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ABSTRACT 

 

 

Analysis of Hysteretic Systems: Preisach Formalism and Bouc-Wen Modeling 

 

By 

 

Michael Grimmer 

 

 

The inherently nonlinear phenomenon of hysteresis is notoriously difficult to model. Of notable 

interest are the inverse models of hysteresis which identify the parameters of a particular model 

to closely match experimental data. Two major models of hysteresis are the Preisach and Bouc-

Wen models. As researchers typically deal with solely one model for their analyses, this thesis 

initially develops techniques to convert from the Bouc-Wen model to the Preisach model, using 

first a least squares fit followed by using artificial neural networks. The parameters of each of the 

two models are investigated in further detail, with emphasis on how each parameter affects the 

loop and how to arrive at an adequate initial estimate for the identification problem algorithms. 

The techniques are then evaluated and compared against several sets of experimental data for 

hysteresis loops supplied by the Air Force Research Lab. Their optimized solutions are compared 

to assess the flexibility and viability of each model. Generally, it is found that, while both models 

are successful, the Preisach model is more flexible in fitting different types of experimental 

loops. Lastly, both experimental loops and theoretical loops subjected to white noise are 

identified using Transitional Markov Chain Monte Carlo (TMCMC) algorithms via the Preisach 

model. These results show promise for the TMCMC method being applied on data, particularly 

when the loop is induced by white noise. 
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Chapter 1 

Introduction 

 

1.1 The Phenomenon of Hysteresis 

Hysteresis is a widely observed phenomenon, both in nature and in constructed systems. It 

manifests itself in many fields, including fundamental physical mechanisms [1] and as the 

consequence of degradation and imperfections in mechanical systems. Further, it can be 

purposefully built into a system to monitor behavior [2]. One of the first mentions of hysteresis 

was in a paper published by Ewing, where he noticed that a lagging effect of the thermoelectric 

quality of stretched wire with respect to the associated tensile stress on the wire [3]. He also 

observed that the effect was static; that is, the “lagging” effect was unaffected by the rate at 

which the load was changed. He observed a similar phenomenon with his magnetic materials. 

Thus, Ewing named this effect hysteresis, which stems from Greek, meaning “to lag behind.” In 

his studies, Ewing highlighted two of the critical features of hysteresis: lagging and rate-

independence.  

 

The lagging effect can be effectively described by the notion that a system experiencing 

hysteresis contains a retardation of an effect when the forces acting upon the body are changed. 

The second property, rate independence, means that an input-output plot depends on the value of 

the input, but not the speed at which the input is changed [4].  
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Research on hysteresis related phenomena continued in earnest after Ewing’s initial discovery. 

Some major contributors during this time included Lord Rayleigh, Duhem, and Preisach [5, 6, 

and 7]. Many models for this nonlinear process were promulgated by the likes of von Mises, 

Prandtl, Ishlinskii, Hill, and Prager [8, 9, 10, 11, and 12]. 

 

While the general nature of hysteresis was known at this time, it remained surprisingly unstudied 

from a mathematical point of view until the mid-1960s with Bouc, who successfully modeled 

different hysteretic phenomena [13]. For one of the major kinds of models, the Russian 

mathematicians Krasnoselskii and Pokrovskii were seminal in giving a more structured 

formulation to hysteresis by using the concept of operators [14]. This setup was necessary for 

Mayergoyz to formulate the well-known and widely used Classical Preisach Model [15]. The 

Preisach model has proven an incredibly versatile tool in hysteresis, and its mathematical 

foundations will be extensively covered in Chapter 2.  

 

Concurrently, the mathematical modeling work completed by Bouc was compounded and 

generalized by contributions from Wen to form the Bouc-Wen model in 1976 [16]. This model 

opts for using first-order non-linear differential equations that relate input displacement to output 

restoring force in a hysteretic manner. This will also be covered in more detail in Chapter 3.  

 

1.2 Definition and Visualization of Hysteresis 

For the purposes of this thesis, scalar hysteresis is assumed for clarity. Using control theory 

terminology, consider the simple system of the plant in Figure 1.1 characterized by an input 𝑢(𝑡) 
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and an output 𝑓(𝑡). The plant can be called a hysteresis transducer if its input-output is a multi-

branch non-linearity for which branch-to-branch transitions occur after input extrema [15].  

 

Figure 1.1: General representation of a system 

 

A visual example of the rate-independent property of hysteresis is shown in Figure 1.2. The 

branches of hysteretic non-linearities are determined by the past extremum values of input, while 

the speed or path of the input variations between these extremum points has no bearing on the 

restoring force branching.  

 

Figure 1.2: Demonstration of rate-independence of hysteresis: (top) Sample input over time, 

(middle) Different sample input over time, and (bottom) hysteretic restoring force from both 

inputs 
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This figure shows that the restoring force of a hysteretic system will remain consistent regardless 

of the path or speed between extremum points of the input (provided the extremum points are of 

the same magnitude).  

 

The kind of hysteresis investigated in this thesis is of the form of Figure 1.3. In this common 

subset of hysteresis, the material experiences a loading and unloading phase. As Figure 1.3 

shows, the material will start from negative saturation 𝑢1 and follow the path ABC on the 

loading phase towards 𝑢2. On the unloading phase, the material will follow the path CDA back 

towards 𝑢1.  

 

Figure 1.3: Continuous hysteresis loop 

 

A simple analog with a mechanical system is that of a beam pinned at one end. A compressive 

force is applied to bend the beam downward. Then, the force is lessened, and the decreased force 

would then cause the end of the beam to return to its original state. However, it would not follow 

the same path on the stress-strain curve on the unloading and heading for negative saturation as it 

would for the loading and the heading towards positive saturation. In applying this towards 
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Figure 1.4, the loading curve would be represented from the first line from quiescent conditions 

to the positive saturation point. 

 

Figure 1.4: Continuous hysteresis loop starting from quiescent conditions 

 

In most of these hysteretic materials, starting either from negative saturation or quiescent 

conditions, the path of the restoring force will be counter-clockwise. The existing literature on 

hysteresis generally concerns continuous hysteresis which involves the loops shown in Figure 

1.3 and Figure 1.4. Note that hysteresis does not always occur in a closed loop. Hence, a loop is a 

particular kind of hysteresis that does occur quite often, but is not the only possibility. Some 

materials can dissipate more energy with each successive loading and unloading cycle, leading to 

the results in Figure 1.5. 

 

 

Figure 1.5: Nonlinear hysteretic behavior that does not form a continuous loop 
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Although hysteresis can be associated with the characteristics of Figure 1.5, this thesis will deal 

exclusively with hysteresis loops that form a closed loop. With this groundwork, a general 

definition of hysteresis can be applied. Hysteresis is the rate independent memory effect, where 

the term memory expresses the lagging of an effect behind its cause. Whenever and wherever the 

system exhibits a lag compared to the system’s input, then hysteresis is present [17].  

 

1.3 Models of Hysteresis 

Hysteresis models can generally be divided into two classes [17]. This can be shown in Figure 

1.6.  

 

Figure 1.6: Types of hysteresis and their corresponding models of choice 

 

Hysteresis with local memories can be distinguished from other models by one fundamental 

property. Essentially, the past does not exert any influence on the present or future of the 

hysteretic system. The standard way of modeling these types of hysteresis loops is via 

differential models of hysteresis. The primary model that will be used throughout this thesis for 

local memories is the Bouc-Wen model. One of the advantages of these types of models is that 
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they may be incorporated directly in the differential equations that govern the motion of 

particular systems while assigning values to the many parameters that define the system. There 

are no hysteretic operators in this perspective. Thus, the Bouc-Wen model can often be simpler 

to model compared to the Preisach model for its reliance on first-order differential equations.  

 

Notably, hysteresis with non-local memories does have the memory effect. Future values depend 

not only on the present state, but on the history of the input as well. Modeling hysteresis with 

non-local memories is the theoretical basis of the Classical Preisach Model [15]. Mayergoyz 

incorporated the idea of simple operators, called hysterons. The resulting product of the Preisach 

model is one of the most widely used model in literature for its versatility and wide applicability.  

 

Because of these differences in the modeling process, most researchers choose a model for the 

duration of their work without comparing resulting models across multiple schemes. It is the 

opinion of this author that, in the operator based models, the Preisach model is more versatile 

than the traditional Bouc-Wen model in identifying experimental loops, and that for other 

reasons enumerated later in this thesis, it should in many cases be the preferred model. Note that 

this thesis deals exclusively with the operator-based Preisach and Bouc-Wen models of 

hysteresis and not with bilinear models. One of the objectives of this thesis is the comparison on 

the performance of matching experimental data with both the Preisach and Bouc-Wen models. 

Further, little to no research has been done on how to convert between these two schemes, should 

a need arise. As such, another aim of this thesis is to develop ways to convert one system of 

modeling to the other. Working in the Preisach domain has many advantages over the Bouc-Wen 

model, to include stochastic averaging and equivalent linearization. Lastly, there has been no 
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work applying the Transitional Markov Chain Monte Carlo method through the Preisach model 

on experimental data, particularly data which is exposed to white noise. Bayesian model 

updating has use because it does not find a single plausible model but a set of models whose 

predictions are weighted by the probabilities of these models conditioned on the measured data. 

Due to their ability to consider a set of models, they are suitable for modeling uncertainties in 

modeling [68]. 

 

1.4 Thesis Organization 

Chapter 1 deals with an introduction of hysteresis and the popular models associated with it, 

specifically the Preisach model and the Bouc-Wen model. It also covers the history of the field 

of hysteresis and the need for the effective modeling of this nonlinear phenomenon.  

 

Chapter 2 deals with the necessary mathematical background for the material to come in later 

chapters. It covers the theory behind both the Preisach model and the Bouc-Wen model. 

Furthermore, Chapter 2 covers the theory behind the artificial neural network, which will be 

employed (and compared against least squares) in the conversion of Bouc-Wen parameters to 

Preisach parameters. Neural networks can prove beneficial because of their speed and ease of 

use, as well as for understanding the complex relationship between the two models. Finally, this 

chapter covers the theory behind the Monte Carlo method and its possible application towards 

the inverse modeling of hysteretic systems.  

 

Chapter 3 discusses the conversion of Bouc-Wen parameters into Preisach parameters and the 

possible benefits of doing so. Both the method of least squares and a built artificial neural 
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network will be considered. The conversion of Preisach parameters into Bouc-Wen parameters is 

addressed as well.  

 

Chapter 4 is a study into how model parameters affect the overall shape and size of the 

hysteresis loop. Relatively little research has been done on this subject (notably when 

considering the minor variations in the exact kind of models researchers use), and understanding 

how parameters affect the loop is critical if one hopes to effectively and accurately capture the 

model from experimental data. 

 

Chapter 5 deals with the application of both models on experimental data provided by the Air 

Force Research Lab (AFRL). It also invokes an assessment of the performance of these two 

models on the same set of data and of the advantages of having the models’ parameter 

information when dealing with such materials.  

 

Chapter 6 deals with the Transitional Markov Chain Monte Carlo method and its applicability 

towards the inverse modeling of hysteresis using the Preisach model. This study deals more with 

the random and noisy processes of many materials and the search for the posterior probability 

distribution functions for the parameters of the Preisach model among noisier systems. 

