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Influence of decoys on the noise and dynamics of gene expression
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Many transcription factors bind to DNA with a remarkable lack of specificity, so that regulatory binding sites
compete with an enormous number of nonregulatory “decoy” sites. For an autoregulated gene, we show decoy
sites decrease noise in the number of unbound proteins to a Poisson limit that results from binding and unbinding.
This noise buffering is optimized for a given protein concentration when decoys have a 1/2 probability of being
occupied. Decoys linearly increase the time to approach steady state and exponentially increase the time to switch
epigenetically between bistable states.
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I. INTRODUCTION

A transcription factor must bind to a specific site in the
genome to regulate the expression of a gene. This process
does not occur in isolation. Instead, actual regulatory target
sequences must be distinguished from an entire genome of
alternative possible binding sites. In prokaryotes, the typical
transcription factor binding motif is sufficiently specific that
a regulatory target can be distinguished from decoys by its
binding free energy alone as a roughly unique location in
the genome [1]. Although eukaryotic genomes are much
longer, the binding specificity of some eukaryotic transcription
factor binding motifs can be so low that up to millions of
consensus sequence binding sites can be expected by pure
chance [2]. Recent experiments that measure genome-wide
binding occupancy for large numbers of transcription factors
across various cell types and developmental contexts [3] make
it now possible to investigate many aspects of the nature of
transcription factor-DNA binding.

Although usually only a subset of the predicted binding sites
for a transcription factor are found to be occupied in vivo [4],
some transcription factors have been found to bind to tens of
thousands of sites, such as the muscle differentiation factor
MyoD [5]. Certain developmental master regulators may have
widespread regulatory binding because they encode positional
information within an organism, and are thus implicated in
the regulation of a majority of genes in order to modulate
subtle differences between the cells of a particular tissue [6,7].
Estimates for the mean fraction of occupied sites in regulatory
regions that are functional (as determined by evolutionary
conservation or gene expression assays) range between 10–
40% [6,8]. Alternative roles for transcription factors bound to
DNA in addition to the canonical function of modification of
transcriptional initiation have been proposed [9], for example,
chromatin remodeling [5,6] or DNA repair [10]. There may be
other advantages to widespread transcription factor binding,
such as to specify regulatory regions [2] or to facilitate the
evolution of regulatory elements [11]. Decoy sites have also
been identified in repetitive noncoding regions [12]. Mutations
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in these regions have been implicated in several diseases,
suggesting that the nonregulatory binding of transcription
factors to DNA could serve some currently unknown function,
a question that is being explored in synthetically engineered
systems [13].

Several studies have suggested that an additional conse-
quence of nonfunctional binding may be in maintaining a
large abundance of transcription factors in a cell [14,15] and
buffering noise in gene expression [9,16,17]. In this paper we
provide an analytical theory of how the noise characteristics
and approach to steady state of gene expression are altered by
nonregulatory binding sites, which we call decoys, that confer
stability to the system.

Previously we have shown [18] that when DNA-bound
transcription factors are protected from degradation, which
may be the case for several eukaryotic transcription factors
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FIG. 1. (Color online) (a) Model of a generic autoactivating gene
where transcription factors bind to a regulatory promoter site (red,
proximal to gene) as well as M identical, nonregulatory decoy binding
sites (yellow, scattered throughout the genome) (b) Since they protect
bound proteins from degradation, decoy binding sites do not alter the
steady-state mean unbound copy number of a unimodal probability
distribution, 〈n〉, yet they decrease the variance σ 2

n . (c) Similarly,
the deterministic fixed points of a bistable system, {〈a〉,〈b〉,〈c〉} do
not change, but when decoys are added the relative stability of the
expression states, LOW (n < 〈b〉) and HIGH (n > 〈b〉), is altered.
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including MyoD [19], the mean steady-state concentration
of unbound transcription factors, 〈n〉, does not change as
decoys are added. Instead, the total number of transcription
factors, N , adjusts to satisfy the binding to decoys and
thus decoys do not change the deterministic behavior of the
system. Here we exploit time-scale separation to isolate and
compare the properties of two contributions to the noise
in transcription factor expression. The first is the intrinsic
noise from production and degradation of transcription factors,
which is buffered by decoys. The second source of noise
results from binding and unbinding of transcription factors
to DNA, which becomes Poissonian for large numbers of
decoy binding sites. We show that the optimum noise buffering
decoys for a given concentration of transcription factors have a
binding affinity that ensures they have an equal probability of
being occupied and not occupied. Additionally, decoy binding
affinity can alter the probability of occupancy of expression
states in systems that exhibit multistability. For simplicity, we
choose to study a ubiquitous network motif of an autoregulated
gene, but our results have a wide-ranging applicability to many
biological systems.

