


Abstract

A Parallel-In-Time Gradient-Type Method
For Optimal Control Problems

by

Xiaodi Deng

This thesis proposes and analyzes a new parallel-in-time gradient-type method

for time-dependent optimal control problems. When the classical gradient method

is applied to such problems, each iteration requires the forward solution of the state

equations followed by the backward solution of the adjoint equations before the gra-

dient can be computed and control can be updated. The solution of the state/adjoint

equations is computationally expensive and consumes most of the computation time.

The proposed parallel-in-time gradient-type method introduces parallelism by split-

ting the time domain into N subdomains and executes the forward and backward

computation in each time subdomain in parallel using state and adjoint variables

at time subdomain boundaries from the last optimization iteration as initial values.

The proposed method is generalized to allow di↵erent time domain partitions for

forward/backward computations and overlapping time subdomains.

Convergence analyses for the parallel-in-time gradient-type method applied to

discrete-time optimal control problems are established. For linear-quadratic problems,

the method is interpreted as a multiple-part splitting method and convergence is

proven by analyzing the corresponding iteration matrix. In addition, the connection

of the new method to the multiple shooting reformulation of the problem is revealed
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and an alternative convergence proof based on this connection is established. For

general non-linear problems, the new method is combined with metric projection to

handle bound constraints on the controls and convergence of the method is proven.

Numerically, the parallel-in-time gradient-type method is applied to linear-quadratic

optimal control problems and to a well-rate optimization problem governed by a sys-

tem of highly non-linear partial di↵erential equations. For linear-quadratic problems,

the method exhibits strong scaling with up to 50 cores. The parallelization in time

is on top of the existing parallelization in space to solve the state/adjoint equations.

This is exploited in the well-rate optimization problem. If the existing parallelism

in space scales well up to K processors, the addition of time domain decomposition

by the proposed method scales well up to K ⇥ N processors for small to moderate

number N of time subdomains.
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Chapter 1

Introduction

Optimal control problems governed by a time-dependent partial di↵erential equa-

tion (PDE) system are widely studied in various fields of applications, as unsteady

fluid-dynamics problems [Gun03], [BLUU12], oil reservoir water flooding optimiza-

tion [Jan11], pollutant source inversion [DCZ15], mixing enhancement in microfluidic

technologies [HCCT13], etc. Iterative solution of these problems using gradient based

methods involve the time consuming repeated solution of a state equation and a so-

called adjoint equation. The state equation and adjoint equation of an optimal control

problem governed by a time-dependent system are strongly coupled in time and their

solution is inherently serial. In other words, the solution of these equations on di↵er-

ent parts of the time domain needs to happen in chronological order, which prevents

any simple application of parallel computing in the time dimension to accelerate the

overall optimization.

To e�ciently and rapidly solve these time-dependent optimal control problems by

utilizing parallel computing, I propose and analyze a new parallel-in-time gradient-

type method (also referred to as “parallel gradient-type method” in this document).

Suppose the PDE is discretized in the space dimension. Let T > 0 be the time

domain length and let ny, nu 2 Z+ be the dimension of the state and control variables

respectively at any point in time. For t 2 [0, T ], the state is y(t) 2 Rn
y , the control

1
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iter.j

iter.j � 1

Figure 1.1: Workflow of the classical gradient method

is u(t) 2 Rn
u . Let J : Rn

y ⇥ Rn
u ⇥ R ! R and F : Rn

y ⇥ Rn
u ⇥ R ! Rn

y be given

functions. Let y
given

2 Rn
y be a given initial state. The model problem is in (1.0.1).

min
y,u

Z T

0

J(y(t), u(t), t)dt, (1.0.1a)

subject to
d

dt
y(t) = F (y(t), u(t), t), t 2 (0, T ), (1.0.1b)

y(0) = y
given

. (1.0.1c)

To solve (1.0.1), each iteration of the classical gradient method in reduced control

space requires the forward in time solution of the state equation and the backward

in time solution of the adjoint equation before the gradient can be computed and the

control can be updated. Both of the forward and backward computation is sequential

in nature and consumes most of the computation time in the whole optimization

process, see Figure 1.1.

The new parallel-in-time gradient-type method introduces parallelism in the for-

ward and backward computation. In the simplest case, the proposed new parallel

gradient-type method evenly splits the time domain into N time subdomains and

executes the forward and backward computation in each of the N time subdomains

in parallel. To enable the parallelism in N time subdomains, I sacrifice the exact-

ness of the gradient vector and aim only for a gradient-type vector surrogate. To
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Figure 1.2: Workflow of the parallel-in-time gradient-type method

start computations on all time subdomains simultaneously, quantities computed in

the last optimization iteration are used as the initial/terminal conditions for the for-

ward/adjoint solves, which is readily available for each sumdomain at the beginning

of each optimization iteration. This is the key idea of the proposed new parallel-

in-time gradient-type method. However, using quantities from last iteration to start

parallel computing on subdomains also results in jumps in the state/adjoint variables

at time subdomain boundaries. After the state and adjoint variables are computed,

the new method uses the same formula as in the classical gradient method to com-

pute a gradient-type vector to update the control and begin the next iteration. See

Figure 1.2.

In the case where N time subdomains evenly split the time domain, since the

length of the forward and backward computation in each time subdomain is 1/N of

the original time domain, the computation time for each optimization iteration is

expected to be about 1/N of the computing time of the classical gradient method

iteration. This is where the parallel-in-time gradient-type method brings potential
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speed-ups, if the control update computed in parallel is good enough as a surrogate

of the gradient. It is also important to note that the acceleration by parallelism in

time multiplies the existing parallelism in the solution of state and adjoint equations.

At any iteration of the parallel gradient-type optimization, the state, adjoint, and

control variables typically do not satisfy the state equation and the adjoint equation at

the time subdomain boundaries as a result of using quantities from the last iteration.

Since the new method does not use an exact gradient in the control update, this new

method is not an acceleration of the exact classical gradient method and therefore I

refer to it as a ‘gradient-type’ method.

I also present a generalization of this newly proposed method that allows the di↵er-

ent time domain partition of the forward and backward computation and overlapping

computation domains.

The theoretical analysis consists of results for linear-quadratic problems and the

broader class of general non-linear problems.

For convex linear-quadratic discrete-time optimal control (DTOC) problems, the

generalized method can be interpreted as a multiple part splitting method (for the

N evenly splitted subdomains in forward and backward computation case, it is a

(2N � 1)-part splitting method [de 76, dN81]) for solving the optimality condition

Hu = g,

where H is the Hessian, and g is the gradient of the reduced control space objective.

However, in the literature, there is not a convergence result applicable to the spe-

cific splitting pattern that results from this new method and the existing convergence

theorems for the classical gradient method also does not apply since the control up-

dates of this method does not use exact gradient. For linear-quadratic problems, I

prove the convergence of this new method by using its structure as a multiple part

splitting method and spectral radius properties of an implicitly constructed iteration

matrix as a block companion matrix [DTW71].
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I also study the new parallel-in-time gradient-type method from the point of view

of the multiple shooting reformulation of the optimization problem. I show the new

method can be seen as using a gradient-type method to solve the saddle point prob-

lem of the multiple shooting formulation optimality system. An alternative proof of

convergence is given for the linear-quadratic problems using spectral radius type of

argument again.

Then, I investigate the behavior of the parallel gradient-type method for general

nonlinear optimization problems.Particularly, I consider the projected parallel-in-time

gradient-type method whose iteration is the parallel gradient-type iteration appended

by a metric projection step that projects the control into a closed convex set. Di↵er-

ent from the spectral radius argument used in the previous linear-quadratic problem

convergence proofs, I use another approach based on the idea that, when the control

update is small, the gradient-type vector computed in parallel is similar to the true

gradient. I establish a series of theorems and give convergence proofs with di↵erent

assumptions on the problem, such as the convexity of the objective function or com-

pact control constraints. Additionally, I present results on the monotonic convergence

of the method given small step size.

I present numerical examples to demonstrate the proposed method performance.

In optimal control problems governed by 3D linear advection-di↵usion-reaction

PDE systems, strong scaling is observed in one example with up to 50 cores, i.e.,

50 times speed-ups is achieved by the parallelism of 50 cores compared to the serial

classical gradient method. Numerical results to demonstrate other properties of the

method are also presented.

This work is motivated by an optimization problem arising in the well rate con-

trol in the water flooding process of secondary oil reservoir recovery. This is an

optimal control problem governed by a system of highly nonlinear time-dependent

PDEs. The forward computation, i.e., reservoir simulation, and the backward com-

putation is both very computationally expensive. In this reservoir optimization prob-
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lem, the application of the proposed parallel-in-time gradient-type method results in

significant speed-ups. In one experiment, 4-time-subdomain parallel gradient-type

method with, in each subdomain, 4 cores in the space dimension for parallel linear

solvers/preconditioners (16 cores in total) is compared with classical gradient method

with 4 cores in the space dimension. About 4 times speed-ups is obtained.

This document is organized as follows. In Chapter 2, I review related work in

the parallel-in-time solution of time-dependent systems, parallel-in-time optimization,

and oil reservoir optimization. In Chapter 3, I use the linear-quadratic discrete-time

optimal control problem to introduce the idea of the parallel-in-time gradient-type

method. I first develop a compact notation for the classical gradient method, then

derive and reorganize the parallel-in-time gradient-type algorithm into a similar com-

pact form which reveals its nature of being a (2N �1)-part splitting method. Then, I

generalize the newly proposed method to accommodate flexible overlapping partition

of time domains. I prove convergence of the generalized method and demonstrate its

performance by numerical experiments, applying the parallel-in-time gradient-type

method to 1D and 3D linear-quadratic optimal control problems. In Chapter 4, I in-

troduce the direct multiple shooting reformulations of linear-quadratic optimal control

problems, which leads to another interpretation of the parallel-in-time gradient-type

method.An alternative proof of convergence is given using the multiple shooting per-

spective. In Chapter 5, I give convergence proofs and related properties for general

nonlinear problems.In Chapter 6, I describe the wellrates optimization problem and

compare numerical results of the classical gradient method and the parallel-in-time

gradient-type method.

I include several appendices. Appendix A consists of some research without a clear

conclusion but still draws insights into the parallel-in-time gradient-type method, in-

cluding discussions on one way of proving the projected parallel gradient-type method

convergence, the numerical experiments investigating behavior of the spectral radius

of an iteration matrix that determines the convergence speed of the method, and a



7

parallel-in-time Krylov subspace method that is closely related to the multiple shoot-

ing formulation of the linear-quadratic problem. Appendix B describes in detail the

impressible immiscible two-phase subsurface flow model PDE and its discretization

that is used in the reservoir optimization problem. Appendix C talks about imple-

mentation details of the proposed method on the reservoir optimization problem with

an emphasis on comparing the parallel-in-time gradient-type method applied to prob-

lems with explicit and implicit (as the case of the reservoir problem) expression of

state equations. Appendix D presents a test on using a time subdomain partition

based on computation load, instead of even number of time steps, for load balance

of the parallel-in-time gradient-type method applied to the reservoir optimization

problem.



Chapter 2

Literature Review

In Section 2.1, I first review some related work on parallel-in-time simulation which

give rise to important ideas for parallel-in-time optimization. In Section 2.2, I re-

view related literature on parallel-in-time optimization including some commonly

used concepts as additive Schwarz preconditioners, direct/indirect multiple shoot-

ing formulations of the time-dependent optimal control problems, Parareal [LMT01]

based parallel simulation. At last, in Section 2.3, I review related work in the water

flooding optimization problem on oil reservoir management.

2.1 Parallel-In-Time Simulation

In [LRSV82], a waveform relaxation family of algorithms was first proposed for an-

alyzing nonlinear dynamical system in the time domain. Waveform relaxation is a

Gauss-Jacobi type relaxation iterative method. (It can be also Gauss-Seidel type.

Because the Gauss-Jacobi type is more straightforward to parallelize, I discuss the

Gauss-Jacobi type below.) First, the unknowns are partitioned into spatial subdo-

main. Then, in each Gauss-Jacobi relaxation iteration, the algorithm fixes unknowns

from all partitions but one and carries out the simulation in time for this one parti-

tion of unknowns. A suitable integration formula and steps can be applied only to

8
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this partition of unknowns, which allows di↵erent methods to integrate di↵erent un-

knowns. The above algorithm constitutes a Gauss-Jacobi relaxation step that can be

parallelized and multiple time-dependent simulations can be readily run in parallel.

Strictly speaking, this algorithm does not belong to the specific type of parallel-in-time

simulation that I discuss here, since it does not perform computation corresponding

to di↵erent time subdomains at the same time. But the parallel-in-time gradient-

method shares the idea that in one iteration, computation in each partition runs

independently with other partitions with essential information from other partitions

fixed as quantities computation from the last iteration.

‘Parareal’, an innovative parallel-in-time algorithm for simulation, was proposed

in [LMT01]. See also the overview [Gan15]. The method decomposes the time domain

into N subdomains and makes use of a coarse(C) and a fine(F) grid time integrator.

In the kth iteration, the coarse one integrates over the whole time domain in serial,

the fine one integrates each one of the N time subdomain in parallel, and the initial

value of each time subdomain is updated by a simple formula (2.1.1) using integration

results from the coarse, CT
n

!T
n+1

(Y (k+1)

T
n

), and fine, FT
n

!T
n+1

(Y (k)
T
n

), integrations.

Y
(k+1)

T
n+1

= CT
n

!T
n+1

(Y (k+1)

T
n

) + FT
n

!T
n+1

(Y (k)
T
n

)� CT
n

!T
n+1

(Y (k)
T
n

) (2.1.1)

After N iterations the method produces exactly the same integration result as the fine

grid integrator would, but this would not accelerate the simulation. In practice, for

many cases, far less than N iterations are needed to achieve desirable error and thus

results in lower computation time when executed in parallel. From my point of view,

it can be partly seen as making use of the fact that the temporal dependency between

states of two time point is decreasing and diminishing as the time distance between

these two time increases. Many works based on ‘Parareal’ have been done since the

conception of this idea, some of which are reviewed below, e.g. [Com05, DSSS13].
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2.2 Parallel-In-Time Optimization

The widely cited paper [TBA86] presents convergence results of a class of distributed

asynchronous gradient optimization algorithms. The parallel-in-time gradient-type

method does not exactly fall into the category of algorithms discussed in the paper.

However, they share the same spirit that, in the case where each processor is com-

puting a gradient-like updating step for one component of the optimization variable,

the information from other component su↵ers a delay. The convergence theorem and

its proof provided in the paper [TBA86] bears significant similarity with the parallel-

in-time gradient-type method convergence theorem for non-linear problems that I

provide in this dissertation. The first similarity is that convergence is established

based on a su�ciently small gradient-type step size whose theoretical upper bound

is not particularly tight. If we can trace the proof deductions and find such a upper

bound, the upper bound will lead to convergence but not to optimal performance.

The second similarity is in the idea of the proof that when the step size is small,

the information, i.e. state/adjoint/control, in the distributed system is similar to

the information in a virtual centralized system at a specific status, and the gradient-

type step made in the distributed system is actually in a descent direction for the

information in the virtual centralized system.

The paper [CCL89] presents a method that explicitly decomposes a time-dependent

optimal control problem (P) with initial state condition into sub-optimal control prob-

lems (P-j) with both initial and terminal conditions on small time subdomains as

below (see [CCL89, Equation 2.1-2.5]),

(P)min
x,u

gN(xN) +
N�1X

i=0

gi(xi, ui),

subject to xi+1

= fi(xi, ui),

i = 0, ...N � 1,

x
0

= x
given

,

(P-j)min
x,u

jT�1X

i=(j�1)T

gi(xi, ui),

subject to xi+1

= fi(xi, ui),

i = (j � 1)T, ...jT � 1,

x
(j�1)T , xjT�1

given.
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This method is an iterative method where in each iteration it takes a two level

approach. In the lower level, optimal control problems with both initial and terminal

state constraints are solved exactly assuming feasibility. Note that feasibility with

both initial and terminal constraints is not trivial for many applications. In the higher

level, the initial and terminal state values of each time subdomain are updated, e.g.,

by a Newton step using first and second order information from the lower level. This

method shares a similar spirit with indirect multiple shooting method in the sense

that in the higher level of both methods variables at the time subdomain boundaries

representing initial/terminal values of states/adjoints are updated and the control

u in the original problem is updated on the lower level. But there is an apparent

di↵erence in how they make use of the information from the lower level. This method

only uses information at the subdomain boundary, which of course depends on the

interior of the subdomain, whereas indirect shooting method explicitly uses control

information on the whole time subdomain. In [CCL89], the banded structure of the

Hessian matrix in the Newton’s iteration is exploited by a parallel general banded

matrix cyclic reduction based solver [Hel76]. However, due to hardware constraints in

the year 1989, numerical experiments were only carried out with at most 7 processors,

though speedups were observed evidently, the scaling potential was not su�ciently

demonstrated.

In [Wri90], parallel computing is used in solving banded linear system [Wri91a]

arising in the sequential quadratic programming method applied to a time-dependent

optimization problem. The banded structure is resulted from the optimality system of

the time-dependent problem. However, other than the matrix being generally banded,

other structure and characteristics of time-dependent problems are not exploited in

this work.

After [Wri90], the same author continued to explore more structure of the prob-

lem in [Wri91b]. The method bears similar flavor as in [CCL89] in terms of using a

multiple-shooting decomposition of two point boundary value problem style. The dif-
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ference lies in that [CCL89] focuses on decomposing the problem into in the nonlinear

problem level in which each subproblem has a clear physical meaning and [Wri91b]

focuses on decomposing the banded linear system resulted from one iteration of New-

ton’s method or of the SQP method. In contrast to the commonly seen upper-lower

two level structure of multiple-shooting type algorithms, arbitrary number of levels,

i.e., recursive parallelism, are introduced. After optimizing number of parallel levels

and allocation of processors in each level, di↵erent number of levels are compared in

terms of performance. The paper does not explicitly decompose the time domain,

but decompose the linear system that results from this time-dependent system. The

parallelism is in the construction of the small linear system of the “separator vari-

ables”, which in some sense resemble shooting variables. One major computation

is in the matrix-matrix multiplications in this construction which does not exist in

other typical algorithm using multiple shooting idea. The two numerical experiments

have state and control dimension in each time step below three with large number of

times steps. The parallel algorithm has about 50% more computation than its serial

counterpart. With 8 processors, about 5 times speed up is achieved.

The paper [Ral96] uses has similar two level structure for parallelization as [CCL89]

and applied Di↵erential Dynamic Programming (DDP) method on DTOC problems.

Again, [Ral96] assumes state equation feasibility given both initial and terminal con-

dition. Relatively good parallel e�ciency 70% is observed in some test cases compared

to 25% � 50% e�ciency in related works targeting the same problems. However, in

all of the numerical examples, the dimension of state and control variables in each

time step is only one or two, which is not the case in PDE constrained optimization.

The paper [BH97] focuses on time-dependent linear-quadratic optimal control

problems. In a direct multiple shooting framework, they split time domain, intro-

duce auxiliary (shooting) variables at the time subdomain boundaries and derive

an exactly equivalent formulation of the original problem. I will also include the

perspective of this formulation to examine my algorithm. By this formulation, the
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optimality system can be arranged as a block tridiagonal and they rely on Gauss-

Seidel type ‘red-black’ relaxation approach to parallelize the computation. In each

optimization iteration, they solve exactly the sub optimization problems whereas the

parallel-in-time gradient-type method can be seen as only applying one gradient-type

step to very roughly solve the sub optimization problem in some sense. The penalty

term in the Augmented Lagrangian to reduce state variables discontinuity at the time

subdomain boundaries has significantly improved the convergence.

The paper [MT02] proposes the method that partitions the time domain, adds an

auxiliary variable of the initial value of each subdomain into control variables, and

includes in the modified objective function a large penalty term of discontinuity of

states on subdomain boundaries. Then, in the gradient method in the reduced con-

trol space, the forward/backward computation in time subdomains is parallel. The

parallel-in-time gradient-type method shares this spirit in the sense that the subprob-

lems are not solved exactly so that optimal solutions are found in each iteration as in

[BH97] but only a single gradient-type step is applied to each subproblem as a part

of the gradient step of the whole problem. To compensate the delay of information

exchange due to the domain partition, a coarse grid integrator is used to precondition

the gradient method. In the parallel-in-time gradient-type method, as opposed to the

coarse-fine two level of integrator in [MT02], there is only one integrator and, there-

fore, su↵er the delay of information exchange discussed here. Numerical results of

[MT02] show that, in a case where time domain is partitioned into 100 parts, with the

help of the preconditioner, the parallel algorithm needs even significantly fewer iter-

ations to converge than the plain gradient method with no time domain partitioning

and each iteration is 100 times faster than the plain gradient method.

The paper [Hei05] derives a block tridiagonal optimality system akin to that in

[BH97]. Instead of solving sub optimization problems, Gauss-Seidel forward/backward

sweeps on the whole system are used to cluster the eigenvalues and form a good pre-

conditioner. However, the quality of the preconditioner deteriorates [Com05] when
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the Gauss-Seidel forward/backward sweeps are replaced by the parallelizable ‘red-

black’ ordering sweeps. I also explored the possibility of using the optimality system

in [Hei05] after a permutation to reveal parallelism explicitly to perform a parallel

Krylov subspace method in Section A.3 since it is closely related to the proposed

parallel-in-time gradient-type method.

The Ph.D. dissertation [Com05] uses the type of KKT system factorization based

preconditioner developed in [BG99], the latter of which can be thought of as an

extension of [BH98]. The parallelism in time is not explicit in the original [BG99].

However, the preconditioner developed in [BG99] needs an approximate forward solver

and [Com05] applies ‘Parareal’ technics [LMT01] in the forward/backward solves to

exploit parallelism in the time domain.

With the application background of quantum system control, [MST07] applied

alternate direction descent method to obtain a monotonic algorithm. In each itera-

tion, first, the state and adjoint equations are solved by Parareal coarse propagator.

Then, instead of using the coarse propagator result directly as shooting variables, an

optimization problem with jump penalty added to the original objective function is

solved and its solution is used as shooting variables. At last, given shooting variables,

controls are sought for in parallel in each of the sub time domain. By this algorithm,

the monotonic decreasing in objective function value along convergence is proved for

this application. Careful performance timing for scaling study is not provided.

The paper [DSSS13] eliminates the state and adjoint variables from the optimality

system (2.2.1) (see [DSSS13, Equation (1.1)])
2
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in a Schur complement fashion and obtains a reduced HessianH
def

= G+NTE�TKE�1N.

To solve for the optimal control from a linear system Hu = b, variants of the Full

Orthogonalization Method (FOM) is used. The matrix-vector multiplication is calcu-
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lated approximately. In the matrix-vector multiplication, applying E�T and E�1 to a

vectors is approximated by using Parareal method [LMT01] to solve the underlying

PDE and the adjoint PDE approximately in parallel inexactly.

In contrast to [BH97, Hei05], [BS14] forms the first-order KKT condition without

adding auxiliary (shooting) variables. In this way, the optimality condition system

(2.2.2) (see [BS14, Equation (8)]) includes a 3 by 3 block matrix of large dimension-

ality, 2

6664

⌧M
1

0 �KT

0 �⌧M
2

⌧N T

�K ⌧N 0

3

7775

2

6664

y

u

p

3

7775
=

2

6664

�⌧M
1

ȳ

0

d

3

7775
. (2.2.2)

To solve this system, they use a preconditioned QMR iterative linear solver. The par-

allelism lies in the additive Schwarz preconditioner with an overlapping time domain

decomposition. By decomposing the time domain, many smaller subproblems are de-

rived by extracting corresponding rows and columns from (2.2.2). These subproblems

are solved in parallel.

The paper [ACG14] uses parallelism in a diesel engine optimal control problem

where one aims to minimize fuel consumption with fuel injection pattern as control

variables, 5-dimensional at each time step, under the constraints of engine model, i.e.,

required engine speed, emission bound, and other mechanical/thermal constraints.

The emission bound is a single inequality constraint involved with a integral over the

whole operation time span. After the time domain is decomposed Lagrange multi-

pliers are used to deal with this constraint. In terms of time domain decomposition,

it follows [CCL89] where a two-level structure is adopted, the higher level of which

solves for the optimal state at the sub time domain boundaries and the lower level of

which are optimization problems with both initial and terminal state conditions. The

air-path model, i.e., the state equations, is a system of ODEs and has state variable

dimension five at each time step. For problems like the oil reservoir optimization

problem, typically, it is impossible to force the reservoir pressure/saturation to an



16

arbitrarily given state by only controlling the well rates. The paper [ACG14] also

mentions an interesting notion of “characteristic constant of the underlying system”

that, loosely speaking, describes how long into the future the current state will have

an e↵ect. It is much smaller than the length of sub time domains, which leads to

the fact that the requirement of the terminal states only a↵ects a few time steps

prior to the terminal time. The characteristic constant also determines the length

of overlapping region of the sub time domains. An overlapping region of every two

consecutive time sub domains is introduced to enforce the global state continuity. It

is also related to the time for which a zero adjoint variable at a terminal time with no

terminal state condition grows to a typical magnitude. The paper does not provide

detailed results on the parallel performance and scalability.

An indirect multiple shooting formulation is used in [CGR14] to solve parabolic

optimal control problems. This indirect multiple shooting formulation is compared

with direct multiple shooting in [CG15]. The work does not focus on the paralleliza-

tion of computation but on other aspects, such as handling possible instability in the

problem. However, it is highly related to the other works in the parallel-in-time op-

timization. The indirect multiple shooting method consists of a two-step fixed point

iteration. In the first step, shooting variables, i.e. boundary values of states and

adjoint variables, are fixed and the sub optimality system that determines controls

on each time subinterval is solved. One can conveniently parallelize solving these

subproblems. In the second step, using the control variable obtained in the first step,

shooting variables are sought to fit the continuity condition, i.e., ‘the shooting sys-

tem’, on time subinterval boundaries. This calculation involves the dynamics on the

whole time domain and is not as straightforward as the first step to parallelize.

Similar to [BS14], [DCZ15] use an additive Schwarz preconditioner on the full space

KKT system, but the Schwarz preconditioner is in both space and time. They reorder

the KKT system in the full space in ‘fully coupled ordering’ where the state, y, and

adjoint, �, variable are placed near each other if the state variable and the equation
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of the adjoint variable correspond to the same space and time; in the application

to pollutant source inversion problem, the controls (in this case, the parameters to

identify), u, only exist on s discrete points and are placed at the end of the unknown

vector,

Unknown =
�
y0
0

,�0
0

, y0
1

,�0
1

, · · · , y0N ,�0N ,

y1
0

,�1
0

, y1
1

,�1
1

, · · · , y1N ,�1N ,

yNT

0

,�NT

0

, yNT

1

,�NT

1

, · · · , yNT

N ,�NT

N ,

u0

0

, · · · , u0

s, · · · , u
N

T

0

, · · · , uN
T

s

�
,

(2.2.3)

so that the additive Schwarz preconditioner can be naturally applied by extracting

submatrices of continuous row and column indices. In this application, this precon-

ditioner scales reasonably well. In one example, strong scaling is achieved.

In [DCZ16] the parallel preconditioner is improved by replacing it with a two level

Schwarz preconditioner of the form (see [DCZ16, Equation (8)]),

8
><

>:

y = Ihc F
�1

c Ichx,

M�1

two-level

x = y +M�1

one-level

(x� Fhy),
(2.2.4)

where Ihc is the fine mesh to coarse mesh restriction operator, Ich is the coarse to find

mesh interpolation operator, and Fc, Fh are the forward operator of coarse and fine

mesh respectively. In some numerical examples, the two-level preconditioner based

solver is four times faster than the one-level preconditioner by reducing number of

GMRES iterations by a factor of four. Strong scaling is achieved in supercomputer

using around 1000 cores on a source inversion problem.

2.3 Reservoir Optimization

I introduce oil reservoir simulation/optimization and review related literature on nu-

merical optimization of water flooding in oil reservoir secondary recovery.
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Reservoir simulation. Reservoir simulation is simulating the fluid (water, oil, etc.)

flow in the subsurface rock structure and injection/production wells. Usually, reser-

voir states such as pressure, phase saturation are computed using a time-dependent

nonlinear partial di↵erential equation system [Wie10], [AGL07]. Extensive research

has been done on the modeling and on solving the PDEs using the Finite Di↵er-

ence Method, the Finite Volume Method, the Finite Element Method, Discontinuous

Galerkin Method, etc. A crash course in reservoir simulation is given in [AGL07]

and a more extensive introduction is [CHM06]. My simple finite volume simulator is

based on the one described in [AGL07].

Reservoir optimization. The development of an oil reservoir requires large invest-

ments. To maximize profit, various kinds of optimization can be applied in di↵erent

stages of exploration, production, etc. In the exploration stage, optimization is done

to evaluate potential reservoir profit under uncertainty. In the development stage,

location and size of reservoir production facilities such as platforms, wells, and pipes

need to be decided with the aid of optimization. In the production stage, optimiza-

tion can be applied to control reservoir states such as pressure and liquid flow, and

manage production/injection constraints on well-rates and wellhead/flow line pressure

[Wie10]. Around the year 2000, new ‘smart wells’ appeared that allow monitoring

of well hole flow rates/pressure and at the same time can control downhole valves

independently. This degree of flexibility added by ‘smart well’ has required more op-

timization to improve reservoir operation [YDA02]. In this project, the optimization

problem focuses on the secondary reservoir production stage where I optimize the

well injection/production rates to maximize oil recovery revenue.

Related Research on Reservoir Optimization. I discuss selected papers on

numerical optimization of oil reservoir secondary/tertiary production and their rela-

tionship to my work.

As early as 1987, Fathi and Ramirez [FR87] applied optimal control theory to
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revenue optimization of a micellar/polymer flooding enhanced oil recovery system.

Previously, optimal control theory was mostly applied only to parameter estimation,

but not to the time-dependent dynamic process. They use a one dimensional model

with injection control of five chemical components on one boundary. The objective

function involves oil revenue and chemical injection costs. Significant improvement

was shown compared to manual injection setting. The 1D numerical grid is of size 40

and simulation has 1,500 time steps. Data is stored on magnetic tape. In the gradient

based optimization, the paper uses regularization, i.e., smoothing suboptimal control

trajectories in the case of convergence stalling, to e↵ectively accelerate optimization

iteration. This type of regularization may help my optimization. Multiple local

maximums were discovered in this very early study and it remains in my project.

In 1988, Asheim [A+88] attempted to use numerical optimization to maximize

water sweep e�ciency by controlling injection and production rates. Instead of costly

finite di↵erence approximation of the gradient, he uses analytically derived derivatives

of a very simplified reservoir model. This is one of the earliest papers on numerical

optimization of water flooding.

In 1996, Zakirov, Aanonsen, Zakirov, and Palatnik [ZAZP96] use a fully implicit

3D three phase black-oil reservoir model and adjoint based optimal control theory

approach to optimize the net present value of a oil reservoir. The size of the numerical

grid is not stated and number of wells are below ten. Similarly, I also use the adjoint

approach to compute gradient-type quantities for the optimization.

In 2001, Sudaryanto and Yortsos [SY+01] worked on water flooding optimization

using a model with miscible equal viscosity fluid. They used particles at the water

fronts as state variables, which is di↵erent from my cell wise saturation/pressure state

variable. After some simplification, such as homogeneous permeability, the analysis

yields clean and intuitive results. For example, the optimal control is Bang-Bang

and there is only one active injector at any time, and injections are conducted in

geographical order from farther wells to nearer wells.
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In 2002, Yeten, Durlofsky, and Aziz [YDA02] applied optimization on the opera-

tion of smart wells. They used forward finite di↵erence approximation to calculate the

gradient needed in the nonlinear conjugate gradient method. The detail of the simu-

lation and optimization is not stated since they used the commercial ECLIPSE and

fluvsim software packages. The experiments were conducted using several highly

heterogeneous channelized reservoir which is comparatively hard to simulate numer-

ically.

Also in 2002, Wang, Litvak, and Aziz [WLA+02] used sequential quadratic pro-

gramming (SQP) to simultaneously optimize the well rates and lift-gas rates. It is a

derivative based method. However, they do not use a PDE system to model the reser-

voir. Instead, they used a gathering system as a loopless tree-like network to model

the short term production operation. They used SNOPT [GMS06] to implement the

SQP.

In 2004, Brouwer studied water flooding optimization using optimal control theory

in his PhD thesis [Bro04]. Two phase flow in a horizontal plane and three phase black

oil formulation in 3D space are both used to model the reservoir. I am only using a

two phase 3D reservoir model. As for the well, Brouwer uses a well model involving

geometric factor, rock/fluid property, well flowing pressure, grid block pressure, and

well rate. But in my project, I am directly controlling the well rate. In acquiring the

gradient, he reviewed di↵erentiate-then-discretize and discretize-then-di↵erentiate ap-

proach, and chose the latter which is also my choice. He does numerical experiments

on reservoir with both determined and uncertain properties. In the presence of un-

certainty, he adds a parameter identification method combined with Kalman Filter in

a closed-loop approach. The grid size in the experiments are below 10,000. However,

by the rapid development of computing hardware and software, I can handle models

with 1,000,000 grid cells.

In 2005, Sarma, Aziz, and Durlofsky [SAD05], use an adjoint based gradient

method to solve water flooding like problems. Their implementation of the adjoint
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method reuses some intermediate computation results from the forward simulation,

such as Jacobians, and avoids some repetitive computation by using some extra stor-

age. This idea appeared in [ZAZP96] too.

In 2006, Lorentzen, Berg, Naevdal, an Vefring [LBN+06] creatively used the en-

semble Kalman Filter [Eve03] as a new optimization tool. The method treats the

reservoir simulator as a black box and does not require the implementation of adjoint

computation. Essentially, it exploits the statistical correlation between well controls

and objective value, which are both encoded in the Kalman Filter state variable. If

one is to use statistical power, one needs an appropriate sample size. Thousands of

reservoir simulations are required since in each optimization iteration a simulation

must be done for each control setting in the ensemble (of size 100), which resulted

in small reservoir grid being used. They apply regularization at a certain interval in

optimization iterations and so does [FR87].

In 2009, Masoud Asadollahi and Geir Naevdal [AN09] use the adjoint method

to compute the gradient and then applied steepest descent and nonlinear conjugate

gradient method to do optimization. The approach is very similar to my choice.

In my work, I added parallelism in the time dimension to accelerate the adjoint

based gradient-type approach. In [AN09], among bottomhole pressure, oil and liquid

production rates, the paper claims well liquid rates are the best control variables used

for maximizing net present value using gradient based methods. This is one of the

reason why I use well injection/production liquid rates as control variables.

In 2010, Wiegand [Wie10] performed PDE based water flooding optimization. He

used a finite volume simulation and active set Newton method to solve nonlinear pro-

grams with mixed linear constraints. I also use similar finite volume based simulation.

But instead of active set method, I apply projected gradient method to do optimiza-

tion. The work is in small 2D grid as a single layer of SPE 10 model (13,200 cells)

and number of wells are in order of 10. By the help of MPI parallel computing and

appropriate linear solver preconditioners, my work is able to handle bigger problems
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as full 3D SPE 10 model (1,122,000 cells) with hundreds of wells.

In 2011, Jansen [Jan11] reviewed the development of adjoint based optimization

of multi phase flow. Jansen stated the optimization of a economic objective function

governed by a multi phase flow reservoir model which is the problem I am solving in

this project. He also viewed the gradient computation from an optimal control point

of view as the origin of the adjoint method. In terms of the handling of inequality

constraints, he introduced previous work including gradient projection method, gener-

alized reduced gradient method, constraint lumping method, augmented Lagrangian

method, and barrier method. He explained the phenomenon of Bang-Bang control in

which the optimal control well rate is either at he maximum or minimum well rate

bound. I also observe similar behavior in my project, but the Bang-Bang optimal

control conditions are not satisfied in my work and thus I can not make use of this

feature to improve optimization performance. He also mentioned the possibility to

apply reduced order modeling in this optimization for the very limited number of

flow patterns that can be controlled. At last, he talked about strategies against reser-

voir uncertainty as history matching, closed-loop reservoir management, and robust

optimization towards realistic operational use.

In 2011, Echeverŕıa, Isebor, and Durlofsky [ECID11] studied derivative-free meth-

ods of well control optimization since in some occasions it is di�cult to obtain deriva-

tive information from the reservoir simulator or to maintaining adjoint code after

the simulation is modified. They compared the optimization performance of pattern

search method, generalized pattern search method, genetic algorithm (these three are

naturally parallelizable), and Hooke-Jeeves direct search. Specifically, they addressed

the handling of nonlinear constraints by derivative-free methods by penalty functions

and filter method. To keep the derivative-free method computational tractable, they

used small grids (1,000 to 10,000 cells) with number of optimization variables be-

low 100 so thousands of simulations, as showed in results, are possible. Though, my

project is gradient based, this work provides some future work direction, e.g. hybridize
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gradient methods with genetic algorithm in a distributed computing environment.

In 2012, Chen, Li, and Reynolds [CLR+12] performed robust optimization (op-

timize the expectation of objective function over a set of reservoir models) on both

reservoir’s life cycle long term Net Present Value and short term production. The

bound constraints are enforced by the optimizer and nonlinear constraints are in-

corporated by augmented Lagrangian method. They claim that after the long term

optimization, some control variable can still be varied to optimize the short term

production at the same time. By a case study, they showed how they incorporated

the long term optimization results as an inequality constraint and then applied a

short term optimization to did keep the long term objective roughly the same while

improving the short term objective. In my experiments, I also found there are wide

range of well rates schedule that gives similar long term revenue. The work [CLR+12]

provides an idea how to utilize the possibility of choosing among these well rates to

achieve other goals at the same time of maintaining the long term goal.

In 2014, Kourounis, Durlofsky, Jansen, and Aziz [KDJA14] worked on formulating

the adjoint and on handling constraints in oil-gas compositional flow. This is more

challenging, since the more complicated simulation also led to more complex adjoint

computation, than the oil-water flow problem of my choice. They used automatic

di↵erentiation to facilitate calculating the derivatives needed in adjoint computation.

I also used automatic di↵erentiation in the gradient computation but only in very

limited area. However, the level of their automatic di↵erentiation applied was not

explained in detail. During the forward simulation, they saved the converged states

on disk and later read back during adjoint computation. I applied a similar idea and

in addition, I also stored the Jacobian matrix used in the Newton steps of solving

saturation equation to reuse in adjoint computation, as also done in [SAD05]. To

prevent residual error from polluting the gradients, they set a tighter termination

criterion for the adjoint equation linear solves than in the forward solve. In the adjoint

solves residuals are reduced by ten orders of magnitude compared to five orders of
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magnitude in the forward solve. They used SNOPT [GMS06] to implement the SQP

nonlinear optimization. They also proposed an innovative heuristic approach handling

the nonlinear constraints not in the optimizer but in the simulation. However, I am

not dealing with nonlinear constraints in this project.



Chapter 3

Parallel-In-Time Gradient-Type

Method in Linear-Quadratic

Problems

In this chapter, I develop the parallel-in-time gradient-type method in the framework

of a discretized linear-quadratic version (3.1.1) of the general problem (1.0.1).

This chapter is organized as follows. In Section 3.1, I define a set of compact

matrix/vector notation in the classical gradient method. In Section 3.2, I give the

parallel-in-time gradient-type method algorithm, organize it in the same compact

notation. In Section 3.3, I interpret the proposed method to be a (2N � 1)-part

splitting iteration scheme. In Section 3.4, I generalize the original parallel-in-time

gradient-type method to allow di↵erent time subdomain partitions for forward/back

computation and overlapping subdomains. In Section 3.5, I prove the convergence

of the generalized parallel-in-time gradient-type method by linear algebra argument

showing the spectral radius of its implicitly constructed iteration matrix is strictly

less than 1 with step size less than a threshold. In Section 3.6, I present numerical

examples in optimal control problems governed by 1D and 3D advection-di↵usion-

reaction systems.

25
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3.1 Gradient Method

In this section, I introduce the model optimization problem, a set of compact notation

for gradient-type optimization, and the classical gradient method as a foundation on

which I will develop the parallel-in-time gradient-type method.

As the discretization of a linear-quadratic (a�ne linear state equations, quadratic

objective function) problem in the form of (1.0.1), I consider DTOC problems with

state and control variables y
0

, ..., yK 2 IRn
y and u

0

, ..., uK�1

2 IRn
u . Given symmetric

positive semidefinite matrices Q
1

, ..., QK 2 IRn
y

⇥n
y , symmetric positive definite matri-

ces R
0

, ..., RK�1

2 IRn
u

⇥n
u , matrices A

0

, ..., AK�1

2 IRn
y

⇥n
y , B

0

, ..., BK�1

2 IRn
y

⇥n
u ,

and vectors d
1

, ..., dK , c0, ..., cK�1

2 IRn
y , e

0

, ..., eK�1

2 IRn
u , the DTOC problem is

given by

minimize
KX

k=1

h1
2
yTk Qkyk + dTk yk +

1

2
uT
k�1

Rk�1

uk�1

+ eTk�1

uk�1

i
(3.1.1a)

subject to y
0

= y
given

, (3.1.1b)

yk+1

= Akyk +Bkuk + ck, k = 0, ..., K � 1. (3.1.1c)

I can use the constrains (3.1.1c) to express yk as a function of u
0

, . . . , uk�1

. This

leads to the following unconstrained formulation of (3.1.1).