 

Finally, Chapter 7 is a summary of the entirety of the thesis, delineating what has been 

accomplished and making suggestions for future work. 
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Chapter 2 

Mathematical Background 

 

2.1  Preliminary Remarks 

To establish the scope of this work, attention is first given to the mathematical background and 

the theory used in building these models and simulations. There are sections devoted separately 

to the Preisach model and Bouc-Wen model, as well as the theory regarding artificial neural 

networks and Monte Carlo simulation. With a solid understanding of these concepts, the reader 

can appreciate work accomplished in later chapters. 

 

2.2 The Preisach Model 

2.2.1  Hysterons and Superposition 

This section focuses on the formulation of the Preisach model. If the reader wishes to consult 

further resources on this topic, there are many available resources including the work on the 

nature of operators by Krasnoselskii and Pokrovskii as well as the backbone of the entire model: 

Mayergoyz’s Mathematical Models of Hysteresis and their Applications which formally 

introduces the concept of the Classical Preisach model [14, 15]. 

 

To understand the Preisach model, first consider an infinite set of hysteresis operators 𝛾𝛼𝛽. These 

operators can take on two values: -1 or 1. Each operator can be visualized with Figure 2.1 as a 

rectangular loop with the threshold values of 𝛼 and 𝛽. These relays can also be thought to have 
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an “up” position and a “down” position corresponding with 𝛾𝛼𝛽 = 1 and 𝛾𝛼𝛽 = −1, 

respectively. Further, for consistency, the reader can assume that 𝛼 ≥ 𝛽, as supported by Figure 

2.1. Note that the hysteron’s value can be summarized via Eq. (2.1). 

 

 

Figure 2.1: A typical hysteron 

 

As the input 𝑢(𝑡) is monotonically increased, the ascending branch 𝑎𝑏𝑐𝑑𝑒 is followed. As the 

input 𝑢(𝑡) is monotonically decreased, the descending branch 𝑒𝑑𝑓𝑏𝑎 is followed. Next, adopt 

the notion that all hysterons have the same input 𝑢(𝑡) and contribute to the same output 𝑓(𝑡) in 

conjunction with a weighting function 𝜇(𝛼, 𝛽), which is often called the Preisach function. Then, 

the Preisach function can be written. 

 
𝛾𝛼𝛽 =  {

+1 𝑖𝑓 𝑢 > 𝛼 𝑜𝑟 𝑢 > 𝛽 𝑎𝑛𝑑 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔.
−1 𝑖𝑓 𝑢 < 𝛽 𝑜𝑟 𝑢 < 𝛼 𝑎𝑛𝑑 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔.

 
(2.1) 
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Here, �̂� denotes the hysteresis operator that is defined by the integral in Eq. (2.2). Thus, the 

output of the hysteretic system is, in the Preisach model, the weighted sum of the outputs of each 

hysteron. This is visually represented in Figure 2.2.  

 

Figure 2.2: Block diagram of the Preisach model; hysterons multiplied by the weighting function 

 

2.2.2  Graphical Representation and the 𝜶 − 𝜷 Half-Plane 

Preisach developed an efficient way of showing the Preisach model’s hysterons during 

simulation. He proposed a half-plane of the 𝛼 and 𝛽 values that the Preisach model can have. It is 

a half-plane limited by a triangle because of the requirement that 𝛼 ≥ 𝛽, and it is shown in 

Figure 2.3. 

 𝑓(𝑡) =  �̂�𝑢(𝑡) = ∬ 𝜇(𝛼, 𝛽)𝛾𝛼𝛽𝑢(𝑡)𝑑𝛼𝑑𝛽
𝛼≥𝛽

. (2.2) 
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Figure 2.3: The Preisach half-plane within the bounds in the triangle T 

 

The hypotenuse in Figure 2.3 is part of the line 𝛼 = 𝛽, the limiting case. The vertex of its right 

angle has the coordinates (𝛼0, 𝛽0), with 𝛽0 = −𝛼0. It can also be assumed that the function is 

finite. That is, when 𝜇(𝛼, 𝛽) is outside of the triangle, its value is zero. It is important to note that 

in this geometric interpretation it is assumed that the major loop of the hysteretic system is 

closed. This is a widely held assumption in the literature due to its wide occurrence in materials 

and will not limit the scope of the Preisach half plane to a significant degree.  

 

To appreciate how the Preisach half-plane affects the loop itself, consider a system starting at 

negative saturation. This is when all the hysterons have a value of −1 (in the third quadrant of 

the half-plane shown in Figure 2.3). As the hysterons “switch” from −1 to 1, the graphical 

analogy shows that the subdivision of 𝛼 = 𝑢(𝑡) moves upward. This happens with monotonic 

increasing input until the positive saturation point (the top side of the triangle in Figure 2.3) is 

reached. As the material experiences the unloading phase, it travels along the different path 
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𝑒𝑑𝑓𝑏𝑎 from Figure 2.1. In the Preisach half-plane from Figure 2.3, this is represented by the 

moving line 𝛽 = 𝑢(𝑡) from right to left. With the part of the half-plane that has hysterons with 

the value of 1, that part of the graph is subdivided with the notation 𝑆+(𝑡). Likewise, the half-

plane section with hysterons in the “off” position of −1 is subdivided with the notation 𝑆−(𝑡). If 

the material monotonically increases again, (but not until positive saturation), then the hysterons 

will turn “on” with the instantaneous 𝑢(𝑡). These “links” in the 𝑆+(𝑡) and 𝑆−(𝑡) domains will 

then form a staircase pattern in Figure 2.5, as shown with the following sample time history in 

Figure 2.4. 

 

Figure 2.4: Sample time history of input 
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Figure 2.5: Sample time history on Preisach half-plane; at 𝑡1 (top left), at 𝑡1 < 𝑡 < 𝑡2 (top right), 

at 𝑡3 < 𝑡 < 𝑡4 (bottom left), and at 𝑡5 < 𝑡 < 𝑡6 (bottom right) 

 

This input history can be succinctly summarized via Figure 2.6, which shows the evolution of the 

interface 𝐿(𝑡) with the aforementioned time history. 

 

Figure 2.6: Evolution of interface 𝐿(𝑡) with sample time history 
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This visualization can be compared side-by-side with the input 𝑢(𝑡) against the output 𝑓(𝑡) to 

see how one directly affects the other. This is accomplished in Figure 2.7 and Figure 2.8. 

 

Figure 2.7: Hysteresis curve 𝑢(𝑡)𝑣𝑠. 𝑓(𝑡) and 𝛼 − 𝛽 half-plane on loading phase 

 

Figure 2.8: Hysteresis curve 𝑢(𝑡)𝑣𝑠. 𝑓(𝑡) and 𝛼 − 𝛽 half-plane on unloading phase 
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2.2.3  Identification Problem 

The crux of the identification problem of Preisach curves stems from the identification problem 

of 𝜇(𝛼, 𝛽). Mayergoyz describes a possible solution using first-order reversal curves [15]. He 

proposes to consider a system in the state of negative saturation. Then, the material is subjected 

to a monotonic increase in loading until it reaches the value of 𝛼′.The corresponding value for 

the output is 𝑓𝛼′. A first-order transition curve is formed with the subsequent monotonic decrease 

to some value 𝛽′. The output at this point is 𝑓𝛼′𝛽′.  

 

Figure 2.9: First-order reversal hysteresis curve (top) and respective Preisach half-plane (bottom) 

The function in Eq. (2.3) can be defined. 
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Based off of Eq. (2.2) and Eq. (2.3), Eq. (2.4) can be obtained. 

After differentiating twice with respect to 𝛼 and 𝛽, the following result is produced. 

The first-order reversal curve method works well in theory. However, partially because of the 

double numerical differentiation, it is prone to inaccuracies. Therefore, an alternative approach is 

adopted herein from the work done by Spanos, Ktena, Massalas, and Fotiadis [18, 19]. It 

assumes a bivariate Gaussian distribution of the weighting function, such as 

In Eq. (2.6), the parameters to be determined are 𝜇𝛼, 𝜇𝛽 , 𝜎𝛼, 𝜎𝛽 , and 𝜌. They stand for the 

ascending mean, descending mean, ascending standard deviation, descending standard deviation, 

and correlation coefficient, respectively. In other literature proposed by Spanos et al., they 

 𝐹(𝛼′, 𝛽′) =
1

2
(𝑓𝛼′ − 𝑓𝛼′𝛽′). (2.3) 

 
𝑓𝛼′𝛽′ − 𝑓𝛼′ = −2 ∬ 𝜇(𝛼, 𝛽)𝛾𝛼𝛽𝑢(𝑡)𝑑𝛼𝑑𝛽 

𝛤(𝛼′,𝛽′)

= 𝐹(𝛼′, 𝛽′)

= ∬ 𝜇(𝛼, 𝛽)𝛾𝛼𝛽𝑢(𝑡)𝑑𝛼𝑑𝛽.
𝛤(𝛼′,𝛽′)

 

(2.4) 

 
𝜇(𝛼′, 𝛽′) = −

𝜕2𝐹(𝛼′, 𝛽′)

𝜕𝛼′𝜕𝛽′
=

1

2

𝜕2𝑓𝛼′𝛽′

𝜕𝛼′𝜕𝛽′
. 

(2.5) 

 
𝜇(𝛼, 𝛽) =

1

2𝜋𝜎𝛼𝜎𝛽√1 − 𝜌2
exp {−

1

2(1 − 𝜌2)
[(

𝛼 − 𝜇𝛼

𝜎𝛼
)

2

− 2𝜌 (
𝛼 − 𝜇𝛼

𝜎𝛼
) (

𝛽 − 𝜇𝛽

𝜎𝛽
) + (

𝛽 − 𝜇𝛽

𝜎𝛽
)

2

]}. 

(2.6) 
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proposed symmetric parameters [21-23]. That is, 𝜇𝛼 = 𝜇𝛽 , 𝜎𝛼 = 𝜎𝛽 and 𝜌 = 0. This yields Eq. 

(2.7). 

This can be applied in many cases where the loop is symmetric for simplicity’s sake.  

 

2.3 The Bouc-Wen Model 

As stated in Chapter 1, the Bouc-Wen model deals with first-order differential equations. It 

requires seven parameters to describe the hysteresis phenomenon. The effect of the parameters 

on the shape of the hysteresis loop is highly nonlinear and difficult to assess [24], but helpful 

relationships will be established in Chapter 4. For these reasons, it has been used comparatively 

less in the field of magnetism [25] and more in engineering mechanics. The Bouc-Wen model 

has been promoted for its application to inverse problems – that is, where a set of experimental 

data points is given and it is required to evaluate the model parameters that will produce a curve 

which follows the experimental data with the least error [16, 26]. However, in ensuing chapters, 

it will be shown that it is ideal to model certain types of hysteresis loops, but there are other loop 

shapes where it is less optimal. 

 

Consider the equation of a single degree of freedom system 

 
𝜇(𝛼, 𝛽) =

1

2𝜋𝜎2
exp {−

1

2
[(

𝛼 − 𝜇

𝜎
)

2

+ (
𝛽 − 𝜇

𝜎
)

2

]}. 
(2.7) 

 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝐹(𝑡) = 𝑢(𝑡). (2.8) 
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In Eq. (2.8), 𝑚 is the mass, 𝑥(𝑡) is the displacement, 𝑐 is the linear viscous damping 

coefficient, 𝐹(𝑡) is the restoring force, and 𝑢(𝑡) is the excitation force. According to the 

relationships defined in the literature of Bouc and Wen, the following relationship can be 

defined. 