II. MODEL

To elucidate the general effect of decoys on gene expression
we model an auto-activated gene surrounded by a collection
of M identical decoy binding sites that do not themselves
directly regulate transcription but do protect bound proteins
from degradation (Fig. 1). To describe this system we consider
a master equation [Eq. (1)] for the time evolution of the
joint probability distribution of the promoter occupancy, i ∈
{unbound (0),bound (1)}, the number of occupied decoys, m,
and the number of unbound proteins, n,

∂tpi,m,n = [gipi,m,n−1 − gipi,m,n]

+ [k(n + 1)pi,m,n+1 − knpi,m,n]

+ (−1)1−iHp(n + qi)p0,m,n+qi

+ (−1)ifpp1,m,n−q(1−i)

+ [Hd (n + q)(M − (m − 1))pi,m−1,n+q

−Hd (n)(M − m)pi,m,n]

+ fd [(m + 1)pi,m+1,n−q − mpi,m,n]. (1)

The reactions represented in the master equation in-

clude protein production n
gi−→ n + 1, degradation n

kn−→
n − 1, promoter binding, (i,n)

Hp(n)(1−i)−−−−−−→ (i + 1,n − q), pro-

moter unbinding, (i,n)
fpi−→ (i − 1,n + q), decoy bind-

ing, (m,n)
Hd (n)(M−m)−−−−−−−→ (m + 1,n − q), and decoy unbinding,

(m,n)
fdm−−→ (m − 1,n + q). The binding process encoded in

the function H is described for x ∈ {p,d} as Hx(n) = hxn

for binding of monomers (q = 1) and Hx(n) = 1
2hxn(n − 1)

for binding of dimers (q = 2). We define a site equilibrium
constant n

†
x = fx/hx for q = 1 and n

†
x = √

2fx/hx for q = 2
that corresponds to a binding free energy Ex such that
n
†
x = eβEx , where β = (kBT )−1.

We solve this master equation numerically by ma-
trix diagonalization to study properties of the steady-state
probability distribution over unbound copy numbers, pn =

∑
i,m pi,m,n(t = ∞). To illustrate the invariant scalings it is

convenient to introduce a factor S so that we write the
production and promoter binding terms as gi = ĝiS and n

†
p =

n̂
†
pS. This results in 〈n〉 = ∑

n npn ≈ 〈̂n〉S. The equilibrium
probability that a site is occupied is thus a Hill function,

θx(〈n〉) = 〈n〉q
(n†

x)q + 〈n〉q
, (2)

which can also be written in terms of energy, such that
θx = 1/(1 + exp[βq�E]), where �E = Ex − μ and μ =
kBT ln〈n〉.

Dimensional reduction. We focus on the limiting case where
binding and unbinding are both much faster than production
and degradation; the case of so-called adiabatic genes. We take
advantage of this separation in time scales to treat separately
the fast fluctuations in unbound copy number—due to binding
and unbinding events—from the slow fluctuations in unbound
copy number—due to production and degradation events. In
this limit we are able to collapse the master equation [Eq. (1)]
to a single dimension in terms of the slowly changing variable
of the system, the total number of transcription factors, N ≡
n + qi + qm,

∂tpN = [G(N − 1)pN−1 − G(N )pN ]

+ [K(N + 1)pN+1 − K(N )pN ], (3)

which we write in terms of effective rates for the production,
G(N ), and degradation, K(N ), of transcription factors. These
rates are defined self-consistently as functions of the slowly
varying component of the unbound transcription factors, n̄,
which depends on the total number of transcription factors, N ,

N = n̄(N ) + qMθd [n̄(N )]. (4)

In Eq. (4) we neglect the term corresponding to binding of
transcription factor proteins to the promoter, since we will
be mainly interested in the limit of many decoy sites where
the contribution of this term is small compared to the decoy
binding term.