Minimizeu
0

,...,u
K�1

J(u
0

, ..., uK�1

), (3.1.2a)

where

J(u
0

, ..., uK�1

) =
KX

k=1

h1
2
yk(u0

, . . . , uk�1

)TQkyk(u0

, . . . , uk�1

) + dTk yk(u0

, . . . , uk�1

)

+
1

2
uT
k�1

Rk�1

uk�1

+ eTk�1

uk�1

i
. (3.1.2b)

The problems (3.1.1) and (3.1.2) are equivalent.

It is well-known that the gradient of J can be computed using the adjoint equation

approach [Ber99, Sec. 1.9], [Pol71, Sec. 2.4]. Given controls u
0

, ..., uK�1

, the gradient

can be computed as follows.
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Compute y
0

, . . . , yK by solving

y
0

= y
given

, (3.1.3a)

yk+1

= Akyk +Bkuk + ck for k = 0, ..., K � 1. (3.1.3b)

Compute p
0

, . . . , pK�1

by solving

pK�1

= dK +QKyK , (3.1.3c)

pk�1

= dk +Qkyk + AT
k pk for k = K � 1, ..., 1. (3.1.3d)

The gradient is given by

ru
k

J(u
0

, ..., uK�1

) = Rkuk + ek +BT
k pk for k = 0, ..., K � 1. (3.1.3e)

One step of the gradient method is listed in Algorithm 1. I use subscripts k to

denote time steps and superscripts (j) to denote the iteration in the gradient method.

Algorithm 1 jth iteration of the gradient method with step size ↵ > 0

1: Given control u(j)
0

, . . . , u
(j)
K�1

, and initial state y
(j)
0

= y
given

.

2: for k = 0, ..., K � 1 do . solve state equation forward in time

3: Compute y
(j)
k+1

= Aky
(j)
k +Bku

(j)
k + ck

4: end for

5: Compute p
(j)
K�1

= dK +QKy
(j)
K . solve adjoint equation backward in time

6: for k = k � 1, ..., 1 do

7: Compute p
(j)
k�1

= dk +Qky
(j)
k + AT

k p
(j)
k

8: end for

9: for k = 0, ..., K � 1 do . update control using negative gradient

10: u
(j+1)

k = u
(j)
k � ↵(Rku

(j)
k + ek +BT

k p
(j)
k )

11: end for

For the following presentation, it will be helpful to develop a set of compact

matrix/vector notation for the quantities used in the gradient method. I define vectors
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u
def

=

2

6666664

u
0

u
1

...

uK�1

3

7777775
2 IRKn

u , y
def

=

2

6666664

y
1

y
2

...

yK

3

7777775
, p

def

=

2

6666664

p
0

p
1

...

pK�1

3

7777775
, y

0

def

=

2

6666664

A
0

y
0

A
1

A
0

y
0

...

AK�1

...A
0

y
0

3

7777775
2 IRKn

y ,

(3.1.4a)

and the matrix

L
def

=

2

6666666666664

I

A
1

I

A
2

A
1

A
2

I

A
3

A
2

A
1

A
3

A
2

A
3

I
...

. . .

AK�1

AK�2

· · ·A
1

AK�1

AK�2

· · ·A
2

· · · · · · AK�1

I

3

7777777777775

2 IRKn
y

⇥Kn
y ,

(3.1.4b)

Note that L is not explicitly constructed in gradient method and in the later proposed

parallel-in-time gradient-type method. Also note that

L =

2

6666666666664

I

�A
1

I

�A
2

I

�A
3

I
. . .

�AK�1

I

3

7777777777775

�1

.

Define the constant quantities,

Q
def

= diag(Q
1

, ..., QK), R
def

= diag(R
0

, ..., RK�1

), B
def

= diag(B
0

, ..., BK�1

), (3.1.4c)

c
def

= (cT
0

, ..., cTK�1

)T , d
def

= (dT
1

, ..., dTK)
T , e

def

= (eT
0

, ..., eTK�1

)T . (3.1.4d)
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The state computations (3.1.3a,b) can be written as

y = L(Bu+ c) + y
0

, (3.1.5)

the adjoint computations (3.1.3c,d) can be written as

p = LT (Qy + d), (3.1.6)

and the gradient (3.1.3e) is given by rJ(u) = Ru+ e+BTp. If I insert (3.1.6) and

(3.1.5) into the expression for rJ(u), then

rJ(u) = Ru+ e+BTp

=
⇥
R+ (LB)TQ(LB)

⇤
u+ e+ (LB)TQ(Lc+ y

0

) + (LB)Td

= Hu+ g,

(3.1.7)

where

H
def

= R+ (LB)TQ(LB), g
def

= e+ (LB)TQ(Lc+ y
0

) + (LB)Td. (3.1.8)

Since R
0

, ..., RK�1

2 IRn
u

⇥n
u symmetric positive definite and Q

1

, ..., QK 2 IRn
y

⇥n
y

are symmetric positive semidefinite, H is symmetric positive definite. Alternatively,

I can insert (3.1.5) into (3.1.2b) to obtain

J(u) =
1

2
uTHu+ gTu+ const. (3.1.9)

and derive the expression (3.1.7) by taking the gradient.

I also recall that the gradient method with constant step-size ↵, in this context

also known as Richardson’s iteration,

u(j+1) = u(j) � ↵(Hu(j) + g), (3.1.10)

is an iterative method derived from the splitting H = ↵�1I � (↵�1I � H). Let

0 < �min(H)  �max(H) denote the smallest and largest eigenvalue of H. The

spectral radius of the iteration matrix I � ↵H is less than one for all step sizes

0 < ↵ < 2/�max(H). The smallest spectral radius of I� ↵H,

⇢⇤ =
�max(H)� �min(H)

�max(H) + �min(H)
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is achieved with step size

↵⇤ def

=
2

�max(H) + �min(H)
(3.1.11)

3.2 Derivation of the Parallel-In-Time Gradient-

Type Method

The gradient method in Algorithm 1 requires a full forward-in-time state solve fol-

lowed by a full backward-in-time adjoint solve before the control can be updated.

The parallel-in-time gradient method splits the time indices into N subsets, where

the ith one is given by {Ki, . . . , Ki+1

}. i = 0, . . . , N � 1, and the time indices satisfy

0 = K
0

< K
1

< . . . < KN = K. Since the indices Ki, . . . , Ki+1

correspond to time

steps, I refer to {Ki, . . . , Ki+1

} as the ith time subdomain, and refer to the indices

Ki, Ki+1

as the left/right time subdomain boundary.

The idea of the parallel-in-time gradient-type method is simple. Suppose I am

given the current control on the ith time subdomain, u(j)
K

i

, u
(j)
K

i

+1

, . . . , u
(j)
K

i+1

�1

. If I

knew the state information y
(j)
K

i

at the left time subdomain boundary Ki and the

adjoint information p
(j)
K

i+1

at the right time subdomain boundary Ki+1

, then I can

compute y
(j)
k , k = Ki + 1, . . . , Ki+1

, the adjoints p
(j)
k , k = Ki+1

� 1, . . . , Ki, and

then update the controls with indices Ki, Ki + 1, . . . , Ki+1

� 1. Since y
(j)
K

i

and p
(j)
K

i+1

are only available through an entire state and adjoint solve, I use the values from

the previous iteration, and exchange these values after time subdomain computations

for state and adjoint information are completed. Thus for the ith time subdomain,

i 2 {1, . . . , N � 2}, I proceed as follows (for i = 0 and i = N � 1 initial state

information or final adjoint information is given): Given u
(j)
K

i

, u
(j)
K

i

+1

, . . . , u
(j)
K

i+1

�1

and

y
(j�1)

K
i

and p
(j�1)

K
i+1

I first compute ith time subdomain states using

y
(j)
K

i

+1

= AK
i

y
(j�1)

K
i

+BK
i

u
(j)
K

i

+ cK
i

, (3.2.1a)

y
(j)
k+1

= Aky
(j)
k +Bku

(j)
k + ck, k = Ki + 1, . . . , Ki+1

� 1. (3.2.1b)
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Next I compute ith time subdomain adjoints using

p
(j)
K

i+1

�1

= QK
i+1

y
(j)
K

i+1

+ dK
i+1

+ AT
K

i+1

p
(j�1)

K
i+1

, (3.2.1c)

p
(j)
k�1

= Qky
(j)
k + dk + AT

k p
(j)
k , k = Ki+1

� 1, . . . , Ki + 1. (3.2.1d)

Then I update the ith time subdomain controls using

u
(j+1)

k = u
(j)
k � ↵(Rku

(j)
k + ek +BT

k p
(j)
k ), k = Ki, . . . , Ki+1

� 1. (3.2.1e)

Finally, I send y
(j)
K

i+1

to processor i + 1 and p
(j)
K

i

to processor i � 1, and I receive y
(j)
K

i

from processor i� 1 and p
(j)
K

i+1

from processor i+ 1.

The complete statement, taking into account the modifications for time subdo-

mains i = 0 and i = N � 1 is given in Algorithm 2. Since at given controls

u
(j)
0

, . . . , u
(j)
K�1

the state equation (3.1.3a,b) and the adjoint equation (3.1.3c,d) are

not satisfied (there are ‘jumps’ at the time subdomain boundaries K
1

, . . . , KN�1

)

when Algorithm 2 is used, I call it ‘gradient-type’.

3.3 Interpretation as a (2N � 1)-Part Iteration

Scheme

In this section, I express the parallel gradient-type method using the compact ma-

trix/vector notations developed in Section 3.1, which will allow us to interpret this

new method as a (2N � 1)-part iteration scheme corresponding to (3.1.10) and thus

form the basis of the convergence proof.

Impatient readers may skip part of the derivation and go directly to the result in

(3.3.7) and (3.3.8).

I define the ordered product of matrices

jY

h=i

Ah
def

=

8
<

:
AjAj�1

⇥ . . .⇥ Ai+1

Ai, i  j,

I, i > j.
(3.3.1)
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Algorithm 2 jth iteration of the parallel-in-time gradient-type method with step

size ↵ > 0. Describes the tasks executed by processor of rank i 2 {0, ..., N � 1}

1: Input control u(j)
K

i

, u
(j)
K

i

+1

, . . . , u
(j)
K

i+1

�1

. . initialization of the iteration

2: if i > 0 and j = 0 then

3: Input initial y(�1)

K
i

4: end if

5: if i < N � 1 and j = 0 then

6: Input initial p(�1)

K
i+1

7: end if

8: if i = 0 then . solve the state equation forward in time

9: y
(j)
K

i

+1

= AK
i

y
given

+BK
i

u
(j)
K

i

+ cK
i

10: else

11: y
(j)
K

i

+1

= AK
i

y
(j�1)

K
i

+BK
i

u
(j)
K

i

+ cK
i

12: end if

13: for k = Ki + 1, . . . , Ki+1

� 1 do

14: y
(j)
k+1

= Aky
(j)
k +Bku

(j)
k + ck

15: end for

16: if i = N � 1 then . solve the adjoint equation backward in time

17: p
(j)
K

i+1

�1

= QK
i+1

y
(j)
K

i+1

+ dK
i+1

18: else

19: p
(j)
K

i+1

�1

= QK
i+1

y
(j)
K

i+1

+ dK
i+1

+ AT
K

i+1

p
(j�1)

K
i+1

20: end if

21: for k = Ki+1

� 1, . . . , Ki + 1 do

22: p
(j)
k�1

= Qky
(j)
k + dk + AT

k p
(j)
k

23: end for

(continued on next page)
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24: for k = Ki, . . . , Ki+1

� 1 do . update control

25: u
(j+1)

k = u
(j)
k � ↵(Rku

(j)
k + ek +BT

k p
(j)
k )

26: end for

27: if i > 0 then . communication between processors

28: send p
(j)
K

i

to rank i� 1

29: receive y
(j)
K

i

from rank i� 1

30: end if

31: if i < N � 1 then

32: send y
(j)
K

i+1

to rank i+ 1

33: receive p
(j)
K

i+1

from rank i+ 1

34: end if

Using this notation and recursive substitutions of (3.2.1a,b) I obtain the following.

For j � 0 , 0  i  N � 1, and 1  s  Ki+1

�Ki, note that y
(�1)

K
i

is initialized when

the algorithm starts,

y
(j)
K

i

+s =
hK

i

+s�1Y

h=K
i

Ah

i
y
(j�1)

K
i

+
s�1X

t=0

h K
i

+s�1Y

h=K
i

+s�t

Ah

i
(BK

i

+s�t�1

u
(j)
K

i

+s�t�1

+ cK
i

+s�t�1

).

(3.3.2)

For j � 1 and i � 1, applying (3.3.2) with j replaced by j � 1 and Ki replaced by

Ki�1

, and with s = Ki �Ki�1

gives

y
(j�1)

K
i

=
h K

i

�1Y

h=K
i�1

Ah

i
y
(j�2)

K
i�1

+

K
i

�K
i�1

�1X

t=0

h K
i

�1Y

h=K
i

�t

Ah

i
(BK

i

�t�1

u
(j�1)

K
i

�t�1

+ cK
i

�t�1

).

(3.3.3)
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Inserting (3.3.3) into (3.3.2) gives for j � 1 and i � 1,

y
(j)
K

i

+s =
hK

i

+s�1Y

h=K
i�1

Ah

i
y
(j�2)

K
i�1

+

K
i

�K
i�1

�1X

t=0

hK
i

+s�1Y

h=K
i

�t

Ah

i
(BK

i

�t�1

u
(j�1)

K
i

�t�1

+ cK
i

�t�1

)

+
s�1X

t=0

h K
i

+s�1Y

h=K
i

+s�t

Ah

i
(BK

i

+s�t�1

u
(j)
K

i

+s�t�1

+ cK
i

+s�t�1

).

(3.3.4)

Repeating the previous steps leads to the following expression for j � i,

y
(j)
K

i

+s =
hK

i

+s�1Y

h=0

Ah

i
y
given

+
iX

d=1

K
i�d+1

�K
i�d

�1X

t=0

h K
i

+s�1Y

h=K
i�d+1

�t

Ah

i
(BK

i�d+1

�t�1

u
(j�d)
K

i�d+1

�t�1

+ cK
i�d+1

�t�1

)

+
s�1X

t=0

h K
i

+s�1Y

h=K
i

+s�t

Ah

i
(BK

i

+s�t�1

u
(j)
K

i

+s�t�1

+ cK
i

+s�t�1

). (3.3.5)
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Rearranging (3.3.5) into matrix-vector product form gives, for j � i,

y

(j)

Ki+s

=
hKi+s�1Y

h=0

A

h

i
y

given

+

iX

d=1

hQ
Ki+s�1

h=Ki�d+1

A

h

,

Q
Ki+s�1

h=Ki�d+2

A

h

, . . . ,

Q
Ki+s�1

h=Ki�d+1
A

h

i

2

6666664

B

Ki�du
(j�d)

Ki�d
+ c

Ki�d

B

Ki�d+1

u

(j�d)

Ki�d+1

+ c

Ki�d+1

...

B

Ki�d+1�1

u

(j�d)

Ki�d+1�1

+ c

Ki�d+1�1

3

7777775

+
hQ

Ki+s�1

h=Ki+1

A

h

,

Q
Ki+s�1

h=Ki+2

A

h

, . . . ,

Q
Ki+s�1

h=Ki+s�1

A

h

, I

i

2

6666664

B

Kiu
(j)

Ki
+ c

Ki

B

Ki+1

u

(j)

Ki+1

+ c

Ki+1

...

B

Ki+s�1

u

(j)

Ki+s�1

+ c

Ki+s�1

3

7777775
(3.3.6a)

=
hKi+s�1Y

h=0

A

h

i
y

given

+

iX

d=1

hKi�d zero blocksz }| {
0, . . . , 0 ,

Ki+s�1Y

h=Ki�d+1

A

h

,

Ki+s�1Y

h=Ki�d+2

A

h

, . . . ,

Ki+s�1Y

h=Ki�d+1

A

h

,

(K�Ki�d+1) zero blocksz }| {
0, . . . , 0

i
(Bu(j�d) + c)

+
hKi zero blocksz }| {

0, . . . , 0 ,

Ki+s�1Y

h=Ki+1

A

h

,

Ki+s�1Y

h=Ki+2

A

h

, . . . ,

Ki+s�1Y

h=Ki+s�1

A

h

, I,

(K�Ki)�s zero blocksz }| {
0, . . . , 0

i
(Bu(j) + c).

(3.3.6b)

In (3.3.6b) each zero block is of size ny ⇥ ny. Notice that the row vectors in (3.3.6b)

are row blocks of L.

Equation (3.3.6b) represents the (Ki + s)th block (of length ny) component of

the vector y(j). To combine (3.3.6b) into a representation for the entire vector y(j)

I define matrices I�d 2 {0, 1}Kn
y

⇥Kn
y , d = 0, ..., N � 1 as follows. I use Matlab

notation to indicate submatrices. The matrix I�d is a matrix full of zeros except for

the submatrices

I�d(Ki�1

ny + 1 : Kiny, Ki�1�dny + 1 : Ki�dny), i = d+ 1, ...N,

which are matrices of all ones ( i.e. the matrix entries of I�d in the intersection of

rows Ki�1

ny + 1 to Kiny and of columns Ki�1�dny + 1 to Ki�dny are equal to one).

See Figure 3.1 for an illustration. In a later Section 3.4, I present Algorithm 11
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I
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I
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Figure 3.1: Illustration of the positions of ‘1’s in I
0

, I�1

and I�2

in an example where

the state dimension is ny = 2, the K = 10 time steps are split into N = 3 subdomains

with K
0

= 0, K
1

= 3, K
2

= 6, K
3

= 10.

and Algorithm 12 for construction of this type of matrices. Note that there are no

overlapping nonzero entries for matrices I�d for d = 0, ..., N � 1 and that
PN�1

d=0

I�d

has entires ‘1’ in all positions where L is nonzero.
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Now, let ‘�’ refer to the Hadamard product (entry-wise product), then (3.3.6) can

be written as

y(j) =
N�1X

d=0

(I�d � L)(Bu(j�d) + c) + y
0

, for j � N � 1. (3.3.7)

Similar to the derivation of (3.3.7) I can show that the equations (3.2.1c,d) for the

adjoints lead to the compact representation

p(j) =
N�1X

d=0

(I�d � L)T (Qy(j�d) + d), for j � N � 1. (3.3.8)

Using (3.2.1e), (3.3.7) and (3.3.8) gives the following representation of the parallel-

in-time gradient type iteration j � 2N � 2,

u(j+1) = u(j) � ↵(Ru(j) + e+BTp(j))

= u(j) � ↵
h
Ru(j) +

N�1X

r=0

N�1X

l=0

(I�r � LB)TQ(I�l � LB)u(j�r�l) + g
i
. (3.3.9)

I define

H
0

def

= R+ (I
0

� LB)TQ(I
0

� LB), (3.3.10a)

Hd
def

=
X

l,r2{0,...,N�1}
l+r=d

(I�r � LB)TQ(I�l � LB), d = 1, ..., 2N � 2. (3.3.10b)

Note that the Hessian (3.1.8) can be split as

H =
2N�2X

d=0

Hd. (3.3.11)

Inserting (3.3.10) into (3.3.9) gives

u(j+1) = u(j) � ↵(
2N�2X

d=0

Hdu
(j�d) + g). (3.3.12)

The presentation (3.3.12) reveals that the parallel-in-time gradient-type method is a

(2N�1)-part iteration scheme as defined in [de 76], [dN81] derived from the (2N�1)-

part additive splitting

H = ↵�1I� (↵�1I�H
0

)� (�H
1

)� . . .� (�H
2N�2

),
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Figure 3.2: Illustration of Generalized Parallel-In-Time Gradient-Type Method.

Blue(red) arrows represent time subdomains for parallel forward(backward) compu-

tation. The regions in di↵erent processes shaded by the green dots are aggregated

and collectively constitute the resulting state/adjoint on the whole time domain for

use in subsequent computations. Its time subdomain representation is in Table 3.1.

which results from adding/subtracting ↵�1I in (3.3.11).

The convergence results in [de 76] [dN81] are for specific splittings (in notation

of this section, for specific matrices H,H
0

, . . . ,H
2N�2

) only and do not apply to

this setting. In Section 3.5, I prove convergence for su�ciently small step-size ↵ >

0 for a broader class of parallel-in-time gradient-type method to be introduced in

Section 3.4.

3.4 A Generalized Framework for Parallelism

In the previous Section 3.2 and Section 3.3, I introduced the parallel-in-time gradient-

type method and how it can be interpreted as a splitting method. With this proper

background knowledge, in this section, I can naturally propose a generalized parallel-

in-time gradient-type method framework, see Figure 3.2. The generalized parallel-

in-time gradient-type method framework is a set of parallel computation rules that,

compared to the original parallel-in-time gradient-type method introduced in Sec-
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tion 3.2, allows

• di↵erent number of parallel computing units in forward/backward computation,

• overlapping computation time subdomains,

• arbitrary length of computation time subdomains,

• di↵erent partition of time domain in forward and backward computation.

Computationally, it has potential advantages

• It allows additional computing power to enhance the gradient-type update by

improving state/adjoint information propagation;

• in very di↵usive systems, overlapping computation subdomains makes it possi-

ble to compute nearly exact gradient in parallel

For linear-quadratic optimization problems, the generalized version of the parallel-

in-time gradient-type method is provably convergent with a fixed su�ciently small

step size. Of course, the original parallel-in-time gradient-type method introduced in

Section 3.2 as a special case of this generalized method is also convergent with small

step sizes. The proof is given in Section 3.5 after the description of the generalized

parallel-in-time gradient-type method in this section.

In Section 3.4.1 and Section 3.4.2, I introduce some new notions in the generalized

algorithm. Then, Section 3.4.3 gives the pseudo code algorithm using the notions just

introduced. Afterward, Section 3.4.4 and Section 3.4.5 prepare terminologies for the

interpretation of the generalized algorithm as a multiple part splitting scheme in

Section 3.4.6.

3.4.1 Forward/Backward Computation Subdomains

I first introduce the time subdomain partition.
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Start with forward computation. Superscript “F” indicates quantities associated

with the forward computation as opposed to “B” for backward computation. The ith

processor, of NF processors in total, is responsible for the forward computation from

the starting time step sFi to the ending eFi , i = 0, ..., NF� 1. The computation on NF

processors collectively covers the whole time domain, i.e.,

[NF�1

i=0

[sFi , e
F

i ] = [0, K] (3.4.1)

Also assume,

[sFi , e
F

i ] 6⇢ [sFj , e
F

j ] 8i 6= j (3.4.2)

otherwise the computation done in the contained set will be in vain since they will

be wholly discarded in the later described algorithm. As a consequence of the above

assumption,

sFi 6= sFj , e
F

i 6= eFj for i 6= j (3.4.3)

For convenience, assume the time subdomains are ordered,

sFi < sFj , e
F

i < eFj for 0  i < j  N � 1 (3.4.4)

Similarly, for backward computation, The ith processor, of NB processors in total,

is responsible for the backward computation from the terminal time step eBi to the

time step sBi at the beginning of this time subdomain, i = 0, ..., N � 1. Assume

[NB�1

i=0

[sBi , e
B

i ] = [0, K] (3.4.5)

and

[sBi , e
B

i ] 6⇢ [sBj , e
B

j ] 8i 6= j (3.4.6)

as a consequence,

sBi 6= sBj , e
B

i 6= eBj for i 6= j (3.4.7)

also assume the time subdomains are ordered,

sBi < sBj , e
B

i < eBj for 0  i < j  M � 1 (3.4.8)
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i sFi eFi sBi eBi

0 0 2 0 6

1 2 5 3 9

2 3 9 6 12

3 6 11 N/A N/A

4 8 12 N/A N/A

Table 3.1: Subdomain Representation of Figure 3.2

Note that for both forward and backward computation subdomains, the notation s

and e indicate the smallest and the largest time step indices in the subdomains respec-

tively. However, in forward computation, sFi is where the computation in subdomain

i begins and, in contrast, backward computation begins at eBi .

For the time domain splitting illustrated in Figure 3.2, if Tk stands for time step

k for k = 0, ..., 12, then the subdomain representation is in Table 3.1.

3.4.2 Aggregated State/Adjoint Variables

In Section 3.4.1, I defined the computation subdomains. Since there are possibly

overlapping subdomains, di↵erent processors may compute the state/adjoint variables

corresponding to a same time step. It is needed to design a rule to decide which

computation result to keep and aggregate these results for subsequent use.

In this section, I introduce the aggregated state/adjoint variables that keeps

proper computation results from di↵erent processors. This notion of the aggregated

state/adjoint in the original algorithm is less obvious is for that

1. there are no overlap in computation domains in which case all forward/backward

computation results are kept for subsequent use;

2. forward/backward computation domains coincides and almost all state variables

needed to do backward computation are computed by the same processor that
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is performing backward computation.

To express this idea in formula, first, I introduce for clarity new notation adding

another subscript to the state/adjoint variables.

y
(j)
i,k , i = 0, ...N � 1, k = 0, ..., K, j = 0, 1, ... (3.4.9)

which is the state variable of global time step k on processor i in iteration j. Similarly,

p
(j)
i,k , i = 0, ...N � 1, k = 0, ..., K � 1, j = 0, 1, ... (3.4.10)

for adjoint variables.

After forward computation of all subdomains in iteration j, define the aggregated

state to collect the computation results from all subdomains,

y
(j)
k , k = 0, ..., K.

The aggregated state is used to store the computation result for later use, as showed

in Figure 3.2 by the green dots in forward computation. For initial condition of the

whole time domain,

y
(j)
0

= y
given

(3.4.11a)

For time subdomain index i = 0, ..., N � 1,

y
(j)
k = y

(j)
i,k , k = eFi�1

+ 1, ..., eFi (3.4.11b)

with eF�1

def

= 0 for notational simplicity. Because of (3.4.1), all y(j)k are defined for

k = 0, ..., K. These aggregated states in (3.4.11) will be used in the subsequent

computations, e.g., to compute adjoint variable, gradient-type vector and to serve as

initial value in next forward computation, as described by algorithms in Section 3.4.3.

After backward computation of all subdomains in iteration j, For the terminal

condition of the whole time domain,

p
(j)
K = 0 (3.4.12a)
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For time subdomain index i = 0, ..., N � 1,

p
(j)
k = p

(j)
i,k , k = sBi , ..., s

B

i+1

� 1 (3.4.12b)

with sBN
def

= K for notational simplicity. The aggregated adjoint variables in (3.4.12)

will be used in gradient-type vector computation and serve as terminal values for the

next backward computation in iteration (j + 1).

The heuristic reason why I made the choice of what computation results go into

the aggregated variables in (3.4.11b) and (3.4.12b) is that these choice incorporates

more most recent information. For example, in Figure 3.2, between computed state

variable at time T
7

from proc.2 and proc.3, state from proc.2 is kept in the aggregated

state variable since it incorporate the influence of the most recent control variable in

T
3

, T
4

, T
5

, T
6

but that from proc.3 only used the most recent control from T
6

.

3.4.3 The Algorithm

In this section, I give the algorithm for the generalized parallel-in-time gradient-type

method. See Figure 3.3 for an illustration of the workflow. For clarity, the algorithm

is given with redundant processors and data transmission to convey the idea of the

iterations. The pseudo code to follow is not optimized in the following ways:

• The algorithm is written in the way that a group of processors is responsible

for forward computing, another group of processors is responsible for backward

computing, and a separate individual processor, which I call “central processor”,

is performing the data aggregation and control update. The forward computing

and backward computing groups have separate ranks. Forward computing pro-

cessors have ranks {0, ..., NF � 1}; backward computing processors have ranks

{0, ..., NB � 1}. Since the two rank index sets above share some common in-

dices, when addressing the data communication, I will emphasize if it is between

the central processor and the forward computing group or between the central

processor and the backward computing group. In a practical implementation,
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parallel

parallel

Central Processor Send Data

Algorithm 5

Forward Processor-0

Recv, Compute, Send

Algorithm 3

Forward Processor-(NF � 1)

Recv, Compute, Send

Algorithm 3

Central Processor

Recv, Aggregate Data

Algorithm 6

Central Processor Send Data

Algorithm 7

Backward Processor-0

Recv, Compute, Send

Algorithm 4

Backward Processor-(NB � 1)

Recv, Compute, Send

Algorithm 4

Central Processor

Recv, Aggregate Data

Update Control

Algorithm 8

. . . . . .

. . . . . .

next iteration

Figure 3.3: Workflow of One Iteration of the Generalized Parallel-in-Time Gradient-

Type Method Algorithm. Serial computation in central processor is negligible com-

pared to the forward/backward computation happening in the parallel.
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of course, forward/backward computing group and the central processor can

use some common processors., as in the original parallel-in-time gradient-type

method Algorithm 2, forward/backward computation is using the same proces-

sors and the tasks of the central processor is distributed to related computation

processors. However, in this section, to keep a low write-up complexity level, I

write the algorithm as if forward/backward groups do not share any common

processors and there is a dedicated central processor for data aggregation and

control update.

• The algorithms are not optimized in terms of data transmission. It is not nec-

essary that, as in Time B of Algorithm 3 and Time D of Algorithm 4, after

each step of computation, all results are gathered in the central processor. Ac-

tually, there does not need to be a central processor. Each processor can collect

necessary information from the related processor(s) as is done in the original

parallel-in-time gradient-type method where there is no central processor and

only adjacent processors exchange information.

The following Algorithm 3, Algorithm 4, Algorithm 5, Algorithm 6, Algorithm 7,

and Algorithm 8 are to be read with the illustration in Figure 3.3.

Algorithm 3 jth iteration of the generalized parallel-in-time gradient-type method.

Executed by FORWARD processor of rank i 2 {0, ..., NF � 1}.

1: receive u
(j)

sF
i

, . . . , u
(j)

eF
i

�1

, and y
(j�1)

sF
i

from the central processor . Time A

2: y
(j)

i,sF
i

= y
(j�1)

sF
i

3: for k = sFi , . . . , e
F

i � 1 do

4: y
(j)
i,k+1

= Aky
(j)
i,k +Bku

(j)
k + ck

5: end for

6: send y
(j)

i,eF
i�1

+1

, ..., y
(j)

i,eF
i

to the central processor. . Time B
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Algorithm 4 jth iteration of the generalized parallel-in-time gradient-type method.

Executed by BACKWARD processor of rank i 2 {0, ..., NB � 1}

Dummy matrix AK of proper dimension is defined to be arbitrary value.

1: receive y
(j)

sB
i

+1

, . . . , y
(j)

eB
i

, and p
(j�1)

eB
i

from the central processor . Time C

2: p
(j)

i,eB
i

= p
(j�1)

eB
i

3: for k = eBi , . . . , s
B

i + 1 do

4: p
(j)
i,k�1

= Qky
(j)
k + dk + AT

k p
(j)
i,k

5: end for

6: send p
(j)

i,sB
i

, ..., p
(j)

i,sB
i+1

�1

to the central processor. . Time D

Algorithm 5 jth iteration of the generalized parallel-in-time gradient-type method.

Describes the tasks executed by central processor at Time A in Algorithm 3

1: for i = 1, . . . , NF � 1 do . Communication

2: send to FORWARD processor i, u(j)

sF
i

, . . . , u
(j)

eF
i

�1

, and y
(j�1)

sF
i

3: end for

Algorithm 6 jth iteration of the generalized parallel-in-time gradient-type method.

Describes the tasks executed by central processor at Time B in Algorithm 3

1: for i = 1, . . . , NF � 1 do . Communication

2: receive from FORWARD processor i, y(j)
i,eF

i�1

+1

, ..., y
(j)

i,eF
i

3: end for

4: y
(j)
0

= y
given

. Aggregate State

5: for i = 1, . . . , NF � 1 do

6: for k = eFi�1

+ 1, ..., eFi do

7: y
(j)
k = y

(j)
i,k

8: end for

9: end for
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Algorithm 7 jth iteration of the generalized parallel-in-time gradient-type method.

Describes the tasks executed by central processor at Time C in Algorithm 4

1: for i = 1, . . . , NB � 1 do . Communication

2: send to BACKWARD processor i, y(j)
sB
i

+1

, . . . , y
(j)

eB
i

, and p
(j�1)

eB
i

3: end for

Algorithm 8 jth iteration of the generalized parallel-in-time gradient-type method.

Describes the tasks executed by central processor at Time D in Algorithm 4

1: for i = 1, . . . , NB � 1 do . Communication

2: receive from BACKWARD processor i, p(j)
i,sB

i

, ..., p
(j)

i,sB
i+1

�1

3: end for

4: for i = 1, . . . , NB � 1 do . Aggregate Adjoint

5: for k = sBi , ..., s
B

i+1

� 1 do

6: p
(j)
k = p

(j)
i,k

7: end for

8: end for

9: for k = 0, . . . , K � 1 do . Update Control

10: u
(j+1)

k = u
(j)
k � ↵(Rku

(j)
k + ek +BT

k p
(j)
k )

11: end for
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3.4.4 Subdomain Initial/Terminal Processor Rank Function

In this section, I introduce an auxiliary processor rank index valued function IF and

IB in (3.4.13) for analysis of algorithm later.

In the original parallel-in-time gradient-type method introduced in Section 3.2,

the forward/backward computation in a subdomain always starts by the previous

iteration computation results from an adjacent subdomain with index di↵erent by 1.

Getting information from the adjacent subdomain is not necessarily the most rea-

sonable way to carry out computation and propagate information in this generalized

framework, for which reason I designed the data aggregation rule in Section 3.4.2.

Consider the example in Figure 3.2, for the forward comptuation, processor 1

uses the previous iteration terminal computation result, at T
2

, of processor 2 as

initial state, which is the exact pattern introduced in the original parallel-in-time

algorithm; processor 2 uses a previous iteration intermediate, at T
3

(rather than

terminal, at T
5

), computation result of processor 1 as initial state, which is slightly

di↵erent from the rule of the original parallel-in-time algorithm. However, in these two

cases above, information is still only transmitted between subdomains with adjacent

indices, similar to the original algorithm.

The situation is di↵erent for processor 4. The computation domains of both

processor 2 and processor 3 includes T
8

which is the initial time step for processor 4.

There is a choice to make on which state, from processor 2 or processor 3, to use in

processor 4 as initial state. Heuristically, the state at T
8

in processor 2 encodes the

control of the previous iteration from T
3

to T
7

. However, The state at T
8

in processor

3 only encodes the control of the previous iteration at T
6

and T
7

. Since the state

at T
8

in processor 2 incorporates more time steps of recent controls, I restrict the

generalized algorithm to use the state at T
8

in processor 2 as the initial state for

processor 4. In this case information is transmitted from subdomain 2 in processor 2

to subdomain 4 in processor 4, the indices of which are not adjacent.

Define the index valued functions encoding the forward/backward computation



49

rule as follows,

IF(k)
def

= min
�
j 2 {0, ..., N � 1}|sFj  k  eFj

 
for k = 0, ..., K (3.4.13a)

IB(k)
def

= max
�
j 2 {0, ...,M � 1}|sBj  k  eBj

 
for k = 0, ..., K (3.4.13b)

which are well defined since (3.4.1) and (3.4.5) holds. Then, for forward computation,

at iteration j, for time subdomain i � 1, the initial state variable

y
(j)

i,sF
i

= y
(j�1)

IF(sF
i

),sF
i

and, for backward computation, at iteration j, for time subdomain i  N � 2, the

terminal adjoint variable

p
(j)

i,eB
i

= p
(j�1)

IB(eB
i

),eB
i

Note that in the original algorithm for i � 1,

IF(sFi ) = i� 1

and for i  N � 2,

IB(eBi ) = i+ 1

Note that the algorithms given in Section 3.4.3 avoided these functions by using

aggregated variables. However, for theoretical purpose, definition of IF and IB is

necessary.

3.4.5 DF and DB

Similar to the parallel-in-time gradient-type algorithm analyzed before, in the anal-

ysis, I reduce the iteration on state/adjoint/control to the iteration on control only.

As mentioned before, state variable in the parallel-in-time gradient-type method is

a joint result of control variable from several previous iterations. From another per-

spective, control information at the beginning of the whole time domain can take

several iterations to reach the end of the whole time domain. For adjoint variable it
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is also similar. It takes several iterations for a perturbation at the end of the whole

time domain to propagate to the beginning. In this section, I count exactly how many

previous iterations are needed by DF and DB. Note that, the current iteration is not

counted. For example, in the case with only one time subdomain which is the whole

time domain, DF = DB = 0.

In the example demonstrated by Figure 3.2, for j � 3, I trace back the com-

putation of y(j)
4,12, state-type vector at overall time step 12 in subdomain-4, in the

generalized parallel-in-time gradient-type method as introduced in Section 3.4.3. The

ordered product of matrices
Qj

h=i Ah is defined in (3.3.1).

y
(j)
4,12 = A

11

y
(j)
4,11 +B

11

u
(j)
11

+ c
11

= A
11

⇥
A

10

y
(j)
4,10 +B

10

u
(j)
10

+ c
10

⇤
+B

11

u
(j)
11

+ c
11

= [
11Y

h=8

Ah]y
(j)
4,8 +

11X

k=8

[
11Y

h=k+1

Ah][Bku
(j)
k + ck]

(3.4.14)

Corresponding to the state variables aggregation in Algorithm 6, data communication

in Algorithm 5 and Algorithm 3,

y
(j)
4,8 = y

(j�1)

8

= y
(j�1)

2,8 (3.4.15)

and similarly,

y
(j�1)

2,3 = y
(j�2)

3

= y
(j�2)

1,3 (3.4.16)

y
(j�2)

1,2 = y
(j�3)

2

= y
(j�3)

0,2 (3.4.17)
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Then,

y
(j)
4,12 = [

11Y

h=8

Ah]y
(j�1)

2,8 +
11X

k=8

[
11Y

h=k+1

Ah][Bku
(j)
k + ck]

= [
11Y

h=3

Ah]y
(j�1)

2,3 +
7X

k=3

[
11Y

h=k+1

Ah][Bku
(j�1)

k + ck] +
11X

k=8

[
11Y

h=k+1

Ah][Bku
(j)
k + ck]

= [
11Y

h=0

Ah]y0 +
11X

k=0

[
11Y

h=k+1

Ah]ck +
1X

k=0

[
11Y

h=k+1

Ah]Bku
(j�3)

k +
2X

k=2

[
11Y

h=k+1

Ah]Bku
(j�2)

k

+
7X

k=3

[
11Y

h=k+1

Ah]Bku
(j�1)

k +
11X

k=8

[
11Y

h=k+1

Ah]Bku
(j)
k

(3.4.18)

It can be seen that y
(j)
4,12 is determined by part of controls from current iteration j

and 3 previous iterations j � 1, j � 2, j � 3. Also notice that in the computation

of y
(j)
4,12, forward computation results from subdomain-3, T

6

to T
1

1, are not used,

see (3.4.15). Although, there are processor-0 to processor-4, 5 forward computation

processors, only controls from 3 previous iterations are involved in the computation

of the terminal state of whole time domain y
(j)
4,12, in contrast to the case of the original

parallel-in-time gradient-type method where in a N processor algorithm, there are

always control variables from N � 1 previous iteration collectively determining the

terminal state, see (3.3.7).

Given a subdomain setup, I use the notation DF to denote the number of previous

control iterates that are needed to determine the current terminal state.

The generalized parallel-in-time gradient-type algorithm in Section 3.4.3 does not

need to be given DF explicitly. However, DF is useful in analysis of the algorithm

convergence, which can be counted by Algorithm 9.

Similar to Algorithm 9, the following Algorithm 10 does the counterpart for the

backward computation.
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Algorithm 9 Count DF (for forward computation)

1: DF = �1, s = eFNF�1

2: repeat

3: s = sFIF(s)

4: DF = DF + 1

5: until s = 0

6: return DF

Algorithm 10 Count DB (for backward computation)

1: DB = �1, e = sB
0

2: repeat

3: e = eBIB(e)

4: DB = DB + 1

5: until e = K

6: return DB

3.4.6 Interpretation as a (DF+DB+1)-Part Iteration Scheme

In Section 3.3, I developed compact formula (3.3.7) and (3.3.8) that summarizes the

original parallel-in-time gradient-type method iteration, where the most important

ingredients are the “mask” matrices I�d, d = 0, 1, ..., N � 1.

Now, for the generalized version of algorithm, by very similar analysis along the

line of (3.4.18), I can construct “mask” matrices for both forward, IF�d, d = 0, 1, ..., DF.

, and backward, IB�d, d = 0, 1, ..., DB, computation. Note that in the original algorithm

with N subdomains in both forward and backward computation, DF = DB = N � 1.

The derivation of IF�d and IB�d is the similar to that of I�d in Section 3.3. I omit

that and give directly the Algorithm 11 and Algorithm 12 for constructing them.

The explicitly constructed IF�d, d = 0, 1..., DF and IB�d, d = 0, 1..., DB are illus-

trated in Figure 3.4 and Figure 3.5 for the time domain splitting in Figure 3.2.

Now that all tools are developed. I state the compact notation for the generalized
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Algorithm 11 Construction of IF�d

Matrix index is zero based using NumPy style notation where M[1 : 3, :] represents

the submatrix consisting of the whole 2nd and 3rd row of matrix M;

eF�1

def

= 0 for notational simplicity

1: Initialize IF�d, d = 0, 1..., DF to be Kny ⇥Kny zero matrices.

2: for i = 0, . . . , NF � 1 do . Loop over matrix block rows

3: row
start

= eFi�1

, row
end

= eFi , colend = eFi

4: d = 0

5: repeat . Loop over blocks in one block row

6: col
start

= sFIF(col
end

)

7: IF�d[rowstart

: row
end

, col
start

: col
end

] = 1 . Mark block of all “1”s

8: col
end

= col
start

9: d = d+ 1

10: until col
end

= 0

11: end for
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Algorithm 12 Construction of IB�d

Matrix index is zero based using NumPy style notation where M[1 : 3, :] represents

the submatrix consisting of the whole 2nd and 3rd row of matrix M;

sBNB

def

= K for notational simplicity

1: Initialize IB�d, d = 0, 1..., DB to be Kny ⇥Kny zero matrices.