In Eq. (2.9), 𝑎 =
𝑘𝑓

𝑘𝑖
 is the ratio of post-yield to pre-yield (elastic) stiffness, 𝑘𝑖 =

𝐹𝑦

𝑢𝑦
 is elastic 

stiffness, 𝐹𝑦 is the yield force, 𝑢𝑦 is the yield displacement, and 𝑧(𝑡) is non-observable 

dimensionless hysteretic parameter that obeys a single non-linear differential equation with zero 

initial condition described below. 

 

From this, the Bouc-Wen model can be described a system of nonlinear differential equations 

governed by the equations [25, 27] 

The second part of Eq. (2.10) can be recast as 

where the symbol 𝑠𝑖𝑔𝑛 denotes the signum function.  

 

 
𝐹 = 𝑎

𝐹𝑦

𝑢𝑦
𝑢 + (1 − 𝑎)𝐹𝑦𝑧. 

(2.9) 

 
{
�̈� + 2𝜁𝜔𝑛�̇� + 𝛼𝜔𝑛

2𝑥 + (1 − 𝛼)𝜔𝑛
2𝑧 = 𝑢(𝑡)

�̇� = −𝛾|�̇�||𝑧|𝑛−1𝑧 − 𝛽�̇�|𝑧|𝑛 + 𝐴�̇�
. 

(2.10) 

 
�̇�(𝑡) = �̇�(𝑡){𝐴 − [𝛽𝑠𝑖𝑔𝑛(𝑧(𝑡)�̇�(𝑡)) + 𝛾]|𝑧(𝑡)|𝑛}. 

(2.11) 
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In these equations, u(t) is a normalized forcing function, and there are seven parameters. These 

are: the rigidity ratio α (0≤α≤1), the linear elastic damping ratio ζ (0≤ζ≤1), the pseudo-natural 

frequency of the system 𝜔𝑛, the hysteresis controlling amplitude 𝐴, and the hysteresis loop shape 

controlling parameters β, γ, and n. By varying these seven parameters, a wide range of hysteresis 

loops can be described. 

 

The variable 𝑧 is a fictitious displacement related to the actual displacement, 𝑥 [27]. Plotting 𝑧 

against 𝑥 yields the familiar hysteresis loop. From Eq. (2.10), state space representations have 

proved fruitful in solving the Bouc-Wen model [25, 28]. The state space representation of Eq. 

(2.10) can be put in the form 

These three differential equations can be simultaneously solved for the hysteresis loop when 

translated to [𝑌1 𝑌2 𝑌3]𝑇 = [𝑥 �̇� 𝑧]𝑇 [29]. 

 

2.4  Artificial Neural Networks 

The employment of artificial neural networks (ANNs) can be beneficial towards hard-to-solve 

nonlinear problems, such the ones involved in modeling hysteresis. The ANN is a computing 

system made up of a number of simple, highly interconnected processing elements, neurons, 

which process information in parallel in response to external inputs [30]. Further, it has powerful 

fault tolerant computing ability which has been used to model a wide range of systems for which 

mathematical models either cannot be defined or are ill-defined. For this reason, ANNs are a 

 

{

𝑌1̇ = 𝑌2

𝑌2̇ =  −2𝜁𝜔𝑛𝑌2 − 𝛼𝜔𝑛
2𝑌1 − (1 − 𝛼)𝜔𝑛

2𝑌3 + 𝑢(𝑡)

𝑌3̇ = −𝛾|𝑌2||𝑌3|𝑛−1𝑌3 − 𝛽𝑌2|𝑌3|𝑛 + 𝐴𝑌2

. 

(2.12) 
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viable tool for an objective of this thesis that is highly nonlinear in nature: the conversion of 

Bouc-Wen parameters to Preisach parameters. Because of the fundamentally different nature of 

these models (one being based in the aggregation of hysterons and one being based in differential 

equations), there are no equations or procedures that adequately describe the transformation from 

one domain to the other. In theory, ANNs can approximate an arbitrary nonlinear function with 

high precision [31-33].  

 

ANNs traditionally work by having an input layer, a hidden layer, and an output layer. This is 

shown in Figure 2.10. Given enough “training” of the network, the hidden layer weights are 

updated in the learning process via multiplication and addition biases to convert the input layer 

to the output layer.  

 

Figure 2.10: ANN architecture 

 

The ANN consists of an input vector. In the cases of hysteresis, this is usually done with the 

ordinate vector for the hysteresis loop. A training set of input vectors, traditionally on the order 

of 500 − 1000 ordinate vectors, is used to train the ANN [34]. This is then converted using the 
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hidden layer of weights and biases into the output layer, which is traditionally a vector of the 

parameters. After the ANN is sufficiently trained, it can be applied towards an experimental 

loop. With the input of the ordinate vector, the ANN will almost immediately output the 

parameters that create that loop. 

 

This ANN architecture has been applied in the literature towards both the Preisach model and 

Bouc-Wen model individually, and only under relatively limited circumstances [33-37]. 

However, there has been no work done on converting one model towards another. Converting 

from the Bouc-Wen model to the Preisach model can prove useful in applications where the user 

wishes to apply techniques such as equivalent linearization or stochastic averaging with the 

Preisach model that would be impossible with the Bouc-Wen model. 

 

However, there has been no work done on converting one model towards another, which this 

thesis will address in Chapter 3.  

 

2.5  Monte Carlo Simulation 

Often in experiments there is some inherent noise in the signal. In real world applications, there 

is an inherent level of randomness that cannot be analytically described. This is especially true in 

the fields of wing vibration due to turbulence, mechanical vibrations in a system, seismic shaking 

of buildings, etc. Stochastic differential equations involve at least one of the variables being 

stochastic in nature. An obvious example for the aforementioned processes is white noise. In 

general, these stochastic differential equations are harder to treat than their deterministic 

counterparts. Some analytical schemes that exist include statistical linearization, the method of 
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moment closure, perturbation, and Markov methods [38, 39]. Due to the difficulty of arriving at 

analytical solutions with nonlinear systems subjected to white noise, alternative solutions have 

been proposed. One such solution is the Monte Carlo method, which is based on performing 

numerical simulations via a computer [40-43]. This theory was formulated in the era succeeding 

World War II, where scientists were solving problems such as neutron diffusion or transport 

through an isotropic medium. The name is in relation to the well-known European principality of 

Monte Carlo casinos and deals with the generation of random numbers. In regards to solving 

stochastic differential equations, Monte Carlo simulation is based on the fundamental 

observation that these stochastic phenomena can be treated as an infinite set of deterministic 

equations. In random vibration theory, the Monte Carlo method is normally used to numerically 

assess the validity of analytical computations [38, 39, and 44]. 

 

Monte Carlo analysis involves simulations in which a large number of experiments are 

conducted to derive statistical properties of the nonlinear system within some confidence 

interval. Random numbers are generated from some specific distribution. For the purposes of this 

thesis, they will generally be drawn from the Gaussian distribution. This set is used to form a 

sample function of the excitation, which is then used as an input to the nonlinear system. By 

repeating the procedure several hundreds of times, a collection of response functions is created. 

With this collection, statistical analysis can be performed. An advantage of the Monte Carlo 

method is that it can be used for both stationary and non-stationary response statistics. Generally 

speaking, the larger the data set, the better the estimate statistics will be.  
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Monte Carlo simulation will be incorporated in Chapter 6, wherein the probability distribution 

functions (PDFs) of Preisach models will be examined. Specifically, it will deal with 

Transitional Markov Chain Monte Carlo Theory (TMCMC) to avoid the problem of sampling 

from difficult target probability functions. Instead, it will sample from a series of intermediate 

PDFs that converge towards the target PDF and are therefore easier to sample. 

 

2.6 Summary 

With this strong mathematical background, the following chapters can address the analysis and 

applications of the Preisach model, the Bouc-Wen model, ANNs, and Monte Carlo simulation. 

The formulation of the Preisach and Bouc-Wen models are essential for their application in later 

chapters. ANNs are used in Chapter 3 for their use in converting parameters from one scheme to 

the other. Monte Carlo simulation will be applied in Chapter 6 with arriving at Preisach model 

parameters, given an experimental loop. 
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Chapter 3 

On the Conversion of Bouc-Wen Parameters to 

Preisach Parameters 

 

3.1 Preliminary Remarks 

In the literature pertaining to the modeling of hysteresis, the authors address the question of 

which model of hysteresis to be used and adhere to it. There has been some work discussing the 

feasibility of producing Preisach model parameters by a trained artificial neural network, given 

the prerequisite that there is already sample data fed into the network to train it. However, no 

work has been done on the conversion of one set of parameters to the other. The Bouc-Wen 

model certainly has several areas of application, but, in general, the Preisach model is more 

versatile in the application of stochastic averaging and the different types of loops that it can fit. 

Further, analysis can be done to determine the equivalent linearization in the form of equivalent 

stiffness and damping which could be helpful in understanding a material’s behavior. Therefore, 

it would be beneficial to be able to convert a loop described by the Bouc-Wen model to the same 

loop described by the Preisach model. One important caveat to this entire body of work is that 

both the displacement and restoring force are normalized to be within the bounds [−1,1]. This is 

done for simplicity and ease of comparison. The parameters for both models are easily scalable 

for other cases. 
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3.2  Methods of Conversion 

3.2.1 Method of Least Squares 

This is the most straightforward of approaches on the conversion of Bouc-Wen to Preisach 

parameters. The term “least squares” refers to the notion that the overall solution minimizes the 

sum of the squares of the errors made in the difference of results. The best fit in the least squares 

sense minimizes the sum of squared residuals. The least squares method in this study refers to 

nonlinear least squares because it requires iterative refinement. It is thus dependent on a 

reasonable starting estimate from which to converge via iteration. The least squares method was 

created by Gauss and published by Legendre [45-46]. 

 

To effectively use the least squares method, a hysteresis loop needs to be generated as a baseline 

via the Bouc-Wen model. The best way to validate the conversion model is to generate loops 

with a degree of randomness within certain bounds. The Bouc-Wen model is very dependent on 

parameter ranges, as there are many combinations of parameters that will lead to unusable 

results. The parameter ranges given in the papers by Ye and Wang prove to be reasonable 

bounds for many of the more common hysteresis loops [28, 31, and 47]. These parameter ranges 

are given in Table 3.1 below. Parameters in this range have proven to be stable and form 

complete loops.  
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Parameter Lower Limit Upper Limit 

𝛼 0.2 0.8 

𝛽 3.0 5.0 

𝛾 1.1 3.0 

𝜁 0.0 0.2 

𝜔𝑛 2.0 4.0 

𝐴 0.4 1.1 

𝑛 1.0 2.0 

Table 3.1: Sample Bouc-Wen parameter ranges 

 

For certain types of hysteresis loops, these parameter bounds are adequate. However, for loops 

that have quite large area or are incredibly “skinny” in the vertical direction, then parameter 

ranges need to be extended. With a sample loop generated with randomized Bouc-Wen 

parameters comes the task of fitting the correpsonding Preisach loop. An initial concern is the 

order of the Bouc-Wen vectors. In the generation of a Bouc-Wen loop, the differential equations 

draw the loop from quiescent conditions. Thus, the first concern of the code is that of 

restructuring. The Bouc-Wen loop is also prone to have variability in its amplitude before 

settling in a more consistent pattern after several iterations. Thus, the Bouc-Wen model is 

allowed to run for many cycles, with the last complete cycle being used as the baseline loop. 