The effective production rate is a function of the probability
that the promoter is occupied

G(N ) = g0(1 − θp[n̄(N )]) + g1θp[n̄(N )]. (5)

The effective degradation rate is proportional to the net
unbound copy number, which excludes the mean number of
transcription factors bound to the promoter

K(N ) = k(n̄(N ) − qθp[n̄(N )]). (6)

III. NUMERICAL RESULTS

To gain intuition we first numerically solve the master
equations for two cases that are known to have qualitatively
different dynamical and noise properties without decoys:
monomer (q = 1) and dimer (q = 2) binding (see caption of
Fig. 2 for details). We compare the numerical solutions for the
full and reduced model in Fig. 4. Dimer binding allows for
bistability and switching between the two attractors, whereas
in the adiabatic limit monomer binding yields a unimodal
distribution easily characterized by simple measures such as
the Fano factor for noise (σ 2

n /〈n〉) and the mean relaxation time
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FIG. 2. (Color online) Comparison of numerical (solid curves)
and analytical (dashed curves) results for gene expression properties
as decoys are added for systems with varying mean unbound numbers
of protein copies, 〈n〉. (a) The Fano factor; (b) The probability for
the bistable system to be in the HIGH protein expression state,
ψ ; (c) time for the mean total copy number to reach half the
steady-state value; (d) epigenetic escape time. Numerical results in (a)
are calculated by projecting the solutions of the 3D master equation
for pn = ∑

i,m pi,m,n, whereas the 1D master equation for pN is
accurate for the results plotted in (b), (c), (d) (see Fig. 4 for details).
Analytical calculations follow from Eqs. (18), (21), (22), and (23)
using numerical calculations for a gene without decoys. Parameters:
g1 = 100S, g0 = 8S, k = 1, n

†
P = 53.2S for q = 1, which gives

〈n〉 = 50S. For q = 2, ψ0 = 0.5 is fixed such that n
†
P = 10.3 for

S = .2, n
†
P = 21.0 for S = 1, and n

†
P = 106.8 for S = 2.

to steady state. In Fig. 2 we see that adding decoys with a fixed
binding energy (we use decoys that are half bound at steady
state1) quantitatively affects the gene expression properties.
However when the number of decoys is rescaled by the mean
number of unbound proteins, the results for different choices
of S collapse onto a common plot (see Fig. 2 insets) indicating
general principles that we explore below.

We plot the dependence of the noise and dynamical
properties of the system on the binding free energy of decoys
Ed in Fig. 3. In prokaryotic genomes, there is typically a
free energy penalty of 1 to 2kBT per mismatch with respect
to the consensus binding motif. When there are four to five
mismatches the binding becomes characteristic of background
DNA [1]. Since most decoys will have a weaker binding
affinity than the promoter, we concentrate on discussing the
large M , large n

†
d limit [15].

Noise buffering. The steady-state unbound Fano factor,
σ 2

n /〈n〉, plotted in Fig. 2(a) approaches Poisson noise as

1We set n
†
d = 〈n〉 for q = 1 and n

†
d = 〈c〉 for q = 2.
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FIG. 3. (Color online) Comparison of numerical (solid curves)
and analytical (dashed curves) for the same properties as in Fig. 2 as
a function of the decoy binding energy Ed , for fixed numbers decoys,
M . The vertical dashed lines indicate the energies that correspond to
the fixed points of the system, as illustrated in Figs. 1(b) and 1(c)
Parameters are the same as in Fig. 2 for 〈n〉 = 50.

decoys are added, such that σ 2
n

M→∞−−−→ 〈n〉. In the limit of
large numbers of decoys the slow fluctuations in unbound
copy number resulting from production and degradation events
are dominated by an effective birth-death process in which a
relatively small number of particles bind and unbind to a large
reservoir of sites. We see that systems having smaller mean
numbers of proteins approach the Poisson limit for smaller
values of M [compare blue and green curves in Fig. 2(a)] than
those with larger mean protein numbers. Figure 3(a) shows that
noise buffering is optimized for a particular value of the decoy
binding energy, E∗

d = μ. This corresponds to the case where
decoys are half bound at steady state (n†∗

d = 〈n〉). Intuitively,
the potential to buffer noise is maximized at E∗

d = μ since
binding and unbinding events are most probable when sites
are on average half-occupied.