2: for i = 0, . . . , NB � 1 do . Loop over matrix block rows

3: row
start

= sBi , rowend

= sBi+1

, col
start

= sBi

4: d = 0

5: repeat . Loop over blocks in one block row

6: col
end

= eBIB(col
start

)

7: IB�d[rowstart

: row
end

, col
start

: col
end

] = 1 . Mark block of all “1”s

8: col
start

= col
end

9: d = d+ 1

10: until col
start

= K

11: end for

12: Transpose IB�d, d = 0, 1..., DB
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IF
−1

IF
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IF
−3

Figure 3.4: Illustration of the positions of ‘1’s in IF
0

, IF�1

, IF�2

, and IF�3

in an example

where the state dimension is ny = 2 and K = 12. The time domain splitting pattern

is illustrated in Figure 3.2 and represented in Table 3.1. Compare with Figure 3.1 for

the original parallel-in-time gradient-type method.
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2 4 6 8 10 12 14 16 18 20 22 24
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IB0

IB
−1

Figure 3.5: Illustration of the positions of ‘1’s in IB
0

and IB�1

in an example where

the state dimension is ny = 2 and K = 12. The time domain splitting pattern is

illustrated in Figure 3.2 and represented in Table 3.1. Compare with Figure 3.1 for

the original parallel-in-time gradient-type method.
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parallel-in-time gradient-type method analogous to that of the original method in

Section 3.3. Similar to (3.3.7),

y(j) =
DFX

d=0

(IF�d � L)(Bu(j�d) + c) + y
0

, for j � DF. (3.4.19)

Analogous to (3.3.8),

p(j) =
DBX

d=0

(IB�d � L)T (Qy(j�d) + d), for j � DB. (3.4.20)

Using (3.2.1e), (3.4.19) and (3.4.20) gives the following representation of our

parallel-in-time gradient type iteration j � 2N � 2,

u(j+1) = u(j) � ↵(Ru(j) + e+BTp(j))

= u(j) � ↵
h
Ru(j) +

DBX

r=0

DFX

l=0

(IB�r � LB)TQ(IF�l � LB)u(j�r�l) + g
i
. (3.4.21)

I define

HG

0

def

= R+ (IB
0

� LB)TQ(IF
0

� LB), (3.4.22a)

HG

d
def

=
X

l2{0,...,DF}
r2{0,...,DB}

l+r=d

(IB�r � LB)TQ(IF�l � LB), d = 1, ..., DF +DB. (3.4.22b)

Where I use super script G to emphasize it is related to the generalized algorithm.

Note that the Hessian (3.1.8) can be split as

H =
DF

+DBX

d=0

HG

d . (3.4.23)

Inserting (3.4.22) into (3.4.21) gives

u(j+1) = u(j) � ↵(
DF

+DBX

d=0

HG

d u
(j�d) + g). (3.4.24)

which is a generalized version of (3.3.12).

Convergence of the generalized parallel-in-time gradient-type method is given use

the developed compact notation above in Section 3.5.
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3.5 Convergence Proof for the Linear-Quadratic

Problems

Using the representation (3.1.9) it follows immediately that the optimal control u(⇤)

satisfies Hu(⇤) + g = 0 and, using (3.4.23),

u(⇤) = u(⇤) � ↵(
DF

+DBX

d=0

HG

d u
(⇤) + g). (3.5.1)

Subtracting (3.4.24) from (3.5.1) shows that the errors

"(j) = u(⇤) � u(j) (3.5.2)

obey the recursion

"(j+1) = "(j) � ↵(
DF

+DBX

d=0

HG

d "
j�d). (3.5.3)

If I define the block companion matrix

C(↵) =

2

6666666666664

I� ↵HG

0

�↵HG

1

�↵HG

2

. . . �↵HG

DF

+DB�1

�↵HG

DF

+DB

I

I

I
. . .

I 0

3

7777777777775

,

(3.5.4)

then the recursion (3.5.3) for the errors is equivalent to
2

6666664

"(j+1)

"(j)

...

"(j�[DF

+DB

]+1)

3

7777775
= C(↵)

2

6666664

"(j)

"(j�1)

...

"(j�[DF

+DB

])

3

7777775
. (3.5.5)

Thus, convergence of the parallel-in-time gradient method is guaranteed if the spectral

radius of the block companion matrix (3.5.4) is less than one. In the remainder of



59

this section I will show that this is true for su�ciently small fixed step size, i.e.,

Theorem 3.5.1.

Theorem 3.5.1 For su�ciently small step size ↵ > 0, the matrix C(↵) defined in

(3.5.4) has spectral radius less than one.

The rest of this section is devoted to the proof of Theorem 3.5.1. Specifically,

Theorem 3.5.1 is a special case of Theorem 3.5.3 below. I will aim to prove Theo-

rem 3.5.3.

In the convergence proof the positive definiteness of the Hessian is important, but

not the particular structure of the matrices Hd in the splitting (3.3.11). Therefore,

given complex m⇥m matrices M
0

,M
1

, ...,Mn with
Pn

i=0

Mi Hermitian and positive

definite, I consider the block companion matrix

eC(↵)
def

=

2

6666666666664

I� ↵M
0

�↵M
1

�↵M
2

. . . �↵Mn�1

�↵Mn

I

I

I
. . .

I 0

3

7777777777775

. (3.5.6)

I will prove that the spectral radius of eC(↵) is strictly less than one for su�cient

small step sizes ↵ > 0.

The proof is based on an analysis of the location of the roots of the characteristic

polynomial of eC(↵),

Q(↵,�)
def

= det(eC(↵)� �I), (3.5.7)

for small ↵ > 0. I also define

P (↵,�)
def

= �n+1I+ �n(↵M
0

� I) + ↵
nX

i=1

�n�iMi. (3.5.8)

Note that Q(↵,�) = (�1)mn det(P (↵,�)) (see, e.g., [DTW71, p.17]). The following

three statements are equivalent
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i. �↵ is an eigenvalue of eC(↵).

ii. �↵ is an latent root of P (↵, ·), i.e. P (↵,�↵) is singular.

iii. �↵ is a root of Q(↵, ·).

Since P (0,�) = �n(� � 1)I and det(P (0,�)) = �mn(� � 1)m, the companion matrix

eC(0) only has eigenvalues 0 and 1. By continuity of polynomial roots with respect

to polynomial coe�cients [US77], the roots �↵ of Q(↵, ·) are contained in small balls

around 0 and around 1 for su�ciently small ↵ > 0. See Figure 3.6. For the roots �↵

in the small ball around 1, I can actually show that they must be contained in the

open cone Ck defined in (3.5.9) below, and that they have magnitude less than one.

See Figure 3.6 and Lemma 3.5.2 below. This implies that the spectral radius of eC(↵)

is less than one for su�ciently small ↵ > 0 (see Theorem 3.5.3 below).

In the following B(c, r) denotes the open ball in the complex plane of radius r

centered at c. The real and imganizary parts of a complex number z are denoted by

Re(z) and Im(z), respectively.

Lemma 3.5.2 If M
0

,M
1

, ...,Mn are m⇥m complex matrices with
Pn

i=0

Mi Hermi-

tian and positive definite, then the following two statement are valid.

i. For any �
2

there exists a �
1

> 0 such that for all ↵ 2 (0, �
1

) ⇢ R all latent roots

of P (↵,�) are contained in B(0, �
2

) [ B(1, �
2

) ⇢ C.

ii. Let �
2

2 (0, 1/2) and �
1

be given as in part i. For all k > 0 there exists

�
3

2 (0, �
1

) such that for all ↵ 2 (0, �
3

) ⇢ R the latent roots � 2 B(1, �
2

) of

P (↵,�) satisfy

� 2 Ck
def

= {z 2 C : Re(z) < 1 and | Im(z)|/(1� Re(z)) < k} . (3.5.9)

Proof: i. The first statement is a direct consequence of the fact that the roots

of det(P (0,�)) = det(�n(� � 1)I) = �mn(� � 1)m are � = 0 and � = 1 and of the
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Ck

Re

Im

�1 0 1

�i

i

Figure 3.6: Eigenvalues of eC(↵). For su�ciently small ↵ > 0 the eigenvalues �↵ of

the companion matrix eC(↵), defined in (3.5.6) with
Pn

i=0

Mi Hermitian and positive

definite, lie in the union of a small open ball around 0 and of the intersection of a

small open ball around 1 and the open cone Ck, indicated by the dark shaded regions.

In particular, all eigenvalues are inside the unit disk.

continuity of polynomial roots with respect to polynomial coe�cients. (See, e.g.,

[US77].)

ii. I first prove the second part of the lemma for the case of n = 0. In this case

P (↵,�) = �I � (I � ↵M
0

) and M
0

is Hermitian and positive definite. All latent

roots of P (↵,�) = �I � (I � ↵M
0

) are given by �↵ = 1 � ↵�, where � > 0 is an

eigenvalue of M
0

. Let �
max

denote the largest eigenvalue of M
0

. For ↵ 2 (0, �
3

),

�
3

< min{2/�
max

(M
0

), �
1

}, the latent roots of P (↵,�) are contained in (�1, 1) ⇢ Ck

for any k > 0.
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Now let n � 1. I can write

P (↵,�) = �n+1I+ �n(↵M
0

� I) + ↵

nX

i=1

�n�iMi

= ↵
nX

i=0

Mi + (�� 1)I+
h
(�n � 1)(�� 1)I+ ↵

n�1X

i=0

(�n�i � 1)Mi

i
. (3.5.10)

The last term in (3.5.10) can be estimated using

��(�n � 1)(�� 1)I+ ↵
n�1X

i=0

(�n�i � 1)Mi

��
2

=
��(�� 1)2

n�1X

i=0

�iI+ ↵(�� 1)
n�1X

i=0

(
n�i�1X

j=0

�j) Mi

��
2

 |�� 1|
h
|�� 1|

n�1X

i=0

|�|i + ↵
n�1X

i=0

(
n�i�1X

j=0

|�|j)kMik2
i
. (3.5.11)

There exist ✏
1

, ✏
2

> 0 such that for all ↵ 2 (0, ✏
1

), � 2 B(1, ✏
2

),

|�� 1|
n�1X

i=0

|�|i + ↵
n�1X

i=0

(
n�i�1X

j=0

|�|j)kMik2 <
1p
2

and, hence

��(�n � 1)(�� 1)I+ ↵
nX

i=0

(�n�i � 1)Mi

��
2

 1p
2
|�� 1|. (3.5.12)

Let �
min

(·) denote the minimum singular value of a matrix and recall that
Pn

i=0

Mi

is Hermitian and positive definite. For ↵ > 0 and � 2 C the first two terms in (3.5.10)

can be estimated using

�
min

⇣
↵

nX

i=0

Mi + (�� 1)I
⌘
=
���↵�

min

(
nX

i=0

Mi) + (�� 1)
���

=
h⇣
↵�

min

(
nX

i=0

Mi) + Re(�� 1)
⌘
2

+ Im(�� 1)2
i
1/2

.

(3.5.13a)
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Furthermore, if Re(�) � 1, then

�
min

⇣
↵

nX

i=0

Mi + (�� 1)I
⌘
=
h⇣
↵�

min

(
nX

i=0

Mi) + Re(�� 1)
⌘
2

+ Im(�� 1)2
i
1/2

� 1p
2

���↵�
min

(
nX

i=0

Mi) + Re(�� 1)
���+

1p
2

��� Im(�� 1)
���

=
1p
2
↵�

min

(
nX

i=0

Mi) +
1p
2
Re(�� 1) +

1p
2

��� Im(�� 1)
���

� 1p
2
↵�

min

(
nX

i=0

Mi) +
1p
2
|�� 1|. (3.5.13b)

Combining (3.5.12) and (3.5.13b) shows that for all ↵ 2 (0, ✏
1

) and all � 2 B(1, ✏
2

)

with Re(�) � 1,

�
min

(↵
nX

i=0

Mi + (�� 1)I) > k(�n � 1)(�� 1)I+ ↵
nX

i=0

(�n�i � 1)Mik2 (3.5.14)

and, consequently, that P (↵,�) is non-singular. Therefore, for all ↵ 2 (0, ✏
1

) all latent

roots of P (↵,�) that are contained in B(1, ✏
2

) satisfy Re(�↵) < 1.

Given an arbitrary k > 0. For � with Re(�) < 1 and � 62 Ck, | Im(� � 1)| =

| Im(�)| � k(1� Re(�)) = kRe(1� �) = k|Re(�� 1)| and, thus,

k + 1

k
| Im(�� 1)| � | Im(�� 1)|+ |Re(�� 1)| � |�� 1|.

Combining this with (3.5.13a) I obtain the estimate

�
min

(↵
nX

i=0

Mi + (�� 1)I) � | Im(�� 1)| � k

k + 1
|�� 1|. (3.5.15)

There exist ✏
1,k, ✏2,k > 0 such that for all ↵ 2 (0, ✏

1,k), � 2 B(1, ✏
2,k),

|�� 1|
n�1X

i=0

|�|i + ↵

n�1X

i=0

(
n�i�1X

j=0

|�|(j))kMik2 <
k

k + 1
.

Combining this inequality with (3.5.11) and (3.5.15) shows that for all ↵ 2 (0, ✏
1,k)

and all � 2 B(1, ✏
2,k) with Re(�) < 0 and � 62 Ck the inequality (3.5.14) holds

and, thus, that P (↵,�) is non-singular. Therefore, for all ↵ 2 (0,min{✏
1

, ✏
1,k}) all
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latent roots of P (↵,�) that are contained in B(1,min{✏
2

, ✏
2,k}) satisfy Re(�↵) < 1

and �↵ 2 Ck.

Given k > 0, choose �
3

 min{✏
1

, ✏
1,k} such that for all ↵ 2 (0, �

3

) the latent roots

of P (↵, ·) are in B(0, �
2

) [ B(1,min{�
2

, ✏
2

, ✏
2,k}) ⇢ C. This is possible by continuity

of polynomial roots with respect to polynomial coe�cients. From the previous

steps it follows that all latent roots �↵ 2 B(1, �
2

) of P (↵, ·) are in fact contained in

B(1,min{�
2

, ✏
2

, ✏
2,k}) and satisfy �↵ 2 Ck. ⇤

Theorem 3.5.3 If M
0

,M
1

, ...,Mn are m⇥m complex matrices with
Pn

i=0

Mi Her-

mitian and positive definite, then the block companion matrix (3.5.6) has spectral

radius strictly less than 1 for su�ciently small real ↵ > 0.

Proof: Let �
2

2 (0, 1/2) and k > 0 arbitrary. Lemma 3.5.2 guarantees the existence

of �
1

> 0 and �
3

2 (0, �
1

) such that for all ↵ 2 (0, �
3

) the latent roots of P (↵, ·) are

contained in B(0, �
2

) [
�
B(1, �

2

) \ Ck

�
⇢ B(0, 1). Therefore, for all ↵ 2 (0, �

3

), the

spectral radius of eC(↵) is strictly less than 1. ⇤

Because
Pn

i=0

Hi = H by (3.3.11) and H is symmetric positive definite by (3.1.8),

Theorem 3.5.1 is a special case of Theorem 3.5.3.

3.6 Numerical Examples

In this Section, I present numerical examples of parallel-in-time gradient-type method

applied to linear-quadratic discrete time optimal problems of type (3.1.1). Since the

proposed parallel method is based on the classic serial gradient method, I mainly

compare its performance against the fixed step size gradient method.

While positive results will be presented in this section that there can be great

parallel speed-ups compared to the gradient method, one should bear in mind that,
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to solve linear-quadratic problem whose optimality system is a linear system, the pro-

posed method is still not competitive against some other methods essentially solving

the linear system of the optimality system as Conjugate Gradient method (CG), since

the classic gradient method as a starting point of the conception of the parallel-in-

time gradient-method has no advantage over CG in terms of solving a linear system

in most cases.

However, a parallel-in-time Krylov subspace method inspired by and closed related

to the parallel-in-time gradient-type method is competitive in some linear-quadratic

problems against CG. The related material is in Section A.3.

A common way in which I choose the step size in the following experiments is

conducting a exhaustive grid search of the step size ↵ for the one that results in

the best convergence speed. Currently, except for very small problems where the

reduced control space Hessian is tractable to explicitly construct in which case for

experiment purpose I can determine the optimal fixed step size by (3.1.11), I do

not have other systematic approach to find a suitable step size. For fixed step size

gradient-type method, the convergence speed is closed related to the spectral radius

of a certain iteration matrix, i.e. C(↵) in (3.5.5) or [I�W(↵)] in (4.3.3). The spectral

radius depends on the step size. Some numerics for investigating the dependence is

in Section A.2.

It is worth mentioning that, for classical gradient method, there are some good

methods to systematically choose step sizes, as line search methods and the simple and

often very e�cient Borzilai-Borwein method [BB88, Ray93, Ray97, Fle05]. However,

they do not easily transition to the parallel-in-time gradient-type method because,

after all, in the parallel gradient-type method does not compute exact gradient and

the state/adjoint variables in memory is not feasible before convergence.

I present three set of examples in the following three sections.

• In Section 3.6.1, I introduce some common aspects of parallel gradient-type

method implementation, demonstrate the dependence of convergence on step
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size choices and non-monotonic convergence. Parallel e�ciency is around 35%

in this example.

• In Section 3.6.2, I present the numerical results from a parallel implementation

indicating strong scaling with up to 50 cores. It is a great improvement from the

classical gradient method. However, it still does not compete with Conjugate

Gradient method. Trace plot produced by HPCToolkit [ABF+10] is also

included to illustrate forward/backward computation and data communication.

• In Section 3.6.3, I demonstrate the generalized parallel-in-time gradient-type

method by a simple example. By adding overlapping computation subdomains

to a non-overlapping one, I compare the iteration ouputs.

3.6.1 1D Boundary Control: Step Size, Non-Monotonic Con-

vergence

The first example is a Dirichlet boundary control problem governed by a linear

advection-di↵usion-reaction equation. Given T > 0,  > 0, � > 0, �, v � 0, and

functions by 2 L2(0, T ), f 2 L2((0, 1)⇥ (0, T )), the optimal control problem is

minimize
1

2

Z T

0

(y(1, t)� by(t))2dt+ �

2

Z T

0

u2(t)dt (3.6.1a)

subject to

@y(x, t)

@t
� 

@2y(x, t)

@x2

+v
@y(x, t)

@x
+ �y(x, t) = f(x, t) x 2 (0, 1), t 2 (0, T ), (3.6.1b)

@y(1, t)

@x
= 0 t 2 (0, T ), (3.6.1c)

y(0, t) = u(t) t 2 (0, T ), (3.6.1d)

y(x, 0) = y
0

(x) x 2 (0, 1). (3.6.1e)

This problem has a unique solution u 2 L2(0, T ) and corresponding state y 2 W (0, T ).

See, e.g., [Trö10, Ch.3] or [Lio71] for details.
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I will discretize the problem using piecewise linear finite elements in space and

backward Euler in time. This leads to a fully discretized problem of the type (3.1.1).

I will present the details below. Theorem 3.5.1 guarantees convergence of the parallel-

in-time gradient-type method for su�ciently small step size ↵, but unfortunately does

not provide bounds on the feasible step sizes. I use this simple example to numerically

explore the dependence of step sizes.

The optimal control problem is discretized in space using piecewise linear finite

elements. This leads to

minimize
1

2

Z T

0

(y(t)� ŷ(t))TQ(y(t)� ŷ(t))dt+
1

2

Z T

0

u(t)TRu(t)dt (3.6.2a)

subject to

M
d

dt
y(t) + Ay(t) = Bu(t) + f(t), t 2 (0, T ), (3.6.2b)

y(0) = y
given

. (3.6.2c)

Here y(t) 2 IRn
y , ny is the number of spatial subdomains in (0, 1), and u(t) 2 IRn

u ,

nu = 1.

To discretize (3.6.2) in time, I use the backward Euler method with time step size

�t = T/K and time steps tk = �t k, k = 0, . . . , K. This leads to the problem

minimize
�t

2

K�1X

k=0

(yk+1

� ŷ(tk+1

))TQ (yk+1

� ŷ(tk+1

)) +
�t

2

K�1X

k=0

uT
k+1

Ruk+1

(3.6.3a)

subject to

(M +�tA)yk+1

= �tBuk+1

+�tMyk +�tf(tk+1

), k = 0, . . . , K � 1, (3.6.3b)

y
0

= y
given

. (3.6.3c)

The fully discretized problem (3.6.3) is of the type (3.1.1) if I set

Ak = �t(M +�tA)�1M, Bk = �t(M +�tA)�1B, ck = �t(M +�tA)�1f(tk+1

),

Qk = �tQ, Rk = �tR, dk = ��tQŷ(tk), ek = 0,
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and perform an index shift uk+1

! uk. The matrices (M + �tA)�1M and (M +

�tA)�1B are never formed explicitly, but linear systems with matrix (M + �tA)

are solved whenever matrix-vector products of the type (M + �tA)�1Mv or (M +

�tA)�1Bw have to be computed.

On the computations I use T = 10, � = 0.1,  = 0.001, v = 5, � = 1, f(x, t) = 0,

y
0

(x) = 0, and by(t) = sin(t2). Furthermore, the discretization uses ny = 128 spatial

subdomains in (0, 1), and K = 1000 time steps.

To start the parallel-in-time gradient-type method iterations, it is needed to initial-

ize time subinterval boundary values y(�1)

K
i

, p
(�1)

K
i

for i = 1, ..., N � 1. In the numerical

examples we provide, large number of iterations are needed for convergence, which

is also the case with fixed step size classical gradient method. Each iteration does

not change control variable significantly and, loosely speaking, 2N � 1 iterations will

clear the e↵ect of di↵erence choice of y(�1)

K
i

, p
(�1)

K
i

for i = 1, ..., N � 1. Therefore, we

do not investigate the e↵ect of y(�1)

K
i

, p
(�1)

K
i

for i = 1, ..., N � 1 on the convergence and

focus on the di↵erence choice of step size ↵.

The speed of convergence of the parallel gradient-type method depends the step

size ↵. To estimate the optimal step size for a given number N of time subdomains, I

conduct the following experiment. Given a number of time subdomainsN , I subdivide

0, . . . , K into approximately equally sized groups. In the case where N does not divide

the number of time steps K, I split the time steps so that 0  (Ki �Ki�1

)� (Kj �

Kj�1

)  1 for all 1  i < j  N . Then for a number of equally distributed time

steps ↵ 2 (0.3, 5) I run the parallel gradient-type algorithm started with zero initial

guess until the error between computed control u(j) and exact control u(⇤), computed

solving (3.6.3) with high accuracy, is less 10�6, or a maximum number of iterations

is exceeded.

For N 2 {1, ..., 100} I report the speed-ups in Figure 3.7. The speed-up is mea-

sured by number of iterations of the parallel-in-time gradient-type method for various

N divided by the number of iterations of the parallel-in-time gradient-type method



69

for various N over the number of cores N . Thus, if I(N) is the number of itera-

tions needed by parallel-in-time method with N subdomains and cores, one speed-up

curve shows I(1)/(I(N)/N). Although this ignores communication cost it is a good

indicator of actual speed-up. For this 1D problem, I do not have the timing for a

parallel implementation I will show the actual timing of a parallel implementation of

the parallel-in-time gradient-type method for the 3D problem in the next numerical

example in Subsection 3.6.2. In Figure 3.7, there is speed-up, but the strong scaling

is not demonstrated in this case. In the region of 2 to 40 time subdomains, a linear

speed-up of slope around 0.35 is observed, which indicates a 35% parallel e�ciency.

Note that the step size in each specific subdomain setting is obtained by search on

a step size grid for the fastest convergence. In the linear speed-up region of 2 to 40

time subdomains, the step sizes used are roughly the same according to Figure 3.8.

For N 2 {1, ..., 100} I also report the step size ↵ for the parallel gradient-type

algorithm requires the fewest iterations. These step size ↵ are shown in Figure 3.8.

In the region of 2 to 40 time subdomains, the best step size remain roughly constant

compared to decreasing step size for number of time subdomains greater than 40.

As the number of time subdomain increases, usually, the best step size decreases.

The best step size for a specific number of time subdomains may be bad for a case

with more time subdomains. For example, according to Figure 3.8, the step size

0.8 is good for 2 to 40 time subdomains, but it leads to divergence, by numerical

experiments, when applied to cases with 50 or more subdomains. In this 1D example,

there is a significant drop in best step size from the 1 time subdomain (classical

gradient method) to 2 time subdomain, which is not the case for the 3D example in

Subsection 3.6.2. If I look at Figure 3.7 and Figure 3.8 together, it is easy to find

that the linear speed-up region and the constant best step size region coincide. I also

note that, of course, the optimal step sizes depend on other problem data as well and,

thus, step sizes that are good for the 1D example problem (3.6.1) may not be good

for other problems, such as (3.6.4) below.
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Figure 3.7: Speed-ups of the parallel-in-time gradient-type method applied to the

1D optimal control problem. If I(N) is the number of iterations needed by the

parallel-in-time method with N subdomains and cores, the speed-up curve shows

I(1)/(I(N)/N).



71

N, number of time subdomains
0 10 20 30 40 50 60 70 80 90 100

b
e
st

 s
te

p
 s

iz
e
 α

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 3.8: Optimal step-sizes ↵ for varying number N of time subdomains for the

1D example problem.
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Figure 3.9: Distance between the optimization control variable trajectory and the

optimal control. In this example, 10 time subdomains with optimal step size 0.87

are used. Nonmonotonic convergence is observed and there is a periodic oscillation

pattern. Red squares mark the iteration where oscillation reaches its peaks. In this 10

time subdomain case, the peaks happen every 5 iterations on average. See Figure 3.10

for control errors recorded on optimization trajectory on three consecutive peaks.

Figure 3.9 and Figure 3.10 illustrate that using the optimal step size, the conver-

gence is not monotonic in the distance to optimal control. In Figure 3.10, it can be

seen that in the optimization iterations, the control error near the time subdomain

boundaries is significantly larger than error away from the time subdomain boundaries

and the error oscillates periodically.

3.6.2 3D Distributed Control: Parallel Implementation,

Strong Scaling

I consider an optimal control problem governed by an advection di↵usion reaction

PDE posed on the spatial domain ⌦ ⇢ R3 and time domain(0, T ). Let ⌦o ⇢ ⌦

be the observation region and let ⌦c ⇢ ⌦ be the domain on which the control is
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Figure 3.10: The control error, i.e. the di↵erence between the control in the optimiza-

tion iterations and the precomputed control in the optimal solution, at optimization

iteration 44, 49, and 54. They are at the error peaks as depicted in Figure 3.9 as red

boxes. Ten time subdomains with optimal step size 0.87 are used.
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applied. Let �
⌦

c

denote the indicator function of the control domain ⌦c. Given

scalars  > 0, � > 0, � � 0, the advection v 2 R3, and functions by 2 L2(⌦o ⇥ (0, T )),

f 2 L2(⌦⇥ (0, T )), the optimal control problem is

minimize
1

2

Z T

0

Z

⌦

o

(y(x, t)� by(x, t))2dxdt+ �

2

Z T

0

Z

⌦

c

u2(x, t)dxdt (3.6.4a)

subject to

@y(x, t)

@t
� �y(x, t)

+v ·ry(x, t) + �y(x, t) = f(x, t) + �
⌦

c

(x)u(x, t), x 2 ⌦, t 2 (0, T ), (3.6.4b)

ry(x, t) · n = 0, x 2 @⌦, t 2 (0, T ), (3.6.4c)

y(x, 0) = y
given

(x), x 2 ⌦. (3.6.4d)

This problem has a unique solution u 2 L2(⌦c ⇥ (0, T )) and corresponding state

y 2 W (0, T ). See, e.g., [Trö10, Ch.3] or [Lio71] for details.

I consider ⌦ = (0, 1)3. The optimal control problem is discretized in space using

a standard cell-centered finite volume method with hexahedral cells of size (1/n
1

)⇥

(1/n
2

) ⇥ (1/n
3

) [EGH00, Sec. 3.3]. I assume that the observation region ⌦o is a

hexahedron given as the union of ` cells and that the control region ⌦c is a union of

hexahedra given as the union of nu cells. This leads to the semidiscretized problem

(3.6.2) where y(t) 2 IRn, ny = n
1

n
2

n
3

, and u(t) 2 IRn
u .

To discretize (3.6.2) in time, I use the backward Euler method with time step size

�t = T/K and time steps tk = �t k, k = 0, . . . , K. This leads to the fully discretized

problem (3.6.3), which is of the type (3.1.1).

In the experiments, GMRES with a multigrid preconditioner is used to solve all of

the linear systems. The implementation uses Epetra linear algebra libraries, AztecOO

linear solvers, and ML multigrid preconditioning packages from the Trilinos Project

[HBH+05] to solve the linear systems with matrices M + �tA and (M + �tA)T .

Computations are performed on the Rice University DAVinCI cluster.

For the numerical example I choose the control region ⌦c = (0.1, 0.3)⇥ (0.2, 0.8)⇥

(0.2, 0.8) [ (0.7, 0.9) ⇥ (0.2, 0.8) ⇥ (0.2, 0.8), the observation region ⌦o = (0.4, 0.6) ⇥
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(0, 1) ⇥ (0, 1), and the final time T = 8 or T = 16. In the objective (3.6.4a) I have

ŷ(x, t) = 10[(x
2

� 0.5) cos(2⇡t) + (x
3

� 0.5) sin(2⇡t)]3 and � = 1e � 6. In the PDE

(3.6.4b),  = 0.1, v = [1, 1, 1]T , � = 0.01, and y
given

(x) = 0. For discretization, I use

K = 200 (if T = 8) or K = 400 (if T = 16) time steps and a spatial discretization

n
1

= n
2

= n
3

= 10.

So far, there is not a good a-priori way of determining a good step size for the gra-

dient type method. In this experiment, I select the step size by examining the iteration

for a few di↵erent step sizes and then selecting the ↵ from these trials. For the case

T = 8, K = 200, this resulted in the step size ↵ = 2400 for N = 1, 4, 6, 8, 12, 16, 20

time subdomains, and ↵ = 2060, 1860, 1500, 1000 for N = 25, 30, 40, 60. For the case

T = 16, K = 400, this resulted in the step size ↵ = 950 for N = 1, 30, 40, 50 time sub-

domains, and ↵ = 900, 800, 650 for N = 60, 70, 80. In comparison, in the numerical

examples, the classical gradient method uses step size ↵ = 2400 in the T = 8, K = 200

case; and uses step size ↵ = 950 in the T = 16, K = 400 case. They are roughly the

optimal fixed step size by trials. Note that these step sizes coincide with the optimal

fixed step size in the parallel-in-time gradient-type method with not too many time

subintervals.

Figure 3.11 shows the speeds-ups. For each of the two cases ( T = 8, K =

200 and T = 16, K = 400) I include two speeds-up curves. One shows speed-up

measured by number of iterations of the parallel-in-time gradient-type method for

various N divided by the number of iterations of the parallel-in-time gradient-type

method for various N over the number of cores N . Thus, if I(N) is the number

of iterations needed by parallel-in-time method with N subdomains and cores, one

speed-up curve shows I(1)/(I(N)/N). Although this ignores communication cost it

is a good indicator of actual speed-up, which is shown in the other curve. The actual

speed-up is measured by run time of the gradient method divided by the run time of a

parallel implementation of parallel-in-time gradient-type method for variousN . Thus,

if t(N) is the run time required by parallel-in-time method with N subdomains and
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Figure 3.11: Speed-ups of the parallel-in-time gradient-type method for two examples

problems with end time T = 8 and K = 200 time steps (red curves), and with end

time T = 16 and K = 400 time steps (blue curves). For each case two speed-up

curves are shown. If I(N) denotes the number of iterations needed by parallel-in-

time method with N subdomains and cores, the speed-up curves indicated by ‘· · · �’

and ‘· · ·+’ show I(1)/(I(N)/N). If t(N) denotes the run time needed by parallel-in-

time method with N subdomains and cores, the curves indicated by ‘�⇤’ and ‘�⇤’

show t(1)/t(N). Excellent speed-ups are obtained for up to N = 20 time domains

when T = 8 and K = 200 and for up to N = 50 time domains when T = 16 and

K = 400 . The fixed step size for both of the classical gradient method and the

parallel-in-time gradient-type method is chosen by trials. The fixed step size with

fastest convergence is used. Refer to Table 3.2 and Table 3.3 for details.

cores, the actual speed-up is t(1)/t(N). The number N of time-subdomains changes

the parallel-in-time gradient-type method and its convergence rate. If the number of

time-subdomains is too large, convergence deteriorates and negatively impact speed-

up obtained by parallelizing the work performed in each iteration of the parallel-in-

time gradient-type method. For the problem settings I observe excellent speed-ups

for up to N ⇡ 20 and N ⇡ 50 time subdomains.

However, in this linear-quadratic problem, the parallel-in-time gradient-type
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Subinterval Number optimal fixed step size Number of Iterations Time (sec.)

1 (serial gradient method) 2400 134100 9.01e+04

4 2400 134066 2.45e+04

6 2400 134066 1.62e+04

8 2400 134065 1.26e+04

12 2400 134066 8.21e+03

16 2400 134067 6.41e+03

20 2400 134065 5.15e+03

25 2060 156193 4.78e+03

30 1860 172991 4.55e+03

40 1500 214515 4.21e+03

60 1000 321776 4.92e+03

Table 3.2: T = 8, K = 200 example. Number of iterations and time consumed to

reduce the Infinity-norm control error from the initial guess 1e+3 to 1e-3. Conjugate

Gradient method takes only 530 iterations to reach the same level of control error.

method does not compete with Conjugate Gradient method solving the reduced con-

trol space optimality system directly. For the T = 8, K = 200 problem, the parallel-

in-time gradient-type method with 40 cores uses 214515 iterations to reduce control

error by 6 orders of magnitude whereas Conjugate Gradient (CG) method takes only

530 iterations to reach the same level of control error. With the assumption that the

parallelism in the parallel method ideally reduces the time of a single iteration to 1/40

of a CG iteration, the parallel method is still about 10 (⇡ 10.12 = 214515/40/530)

times slower than CG. Similarly, for T = 16, K = 400 example, the parallel-in-time

gradient-type method with 70 cores uses 192274 iterations to reduce control error by

3 orders of magnitude whereas CG uses only 340 iterations. The parallel method

is still about 8 (⇡ 8.08 = 192274/70/340) times slower than CG. So, this is not a

practical method in this example problem.
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Subinterval Number optimal fixed step size Number of Iterations Time (sec.)

1 (serial gradient method) 950 161900 2.20e+05

30 950 161900 8.51e+03

40 950 161900 6.50e+03

50 950 161900 5.23e+03

60 900 170900 4.77e+03

70 800 192274 4.72e+03

80 650 229289 4.97e+03

Table 3.3: T = 16, K = 400 example. Number of iterations and time consumed to

reduce the Infinity-norm control error from the initial guess 1e+3 to 1e0. Conjugate

Gradient method takes only 340 iterations to reach the same level of control error.

The Figure 3.12 and Figure 3.13 show the 1 second trace plots of a 8 time sub-

domains and a 16 time subdomains run of the parallel-in-time gradient-type method.

The forward and backward computation in each time subdomain consume roughly

the same amount of time. When the number of time subdomains is doubled, the for-

ward and backward computation per iteration halves. However, the time consumed

by the data communication and some other serial tasks stays the same, which makes

up more proportion of the overall time consumption. This is one of the reasons why

the theoretical and actual speed-ups are di↵erent in Figure 3.11.

It is also important to note that the speed-up due to time decomposition multiplies

existing speed-up in the solution of the systems with matrices M + �tA or (M +

�tA)T that arise in the solutions of time subdomain state and adjoint equations.

The spatial discretization is small so that no such parallelization in the time-stepping

was useful. An example where spatial parallelization is applied upon the parallel-

in-time gradient-type method is presented in a reservoir water flooding optimization

example in Example 2 of Section 6.3.2.
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Figure 3.12: Trace graph of 1 second of running time, 8 cores, generated by the

HPCToolkit [ABF+10]. The horizontal axis is the time axis. Eight horizontal

rows represent computation timing of eight cores. The top row is for the first time

subdomain, etc. One optimization iteration consists of two major blocks, one purple

and one brown. The purple blocks are for forward computation, the brown blocks

are for backward computation. The smaller green and red blocks correspond to

communication and error estimation timing respectively.
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Figure 3.13: Trace graph of 1 second of running time, 16 cores, generated by the

HPCToolkit [ABF+10]. The horizontal axis is the time axis. Sixteen horizontal

rows represent computation timing of sixteen cores. The top row is for the first

time subdomain, etc. One optimization iteration consists of two major blocks, one

shown in purple and the other one shown in brown. The purple blocks are for forward

computations and the brown blocks are for backward computation. The smaller green

and red blocks correspond to communication and error estimation timing respectively.
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3.6.3 1D Distributed Control: Generalized Algorithm

In this section, I demonstrate properties of the generalized parallel-in-time gradient-

type method by comparing its performance against the original parallel-in-time

gradient-type method on a distributed control problem in a one dimension advection-

di↵usion-reaction system,

minimize
1

2

Z T

0

Z
1

0

(y(x, t)� by(x, t))2dxdt+ �

2

Z T

0

Z
1

0

u2(x, t)dxdt (3.6.5a)

subject to

@y(x, t)

@t
� 

@2y(x, t)

@x2

+v
@y(x, t)

@x
+ �y(x, t) = u(x, t) x 2 (0, 1), t 2 (0, T ), (3.6.5b)

y(0, t) = y(1, t) = 0 t 2 (0, T ), (3.6.5c)

y(x, 0) = y
0

(x) x 2 (0, 1). (3.6.5d)

where  = 0.1, v = 5, � = 0, � = 0.0005. Initial state

y
0

(x) = x

and target function

by(x, t) = sin(2⇡t) sin(4⇡x)

First order Finite Element discretization with 32 cells are used with Backward Euler

Method of 30 time steps.

This is a relatively small size discretization that, for experiment, allows one to

explicitly construct the reduced control space Hessian H defined in (3.1.8) and thus,

by (3.1.11), find the fixed step size ↵⇤ optimal for gradient method in terms of smallest

spectral radius of the iteration matrix I� ↵H. In this case, ↵⇤ ⇡ 4239 ⇡ 4200 which

leads to ⇢(I � ↵⇤H) ⇡ 0.978. I use the serial gradient method with fixed step size

↵ = 4200 as a bench mark.
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Configuration Name para.2-core gen.para.3-core

Forward Computation Subdomains [0, 15], [15, 30] [0, 15], [10, 20], [15, 30]

Backward Computation Subdomains [0, 15], [15, 30] [0, 15], [10, 20], [15, 30]

Table 3.4: Test Case 1 Configuration of Section 3.6.3.1. Total time steps K = 30.

Figure 3.14: Control Error History, Test Case 1 in Section 3.6.3.1.

3.6.3.1 Test Case 1

In this test case, I compare the numerics of two time subdomain configurations in

Table 3.4. The original parallel-in-time gradient-type “para.2-core” configuration

splits the time domain into two even parts. The generalized method “gen.para.3-

core” uses an extra core and adds an extra subdomain [10, 20] overlapping with the

existing two subdomains. Ideally, without consideration of data communication and

possibly imbalance computation load, both of the configurations consume similar time

to perform one iteration which is half of the time used by the serial gradient method.

One expects the one more core used in “gen.para.3-core” to bring better performance.

In Figure 3.14, I compare the convergence in terms of distance between the iterates
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Figure 3.15: Gradient-Type Vector Comparison, Test Case 1 in Section 3.6.3.1.

and a precomputed optimal control. As mentioned, for the serial classic gradient

method, the best fixed step size determined by (3.1.11) is approximately 4200. By

a grid search, the best step size for “para.2-core” is also approximately 4200. But

the convergence of “para.2-core” compared to the serial gradient method is slower

iteration-wise. “gen.para.3-core” configuration with step size ↵ = 4200 converges

with very similar speed as the serial gradient method. In addition, it allows bigger

step size and its best step size ↵ = 4500 leads to a faster convergence. Figure 3.15

compare the gradient-type vectors used in the parallel methods for control update

with the exact gradient in terms of relative di↵erence and cosine of the angle between

them. Although, after the result is presented in Figure 3.14 that the “gen.para.3-

core” yields faster convergence than the serial gradient method, it is not clear if, for
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Configuration Name para.3-core gen.para.5-core

Forward Computation Subdomains [0, 10], [10, 20], [20, 30] [0, 10], [5, 15], [10, 20]

[15, 25], [20, 30]

Backward Computation Subdomains [0, 10], [10, 20], [20, 30] [0, 10], [5, 15], [10, 20]

[15, 25], [20, 30]

Table 3.5: Test Case 1 Configuration of Section 3.6.3.2. Total time steps K = 30.

Figure 3.16: Control Error History, Test Case 2 in Section 3.6.3.2.

gradient-type method, the negative exact gradient is the best update direction, it can

be seen that with step size ↵ = 4200, compared to “para.2-core”, the generalized

method “gen.para.3-core” produces gradient-type vectors much more similar to the

true gradient.

3.6.3.2 Test Case 2

In this test case, I compare a 3-subdomain original parallel-in-time algorithm with a

5-subdomain generalized algorithm, as in Table 3.5.
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Figure 3.17: Gradient-Type Vector Comparison, Test Case 2 in Section 3.6.3.2.