Further, a complete loop for Bouc-Wen runs from positive saturation in a clockwise fashion, 

very much dissimilar to the Preisach formalism of starting from negative saturation and 

counterclockwise. Therefore, the Bouc-Wen vectors are restructured to start from the Preisach 

equivalent of negative saturation.  
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The Preisach model parameters are allowed to have a much broader spectrum, as there are fewer 

bounds that lead to unusable results. This makes the fitting more flexible, provided that there is a 

reasonble starting estimate for the parameters. The parameter ranges for the Preisach model for 

this exercise are shown in Table 3.2. 

Parameter Lower Limit Upper Limit 

𝜇𝛼 , 𝜇𝛽 −∞ ∞ 

𝜎𝛼, 𝜎𝛽 0 ∞ 

𝜌 −1 1 

𝑘 0 ∞ 

Table 3.2: Sample Preisach parameter ranges 

 

As shown, 𝜇 and 𝜎 can take on any real value and still yield reasonable results. The correlation 

coefficient 𝜌 is bounded between the values of −1 and 1. The scaling coefficient 𝑘 is bounded 

by positive real numbers.  

 

Below is a sample run of randomized Bouc-Wen values with the fitted Preisach parameters. 

Figure 3.1 shows the fit itself. Table 3 and Table 4 show the parameters for Bouc-Wen and the 

fitted parameters for Preisach, respectively. For these loops, the error was determined by root 

mean square error.  
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Figure 3.1: Fitted Preisach loop with sample Bouc-Wen loop 

Parameter Value 

𝛼 0.2214 

𝛽 4.6983 

𝛾 2.8746 

𝜁 0.1357 

𝜔𝑛 3.5155 

𝐴 0.9202 

𝑛 1.3922 

Table 3.3: Sample Bouc-Wen values 
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Parameter Value 

𝜇𝛼, 𝜇𝛽 0.6346, −0.6184 

𝜎𝛼, 𝜎𝛽 0.7504, 0.7443 

𝜌 0.3160 

𝑘 14.7748 

Table 3.4: Fitted Preisach values 

For the fitted Preisach values, it is important to note that, while assuming a symmetric loop is a 

good starting point, there could be slight variations in the generated Bouc-Wen loop. Having the 

capability of some asymmetry allows for better least squares minimization by fine-tuning the 

correlation coefficient. 

 

To develop an adequate set of initial conditions for the Preisach fit, the following procedure is 

used. Consider the problem of determining the parameters of a bivariate Gaussian distribution for 

fitting a Preisach model to a given experimental loop. If a least squares approximation is sought, 

then there must be an appropriate initial estimate leading to an adequate approximation of the 

experimental hysteresis loop. This problem can be solved by using a geometrical line of 

reasoning and by exploiting the nature of the Gaussian bivariate distribution. The idea is the 

following: 

 

For calculating the Preisach force, Eq. (3.1) applies as [15] 

 

. 

(3.1) 
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Thus, for the ascending and descending curves is specifically recast, respectively, as 

 

and 

 

It is seen that for reproducing a given hysteresis loop one can neglect the influence of the past 

terms. This is like computing numerically the force by going straight from negative saturation to 

positive saturation, and then back again to negative saturation. In this manner, one obtains 

and 

Next, restrict attention to the case in which the distribution function is a bivariate normal with 

zero correlation coefficient and equal means and standard deviations to arrive at computationally 

cheaper method for calculating 𝐹 ),(  . In this context, the functions involving the integration 

of the distribution are explicitly calculated as 
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This is equation is quite useful because it allows calculating directly the Preisach force without 

computationally costly calculations and, further, it can be integrated analytically. It is seen that 

the unknown parameters are μ, σ and k (a constant included for conveniently changing the 

magnitude of the force at negative saturation). Thus, three conditions must be posed for their 

determination. For this purpose, three geometric conditions for “reproducing” the general 

features of the experimental loop must be considered. The conditions are: 

1) The center of the experimental loop must be the same of the Preisach loop, 𝑓𝑐. 

2) The area into the experimental loop must be the same of the Preisach loop, 𝐴. 

3) The “vertical distance” between negative and positive saturation must be identical in the 

Preisach and in the experimental loop, 𝛥𝑓𝑚𝑎𝑥. 

 

These quantities readily from Eq. (3.4) and Eq. (3.5); the following system of equations is 

derived 

where: 

- u
-
s and u

+
s are displacement values (both positive) associated with negative and positive 

saturation; 
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- fc is the ordinate of the center of the experimental loop (note that the abscissa of the 

center is at 
2/)(   ss uu

; 

- A is the area into the experimental loop; 

- Δfmax is the difference between the maximum and the minimum values of the 

experimental loop (vertical distance between the extremes of the experimental loop). 

 

The integral in the second equation is kept for simplicity of notation, but it can be explicitly 

calculated. Eq. (3.7) is a system of nonlinear algebraic equations that can be readily solved. The 

first iteration is assumed to have the quantities 𝜇 = 0, 𝜎 = 1, and 𝑘 = 1, as these values 

consistently converge to a good initial estimate. 

 

With this procedure, an adequate initial Preisach estimate can be procured. In the cases of 

symmetric (or nearly symmetric) loops in this domain, this procedure effectively promises a least 

squares minimization of any Bouc-Wen loop with its corresponding Preisach loop. 

 

3.2.2 Use of Artificial Neural Networks 

The least squares minimization method works well. However, an alternative approach to 

consider is the conversion of Bouc-Wen into Preisach parameters via an ANN. There are a 

couple advantages that could arise from using an ANN. Namely, with a pre-built library of input 

and output values (of matching Bouc-Wen and Preisach parameters, respectively), the database 

can be easily shared among fellow researchers to work into their own code instead of everybody 

using different methods for optimization. Further, the ANN, once trained, works essentially 

instantaneously.  
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To build the ANN, there needs to be a library of input and output values for the ANN. This is 

accomplished by running the least squares minimization approximately 750 times. There needs 

to be a fairly large database for the ANN to train properly because of the large amount of 

permutations the Bouc-Wen values can take. Once this database is generated, the ANN is 

trained. For the ANN, a hidden layer size is chosen to be 20 neurons. This is optimized using a 

trial-and-error approach. With a black box approach such as this, there is no exact or analytical 

method for determining the proper amount of neurons or hidden layers. Thus, the ANN consists 

of an input vector of 7 × 750 Bouc-Wen parameters, a hidden layer consisting of 20 neurons, 

and an output layer consisting of 6 × 750 Preisach parameters. Further, the ANN needs a certain 

ratio of the database to train, validate, and test. For this study, the standard 70/15/15 ratio for 

training, validating, and testing was employed, as there was no sufficient reason to deviate.  

 

After the ANN is trained, it can be validated by generating a random (within the prescribed 

bounds) set of Bouc-Wen values. The Bouc-Wen values are generated and inputted into the 

ANN, the ANN solves for the Preisach values, and then both the original Bouc-Wen model and 

fitted Preisach model are graphed for comparison. Figure 3.2, Table 3.5, and Table 3.6 show the 

results of this endeavor.  



36 
 

 

Figure 3.2: Fitted Preisach values via ANN 

Parameter Value 

𝛼 0.2988 

𝛽 3.2301 

𝛾 1.6160 

𝜁 0.0629 

𝜔𝑛 3.2122 

𝐴 0.8742 

𝑛 1.9876 

Table 3.5: Sample Bouc-Wen values with ANN 
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Parameter Value 

𝜇𝛼, 𝜇𝛽 0.9527, −0.7868 

𝜎𝛼, 𝜎𝛽 1.3123, 1.2121 

𝜌 0.8658 

𝑘 5.9072 

Table 3.6: Fitted Preisach values with ANN 

Thus, under certain conditions, the ANN works quite well. However, given the highly nonlinear 

and difficult-to-predict nature of the Bouc-Wen model, the ANN does not work quite as well 

when considering more abrupt types of loops (such as incredibly square or “S” shaped ones). 

Still, it has its use in the conversion from one model to another. 

 

3.3 On the Conversion of Preisach Parameters into Bouc-Wen Parameters 

Although it is the opinion of this author that, due to the Preisach model’s versatility in fitting 

different types of loops and ability to be analyzed via methods such as stochastic averaging, it is 

an interesting exercise to perform the conversion the other direction to prove the versatility of the 

ANN method. Under the same conditions, the Preisach model loop can be converted effectively 

into the Bouc-Wen model loop.  

 

The same procedure as before is adopted with the least squares method. The only change is that 

the input is the vector of the Preisach parameters and the output is the vector of the Bouc-Wen 

parameters. The results of a randomized trial are shown in Figure 3.3, Table 3.7, and Table 3.8. 
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Figure 3.3: Fitted Bouc-Wen parameters to a Preisach loop 

Parameter Value 

|𝜇| 1.0436 

𝜎 0.1832 

𝜌 0.0243 

𝑘 5.7559 

Table 3.7: Fitted Preisach values with LSQ 
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Parameter Value 

𝛼 0.0501 

𝛽 40.8387 

𝛾 2.5755 

𝜁 0.1832 

𝜔𝑛 1.9621 

𝐴 0.9114 

𝑛 1.9307 

Table 3.8: Fitted Bouc-Wen values with LSQ 

 

This exercise has shown that, under proper conditions, the Bouc-Wen model can fit a fairly wide 

range of loops. Its success depends largely on the choice of an initial guess, as, with seven 

parameters, the Bouc-Wen model can become easily trapped in a local minimum before adequate 

convergence. The arrival at a satisfactory initial guess is related directly to knowing how each 

parameter affects the overall loop, which is the subject of the following chapter. 

 

3.4 Summary 

Through the investigation above, it is shown that the ANN works well under strict 

circumstances. There are a few major factors that explain the success of the ANN. First, the 

ANN must, of course, have enough iteration to develop confident weighing nodes. Second, it 

must be trained on a specific set of data for a certain kind of hysteresis loop. It is easier for the 

code to deal with a relatively limited series of loops for one library, due to the high amount of 
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variation that can occur with seven Bouc-Wen parameters. Different libraries can be built for 

different kinds of hysteresis loops, such as those exhibiting hardening versus softening trends.  
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Chapter 4 

Revisiting Preisach and Bouc-Wen Parameter Effects 

 

4.1 Preliminary Remarks 

For many inverse modeling scenarios, an adequate starting estimate for the parameters of either 

model is critical. Without a good starting guess, the convergence for least squares can get stuck 

in a local minimum and never converges to the desired accurate degree. In the best case, it will 

converge slower than it otherwise can. In the worst case, it will fail to converge at all. This is 

especially true with the Bouc-Wen model, for it is balancing seven parameters as opposed to the 

Preisach model’s four (with two extra being symmetric) parameters. Thus, to make a good initial 

estimate, becoming intimately aware with how each parameter affects each model is critical.  