Approach to steady state. Although the mean steady state
unbound protein copy number, 〈n〉, remains constant, adding
decoys increases the mean steady state total protein number,
〈N〉 = 〈n〉 + Mθd (〈n〉). The relaxation time, τ1/2, (the time
to reach 〈N (τ1/2)〉 = 〈N〉/2, from an initial condition of
〈N (0)〉 = 0) increases linearly as decoys are added [Fig. 2(c)]
due to the time required to produce the proteins needed to
satisfy binding equilibrium. Strongly binding decoys (Ed �
μ) increase τ1/2 the most because more proteins must be
created [Fig. 3(c)].

Epigenetic escape. In a bistable system where proteins
bind as dimers, the addition of decoys does not alter the
three deterministic fixed points corresponding to the stable
low expression, unstable intermediate expression, and stable
high expression levels, n = {〈a〉,〈b〉,〈c〉}. However, decoys
are able to influence the ability of the system to stochastically
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transition between the stable global phenotypic states, which
we call the LOW and HIGH expression states [see Fig. 1(c)].
The binding affinity of the decoys determines the change in
the likelihood of observing the different expression states. In
Fig. 2(b) we see that decoys with a binding energy Ed =
μc ≡ kBT ln〈c〉 increase the probability to be in the HIGH
protein copy expression state by preferentially decreasing
fluctuations in the protein buffer in the vicinity of n = 〈c〉, such

that ψ
M→∞−−−→ 1 where ψ = ∑

n>〈b〉 pn. On the other hand,
decoys with a binding energy Ed = μa ≡ kBT ln〈a〉 will act
to stabilize the LOW protein copy number expression state,
such that ψ → 0. We see that the epigenetic escape times,
defined as the mean first passage times between the two steady
states, τac : n = 〈a〉 → n = 〈c〉 and τca : n = 〈c〉 → n = 〈a〉,
increase exponentially as decoys are added [Fig. 2(d)]. The
variation of ψ with decoy binding energy [Fig. 3(b)] shows
that decoys with binding energy Ed = μb stabilize neither
state, however, they significantly increase the epigenetic
escape rate by effectively stabilizing the transition state
[Fig. 3(d)].

IV. ANALYTICAL RESULTS

Noise buffering. To understand the numerical observations
in Figs. 2 and 3 we note the variance in the unbound protein
concentration depends on both fast and slow fluctuations
through the law of total variance, σ 2

n = σ 2
n,slow + σ 2

n,fast, where
the slow fluctuations are due to production and degradation
events and the fast fluctuations are due to binding and
unbinding events.

The slow contribution to the variance can be obtained by
approximating the master equation for pN [Eq. (3)] by a
Fokker-Planck equation,

∂

∂t
pN = − ∂

∂N

[
v(N ) − 1

2

∂

∂N
D(N )

]
pN, (7)

with the drift, v(N ) ≡ G[n̄(N )] − K[n̄(N )], and diffusion,
D(N ) ≡ G[n̄(N )] + K[n̄(N )]. The steady-state probability
distribution of Eq. (7) is given by

p(N ) = N
D(N )

exp

[∫ N

0
dN ′ 2v(N ′)

D(N ′)

]
. (8)

Within a Gaussian approximation around N = 〈N〉, Eq. (8)
yields the variance in the total protein copy number

σ 2
N =

∣∣∣∣ D(N )

−2∂N [v(N )]

∣∣∣∣
N=〈N〉

. (9)

One can obtain the variance in the slowly varying component
of the unbound protein copies, n̄, by performing a change of
variables on Eq. (9) from N to n̄. The drift and diffusion
functions evaluated for n̄ are equivalent to that of a gene
without decoys [v0(n̄) and D0(n̄)]. The derivative, J (n̄) ≡

∂N/∂n̄, is calculated from Eq. (4)2

J (n̄) =

⎧⎪⎨⎪⎩
1 + M

n
†
d

(n†
d+n̄)2

, for q = 1

1 + M
4(n†

d )2n̄

((n†
d )2+n̄2)2

, for q = 2
. (10)

After the change of variables,

σ 2
n,slow =

∣∣∣∣D0(n̄)/J (n̄)

−2∂n̄[v0(n̄)]

∣∣∣∣
n̄=〈n〉

= σ 2
0

J (〈n〉) , (11)

where σ 2
0 is the variance of the gene without decoys.3

To calculate the fast contribution to the variance in the
number of unbound protein copies due to binding and
unbinding of monomers, σ 2

n,fast, we consider a master equation
indexed over the number of unbound transcription factors, n,
given a constant total number of transcription factors, N ,

dpn|N
dt

= fd [(N − n + 1)pn−1|N − (N − n)pn|N ]

+hd [(n + 1)(M − N + n + 1)pn+1|N
− n(M − N + n)pn|N ]. (12)

We neglect binding and unbinding to the promoter because
we are interested in the limit of large numbers of decoy sites,
M → ∞. The steady-state probability distribution is found by
recursion

pn|N = p0|N
n−1∏
	=0

fd (N − 	)

hd (	 + 1)(M − N + 	 + 1)

= p0|N (n†
d )n

N !

n!(N − n)!