In Figure 3.16, it can be seen, In this case, the best step size of “para.3-core”

on the grid of granularity 100 is 4100 compared to the best step size for the serial

method 4200. “gen.para.5-core” has best step size 4800. Similar to the test case in

Section 3.6.3.1, Figure 3.17 demonstrate, by comparing the dotted yellow curve and

the red curve, the extra 2 cores in “gen.para.5-core” helps to maintain the gradient-

type vector similar to the true gradient.

3.7 Summary

In this chapter, I introduced the idea of the parallel-in-time gradient-type method

using a linear quadratic model problem. Then, I generalized the newly introduced



86

method for more flexible partition of forward/backward computation domains. I

interpreted the generalized method as a multiple part splitting method [de 76, dN81]

in the reduce control space. To prove the convergence of the generalized method with

fixed su�ciently small step size, I used a spectra radius argument of an implicitly

constructed iteration matrix as a block companion matrix [DTW71].

I presented numerical examples applying the parallel gradient-type method to

optimization problems governed by linear advection-di↵usion-reaction systems.

• One example demonstrates the strong scaling of the parallel gradient-type

method with up to 50 cores. In other words, in this example, compared to

to classical gradient method with fixed step sizes, the parallel gradient-type

method has speed-ups of 50 times with 50 time subdomains. However, for

solving linear-quadratic optimization problems, it still does not compete with

Conjugate Gradient method directly solving the reduced control space optimal-

ity system in terms of computation time.

• I showed the influence of the number of subdomains on the optimal fixed step

size. When the number of subdomains increases beyond a threshold, smaller

step size must be used for convergence, which may have a negative impact on

convergence speed.

• I illustrated the non-monotonic convergence of the parallel gradient-type

method with optimal step size. The distance of control variables to the op-

timal solution is not monotonically decreasing.

• I demonstrated that by adding overlapping computation subdomains, the gen-

eralized parallel-in-time gradient-type method produces gradient-type vector

more similar to the true gradient compared to the basic gradient-type method

without adding overlapping subdomains.



Chapter 4

Multiple-Shooting Formulations

In this chapter, I use a multiple shooting point of view to analyze the proposed

parallel-in-time gradient-type method.

First, in Section 4.1, I introduce the multiple-shooting formulation of the opti-

mization problem (1.0.1) in the continuous time setting. Then, in Section 4.2, I refor-

mulate the optimization problem (3.1.1) in the fully discrete linear quadratic setting

as in Chapter 3 and provide an alternative proof of convergence for linear-quadratic

problems using the multiple-shooting formulation in Section 4.3.

In Appendix A, I also include several discussions closely related to the multiple-

shooting formulation. These discussions bring insights of the parallel-in-time gradient-

type method. However, I did not draw a clear conclusion from them. In Section A.1,

two unsuccessful attempts to prove the convergence of parallel-in-time gradient-type

method combined with metric projection using spectral radius argument are presented

to show what is not possible (A valid convergence proof for the projected algorithm

is in Chapter 5). In Section A.2, I present numerical experiment demonstration

of the behavior of the spectral radius of an iteration matrix that determines the

convergence speed of the parallel method. In Section A.3, I show parallel performance

results, without theoretical explanation, of a parallel Krylov subspace method which

is closely related to the parallel-in-time gradient-type method in the multiple shooting

87
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ȳ
1

T
2

ȳ
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ūN�1

Figure 4.1: Illustration of direct multiple-shooting optimization variables

formulation. In some cases, the parallel Krylov subspace method has perfect parallel

speed-up compared to the serial Conjugate Gradient method.

Some of the material of this chapter is developed in [BDH16].

4.1 Continuous Time Multiple-Shooting Formula-

tion

Pick T
0

, ..., TN such that

0 = T
0

< T
1

< · · · < TN�1

< TN = T

and split the time domain into N subdomains.

I reformulate the problem (1.0.1) in a direct multiple-shooting manner so that the

optimization variables are

1. control variable u restricted to time subdomain (Ti, Ti+1

), ūi, for i = 0, ..., N�1;

2. initial condition of state variable y at the beginning of the time subdomain

(Ti, Ti+1

), ȳi, for i = 1, ..., N � 1.

See Figure 4.1. Extra state continuity constrains are also enforced at each time

subdomain boundary. For notation simplicity, define ȳ
0

= y
given

. The problem (1.0.1)

is rearranged into the following multiple-shooting form

min
ȳ,ū

N�1X

i=0

Z T
i+1

T
i

J(yi(t; ȳi, ūi), ūi(t), t)dt (4.1.1a)

subject to yi(Ti+1

; ȳi, ūi) = ȳi+1

i = 0, ..., N � 2 (4.1.1b)
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where, for i = 0, ..., N � 1, yi(t; ȳi, ūi) denotes the solution of the state equation on

subdomain (Ti, Ti+1

),

d

dt
y(t) = F (y(t), ūi(t), t) t 2 (Ti, Ti+1

)

y(Ti) = ȳi

(4.1.2)

Introduce Lagrange multiplier, p̄
0

, ..., p̄N�1

, and the Lagrangian of (4.1.1)

L(ȳ, ū, p̄) =
N�1X

i=0

Z T
i+1

T
i

J(yi(t; ȳi, ūi), ūi(t), t)dt+
N�2X

i=0

p̄Ti+1

(yi(Ti+1

; ȳi, ūi)� ȳi+1

)

(4.1.3)

To find gradient of L with respect to ū, ȳ, decouple yi from ȳi, ūi and define

L̂(ȳ, ū, p̄, y, p) =
N�1X

i=0

Z T
i+1

T
i

J(yi(t), ūi(t), t)dt+
N�2X

i=0

p̄Ti+1

(yi(Ti+1

)� ȳi+1

)

+
N�1X

i=0

Z T
i+1

T
i

pi(t)
T (F (yi(t), ūi(t), t)�

d

dt
yi(y))dt

+
N�1X

i=0

µT
i (yi(Ti)� ȳi)

(4.1.4)

Setting derivatives with respect to y to zeros, for i = 0, ..., N � 1, leads to the adjoint

PDE of adjoint variables pi and µi,

d

dt
pi(t) = �Fy(yi(t), ūi(t), t)

Tp(t) + Jy(yi(t), ūi(t), t) t 2 (Ti, Ti+1

) (4.1.5a)

pi(Ti+1

) = p̄i+1

(4.1.5b)

and µi = �pi(Ti). In (4.1.5), to simplify notation, p̄N
def

= 0. I use pi(t; ȳi, ūi, p̄i+1

) to

denote the solution of (4.1.5). Then, the gradients of (4.1.3) can be written as

rp̄
i+1

L(ȳ, ū, p̄) = yi(Ti+1

; ȳi, ūi)� ȳi+1

i = 0, ..., N � 2

rȳ
i

L(ȳ, ū, p̄) = pi(Ti; ȳi, ūi, p̄i+1

)� p̄i i = 1, ..., N � 1

rū
i

L(ȳ, ū, p̄)(t) = Fu(yi(t), ui(t), t)
Tpi(t; ȳi, ūi, p̄i+1

) + Ju(ȳi, ūi, t)

i = 0, .., N � 1; t 2 (Ti, Ti+1

)

(4.1.6)
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by which the connection between the state/adjoint jumps and the Lagrangian gradient

is exposed. In the next section, analogous reformulation is done for the discrete time

linear-quadratic problem.

4.2 Discrete Time Multiple-Shooting Formulation

To reformulate (3.1.1), I introduce new set of optimization variables

1. For i = 0, ..., N � 1, ūi consisting of ūi,K
i

, ..., ūi,K
i+1

�1

, which can be considered

as the original control variable restricted to steps Ki, ..., Ki+1

� 1;

2. For i = 1, ..., N � 1, ȳi which is the initial condition of state variable at the

beginning of the time subdomain Ki, ..., Ki+1

.

Define ȳ
0

def

= y
given

for notation simplicity and note that ȳ
0

is not an optimization

variable but a constant. Then, for i = 0, ..., N � 1, let yi(ȳi, ūi) that consists of

yi,K
i

(ȳi, ūi), ..., yi,K
i+1

(ȳi, ūi)

For i = 0, ..., N � 1, denotes the solution of the following state equations in the

subdomain Ki, ..., Ki+1

,

yi,k+1

= Akyi,k +Bkūi,k + ck k = Ki, ..., Ki+1

� 1

yi,K
i

= ȳi

(4.2.1)

With Q
0

def

= 0, d
0

def

= 0 for notation simplicity, problem (3.1.1) is equivalent to

min
ȳ,ū

N�1X

i=0

K
i+1X

k=K
i

+1

⇥1
2
yTi,k(ȳi, ūi)Qkyi,k(ȳi, ūi) + dTk yi,k(ȳi, ūi)

+
1

2
ūT
i,k�1

Rk�1

ūi,k�1

+ eTk�1

ūi,k�1

⇤

subject to yi,K
i+1

(ȳi, ūi) = ȳi+1

i = 0, ..., N � 2

(4.2.2)
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It has Lagrangian

L(ȳ, ū, p̄) =
N�1X

i=0

K
i+1X

k=K
i

+1

⇥1
2
yTi,k(ȳi, ūi)Qkyi,k(ȳi, ūi) + dTk yi,k(ȳi, ūi)

+
1

2
ūT
i,k�1

Rk�1

ūi,k�1

+ eTk�1

ūi,k�1

⇤

+
N�2X

i=0

p̄Ti+1

(yi,K
i+1

(ȳi, ūi)� ȳi+1

)

(4.2.3)

To compute its gradients with respect to ȳ, ū, p̄, define

L̂(ȳ, ū, p̄; y, p) =
N�1X

i=0

K
i+1

�1X

k=K
i

⇥1
2
yTi,kQkyi,k + dTk yi,k +

1

2
ūT
i,k�1

Rk�1

ūi,k�1

+ eTk�1

ūi,k�1

⇤

+
N�2X

i=0

p̄Ti+1

(yi,K
i+1

� ȳi+1

)

+
N�1X

i=0

K
i+1

�1X

k=K
i

pTi,k(Akyi,k +Bkūi,k + ck � yi,k+1

)

+
N�1X

i=0

pTi,K
i

�1

(ȳi � yi,K
i

)

(4.2.4)

Setting derivatives to zero with respect to yi,k with all proper subscripts yields the

following adjoint equations of adjoint variables p and µ, for i = 0, ..., N � 2,

p̄i+1

� pi,K
i+1

�1

= 0

Qkyi,k + dk + AT
k pi,k � pi,k�1

= 0 i = Ki+1

� 1, ..., Ki

(4.2.5)

For i = 0, ..., N � 2, let pi(ȳi, ūi, p̄i+1

), consisting of

pi,K
i

�1

(ȳi, ūi, p̄i+1

), ..., pi,K
i+1

�1

(ȳi, ūi, p̄i+1

)

be the solution of adjoint equations

p̄i+1

� pi,K
i+1

�1

= 0

Qkyi,k(ȳi, ūi) + dk + AT
k pi,k � pi,k�1

= 0 k = Ki+1

� 1, ..., Ki

(4.2.6)

Note that in (4.2.6), the adjoint variable for the state continuity constraint at time

step Ki+1

is the terminal condition for the adjoint equation at step Ki+1

� 1.
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Similarly for the last time subdomain N � 1,

QK
N

yN�1,K
N

+ dK
N

� pN�1,K
N

�1

= 0

QkyN�1,k + dk + AT
k pN�1,k � pN�1,k�1

= 0 k = KN � 1, ..., KN�1

(4.2.7)

let pN�1

(ȳN�1

, ūN�1

), consisting of

pN�1,K
N�1

�1

(ȳN�1

, ūN�1

), ..., pN�1,K
N

�1

(ȳN�1

, ūN�1

)

be the solution of adjoint equations

QK
N

yN�1,K
N

(ȳN�1

, ūN�1

) + dK
N

� pN�1,K
N

�1

= 0

QkyN�1,k(ȳN�1

, ūN�1

) + dk + AT
k pN�1,k � pN�1,k�1

= 0 k = KN � 1, ..., KN�1

(4.2.8)

Then, analogous to the result of the continuous time case (4.1.6),

@L(ȳ, ū, p̄)
@ȳi

= pi,K
i

�1

� p̄i i = 1, ..., N � 1 (4.2.9a)

@L(ȳ, ū, p̄)
@ūi,k

= Rkūi,k + ek +BT
k pi,k i = 0, ..., N � 1; k = Ki, ..., Ki+1

� 1 (4.2.9b)

@L(ȳ, ū, p̄)
@p̄i

= yi,K
i+1

� ȳi i = 0, ..., N � 2 (4.2.9c)

According to (4.2.9), define the jumps in state and adjoint,

ŷ
def

=

2

6666664

y
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� ȳ
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y
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2

� ȳ
2

...

yN�2,K
N�1

� ȳN�1
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7777775
, p̂

def

=

2

6666664

p
1,K

1

�1

� p̄
1

p
2,K

2

�1

� p̄
2

...

pN�1,K
N�1

�1

� p̄N�1

3

7777775
, (4.2.10)
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and the gradient-type vector,

g
def

=

2

6666666666666666666666666666666664
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(4.2.11)

I omitted the arguments ȳ, ū, p̄ of p̂, g and ŷ when it does not lead to confusion. Then,

(4.2.9) is summarized into

rL(

2

6664

ȳ

ū

p̄

3

7775
) =

2

6664

p̂(ȳ, ū, p̄)

g(ȳ, ū, p̄)

ŷ(ȳ, ū, p̄)

3

7775
(4.2.12)

By (4.2.12), it is clear that to find the tuple (ȳ, ū, p̄) such that there are no jumps

in state/adjoint, i.e., ŷ = 0 and p̂ = 0, and the gradient-type vector g vanishes is

equivalent to solve the saddle point problem

rL(

2

6664

ȳ

ū

p̄

3

7775
) = 0. (4.2.13)

It is easy to verify the generalized parallel-in-time gradient-type algorithm (refer

to Section 3.4 for the generalized parallel-in-time gradient-type method framework
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context) with

sFi = Ki, eFi = Ki+1

i = 0, ..., N � 1

sBi = Ki � 1, eBi = Ki+1

� 1 i = 1, ..., N � 1

sB
0

= K
0

, eB
0

= K
1

� 1

(4.2.14)

is implicitly performing the updating
2

6664

ȳ(j+1)

ū(j+1)

p̄(j+1)

3

7775
=

2

6664

ȳ(j)

ū(j)

p̄(j)

3

7775
�R(↵)rL(

2

6664

ȳ(j)

ū(j)

p̄(j)

3

7775
) (4.2.15)

where

R(↵)
def

=

2

6664

0 0 �I
(N�1)⇥n

y

0 ↵IK⇥n
u

0

�I
(N�1)⇥n

y

0 0

3

7775
(4.2.16)

where the gradient is arranged in the order of ȳ, ū, and p̄. Note that the length of

ȳ and p̄ is (N � 1)ny and the length of ū is Knu. ↵ is the step size parameter in

parallel-in-time gradient-type method.

According to (4.2.15), the parallel-in-time gradient-type method is updating con-

trol and shooting variables by a rotated and scaled gradient to solve a saddle point

problem (4.2.13). In the next section, I prove its convergence.

4.3 Convergence Proof by Multiple-Shooting For-

mulation

In Section 3.5, I have showed that with su�ciently small positive step size ↵, the gen-

eralized parallel-in-time gradient-type method converges and therefore the iterations

defined by (4.2.15) converges. In this section, I prove the convergence of (4.2.15) from

the multiple shooting point of view which draws some new insights into the parallel-

in-time gradient method. Note that, compared to the proof in this section, the proof

given in the previous Section 3.5 for the generalized parallel-in-time gradient-type
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method is for a broader class of algorithms where partitions arrangement allows a

higher degree of flexibility.

After the convergence proof, at the end of section, I present discussion on how

to determine if the step size in use leads to convergence according to the observ-

able quantities during the iterations. The discussion reveals some properties of the

iterations, but does not leads to a good way of such determination.

For the multiple shooting reformulated linear-quadratic problem (4.2.2), the con-

stant valued Hessian matrix HL of the Lagrangian L(ȳ, ū, p̄) in (4.2.3) is symmetric

indefinite, see Figure A.4 for an example of explicitly constructed HL. To used a

gradient based method to solve a general saddle point problem is not trivial.

For problem (4.2.2), with generic complex vectors ȳ, ū, p̄, the mapping

2

6664

ȳ

ū

p̄

3

7775
! rL(

2

6664

ȳ

ū

p̄

3

7775
)

is a�ne. Let ȳ⇤, ū⇤, p̄⇤ be the optimal solution of (4.2.2) and then

rL(

2

6664

ȳ⇤

ū⇤

p̄⇤

3

7775
) = 0 (4.3.1)

Therefore, by (4.3.1),

rL(

2

6664

ȳ

ū

p̄

3

7775
) = rL(

2

6664

ȳ

ū

p̄

3

7775
)�rL(

2

6664

ȳ⇤

ū⇤

p̄⇤

3

7775
) = HL

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
(4.3.2)

Insert (4.3.2) into (4.2.15) and subtract the optimal solution from both sides,

2

6664

ȳ(j+1) � ȳ⇤

ū(j+1) � ū⇤

p̄(j+1) � p̄⇤

3

7775
= [I �W(↵)]

2

6664

ȳ(j) � ȳ⇤

ū(j) � ū⇤

p̄(j) � p̄⇤

3

7775
(4.3.3)
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with, R(↵) defined in (4.2.16),

W(↵)
def

= R(↵)HL =

2

6664

0 0 �I
(N�1)⇥n

y

0 ↵IK⇥n
u

0

�I
(N�1)⇥n

y

0 0

3

7775
HL (4.3.4)

In the following of this section, I will show the spectra radius of [I�W(↵)] is strictly

less than one with su�ciently small positive ↵. Note that since [I �W(↵)] is asym-

metric, some eigenvalues are possibly complex. To examine the spectral radius of

[I �W(↵)], complex vectors ȳ, ū, p̄ will be involved, although in the parallel-in-time

gradient-type iterations, only real vectors are generated.

First I show [I�W(0)] only has eigenvalue 0 and 1. In the case of N time subdo-

mains, 2N � 1 steps of parallel-in-time gradient-type method (4.2.15) with step size

↵ = 0, i.e. no control update, lead to the feasible state and adjoint variables corre-

sponding to the control and by executing further steps no modification of shooting

variables ȳ and p̄ will be made. In other words, for all complex vectors ȳ, ū, p̄ with

proper dimensions,

[I�W(↵)]2N�1

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= [I�W(↵)]2N�1+j

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
j = 1, 2, 3, ... (4.3.5)

Because any eigenvector [ȳ� ȳ⇤, ū� ū⇤, p̄� p̄⇤] corresponding to a non 0/1 eigenvalue

does not satisfy (4.3.5), [I � W(0)] only has 0/1 eigenvalues and thus W(0) also

only has 0/1 eigenvalues. To investigate the eigenvalues of [I � W(↵)], I focus on

W(↵) and in particular those eigenvalues of W(↵) around zero with small ↵. I will

show with su�ciently small positive ↵, those eigenvalues are to the right of zero, i.e.,

Lemma 4.3.2. Before the proofs, I state several useful observations.

• For ↵ 6= 0, W(↵) is nonsingular and equivalently does not have a zero eigen-

value. Since, otherwise, exist ȳ, ū, p̄ corresponding to the eigenvector of zero
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eigenvalue, i.e.
2

6664

�ŷ

↵g

�p̂

3

7775
= W(↵)

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= 0 ·

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= 0

which leads to ŷ = 0, p̂ = 0, i.e. state/adjoint feasible, and thus the true

gradient rĴ(ū) = g = 0 for ↵ 6= 0. Then, ȳ = ȳ⇤, ū = ū⇤, p̄ = p̄⇤ and
2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= 0

which contradicts with the assumption that it is an eigenvector.

• The eigenvalues of W(↵) around zero approach zero as ↵ goes to zero, i.e.,

lim
↵!0

max{|�||9x s.t. W(↵)x = �x and |�| < 0.5} = 0 (4.3.6)

This is a result of continuity of polynomial roots with respect to the polynomial

coe�cients since W(0) has 0 and 1 as its only eigenvalues.

• For ↵ � 0, if ȳ, ū, p̄ is corresponding to a W(↵) eigenvector of eigenvalue � 6= 1,

then ū 6= ū⇤. Consider
2

6664

�ŷ

↵g

�p̂

3

7775
= W(↵)

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= �

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
(4.3.7)

By examining the forward/backward computation, it can be seen that, if the

control ū = ū⇤, then the shooting variable error is equal to the negative jump,

i.e.,

ȳK
1

� ȳ⇤K
1

= �(yK
1

� ȳK
1

) = �ŷ

since ȳ⇤K
1

= yK
1

when control is optimal. Therefore, if ȳK
1

� ȳ⇤K
1

6= 0, by (4.3.7),

� = 1. Otherwise, if ȳK
1

� ȳ⇤K
1

= 0, look at subdomain boundary at K
2

and
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repeat similar arguments. This argument summarizes to (4.3.8).

8
><

>:

ū� ū⇤ = 0

ȳ � ȳ⇤ 6= 0
) � = 1 and

8
>>>>><

>>>>>:

ū� ū⇤ = 0

ȳ � ȳ⇤ = 0

p̄� p̄⇤ 6= 0

) � = 1 (4.3.8)

Then, if � 6= 1,

ū� ū⇤ = 0 )

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= 0

which leads to this bullet point fact.

Lemma 4.3.1 If control ū 2 CKn
u and shooting variables ȳ, p̄ 2 C(N�1)n

y are corre-

sponding to an eigenvector of W(↵) with eigenvalue � 2 C, i.e.,
2

6664

�ŷ

↵g

�p̂

3

7775
= W(↵)

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= �

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
(4.3.9)

then, exists r > 0, C > 0, for all 0  |�|  r,

krĴ(ū)� gk  C|�|krĴ(ū)k (4.3.10)

where rĴ(ū) is the true gradient of the reduced control space objective function.

Proof: In this proof, I relate both of krĴ(ū) � gk and krĴ(ū)k to kū � ū⇤k

respectively and thus compare their magnitude via their relationship with kū� ū⇤k.

First, by rĴ(ū) = H(ū � ū⇤) with H being the positive definite Hessian of the

reduced control space objective function defined in (3.1.8),

krĴ(ū)k = kH(ū� ū⇤)k � �
min

(H)kū� ū⇤k (4.3.11)

Second, examine krĴ(ū) � gk. The following steps maneuver the forward/back

computation formula and state/adjoint jumps so that an upper bound of krĴ(ū)�gk
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notation definition notation definition

ū control variable

ȳ state shooting variable ŷ state jump, as in (4.2.10)

y computed state-type variable ỹ y = L(Bū+ c) + y
0

, as in (3.1.5)

p̄ adjoint shooting variable p̂ adjoint jump, as in (4.2.10)

p computed adjoint-type variable p̃ p = LT (Qy + d), as in (3.1.6)

Table 4.1: Notations for the Proof of Lemma 4.3.1. Variables with superscript “*”

are corresponding to the optimal solution.

by kū � ū⇤k, (4.3.27), can be derived. Symbols B,L,Q are defined in Section 3.1. I

will use additional notations in Table 4.1. y,p are the state/adjoint variables corre-

sponding to all time steps computed in the parallel-in-time gradient-type method, as

opposed to shooting variables ȳ, p̄ which only represents state/adjoint at the subdo-

main boundaries. ỹ, p̃ are the feasible state and adjoint corresponding to the current

control ū, as opposed to y,p which are state-type and adjoint-type vector computed

in the parallel algorithm. By the formula to compute gradient and gradient-type

vector,

rĴ(ū)� g = BT (p̃� p) (4.3.12)

The di↵erence between the true adjoint variables p̃ corresponding to ū, ỹ and the

adjoint type vector computed in parallel-in-time gradient-type algorithm is caused by

the di↵erence between states and the adjoint jumps on time subdomain boundaries,

p̃� p = LTQ(ỹ � y) +Mpp̂

= LTQ(ỹ � y)� �Mp(p̄� p̄⇤)
(4.3.13)
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where Mp characterizes the influence of the adjoint jump to the adjoint-type vectors,
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Kn
y

⇥(N�1)n
y

The di↵erence between the true state variables ỹ corresponding to the control ū

and the state type vector computed in parallel-in-time gradient-type algorithm is the

result of the state jumps,

ỹ � y = Myŷ = �My�(ȳ � ȳ⇤) (4.3.14)
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where
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Let [Zy](N�1)n
y

⇥Kn
y

be the matrix form of the linear operator that only keep state

shooting variables given input vectors of states from all time steps, then,

ȳ � ȳ⇤ = Zy[y � y⇤] = Zy[ỹ �Myŷ � y⇤]

= Zy[LB(ū� ū⇤)�Myŷ]

= Zy[LB(ū� ū⇤) + �My(ȳ � ȳ⇤)]

(4.3.15)

which is rearranged into

[I� �ZyMy](ȳ � ȳ⇤) = ZyLB(u� u⇤)
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Exists r
1

> 0 such that when

0  |�|  r
1

(4.3.16)

the LHS matrix [I� �ZyMy] is invertible and thus

ȳ � ȳ⇤ = [I� �ZyMy]
�1ZyLB(u� u⇤) (4.3.17)

When (4.3.16) holds, exist C
1

> 0 such that

kȳ � ȳ⇤k  kI� �ZyMy]
�1ZyLBkkū� ū⇤k  C

1

kū� ū⇤k (4.3.18)

Similarly, let [Zp](N�1)n
y

⇥Kn
y

be the matrix form of the linear operator that only keep

adjoint shooting variables given input vectors of adjoints from all time steps,

p̄� p̄⇤ = Zp[p� p⇤]

= Zp[L
TQ(y � y⇤)�Mpp̂]

= Zp[L
TQ(y � ỹ) + LTQ(ỹ � y⇤) + �Mp(p̄� p̄⇤)]

(4.3.19)

and

ỹ � y⇤ = LB(ū� ū⇤) (4.3.20)

Substitute terms in (4.3.19) using (4.3.20) and (4.3.14),

[I� �ZpMp](p̄� p̄⇤) = �ZpL
TQMy(ȳ � ȳ⇤) + ZpL

TQLB(ū� ū⇤) (4.3.21)

Exists r
2

> 0 such that when

0  |�|  r
2

(4.3.22)

the LHS matrix [I� �ZpMp] is invertible and thus

p̄� p̄⇤ = [I� �ZpMp]
�1[�ZpL

TQMy(ȳ � ȳ⇤) + ZpL
TQLB(ū� ū⇤)] (4.3.23)

When (4.3.16) and (4.3.22) holds, using (4.3.18), exist C
2

, C
3

> 0 such that

kp̄� p̄⇤k |�|k[I� �ZpMp]
�1ZpL

TQMykkȳ � ȳ⇤k

+kI� �ZpMp]
�1ZpL

TQLBkkū� ū⇤k

C
2

kȳ � ȳ⇤k+ C
3

kū� ū⇤k

(C
1

C
2

+ C
3

)kū� ū⇤k

(4.3.24)
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By (4.3.14) and (4.3.18),

kỹ � yk =k �My�(ȳ � ȳ⇤)k

|�|kMykkȳ � ȳ⇤k

C
1

|�|kMykkkū� ū⇤k

(4.3.25)

Define C
4

def

= C
1

kMyk and thus

kỹ � yk  C
4

|�|kū� ū⇤k (4.3.26)

Using (4.3.12), (4.3.13), and the two bounds obtained above, (4.3.24) and (4.3.26),

krĴ(ū)� gk kBkkp̃� pk

kBk[kLTQkkỹ � yk+ �kMpkkp̄� p̄⇤k]

kBk[C
1

|�|kLTQkkMykkkū� ū⇤k+ (C
1

C
2

+ C
3

)|�|kMpkkū� ū⇤k]

=
⇥
kBk(C

1

kLTQkkMykk+ (C
1

C
2

+ C
3

)kMpk)
⇤
|�|kū� ū⇤k

(4.3.27)

Let

C
def

=
kBk(C

1

kLTQkkMykk+ (C
1

C
2

+ C
3

)kMpk)
�
min

(H)

and

r = min(r
1

, r
2

)

Then, when

|�|  r

by (4.3.11),

krĴ(ū)� gk C|�|�
min

(H)kū� ū⇤k

C|�|krĴ(ū)k
which concludes the proof ⇤

The result (4.3.10) of Lemma 4.3.1 is intuitive in the sense that, when � is small,

the state/adjoint jumps ŷ, p̂ are relatively small compared to the shooting variables.

Making use of Lemma 4.3.1, I can characterize the location of eigenvalues of W(↵)

in the next lemma.
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Lemma 4.3.2 For any k > 0, exists ↵̄ > 0 such that for all 0 < ↵ < ↵̄, any

eigenvalue � of W(↵) with |�| < 0.5 is in the cone

Ĉk
def

= {z 2 C : Re(z) > 0 and | Im(z)|/Re(z) < k} (4.3.28)

Proof: Let � be an eigenvalue of W(↵), with

|�| < 0.5 (4.3.29)

There are corresponding controls ū, shooting variables ȳ, p̄, state/adjoint jumps ŷ, p̂,

and gradient-type vector g such that

2

6664

�ŷ

↵g

�p̂

3

7775
= W(↵)

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
= �

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
(4.3.30)

Then,

�(ū� ū⇤) = ↵g

H(ū� ū⇤) = rĴ(ū)

where H, defined in (3.1.8), is the Hessian of the reduced control space objective

function Ĵ(ū) (control as the only argument, no multiple shooting). For ↵ > 0,

(H� �

↵
)(ū� ū⇤) = rĴ(ū)� g

Let r and C be given by Lemma 4.3.1, when

|�| < r (4.3.31)

The following holds, where �
min

(·) stands for the smallest singular value of a matrix,

�
min

(H� �

↵
)kū� ū⇤k  k(H� �

↵
)(ū� ū⇤)k = krĴ(ū)� gk

|�|CkrĴ(ū)k = |�|CkH(u� u⇤)k  |�|CkHkku� u⇤k
(4.3.32)

By the fact discussed earlier,
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• For any ↵ 6= 0, any eigenvalue of W(↵) is non-zero,

� 6= 0 (4.3.33)

• For 0 < |�| < 1, the control part in the eigenvector is not the optimal control,

kū� ū⇤k 6= 0 (4.3.34)

Then, using (4.3.34), the inequality (4.3.32) can be reduced to

�
min

(H� �

↵
)  |�|CkHk (4.3.35)

Note that
r

(�
min

(H)� Re�

↵
)2 + (

Im�

↵
)2 = |�

min

(H)� �

↵
|  �

min

(H� �

↵
) (4.3.36)

and therefore, by (4.3.35) and (4.3.36),
8
><

>:

|�
min

(H)� Re�
↵

|  |�|CkHk

| Im�
↵

|  |�|CkHk

Using (4.3.6),
8
><

>:

lim↵!0

max
�
|�

min

(H)� Re�
↵

| : 9x s.t. W(↵)x = �x and |�| < 0.5
 

= 0

lim↵!0

max
�
| Im�

↵
| : 9x s.t. W(↵)x = �x and |�| < 0.5

 
= 0

and therefore

lim
↵!0

max

⇢
|Im�

Re�
| : 9x s.t. W(↵)x = �x and |�| < 0.5

�

 lim
↵!0

max
�
| Im�

↵
| : · · ·

 

min
�
|Re�

↵
| : · · ·

  lim
↵!0

max
�
| Im�

↵
| : · · ·

 

min
�
�
min

(H)� |�
min

(H)� Re�
↵

| : · · ·
 

= lim
↵!0

max
�
| Im�

↵
| : · · ·

 

�
min

(H)�max
�
|�

min

(H)� Re�
↵

| : · · ·
 

=0

which concludes the proof. ⇤
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Using Lemma 4.3.2, the convergence of iteration (4.2.15) can be readily proven using

the argument that with su�ciently small ↵ > 0, the spectral radius of [I �W(↵)] in

(4.3.3) is less than 1.

Theorem 4.3.3 With su�ciently small ↵ > 0,

⇢(I �W(↵)) < 1

Proof: For small ↵, there are eigenvalues around 0 and 1. For those around one, in

this proof, I will make use of the cone defined in (4.3.28) of Lemma 4.3.2 to show they

are inside the unit circle. So, all eigenvalues are in the unit circle. Details follow.

Since I�W(↵) only has eigenvalue 0 and 1, by the continuity of eigenvalues with

respect to matrix coe�cients, exist ↵̄
1

> 0 such that with

↵  ↵̄
1

(4.3.37)

All eigenvalues are around 0 and 1, i.e.,

{� 2 C : 9x s.t. (I�W(↵))x = �x} ⇢ B(0, 0.5) [ B(1, 0.5) (4.3.38)

To use Lemma 4.3.2, let k = 1 and by Lemma 4.3.2, exists ↵̄
2

> 0 such that with

0 < ↵  ↵̄
2

(4.3.39)

the eigenvalues of W(↵) around 0 is in a cone, i.e.,

{� 2 C : 9x s.t. W(↵)x = �x and |�| < 0.5} ⇢ Ĉ
1

(4.3.40)

with Ĉ
1

defined in (4.3.28). Looking at I�W(↵) instead of W(↵), (4.3.40) is equiv-

alent to

{� 2 C : 9x s.t. (I�W(↵))x = �x and |�| > 0.5}

⇢ {z 2 C : Re(z) < 1 and | Im(z)|/(1� Re(z)) < 1}
(4.3.41)

By (4.3.38),

{� 2 C : 9x s.t. (I�W(↵))x = �x}

= {� 2 C : 9x s.t. (I�W(↵))x = �x and � 2 B(0, 0.5)}

[ {� 2 C : 9x s.t. (I�W(↵))x = �x and � 2 B(1, 0.5)}

(4.3.42)
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By (4.3.41), the second set in the union in (4.3.42),

{� 2 C : 9x s.t. (I�W(↵))x = �x and � 2 B(1, 0.5)}

= {� 2 C : 9x s.t. (I�W(↵))x = �x and � 2 B(1, 0.5)}

\ {z 2 C : Re(z) < 1 and | Im(z)|/(1� Re(z)) < 1}

⇢B(0, 1)

(4.3.43)

Then both sets in the RHS of (4.3.42) are subsets of B(0, 1) which concludes the

proof that

{� 2 C : 9x s.t. (I�W(↵))x = �x} ⇢ B(0, 1)

given ↵ satisfies (4.3.37) and (4.3.39).

⇤

So far, the alternative convergence proof of the parallel-in-time gradient-type method

applied to linear-quadratic problem (3.1.1) is finished.

How to choose step size. In this convergence proof, similar to Section 3.5, I

only showed the guaranteed convergence given su�ciently small step size. However,

the proof does not shed light on how one should run an parallel-in-time gradient-

type method based algorithm to guarantee convergence, i.e., how to choose step size,

when to discard recent steps and return to a previous step, etc. I present the following

discussion related to the desired ability of determing, according to quantities observed

in the parallel-in-time gradient-type iteration, a step size that leads to convergence.

However, the discussion does not lead to a way of choosing step size.

The iterates in the iteration (4.3.3), namely,
2

6664

ȳ(j+1) � ȳ⇤

ū(j+1) � ū⇤

p̄(j+1) � p̄⇤

3

7775
= [I�W(↵)]

2

6664

ȳ(j) � ȳ⇤

ū(j) � ū⇤

p̄(j) � p̄⇤

3

7775
= [I�R(↵)HL]

2

6664

ȳ(j) � ȳ⇤

ū(j) � ū⇤

p̄(j) � p̄⇤

3

7775
.

is not directly observable since the optimal solution ȳ⇤, ū⇤, p̄⇤ is unknown. I rewrite

the iteration into another form where the iterates are explicitly known. Multiply HL
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on both sides of (4.3.3) yields

HL

2

6664

ȳ(j+1) � ȳ⇤

ū(j+1) � ū⇤

p̄(j+1) � p̄⇤

3

7775
= [I�HLR(↵)]HL

2

6664

ȳ(j) � ȳ⇤

ū(j) � ū⇤

p̄(j) � p̄⇤

3

7775
. (4.3.44)

Since both HL and R(↵) are symmetric,

[I�HLR(↵)] = [I�R(↵)HL]
T = [I�W(↵)]T .

By (4.3.2) and (4.2.12),

HL

2

6664

ȳ � ȳ⇤

ū� ū⇤

p̄� p̄⇤

3

7775
=

2

6664

p̂(ȳ, ū, p̄)

g(ȳ, ū, p̄)

ŷ(ȳ, ū, p̄)

3

7775
(4.3.45)

where ŷ, g, p̂ are defined in (4.2.10) and (4.2.11). Then, the implicit iteration is derived

on the state/adjoint jumps and the gradient-type vector, which are readily observable

after each iteration, 2

6664

ŷ(j+1)

g(j+1)

p̂(j+1)

3

7775
= [I�W(↵)]T

2

6664

ŷ(j)

g(j)

p̂(j)

3

7775
. (4.3.46)

The newly derived (4.3.46) is closely related to (4.3.3). Note that

⇢([I�W(↵)]T ) = ⇢([I�W(↵)])

and by (4.3.45) and HL being non-singular,

2

6664

ŷ(j)

g(j)

p̂(j)

3

7775
= 0 ,

2

6664

ȳ(j) � ȳ⇤

ū(j) � ū⇤

p̄(j) � p̄⇤

3

7775
= 0

The iterates in iteration (4.3.46) is observable, however, one can not adjust step

size directly according to the change in norm of the iterates. It is worth noting that

it is proved above that with small ↵, the spectral radius ⇢(I�W(↵)) < 1, however,
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Figure 4.2: Plot of k(I � W(↵))kk
2

against k. In the legend, ⇢((I � W(↵)) is also

appended.

the 2-norm of the asymmetric iteration matrix kI�W(↵)k
2

is often greater than 1 in

the case number of subdomains N > 1. In the some cases, it might requires a large

power k so that

k(I�W(↵))kk
2

< 1

Experiment shows that it is not necessary that

min
�
k 2 Z+ : k(I�W(↵))kk

2

< 1
 

can be bounded by a function of number of time subdomains.

I demonstrate this by an example problem (A.3.2) with K = 200, ⇢ = 0.9, r = 0.1

and N = 10 time subdomains. Note that below, the notation ⇢ refers to ⇢((I �

W(↵)) rather than the problem parameter above. Step size ↵ = 0.01 approximately

minimizes ⇢((I � W(↵)) which leads to ⇢((I � W(↵)) = 0.9925. In Figure 4.2,

for three di↵erent step sizes, I plot k(I � W(↵))kk
2

against k. In the case when

⇢((I�W(↵)) < 1, it requires a big power k so that k(I�W(↵))kk
2

< 1.
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Figure 4.3: Ratio k
�
(ŷ(j+1))T , (g(j+1))T , (p̂(j+1))T

�
k/k

�
(ŷ(j))T , (g(j))T , (p̂(j))T

�
k against

iteration index j. Step size ↵ = 0.01. Random initial ŷ(0), g(0), p̂(0) is used.

It is also natural to check the ratio between norms of consecutive iterates, i.e.,

k

2

6664

ŷ(j+1)

g(j+1)

p̂(j+1)

3

7775
k/k

2

6664

ŷ(j)

g(j)

p̂(j)

3

7775
k (4.3.47)

in (4.3.46) in Figure 4.3. In this case with random initial ŷ(0), g(0), p̂(0), it takes many

iterations before this ratio is stably below 1.

In conclusion, currently, for linear-quadratic problem, although it is proved that

for su�ciently small ↵ > 0, it is true that ⇢((I�W(↵)) < 1, I do not have an e�cient

method to determine if a step size ↵ leads to ⇢((I�W(↵)) < 1. One possible direction

is to investigate the conjecture that, if the iteration is initialized by a full gradient

sweep, i.e., 2N � 1 steps of ↵ = 0 iteration, then a su�ciently small fixed step size
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↵ > 0 leads to the monotonic decreasing of the norm of the iterates in (4.3.46) and

also the convergence to the optimal solution.

4.4 Summary

In this chapter, I revealed the connection between the parallel-in-time gradient-type

method and the direct multiple shooting reformulation of the optimization problem.

I showed that the gradient of the multiple shooting formulation Lagrangian contains

three components that are key quantities in the parallel-in-time gradient-type method:

• the state variable jumps at the subdomain boundaries,

• the adjoint variable jumps at the subdomain boundaries,

• and the gradient-type vector in the parallel-in-time gradient-type method.

By this fact, the parallel-in-time gradient-type method is interpreted as applying

rotated and scaled gradient updates to solve the multiple shooting formulation opti-

mality system. For linear-quadratic problems, This optimality system is symmetric

positive indefinite and therefore solving this optimality system is to solve a saddle

point problem. I proved that the gradient-type update results from the parallel-in-

time gradient-type method, with su�ciently small fixed step size, is guaranteed to

converge to the optimal solution, i.e., to solve the saddle point problem. The proof

is using spectral radius argument of another iteration matrix di↵erent from the im-

plicitly constructed iteration matrix used in the convergence proof in Section 3.5.

However, although the parallel-in-time gradient-type method is guaranteed to

converge with su�ciently small step sizes, there is not a good way to determine how

small the step size should be.



Chapter 5

Parallel-In-Time Gradient-Type

Method in Nonlinear Problems

In this chapter, I prove the convergence of parallel-in-time gradient-type method ap-

plied to nonlinear optimization problems (as opposed to the linear-quadratic problem

(3.1.1) discussed in previous chapters) with su�cient small step size. In Section 3.5

and Section 4.3, convergence proofs are given for linear-quadratic problems which are

based on arguments using spectral radius of iteration matrices that arise from dif-

ference perspectives. The proofs I will provide in this chapter for general non-linear

problems rely less on linear algebra and the step sizes are not required to be fixed.