 

4.2  Preisach Parameters 

As discussed in previous sections, the Preisach model is comprised of the following six 

parameters: 

𝜇𝑎, 𝜇𝑏 , 𝜎𝑎, 𝜎𝑏 , 𝜌 (𝑜𝑟 𝑟), 𝑎𝑛𝑑 𝑘  

where the parameters refer to the mean of the ascending loop, mean of the descending loop, 

standard deviation of the ascending loop, standard deviation of the descending loop, the 

distribution correlation, and the scaling constant, respectively.  

 

To accurately describe the effect of one of the parameters, the other parameters must be held 

constant. There are also a couple restrictions based upon this analysis of the Preisach model: 



42 
 

These are enforced to keep the loop symmetric, which is a common assumption in many 

hysteresis cases [18, 19, and 22]. The first case that will be investigated is the effect of the mean 

on a loop. Below is an output with changing mean values with the other parameters held constant 

at 𝜎𝑎 =  𝜎𝑏 = 1, 𝜌 = 0, and 𝑘 = 2. 

 

 

Figure 4.1: Preisach model with changing mean 

In Figure 4.1, having a higher mean value leads to a more square loop, while having a lower 

mean value leads to a more vertical loop. Even more importantly for this study, note that the spot 

where the restoring force rises above the x-axis is pushed farther outwards with an increasing 

 1) 𝜇𝑎 = −𝜇𝑏 

2) 𝜎𝑎 =  𝜎𝑏 

 

(4.1) 

(4.2) 
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mean. Next, the same investigation can be performed with the standard deviation changing. The 

output is shown in Figure 4.2, with all other parameters the same as before (𝜇 = 0.5). 

 

Figure 4.2: Preisach model with changing standard deviation 

As shown, increasing the standard deviation makes the loop more compressed. Finally, the same 

investigation can be done with the correlation, as seen in Figure 4.3. 

 

 

 

 

 

 

 

 

Figure 4.3: Preisach model with changing correlation 
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The correlation has a minor effect on a loop. It is used more as a fine tool than defining the type 

of loop. The higher the correlation becomes, the more drastic of a vertical increase it has. The 

correlation would affect the symmetry more drastically for the loop if the input itself was not 

symmetric. In these cases, it is a sinusoidal input, so altering the correlation has minimal effect. 

The scaling coefficient 𝑘 has the obvious effect of scaling the vertical restoring force to a 

particular domain. 

 

The key to fitting a wide variety of loops with the Preisach model lies in the accurate initial 

estimate for the mean. Currently, for all kinds of loops considered, having the values 

𝜎 = 0.5, 𝜌 = 0, 𝑘 = 2 

set initially leads them to converge in all studied cases. To obtain an accurate guess for the mean, 

where the loop crosses the x-axis (both ascending and descending) must be investigated. 

Essentially, whatever the displacement is when the loop crosses 𝑓 = 0 is what the initial mean 

guess should be. An example is shown in Figure 4.4.  

 

Figure 4.4: Sample experimental loop 
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With a more vertical S-shaped loop like this, the initial guess for the mean should be in the range 

of around 0.1. After performing the fitting procedure, the Preisach model yields the fit and 

parameters shown in Figure 4.5 and Table 4.1. 

 

Figure 4.5: Preisach model fitted to sample experimental loop 

 

Parameter Value 

|𝜇| 0.1364 

𝜎 0.1204 

𝜌 −0.34 

𝑘 0.9838 

Table 4.1: Fitted Preisach values towards sample experimental loop 

Thus, the Preisach loop’s fitting procedure proves quite versatile. The crux of the convergence 

lies with the accurate estimation of the mean. After that, all of the parameters converge within 

only several iterations. A helpful heuristic that arises for 𝜇 is that, generally, the loop will cross 
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the horizontal axis close to |𝜇| for both the ascending and descending branches. Thus, the 

author’s suggestion for an estimate mean value is to find where the loop crosses the x-axis 

(assuming a symmetric loop) and establish |𝜇0| from there. 

 

4.3 Bouc-Wen Parameters 

As stated in Chapter 2, the parameters associated with the Bouc-Wen model are the rigidity 

ratio 𝛼, the linear elastic viscous damping ratio 𝜁, the pseudo-natural frequency of the system 𝜔𝑛, 

the hysteresis amplitude controlling parameter 𝐴, and the hysteresis loop shape controlling 

parameters 𝛽, 𝛾, and 𝑛. 

 

There are some inherent difficulties when it comes to fitting the Bouc-Wen model to a wide 

range of hysteretic data, partially because of the simultaneous error minimization with seven 

parameters. This often leads to local minimums in the least squares approach, which may or may 

not be a good overall fit. Figures 4.6 through Figure 12 show how each parameter affects the 

overall shape of the loop. In each scenario, there is one parameter changing, while the others 

hold the following values, chosen partially arbitrarily for creating a medium-sized loop: 

𝛼 = 0.05, 𝛽 = 40.85, 𝛾 = 0.3, 𝜁 = 0.98, 𝜔𝑛 = 1.05, 𝐴 = 0.9, 𝑛 = 4 
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Figure 4.6: Bouc-Wen model with changing 𝛼 

 

 

 

Figure 4.7: Bouc-Wen model with changing 𝛽 
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Figure 4.8: Bouc-Wen model with changing 𝛾 

 

 

Figure 4.9: Bouc-Wen model with changing 𝜁 
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Figure 4.10: Bouc-Wen model with changing 𝜔𝑛 

 

 

Figure 4.11: Bouc-Wen model with changing 𝐴 
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Figure 4.12: Bouc-Wen model with changing 𝑛 

 

From all of these graphs modifying each parameter, the following trends can be noticed: 

 

As each parameter increases Effect 

𝛼 (rigidity ratio) Loop grows wider 

𝛽 (loop controlling parameter) Loop grows more vertical and less slanted 

𝛾 (loop controlling parameter) Loop grows wider 

𝜁 (damping ratio) Loop width decreases 

𝜔𝑛 (natural frequency) Loop slants more to the right and width 

decreases 

𝐴 (amplitude controlling parameter) Width increases 

𝑛 (loop controlling parameter) Loop becomes more narrow 

Table 4.2: Bouc-Wen parameter effects 
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There is an interesting trend to note for the parameter 𝛽. This parameter directly affects whether 

or not the hysteresis loop exhibits hardening or softening hysteretic behavior [48]. Figure 4.13 

captures this behavior. 

 

 

Figure 4.13: Bouc-Wen model with negative and positive 𝛽 

 

As shown, when 𝛽 < 0, the model experiences softening hysteretic behavior. When 𝛽 = 0, the 

model experiences linear hysteretic behavior. When 𝛽 > 0, the model experiences hardening 

hysteretic behavior. 

 

These results are in good agreement with the existing literature by Solomon and Charalampakis 

[48, 49]. Taking into consideration these trends is critical for the production of an adequate 

starting guess for least squares convergence. Below is an example of a square loop being fitted 

by the Bouc-Wen model with a relatively high degree of accuracy. For a loop of this kind with 

extremely high width, the initial starting guess must have some of the following characteristics: 
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I. Larger 𝛼, 

II. Large 𝛽, 

III. Large 𝛾, 

IV. Small 𝜁, 

V. Small to medium 𝜔𝑛, 

VI. Medium to large 𝐴, and  

VII. Smaller 𝑛 

With these guidelines, the following set of parameters is adopted: 

𝛼 = 0.05, 𝛽 = 40.85, 𝛾 = 10.8, 𝜁 = 0.18, 𝜔𝑛 = 2, 𝐴 = 0.9, 𝑛 = 1.9 

After convergence, the Bouc-Wen loop is produced alongside the data as shown in Figure 4.14. 

 

Figure 4.14: Fitted Bouc-Wen loop with experimental data 

 

It is seen that there is a moderately good fit is achieved using the Bouc-Wen model (with a root 

mean square error/point value of 0.3), provided a reasonable starting guess. The fitted parameters 

are: 
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Parameter Value 

𝛼 0.022 

𝛽 40.6962 

𝛾 2.6248 

𝜁 0.1729 

𝜔𝑛 1.9903 

𝐴 0.894 

𝑛 1.9738 

Table 4.3: Fitted Bouc-Wen parameters with experimental loop 

 

4.4  Summary 

With this knowledge of how each parameter specifically affects the shape and size of the 

hysteresis loop for both the Preisach and Bouc-Wen models, more confident analysis is ensured 

when applying these principles towards an initial guess for a convergence algorithm. These 

principles can effectively be applied towards experimental data, and a performance study can be 

evaluated on the fitting of both models towards experimental data with the assurance of 

convergence via adequate initial estimates.  
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Chapter 5 

Performance of Preisach Parameters and Bouc-Wen 

Parameters on Experimental Data 

 

5.1 Preliminary Remarks 

One of the main reasons for understanding the inner workings of the Preisach model and the 

Bouc-Wen models of hysteresis is to apply the models in conjunction with experimental data. 

With finely calibrated models, the identification problem for many types of hysteresis loops’ 

behavior can be captured. One of the focuses of the thesis is to investigate how the different 

models fare against matching experimental data. In this study, sample sets of hysteresis data are 

generously supplied by the Air Force Research Lab (AFRL) in conjunction with Dr. Abdellah 

Lisfi’s research group at Morgan State University. These loops are analyzed via the Preisach 

model and Bouc-Wen model. The models solve the identification problem for the experimental 

data with minimized error via LSQ.  

 

5.2 Comparison of Preisach and Bouc-Wen Models 

Using the mathematical techniques outlined in Chapter 2 and the guidelines for choosing the 

initial guess for the parameters outlined in Chapter 4, the two models can be juxtaposed against 

each other. Shown in Table 5.1 and Table 5.2 are the fitted parameters for the five different data 

sets, looking at epitaxial Cobalt ferrite film with in-plane anisotropy at different angles supplied 

by AFRL. Next, in Figure 5.1, the fitted parameters are plotted against the experimental data set 
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for a visual comparison. Note that all error calculations are accomplished using root mean square 

error. 

Case # |𝜇| 𝜎 𝜌 𝑘 Error/Point 

1 

0.8316 0.503 0.3006 279.5913 0.0066 
2 

0.3642 0.0763 0.9918 0.9451 0.0071 
3 

1.0436 0.1832 0.0243 5.7559 0.0015 
4 

3.1717 1.6929 0.2371 261.2788 0.0050 
5 

0.1364 0.1204 -0.3404 0.9839 
 

0.0111 
Table 5.1: Fitted Preisach parameters and error 

Case # 𝛼 𝛽 𝛾 𝜁 𝜔𝑛 𝐴 𝑛 Error/Point 

1 

0.0948 16.0314 0.293 0.9829 1.0328 0.9405 3.9495 0.2855 
2 

0.0175 40.927 1.8076 0.1959 1.9373 0.9122 4.8867 0.2252 
3 

0.022 40.6962 2.6248 0.1729 1.9903 0.894 1.9738 0.3106 
4 

0.201 5.9996 4.0996 0.8505 3.9998 0.9999 1.0007 0.4792 
5 

0.0979 11.2206 0.2638 0.4841 1.4805 0.9581 2.4432 
 

0.4654 
Table 5.2: Fitted Bouc-Wen parameters and error 
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Figure 5.1: Hysteresis loops comparing Preisach and Bouc-Wen models vs. experimental data; 

Cases 1-5 
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5.3 Discussion of Fits 

There are a few important trends to note when evaluating the parameters of best fit for solving 

the identification problem via Preisach formalism and the Bouc-Wen differential equation 

methods. 