(M − N )!

(M − N + n)!
≡ exp [F(n)] (13)

≈ exp(F(n̄)) exp

[
1

2
(n − n̄)2 ∂2F

∂n2

∣∣∣∣
n=n̄

]
. (14)

In the last step we Gaussian expand F for large M , N , and n

within a Stirling expansion. Setting ∂/∂n[F(n̄)] = 0 recovers
the deterministic result for the mean number of unbound
protein copy numbers, n̄ ≈ ∑

n npn|N for n̄ 
 0, given in
Eq. (4). The variance in the number of unbound protein copy
numbers is

σ 2
n|N =

(
∂2F
∂n2

∣∣∣∣
n=n̄

)−1

= n̄

[
Mn

†
d

(n†
d + n̄)2 + Mn

†
d

]

= n̄

[
1 − 1

J (n̄)

]
. (15)

2Technically we could include an extra term here corresponding
to the promoter occupancy, however we neglect this because we are
interested in the limit of including large numbers of decoys.

3Equivalently, the same formula for σ 2
n,slow can be obtained by

first performing the change of variables on Eq. (7), obtaining the
effective drift ṽ(n̄) = v0(n̄)J −1(n̄) + 1/2D0(n̄)J −1(n̄)∂n̄J −1(n̄) and
effective diffusion D̃(n̄) = D0(n̄)J −2(n̄), followed by the small noise
approximation.
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The fast contribution to the unbound fluctuations is found
by averaging over the probability distributions of the total copy
number, pN , which is the steady-state solution of Eq. (3)

σ 2
n,fast =

∑
N

n̄

[
Mn

†
d

(n†
d + n̄)2 + Mn

†
d

]
pN

≈ 〈n〉
[

Mn
†
d

(n†
d + 〈n〉)2 + Mn

†
d

]
(16)

= 〈n〉
[

1 − 1

J (〈n〉)
]

. (17)

where we have approximated the average of the function by
the function of the average, which is valid for [(n†

d + 〈n〉)2 +
Mn

†
d ] 
 1.

Combining the slow [Eq. (11)] and fast [Eq. (17)] contri-
butions to the variance yields

σ 2
n ≈ (

σ 2
0 − 〈n〉) [

(n†
d + 〈n〉)2

(n†
d + 〈n〉)2 + Mn

†
d

]
+ 〈n〉. (18)

This formula agrees well in the appropriate limits with
numerical solutions of the full master equation, as shown in
Figs. 2(a) and 3(a), and also holds for a model that includes
translational bursting (see Appendix B). From Eq. (18) in
the large M limit, we obtain the observed Poisson noise,
σ 2

n → 〈n〉. Noise reduction is proportional to the deviation
from Poisson noise in a system without decoys. Decoys will
decrease noise for σ 2

0 > 〈n〉4. Equation (18) is minimized for
n
†∗
d = 〈n〉. Equation (18) can be written as a function of M/〈n〉

and �E, which results in the data collapse shown in the inset
of Fig. 2(a).

To describe the noise buffering efficacy we quantify the
number of decoys needed to reduce the super-Poissonian
noise by a half, M1/2. We find M1/2 = 2〈n〉(1 + cosh �E)
is independent of σ 2

0 . For decoys with optimum buffering
capacities (�E∗ = 0), M1/2 = 4〈n〉 and M1/2 asymptotically
doubles for every binding energy increase of kBT ln 2 (or
doubling of n

†
d ).