The convergence proof was written with the idea in mind that with su�ciently

small step size, the parallel-in-time gradient-type method should behave similarly to

the gradient method since with small step sizes, the gradient-type vector produced

by the parallel algorithm is similar to the true gradient and thus the control update

is similar to that of the gradient method. I point out that the su�ciently small step

size, which guarantees convergence by these following Lemmas and Theorems in this

chapter, is not particularly tight. Proofs are derived in the pursuit of “convergence

with su�ciently small step size” and not much e↵ort is devoted to obtaining a tight

upper bound of the “su�ciently small” step size. If I trace the proofs and find the step

112
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size upper bound, it might be too small for optimal convergence speed in practice.

A convergence theorem and proof that shares the same flavor for a related topic,

distributed asynchronous gradient optimization algorithms, was given in [TBA86].

Most proofs in this chapter are based on Lemma 5.2.1. I prove Lemma 5.2.1 for

the original parallel-in-time gradient-type method (same partition for forward/back

computation, no subdomain overlapping) written in the pseudo code form in Algo-

rithm 13. However, although not proved in this thesis a similar result is most likely

also true for the generalized method proposed in Section 3.4.

Since in some applications, as in the oil reservoir optimization problem discussed

in Chapter 6, the parallel-in-time gradient-type algorithm will be used in combina-

tion with metric projection in constrained problems where the control variables are

restricted in a closed convex set, in this chapter, majority of the proofs are for the

parallel-in-time gradient-type method combined with metric projection. These are

more general results than convergence theorems for the unconstrained problem, be-

cause the unconstrained problem can be seen as special constrained problem where

control variables are constrained in the whole space.

In the proofs, properties of projection onto closed convex set are extensively used.

In Section 5.1, I state with proofs a few standard results regarding metric projection

and some other useful projection properties, which are less seen in text books but

mostly interesting and intuitive, that will be used in this chapter.

Figure 5.1 illustrates the structure of this chapter by showing the dependence

between theorems. The proofs are organized as follows.

First, Lemma 5.2.1 proves an intuitive error bound between the gradient-type

vector and true gradient with the assumption that all generated control iterates stay

in a predetermined region. Then, with the similar assumption, Theorem 5.2.3 and

Proposition 5.2.7 proved convergence of the parallel method. This assumption is

restrictive and hard to verify. So, Theorem 5.2.5 and Corollary 5.2.6 used strong

convexity to replace the assumption mentioned above, so that a convergence theorem



114

L
em

m
a
5.2.1

G
rad

.T
yp

e
E
rr.

T
h
eorem

5.2.3

C
ontrol

U
p
d
ate

C
onv.

P
rop

osition
5.2.7

C
om

p
act

C
onv.

T
h
eorem

5.2.9

C
onvex

C
onv.

T
h
eorem

5.2.8

C
on

p
act

D
C
onv.

T
h
eorem

5.2.5

B
ou

n
d
1
C
ontrol

Iterate

C
orollary

5.2.6

B
ou

n
d
C
ontrol

Iterates

L
em

m
a
5.3.1

Iter.W
ise

G
rad

.T
yp

e
E
rr.

T
h
eorem

5.3.2

U
n
con

str.M
on

o.O
b
j.

T
h
eorem

5.3.3

U
n
con

str.M
on

o.D
ist.

T
h
eorem

5.3.5

C
on

str.M
on

o.O
b
j.

C
orollary

5.3.6

C
on

str.M
on

o.O
b
j.
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for convex problem Theorem 5.2.9 is proved. Alternatively, Theorem 5.2.8, rather

than adding the assumption of convexity, assumption that the projection set D is

compact is used.

Another branch starting with Lemma 5.3.1 in Figure 5.1 aims for monotonic con-

vergence results. Lemma 5.3.1 uses a mathematical induction type of proof to show,

with small step sizes, an iteration-wise error bound between the gradient-type vector

and true gradient can be given in contrast to the bound in Lemma 5.2.1 which involves

gradient-type vectors of previous iterations. Based on this lemma, Theorem 5.3.2 and

Theorem 5.3.3 develops proof of monotonic convergence in terms of objective func-

tion value and control error for unconstrained problem. For constrained problem,

Theorem 5.3.5 and Corollary 5.3.6 gave similar but slightly weaker results.

5.1 Metric Projection Properties

In this section, I give some metric projection properties since the parallel-in-time

gradient-type method convergence related proofs are given in the context of its being

combined with metric projection. All lemmas are intuitive, some of which are better

known in the standard texts and the rest of which I did not find proofs elsewhere

and thus I provide proofs here. All vector norms used are 2-norm (or, equivalently,

Frobenius norm) unless otherwise explained .

Given a closed convex set D 2 Rn, the metric projection onto D is defined as

follows, for any x 2 Rn,

PD(x)
def

= argmin
y2D

kx� yk
2

This is well defined for D being closed and convex.

The following standard result Lemma 5.1.1 characterizes metric projection onto a

closed convex set, on which most of the other lemmas rest.

Lemma 5.1.1 If D 2 Rn is a closed convex set and PD is the metric projection to
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D, �x 2 Rn, then

PD(x+ �x) = x ) (x� y)T �x � 0, 8y 2 D

Proof: Since PD(x+ �x) = x,

x = argmin
x02D

kx0 � (x+ �x)k. (5.1.1)

For all s 2 [0, 1], due to the convexity of D, x+ s(y � x) 2 D, by (5.1.1),

kx� (x+ �x)k  kx+ s(y � x)� (x+ �)k. (5.1.2)

Squaring both sides of (5.1.2) and rearranging terms leads to

(x� y)T �x � �s

2
ky � xk2

Since this inequality holds for all s 2 [0, 1], (x� y)T �x � 0 is proved. ⇤

The Lemma 5.1.2 states that 1 is a Lipschitz constant for the projection PD. In the

proofs of this chapter, Lemma 5.1.2 is sometimes used without reference to it.

Lemma 5.1.2 If D 2 Rn is a closed convex set and PD is the metric projection to

D, then

kPD(x)� PD(y)k  kx� yk 8x, y 2 Rn

Proof: The lemma is true when PD(x) = PD(y). Below, assume PD(x) 6= PD(y).

Define unit vector h
def

= [PD(y)� PD(x)]/kPD(y)� PD(x)k, then

y � x = [y � PD(y)] + [PD(y)� PD(x)] + [PD(x)� x]

The magnitude of y � x is greater than that of its projection onto the direction of h,

ky � xk � khhT
⇥
[y � PD(y)] + [PD(y)� PD(x)] + [PD(x)� x]

⇤
k

By Lemma 5.1.1, hT [y � PD(y)] � 0 and hT [PD(x)� x] � 0, therefore

ky � xk �khhT [PD(y)� PD(x)]k

=kPD(y)� PD(x)k
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v
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x

x+ kv

PD(x+ v)

PD(x+ kv)

D

Figure 5.2: Illustration for Lemma 5.1.3, Lemma 5.1.4, and Lemma 5.1.5 on the

relationship between the blue and red lengths and angles.

⇤

The following Lemma 5.1.3, Lemma 5.1.4, and Lemma 5.1.5 compare quantities

arising from a pair of related projection, see Figure 5.2 for illustration. Lemma 5.1.3

states that a greater o↵set leads to a greater o↵set after projection.

Lemma 5.1.3 If D ⇢ Rn is a closed convex set and PD is the metric projection to

D, x 2 D, v 2 Rn, and k � 1 then

kPD(x+ kv)� xk � kPD(x+ v)� xk
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Notation Definition

a PD(x+ v)� x

b x+ v � PD(x+ v)

c x+ kv � PD(x+ kv)

d PD(x+ kv)� PD(x+ v)

Table 5.1: Notations for the Proof of Lemma 5.1.3, Lemma 5.1.4, and Lemma 5.1.5

Proof: If k = 1, the lemma is true. Below, assume k > 1. In this and several

following proofs, slightly complex algebraic computation is involved, to simply the

equations I define notations in Table 5.1,

Decompose v and kv,

v = a+ b (5.1.3a)

kv = a+ c+ d (5.1.3b)

Multiply k on (5.1.3a) and combine the result with (5.1.3b),

(k � 1)a = �kb+ c+ d (5.1.4)

By Lemma 5.1.1,

�kbTd � 0

cTd � 0

Then, (5.1.4) and the assumption that k > 1 leads to

aTd =
�kbTd+ cTd+ kdk2

k � 1
� 0 (5.1.5)

Hence,

kPD(x+ kv)� xk2 = ka+ dk2

= kak2 + 2aTd+ kdk2

� kak2 = kPD(x+ v)� xk2

which concludes the proof. ⇤
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The following Lemma 5.1.4 together with the above Lemma 5.1.3 forms a pair of

upper and lower bound of kPD(x+ kv)� xk in terms of kPD(x+ v)� xk.

Lemma 5.1.4 If D ⇢ Rn is a closed convex set and PD is the metric projection to

D, x 2 D, v 2 Rn, and scalar k � 1 then

kkPD(x+ v)� xk � kPD(x+ kv)� xk

Proof: If k = 1, the lemma is true. Below, assume k > 1. Use the set of notations

defined in Table 5.1. To prove this lemma is to show

kkak � ka+ dk (5.1.6)

Since

k(a+ b) = a+ c+ d

by the assumption that k > 1,

a =
c+ d� kb

k � 1

The inequality (5.1.6) is equivalent to

kkc+ d� kb

k � 1
k2 � kc+ d� kb

k � 1
+ dk2

which, by rearranging terms, is equivalent to

kkck2 + kkkbk2 + kc� kbk2 + 2kcTd� 2k2bTd � 0 (5.1.7)

By Lemma 5.1.1, cd � 0 and bTd  0, and thus (5.1.7) holds, and subsequently (5.1.6)

holds, which concludes the proof. ⇤

Lemma 5.1.5 is related to the intuition that the more o↵set in the update direction

of v, the more the projected update deviates from the direction v.

Lemma 5.1.5 If D ⇢ Rn is a closed convex set and PD is the metric projection to

D, x 2 D, v 2 Rn, and k � 1 assume

PD(x+ v) 6= x (by Lemma 5.1.6, equivalently, PD(x+ kv) 6= x)
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then

vT
(PD(x+ kv)� x)

kPD(x+ kv)� xk  vT
(PD(x+ v)� x)

kPD(x+ v)� xk

Proof: Use the set of notations defined in Table 5.1. The assumption PD(x+v) 6= x

implies that ka+ bk 6= 0 and kak 6= 0. To prove this lemma is to show

(a+ b)T (a+ d)

ka+ dk  (a+ b)Ta

kak (5.1.8)

which, by rearranging terms, is equivalent to

kak2(aTd+ kdk2 � bTd) + aT b(2aTd+ kdk2) � 0 (5.1.9)

By (5.1.5) in Lemma 5.1.3, aTd � 0. By Lemma 5.1.1, aT b � 0 and bTd  0. So,

(5.1.9) and (5.1.8) are valid, which concludes the proof. ⇤

Lemma 5.1.6 states that the property of projected update of a point being itself

is a property of the update direction independent of the scaling of the update.

Lemma 5.1.6 If D ⇢ Rn is a closed convex set and PD is the metric projection to

D, x 2 D, v 2 Rn, and ↵ > 0 then

PD(x+ ↵v) = x , PD(x+ �v) = x, 8� > 0

Proof: If v = 0, the lemma is true. Below, assume v 6= 0. Only need to prove the

implication

PD(x+ ↵v) = x ) PD(x+ �v) = x, 8� > 0

For an arbitrary � > 0, there are two cases,

• If � � ↵, by Lemma 5.1.4,

kPD(x+ �v)� xk  �

↵
kPD(x+ ↵v)� xk = 0 (5.1.10)
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• If � < ↵, by Lemma 5.1.3,

kPD(x+ �v)� xk kPD(x+
↵

�
�v)� xk

=kPD(x+ ↵v)� xk

=0

(5.1.11)

In conclusion,

kPD(x+ �v)� xk = 0

⇤

Lemma 5.1.7 If D 2 Rn is a closed convex set and PD is the metric projection to

D, then

[x+ �x� PD(x+ �x)]T [PD(x+ �x)� x] � 0 8x, �x 2 Rn

�xT [PD(x+ �x)� x] � 0 8x, �x 2 Rn

and �xT [PD(x+ �x)� x] = 0 only when

�x = 0 or PD(x+ �x)� x = 0

see Figure 5.3.

Proof: By the definition of metric projection,

PD(PD(x+ �x) + [x+ �x� PD(x+ �x)]) = PD(x+ �x)

By Lemma 5.1.1,

(PD(x+ �x)� x)T [x+ �x� PD(x+ �x)] � 0

adding (PD(x+ �x)� x)T (PD(x+ �x)� x) � 0 onto the inequality above yields the

second result,

(PD(x+ �x)� x)T �x � 0

⇤
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�x

x+ �x

x

PD(x+ �x)

D

Figure 5.3: Illustration Lemma 5.1.7. The blue angle is no larger than ⇡/2.

5.2 Convergence in Constrained Problem

In this chapter, I consider the constrained Discrete-Time-Optimal-Control problem,

Minimize
KX

k=0

Jk(yk, uk) (5.2.1a)

subject to yk+1

= Fk(yk, uk), k = 0, ..., K � 1, (5.2.1b)

y
0

= y
given

(5.2.1c)

u 2 D (5.2.1d)

where u 2 Rn
u

⇥K and uk 2 Rn
u , k = 0, ..., K�1 denotes the kth component vector of

u representing the control variable for time step k. D ⇢ Rn
u

⇥K is a closed convex sets.

Frobenius norm is used for the space Rn
u

⇥K a direct result of which is the implication

relationship

u 2 B̄(u⇤, R) ⇢ Rn
u

⇥K ) uk 2 B̄(u⇤
k, R) ⇢ Rn

u for k = 0, ..., K � 1.

with generic u⇤ 2 Rn
u

⇥K and R > 0. The norm used in Rn
u is also Frobenius norm

(for vectors, it is the same as 2-norm).



123

In the context of this chapter, for u, v 2 Rn
u

⇥K , when they are seen as a whole

variable as opposed to the combination of K length nu vectors, they are treated as

long vectors of length Knu for common linear algebra operations. Particularly, when

inner product “uTv” is used, it refers to the vector inner product treating u and v as

“flattened” vectors of length Knu.

In some occasions, with S 2 Rn being a non-open set, I use notation Ck(S) with

k = 1, 2 to refer to function class that has k-th order continuous derivative in the set

S. This is not standard because usually di↵erentiability is defined in an open set. One

understands Ck(S) in the sense that functions in Ck(S) are defined on an open set

containing S and their k-th order derivatives are continuous in S. The notation Ck(S)

is used to describe functions Fk, yk, k = 0, ..., K � 1 and is used in Lemma 5.3.4, so

that the following implication can be used. In the case where S is compact, the k-th

derivative of a function in Ck(S) is bounded in S by the boundedness of continuous

function (i.e., the norm of the derivative) in a compact set.

Since the states y
1

, ..., yK are determined by controls u
0

, ..., uK � 1 by the state

equations (5.2.1b), the notation

Ĵ(u)
def

=
KX

k=0

Jk(yk(u0

, ..., uk�1

), uk)

is used to represent the reduced control space objective function. In some cases, rĴ

or r2Ĵ is used without di↵erentiability of Fk, Jk being explicitly assumed in advance.

In these cases, the di↵erentiability is not the central topic. Please assume that the

proper di↵erentiability assumption of Fk, Jk is valid.

The parallel gradient-type method with N time subdomains is combined with

metric projection. See Algorithm 13. The step sizes {↵j}1j=0

is arbitrary in the

algorithm but the convergence theorems below enforce restrictions on them.
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Algorithm 13 jth iteration of the parallel-in-time gradient-type method with step

size ↵j > 0. Describes the tasks executed by processor of rank n 2 {0, ..., N � 1}

1: Input control u(j)
K

n

, u
(j)
K

n

+1

, . . . , u
(j)
K

n+1

�1

. . initialization of the iteration

2: if n > 0 and j = 0 then

3: Input initial y(�1)

K
n

4: end if

5: if n < N � 1 and j = 0 then

6: Input initial p(�1)

K
n+1

7: end if

8: if n = 0 then . solve the state equation forward in time

9: y
(j)
K

n

+1

= FK
n

(y
given

, u
(j)
K

n

)

10: else

11: y
(j)
K

n

+1

= FK
n

(y(j�1)

K
n

, u
(j)
K

n

)

12: end if

13: for k = Kn + 1, . . . , Kn+1

� 1 do

14: y
(j)
k+1

= Fk(y
(j)
k , u

(j)
k )

15: end for

16: if n = N � 1 then . solve the adjoint equation backward in time

17: p
(j)
K

n+1

�1

=
@J

K

n+1

(y
(j)

K

n+1

,u
(j)

K

n+1

)

@y
(j)

K

n+1

18: else

19: p
(j)
K

n+1

�1

=
@J

K

n+1

(y
(j)

K

n+1

,u
(j)

K

n+1

)

@y
(j)

K

n+1

+ (
@F

K

n+1

(y
(j)

K

n+1

,u
(j)

K

n+1

)

@y
(j)

K

n+1

)Tp(j�1)

K
n+1

20: end if

21: for k = Kn+1

� 1, . . . , Kn + 1 do

22: p
(j)
k�1

=
@J

k

(y
(j)

k

,u
(j)

k

)

@y
(j)

k

+ (
@F

k

(y
(j)

k

,u
(j)

k

)

@y
(j)

k

)Tp(j)k

23: end for

(continued on next page)



125

24: for k = Kn, . . . , Kn+1

� 1 do . update control

25: u
(j+1)

k = PD(u
(j)
k � ↵j

h
@J

k

(y
(j)

k

,u
(j)

k

)

@u
(j)

k

+ (
@F

k

(y
(j)

k

,u
(j)

k

)

@u
(j)

k

)Tp(j)k

i
)

26: end for

27: if n > 0 then . communication between processors

28: send p
(j)
K

n

to rank n� 1

29: receive y
(j)
K

n

from rank n� 1

30: end if

31: if n < N � 1 then

32: send y
(j)
K

n+1

to rank n+ 1

33: receive p
(j)
K

n+1

from rank n+ 1

34: end if

5.2.1 Gradient-Type Vector Error Bound

Since the parallel-in-time gradient-type method breaks up the whole time domain into

several subdomains, the convergence analysis of the method involves state equation

corresponding to individual time steps instead of treating all state equations of all

time steps as a whole. To build the convergence theorems upon the state equations

properties, I introduce the notion of control set and state set to use frequently in this

chapter, U ⇢ Rn
u

⇥K and Y (U) ⇢ Rn
y

⇥K . Use notation Uk ⇢ Rn
u , k = 0, ..., K � 1 to

denote the sets of control variables corresponding to time step k.

U
def

= U
0

⇥ U
1

⇥ · · ·⇥ UK�1

Usually, it is assumed U is convex and equivalently each of Uk, k = 0, ..., K � 1, is

convex. Given U , define for k = 1, ..., K, convex hull Yk(U) ⇢ Rn
y ,

Yk(U)
def

= conv({yk|y0 = y
given

, yl+1

= Fl(yl, ul), ul 2 Ul, l = 0, ..., k � 1}) (5.2.2a)

and

Y (U) = Y
1

(U)⇥ Y
2

(U)⇥ ...⇥ YK(U), (5.2.2b)
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i.e., Yk(U) contains all states at time step k possibly generated by controls in U and

convex combination of them. Expression “u 2 U” is used to represent that “uk 2 Uk,

for k = 0, ..., K�1”. The convexity assumed above guarantees the Lipschitz continuity

assumptions made on these sets are well defined.

Use {↵i} to denote the step size used in the parallel-in-time gradient-type method,

where iteration i uses step size ↵i. Notation rJk is the gradient of Jk and rFk is the

Jacobian of Fk with respect to the combined argument [yTk , u
T
k ]

T .

The following Lemma 5.2.1 is simple in spirit and tedious (but still straightfor-

ward) in proof.

Lemma 5.2.1 If there exists U such that

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

Then, when the projected parallel-in-time gradient-type method with step size {↵j},

Algorithm 13, is applied to problem (5.2.1), exist ↵̄
rel.gs

> 0 and constants

GU ,MU , M̄U > 0 such that, for any 0  ↵̄  ↵̄
rel.gs

if for a certain i � 4(N � 1)

• 0  ↵j  ↵̄ for all i� 2(N � 1)  j < i

• u
(j)
k 2 Uk, for all 0  k  K � 1, for all i� 4(N � 1)  j  i

then, the gradient-type vector is bounded, i.e.,

kg(j)k  GU for i� 2(N � 1)  j  i

and

krĴ(u(i))� g(i)k  MU

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k

 ↵̄MU

2(N�1)X

j=1

kg(i�j)k  ↵̄M̄U

(5.2.3)

where the parallel-in-time gradient-type vector in optimization iteration i, g(i), at time

step k is

g
(i)
k

def

=
@Jk(y

(i)
k , u

(i)
k )

@u
(i)
k

+ (
@Fk(y

(i)
k , u

(i)
k )

@u
(i)
k

)Tp(i)k .
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See Algorithm 13 for other notations.

Note that,

• Step size upper bound ↵̄
rel.gs

is named so because this upper bound is used to

establish an inequality describing the relative relationship between the di↵erence

from g(i) to rĴ(u(i)) and consecutive g(i�1), g(i�2), ..., g(i�2(N�1)).

• Showed in the proof, given a problem, the value of ↵̄
rel.gs

only depends on U .

Proof: For the N = 1 case, the Lemma 5.2.1 is trivially true since for all i,

rĴ(u(i)) ⌘ g(i).

In the following proof, assume N > 1. Table 5.2 at the end of the proof summarizes

the proof steps below, which may serve as an atlas to the detailed proof.

Since

u
(j)
k 2 Uk, k = 0, ..., K � 1, j = i� 4(N � 1), ..., i,

we have

y
(j)
k 2 Yk(U), k = 1, ..., K, j = i� 3(N � 1), ..., i.

The boundedness and Lipschitz continuity below is in the context where

u
(j)
k 2 Uk, y

(j)
y 2 Yk(U) for all proper k , j = i� 3(N � 1), ..., i. (5.2.4)

By the assumed boundedness, I first show the computed p
(j)
k , j � i� 2(N � 1), for

all 0  k  K � 1, is bounded. Note that the “p(j)k ”s computed by Algorithm 13 are

not the actual adjoint variables but adjoint-type vectors resulted from the formula in

Algorithm 13 using a similar formula as the computation of adjoint variables.

By the boundedness of rJk, let BrJ be a constant such that krJkk2 < BrJ for

all time step k. For simplicity, I do not assign separate constants to the upper bounds

of rJk with respect to y and u respectively.
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Using rFk to denote the Jacobian of Fk, let BrF be a constant such that

krFkk2 < BrF for all time step k. Note that BrF is also an upper bound of rFk

with respect to y and u respectively.

For j � i � 2(N � 1), time subdomain n 2 {0, ..., N � 2}, and time step index

k 2 {Kn, ..., Kn+1

� 1}, by the following telescopic back substitution,

kp(j)k k = k
@Jk+1

(y(j)k+1

, u
(j)
k+1

)

@y
(j)
k+1

+ (
@Fk+1

(y(j)k+1

, u
(j)
k+1

)

@y
(j)
k+1

)Tp(j)k+1

k

 BrJ +BrFkp(j)k+1

k  BrJ +BrF (BrJ +BrFkp(j)k+2

k)

 (
K

n+1

�k�1X

s=0

Bs
rF )BrJ +B

K
n+1

�k
rF kp(j�1)

K
n+1

k

 (
K�2�kX

s=0

Bs
rF )BrJ +BK�1�k

rF kp(j�(N�1�n))
K�1

k

 (
K�2�kX

s=0

Bs
rF )BrJ +BK�1�k

rF BrJ = (
K�1�kX

s=0

Bs
rF )BrJ

 (
K�1X

s=0

Bs
rF )BrJ .

(5.2.5)

When n = N � 1 and k 2 {Kn, ..., Kn+1

� 1}, this bound also holds. So, p(j)k is

bounded for i � i�2(N �1). It is required that j � i�2(N �1) because N parallel-

in-time gradient-type method iterations finish a backward sweep starting from time

step K, the end of the whole time window. For j � i � 2(N � 1), the p
(j)
k only

depends on u(l), y(l), l = j � 3(N � 1), ..., j by (5.2.5). Since u(l) 2 U, y(l) 2 Y (U), l =

j� (N � 1), ..., j, the boundedness and Lipschitz continuity hold in (5.2.5) by (5.2.4).

Then, by (5.2.5), for j � i� 2(N � 1) and all k,

kg(j)k k = k@Jk(y
(j)
k , u

(j)
k )

@u
(j)
k

+ (
@Fk(y

(j)
k , u

(j)
k )

@u
(j)
k

)Tp(j)k k

 BrJ +BrF [(
K�1X

s=0

Bs
rF )BrJ ] = (

KX

s=0

Bs
rF )BrJ .

(5.2.6)

Define Bg
def

= (
PK

s=0

Bs
rF )BrJ and thus

kg(j)k k  Bg, j � i� 2(N � 1), k = 0, ..., K � 1
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which leads to the boundedness (g(j) 2 Rn
u

⇥K), with GU
def

=
p
KBg,

kg(j)k
Frobenius

=

vuut
K�1X

k=0

kg(j)k k2 
p
KBg = GU , j � i� 2(N � 1)

Assume {↵i} has an upper bound ↵̄. This leads to a bound on the di↵erence of

controls generated by several consecutive iterations, i.e., for 1  j  2(N � 1),

ku(i) � u(i�j)k = ku(i) � (u(i) +
jX

s=1

↵i�sg
(i�s))k


jX

s=1

↵i�skg(i�s)k  ↵̄

jX

s=1

kg(i�s)k

 ↵̄jBg  ↵̄Bg(2N � 2).

(5.2.7)

Note that this holds trivially for j = 0.

Let LrF be a Lipschitz coe�cients for all Jacobians of Fk, k = 0, ..., K� 1. Then,

by the assumed Lipschitz continuity of the Jacobians, for any k, for generic y, u, and

�u of proper dimensions,

kFk(y, u)� Fk(y, u+ �u)k (5.2.8a)

=k
Z

1

0

@Fk(y, u+ s�u)

@u
�udsk (5.2.8b)

=k
Z

1

0

⇥@Fk(y, u)

@u
+ (

@Fk(y, u+ s�u)

@u
� @Fk(y, u)

@u
)
⇤
�udsk (5.2.8c)


Z

1

0

⇥
k@Fk(y, u)

@u
k+ k@Fk(y, u+ s�u)

@u
� @Fk(y, u)

@u
k
⇤
k�ukds (5.2.8d)


Z

1

0

⇥
k@Fk(y, u)

@u
k+ LrFks�uk

⇤
k�ukds (5.2.8e)

k@Fk(y, u)

@u
kk�uk+

LrF

2
k�uk2. (5.2.8f)

Lipschitz continuity with respect to the second argument of Fk on a convex set con-

taining the line segment between u and u+ �u is used from (5.2.8d) to (5.2.8e).

Use ỹ
(i)
k , k = 0, ..., K, to denote the true solution of the state equations (5.2.1b)
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(5.2.1c), given control u(i)
0

, u
(i)
1

, ..., u
(i)
K�1

, i.e.

8
><

>:

ỹ
(i)
k+1

= Fk(ỹ
(i)
k , u

(i)
k ), k = 0, ..., K � 1,

ỹ
(i)
0

= y
given

.

For 0  j  2(N � 1), at the first time step of state equations,

kỹ(i)
1

� y
(i�j)
1

k =kF
0

(y
given

, u
(i)
0

)� F
0

(y
given

, u
(i�j)
0

)k

k@F (y
given

, u
(i)
0

)

@u
(i)
0

kku(i)
0

� u
(i�j)
0

k+ LrF

2
ku(i)

0

� u
(i�j)
0

k2

=(k@F (y
given

, u
(i)
0

)

@u
(i)
0

k+ LrF

2
ku(i)

0

� u
(i�j)
0

k)ku(i)
0

� u
(i�j)
0

k

(BrF +
↵̄LrFBg(2N � 2)

2
)ku(i)

0

� u
(i�j)
0

k.

(5.2.9a)

For k 2 {1, 2, ..., K � 1} \ {K
1

, K
2

, ..., KN�1

},

kỹ(i)k+1

� y
(i�j)
k+1

k =kFk(ỹ
(i)
k , u

(i)
k )� Fk(y

(i�j)
k , u

(i�j)
k )k

kFk(ỹ
(i)
k , u

(i)
k )� Fk(ỹ

(i)
k , u

(i�j)
k )k

+ kFk(ỹ
(i)
k , u

(i�j)
k )� Fk(y

(i�j)
k , u

(i�j)
k )k

(BrF +
↵̄LrFBg(2N � 2)

2
)ku(i)

k � u
(i�j)
k k

+ (BrF +
LrF

2
kỹ(i)k � y

(i�j)
k k)kỹ(i)k � y

(i�j)
k k.

(5.2.9b)

Similarly, but at the time subdomain boundaries, for k 2 {K
1

, K
2

, ..., KN�1

},

kỹ(i)k+1

� y
(i�j)
k+1

k =kFk(ỹ
(i�1)

k , u
(i)
k )� Fk(y

(i�j�1)

k , u
(i�j)
k )k

kFk(ỹ
(i�1)

k , u
(i)
k )� Fk(ỹ

(i�1)

k , u
(i�j)
k )k

+ kFk(ỹ
(i�1)

k , u
(i�j)
k )� Fk(y

(i�j�1)

k , u
(i�j)
k )k

(BrF +
↵̄LrFBg(2N � 2)

2
)ku(i)

k � u
(i�j)
k k

+ (BrF +
LrF

2
kỹ(i�1)

k � y
(i�j�1)

k k)kỹ(i�1)

k � y
(i�j�1)

k k.

(5.2.9c)

Note that in (5.2.9a)(5.2.9b)(5.2.9c), ↵̄LrF

B
g

(2N�2)

2

as a part of coe�cient of ku(i)
k �

u
(i�j)
k k in the equalities RHS, can be made arbitrarily small by choosing ↵̄, e.g., for
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su�ciently small ↵̄

BrF +
↵̄LrFBg(2N � 2)

2
 BrF + 1.

By (5.2.9a)(5.2.9b)(5.2.9c) and at most K � 1 back substitutions, one can see that

kỹ(i)k � y
(i�j)
k k is bounded by ku(i) � u(i�j)k scaled by a constant scalar. Additionally,

using the fact that, for any 0  j  2(N � 1),

ku(i) � u(i�j)k 
jX

k=1

ku(i�k+1) � u(i�k)k 
2(N�1)X

k=1

ku(i�k+1) � u(i�k)k (5.2.10)

exists My > 0, such that, with su�ciently small ↵̄ > 0, for 0  j  N � 1,

kỹ(i) � y(i�j)k  Myku(i) � u(i�j)k  My

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k. (5.2.11)

Note that the reason why 0  j  N � 1 instead of 0  j  2(N � 1) is for the

back substitutions of (5.2.9a)(5.2.9b)(5.2.9c) involve N � 1 previous iterations, i.e.

i� j � 1, i� j � 2, ..., i� j � (N � 1) . Let p̃(i) be the adjoint vairable corresponding

to u(i) and ỹ(i), i.e.

8
><

>:

p̃
(i)
K�1

=
@J

K

(ỹ
(i)

K

,u
(i)

K

)

@ỹ
(i)

K

p̃
(i)
k�1

=
@J

k

(ỹ
(i)

k

,u
(i)

k

)

@ỹ
(i)

k

+ (
@F

k

(ỹ
(i)

k

,u
(i)

k

)

@ỹ
(i)

k

)T p̃(i)k , k = K � 1, ..., 1

By the same logic as (5.2.9), with the condition (5.2.11), exists Mp > 0, such that,

with su�ciently small ↵̄ > 0,

kp̃(i) � p(i)k  ↵̄Mp

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k. (5.2.12)

i.e. a bound on the adjoint variables for the single iteration i. Given J
0

, ..., JK and

F
0

, ..., FK�1

in (5.2.1), the upper bound of the su�ciently small step size required in

(5.2.11) and (5.2.12) is determined by U, Y (U) and ultimately only by U . Denote this

upper bound by ↵̄
rel.gs

. Below, I require

↵̄  ↵̄
rel.gs

(5.2.13)
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Finally, for i � 2(N � 1), build the bound of krĴ(u(i))� g(i)k. Since

r
u
(i)

k

Ĵ(u(i)) =
@Jk(ỹ

(i)
k , u

(i)
k )

@u
(i)
k

+ (
@Fk(ỹ

(i)
k , u

(i)
k )

@u
(i)
k

)T p̃(i)k

and

g
(i)
k =

@Jk(y
(i)
k , u

(i)
k )

@u
(i)
k

+ (
@Fk(y

(i)
k , u

(i)
k )

@u
(i)
k

)Tp(i)k ,

the di↵erence in time step k is

r
u
(i)

k

Ĵ(u(i))� g
(i)
k =

⇥@Jk(ỹ(i)k , u
(i)
k )

@u
(i)
k

� @Jk(y
(i)
k , u

(i)
k )

@u
(i)
k

⇤
(5.2.14a)

+ (
@Fk(ỹ

(i)
k , u

(i)
k )

@u
(i)
k

)T (p̃(i)k � p
(i)
k ) (5.2.14b)

+
⇥
(
@Fk(ỹ

(i)
k , u

(i)
k )

@u
(i)
k

)T � (
@Fk(y

(i)
k , u

(i)
k )

@u
(i)
k

)T
⇤
p
(i)
k . (5.2.14c)

Now, bound each of the three terms in the RHS (5.2.14). By the Lipschitz continuity,

let LrJ be a Lipschitz coe�cient of rJk for all k.

The RHS of (5.2.14a), by (5.2.11),

k@Jk(ỹ
(i)
k , u

(i)
k )

@u
(i)
k

� @Jk(y
(i)
k , u

(i)
k )

@u
(i)
k

k  LrJkỹ(i)k � y
(i)
k k

 LrJMy

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k.
(5.2.15)

The term in (5.2.14b), by (5.2.12),

k(@Fk(ỹ
(i)
k , u

(i)
k )

@u
(i)
k

)T (p̃(i)k � p
(i)
k )k  BrFkp̃(i)k � p

(i)
k k

 BrFMp

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k.
(5.2.16)

Lastly, the term in (5.2.14c), by (5.2.5) and (5.2.11),

k
⇥
(
@Fk(ỹ

(i)
k , u

(i)
k )

@u
(i)
k

)T � (
@Fk(y

(i)
k , u

(i)
k )

@u
(i)
k

)T
⇤
p
(i)
k k

LrFkỹ(i)k � y
(i)
k kkp(i)k k

LrFMy(
K�1X

s=0

Bs
rF )BrJ

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k.

(5.2.17)
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By inserting (5.2.15)(5.2.16), and (5.2.17) into (5.2.14), there exist M 0
U > 0 such that,

kr
u
(i)

k

Ĵ(u(i))� g
(i)
k k  M 0

U

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k for 0  k  K � 1. (5.2.18)

Then, exist a scalar MU for the inequality corresponding to the whole time domain,

krĴ(u(i))� g(i)k  MU

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k. (5.2.19)

This is the first inequality in (5.2.3).

By projected parallel-in-time gradient-type method,

u(j+1) = PD(u
(j) � ↵jg

(j)) 8j � 0.

Then the control update is bounded, for all j � 0,

ku(j+1) � u(j)k = kPD(u
(j) � ↵jg

(j))� u(j)k

= kPD(u
(j) � ↵jg

(j))� PD(u
(j))k

 k(u(j) � ↵jg
(j))� u(j)k

= ↵jkg(j)k

(5.2.20)

This yields the second inequality in (5.2.3),

MU

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k  ↵̄MU

2(N�1)X

j=1

kg(i�j)k (5.2.21)

By (5.2.6), kg(i�j)k is bounded for j = 1, ..., 2(N � 1), then exists M̄U such that

↵̄MU

2(N�1)X

j=1

kg(i�j)k  ↵̄M̄U (5.2.22)

which is the third inequality in (5.2.3). Note that these conclusions are made under

the assumption ↵̄  ↵̄
rel.gs

in (5.2.13).

⇤
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j � i� 4(N � 1) u
(j)
k 2 Uk

j � i� 3(N � 1) y
(j)
k 2 Yk(U)

j � i� 2(N � 1) p
(j)
k  (

PK�1

s=0

Bs
rF )BrJ

ku(i) � u(i�j)k  ↵̄Bg(2N � 2)

j � i� (N � 1) kỹ(i) � y(i�j)k  ↵̄My

P
2N�2

j=1

kg(i�j)k

j = i kp̃(i) � p(i)k  ↵̄Mp

P
2N�2

j=1

kg(i�j)k

krĴ(u(i))� g(i)k  ↵̄MU

P
2N�2

j=1

kg(i�j)k.

Table 5.2: Summary of Lemma 5.2.1 Proof. See the proof for the notations.

Consider a special scenario where step size ↵ = 0. In this case, 2N �1 parallel-in-

time gradient-type iterations with the same control (as a result of 2(N � 1) steps of

step size ↵ = 0 parallel-in-time gradient-type iteration) are virtually a pair of a full

forward and a full backward computation. Starting from any iteration i, if 2(N � 1)

step size 0 iterations are executed, any further step size 0 iteration will not change

any state/adjoint variables in the algorithm, i.e.,

p(i+(2N�1)) = p(i+(2N�1)+k) and y(i+(2N�1)) = y(i+(2N�1)+k) , 8k > 0

So, practically, by performing a full forward/backward sweep, using 2(N � 1)

steps of step size 0 parallel-in-time gradient-type iterations, one achieves the same

state/adjoint variables values as arbitrarily many (more than 2(N � 1)) step size 0

iterations will have. By this observation, I introduce the Corollary 5.2.2 on the e↵ect

of full gradient step on the parallel algorithm.

Corollary 5.2.2 If there exists U such that

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• exists i⇤ such that u(i⇤) 2 U and step sizes ↵i⇤ ,↵i⇤+1

, ...,↵i⇤+2(N�1)

= 0

(“full gradient step”)
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Then, when the projected parallel-in-time gradient-type method with step size {↵j},

Algorithm 13, is applied to problem (5.2.1), exist ↵̄
rel.gs

> 0 and constants MU , M̄U > 0

such that, for any 0  ↵̄  ↵̄
rel.gs

if

• for a certain i � i⇤+2(N � 1), 0  ↵j  ↵̄ for all max(i� 2(N � 1), i⇤)  j < i

• u(j) 2 U , for all max(i� 4(N � 1), i⇤)  j  i

then

krĴ(u(i))� g(i)k  MU

2(N�1)X

j=1

ku(i�j+1) � u(i�j)k  ↵̄MU

2(N�1)X

j=1

kg(i�j)k  ↵̄M̄U

Corollary 5.2.2 says if a full gradient step is executed, to check the assumptions in

Lemma 5.2.1 of control being in a predetermined set, one does not need to examine

steps before a full gradient step.

5.2.2 Convergence of the Control Update

Lemma 5.2.1 gives a bound of the di↵erence between the gradient-type vector and the

true gradient based on which the similarity of behavior of the parallel algorithm and

the serial classic gradient method can be utilized to prove the following convergence

theorem.

Theorem 5.2.3 In problem problem (5.2.1), if there exists U such that

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• Ĵ(u) is bounded from below

When the projected parallel-in-time gradient-type method with step size {↵j}, Algo-

rithm 13, is applied to problem (5.2.1), exists ↵̄
conv.p.

> 0 such that, if for a certain

iteration index i,
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• the step sizes satisfies

0 ↵j  ↵̄
conv.p.

for i� 2(N � 1)  j < i

0 <↵j  ↵̄
conv.p.

for j � i

• u
(j)
k 2 Uk, for all 0  k  K � 1, for j � i� 4(N � 1)

then

lim
j!+1

kPD(u
(j) � ↵jrĴ(u(j)))� u(j)k = 0 (5.2.23)

If in addition, there exists 0 < ↵
conv.p.

 ↵̄
conv.p.

such that

• the step size is bounded away from zero

↵
conv.p.

 ↵j  ↵̄
conv.p.

for j � i (5.2.24)

then

lim
j!+1

kPD(u
(j) �rĴ(u(j)))� u(j)k = 0 (5.2.25)

Proof:

In the first part of the proof, I show

lim
j!1

ku(j+1) � u(j)k = 0 (5.2.26)

For j � i, the parallel-in-time gradient-type method iteration is defined as

u(j+1) = PD(u
(j) � ↵jg

(j)) (5.2.27)

By (5.2.27), the convexity of D, and Lemma 5.1.7,

(u(j) � ↵jg
(j) � u(j+1))T (u(j+1) � u(j)) � 0 (5.2.28)
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which is rearranged, by the fact that ↵j � ↵
conv.p.

> 0, to

� g(j)
T
(u(j+1) � u(j)) � 1

↵j

ku(j+1) � u(j)k2 (5.2.29)

Using Taylor expansion and Lipschitz constant L of rĴ due to the assumption that

rJk,rFk are Lipschitz and bounded for all proper k,

Ĵ(u(j+1))� Ĵ(u(j))

rĴ(u(j))T (u(j+1) � u(j)) +
L

2
ku(j+1) � u(j)k2

=g(j)
T
(u(j+1) � u(j)) + [rĴ(u(j))� g(j)]T (u(j+1) � u(j)) +

L

2
ku(j+1) � u(j)k2

Pick µ > 0 whose value will be determined later in this proof and use (5.2.29),

Ĵ(u(j))� Ĵ(u(j+1))

�� g(j)
T
(u(j+1) � u(j))� [rĴ(u(j))� g(j)]T (u(j+1) � u(j))� L

2
ku(j+1) � u(j)k2

�(
1

↵j

� L

2
)ku(j+1) � u(j)k2 � krĴ(u(j))� g(j)kku(j+1) � u(j)k

�(
1

↵̄
conv.p.