 

First, a trend arises in all the experimental data sets. Specifically, the Preisach model fits more 

accurately than the Bouc-Wen model. This is true for Case 1 through Case 5. The Preisach model 

seems to be more effective in fitting different types of models as well. In particular, the Bouc-

Wen model fit has more difficulty fitting loops in situations like Case 2, Case 4, and Case 5. In 

Case 2 and Case 5, the error is relatively large because of the “s” shaped nature of the hysteresis 

loop. The Bouc-Wen model “struggles” to rise so rapidly when the applied displacement is 

around zero (the middle of the loading or unloading cycle). Due to the Preisach model’s 

flexibility in assigning the standard deviation value, it can rapidly rise in the middle of the cycle. 

There is no proper analog in the Bouc-Wen model; it is thus more difficult with fitting these 

loops. In a similar fashion, the Bouc-Wen model struggles to minimize the error in Case 4 

because of the width of the loop. It can adjust to loops with very large area (like Case 3) with 

fine tuning, but it cannot adjust as well to the loop in Case 4 that has larger area but does not rise 

rapidly at the end (hysteretic softening). 

 

Second, note that the error comparison between the Preisach and Bouc-Wen models is not quite a 

one-to-one comparison. By the nature of the Bouc-Wen model, it is based in a series of 

differential equations. Thus, the output in the subroutine ODE45 in MATLAB that is produced 

has its own set of data in both axes. In contrast, the Preisach model matches the displacement 
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data from the experimental set directly. Therefore, the Bouc-Wen model error is associated with 

the 𝑢 and 𝑓 axes, whereas the Preisach model is only concerned with the 𝑓 axis. This is why 

Table 5.1 and Table 5.2 are accompanied by Figure 5.1; the visual representation helps 

understand the competency of the fit as much as the sum of the error.  

 

Third, an inherent difficulty lies in the sheer amount of parameters that the LSQ approach tries to 

minimize with the Bouc-Wen model. The Preisach model is concerned with fitting four variables 

to the sample set. In contrast, the Bouc-Wen model is concerned with fitting seven variables. 

With the variables being interdependent in the differential equations, it is easy for the LSQ 

algorithm to fall into local minimums. Thus, it is critical to follow the guidelines outlined at the 

end of Chapter 4 for the Bouc-Wen model parameters’ initial estimate. However, this difficulty 

is not entirely erased via an appropriate starting guess; a wide yet specific margin for the upper 

and lower bounds for the Bouc-Wen parameters must be ensured.  

 

5.4 Summary 

Through the analysis in the section above, it is concluded that the Preisach model is, in general, 

better at fitting the wide variety of loops that the hysteresis phenomenon can exhibit. Further, 

certain sources suggests that the Preisach model shows promise in applications such as stochastic 

averaging and equivalent linearization, making it a more desirable model in applications 

regarding stochastics and dynamic response [21, 22, 50, and 51]. Nonetheless, the Bouc-Wen 

model does exhibit some appealing features.  For one, it is a faster method, albeit slightly. The 

differential equation basis for the method is computationally less demanding than building the 

Preisach half-plane. Further, there are modifications to the Bouc-Wen model, such as the Bouc-
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Wen-Baber-Noori model, which more accurately deals with the system identification of 

hysteresis loops subject to pinching [52 – 57]. 
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Chapter 6 

System Identification of Hysteresis Loops Using 

Transitional Markov Chain Monte Carlo Based 

Bayesian Approach 

 

6.1 Preliminary Remarks 

An interesting application of fitting experimental (especially noisy) data involves the use of 

Bayesian statistics. Bayesian inference is a statistical method in which, as new data are acquired, 

Bayes’ rule is used to update the probability estimate for a hypothesis. There is interest in model 

updating techniques due to the broad application and probability based approach. Among the 

model updating techniques, Bayesian inference techniques do not just find a single model but a 

probability distribution set of models whose predictions are weighted by the probabilities of 

these models conditional on the measured data [58–63]. These Bayesian model updating 

techniques are robust and suitable to modeling nonlinear phenomena such as hysteresis due to 

their ability to consider more than one model when there may be more than one solution. Further, 

Bayesian techniques in this way can prove useful when applied to loops affected by white noise 

corruption.   

 

The Markov Chain Monte Carlo (MCMC) method simulates random samples from a specified 

target probability distribution function (PDF) that can be evaluated up to a scaling constant. 

Thus, from the Bayesian point of view, the target PDF is the posterior PDF, and the scaling 
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constant is denoted as the model evidence. Essentially, MCMC works by simulating a Markov 

chain with a stationary PDF equal to the target PDF. In the literature, the most popular algorithm 

for the MCMC method is the Metropolis-Hastings algorithm [64, 65]. An important attribute of 

the Metropolis-Hastings algorithm is that it does not calculate the model evidence because the 

PDF is only evaluated up to a scaling constant.  

 

However, the MCMC method is subject to a few critical limitations. It cannot evaluate the model 

evidence – the likelihood of the observed data given the chosen model. This is the greatest 

limitation. The proposal PDF determines how far the Markov chain sample can jump to the next 

candidate sample. With wide PDFs, the candidate has a larger chance of being rejected, as it 

could be a low probability region. On the other hand, with narrow PDFs, the candidate has a 

greater chance of being accepted, but consecutive Markov chain samples will have the 

undesirable quality of being highly correlated, along with the possibility that the proposed PDF 

does not adequately capture the behavior of the variable. This is especially the case when the 

target PDF is highly dimensional or has highly correlated random variables [66]. There is 

another issue with convergence in that it is uncertain how many Markov chain samples are 

required to adequately cover the target PDF. There is no guarantee that a limited number of 

Markov chain samples can cover the main region of the target PDF. There is literature dealing 

with this issue, but it adds complexity towards knowing the target PDF [67].  

 

To solve these problems, a modified version of the MCMC method was proposed in 2007 and 

titled the Transitional Markov Chain Monte Carlo (TMCMC) method [68]. It works as an 

amalgamation of the Metropolis-Hastings algorithm with the sampling-importance-resampling 
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method [69-70]. It is a method free of tuning; there is no need to specify the proposal PDF, and 

the convergence issues are minimized. One of the key ideas in the TMCMC method is to 

circumvent sampling directly from the difficult-to-determine target PDF and to sample from a 

series of intermediate PDFs that eventually converge to the target PDF. 

 

6.2 TMCMC Theory 

To appreciate the TMCMC method, some related mathematical background is required. First, 

let 𝑀 be the assumed probabilistic model class for the target system, 𝜃 be the uncertain model 

parameters, and 𝐷 be the measured data from the system. The goal of the Bayesian model 

updating is to sample the posterior PDF of 𝜃 conditioned on 𝐷. This is shown in Eq. (6.1).  

 In Eq. (6.1), 𝑓(𝜃|𝑀) is the prior PDF of 𝜃, 𝑓(𝐷|𝑀, 𝜃) is the likelihood function of 𝐷, given 𝜃, 

and 𝑓(𝐷|𝑀) is the evidence of 𝑀. Simulation based methods are valuable for Bayesian model 

updating for their use in obtaining samples from 𝑓(𝜃|𝑀, 𝐷), which can estimate any quantity of 

interest 𝐸(𝑔|𝑀, 𝐷) according to the Law of Large Numbers. 

 
𝑓(𝜃|𝑀, 𝐷) =

𝑓(𝐷|𝑀, 𝜃) ∗ 𝑓(𝜃|𝑀)

𝑓(𝐷|𝑀)
=

𝑓(𝐷|𝑀, 𝜃) ∗ 𝑓(𝜃|𝑀)

∫ 𝑓(𝐷|𝑀, 𝜃) ∗ 𝑓(𝜃|𝑀) ∗ 𝑑𝜃
. 

(6.1) 

 

𝐸(𝑔|𝑀, 𝐷) ≈
1

𝑁
∑ 𝑔(𝜃𝑘)

𝑁

𝑘=1

. 

 

(6.2) 
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In Eq. (6.2), 𝜃𝑘 , 𝑘 = 1, 2, … , 𝑁 is the set of 𝑁 samples from 𝑓(𝜃|𝑀, 𝐷). Consider the following 

equation in Eq. (6.3). 

Sampling from 𝑓(𝜃|𝑀, 𝐷) using the Metropolis-Hastings algorithm with the sampling-

importance-resampling method can be difficult because the geometry of the likelihood 

𝑓(𝜃|𝑀, 𝐷) cannot be known beforehand. Instead, intermediate PDFs that converge towards the 

target PDF 𝑓(𝜃|𝑀, 𝐷) must be constructed. Consider a series of intermediate PDFs in Eq. (6.4). 

Also, note that 𝑓0(𝜃) = 𝑓(𝜃|𝑀), 𝑓𝑚(𝜃) = 𝑓(𝜃|𝑀, 𝐷). 

 

Although the geometry changes from 𝑓(𝜃|𝑀) to 𝑓(𝜃|𝑀, 𝐷) can be drastic, the change between 

the adjacent intermediate PDFs is small. Thus, the algorithm can efficiently obtain samples 

from 𝑓𝑗+1(𝜃) based on samples from 𝑓𝑗(𝜃). This sampling scheme uses the  𝑓𝑗(𝜃) samples to 

estimate the PDF as a kernel density function (KDF), which is a mixture of weighted Gaussians 

centered at the samples. This resulting KDF is taken as the proposal PDF of the Metropolis-

Hastings algorithm to draw samples for the next iteration. Doing this a number of times will 

eventually yield the  𝑓(𝜃|𝑀, 𝐷) samples. This process describes the modified version of the 

Metropolis-Hastings method. 

 

 𝑓(𝜃|𝑀, 𝐷) 𝛼 𝑓(𝜃|𝑀) ∗ 𝑓(𝐷|𝑀, 𝜃). (6.3) 

 

 

 

 

𝑓𝑗(𝜃) 𝛼 𝑓(𝜃|𝑀)  ∗ 𝑓(𝐷|𝑀, 𝜃)𝑝𝑗 

𝑗 = 0, 1, … , 𝑚    0 = 𝑝0 < 𝑝1 < ⋯ < 𝑝𝑚 = 1   

 

(6.4) 
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The TMCMC algorithm takes a different approach to the 𝑓𝑗+1(𝜃) based on samples from 𝑓𝑗(𝜃), 

using a resampling method instead of the KDF approach. It consists of a series of resampling 

stages, with each stage doing the following: given 𝑁𝑗 samples from 𝑓𝑗(𝜃) denoted by {𝜃𝑗,𝑘: 𝑘 =

1, … , 𝑁𝑗}, obtain samples from 𝑓𝑗+1(𝜃), denoted by {𝜃𝑗+1,𝑘: 𝑘 = 1, … , 𝑁𝑗+1}. With the samples 

{𝜃𝑗,𝑘: 𝑘 = 1, … , 𝑁𝑗} from 𝑓𝑗(𝜃), the plausibility weights of the samples can be calculated. 

Next, the uncertain parameters can be resampled according to the normalized weights. Let 

𝜃𝑗+1,𝑘 = 𝜃𝑗,𝑙, 𝑤. 𝑝.    
𝑤(𝜃𝑗,𝑙)

∑ 𝑤(𝜃𝑗,𝑙)
𝑁𝑗
𝑙=1

 𝑘 = 1, … , 𝑁𝑗+1. 