Approach to steady state. The time to reach half of the
mean steady-state expression, τ1/2, starting from a mean of
zero protein copies is found from the deterministic equation
for the mean total copy number, dt 〈N (t)〉 = v(N ) = v0[n̄(N )],
to be

τ1/2 =
∫ 〈N〉/2

0
dN

1

v0 [n̄(N )]
. (19)

Performing a change of variables from N to n̄ yields

τ1/2 =
∫ n̄(〈N〉/2)

0
dn̄

J (n̄)

v0(n̄)
(20)

where the upper boundary is the mean unbound copy number
n̄ such that Eq. (4) is evaluated for N = 〈N〉/2 for binding of

4For a burst size of one, decoys will increase noise for an
autorepressing gene (where σ 2

0 < 〈n〉) and have no effect on a
constitutively produced gene (where σ 2

0 = 〈n〉).

monomers. In the limit of weak decoys, Ed > μ, we find

τ1/2 = τ0,1/2 + M�τ1/2 (21)

where �τ1/2 is a correction due to adding the decoys,
recovering the linear increase of τ1/2 with decoys seen in
Fig. 2(c). For very weak decoys, Ed 
 μ, (or n

†
d 
 〈n〉),

J (n̄) ≈ 1 + M/n
†
d = const. Hence �τ1/2 ≈ τ1/2,0/n

†
d (see

Appendix C for details).
Epigenetic escape. Within the Fokker-Planck approxima-

tion the epigenetic escape time can be found by expanding the
effective potential about the fixed points to second order. In
the limit that the barrier height is sufficiently large one finds

τca = τca,0

√
J2(〈c〉)J2(〈b〉)eMζbc , (22)

where τca,0 is the escape time without decoys and ζbc is a
correction to the escape path action due to a single decoy (see
Appendix D for details). An analogous expression holds for
escape from 〈a〉 to 〈c〉. The escape times increase exponentially
for large M as decoys are added.

Since the model has been reduced to one dimension, the
bimodal system obeys an effective detailed balance such
that ψτac = (1 − ψ)τca , where ψ is the probability to be in
the HIGH protein copy number expression state. Using the
previous results for the escape times,

ψ = ψ0
√
J (〈a〉)/J (〈c〉)eMζac

1 + ψ0(
√
J (〈a〉)/J (〈c〉)eMζac − 1)

. (23)

When n
†
d

<
>〈b〉, ζac

<
>0 such that ψ

M→∞−−−→ 0
1. Thus the binding

affinity of the decoys can determine which expression state is
favored.

V. DISCUSSION

In summary, when there is a sufficient separation of time
scales between slow protein production/degradation and fast
binding/unbinding to the DNA, we have shown that decoys
buffer gene expression noise. The fluctuations in binding
and unbinding act as an effective birth-death process that
imposes the Poisson limit on noise reduction. Noise buffering
is optimized for decoys that are half occupied at the appropriate
protein concentration.

Not all gene regulatory systems function in the fully
adiabatic limit explored here [20–22]. If binding and unbinding
to decoys is much slower than the fluctuations in total
copy number, decoys are unable to influence the steady-state
unbound protein expression. If binding and unbinding to
the promoter become much slower than the fluctuations in
total copy number, there are effectively two gene states with
constant production rates. In this case the decoys have no
impact on the steady state unbound protein expression.
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APPENDIX A: VALIDATION OF
DIMENSIONAL REDUCTION

In the limit that binding and unbinding are much faster than
production and degradation we can reduce the master equation
to a one-dimensional master equation indexed over the total
number of transcription factors. We verify that the validity of
the dimensional reduction in Fig. 4 by comparing solutions
of the reduced master equation for the probability distribution
of the total copy number N [Eq. (3), black dashed curves]
to solutions of the three-dimensional master equation indexed
over the total copy number, N [Eq. (1) colored curves].

APPENDIX B: TRANSLATIONAL BURST NOISE

Another source of noise in gene expression comes from
multiple translation events of a single mRNA copy, so
that proteins are effectively produced in bursts rather than
one at a time [23]. Although our model does not include
mRNA, we mimic the effects of bursting by specifying that
each production event results in an instantaneous burst of
B transcription factors with a reduced production rate of

transcription factors, g → g/B, such that the average unbound
number of transcription factors 〈n〉 does not change even
though the variance increases. For a constitutively produced
gene (where g0 = g1) the variance without decoys becomes
σ 2