� L

2
� µ)ku(j+1) � u(j)k2 + µku(j+1) � u(j)k2 � krĴ(u(j))� g(j)kku(j+1) � u(j)k

(5.2.30)

Sum up the above inequality (5.2.30) from j = i to j = m,

Ĵ(u(i))� Ĵ(u(m+1)) �(
1

↵̄
conv.p.

� L

2
� µ)

mX

j=i

ku(j+1) � u(j)k2

+
mX

j=i

⇥
µku(j+1) � u(j)k2 � krĴ(u(j))� g(j)kku(j+1) � u(j)k

⇤

(5.2.31)

By the assumptions that Ĵ(u) is bounded below for u 2 U and u(j) 2 U for j � i,

with a fixed i, exists B
ˆJ , such that

Ĵ(u(i))� Ĵ(u(m+1))  B
ˆJ 8m � i (5.2.32)
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To show (5.2.26), I bound the second summation in (5.2.31) from below as follows.

mX

j=i

⇥
µku(j+1) � u(j)k2 � krĴ(u(j))� g(j)kku(j+1) � u(j)k

⇤

=µ
mX

j=i

ku(j+1) � u(j)k2 �
mX

j=i

krĴ(u(j))� g(j)kku(j+1) � u(j)k

�µ
mX

j=i

ku(j+1) � u(j)k2 � 1

2

mX

j=i

[krĴ(u(j))� g(j)k2 + ku(j+1) � u(j)k2]

=(µ� 1

2
)

mX

j=i

ku(j+1) � u(j)k2 � 1

2

mX

j=i

krĴ(u(j))� g(j)k2

(5.2.33)

In (5.2.33), the control update term is rearranged below into an average form so that

the bound in Lemma 5.2.1 that involves terms in multiple iterations can be used and

ultimately provides a lower bound,

mX

j=i

ku(j+1) � u(j)k2 = C +
1

2(N � 1)

mX

j=i+2(N�1)

2(N�1)X

k=1

ku(j+1�k) � u(j�k)k2 (5.2.34)

where the term C only involves fractions of the first several terms in the series in the

LHS of (5.2.34), namely,

C
def

=
mX

j=i

ku(j+1) � u(j)k2 � 1

2(N � 1)

mX

j=i+2(N�1)

2(N�1)X

k=1

ku(j+1�k) � u(j�k)k2

=
1

2(N � 1)

i+2(N�1)�2X

j=i

[i+ 2(N � 1)� 1� j]ku(j+1) � u(j)k2 � 0

(5.2.35)

The term C is positive, but its being positive is not a essential part of the proof though

it is used in (5.2.36) for simplicity. What is important is that C is independent from

the iteration index m. By Cauchy-Schwarz inequality, (5.2.35), and (5.2.34),

mX

j=i

ku(j+1) � u(j)k2 � 1

2(N � 1)

mX

j=i+2(N�1)

2(N�1)X

k=1

ku(j+1�k) � u(j�k)k2

� 1

4(N � 1)2

mX

j=i+2(N�1)

(
2(N�1)X

k=1

ku(j+1�k) � u(j�k)k)2
(5.2.36)
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Let ↵̄
rel.gs.

and MU be given by Lemma 5.2.1. In the case when

↵̄
conv.p.

 ↵̄
rel.gs.

, (5.2.37)

By (5.2.36) and Lemma 5.2.1,

mX

j=i

ku(j+1) � u(j)k2 � 1

4(N � 1)2

mX

j=i+2(N�1)

1

M2

U

krĴ(u(j))� g(j)k2 (5.2.38)

Insert (5.2.38) into (5.2.33) and use M̄U in Lemma 5.2.1,

mX

j=i

[µku(j+1) � u(j)k2 � krĴ(u(j))� g(j)kku(j+1) � u(j)k]

�(µ� 1

2
)[

1

4(N � 1)2

mX

j=i+2(N�1)

1

M2

U

krĴ(u(j))� g(j)k2]� 1

2

mX

j=i

krĴ(u(j))� g(j)k2

=(
µ� 1

2

4(N � 1)2M2

U

� 1

2
)

mX

j=i+2(N�1)

krĴ(u(j))� g(j)k2 � 1

2

i+2(N�1)�1X

j=i

krĴ(u(j))� g(j)k2

�(
µ� 1

2

4(N � 1)2M2

U

� 1

2
)

mX

j=i+2(N�1)

krĴ(u(j))� g(j)k2 � 2(N � 1)� 1

2
↵̄
conv.p.

M̄U

(5.2.39)

For any

µ � 4(N � 1)2M2

U + 1

2
, (5.2.40)

by (5.2.39),

mX

j=i

[µku(j+1) � u(j)k2 � krĴ(u(j))� g(j)kku(j+1) � u(j)k] � �2(N � 1)� 1

2
↵̄
conv.p.

M̄U

(5.2.41)

Using (5.2.31), (5.2.32), and (5.2.41), when µ satisfies (5.2.40),

(
1

↵̄
conv.p.

� L

2
� µ)

mX

j=i

ku(j+1) � u(j)k2  B
ˆJ +

2(N � 1)� 1

2
↵̄
conv.p.

M̄U (5.2.42)

If the step size upper bound ↵̄
conv.p.

meets the requirement below,

↵̄
conv.p.

<
1

L
2

+ µ
, (5.2.43)
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(5.2.42) leads to

mX

j=i

ku(j+1) � u(j)k2 
B

ˆJ + 2(N�1)�1

2

↵̄
conv.p.

M̄U

1

↵̄
conv.p.

� L
2

� µ

The process of m ! +1 implies (5.2.26). This concludes the first part of the proof.

The rest of the proof is simple. (5.2.26) is rewritten into

lim
j!1

kPD(u
(j) � ↵jg

(j))� u(j)k = 0 (5.2.44)

By (5.2.26) again and Lemma 5.2.1,

lim
j!+1

krĴ(u(j))� g(j)k = 0 (5.2.45)

By triangle inequality and Lemma 5.1.2,

0 kPD(u
(j) � ↵jrĴ (j))� u(j)k

kPD(u
(j) � ↵jg

(j))� u(j)k

+k[PD(u
(j) � ↵jg

(j))� u(j)]� [PD(u
(j) � ↵jrĴ (j))� u(j)]k

kPD(u
(j) � ↵jg

(j))� u(j)k+ kPD(u
(j) � ↵jg

(j))� PD(u
(j) � ↵jrĴ (j))k

kPD(u
(j) � ↵jg

(j))� u(j)k+ k[u(j) � ↵jg
(j)]� [u(j) � ↵jrĴ (j)]k

kPD(u
(j) � ↵jg

(j))� u(j)k+ ↵̄
conv.p.

krĴ(u(j))� g(j)k

(5.2.46)

Then, use (5.2.44) and (5.2.45),

lim
j!+1

kPD(u
(j) � ↵jrĴ(u(j)))� u(j)k = 0 (5.2.47)

This is (5.2.23).

If, in addition, (5.2.24) holds, for all j � i,

• In the case ↵
conv.p.

< 1, by Lemma 5.1.3 and Lemma 5.1.4,

kPD(u
(j) � ↵jrĴ(u(j)))� u(j)k

�kPD(u
(j) � ↵

conv.p.

rĴ(u(j)))� u(j)k

=↵
conv.p.

1

↵
conv.p.

kPD(u
(j) � ↵

conv.p.

rĴ(u(j)))� u(j)k

�↵
conv.p.

kPD(u
(j) �rĴ(u(j)))� u(j)k

(5.2.48)
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• In the case ↵
conv.p.

� 1, by Lemma 5.1.3,

kPD(u
(j) � ↵jrĴ(u(j)))� u(j)k

�kPD(u
(j) � ↵

conv.p.

rĴ(u(j)))� u(j)k

�kPD(u
(j) �rĴ(u(j)))� u(j)k

(5.2.49)

Combine (5.2.48) and (5.2.49),

kPD(u
(j)�rĴ(u(j)))�u(j)k  max(1,

1

↵
conv.p.

)kPD(u
(j)�↵jrĴ(u(j)))�u(j)k (5.2.50)

By (5.2.47) and (5.2.50),

lim
j!+1

kPD(u
(j) �rĴ(u(j)))� u(j)k = 0 (5.2.51)

This is (5.2.25).

⇤

5.2.3 Bound Iterate Around Optimal Control

In Theorems and lemmas in Section 5.3.1 and Section 5.2.2, it is assumed that control

stays in a control set U so that various boundedness and Lipschitz continuity holds.

Next, I show that when the reduced control space objective function Ĵ(u) is convex

in a region around the optimal solution, there is an upper bound of step size that

guarantees the newly generated controls stays in this region given the previous control

iterates are in this region so that the assumption of controls in U can be dropped. To

do this, I will use the following Lemma 5.2.4 which holds by triangle inequality on a

sphere.

Lemma 5.2.4 Given three vectors v
1

, v
2

, v
3

in an inner product space, let ✓ij, 1 

i < j  3, be the angle between vi and vj induced by the inner product. If ✓
12

, ✓
23

� 0

and ✓
12

+ ✓
23

 ⇡/2, then

|✓
12

� ✓
23

|  ✓
13

 ✓
12

+ ✓
23
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Given control u 2 Rn
u

⇥K and R > 0, since the Rn
u

⇥K space is equipped with

Frobenius norm and Rn
u is equipped with 2-norm,

B̄(u,R) ⇢
Cartesian product of K termsz }| {

B̄(u
0

, R)⇥ B̄(u
1

, R)⇥ · · ·⇥ B̄(uK�1

, R) .

Define set

Y (u,R)
def

= Y
�
B̄(u

0

, R)⇥ B̄(u
1

, R)⇥ · · ·⇥ B̄(uK�1

, R)
�

(5.2.52)

with the RHS defined in (5.2.2). If Fk 2 C(Yk(u,R) ⇥ B̄(uk, R)) for all k, then

Yk(u,R) is compact for all k and thus Y (u,R) as the Cartesian product (5.2.2b) is

compact.

Theorem 5.2.5 Let u⇤ be a local minimum of the constrained problem, if

• exists �
min

, �
max

, R > 0 such that, for u 2 B̄(u⇤, R),

�
min

I � r2Ĵ(u) � �
max

I.

• Jk, Fk 2 C2(Yk(u⇤, R)⇥ B(u⇤
k, R)) for all time k

( Yk(u⇤, R) defined in (5.2.52). Di↵erentiability in a non-open set, refer to

explanation on Page 123 )

When the projected parallel-in-time gradient-type method with step size {↵j}, Algo-

rithm 13, is applied to problem (5.2.1), exists ↵̄
u.b.

> 0 such that, for a certain

i � 4(N � 1), if

• 0  ↵j  ↵̄
u.b.

for all i� 2(N � 1)  j  i

• u(j) 2 B̄(u⇤, R) \D for all i� 4(N � 1)  j  i

then,

u(i+1) 2 B̄(u⇤, R) \D

Before the proof, note that,
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• Two sets B(u⇤, R) ⇢ Rn
u

⇥K and B(u⇤
k, R) ⇢ Rn

u are in di↵erent spaces and

u 2 B̄(u⇤, R) ) uk 2 B̄(u⇤
k, R) for k = 0, ..., K � 1.

This implication relationship ensures the validity of the recursive argument that

yields Corollary 5.2.6.

• ↵̄
u.b.

is named so because it is a threshold related to bounding iterates u(i) in a

bounded set.

• similar to Lemma 5.2.1, the conditions on the history of past iterations can be

conveniently satisfied by using several ↵ = 0 steps.

Proof: At the beginning of the proof, I state an implication of the assumptions,

• To use Lemma 5.2.1, let

Uk
def

= B̄(u⇤
k, R)

and U = U
0

⇥...⇥UK�1

. Then, for all k, Uk⇥Yk(U) ⇢ Yk(u⇤, R)⇥ B(u⇤
k, R). By

the assumption of Jk, Fk 2 C2(Yk(u⇤, R)⇥ B(u⇤
k, R)), the second order deriva-

tives of Jk, Fk is bounded in Yk(u⇤, R)⇥ B(u⇤
k, R) and therefore also bounded

in Uk⇥Yk(U), which implies Jacobian rFk and gradient rJk are Lipschitz and

bounded for uk 2 Uk and yk 2 Yk(U). Then, assumptions in Lemma 5.2.1 hold.

Let constants ↵
rel.gs

, GU , M̄U be given by Lemma 5.2.1, if

↵̄
u.b.

 ↵̄
rel.gs

. (5.2.53)

then,

krĴ(u(i))� g(i)k  ↵̄
u.b.

M̄U (5.2.54)

This proof has two parts. Pick any 0 < r < R.

• In the first part, I prove if

u(i) 2 (B̄(u⇤, R) \B(u⇤, r)) \D
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then ku(i+1) � u⇤k  ku(i) � u⇤k and thus

u(i+1) 2 B̄(u⇤, R) \D

See Figure 5.4.

• In the second part, I prove if

u(i) 2 B(u⇤, r) \D

then

u(i+1) 2 B̄(u⇤, R) \D

See Figure 5.5.

Combination of these two parts yields the claim of this theorem.

First part of the proof. I will show if u(i) 2 (B̄(u⇤, R) \ B(u⇤, r)) \ D, then

ku(i+1)�u⇤k  ku(i)�u⇤k with small step size. I first show that the negative gradient

direction, �rĴ(u(i)), form an acute angle with the direction, u⇤�u(i), to the optimal

control u⇤,

(u⇤ � u(i))T [�rĴ(u(i))]

=(u⇤ � u(i))T [�rĴ(u⇤)�
Z

1

0

r2Ĵ(u⇤ + s(u(i) � u⇤))(u(i) � u⇤)ds]

=(u⇤ � u(i))T [�rĴ(u⇤)] + (u⇤ � u(i))T [�
Z

1

0

r2Ĵ(u⇤ + s(u(i) � u⇤))(u(i) � u⇤)ds]

(5.2.55)

Since u⇤ is a stationary point of the standard gradient projection iteration, i.e.,

PD(u
⇤ �rĴ(u⇤)) = u⇤,

by Lemma 5.1.1, the first term in RHS of (5.2.55), (u⇤ � u(i))T [�rĴ(u⇤)] � 0. Then,

(u⇤ � u(i))T [�rĴ(u(i))] � (u⇤ � u(i))[�
Z

1

0

r2Ĵ(u⇤ + s(u(i) � u⇤))(u(i) � u⇤)ds]

� �
min

ku⇤ � u(i)k2

(5.2.56)
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Now, construct an upper bound of krĴ(u(i))k using ku⇤ � u(i)k. Upper bound of the

Hessian singular values lead to Lipschitz continuity,

ku⇤ � u(i)k �
Z

1

0

kr2Ĵ(u⇤ + s(u(i) � u⇤))k
�
max

k(u(i) � u⇤)kds

� 1

�
max

k
Z

1

0

r2Ĵ(u⇤ + s(u(i) � u⇤))(u(i) � u⇤)dsk

=
1

�
max

krĴ(u⇤)�rĴ(u(i))k

(5.2.57)

By the assumption that u(i) 2 B̄(u⇤, R) \B(u⇤, r),

ku⇤ � u(i)k > r =
r

krĴ(u⇤)k
krĴ(u⇤)k (5.2.58)

For any t 2 [0, 1], by (5.2.57) and (5.2.58),

ku⇤ � u(i)k = tku⇤ � u(i)k+ (1� t)ku⇤ � u(i)k

� t

�
max

krĴ(u⇤)�rĴ(u(i))k+ r(1� t)

krĴ(u⇤)k
krĴ(u⇤)k

(5.2.59)

Equate two coe�cients t
�
max

and r(1�t)

kr ˆJ(u⇤
)k by choosing t = �

max

/(kr
ˆJ(u⇤

)k
r

+ �
max

),

ku⇤ � u(i)k � 1
kr ˆJ(u⇤

)k
r

+ �
max

(krĴ(u⇤)�rĴ(u(i))k+ krĴ(u⇤)k)

� 1
kr ˆJ(u⇤

)k
r

+ �
max

krĴ(u(i))k
(5.2.60)

Combine (5.2.60) and (5.2.56),

(u⇤ � u(i))T [�rĴ(u(i))] � �
min

ku⇤ � u(i)k2

� �
min

kr ˆJ(u⇤
)k

r
+ �

max

ku⇤ � u(i)kk � rĴ(u(i))k
(5.2.61)

Note that in the case where krĴ(u⇤)k = 0, as in the unconstrained case,

�
min

/(kr
ˆJ(u⇤

)k
r

+ �
max

) in (5.2.61) reduces to the reciprocal of an upper bound of

Hessian condition number in (B̄(u⇤, R) \B(u⇤, r)) \D. Define

̃
def

=
kr ˆJ(u⇤

)k
r

+ �
max

�
min

.
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Let ✓̃u be the angle between u⇤ � u(i) and �rĴ(u(i)),

cos(✓̃u) �
1

̃
(5.2.62)

For all u 2 (B̄(u⇤, R) \ B(u⇤, r)) \ D, krĴ(u)k > 0, otherwise u is the unique

solution of the optimization problem with a convex objective function with a convex

constraint. Since krĴ(u)k is continuous and B̄(u⇤, R) \ B(u⇤, r) is compact, there

exist lkr ˆJk such that

krĴ(u)k � lkr ˆJk, 8u 2 (B̄(u⇤, R) \B(u⇤, r)) \D (5.2.63)

By (5.2.54), when

↵̄
u.b.


lkr ˆJk

2M̄U

, (5.2.64)

then

krĴ(u(i))� g(i)k  ↵̄
u.b.

M̄U 
lkr ˆJk

2M̄U

M̄U =
lkr ˆJk

2

The following holds,

kg(i)k � krĴ(u(i))k � krĴ(u(i))� g(i)k � lkr ˆJk �
lkr ˆJk

2
=

lkr ˆJk

2
(5.2.65)

Again, by (5.2.54),

kg(i) �rĴ(u(i))k  ↵̄
u.b.

M̄U (5.2.66)

Taking the square of (5.2.66) leads to

2(rĴ(u(i)), g(i)) � krĴ(u(i))k2 + kg(i)k2 � ↵̄2

u.b.

M̄2 (5.2.67)

Let ✓d be the angle between rĴ(u(i)) and g(i). By (5.2.67)(5.2.63)(5.2.65),

cos(✓d) =
(rĴ(u(i)), g(i))

krĴ(u(i))kkg(i)k

� krĴ(u(i))k2 + kg(i)k2 � ↵̄2

u.b.

M̄2

2krĴ(u(i))kkg(i)k

=
krĴ(u(i))k2 + kg(i)k2

2krĴ(u(i))kkg(i)k
� ↵̄2

u.b.

M̄2

2krĴ(u(i))kkg(i)k

� 1� ↵̄2

u.b.

M̄2

l2kr ˆJk

(5.2.68)
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Note that ✓d is also the angle between �rĴ(u(i)) and �g(i). Let ✓u be the angle

between u⇤ � u(i) and �g(i). Since

lim
↵̄
u.b.

!0

cos(✓d(↵̄u.b.

)) = 1 and lim
↵̄
u.b.

!0

sin(✓d(↵̄u.b.

)) = 0,

exists ↵̄
angle

> 0, such that for

0 < ↵̄
u.b.

< ↵̄
angle

, (5.2.69)

by Lemma 5.2.4,

cos(✓u) � cos(✓̃u + ✓d) = cos(✓̃u) cos(✓d)� sin(✓̃u) sin(✓d)

� 1

̃
cos(✓d)�

r
1� 1

̃2
sin(✓d) �

1

2̃

(5.2.70)

Using this inequality, a relation on the distance to optimal control change of a parallel-

in-time gradient-type method iteration before projection is derived,

ku(i) � u⇤k2 � k(u(i) � ↵g(i))� u⇤k2

=� ↵2

i kg(i)k2 + 2↵i(u
(i) � u⇤)T g(i)

=↵ikg(i)k2(
2(u(i) � u⇤)T g(i)

kg(i)k2 � ↵i)

=↵ikg(i)k2(
2ku(i) � u⇤k

kg(i)k
(u(i) � u⇤)Tg(i)

ku(i) � u⇤kkg(i)k � ↵i)

=↵ikg(i)k2(
2ku(i) � u⇤k

kg(i)k cos(✓u)� ↵i)

�↵ikg(i)k2(
r

GU ̃
� ↵i)

(5.2.71)

Recall that the constant GU above is an upper bound of kg(i)k given by Lemma 5.2.1.

Inequality (5.2.71) implies that when

↵̄
u.b.

 r

GU ̃
(5.2.72)

the relation k(u(i) � ↵g(i))� u⇤k  ku(i) � u⇤k holds. Therefore,

ku(i+1) � u⇤k = kPD(u
(i) � ↵g(i))� u⇤k = kPD(u

(i) � ↵g(i))� PD(u
⇤)k

 k(u(i) � ↵g(i))� u⇤k  ku(i) � u⇤k
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r
R

u(i)

u(i) � g(i)

u(i) � ↵ig
(i)

u(i) �rĴ(u(i))

u⇤
✓u

✓̃u

✓d

Figure 5.4: Illustration of the first half of the Theorem 5.2.5 proof for the uncon-

strained case, i.e., D is the whole space and the projection PD is trivial. Note that this

is a two dimensional illustration of an arbitrary dimensional problem. g(i),rĴ(u(i)),

and u⇤ � u(i) do not necessarily lie in the same two dimensional plane. It is typically

not true that |✓u � ✓̃u| = ✓d.

which means the updated control is closer to the optimal solution. By this, I conclude

that in the case where ↵̄
u.b.

satisfies the bounds in (5.2.53), (5.2.64), (5.2.69), and

(5.2.72),

u(i) 2 (B̄(u⇤, R) \B(u⇤, r)) \D ) u(i+1) 2 B̄(u⇤, R) \D = U (5.2.73)

See Figure 5.4 for an illustration of the first part of the proof.

Second half of the proof for the case u(i) 2 B(u⇤, r) \ D. Since there is an
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upper bound GU for kg(i)k, it is easy to see, with

↵̄
u.b.

 R� r

GU

(5.2.74)

The new control is guaranteed to stay in B̄(u⇤, R) \D, since

ku(i+1) � u⇤k = kPD(u
(i) � ↵ig

(i))� u⇤k = kPD(u
(i) � ↵ig

(i))� PD(u
⇤)k

 ku(i) � ↵ig
(i) � u⇤k  ku(i) � u⇤k+ ↵ikg(i)k

 r + (R� r)
kg(i)k
GU

 R

I conclude that, in the case where ↵̄
u.b.

satisfies the bounds in (5.2.53), (5.2.74),

u(i) 2 B(u⇤, r) \D ) u(i+1) 2 B̄(u⇤, R) \D = U (5.2.75)

See Figure 5.5 for an illustration of the second part of the proof.

Finally, Combining the results above, by (5.2.73) and (5.2.75), if ↵̄
u.b.

su�ciently

small, i.e., it satisfies the bounds in (5.2.53),(5.2.64),(5.2.69),(5.2.72),and (5.2.74),

u(i+1) 2 B̄(u⇤, R) \D = U

⇤

Theorem 5.2.5 guarantees that under certain condition u(i+1) stays in a fixed

region around optimal solution given u(i) is in the region. Recursive application of

Theorem 5.2.5 results in Corollary 5.2.6.

Corollary 5.2.6 Let u⇤ be a local minimum of the constrained problem, if

• exists �
min

, �
max

, R > 0 such that, for u 2 B̄(u⇤, R),

�
min

I � r2Ĵ(u) � �
max

I.

• Jk, Fk 2 C2(Yk(u⇤, R)⇥ B(u⇤
k, R)) for all time k

( Yk(u⇤, R) defined in (5.2.52). Di↵erentiability in a non-open set, refer to

explanation on Page 123 )
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r
R

u(i)

u(i) � g(i)

u(i) � ↵ig
(i)

u⇤

Figure 5.5: Illustration of the second half of the Theorem 5.2.5 proof for the uncon-

strained case, i.e., D is the whole space and the projection PD is trivial.
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When the projected parallel-in-time gradient-type method with step size {↵j}, Algo-

rithm 13, is applied to problem (5.2.1), there is a step size ↵̄
u.b.

such that, if for a

certain index i � 4(N � 1) and a certain index i#

• 0  ↵j  ↵̄
u.b.

for all i� 2(N � 1)  j < i#

• u(j) 2 B̄(u⇤, R) \D for all i� 4(N � 1)  j  i

then,

u(j) 2 B̄(u⇤, R) \D for all i < j  i#

5.2.4 Convergence Theorems

In this section, results from Section 5.2.2 and Section 5.2.3 are combined to build

convergence theorems.

With the assumptions of Theorem 5.2.3, extra conditions of uniqueness of station-

ary point of classic gradient projection methods and step size being bounded away

from zero yields the following convergence theorem.

Proposition 5.2.7 In problem (5.2.1), if there exists compact sets

U
0

, U
1

, ..., UK�1

⇢ Rn
u

and U
def

= U
0

⇥ U
1

⇥ · · ·⇥ UK�1

, such that,

• Jk, Fk 2 C2(Yk(U)⇥ Uk) for all time step k

( Di↵erentiability in a non-open set, refer to explanation on Page 123 )

• there is a unique u⇤ 2 U such that

PD(u
⇤ �rĴ(u⇤)) = u⇤

When the projected parallel-in-time gradient-type method with step size {↵j}, Al-

gorithm 13, is applied to problem (5.2.1), exists ↵̄
conv.c.

> 0 such that, for any

0 < ↵
conv.c.

 ↵̄
conv.c.

if for a certain iteration index i,
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• the step sizes satisfies

0 ↵j  ↵̄
conv.c.

for i� 2(N � 1)  j < i

↵
conv.c.

↵j  ↵̄
conv.c.

for j � i

• u(j) 2 U , for j � i� 4(N � 1)

then

lim
j!+1

u(j) = u⇤

Proof: By the continuity of Fk, Jk of all k, Ĵ is continuous with u 2 U . Using the

compactness of U ,

• Ĵ(u) is bounded from below for u 2 U .

By the compactness of Yk(U)⇥ Uk and second order continuous di↵erentiability of

Jk, Fk for all proper time step index k,

• when uk 2 Uk and yk 2 Yk(U), rJk and rFk is Lipschitz and bounded for all k

The assumptions of Theorem 5.2.3 are satisfied. Let ↵̄
conv.p.

be given by Theo-

rem 5.2.3, require in the proof below

↵̄
conv.c.

 ↵̄
conv.p.

(5.2.76)

Define function

S(u;↵) = kPD(u� ↵rĴ(u))� uk u 2 U,↵ 2 R (5.2.77)

By the di↵erentiability assumptions, with any scalar ↵, the non-negative S(u;↵) is

continuous with respect to u. For any ✏ > 0, by the assumption of the unique

stationary point

S(u; 1) > 0 u 2 U \B(u⇤, ✏) (5.2.78)

by Lemma 5.1.6,

S(u;↵
conv.c.

) > 0 u 2 U \B(u⇤, ✏) (5.2.79)
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Due to the continuity of S(u;↵
conv.c.

) with respect to u and the compactness of U \

B(u⇤, ✏), there exists �✏ > 0 such that

S(u;↵
conv.c.

) > �✏ u 2 U \B(u⇤, ✏) (5.2.80)

For any j � i, the step size assumption requires ↵j � ↵
conv.c.

, by Lemma 5.1.3,

S(u;↵j) � S(u;↵
conv.c.

) > �✏ u 2 U \B(u⇤, ✏) (5.2.81)

By Theorem 5.2.3, when the step size condition (5.2.76) holds,

lim
j!+1

S(u(j);↵j) = 0 (5.2.82)

Then, when the step size threshold ↵̄
conv.c.

satisfies (5.2.76), by the fact that ✏ > 0 in

(5.2.81) being arbitrary and (5.2.82),

lim
j!+1

u(j) = u⇤

Otherwise, there exists ✏ > 0 such that for any j0 > 0, there is j > j0 such that

ku(j) � u⇤k > ✏

which, by (5.2.81), leads to

S(u(j);↵j) > �✏

contradicting with (5.2.82). This concludes the proof. ⇤

The condition in “u(j) 2 U , for j � i � 4(N � 1)” in Proposition 5.2.7 is not

straightforward to check. The following Theorem 5.2.8 and Theorem 5.2.9 replaces

this condition by compactness of D and convexity of the reduced control space ob-

jective function respectively.

In the case that the control variables are projected to a compact set, Proposi-

tion 5.2.7 leads to the dropping of condition “u(j) 2 U , for j � i� 4(N � 1)” without

additional assumption of convexity.
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Theorem 5.2.8 In problem (5.2.1), if D = D
0

⇥D
1

⇥ · · ·⇥DK�1

with Dk compact

for all k and

• Jk, Fk 2 C2(Yk(D)⇥Dk) for all time step k

( Di↵erentiability in a non-open set, refer to explanation on Page 123 )

• there is a unique u⇤ 2 D such that

PD(u
⇤ �rĴ(u⇤)) = u⇤

When the projected parallel-in-time gradient-type method with step size {↵j}, Al-

gorithm 13, is applied to problem (5.2.1), exists ↵̄
conv.c.

> 0 such that, for any

0 < ↵
conv.c.

 ↵̄
conv.c.

if for a certain iteration index i,

• the step sizes satisfies

0 ↵j  ↵̄
conv.c.

for i� 2(N � 1)  j < i

↵
conv.c.

↵j  ↵̄
conv.c.

for j � i

• u(0) 2 D

then

lim
j!+1

u(j) = u⇤

Proof: Define Uk
def

= Dk for all k and U
def

= = U
1

⇥ ...⇥UK�1

. The projected step in

every iteration guarantees that all control iterates are in U , i.e.,

u(j+1) = PD(u
(j) � ↵jg

(j)) 2 U = D, j = 0, 1, ...

Application of Proposition 5.2.7 completes the proof ⇤

Adding Additional convexity assumptions to Proposition 5.2.7 enables Corol-

lary 5.2.6 and yields the following convergence theorem.
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Theorem 5.2.9 Let u⇤ be a local minimum of the constrained problem, if

• exists �
min

, �
max

, R > 0 such that, for u 2 B̄(u⇤, R),

�
min

I � r2Ĵ(u) � �
max

I.

• Jk, Fk 2 C2(Yk(u⇤, R)⇥ B(u⇤
k, R)) for all time k

( Yk(u⇤, R) defined in (5.2.52). Di↵erentiability in a non-open set, refer to

explanation on Page 123 )

When the projected parallel-in-time gradient-type method with step size {↵j}, Al-

gorithm 13, is applied to problem (5.2.1), exists ↵̄
conv.

> 0 such that, for any

0 < ↵
conv.

 ↵̄
conv.

, if for a certain iteration index i,

• the step sizes satisfies

0 ↵j  ↵̄
conv.

for i� 2(N � 1)  j < i

↵
conv.

↵j  ↵̄
conv.

for j � i

• u(j) 2 B̄(u⇤, R) \D, for i� 4(N � 1)  j  i

then

lim
j!+1

u(j) = u⇤

Proof: Let

Uk
def

= B̄(u⇤
k, R), k = 0, ..., K � 1 and U

def

= U
0

⇥ ...⇥ UK�1

Let ↵̄
u.b.

be given by Corollary 5.2.6. If the step size condition

↵̄
conv.

 ↵̄
u.b.

(5.2.83)

holds, by Corollary 5.2.6,

u(j) 2 U for j > i
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By first order necessary condition of optimality

PD(u
⇤ �rĴ(u⇤)) = u⇤

For any u 2 U \ {u⇤},

rĴ(u) +

Z
1

0

r2Ĵ(u+ s(u⇤ � u))(u⇤ � u)ds = rĴ(u⇤) (5.2.84)

left multiply (u⇤ � u)T on both sides, by the optimality of u⇤,

(u⇤ � u)T
⇥
rĴ(u) +

Z
1

0

r2Ĵ(u+ s(u⇤ � u))(u⇤ � u)ds
⇤
= (u⇤ � u)TrĴ(u⇤)  0

which yields, with the strong convexity of Ĵ ,

(u⇤ � u)TrĴ(u)  �
Z

1

0

(u⇤ � u)Tr2Ĵ(u+ s(u⇤ � u))(u⇤ � u)ds < 0 (5.2.85)

which leads to

PD(u�rĴ(u)) 6= u for u 2 U \ {u⇤}

Otherwise, it contradicts with (5.2.85) according to Lemma 5.1.1. This implies the

uniqueness of the point that satisfies the first order necessary condition of optimality.

Let ↵̄
conv.c

be given by Proposition 5.2.7, require

↵̄
conv

 ↵̄
conv.c

(5.2.86)

With step size threshold ↵̄
conv

satisfies (5.2.83) and (5.2.86), By Proposition 5.2.7

lim
j!+1

u(j) = u⇤

which concludes the prove. ⇤

Again, the condition of the theorem

“ u(j) 2 B̄(u⇤, R) \D, for i� 4(N � 1)  j  i ”

can be easily satisfied by initializing u(i�4(N�1)) 2 B̄(u⇤, R) \ D and setting ↵j = 0

for i � 4(N � 1)  j < i. As mentioned before, 2N � 1 steps of parallel-in-time
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gradient-type iteration with no control update, which is corresponding to 2(N � 1)

steps of step size 0 parallel-in-time gradient-type step, compute the exact gradient

and further step size 0 steps will not alter the control and shooting variables any more.

This observation yields the following corollary as a simple result of Theorem 5.2.9.

Corollary 5.2.10 Let u⇤ be a local minimum of the constrained problem, if

• exists �
min

, �
max

, R > 0 such that, for u 2 B̄(u⇤, R),

�
min

I � r2Ĵ(u) � �
max

I.

• Jk, Fk 2 C2(Yk(u⇤, R)⇥ B(u⇤
k, R)) for all time k

( Yk(u⇤, R) defined in (5.2.52). Di↵erentiability in a non-open set, refer to

explanation on Page 123 )

When the projected parallel-in-time gradient-type method with step size {↵j}, Al-

gorithm 13, is applied to problem (5.2.1), exists ↵̄
conv.

> 0 such that, for any

0 < ↵
conv.

 ↵̄
conv.

, if

• u(0) 2 B̄(u⇤, R) \D

• the step sizes satisfies

↵j = 0 for 0  j < 2(N � 1)

↵
conv.

↵j  ↵̄
conv.

for j � 2(N � 1)

then

lim
j!+1

u(j) = u⇤
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5.3 As a Perturbed Gradient Method: Iteration-

Wise Monotonicity

This section discuss about the possibility of enforcing an iteration-wise di↵erence

bound, of type (5.3.2), i.e.,

krĴ(u(i))� g(i)k  �krĴ(u(i))k

between the exact gradient and the parallel-in-time gradient-type vector, as opposed

to the bound (5.2.3) involved with many iterations in Lemma 5.2.1. The consequent

results of guaranteed monotonic convergence in several senses are presented afterward.

The convergence proofs in the previous sections of this chapter does not provide

any information on if the convergence is monotonic, in the sense of objective function

value and control error. In the linear-quadratic problem examples, it is usually ob-

served that with an optimal fixed step size, the convergence is monotonic in neither

objective function value and control error, see Figure 3.9.

A natural question is: can I guarantee monotonic convergence by enforcing another

step size upper bound? The answer is yes, partly.

Now, I give additional theorems stating that apart from the step size upper bound

for convergence, there is other step size upper bounds that guarantees monotonic con-

vergence of the parallel-in-time gradient-type method. In some sense, these theorems

shows that some monotonicity properties, namely, in objective function value and,

for unconstrained problem, in distance to optimal control, of classic gradient method

with su�ciently small step size are maintained in the parallel-in-time gradient-type

method, although the required step size may be di↵erent.

5.3.1 Iteration-Wise Gradient-Type Vector Error Bound

In this section, I prove Lemma 5.3.1 stating that with suitable initial condition and

small step sizes, an iteration-wise error bound between the gradient-type vector com-
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puted in the parallel-in-time gradient-type vector and the true gradient corresponding

to control iterate. This lemma will be used to establish the monotonic convergence

results.

Lemma 5.3.1 If there exists U such that

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• exists �
min

, �
max

> 0 such that, for u 2 U ,

�
min

I � r2Ĵ(u) � �
max

I.

Then, when the projected parallel-in-time gradient-type method with step size {↵j},

Algorithm 13, is applied to problem (5.2.1), for any � > 0, exists ↵̄� > 0, such that for

parallel-in-time gradient-type method with step size less than ↵̄�, if there is a certain

index i⇤ and a certain index i# such that

• previous several iterations has iteration-wise relative error bounded by �

krĴ(u(i))� g(i)k  �krĴ(u(i))k, i = i⇤ � 2(N � 1), ..., i⇤ � 1 (5.3.1)

• 0  ↵i  ↵̄� for all i⇤ � 2(N � 1)  i < i#

• u(i) 2 U , for all i⇤ � 4(N � 1)  i  i#

then

krĴ(u(i))� g(i)k  �krĴ(u(i))k, 8i⇤  i  i# (5.3.2)

Proof: Prove by mathematical induction.

(induction base step) Let i = i⇤ � 1. (5.3.1) certifies that

krĴ(u(i�j))� g(i�j)k  �krĴ(u(i�j))k, j = 0, ..., 2(N � 1)� 1 (5.3.3)

(induction step) Let i = k � i⇤, assume that (5.3.3) is true for i = k � 1, i.e.,

krĴ(u(k�1�j))� g(k�1�j)k  �krĴ(u(k�1�j))k, j = 0, ..., 2(N � 1)� 1 (5.3.4)
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By triangle inequality, induction assumption (5.3.4) implies

kg(k�1�j)k  (1 + �)krĴ(u(k�1�j))k, j = 0, ..., 2(N � 1)� 1 (5.3.5)

The projected parallel-in-time gradient-type method executes the control update

u(k�j+1) = PD(u
(k�j) � ↵k�jg

(k�j)), j = 1, ..., 2(N � 1)

and therefore, for j = 1, ..., 2(N � 1),

rĴ(u(k�j+1)) =rĴ(u(k�j)) +

Z
1

0

r2Ĵ(u(k�j) � s(u(k�j+1) � u(k�j)))(u(k�j+1) � u(k�j))ds

(5.3.6)

Since �
min

� r2Ĵ � �
max

,

krĴ(u(k�j+1))k �krĴ(u(k�j))k � �
max

ku(k�j+1) � u(k�j)k

=krĴ(u(k�j))k � �
max

kPD(u
(k�j) � ↵k�jg

(k�j))� u(k�j)k

�krĴ(u(k�j))k � �
max

↵k�jkg(k�j)k

�krĴ(u(k�j))k � �
max

↵k�j(� + 1)krĴ(u(k�j))k

=[1� ↵k�j�max

(� + 1)]krĴ(u(k�j))k

�[1� ↵̄��max

(� + 1)]krĴ(u(k�j))k

(5.3.7)

By recursive substitution, for j = 1, ..., 2(N � 1),

krĴ(u(k))k � [1� ↵̄��max

(� + 1)]jkrĴ(u(k�j))k (5.3.8)

Let ↵̄
rel.gs

,MU be given by applying Lemma 5.2.1. Require,

↵̄�  ↵̄
rel.gs

(5.3.9)

by Lemma 5.2.1, (5.3.5), (5.3.8), and the assumption that

↵̄�  1

2�
max

(� + 1)
(5.3.10)
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The following bound holds,

krĴ(u(k))� g(k)k  ↵̄�MU

2(N�1)X

j=1

kg(k�j)k

 ↵̄�(1 + �)MU

2(N�1)X

j=1

krĴ(u(k�j))k

 ↵̄�(1 + �)MU

2(N�1)X

j=1

[1� ↵̄��max

(� + 1)]�jkrĴ(u(k))k

(5.3.11)

When ↵̄� is smaller than a threshold, i.e.,

↵̄�  �

22(N�1)+1(1 + �)MU

(5.3.12)

assume (5.3.10) holds,

↵̄�(1 + �)MU

2(N�1)X

j=1

[1� ↵̄��max

(� + 1)]�j  ↵̄�(1 + �)MU

2(N�1)X

j=1

[1� 1

2
]�j

= ↵̄�(1 + �)MU2
1� 22(N�1)

1� 2

 ↵̄�2
2(N�1)+1(1 + �)MU

 �

(5.3.13)

By (5.3.11) and (5.3.13), when the step size threshold ↵̄� satisfies (5.3.9), (5.3.10),

and (5.3.12),

krĴ(u(k))� g(k)k  �krĴ(u(k))k (5.3.14)

This concludes the induction step. ⇤

5.3.2 Unconstrained Problem

In this section, making use of Lemma 5.3.1, I give two monotonic convergence results

for unconstrained problem, i.e. D is the whole control space. Theorem 5.3.2 is for

monotonic convergence in objective function value and Theorem 5.3.3 is for monotonic

convergence in distance to optimal control.
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Theorem 5.3.2 If there exists U such that

• u⇤ 2 U is a local minimum of the constrained problem

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• exists �
min

, �
max

> 0 such that, for u 2 U ,

�
min

I � r2Ĵ(u) � �
max

I.

