) end-grafted polymer brush, with dense, 

ordered internal structure due to electrostatic repulsion; C) depiction of proposed phase-

segregation and formation of lamellae in spin-cast Nafion (inspired by 26).
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Figure 2. 
a) Schematic of epiflourescence microscope. b) Cartoon showing the intersection of the laser 

focal volume with a polymer brush, and diffusing molecules with emission dipoles depicted 

(not to scale). c) AFM image of the surface of a clean coverslip. d) AFM image of a polymer 

brush modified coverslip.
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Figure 3. 
a) Detection scheme for polarized light emitted from a molecular emission dipole (here, 

absorption and emission dipoles are collinear). The azimuthal angle, φ, is the angle made 

with respect to x in the x-y plane. b) Intensity and A(t) trajectories for R6G on brush at pH 7, 

showing repeated polarization state switching of an absorbed molecule. c) and d) additional 

single molecule trajectories for R6G, with representative traces of diffusion behaviors.
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Figure 4. 
a) Coordinate scheme, with R6G and emission dipole depicted. b) A close-up of a single 

molecule transition through the laser focal volume, showing the intensity traces acquired 

from the three detectors. Region labeled Type 1: Nonoriented diffusion with rapid 

reorientation. Region labeled Type 2: Oriented diffusion with restricted rotation. c) 

Distribution of R6G azimuthal and polar angles, respectively, sampled in the polymer brush, 

measured over all diffusion events during a 5 minute period. The two types of diffusion, 

non-oriented, signified as Type 1, and oriented, Type 2, are shown in the separate purple and 

red histograms respectively. The polar angle distributions are well fit by a Gaussian. The 

azimuthal angle distributions hint at a number of subpopulations and fits with up to 4 

Gaussians do not converge. Capital Θ and Φ, as shown, are the actual polar and azimuthal 

angles, respectively, adopted by a dipole.
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Figure 5. 
(left) Data for 3 different single molecule events for R6G embedded in PMMA is shown, a) 

intensity traces, b) distributions of sampled angles for the three events, c) a scatter plot for 

the top trace in a) over the time course shown. (right) Data for R6G events in polymer brush, 

with intensity traces, angle distributions and scatter plots in d-f. The highlighted region in 

part c shows a portion of the trajectory from which the maximum standard deviation due to 

instrument noise can be estimated. The highlighted region in part f) shows a region of 

repeating oscillation.
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Table 1

Diffusion times for R6G, Bodipy-R6G, and Alexa 555, through a confocal laser volume, in the presence of 

polymer brush.

Dye (charge) Slow Diffusion (ms) Intermediate Diffusion (ms) Bulk Like Diffusion (ms)

R6G (+) 240 ± 30 4 ± 2.5 ×

Bodipy (0) 60 ± 24 4 ± 2.3 ×

Alexa (-) × 2.5 ± 0.6 0.032 ± 0.001
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