0 /〈n〉 = (B + 1)/2 [24]. Decoy binding sites that protect
transcription factors from degradation have the opposite effect
on the variance to bursts—they decrease the variance without
changing the mean expression 〈n〉. The noise buffering formula
derived above for σ 2

n = σ 2
n,slow + σ 2

n,fast can be applied to a
constitutively produced bursty gene as follows

σ 2
n = (

σ 2
0 − 〈n〉)J −1(〈n〉) + 〈n〉

= 〈n〉
[(

B − 1

2

)
J −1(〈n〉) + 1

]
. (B1)

There are similar opposing effects between decoys and
bursts when one considers the bimodal probability distribution.
Large bursts can eliminate bimodality by decreasing the typical
number of production events needed reach the transition state
from a fixed point [25], such that the probability of the HIGH
state decreases. Adding decoys that stabilize the HIGH state
(n†

d > 〈b〉) can restore bimodality in a bursty bimodal system.
Similarly, bursts exponentially decrease the time to escape
between states [26], whereas decoys exponentially increase
the time to escape between states.

APPENDIX C: APPROACH TO STEADY STATE

In this appendix we further discuss the limiting behavior of
the approach to steady state for the cases of weak and strong
decoys.

Limit of weak decoys. For weak decoys (n†
d 
 〈n〉), approx-

imating θd (n̄) ≈ n̄/n
†
d in Eq. (4) results in N ≈ n̄(1 + M/n

†
d )

and J (n̄) = ∂N/∂n̄ = 1 + M/n
†
d = const. In this limit the

upper boundary of the integral becomes n̄(〈N〉/2) ≈ 〈n〉/2
and τ1/2 = τ1/2,0 + M�τ1/2 where �τ1/2 ≈ τ1/2,0/n

†
d .

Limit of strong decoys. For strong decoys (n†
d � 〈n〉),

Eq. (4) becomes N ≈ n̄ + M(1 − n
†
d/n̄), and J (n̄) ≈ 1 +

Mn
†
d/n̄

2. Therefore, unlike weak decoys that influence τ1/2

independently of n̄, strong decoys have the most significant
effect of increasing the time to reach the steady state (compared
to the gene with no decoys) when n̄ is small.

In the limit of extremely strong decoys, each transcription
factor that is produced binds to a decoy site and remains bound.
As a result, until all decoys are saturated, the unbound copy
number will be zero. There will be no transcription factors
available to bind to the promoter and the production will
be fixed at the basal production level, g0. After saturation,
however, strong decoys no longer influence the dynamics of
the system. Therefore the time to approach steady state can be
broken up into a basal production stage and an isolated gene
stage.

For M > 〈n〉, the time to reach half of the steady-state
number of proteins happens before the decoys are saturated—
in the regime when transcription factors are produced with a
rate g0 per unit time,

τ1/2 = 〈N〉
2g0

= M + 〈n〉
2g0

, for M > 〈n〉 
 n
†
d . (C1)
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APPENDIX D: EPIGENETIC ESCAPE

To calculate the epigenetic escape times in Eq. (22), we
define fixed points in total copy number, N = {〈A〉,〈B〉,〈C〉},
that correspond to the fixed points in unbound copy number,
n = {〈a〉,〈b〉,〈c〉}. The mean escape time from N = 〈A〉 to
N = 〈C〉 is [27]

τAC = 2
∫ 〈C〉

〈A〉
dY exp[W (Y )]

∫ Y

0

dZ

D(Z)
exp[−W (Z)],

(D1)

where

W (N ) = −
∫ N

0
dN ′ 2v(N ′)

D(N ′)
. (D2)

Within a Gaussian approximation about N = 〈A〉 and
N = 〈B〉, Eq. (D1) becomes

τAC = 2π

D(〈A〉)

√
D(〈A〉)D(〈B〉)

|∂Nv(〈A〉)| |∂Nv(〈B〉)|e
− ∫ 〈B〉

〈A〉 dN
2v(N)
D(N) ,

Performing a change of variables from N to n̄, the escape time
becomes

τac = τac,0

√
J (〈a〉)J (〈b〉)e−Mζab , (D3)

where τac,0 is the mean escape time without decoys and ζab is
the decoy perturbation to the action over the interval [〈a〉,〈b〉]

ζab =
∫ 〈b〉

〈a〉
dn̄′ 2v0(n̄′)

D0(n̄′)

[
4(n†

d )2n̄′

((n†
d )2 + n̄′2)2

]
. (D4)

Likewise we find τca = τca,0
√
J2(〈c〉)J2(〈b〉)eMζbc .
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