Then, when the projected parallel-in-time gradient-type method with step size {↵j},

Algorithm 13, is applied to problem (5.2.1), exists ↵̄
mono.

and � > 0, such that if there

is a certain index i⇤ and a certain index i# such that

• previous several iterations has iteration-wise relative error bounded by �

krĴ(u(i))� g(i)k  �krĴ(u(i))k, i = i⇤ � 2(N � 1), ..., i⇤ � 1 (5.3.15)

• 0  ↵i  ↵̄
mono.

for all i⇤ � 2(N � 1)  i < i#

• u(i) 2 U , for all i⇤ � 4(N � 1)  i  i#

then

Ĵ(u(i+1))  Ĵ(u(i)) for all i⇤  i < i#

where the equality holds only when ↵i = 0 or u(i) = u⇤.

Proof: In the unconstrained problem, for i � 0,

u(i+1) = u(i) � ↵ig
(i)
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First, look at the first order approximation of the di↵erence between the objective

function values corresponding to u(i+1) and u(i), for i � i⇤,

rĴ(u(i))T [�↵ig
(i)] = �↵irĴ(u(i))T [rĴ(u(i)) + (g(i) �rĴ(u(i)))]

= �↵ikrĴ(u(i))k2[1 + rĴ(u(i))T (g(i) �rĴ(u(i)))

krĴ(u(i))k2
]

 �↵ikrĴ(u(i))k2[1� krĴ(u(i))kkg(i) �rĴ(u(i))k
krĴ(u(i))k2

]

= �↵ikrĴ(u(i))k2[1� kg(i) �rĴ(u(i))k
krĴ(u(i))k

]

(5.3.16)

Pick any

0 < � < 1 (5.3.17)

and let ↵̄� be given by Lemma 5.3.1, when

↵̄
mono.

 ↵̄� (5.3.18)

for i � i⇤,

krĴ(u(i))k  �kg(i) �rĴ(u(i))k

The following holds by (5.3.16),

rĴ(u(i))T [�↵ig
(i)]  �↵i(1� �)krĴ(u(i))k2. (5.3.19)

Again, by Lemma 5.3.1,

kg(i)k  (1 + �)krĴ(u(i))k (5.3.20)

Then, examine the exact relationship between consecutive objective function values,

using (5.3.19) and (5.3.20),

Ĵ(u(i+1)) =Ĵ(u(i) � ↵ig
(i))

Ĵ(u(i)) +rĴ(u(i))T [�↵ig
(i)] +

1

2
�
max

k↵ig
(i)k2

Ĵ(u(i))� ↵i(1� �)krĴ(u(i))k2 + �
max

↵2

i (1 + �)2

2
krĴ(u(i))k2

=Ĵ(u(i))� ↵i[(1� �)� �
max

↵i(1 + �)2

2
]krĴ(u(i))k2

(5.3.21)
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When

↵
mono.

<
2(1� �)

�
max

(1 + �)2
(5.3.22)

The equality holds

Ĵ(u(i+1))  Ĵ(u(i)) (5.3.23)

In conclusion, for any � satisfying (5.3.17), when the step size threshold ↵̄
mono.

satisfies (5.3.18) and (5.3.22), the monotonic decreasing in objective function, i.e.

(5.3.23), holds. And the equality holds only when ↵i = 0 or u(i) = u⇤. ⇤

By the same set of conditions as Theorem 5.3.2 requires, a monotonic theorem on

the control iterate error compared to the optimal control can be proved.

Theorem 5.3.3 If there exists U such that

• u⇤ 2 U is a local minimum of the constrained problem

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• exists �
min

, �
max

> 0 such that, for u 2 U ,

�
min

I � r2Ĵ(u) � �
max

I.

Then, when the projected parallel-in-time gradient-type method with step size {↵j},

Algorithm 13, is applied to problem (5.2.1), exists ↵̄
mono.

and � > 0, such that if there

is a certain index i⇤ and a certain index i# such that

• previous several iterations has iteration-wise relative error bounded by �

krĴ(u(i))� g(i)k  �krĴ(u(i))k, i = i⇤ � 2(N � 1), ..., i⇤ � 1 (5.3.24)

• 0  ↵i  ↵̄
mono.

for all i⇤ � 2(N � 1)  i < i#

• u(i) 2 U , for all i⇤ � 4(N � 1)  i  i#
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then

ku(i+1) � u⇤k  ku(i) � u⇤k

where the equality holds only when ↵i = 0 or u(i) = u⇤.

Proof: By a similar argument as in the proof of Theorem 5.2.5, let ✓̃u be the

angle between u⇤ � u(i) and �rĴ(u(i)), using (5.2.62) with krĴ(u⇤)k = 0 in the

unconstrained problem and 
def

= �
max

/�
min

,

cos(✓̃u) �
1


(5.3.25)

Pick

0 < � < 1, (5.3.26)

whose value will be determined later, and let ↵̄� be given by Lemma 5.3.1, then, when

↵̄
mono.

 ↵̄� (5.3.27)

the following holds by Lemma 5.3.1,

krĴ(u(i))� g(i)k  �krĴ(u(i))k (5.3.28)

Square both sides and rearrange terms,

rĴ(u(i))Tg(i) � (1� �2)krĴ(u(i))k2 + kg(i)k2

2

and therefore, with ✓d denoting the angle between �rĴ(u(i)) and �g(i),

cos(✓d) =
rĴ(u(i))T g(i)

krĴ(u(i))kkg(i)k

� (1� �2)krĴ(u(i))k2 + kg(i)k2

2krĴ(u(i))kkg(i)k

� (1� �2)(krĴ(u(i))k2 + kg(i)k2)
2krĴ(u(i))kkg(i)k

� 1� �2

(5.3.29)

Let ✓u be the angle between u⇤ � u(i) and �g(i). By Lemma 5.2.4, ✓u  ✓̃u + ✓d, and

using (5.3.25) and (5.3.29),

cos(✓u) � cos(✓u + ✓d) = cos(✓u) cos(✓d)� sin(✓u) sin(✓d)

� 1� �2


�
r

1� 1

2

p
1� (1� �2)2

(5.3.30)
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Since the RHS of (5.3.30) converges to 1/ as � approaches 0, Exists �̄ > 0 and c > 0

such that if

� < �̄ (5.3.31)

The following holds by (5.3.30),

cos(✓u) > c

Now that it is proved that the �g(i) direction forms an acute angle ✓u with u⇤ � u(i),

to show a control update �↵ig
(i) yields a decrease in control error, one only needs to

show when ↵ is less than a threshold, the actual step is not too large, see Figure 5.4.

By Lemma 5.3.1,

kg(i)k  (1 + �)krĴ(u(i))k  (1 + �)�
max

ku� u⇤k (5.3.32)

When

↵̄
mono.

<
2c

(1 + �)�
max

(5.3.33)

the following holds, using (5.3.30) and (5.3.32),

ku(i+1) � u⇤k2 � ku(i) � u⇤k2 = ku(i) � ↵ig
(i) � u⇤k2 � ku(i) � u⇤k2

= ↵2

i kg(i)k2 � 2↵i(u
⇤ � u(i))T [�g(i)]

= ↵2

i kg(i)k2 � 2↵i cos(✓u)ku⇤ � u(i)kkg(i)k

 ↵2

i kg(i)k2 � 2↵icku⇤ � u(i)kkg(i)k

= ↵ikg(i)k2(↵i � 2c
ku⇤ � u(i)k

kg(i)k )

 ↵ikg(i)k2(↵i �
2c

(1 + �)�
max

)

 0

(5.3.34)

In conclusion, for � satisfying (5.3.26) and (5.3.31), when step size upper bound ↵̄
mono.

satisfies (5.3.27) and (5.3.33),

ku(i+1) � u⇤k  ku(i) � u⇤k (5.3.35)
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holds. By (5.3.28),

(1� �)krĴ(u(i))k  kg(i)k  (1 + �)krĴ(u(i)) (5.3.36)

with � < 1 by assumption (5.3.27) and therefore in U ,

kg(i)k = 0 , krĴ(u(i))k = 0 , u(i) = u⇤

Since the equality in (5.3.34) holds if and only if ↵i = 0 or kg(i)k = 0, the equality in

(5.3.35) holds if and only if ↵i = 0 or u(i) = u⇤. ⇤

These two theorems talk about the potential monotonicity of objective function

value and distance to optimal control, which, however, are both unobservable. Be-

cause, if the parallel-in-time gradient-type method with step size ↵ > 0 is used, i.e.,

no full forward sweep, which can be achieved by N steps of degenerate step size ↵ = 0

parallel-in-time gradient-type method, then the objective function value, Ĵ(u(i)), is

not observable. And the distance to optimal control, ku(i)�u⇤k, is also not observable

since the optimal control is unknown.

In the contrast, so far, I did not obtain monotonicity results on the observable

state/adjoint jumps and gradient-type vector magnitude.

Another remark is that for the classic gradient method on an unconstrained min-

imization problem of a strongly convex function, the monotonic decreasing gradient

norm can be guaranteed. But I have di�culty proving the same result for the parallel-

in-time gradient-type method, if it is true at all. In the assumption of Lemma 5.3.1,

I attempted to prove the monotonicity in the following way,

rĴ(u(i+1)) =rĴ(u(i)) +

Z
1

0

r2Ĵ(u(i) + s[�↵ig
(i)])[�↵ig

(i)]ds

=

Z
1

0

�
I � ↵ir2Ĵ(u(i) + s[�↵ig

(i)])
�
rĴ(u(i))ds

+↵i

Z
1

0

r2Ĵ(u(i) + s[�↵ig
(i)])[rĴ(u(i))� g(i)]ds



168

Then

krĴ(u(i+1))k  (1� ↵i�min

)krĴ(u(i))k+ ↵i�max

krĴ(u(i))� g(i)k

 (1� ↵i�min

)krĴ(u(i))k+ ↵i�max

(1 + �)krĴ(u(i))k

= [1 + ↵i�max

� + ↵i(�max

� �
min

)]krĴ(u(i))k

However, the coe�cient [1 + ↵i�max

� + ↵i(�max

� �
min

)] can not be bounded below

one by only manipulating ↵i.

5.3.3 Constrained Problem

In the following Lemma 5.3.4, I first introduce two simple and intuitive bounds related

to classic projected gradient step when control variable is away from the optimal

control. The first bound (5.3.37) is a lower bound of the angle between the negative

gradient direction and the actual control update after the metric projection. The

second bound (5.3.38) is a lower bound of the ratio of the actually control update

magnitude over the tentative gradient step magnitude.

Lemma 5.3.4 Consider generic constrained minimization problem,

min
u2Rn

J(u)

subject to u 2 D ⇢ Rn

If D is closed, convex and exists compact U such that,

• J 2 C1(U) (For non-open U , refer to explanation on Page 123)

• J is strongly convex in U .

• u⇤ is a local minimum of J in U .

Then, for arbitrary r > 0 and arbitrary ↵̄ > 0, exist ⌧ angler,↵̄ > 0, ⌧ ratior,↵̄ > 0 such that

⇥(u,↵)
def

=
�rJ(u)T [PD(u� ↵rJ(u))� u]

krJ(u)kkPD(u� ↵rJ(u))� uk � ⌧ angler,↵̄ 0  ↵  ↵̄ (5.3.37)

 (u,↵)
def

=
kPD(u� ↵rJ(u))� uk

k↵rJ(u)k � ⌧ ratior,↵̄ 0 < ↵  ↵̄ (5.3.38)

for all u 2 (U \B(u⇤, r)) \D.
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Proof: Due to strong convexity, u 2 (U \ B(u⇤, r)) \ D implies rJ(u) 6= 0. By u

being not optimal, PD(u� ↵̄rJ(u))� u 6= 0. Lemma 5.1.7 yields,

�rJ(u)T [PD(u� ↵̄rJ(u))� u] > 0 u 2 (U \B(u⇤, r)) \D

and trivially

⇥(u, ↵̄) > 0 u 2 (U \B(u⇤, r)) \D

By the continuous di↵erentiability of J and continuity of metric projection PD,

⇥(u, ↵̄) is continuous with respect to u in the compact set (U \ B(u⇤, r)) \ D, and

thus exists ⌧ angler,↵̄ > 0 such that

⇥(u, ↵̄) � ⌧ angler,↵̄ u 2 (U \B(u⇤, r)) \D (5.3.39)

Since ↵  ↵̄, using Lemma 5.1.5,

⇥(u,↵) � ⇥(u, ↵̄) � ⌧ angler,↵̄ > 0 (5.3.40)

Similarly, exists ⌧ ratior,↵̄ > 0 such that

 (u, ↵̄) � ⌧ ratior,↵̄ u 2 (U \B(u⇤, r)) \D (5.3.41)

When 0 < ↵  ↵̄, using Lemma 5.1.4,

 (u,↵) =
kPD(u� ↵rJ(u))� uk

k↵rJ(u)k =
k ↵̄
↵
PD(u� ↵rJ(u))� uk

k↵̄rJ(u)k

� kPD(u� ↵̄rJ(u))� uk
k↵̄rJ(u)k =  (u, ↵̄) � ⌧ ratior,↵̄

⇤

Making use of Lemma 5.3.4, the following Theorem claims that monotonic de-

creasing in true objective function value corresponding to the control iterates can be

guaranteed before the distance to the optimal control falls below a threshold.

Theorem 5.3.5 If there exists compact U such that
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• u⇤ 2 U is a local minimum of the constrained problem

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• Ĵ 2 C1(U) (For non-open U , refer to explanation on Page 123)

• exists �
min

, �
max

> 0 such that, for u 2 U ,

�
min

I � r2Ĵ(u) � �
max

I.

When the projected parallel-in-time gradient-type method with step size {↵j}, Algo-

rithm 13, is applied to problem (5.2.1), for any

r > 0, (5.3.42)

there is a step size ↵̄
mono.p.

and � > 0 such that, if for a certain i � 4(N � 1) and a

certain index i#

• previous several iterations has iteration-wise relative error bounded by �

krĴ(u(j))� g(j)k  �krĴ(u(j))k, j = i� 2(N � 1), ..., i� 1

• step size satisfies

0 ↵j  ↵̄
mono.p.

for i� 2(N � 1)  j < i#

• u(j) 2 U for all i� 4(N � 1)  j  i#

• control is away from the optimal control in the sense of

u(j) 62 B(u⇤, r) for all i  j < i# (5.3.43)

then,

Ĵ(u(j+1))  Ĵ(u(j)) for all i  j < i#

where the equality holds only when ↵j = 0.
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Proof: Use previous results,

• For arbitrary � > 0 to be determined later in this proof, by Lemma 5.3.1, if

↵̄
mono.p.

 ↵̄�, (5.3.44)

where ↵̄� is given by Lemma 5.3.1, the iteration-wise gradient-type vector error

is bounded, i.e.,

krĴ(u(i))� g(i)k  �krĴ(u(i))k, 8i⇤  j  i# (5.3.45)

To compare Ĵ(u(j)) and Ĵ(u(j+1)), first look at the first order term in Taylor expansion,

rĴ(u(j))T (u(j+1) � u(j)) = rĴ(u(j))T (PD(u
(j) � ↵jg

(j))� u(j))

=rĴ(u(j))T (PD(u
(j) � ↵jrĴ(u(j)))� u(j))

+rĴ(u(j))T [PD(u
(j) � ↵jg

(j))� PD(u
(j) � ↵jrĴ(u(j))]

(5.3.46)

Examine the magnitude of the second term in (5.3.46), by (5.3.45),

rĴ(u(j))T [PD(u
(j) � ↵jg

(j))� PD(u
(j) � ↵jrĴ(u(j))]

krĴ(u(j))kkPD(u
(j) � ↵jg

(j))� PD(u
(j) � ↵jrĴ(u(j))k

krĴ(u(j))kk(u(j) � ↵jg
(j))� (u(j) � ↵jrĴ(u(j)))k

=↵jkrĴ(u(j))kkg(j) �rĴ(u(j))k

↵j�krĴ(u(j))k2

(5.3.47)

Apply orthogonal decomposition to the projected gradient step update in the first

term of (5.3.46),

PD(u
(j) � ↵jrĴ(u(j)))� u(j)

=
rĴ(u(j))

krĴ(u(j))k
rĴ(u(j))T

krĴ(u(j))k
(PD(u

(j) � ↵jrĴ(u(j)))� u(j))

+[I � rĴ(u(j))

krĴ(u(j))k
rĴ(u(j))T

krĴ(u(j))k
](PD(u

(j) � ↵jrĴ(u(j)))� u(j))

(5.3.48)
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which is well defined since rĴ(u(j)) 6= 0 due to u(j) 62 B(u⇤, r) \ D. Because the

second term in (5.3.48) is perpendicular to rĴ(u(j)),

rĴ(u(j))T (PD(u
(j) � ↵jrĴ(u(j)))� u(j))

=rĴ(u(j))T
rĴ(u(j))

krĴ(u(j))k
rĴ(u(j))T

krĴ(u(j))k
(PD(u

(j) � ↵jrĴ(u(j)))� u(j))

=� ↵jkrĴ(u(j))k2 �rĴ(u(j))TPD(u(j) � ↵jrĴ(u(j)))� u(j)

k � rĴ(u(j))kkPD(u(j) � ↵jrĴ(u(j)))� u(j))k

⇥kPD(u(j) � ↵jrĴ(u(j)))� u(j))k
k � ↵jrĴ(u(j))k

(5.3.49)

To avoid a potential seemingly recursive dependence of the step size upper bound,

pick arbitrary ↵̄
upper

> 0. By Lemma 5.3.4, if

↵̄
mono.p.

 ↵̄
upper

(5.3.50)

Then, in (5.3.49),

�rĴ(u(j))TPD(u(j) � ↵jrĴ(u(j)))� u(j)

k � rĴ(u(j))kkPD(u(j) � ↵jrĴ(u(j)))� u(j))k
� ⌧ angler,↵̄

upper

kPD(u(j) � ↵jrĴ(u(j)))� u(j))k
k � ↵jrĴ(u(j))k

� ⌧ ratior,↵̄
upper

(5.3.51)

and therefore,

rĴ(u(j))T (PD(u
(j) � ↵jrĴ(u(j)))� u(j))  �↵j⌧

angle

r,↵̄
upper

⌧ ratior,↵̄
upper

krĴ(u(j))k2 (5.3.52)

Combine (5.3.47) and (5.3.52) using (5.3.46),

rĴ(u(j))T (u(j+1) � u(j))  �↵j⌧
angle

r,↵̄
upper

⌧ ratior,↵̄
upper

krĴ(u(j))k2 + ↵j�krĴ(u(j))k2

= �↵j(⌧
angle

r,↵̄
upper

⌧ ratior,↵̄
upper

� �)krĴ(u(j))k2

If the iteration-wise relative error satisfies,

� 
⌧ angler,↵̄

upper

⌧ ratior,↵̄
upper

2
(5.3.53)

A bound for the first order term in Taylor expansion is obtained,

rĴ(u(j))T (u(j+1) � u(j))  �↵j

⌧ angler,↵̄
upper

⌧ ratior,↵̄
upper

2
krĴ(u(j))k2 (5.3.54)



173

Control update is also bounded by the true gradient scaled by step size,

ku(j+1) � u(j)k = kPD(u
(j) � ↵jg

(j))� u(j)k

 ↵jkg(j)k

 ↵j(� + 1)krĴ(u(j))k

(5.3.55)

Now, look at the objective function value change, with L being a Lipschitz constant

for rJ which exists for the boundedness of the largest singular value of r2Ĵ in

B̄(u⇤, R) \D, using (5.3.54) and (5.3.55),

Ĵ(u(j+1))� Ĵ(u(j))  J(u(j))T (u(j+1) � u(j)) +
L

2
ku(j+1) � u(j)k2

 �↵j

⌧ angler,↵̄
upper

⌧ ratior,↵̄
upper

2
krĴ(u(j))k2 + L

2
[↵j(� + 1)krĴ(u(j))k]2

= �↵j
L(� + 1)2

2
(
⌧ angler,↵̄

upper

⌧ ratior,↵̄
upper

L(� + 1)2
� ↵j)krĴ(u(j))k2

(5.3.56)

This leads to a upper bound of the step size,

↵̄
mono.p.

<
⌧ angler,↵̄

upper

⌧ ratior,↵̄
upper

L(� + 1)2
(5.3.57)

In conclusion, for arbitrary ↵̄
upper

, any � that meets (5.3.53) and any ↵̄
mono.p.

that

validates (5.3.44), (5.3.50), and (5.3.57), will guarantee, by (5.3.56),

Ĵ(u(j+1))  Ĵ(u(j))

where the equality holds only when ↵j = 0. ⇤

In Theorem 5.3.5, the monotonic decreasing objective function values are guar-

anteed away from a certain proximity of the optimal control. By strong convexity

of objective function, the condition on control that the distance to optimal solution

greater than r can be replaced by a condition on objective function value that it is

greater than the optimal objective function value plus an arbitrarily small positive

number, ✏. In other words,



174

Corollary 5.3.6 If there exists compact U such that

• u⇤ 2 U is a local minimum of the constrained problem

• rJk and rFk is Lipschitz and bounded for uk 2 Uk and yk 2 Yk(U) for all k

• Ĵ 2 C1(U) (For non-open U , refer to explanation on Page 123)

• exists �
min

, �
max

> 0 such that, for u 2 U ,

�
min

I � r2Ĵ(u) � �
max

I.

When the projected parallel-in-time gradient-type method with step size {↵j}, Algo-

rithm 13, is applied to problem (5.2.1), for any

✏ > 0, (5.3.58)

there is a step size ↵̄
mono.p.

and � > 0 such that, if for a certain i � 4(N � 1) and a

certain index i#

• previous several iterations has iteration-wise relative error bounded by �

krĴ(u(j))� g(j)k  �krĴ(u(j))k, j = i� 2(N � 1), ..., i� 1

• step size satisfies

0 ↵j  ↵̄
mono.p.

for i� 2(N � 1)  j < i#

• u(j) 2 U for all i� 4(N � 1)  j  i#

• control is away from the optimal control in the sense of

Ĵ(u(j)) > Ĵ(u⇤) + ✏ for all i  j < i# (5.3.59)

then,

Ĵ(u(j+1))  Ĵ(u(j)) for all i  j < i#

where the equality holds only when ↵j = 0.
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Proof: Let L > 0 be a Lipschitz constant for rĴ , since

Ĵ(u)� Ĵ(u⇤)  rĴ(u⇤)(u� u⇤) +
L

2
ku� u⇤k2

 krĴ(u⇤)kku� u⇤k+ L

2
ku� u⇤k2

(5.3.60)

By root formula of second order polynomial, for any ✏ > 0, when

ku� u⇤k  r
def

=

q
krĴ(u⇤)k2 + 2L✏� krĴ(u⇤)k

L

The relation Ĵ(u)  Ĵ(u⇤) + ✏ holds and therefore the condition

Ĵ(u(j)) > Ĵ(u⇤) + ✏ for all i  j < i#

implies

u(j) 62 B(u⇤, r) \D for all i  j < i#

Then, applying Theorem 5.3.5 completes the proof. ⇤

However, the guaranteed monotonic decreasing objective function values are not ob-

servable during the parallel-in-time gradient-type iterations with non-zero step sizes,

since the state variables in memory are not feasible.

Similarly, given any open neighborhood of the optimal control, when control vari-

ables are outside such neighborhood, the monotonic convergence of constrained prob-

lem in terms of distance to the optimal control is also guaranteed. The proof is in

the first part of Theorem 5.2.5 and I do not repeat it here.

5.4 Summary

In this chapter, I investigated the behavior of the parallel-in-time gradient-type

method in general nonlinear problems, as opposed to the linear-quadratic problem

discussed in previous chapters. The projected version of the parallel-in-time gradient-

type method is considered, which appends a projection of control variable to a closed

convex set to each of the parallel-in-time gradient-type control update.
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I established a series of theorems to ultimately build the convergence proof of the

method. For the logic dependency structure of the theorems, please refer to Fig-

ure 5.1. The results obtained in this chapter are based on the similarity between the

true gradient and the gradient-type vector. There are existing convergence proofs for

the classical gradient method, e.g. [NW06]. I gave the proofs for the parallel-in-time

gradient-type method by combining the techniques used in classical gradient method

proofs and carefully bounding the error introduced by the gradient-type vector con-

sidered as a type of inexact gradient.

The convergence is guaranteed only when su�ciently small step size is used. If

someone traces back the proofs and finds the upper bound of step size that guarantees

convergence, it maybe too small to yield good performance in practice. This situation

is similar to the one in [TBA86]. The theorems in this chapter are of a di↵erent type

from the practical convergence theorems, for example, of line search methods based

on the Armijo-Goldstein condition, which provide a path to compute step sizes.

Two types of assumption of the problem yields convergence theorems that is par-

ticularly convenient to apply,

• the reduced control space objective function is strongly convex (Theorem 5.2.9);

• the projection set of control variable is compact (Theorem 5.2.8).

After the convergence proofs, I studied the possibility of monotonic convergence

in terms of objective function value and distance to the optimal control. The previous

numerical experiment in Section 3.6.1 showed that with an optimal fixed step size,

the convergence can be non-monotonic in terms of distance to the optimal control.

However, in this chapter, I proved that the monotonicity can be achieved. For un-

constrained problem, with su�cient small step size, the parallel-in-time gradient-type

method is guaranteed to converge monotonically. For constrained problem, outside

any neighborhood of the optimal solution, the parallel-in-time gradient-type method

is guaranteed to converge monotonically with a su�ciently small step size that de-
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pends on the neighborhood.



Chapter 6

Reservoir Optimization

6.1 Introduction

The energy demand of the world is increasing. Currently, renewable sources as solar,

wind, biomass, and geothermal energy is not able to substitute the fossil based energy

as oil and coal. More large oil fields are moving into their recovery operation mature

stage. Oil companies are considering an e�cient way to develop and maintain the

production quality in the existing fields. [Bro04]

In the secondary oil reservoir recovery, water is injected into an oil reservoir to

displace oil. In a reservoir, water is injected into a large number of wells at fixed loca-

tions across hundreds of miles and over many years. By this injection, oil is displaced

through the subsurface porous media and produced from a number of production

wells.

Seeking the optimal scheme of injection/production wellrates allocation in sec-

ondary oil reservoir recovery can be quite challenging. Various factors, as large com-

plex geographical structure and fluid components interaction, influences the reservoir

at the same time.

In the early 1980s, mainly vertical conventional wells were used, which penetrate

the reservoir vertically and has the disadvantage of limited contact area with the

178
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reservoir. In the late 1980s, horizontal wells were technically available. In the begin-

ning of the 2000s, multilateral wells that branches in the reservoir greatly increasing

the contact area and smart wells with downhole sensors and valves appeared. These

valves allow continuous (both in time and flow rate) adjustment of injection and pro-

duction wellrates (compared to wells with only on/o↵ modes), which o↵er flexible

operation scheme to control the fluid flow pattern. With this possibility of flexible

operation schemes, petroleum engineers can potentially improve oil reservoir recovery

by using an optimal operation scheme. Therefore, more work is needed to find the

optimal operation of wells taking advantage of these flexibilities.

In this project, optimal control theory is applied to solve the problem of finding

the optimal wellrates governed by a highly nonlinear PDE system. Using optimal

control theory (using adjoint approach to compute gradient) to solve this optimization

has the advantage that the gradient computation load is independent of the number

of controls which can be large taking into account large number of wells and time

dependent wellrate adjustment in the simulation window. Therefore, the adjoint

method is especially suitable to apply here.

However, even with adjoint method to avoid the costly finite di↵erence approxi-

mation of the gradient, the forward and backward computation required to obtain the

gradient is still expensive since both of them involve solving time dependent PDEs.

Therefore, I apply the proposed parallel-in-time gradient-type method to accelerate

this time dependent PDE constrained optimization problem and compare its numer-

ical performance with the classical gradient method.

The numerical method is formulated to maximize the net present value of an

(secondary) oil recovery process. An oil/water two-phase immiscible incompressible

model is used and solved by a finite volume based sequential splitting method. Bound

constraints on the wellrates are implemented explicitly. The practical limit of adjust-

ing wellrates in discrete time points is enforced implicitly, by using piecewise constant

basis function for the control variables, in the scenarios where wellrates are only peri-
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odically adjustable in several predetermined time. Wells are models as point sources

and sinks. Objective function gradient is computed by the adjoint method.

The implementation uses the Sandia National Lab’s Trilinos Project [HBH+05]

libraries framework to facilitate parallel linear algebra, linear system solver and pre-

conditioner, and automatic di↵erentiation.

The related work on reservoir water flooding optimization is reviewed in Sec-

tion 2.3.

This chapter is organized as follows. In Section 6.2, I introduce the objective func-

tion for the water flooding optimization problem, its discretized form, discrete adjoint

variable computation, and projected gradient method. In Section 6.3, I present nu-

merical examples using both classical gradient method and parallel-in-time gradient-

type method.

The reservoir simulator used in this project is standard brick-cell finite volume

method with backward Euler scheme in time. In Appendix B, I include a detailed

description of the reservoir physics of the incompressible, immiscible water/oil twoi-

phase model and discretizaiton of the PDE. Implementation details of the parallel-

in-time gradient-type applied to this particular problem is discussed in Appendix C.

6.2 Optimization

In this section, I introduce the oil reservoir well rates optimization problem, its ob-

jective function, fully discretized form, and structure of the classical gradient method

applied to this problem. Reservoir model details are included in Appendix B.

6.2.1 Example Objective Function

The Net Present Value (NPV) of the oil recovery process is used as the optimization

objective function.

Let I
inj

and I
pro

be the index sets of injection and production wells respectively.
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For i 2 I
inj

or i 2 I
pro

, xi denotes the location of that well. Since the well rates q,

qw in the infinite dimensional formulation (B.1.15) are in unit [time�1], I assign a

constant � [length3] for all wells. This scaling can be di↵erent for di↵erent wells and

in the fully discrete case it will be related to the finite volume discretization, As an

example, I will optimize the following net present value (NPV) of the sum of water

injection cost, water treatment cost, and oil revenue,

Z T

0

injection costz }| {
�r

inj

X

i2I
inj

�q(xi, t)�

water treatment costz }| {
r
oper

X

i2I
pro

�|q(xi, t)|fw(sw(xi, t))+

oil revenuez }| {
r
oil

X

i2I
pro

�|q(xi, t)|fo(sw(xi, t))

(1 + r
dis

)t
dt

(6.2.1)

Note that q(xi, t) < 0 for production wells and q(xi, t) > 0 for injection wells. The co-

e�cients r
inj

, r
oper

, r
oil

, r
dis

� 0 represent water injection cost, cost of water production

and treatment, oil price, and time discount rate, respectively.

As is common, the abstract formulation of the optimization problem is written

as a minimization problem. Therefore, I minimize the negative of (6.2.1), i.e., J in

(6.2.2a) below represents the negative of the discretization of (6.2.1).

6.2.2 Discretized Form of the Optimization Problem

I discretize the PDE system (B.1.15) by a finite volume method, as described in

Section B.2. Furthermore, to be specific I use a particular sequential approach to

discretize the resulting semidiscretized PDE system.

Let K be number of discrete time steps, and N be number of Finite Volume

Method cells. The vectors representing water saturation, global pressure, and well

rates at di↵erent time steps are denoted by s
0

, s
1

, ..., sK , by p
0

, ..., pK�1

, and by

q
0

, q
1

, ..., qK , respectively. Furthermore, Q
0

, ..., QK are the closed convex sets of fea-

sible well rates, which incorporates the discretization of the zero-sum condition of

incompressible flow model
R
⌦

q(x, t)dx = 0 for all t, as well as pointwise constraints

on the well-rates. In the examples all sets are equal Q
0

= Q
1

= ... = QK .
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The abstract form of the discretized optimization problem is given by

Minimize J(s
0

, s
1

, ..., sK , q0, ..., qK) :=
KX

k=0

Jk(sk, qk) (6.2.2a)

subject to

Hk(sk, pk, qk) = 0 for k = 0, ..., K � 1, (6.2.2b)

Gk(sk, sk+1

, pk, qk) = 0 for k = 0, ..., K � 1, (6.2.2c)

s
0

= s
given

, (6.2.2d)

qk 2 Qk for k = 0, ..., K � 1, (6.2.2e)

where Hk and Gk is representing the pressure and saturation equation developed in

Subsection B.2 at time step tk respectively. (I include an auxiliary control qK in the

objective to avoid distinction between time steps k = 0, . . . , K � 1 and time step

k = K, although in this time stepping the constraints (6.2.2b-e) do not involve qK .)

The abstract formulation also appears in [Wie10], where other variations of the

sequential time stepping method and the IMPSAT time stepping method have also

been considered.

6.2.3 Classical Gradient Method

I assume that for given well-rates qk 2 Qk, k = 0, ..., K � 1, the discretized satura-

tion and pressure equations (6.2.2b-d) have a unique solution s
0

, s
1

, ..., sK , p0, ..., pK�1

.

Then I can equivalently formulate (6.2.2) as an optimization problem in the well-rates

q
0

, ..., qK and define discretized saturations and pressures s
0

, s
1

, ..., sK , p0, ..., pK�1

as

implicit functions of well-rates. This implicit constrained formulation of the opti-

mization problem is given by

Minimize bJ(q
0

, ..., qK) :=
KX

k=0

Jk(sk(q0, ..., qK), qk), (6.2.3a)

subject to qk 2 Qk, for k = 0, ..., K � 1, (6.2.3b)



183

where for given q = (q
0

, ..., qK) the discretized saturations and pressures s
0

, s
1

, ..., sK ,

p
0

, ..., pK�1

are given as solutions of

Hk(sk, pk, qk) = 0, for k = 0, ..., K � 1, (6.2.4a)

Gk(sk, sk+1

, pk, qk) = 0, for k = 0, ..., K � 1, (6.2.4b)

s
0

= s
given

. (6.2.4c)

6.2.4 Adjoint Equation Approach for Gradient Computation

The gradient of bJ is computed via the adjoint equation approach as in [Hei08, Wie10].

The Lagrangian associated with the minimization problem (6.2.2) is

L(s, p, q, µ, ⌘, ⇠) =
KX

k=0

Jk(sk, qk) + ⇠T (s
0

� s
given

) +
KX

k=0

µT
kHk(sk, pk, qk)

+
K�1X

k=0

⌘Tk Gk(sk, sk+1

, pk, qk).

The adjoint equation is obtained by setting the partial derivatives of L with respect

to sk, pk, k = 0, ..., K, to zero. The gradient of bJ is then given by the partial

gradient of L with respect to qk, k = 0, ..., K. The computation of the gradient of bJ

is summarized in the following Algorithm 14.

6.2.5 Projected Gradient Method

Given the gradient, a number of optimization algorithms can be used. For com-

pleteness I state the projected gradient method for (6.2.3) as Algorithm 15 below and

illustrate in Figure 6.1. See, e.g., [Kel99]. In Algorithm 15, PQ denotes the projection

onto the closed convex set Q
def

= Q
0

⇥ ...⇥QK .

In the implementation, the projection step as a quadratic programming problem

is solved by Gurobi [GO16] or CGAL (The Computational Geometry Algorithms

Library) [The16].
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Algorithm 14 Gradient Computation via Adjoint Equations

1: Input q = (q
0

, ..., qK).

2: Solve the state equations

Hk(sk, pk, qk) = 0 k = 0, ..., K � 1,

Gk(sk, sk+1

, pk, qk) = 0 k = 0, ..., K � 1,

s
0

= s
given

,

forward in time for s
1

, ..., sK , p0, ..., pK�1

.

3: Solve the adjoint equations (I omit the arguments of Hk, Gk, Jk)

µK = 0,

⌘K�1

= �(
@GK�1

@sK
)�Trs

K

JK ,

µk = �(
@Hk

@pk
)�T (

@Gk

@pk
)T⌘k, k = K � 1, . . . , 0,

⌘k�1

= �(
@Gk�1

@sk
)�T

⇥
rs

k

Jk + (
@Gk

@sk
)T⌘k + (

@Hk

@sk
)Tµk

⇤
, k = K � 1, . . . , 1,

backward in time for µ
1

, ..., µK , ⌘0, ..., ⌘K�1

.

4: Compute the gradient (I omit the arguments of Hk, Gk, Jk)

rq
k

bJ(q
0

, ..., qK) = rq
k

Jk + (
@Hk

@qk
)Tµk + (

@Gk

@qk
)T⌘k, k = 0, ..., K � 1
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Algorithm 15 Projected Gradient Method for Solving (6.2.3), illustrated in Fig-

ure 6.1

1: Input q(0) = (q(0)
0

, ..., q
(0)

K ).

2: for j = 0, . . .MAX ITER� 1 do

3: Compute bJ(q(j)) and r bJ(q(j)).

4: Check termination criteria; stop if termination criteria is satisfied.

5: Find step length ↵(j) such that PQ(q(j) � ↵(j)r bJ(q(j))) satisfies the su�cient

decrease condition.

6: Set q(j+1) = PQ(q(j) � ↵(j)r bJ(q(j))).

7: end for

�↵(j)rĴ(q(j))

q(j) � ↵(j)rĴ(q(j))

q(j)

PQ(q(j) � ↵(j)rĴ(q(j)))

Q

Figure 6.1: Illustration of a projected gradient step described by Algorithm 15
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6.3 Numerical Examples

I preset numerical results,

• In Section 6.3.1, I give optimization results using classical gradient method as

a validity check of the model problem.

• In Section 6.3.2, performance of parallel-in-time gradient-type method with a

predetermined step size is demonstrated.

• In Section 6.3.3, I tested a heuristic watchdog type of algorithm that modify

the parallel-in-time gradient-type method by periodically executing full serial

gradient in order to obtain true objective function value by which the algorithm

potentially apply backtracking and adjust step size.

All experiments use permeability and porosity data extracted from the SPE 10

data set (http://www.spe.org/web/csp/datasets/set02.htm). The coe�cients in

the NPV objective function are set as follows. The oil price is roil = 80 dollars/bbl,

the water injection cost is rinj = 5 dollars/bbl, the water treatment operation cost is

roper = 5 dollars/bbl, and the time discount rate is rdis = 2⇥ 10�4/day.

6.3.1 Classical Gradient Method

This numerical experiment uses a portion of permeability and porosity data from the

upper quarter of the SPE 10 data set. The model dimension is 1200 ⇥ 2200 ⇥ 40

feet, which is discretized into 60⇥ 220⇥ 20 = 264, 000 finite volume cells. Simulation

time span is 500 days, split into K = 1000 time marching steps. I place 25 injection

wells and 25 production wells in the reservoir in two layers at 20 feet and 30 feet

depth, Figure 6.2. Well injection/production rate bounds are set to be 566.37 bbl/day

(floating points by the unit conversion). Well rates are piecewise constant functions

with constant pieces of length 25 days.

http://www.spe.org/web/csp/datasets/set02.htm


187

The computations reported on in this subsection are run using 24 cores on the Rice

University DAVinCI cluster 1. The 24 processor cores locate in 2 Westmere nodes

(12 cores in each node) at 2.83 GHz with 48 GB of RAM per node. Nodes are con-

nected between each other and to the GPFS fast scratch storage by QDR InfiniBand

(40 Gb/s). A typical iteration of the Projected Gradient Algorithm 15, including

forward/backward computation, steps size computation, and control updating, takes

about 40 minutes.

0200400600800100012001400

y (ft.)

1600180020002200
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40

1200

z 
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t.
)

x 
(f

t.
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Figure 6.2: Location of injection and production wells. Production wells are indicated

by crosses; injection are indicated by circles. Markers connected by solid lines are on

the 30 feet layer; markers connected by dotted lines are on the 20 feet layer.

To generate initial well-rates, I first assume that the well rates are constant across

all time steps. This leads to a version of (6.2.3) with 25+25 well-rates (one for each

production and injection well). This smaller problem is optimized and the optimized

constant well-rates are used as initial conditions in the formulation of (6.2.3) in which

each well-rate can be adjusted in 25-day intervals. The left plot in Figure 6.3 shows

the constant initial well-rates and the right plot in Figure 6.3 shows the optimal well-

rates. Note that it is not necessary to obtain the initial well-rates by this procedure

for the optimization algorithm to converge. In this example, I take this procedure

since it gives the optimization iterations a reasonable well-rates to start, by which

the objective function value decrease is more meaningful.

The time dependent behavior of the individual term in the NPV objective function

1This cluster was supported in part by the Data Analysis and Visualization Cyberinfrastructure

funded by NSF under grant OCI-0959097 and Rice University.
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Figure 6.3: Initial well rates (left) and optimized well-rates (right) for the 25 injection

well and 25 production wells. The color bars with negative well rates above the dashed

line in the middle represent the 25 production wells; the color bars with positive

well rates below the dashed line in the middle represent the 25 injection wells. The

markers (crosses and circles) on the left of each plot are consistent with the markers

in Figure 6.2.

is shown in Figure 6.4. The left plot shows the contributions of the various terms

in the objective function at the initial well-rate settings; the right plot shows the

contributions of the various terms in the objective function at the optimal well-rate

settings. The objective function values correspond to the area under the black curve.

The objective function Iteration history of the projected gradient method is shown

in Figure 6.5. The optimization of the well-rates reduced the negative NPV from

�6.857⇥ 106 to �7.986⇥ 106, a 16.5% improvement. The optimal NPV is essentially

reached after 20 iterations. The remaining iterations are used to reduce the norm of

the projected gradient below the required tolerance.

Contours at day 100, 300, and 500 (final time) of water saturations resulting from

optimized well-rates are shown in Figure 6.6.
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Figure 6.4: Contributions of oil revenue (top blue dashed line), water treatment cost

(dot-dash red line blow zero), and water injection cost (bottom green dotted line) to

the NPV (solid black line) at the initial well-rate settings (left plot) and at the optimal

well-rate settings (right plot), for the example problem in Section 6.3.1. Optimization

uses the classical gradient method. The area below the black solid line is the NPV.