Here, w.p. stands for “with probability” and 𝑙 is the dummy index. If 𝑁𝑗 and 𝑁𝑗+1 are large, 

{𝜃𝑗+1,𝑘: 𝑘 = 1, … , 𝑁𝑗+1} will approach the distribution of 𝑓𝑗+1(𝜃). Furthermore, the expected 

value of 𝑤(𝜃𝑗,𝑘) is denoted in Eq. (6.5).  

 
𝑤(𝜃𝑗,𝑘) =

𝑓(𝜃𝑗+1,𝑘|𝑀)𝑓(𝐷|𝑀, 𝜃𝑗,𝑘)
𝑝𝑗+1

𝑓(𝜃𝑗,𝑘|𝑀)𝑓(𝐷|𝑀, 𝜃𝑗,𝑘)
𝑝𝑗

= 𝑓(𝐷|𝑀, 𝜃𝑗,𝑘)
𝑝𝑗+1−𝑝𝑗

 

𝑓𝑜𝑟 𝑘 = 1, … , 𝑁𝑗 . 

(6.5) 

 
𝐸[𝑤(𝜃𝑗,𝑘)] = ∫ 𝑤(𝜃) ∗ 𝑓𝑗(𝜃)𝑑𝜃

= ∫ 𝑓(𝐷|𝑀, 𝜃𝑗,𝑘)
𝑝𝑗+1−𝑝𝑗

∗ 𝑓𝑗(𝜃)𝑑𝜃

= ∫ 𝑓(𝐷|𝑀, 𝜃𝑗,𝑘)
𝑝𝑗+1−𝑝𝑗

∗
𝑓(𝜃|𝑀)𝑓(𝐷|𝑀, 𝜃)𝑝𝑗

𝑓(𝜃|𝑀)𝑓(𝐷|𝑀, 𝜃)𝑝𝑗𝑑𝜃

=
∫ 𝑓(𝜃|𝑀)𝑓(𝐷|𝑀, 𝜃)𝑝𝑗+1𝑑𝜃

∫ 𝑓(𝜃|𝑀)𝑓(𝐷|𝑀, 𝜃)𝑝𝑗𝑑𝜃
. 

 

(6.5) 
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Thus, ∑ 𝑤(𝜃𝑗,𝑘)/𝑁𝑗
𝑁𝑗

𝑘=1  is the unbiased estimator for  
∫ 𝑓(𝜃|𝑀)𝑓(𝐷|𝑀,𝜃)

𝑝𝑗+1
𝑑𝜃

∫ 𝑓(𝜃|𝑀)𝑓(𝐷|𝑀,𝜃)
𝑝𝑗𝑑𝜃

.  

With probability 𝑤(𝜃𝑗,𝑘)/ ∑ 𝑤(𝜃𝑗,𝑙)
𝑁𝑗

𝑙=1 , a Markov chain sample in the 𝑘𝑡ℎ chain is generated 

using a Gaussian proposed PDF centered at the current sample of the 𝑘𝑡ℎ chain with a covariance 

matrix equal to the scaled version of the estimated covairance matrix of 𝑓𝑗+1(𝜃).  

In Eq. (6.6), β is the scaling factor and ∑ =𝑗   the product of 𝛽2and the estimated covariance 

of𝑓𝑗+1 = 𝜃. Choosing the 𝛽 value is important for ensuring a smaller rejection rate as well as 

making large enough Markov chain jumps. Through much of the literature, it is found 

that 0.2 works well for this value [71]. Choosing the proper 𝑝𝑗 values is also important. If these 

values change too slowly, the amount of intermediate PDFs will be huge. If these values change 

too quickly, the transition between the adjacent PDFs will not be smooth. Figure 6.1 shows a 

visualization of the TMCMC algorithm.  

 

∑ =

𝑗

𝛽2 ∑ 𝑤(𝜃𝑗,𝑘)

𝑁𝑗

𝑘=1

{𝜃𝑗,𝑘 − [∑ 𝑤(𝜃𝑗,𝑙)𝜃𝑗,𝑙

𝑁𝑗

𝑘=1

/ ∑ 𝑤(𝜃𝑗,𝑙)

𝑁𝑗

𝑘=1

]}

∗ {𝜃𝑗,𝑘 − [
∑ 𝑤(𝜃𝑗,𝑙)𝜃𝑗,𝑙

𝑁𝑗

𝑘=1

∑ 𝑤(𝜃𝑗,𝑙)
𝑁𝑗

𝑘=1

]}

𝑇

. 

(6.6) 
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Figure 6.1: TMCMC implementation strategy 

The algorithm evolves by first assuming the PDFs for every variable is uniform. In this 

stage, 𝑝0 = 0. Via Bayesian inference and the TMCMC probability simulations, the samples 

eventually populate the high probability region of the posterior Gaussian PDFs close to the true 

model parameters at the last stage, where 𝑝𝑚 = 1.  

 

6.3  TMCMC with the Preisach Model 

The TMCMC method has been applied with some success towards the Bouc-Wen model [72-

73]. However, to the author’s knowledge, the TMCMC method has not been applied towards the 

Preisach model. Using the procedure discussed in the previous section, posterior PDFs for the 

Preisach model parameters can be determined.  

 

To restrict the parameter space 𝜃, two vectors 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 must be defined such that the 

following equation is true. 
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This parameter space determines where the initial samples can be generated and determines the 

feasible values that the parameters can take. As previously mentioned, the prior PDFs for the 

parameters are assumed to be uniform between the constraints, and the likelihood PDF is defined 

as the prediction error. This is assumed to be Gaussian with zero mean and unknown variance. 

The prediction error is defined as the difference between the predicted simulated system 

response and the experimental system response.  

In Eq. (6.8), 𝜎𝑎𝑐𝑐 represents the variance of the prediction errors and 𝑆𝑎𝑐𝑐 represents the 

weighting function used to normalize the acceleration response of the hysteretic system. Lastly, 

the log-likelihood function is used as the fitness function for the prediction error in Eq. (6.9). 

Next, with this setup, the TMCMC can be performed with experimental loops and be fitted using 

the Preisach model. These results will be compared against the more traditional LSQ fitting for 

total error and run time. 

 

 

 

𝜃(𝑖)𝑚𝑖𝑛 < 𝜃(𝑖) < 𝜃𝑚𝑎𝑥(𝑖),   1 ≤ 𝑖 ≤ 𝑑. 

 

(6.7) 

 

 

 

 

 

𝑓(𝐷|𝜃) = ∏
1

𝜎𝑎𝑐𝑐√2𝜋
𝑒𝑥𝑝 [

−1

2𝜎𝑎𝑐𝑐
2

(
𝑥(𝑡𝑖) − �̂�(𝑡𝑖|𝜃)

𝑆𝑎𝑐𝑐(𝑡𝑖)
)

2

] .

𝑙

𝑖=1

 

(6.8) 

 

 

 

 

 

𝑙𝑛𝑓(𝐷|𝜃) = −
1

2
𝑁𝑡 ln(2𝜋) − 𝑁𝑡ln𝜎𝑎𝑐𝑐 −

−1

2𝜎𝑎𝑐𝑐
2

(
𝑥(𝑡𝑖) − �̂�(𝑡𝑖|𝜃)

𝑆𝑎𝑐𝑐(𝑡𝑖)
)

2

. 
(6.9) 
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Shown in Figure 6.2 is an example of the TMCMC on some of the aforementioned experimental 

data.  

 

Figure 6.2: TMCMC Preisach model with Case 1; posterior PDF (left) and loop fit (right) 

The parameters for this fitting are also outputted further in Table 6.1 (to compare against the 

LSQ method). They are assumed to be the peak in each of the PDFs. To further establish the 

feasibility of the TMCMC, Figure 6.3 is also produced, pertaining to the “square” hysteresis 

example. 

 

Figure 6.3: TMCMC Preisach model with Case 4; posterior PDF (left) and loop fit (right) 
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Now that the model has proven effectiveness, it can be compared against the LSQ method. In 

Table 6.1, these approaches are evaluated. 

Case # |𝜇| 𝜎 𝜌 𝑘 Error Error/point Run 

Time (s) 

1 LSQ 

0.9988 0.5442 0.1783 426.875 0.0756 0.0042 39.86 
1 TMCMC 

0.7225 0.5448 0.5636 370.419 0.1174 0.0065 705.17 
2 LSQ 

0.3778 0.069 0.9977 0.9442 0.1409 0.0046 24.43 
2 TMCMC 

0.3792 0.0655 0.5992 0.8917 0.2154 0.0071 1338.62 
3 LSQ 

1.6321 0.2921 -0.933 94.7101 0.0684 0.0016 64.09 
3 TMCMC 

1.5683 0.2724 -0.856 96.9413 0.0988 0.0024 1302 
4 LSQ 

2.7694 1.6082 0.2458 125.392 0.0935 0.0022 54.07 
4 TMCMC 

2.7459 1.6352 0.2622 112.591 0.1134 0.0059 1950 
5 LSQ 

0.0804 0.1676 -0.67 1.3304 0.9681 0.0115 82 
5 TMCMC 

0.1207 0.1412 -0.591 1.0671 0.5094 0.0121 2385 
Table 6.1: Comparison of LSQ and TMCMC methods for Preisach model 

 

The fits for all of these comparisons are captured in Figure 6.4. Each of the subplots shows the 

comparison between the experimental data, LSQ, and TMCMC. 
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Figure 6.4: Hysteresis loops comparing LSQ and TMCMC vs. experimental data; Cases 1-5 
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As Figure 6.3 and Table 6.1 show, the TMCMC produces an essentially equally adequate fit for 

Preisach parameters as the LSQ method. However, the most evident downside from the data is 

the run time. While LSQ takes on the order of a minute or two, TMCMC takes upwards of 2000 

seconds, or a little more than half an hour. Thus, it can be deduced that, in most circumstances, 

the LSQ method is preferred for expediency. That being said, there are scenarios where TMCMC 

could prove to be a versatile method. As the following section shows, the TMCMC method can 

be beneficial in producing a family of solutions via the posterior PDFs. Further, with the addition 

of white noise corruption, which can occur with real material samples, the TMCMC method can 

achieve levels of accuracy that the LSQ cannot.  

 

6.4 Comparison of LSQ and TMCMC with a Theoretical Loop 

An interesting phenomenon of the Preisach model is its versatility with parameter fitting. Indeed, 

due to interrelated and correlated variables, a loop can be approximated via two different 

methods very effectively, despite the methods generating different sets of parameters. An 

example is presented below. For this scenario, the theoretical loop to be compared against has 

the following parameters, presented in Table 6.2. 

 

|𝜇| 𝜎 𝜌 𝑘 

0.6 0.75 0.3 2.67 

 

Table 6.2: Theoretical Preisach model true parameters 

 

 

Figure 6.5 and Table 6.3 show the result of the best fit for both the LSQ and TMCMC 

approaches. 
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Figure 6.5: Theoretical hysteresis loop compared with LSQ and TMCMC approaches; posterior 

PDF (left) and loop fits (right) 

 

Parameters |𝜇| 𝜎 𝜌 𝑘 Err Err/point Run 

Time (s) 

True 0.6 0.75 0.3 2.67 − − − 

LSQ 

0.858 0.785 0.172 5.275 4.58E − 08 4.54E − 10 27.05 
TMCMC 

0.803 0.778 0.198 4.580 5.96E − 05 5.90E − 07 1767.21 

Table 6.3: True parameters compared with LSQ and TMCMC parameters 

Thus, both methods adequately capture the hysteresis loop, even with different sets of 

parameters. This demonstrates the flexibility of the Preisach model in capturing curves in 

different manners. 
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6.5 Theoretical Loop Subjected to White Noise Compared to LSQ and TMCMC  

Another useful application of the TMCMC approach regards the response of a hysteretic element 

corrupted by noise. To simulate this, the theoretical hysteresis loop in Section 6.4 is subjected to 

white noise excitation. The same approach for both methods is incorporated. The results are 

captured in Figure 6.6 and Table 6.4. 

 

 

 

 

 

 

 

 

Figure 6.6: Theoretical Noisy Loop Compared with LSQ and TMCMC; posterior PDF (left) and 

loop fit (right) 

 

Parameters |𝜇| 𝜎 𝜌 𝑘 Err Err/point Run 

Time (s) 

True 0.6 0.75 0.3 2.67 − − − 

LSQ 0.6698 0.6904 0.0593 2.8898 0.016 3.9024𝐸 − 4 158 

TMCMC 0.9104 0.8716 0.3503 7.7468 0.0133 3.243𝐸 − 4 1993 

Table 6.4: True parameters subjected to white noise compared with LSQ and TMCMC 

parameters 
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As it can be deduced from this example, the TMCMC approach can prove useful in situations 

with noisier loops. Indeed, even though the TMCMC approach still takes far longer, it minimizes 

the error more effectively (albeit marginally) than LSQ. Thus, with loops subjected to noise, the 

TMCMC approach can prove to be an effective approach to capture loops that are harder to 

model. 

 

6.6 Loops Optimized via Combined TMCMC and LSQ 

Much of the challenge in using any identification problem algorithm scheme lies in the choice of 

the searched parameter space. This is certainly a limiting factor in the applicability of the Bouc-

Wen model; it is difficult to find the optimized parameter space in which to perform any LSQ 

approach. One of the advantages of the Preisach model is its ability to optimize over the wide 

bounds described in Table 3.2. 

 

However, the LSQ for the Preisach model can reach a stalemate in a local minimum in the same 

manner as the Bouc-Wen model, albeit to a much lesser degree. To account for this, it is helpful 

to have a more refined search space and initial estimate. This is one of the benefits of the 

TMCMC method. Using TMCMC first on an experimental data set, the optimized parameters 

can be estimated within a much smaller margin of error via the peaks on the posterior Gaussian 

PDFs. After this, the LSQ algorithm can be performed with the initial estimate from the 

TMCMC method and a tighter margin for the parameter search space. Figure 6.7 affords a visual 

comparison of three loops approximating an experimental loop via the Preisach model: LSQ, 

TMCMC, and lastly TMCMC followed with LSQ. Table 6.6 shows the parameters for each of 

the solutions. 
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Figure 6.7: Preisach model with LSQ (top left), TMCMC (top right), and the combination of 

both (bottom) 

 

Scenario |𝜇| 𝜎 𝜌 𝑘 Error Error/point 

LSQ 

0.3778 0.069 0.9977 0.9442 0.3668 0.006217 
TMCMC 

0.3792 0.0655 0.5992 0.8917 0.5109 0.008659 
Combination 

0.3778 0.069 0.9977 0.9442 0.3068 0.0052 
Table 6.6: Preisach parameters comparing LSQ, TMCMC, and the combination of both 
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This example shows that the sequential combination of using TMCMC and LSQ with a more 

refined initial estimate and search space leads to the best results. Both figures and table show that 

the difference is rather small. However, if one wanted a very refined model and search space, 

using the combination of TMCMC and LSQ is the optimal method out of the ones presented in 

this work to lead to the minimal root mean square error. 

 

This can be applied towards the hysteresis loop discussed in the previous section with the 

theoretical loop subjected to white noise. Using the same procedure as discussed above, the 

theoretical loop with the parameters outlined in Table 6.2 is subjected to white noise corruption 

and is subsequently analyzed via the three methods. Pertinent results are shown in Figure 6.8 and 

Table 6.7. 
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(a)                                                   (b)  

 

 

 

 

 

 

 

         (c)                      (d) 

Figure 6.8: Preisach model posterior PDF (a), TMCMC fit (b), LSQ fit (c), and combined 

TMCMC and LSQ fit (d) 

Scenario |𝜇| 𝜎 𝜌 𝑘 Error Error/point 

LSQ 

0.6698 0.6904 0.0593 2.8898 0.0239 0.000693 
TMCMC 

0.9643 0.9062 0.3490 7.6601 0.0284 0.000583 
Combination 

0.8743 0.8381 0.3058 6.4955 0.0182 0.000444 
Table 6.7: Preisach parameters comparing LSQ, TMCMC, and the combination of both for 

theoretical white noise loop 
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As Figure 6.8 and Table 6.7 show, the combination of the TMCMC method and the LSQ method 

minimizes the normalized error most effectively.  

 

6.7 Summary 

The TMCMC method has proven effective towards its application with the Preisach model. It 

approaches a similar degree of accuracy that the LSQ method does. Although the requisite 

computational time makes TMCMC less desirable than LSQ in simple cases, there are scenarios 

where the TMCMC method is preferred: 

1) When the user wants more information on the family of solutions around the peaks on the 

posterior Gaussian PDFs (namely the distribution of data).  

2) When white noise is introduced.   

Further, a combination of using the TMCMC method first for a good approximate solution 

followed by the LSQ method with a very accurate initial estimate and tighter bounds proves to be 

the more accurate method of all examined in this study. If the user wants an extra degree of 

accuracy, the combination of TMCMC and LSQ is the superior method. 
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Chapter 7 

Concluding Remarks 

 

Many systems in a wide variety of engineering applications exhibit hysteretic behavior, ranging 

from aircraft wings to magnets. Thus, it is an important concern of engineers to be able to model 

hysteresis accurately for a more efficient design strategy. In this context, there were three main 

goals of this thesis. First, an algorithm has been developed that converts equivalent hysteresis 

loop approximations from the Bouc-Wen model to the Preisach model and vice versa. Second, 

the Preisach model and Bouc-Wen model have been evaluated and applied on a series of 

experimental data supplied by AFRL. Third, the TMCMC method has been applied in 

conjunction with the Preisach model and evaluated against other identification problem methods. 

 

In Chapter 1, the hysteresis phenomenon has been defined and its main characteristics specified. 

Further, it has covered a brief history of the field and the need for effective modeling of 

hysteresis. It has been clarified that there are two major modeling techniques of hysteresis which 

relates to local and nonlocal memory. From the local memory models, the Bouc-Wen model has 

been developed. From the nonlocal memory models, Preisach formalism has been developed.  

 

Chapter 2 has built upon this base laid by the previous chapter by discussing the mathematical 

theory behind the methods used throughout the rest of the thesis. Preisach formalism has been 

formally introduced with the mathematical construction behind concepts such as the hysteron, 

the Preisach half-plane, and the density function. The identification problem for the Preisach 
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model has been discussed, with Eq. (2.6) being proposed as the bivariate Gaussian distribution 

approximation for the density function by Spanos et al [18, 19, 20, 22]. The Bouc-Wen model 

has been discussed in depth with the mathematical background for the system of differential 

equations that define it. The architecture of ANNs has been addressed and how they might be 

applied towards the conversion of Bouc-Wen parameters to Preisach parameters. Finally, some 

consideration has been given to the nature of Monte Carlo simulation that serves as the 

groundwork for the more detailed discussion regarding TMCMC in Chapter 6. 

 

This theory has been applied in Chapter 3 towards converting Bouc-Wen parameters into 

Preisach parameters through a couple of methods. First, the conversion has been accomplished 

via the LSQ method. Then, the alternative approach of incorporating an ANN has been proposed. 

The ANN has been built and trained with a library of randomized hysteresis loops within bounds 

being minimized with LSQ. Upon assessing the performance, it has been determined that both 

methods are accurate, but the ANN encounters more difficulty with more atypical loop shapes. 

The Bouc-Wen model is inherently not as flexible of a model (in this form) as the Preisach 

model. Thus, the ANN is useful for its near instantaneous computational speed, but is limited by 

the Bouc-Wen model’s inflexibility with atypical loop shapes. Although this thesis advocates for 

the Preisach model being more flexible in nature than the Bouc-Wen model, Chapter 3 also 

demonstrates the reverse direction of drawing Bouc-Wen parameters out of Preisach parameters, 

should the need for the researcher arise. 

 

Chapter 4 has dealt with revisiting the parameters of both models. Since both models have 

several parameters to coordinate between, it is critical to have a competent initial estimate for the 
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parameters. Otherwise, the minimization process can become trapped in a local minimum. To 

make this sophisticated initial estimate, each parameter of each model has been investigated 

individually to evaluate its effect on the overall size and shape of the hysteresis loop. For each 

model, examples have proven the validity of the established guidelines for the determining of 

initial parameters. 

 

Building upon this knowledge, Chapter 5 has applied both the Preisach model and the Bouc-

Wen model towards experimental data supplied by AFRL. Both methods have been evaluated 

via normalized error towards these loops. It has been shown that the Preisach model generally 

proves superior to the Bouc-Wen model in minimizing a wide variety of hysteresis loops. 

However, in practice, the Bouc-Wen model is not without merit, as it can be applied successfully 

towards materials with local memory. Further, more advanced variants of the Bouc-Wen model 

might perform better when compared to the Preisach model. 

 

Finally, Chapter 6 has been concerned with the application of TMCMC in conjunction with the 

Preisach model. The TMCMC method has proven quite effective in minimizing the supplied 

AFRL data, as well as theoretical loops. It has been shown that the LSQ method performs 

slightly better than the TMCMC method but that both are adequate. However, the TMCMC 

method proves to minimize error better when white noise is introduced with a theoretical loop. 

Thus, TMCMC is better at minimizing error than LSQ with “noisier” loops. It is then proposed 

that a combination of both TMCMC and LSQ is superior to either one separately, as using 

TMCMC first gives an excellent initial estimate with the peak of the posterior Gaussian PDF that 

can minimize error further with a more refined parameter search space for LSQ.  
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Further work could perhaps include investigating hysteresis models with multiple degrees of 

freedom. With this more complex approach, algorithms can be developed that determine the 

Preisach and Bouc-Wen models with more degrees of freedom. Conversion between the two 

models can be accomplished, and their performance toward experimental data can be analyzed. 

Further, instead of using the Bouc-Wen model, the more complex BWBN model (or other 

variations on the Bouc-Wen model) can be analyzed and compared against the Preisach model. 

Next, a formal sensitivity analysis can be performed to determine how each parameter for each 

model affects the loop. The relationships between the Bouc-Wen variables can be evaluated 

more closely via a correlation matrix (which can be accomplished via TMCMC data) to deduce 

redundant variables, as some research by Ma et al. suggests [74]. Finally, there can be further 

study into the modeling experimental minor loops for materials with nonlocal memories with the 

Preisach model  
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