The NPV for the initial well rates (left) is 6.857 ⇥ 106; the NPV for the optimized

well rates (right) is 7.986⇥ 106. A 16.5% improvement is achieved. The jumps in the

curves are caused by the discontinuity in the piecewise constant wells rates.
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Figure 6.5: Iteration history of the projected gradient method. After 20 iterations the

optimal NPV is essentially reached and the remaining iterations are used to reduce

the norm of the projected gradient below the required tolerance.

6.3.2 Parallel-In-Time Gradient-Type Method

In this section, I present numerical results of applying the fixed step size parallel-in-

time gradient-type method to this reservoir optimization problem. The implementa-

tion is described in Algorithm 18 of Appendix C with an emphasis on the e↵ect of

implicit state equations on the data communication. Aiming for a heuristic way of

adjusting step size to help convergence, I present a varying step size modification of

the parallel-in-time gradient-type method in Section 6.3.3.

I test the fixed step size parallel-in-time gradient-type method.

1. The fixed step size parallel-in-time gradient-type method is used and timed

without any kind of globalization technique, such as backtracking, to guarantee

convergence. Because, the states and adjoints are not feasible, i.e. The discrete

state and adjoint equations at time subdomain boundaries are not satisfied,

during the optimization process in parallel gradient-type method and therefore,

the objective function value corresponding to the control at a specific iteration

can not be accurately evaluated, I do not have an e↵ective merit function (which
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Figure 6.6: Contours at day 100, 300, and 500 (final time) of water saturations

resulting from optimized well-rates. Only the bottom half of the reservoir (depth

20-40 feet) is shown to better display water saturations at the 20 feet level, where

several of the wells are located.
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is the objective function for classical gradient method) to evaluate the new

tentative control produced by the parallel gradient-type method. The true

objective function value corresponding to a control iterates can too di↵erent

(for backtracking purpose) from the “‘objective value” computed during the

parallel-in-time gradient-type method runtime using state variables with jumps

at subdomain boundaries, see an example in Figure 6.13. So, I accept all the

control updates. The tested parallel-in-time gradient-type method optimization

process stop after a predetermined number of iterations.

2. Objective function values used in the performance comparison are evaluated

after the optimization process by running full forward simulations with every

wellrate schedule on the optimization trajectory. This takes time and is not

included in the timing of the parallel-in-time gradient-type method.

3. The parallel-in-time gradient-type method subdomain boundary state/adjoint

variables are initialized by a full gradient forward-backward sweep. As a result,

the first step takes longer time than the rest of the steps.

The step size of both gradient method and parallel gradient-type method are set

to be the same. In these tests below, the step size is found by running classical

gradient method with backtracking to convergence and choosing a suitable step size

from its optimization history.

However, according to experience, a fixed step size, even chosen from a previous

optimization history, is not always suitable for the highly nonlinear reservoir optimiza-

tion problem. Because, usually, during the optimization process, in di↵erent region

of control variables, the most suitable step size is di↵erent. For example, in some

cases, in the region near optimal solution, relatively small step size need to be used

to converge. But if this small step size is used from the beginning of the optimization

iterations, slow convergence will hinder me from comparing the performance of the

classical gradient method and the proposed parallel gradient-type method, since us-
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ing step sizes that are smaller than necessary in the early iterations far from optimal

control gives artificial advantage to parallel gradient-type method over the classical

gradient method. Therefore, I chose a moderate step size that will not lead to the

final convergence of a very high accuracy, i.e. iterates from both methods with this

step size eventually jitter around the optimal solution, but is su�cient to demonstrate

the performance of the two methods before the need for decreasing step size.

6.3.2.1 Example 1

In this example of small reservoir size, I apply the parallel gradient-type method in

a problem of 2 wells in a 3D reservoir. 4 time subdomains are used in the parallel

gradient-type method. The parallel computation is run on a desktop computer with

4 cores in 1 CPU.

The model dimension is 640⇥ 320⇥ 2 feet3 discretized into 32⇥ 32⇥ 1 = 1, 024

finite volume cells. Simulation time is 100 days with 100 time marching steps of size

1 days. 1 injection wells and 1 production wells are placed in the only one layer in

the discretization. See Figure 6.7 for the location of wells. Wellrates are piecewise

constant functions with constant pieces of length 10 days.

In the iteration history in Figure 6.8 of first 200 iterations, I observe that in each

optimization iteration, both gradient method and parallel gradient-type method de-

creases objective function value similarly in each optimization iteration. However,

time-wisely, the parallel gradient-type method has around 3.5 times speed-ups com-

pared to the gradient method.

I did not optimize the splitting of time domain and used the evenly split subdo-

mains, which usually results in suboptimal performance, since the time expense in

forward computation is di↵erent between time marching steps. In Figure 6.9, it can

be seen that the forward computation corresponding to the earlier time subdomain

is slower than that to the later subdomain, though every time subdomain consists

of the same number of time marching steps. It is due to the fact that in the earlier
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Figure 6.7: 2D reservoir example, water saturation at day 25. The blue and red

squares mark the injection and production well respectively.
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Figure 6.8: 2D reservoir example, iteration history of gradient method and the parallel

gradient-type method. The parallel gradient-type method uses 4 time subdomains.
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stage of the simulation, the saturation change between time marching steps is often

larger than in the later stage of the simulation, which leads to more computation,

such as more Newton’s iterations in solving the nonlinear time marching saturation

equations. This imbalance of computation load causes the cores, other than the first

one, waits for the first core to complete forward simulation. This is the reason why

the timing plot in Figure 6.8 does not show 4 times speedups instead of around 3.5. In

Figure 6.9, one can also see that the backward computation of each time subdomain

roughly takes a similar amount of time. A test on using a time subdomain partition

based on computation load, instead of even number of time steps, for load balance is

included in Appendix D.

Figure 6.9: Trace graph of about 11 optimization iterations, generated by HPC-

Toolkit [ABF+10]. The horizontal axis is the time axis. Four horizontal rows

represent computation timing of four cores. The top row is for the first time subdo-

main, etc. One optimization iteration consists of three major blocks of one purple,

one green, and one brown. The purple blocks are for forward computation, the brown

blocks are for backward computation, and the green blocks are for waiting.

According to Figure 6.8, the objective function value is apparently convergent.
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But the control variable, i.e. well rates, has yet to converge at iteration 200. At iter-

ation 200, the optimized control variable from two methods are similar, but di↵erent

due to di↵erent optimization trajectory, and plotted in Figure 6.10. This fixed step

size will converge neither the gradient nor parallel-in-time gradient-type method even

given more iterations by experiments. I show the iteration history only of the first 200

iterations in Figure 6.8 for the reason of fixed step sizes, as I stated in the beginning

of this section. The point is clear that the parallel-in-time gradient-type method has

significant potential to have a speed-ups compared to the commonly used gradient

method in reservoir optimization. However, it needs to be equipped with an e�cient

step size choice algorithm and a globalization technique.
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Figure 6.10: 2D reservoir example, optimized well rates at optimization iteration 200.

6.3.2.2 Example 2

In this example, I apply the parallel gradient-type method in a problem of 20 wells in

a 3D reservoir. 4 time subdomains are used in the parallel gradient-type method and

4 cores in each time subdomains perform the computation in the forward/backward

computation. In total, 2 level parallelism of 16 cores is utilized in parallel computing.
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The parallel computation is run on a cluster using 16 cores in 2 computing nodes.

The model dimension is 1200⇥600⇥10 feet3 discretized into 60⇥60⇥5 = 18, 000

finite volume cells. Simulation time is 500 days with 1000 time marching steps of size

0.5 days. 10 injection wells and 10 production wells are placed in the middle layer of

5 feet depth. See Figure 6.11 and Figure 6.12 for the location of wells. Wellrates are

piecewise constant functions with constant pieces of length 25 days.
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Figure 6.11: Location of injection and production wells. Circles and crosses are for

injection and production wells respectively.

For the parallel-in-time gradient-type method, two dimensions of parallelism is

exploited in this example. Computations on 4 time subdomains are executed at the

same time in parallel; 4 cores are used in forward/backward computations in each of

the 4 time subdomains. Totally, 4⇥ 4 = 16 cores are computing in parallel.

Both gradient method and parallel gradient-type method run 50 iterations with

no backtracking. Objective function values are evaluated after the optimization iter-

ations finish by conducting full forward simulations for each wellrate schedule in the

optimization trajectory.

In the iteration history in Figure 6.13, per optimization iteration, two method
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Figure 6.12: Contours at day 100 and 500 (final time) of water saturations resulting

from optimized well-rates. Only the bottom half of the reservoir (depth 5-10 feet) is

shown to better display water saturations at the 5 feet level, where all of the wells

are located.
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decreases objective function value similarly. The time consumed for each parallel

gradient-type method iteration is roughly 1/4 of that for gradient method and there-

fore significant speed-ups are observed when objective function values are plotted

against computation time.
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Figure 6.13: 3D reservoir example, iteration history of gradient method and parallel

gradient-type method. Gradient method uses 4 cores in the linear solvers and precon-

ditioners in the forward/backward solves; parallel gradient-type method uses 4 time

subdomains in each of which 4 cores are used in the forward/backward solves, totally,

4 ⇥ 4 = 16 cores are computing simultaneously for the parallel-in-time gradient-

method. Parallel gradient-type method is initialized by a full gradient sweep and, as

a result, the first step takes as long as a serial gradient step. There are vertical red

bars on the parallel gradient-type objective values. The other end of bars indicate

the infeasible “objective value” computed, for research purpose, during the parallel

method runtime using the state variable with jumps at subdomain boundaries.

Figure 6.13 shows that 50 iterations of 4 time subdomain parallel gradient-type

method take slightly longer than 1/4 of the running time of 50 iterations of the

classical gradient method. This is due to the same reason of unbalanced computing
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load as stated in the example in Section 6.3.2.1. The trace plot of the 16 cores is

presented in Figure 6.14. The cores performing the forward computation of the first

time subdomain take the longest time in every optimization iteration and fairly large

blocks of time exist for other cores waiting for them. Adjusting the current evenly

splitting of the time marching steps among the 4 time subdomains will likely improve

the load balance. A test on using a time subdomain partition based on computation

load, instead of even number of time steps, for load balance is included in Appendix D.

Figure 6.14: Trace graph of about 10 optimization iterations with evenly split time

subdomains, generated by HPCToolkit [ABF+10]. The horizontal axis is the time

axis. From top to bottom, the 16 rows corresponding to 16 cores are grouped into

4 groups. The top 4 horizontal rows represent computation timing of the 4 cores

performing parallel computing in the first time subdomain, etc. One optimization

iteration consists of three major blocks of one purple, one brown, and one green

block. Purple blocks are for forward computation, brown blocks are for backward

computation, and green blocks are for waiting.

For this optimization problem, there are several local minimums and the controls

within a region around a local minimum often gives similar objective function values

even the well rates can be noticeably di↵erent. For the sake of step size being fixed, the



201

number of iterations is predetermined to be 50. The last iteration of both methods

decreases the objective function less than 0.01% relative to the objective function

value. Two methods produce similar control at iteration 50, see Figure 6.15.
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Figure 6.15: 3D reservoir example, optimized well rates at iteration 50.

The numerical state variables are nearly continuous for the parallel gradient-type

method at iteration 50 in the sense that no significant jumps of the state of the discrete

time steps at the time subdomain boundary are observed.In the numerical solution of

a discretized in time system, the state di↵erence between consecutive time marching

steps can be used as a measure of continuity. In Figure 6.16, however, the change in

state variable between two discrete time steps is still larger at the time subdomain

boundaries than in the interior of subdomains at iteration 50. But as iteration goes

further, the discontinuity at the time subdomain boundaries becomes not noticeable,

i.e. in the same magnitude as between two time marching steps in the interior of a

time subdomain, see Figure 6.17. The discontinuity of the curve at locations other

than the subdomain boundaries is caused by the change in wellrates every 50 discrete

steps and di↵erent wellrate setting leads to di↵erent rate of the state change from a

time step to the next time step.
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Figure 6.16: At parallel gradient-type method iteration 50, the 3 dashed lines mark

the position of time subdomain boundaries. As a measure of discontinuity, the blue

dots are computed by taking the norm of the di↵erence of the states in the current

time marching step and the state in the last time marching step.
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Figure 6.17: At parallel gradient-type method iteration 160, the 3 dashed lines mark

the position of time subdomain boundaries. As a measure of discontinuity, the blue

dots are computed by taking the norm of the di↵erence of the states in the current

time marching step and the state in the last time marching step.
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6.3.3 A Heuristic Watchdog Type Parallel Algorithm

In this section, I introduce a heuristic watchdog type of algorithm as a modification

of the proposed parallel-in-time gradient-type method for the two following reasons,

1. The reservoir water-flooding optimization problem does not necessarily meet all

the assumptions for convergence in Chapter 5, e.g., of the reduced control space

objective function, uniqueness of the stationary point to use Theorem 5.2.8 or

convexity to use Theorem 5.2.9. The convergence is not guaranteed.

2. Need a method to adjust step size according to the algorithm behavior instead

of manually empirically setting an assumed suitable fixed step size before the

algorithm starts.

This watchdog type algorithm aims to provide a practical way to heuristically con-

verge the parallel iterations by periodically sacrificing the parallelism and applying

serial gradient step. In the serial gradient step, exact objective function correspond-

ing to the current control iterates are obtained and used as a backtracking criteria. In

addition, the serial gradient step also helps the state/adjoint information propagation

across the whole time domain.

Although, no convergence proof is given for this watchdog type algorithm, numer-

ical experiments show that it works well in the sense that the algorithm converges in

test cases and the parallel speed-ups persists to some extent (see Figure 6.18) after

adding the serial gradient step into the originally fully parallel algorithm.

Algorithm. The algorithm in a big picture is roughly represented as follows.

• serial gradient step

– parallel-in-time gradient-type step

– parallel-in-time gradient-type step ...

• serial gradient step, decide if to backtrack to previous step
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– parallel-in-time gradient-type step

– parallel-in-time gradient-type step ...

• serial gradient step, decide if to backtrack to previous step ...

Pseudo code of the watchdog type algorithm is in Algorithm 16.

Algorithm 16 has an outer-inner two loops structure. In the inner loop (Line 11

to Line 14), parallel-in-time gradient-type control updates are performed, which is

the major part of the algorithm. The outer loop iterates on the control variable

u(j), j = 1, ..., I
outer

. The inner loop iterates on the tentative control variables,

u(j,l), l = 1, ..., I
inner

, updated by the parallel-in-time gradient-type steps. The al-

gorithm outside the inner loop ensures necessary additional forward and backward

computation is executed so that exact objective function value and true gradient are

obtained corresponding to the control variable as a result of the inner loop, based on

which decision of accepting the tentative new control or returning a previous control

is made in Line 19. Line 3 computes the exact objective value corresponding to the

initial control u(0). Line 4 distributed the serial computation result to each of the

cores whose computation involves these state variables. In the for-loop (Line 6) a

series of backward computation is performed without state and control update. The

N � 1 backward computation steps in this for-loop and the first backward compu-

tation (Line 11) in the inner loop constitute a full backward sweep. Similarly, in

the for-loop (Line 16) a series of forward computation is done without control up-

date. These N � 1 forward computation steps in this for-loop and the first backward

computation (Line 14) in the inner loop constitute a full forward sweep which yields

the exact objective value corresponding to u(j,l) used in the objective value decrease

condition of Line 19. The objective decrease condition test in Line 19 is heuristic

without guarantee of convergence. If the test is passed, the outer loop iterate u(j)

is set to the result of the inner loop parallel-in-time gradient-type iterations result.

Otherwise, If the test fails, u(j) is not changed from u(j�1), step size is cut by ⇢
def.

,
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Algorithm 16 A Heuristic Watchdog Type Parallel Algorithm, N time subdomains

1: Input u(0)

2: Set initial step size ↵, inflation factor ⇢
inf.

� 1 , deflation factor 0 < ⇢
def.

< 1.

3: Execute serial full forward computation with u(0) and obtain Ĵ(u(0)).

4: Distribute feasible state variables corresponding to u(0)

5: for j = 1, ..., I
outer

do

6: for l = 1, ..., N � 1 do

7: (*)Do parallel-in-time backward comp. and communicate adjoint

8: end for

9: u(j,0) = u(j)

10: for l = 1, ..., I
inner

do

11: (*)Do parallel-in-time backward comp. and communicate adjoint

12: Compute gradient-type vector g and u(j,l) = u(j,l�1) � ↵g

13: ↵ = ⇢
inf.

↵

14: Do parallel-in-time forward comp. and communicate state

15: end for

16: for l = 1, ..., N � 1 do

17: Do parallel-in-time forward computation and communicate state

18: end for

19: if Ĵ(u(j,l)) < Ĵ(u(j�1)) then

20: u(j) = u(j,l)

21: else

22: u(j) = u(j�1)

23: Distribute the computed state/adjoint variables corresponding to u(j�1)

24: ↵ = ⇢
def.

↵

25: end if

26: end for
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and the previously computed feasible state/adjoint variables corresponding to u(j�1)

is restored (Line 23) to memory which does not require any forward/backward com-

putation. In this case, in the next outer iteration, the for-loop (Line 6) and the first

(l = 1) backward computation in Line 11 is not necessary (‘*’ in the pseudo code

to indicate this) since exactly the same computation has been done before and the

result is restored in Line 23. To maintain the pseudo code readability, I did not write

extra code to indicate that this unnecessary computation should be skipped.

This watchdog type Algorithm 16 is not fully parallel in the sense that the two

for-loops in Line 6 and Line 16 are essentially performing serial computation on the

whole time domain and consequently one can not expect strong scaling as in the

previous experiments in Section 6.3.2.1 and Section 6.3.2.2.

I estimate the potential speed-ups of Algorithm 16 compared to the classical gra-

dient method below. Consider a single outer iteration in the for-loop in Line 5. I
inner

gradient-type control updates are executed in Line 12. If I assume each control update

is comparable to a control update in classical gradient method in terms of decreasing

objective value, what I compare the watch dog algorithm with is the computation

time of I
inner

iterations of classical gradient method which I denote as

I
inner

T
serial

(6.3.1)

For the watchdog algorithm, in one for-loop in Line 5, one full forward/back compu-

tation consuming T
serial

and I
inner

� 1 parallel computation in subdomains consuming

(I
inner

� 1)Tserial

N
are executed, which sum up to

T
serial

+ (I
inner

� 1)
T
serial

N
(6.3.2)

By computing the ratio of the timing (6.3.1) over (6.3.2), the estimation is obtained

speed-ups ⇡ I
inner

T
serial

T
serial

+ (I
inner

� 1)Tserial

N

=
1

1

I
inner

+ 1

N
� 1

I
inner

N

< min(I
inner

, N) (6.3.3)

In Figure 6.18, I plot the estimated speed-up as a function of N and I
inner

.
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Figure 6.18: Speed-Up Estimation for Algorithm 16

To avoid unnecessary repeated backtracking steps, Algorithm 16 keeps the ac-

cepted step size from the previous iteration to use as the first tentative step size in

the following computation, as opposed to returning to the predetermined (but maybe

inappropriate, e.g., too large) step size once the test in Line 19 is passed.

Numerical Experiments. I demonstrate the performance of Algorithm 16 using

the same wellrates optimization problem as in Section 6.3.2.2 by two tests.

In the first test, inflation factor ⇢
inf

= 1, the initial step size ↵ is set to be a suitable

value, 0.03 in this case, and no backtracking is needed, illustrated in Figure 6.19. The

watchdog-type parallel-in-time gradient-type method start the algorithm by the first

iteration of a full forward/backward computation so that the state/adjoint subdomain

boundary value can be set properly. From the plot, it can be seen the first iteration

of the watchdog parallel-in-time gradient-type method takes about 4 times as long

as the subsequent iterations, which uses about the same time as one iteration of,

and also produces exactly the same control update as, the classical gradient method.
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Figure 6.19: Watchdog-Type Algorithm with Suitable Initial Step Size. Initial step

size ↵ = 0.03, inflation factor ⇢
inf

= 1. Serial Gradient Method is checking objec-

tive decrease condition (Line 19 in Algorithm 16) in each step. The watchdog-type

parallel-in-time gradient-type method with I
inner

= 10 tests the decreasing condition

every I
inner

= 10 steps, marked by the big red circle.
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With I
inner

= 10, the algorithm with tests the decreasing condition once every 10

iterations, marked by the big red circle. For example, at iteration 10, a full forward

computation (for-loop in Line 16 in Algorithm 16) is executed so that the accurate

objective function value corresponding to the current control iterates can be obtained

and compared with that at iteration 0. At iteration 20, the same is done to compared

with iteration 10, etc. Iteration-wise, two methods behaves similarly, demonstrated

by the lower subplot. The serial gradient method finishes 50 iterations by 22730

seconds and the watchdog parallel-in-time gradient-type method uses 7655 seconds

which brings 2.97 times speed-up. This agrees with the speed-up estimation yielded

by the formula (6.3.3), i.e.,

speed-ups ⇡ 1
1

I
inner

+ 1

N
� 1

I
inner

N

=
1

1

10

+ 1

4

� 1

10⇥4

⇡ 3.08

In the case, 4 time subdomains yields 3 times speed-ups, one can see some parallelism

is sacrificed by the regularly applied serial gradient steps. I also tested the case where

I
inner

= 5 instead of 10, then 2.45 times speed-up is measured in experiment against

the 2.5 times speed-ups estimated by (6.3.3).

In the second test, with inflation factor ⇢
inf

= 1, deflation factor ⇢
def

= 0.5, I

intentionally set the initial step size too large, ↵ = 0.45 as opposed to the appropriate

0.03. The gradient method checks decrease condition (Line 19 in Algorithm 16)

every iteration. In the first tentative gradient step, the decrease condition fails and

consequently the tentative step is discarded and step size is halved. In a later iteration,

step size is cut to 0.028 (slightly smaller than the step size 0.03 used in the first

test) by successive backtracking and the iterations continues from this point with

this suitable step size found. With I
inner

= 5, the watchdog-type parallel algorithm

checks the decrease condition every 5 iteration. Although, the first iteration yields an

increase in the objective, it is not observed. The resulting control of the 5th iteration

has a lower objective than the initial objective value and hence accepted. In the later

iterations, it can be seen that, as a drawback of the watchdog-type algorithm, it also

takes much more iterations than the classic gradient method to find a suitable step
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Figure 6.20: Watchdog-Type Algorithm with Large Initial Step Size. Initial step

size ↵ = 0.45, inflation factor ⇢
inf

= 1, deflation factor ⇢
def

= 0.5. Serial Gradient

Method is checking objective decrease condition (Line 19 in Algorithm 16) in each

step. Crosses mark the iterations that fails the objective decrease condition test and

thus halves the subsequent step sizes. The watchdog-type parallel-in-time gradient-

type method with I
inner

= 5 tests the decreasing condition every 5 steps, marked by

the big red circle (pass) or cross (fail).
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size, since in the watchdog-type algorithm, there is not a mechanism to monitor the

behavior of the iteration in each optimization step.

For completeness, I also include in Figure 6.21 an example with initial step size

↵ = 0.45, inflation factor ⇢
inf

= 1.02, deflation factor ⇢
def

= 0.5. Comparing this with

Figure 6.20, one sees that the backtracking iteration has changed for the watchdog-

type algorithm.

6.4 Summary

In this chapter, I presented numerical experiment results of the classical gradient

method and the parallel-in-time gradient-type method applied to the reservoir water

flooding optimization problem.

The reservoir water flooding optimization problem maximizes the oil reservoir

recovery Net Present Value (NPV) by adjusting the wellrates of injection and pro-

duction wells to manipulate the subsurface flow pattern. A two-phase immiscible

incompressible reservoir subsurface flow model is used. Reservoir permeability and

porosity data is from the SPE-10 dataset. This governing PDE system is highly

nonlinear.

The parallel-in-time gradient-type method uses two levels of parallelism, the newly

introduced parallelism in the time dimension and the existing parallelism in the space

dimension, i.e., in linear solver/preconditioner. The speed-ups from two level of

parallelism multiply.

In one example, the parallel-in-time gradient-type method with 4 time subdomains

and 4 parallel process in space dimension in each subdomain (16 cores in total) is

tested. Compared to the gradient method with 4 parallel process in space dimension,

around 4 times speed-ups is achieved. In his case, the step size for both method is

predetermined to be the same proper value according to knowledge from previous

experiments.
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Figure 6.21: Watchdog-Type Algorithm with Large Initial Step Size. Initial step size

↵ = 0.45, inflation factor ⇢
inf

= 1.02, deflation factor ⇢
def

= 0.5. Serial Gradient

Method is checking objective decrease condition (Line 19 in Algorithm 16) in each

step. Crosses mark the iterations that fails the objective decrease condition test and

thus halves the subsequent step sizes. The watchdog-type parallel-in-time gradient-

type method with I
inner

= 5 tests the decreasing condition every 5 steps, marked by

the big red circle (pass) or cross (fail).
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In the parallel-in-time gradient-type iterations, because the state variables in

memory is not feasible (there are jumps at time subdomain boundaries), there is

not a good merit function to evaluate the control updates to adjust the iterations by

backtracking, changing step size, etc. Without a good merit function, one can not

dynamically adjust the iterations conveniently. Then, if there is no prior knowledge

of what a good step size is, it is hard to set a proper step size at the beginning of the

iterations. Too small step size leads to slow convergence. Too large step size leads to

divergence.

As an attempt to dynamically adjust the parallel-in-time gradient-type method

in the oil reservoir optimization application, I introduced a heuristic watchdog type

of algorithm. This algorithm adds a full serial gradient sweep periodically in the

parallel-in-time gradient-type method to obtain the feasible state corresponding to

the current control iterates and thereby acquire the objective function value. Then,

by the objective function value, the algorithm performs backtracking and step size

adjustment.

Experiments show that this heuristic watchdog type of algorithm maintains a

part of the parallel speed-ups in the parallel-in-time gradient-type method and in

some cases is able to adjust an improper initial large step size to a suitable step size.

However, compare to backtracking in the classical gradient method, this watchdog

type of algorithm is less e�cient in the sense that it takes more iterations to find a

suitable step size because only in the periodically executed serial full gradient sweep

the merit function is evaluated.



Chapter 7

Conclusions and Outlook

Conclusions. Using a gradient-type method to solve time-dependent optimization

problem can be computationally expensive, especially the problem is governed by a

time-dependent Partial Di↵erential Equation (PDE) system [Gun03, BLUU12, Jan11,

DCZ15, HCCT13]. The repeated solution of the inherently serial-in-time forward

PDEs and the backward PDEs is required by the gradient computation and consumes

a lot of computation time.

I proposed a new parallel-in-time gradient-type method for time-dependent opti-

mal control problems to introduce parallelism in the time dimension. This method

decomposes the time domain into multiple time subdomains. The forward and back-

ward computation in these multiple time subdomains is performed at the same time in

parallel using boundary information of state and adjoint variables from last optimiza-

tion iteration. In the time consumed by one iteration of the classical gradient method,

multiple iterations of the parallel-in-time gradient-type method can be executed. In

the evenly splitting time domain into N subdomains case, ideally, N iterations of

the parallel algorithm consumes similar time as one classical gradient method, which

brings significant speed-up in example problems.

Then, by introducing a set of data aggregation/communication rules, I general-

ized the newly proposed parallel-in-time gradient-type method to accommodate more

214
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flexible partition of the time domain, allowing overlapping subdomains and di↵erent

number of forward/backward subdomains.

For linear-quadratic problems, I interpreted the generalized parallel-in-time

gradient-type method as a multiple part splitting method [de 76, dN81]. I proved

the convergence of the generalized parallel gradient-type method with su�ciently

small fixed step sizes by the spectral radius arguments of an implicitly constructed

iteration matrix.

I also showed that there is a close connection between the parallel-in-time gradient-

type method and the multiple shooting reformulation of the optimization problem.

The state/adjoint jumps, gradient-type vector in the parallel gradient-type method

constitute the gradient of the multiple shooting reformulation Lagrangian. The pro-

posed parallel-in-time gradient-type method is interpreted as a gradient type method

to solve the indefinite optimality system of the multiple shooting reformulation of

the optimization problem. An alternative convergence proof for the linear-quadratic

problem is given from the multiple shooting perspective.

Then, for general nonlinear problems, I study the properties of the parallel

gradient-type method combined with the metric projection of control variable onto a

closed convex set. I derived a series of theorems to establish the convergence proof of

the method with su�ciently small step size. Results on monotonic convergence are

also derived.

I presented numerical experiment results. In a distributed control problem

governed by a 3D linear advection-di↵usion-reaction system, the parallel-in-time

gradient-type method achieved strong scaling with 50-60 processors. Other numerical

examples demonstrated di↵erent properties of the proposed method.

I introduced the wellrates optimization problem in oil reservoir optimization. I

used a two-phase immiscible incompressible subsurface fluid model with SPE-10 per-

meability and porosity data sets, which forms a highly nonlinear problem. The

parallel-in-time gradient-type method uses two levels of parallelism, the newly in-
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troduced parallelism in the time dimension and the existing parallelism in the space

dimension. The speed-ups from the two levels of parallelism multiply. Compared

to the classical gradient method, the parallel-in-time gradient-type method leads to

significant optimization acceleration.

Outlook. I proposed and investigated properties of the parallel-in-time gradient-

type method in this thesis. I answered some questions, which also opens up more

questions.

Below, as an outlook on possible future research, I summarize the aspects related

to the parallel-in-time gradient-type method that I was not able to take care of during

my research time. The aspects covered by di↵erent bullet points are not mutually

exclusive.

• Practical “su�cient decrease” criteria that guarantee convergence.

The convergence theorems in Section 3.5, Section 4.3, and Chapter 5 all only

state that for a su�ciently small step size the proposed algorithm converges.

But they are not informative in terms of how small the step should be. In

practice, these theorems are not convenient to use if not impossible. Consider

the classical gradient method. The backtracking line search method based on

Armijo-Goldstein “su�cient decrease” condition often e�ciently leads to con-

vergence by discarding unsatisfactory tentative control updates and adjusting

step size. It is desired that an analogous mechanism can be designed for the

parallel-in-time gradient-type method that monitors the iterations and make

adaptive adjustments according to its behavior.

• Determination of suitable problems. Demonstrated by the examples in

Section 3.6.1 and Section 3.6.2, the speed-up of the proposed parallel method

compared to the classic gradient method heavily depends on the specific opti-

mization problem it is applied to. The proposed method can have heterogeneous

performance where it is applied to di↵erent problems. Definitely, the proposed
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method does not work well on all problems. It will be helpful if there is a guide-

line of how to identify suitable optimization problems to use the parallel-in-time

gradient-type method on.

Intuitively, optimal control problems in a very di↵usive system with a Dirichlet

boundary condition is likely to be a suitable type of problem to apply the

proposed method.

• How to partition the domain? Apart from the choice of how many subdo-

mains to use in the evenly splitting time domain case, the generalized parallel-

in-time gradient-type method (Section 3.4) has o↵ered a variety of supported

computation subdomain arrangements, which I did not thoroughly study (an

exploration is in Section 3.6.3). There should be a guideline of domain parti-

tioning according to the nature of each specific optimization problem.

For example, in the problem with strong temporal dependence, overlapping

subdomains should probably be encouraged.

• Explanation of why the proposed method yields speed-ups. I demon-

strated by numerical examples in Section 3.6 and Section 6.3.2 that, in some

optimization problems, the proposed method has an significant advantage over

the classical gradient method, by utilizing parallel computing, in terms of com-

putation time. However, I did not clearly explain why this advantage exists. I

only have the heuristic argument, which also serves as the intuitive motivation

of this whole research, that in the time for one classical gradient method itera-

tion, the parallel-in-time gradient-type method can execute multiple iterations.

If the gradient-type update is in some sense good enough, the fast iterations

yields speed-ups. But I did not explain carefully how good the gradient-type

vector the parallel method produces is in comparison with the exact gradient,

especially in terms of its e↵ect in achieving the optimization goal, i.e., decreas-

ing the objective function value or control error. And I did not give reason why
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the gradient-type vector is good in the case it is good. A better understanding

of the reasons behind the observed speed-ups also helps answer the questions

in other bullet points.

The material in Section 3.6.3 and Section A.2 can be a starting point of this

discussion.

Further research that takes good care of these bullet points will potentially make the

parallel-in-time gradient-type method a very practical method.
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[Trö10] F. Tröltzsch. Optimal Control of Partial Di↵erential Equations: Theory,

Methods and Applications, volume 112 of Graduate Studies in Mathemat-

ics. American Mathematical Society, Providence, RI, 2010.

[US77] D. J. Uherka and A. M. Sergott. On the continuous dependence of the

roots of a polynomial on its coe�cients. Amer. Math. Monthly, 84(5):368–

370, 1977.

[Wie10] K. D. Wiegand. A numerical study of an adjoint based method for reser-

voir optimization. Master’s thesis, Department of Computational and

Applied Mathematics, Rice University, Houston, TX, May 2010.

[WLA+02] P. Wang, M. Litvak, K. Aziz, et al. Optimization of production operations

in petroleum fields. In SPE Annual Technical Conference and Exhibition.

Society of Petroleum Engineers, 2002.



228

[Wri90] S. J. Wright. Solution of discrete–time optimal control problems on par-

allel computers. Parallel Computing, 16:221–237, 1990.

[Wri91a] S. J. Wright. Parallel algorithms for banded linear systems. SIAM J. Sci.

Statist. Comput., 12:824–842, 1991.

[Wri91b] S. J. Wright. Partitioned dynamic programming for optimal control.

SIAM J. Optimization, 1:620–642, 1991.

[YDA02] B. Yeten, L. J. Durlofsky, and K. Aziz. Optimization of smart well control.

In SPE-79031-MS SPE Conference Paper - 2002, 2002.

[ZAZP96] I. Zakirov, S. I. Aanonsen, E. S. Zakirov, and B. M. Palatnik. Optimiz-

ing reservoir performance by automatic allocation of well rates. In 5th

European Conference on the Mathematics of Oil Recovery, 1996.



Appendices

229



Appendix A

On the Multiple-Shooting

Formulation

A.1 On the Convergence of the Projected Parallel

Gradient-Type Method

In this section, I discuss the convergence of the parallel-in-time gradient-type algo-

rithm combine with metric projection, a topic that is also covered in Section 5.2

for general nonlinear problem. Now, I investigate the convergence from the multiple

shooting point of view for linear-quadratic problem.

In Section 4.3, the convergence proof heavily relies on the spectral radius of the

matrix [I�W(↵)] in (4.3.3) being smaller than 1. It is proved that with su�ciently

small ↵, ⇢(I �W(↵)) is smaller than 1. It is natural that one conjecture that with

a ↵ such that ⇢(I�W(↵)) < 1, the projected parallel-in-time gradient-type method

iteration converges. Below, I first define the projected iteration in (A.1.2) and then

use two counter examples to show the conjecture does not hold.
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Given a convex set D 2 nu ⇥K, define projection
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The parallel-in-time gradient-type method combined with metric projection executes

the following iteration modified from (4.2.15),

2

6664
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ȳ(j)
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Then, using expression (4.3.2) and definition in (4.3.4) leads to
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where ȳ⇤, ū⇤, p̄⇤ is the optimal solution of the unconstrained problem.

To prove the convergence iteration (A.1.2), following are two fruitless attempts.

• It is tempting to prove a seeming general result that the iteration defined by

xk+1

= PD(Axk + b)
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always converges with ⇢(A) < 1, which however does not hold. And the example

D = {[x
1

, x
2

]T 2 R2|x
1

= x
2

}, A =

2

40.1 10

0 0.1

3

5 , b = [0, 0]T , x
0

= [1, 1]T ,

results in divergence.

• One may want to prove that with a small ↵ > 0 such that ⇢(I�W(↵)) < 1, the

projected parallel-in-time gradient-type method defined by (A.1.1) or (A.1.2) is

always convergent. This is wrong. A counter example follows.

Consider optimization problem

min
1

2
(y2

1

+ y2
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(A.1.3)

Its adjoint equations read

p
1

= y
2

p
0

= y
1

+ p
1

Let the parallel-in-time gradient-type algorithm run with two time subdomains,

sF
0

= 0, sF
1

= 1;

sB
0

= 0, sB
1

= 0.
(A.1.4)

In this simple case, it does not need to do any backward computation in the

first time subdomain. Straightforward computation yields symmetric

HL =

2
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3

7777775
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On the other hand, obviously, the optimal solution of the problem (A.1.3) is

ȳ⇤
1

= 0, ū⇤ = [0, 0]T , p̄⇤
0

= 0.

By (4.3.3) and (4.3.4),
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ȳ(j+1)
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ȳ(j)
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with

W(↵)
def

=
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3

7777775
HL (A.1.6)

When step size ↵ = 0.4, the spectral radius ⇢(I�W(↵)) ⇡ 0.97723 < 1 and, of

course, the unconstrained iteration (4.2.15) converges. However, experiments

with

D = {0}⇥ [�1, 1] or D = {1}⇥ [�1, 1] or D = [�1, 1]⇥ [�1, 1]

show that the projected iteration, (A.1.1) or (A.1.2), diverges.

By knowledge in Chapter 5, if the iteration is started by a pair of full for-

ward/backward sweep so that an initial true state/adjoint is computed, then the

projected iteration converges with su�ciently step size, but that is beyond the scope

of this section.

A.2 Behaviour of Spectral Radius ⇢(I�W(↵))

In Section 4.3, from (4.3.3), it can be seen that the convergence speed of the parallel-

in-time gradient-type method iteration (4.2.15) relies on the spectral radius of [I �

W(↵)]. In this Section, I use numerical experiments to demonstrate some typical
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relation ship between number of subdomains N , step size ↵, and the spectral radius

⇢(I�W(↵)).

Use the one dimensional distributed control problem in Section 3.6.3 as an exam-

ple. I compute ⇢(I � W(↵)) corresponding to di↵erent number of subdomains and

step size ↵.

Figure A.1: Spectral Radius Against Step Size and Number of Subdomains. Two

horizontal axes are for step size ↵ and number of subdomains. The vertical axis is

for the spectral radius. A yellow transparent horizontal layer is added at z = 1. See

Figure A.3 and Figure A.2 for two dimensional slices of this three dimensional plot.

Figure A.1 presents a overall relationship between the three quantities. Figure A.2

illustrates that for a fixed time subdomain splitting pattern, with su�ciently small
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Figure A.2: Spectral Radius Against Step Sizes. Five curves represent five di↵erent

number of subdomains.
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step size ↵, the spectral radius ⇢(I�W(↵)) < 1 as proved in Section 4.3. Additionally,

increasing ↵ from 0 decreases the spectral radius almost linearly below a threshold.

One should notice that in the classical serial gradient method iterations, the spectral

radius of the corresponding iteration matrix ⇢(I � ↵H) as seen in (3.1.10) decrease

linearly as ↵ increases when

0 < ↵ < ↵⇤ def

=
2

�max(H) + �min(H)

which is the behavior of the blue curve in Figure A.2. Actually, it is easy to see that,

for the serial classic gradient method (blue curve),

⇢(I� ↵H) =

8
><

>:

1� ↵�min(H) 0  ↵  ↵⇤

↵�max(H)� 1 ↵ > ↵⇤

which is a piecewise linear function with respect to ↵. Another observation is that,

in this example, as the number of subdomain grows, the step size corresponding to

the minimum spectral radius as well as the spectral radius itself decreases.

Figure A.3 shows that with relatively small step sizes, when number of subdomains

increases before a certain threshold is reached, the spectral radius is not significantly

a↵ected.

A.3 A Parallel-In-Time Krylov Subspace Based

Solver

In this section I show numerical results using a parallel Krylov subspace solver to solve

the optimality system in multiple shooting formulation. The multiple formulation is

also a permutation of the block tridiagonal optimality system developed in [Hei05].

This permutation reveals explicitly the structure that allows for parallel computation

in left multiplying the matrix to a vector. I present both positive and negative results

as for the performance of this parallel Krylov subspace solver. However, I do not

provide theoretical explanation of the di↵erent speed-up results.
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In the context of linear-quadratic optimization problem, solving the saddle point

problem (4.2.13) is equivalent to solve the linear system

HL

2

6664

ȳ

ū

p̄

3

7775
= rL(

2

6664

ȳ

ū

p̄

3

7775
)�rL(

2

6664

0

0

0

3

7775
) = �rL(

2

6664

0

0

0

3

7775
) (A.3.1)

The linear operator HL has the following important properties

• The application of the linear operator HL to a vector can be executed in parallel

withN parallel process in aN -subdomain multiple shooting setting. One should

note that applying an explicitly constructed matrix to a vector can be trivially

parallelized, but it is not always the case for linear operator whose matrix

representation is not explicitly constructed as for HL.

• The matrix representation of HL is symmetric indefinite. The symmetry can

be easily seen since HL is the Hessian of L.

To solve a linear system, gradient method is often not competitive against Krylov

subspace methods. Since the application of the linear operator HL to a vector is

parallel, the Krylov subspace methods can be executed in parallel. In this section, I

explore the performance of Krylov subspace based method in solving the optimality

system written in the multiple shooting form (A.3.1).

I test solving the symmetric indefinite system (A.3.1) using Krylov subspace solver

MINRES[PS75][FS12], which I refer to as the “parallel Krylov subspace solver” below.

For solving symmetric positive definite system as in the serial optimality system,

Hu = �g

with H and g defined in (3.1.8), MINRES and Conjugate Gradient method uses sim-

ilar number of iterations. Three examples are used to demonstrate the performance

of the parallel Krylov subspace solver.
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1. Simple example with a scalar state at each time step.

min
1

2

KX

k=1

y2k +
r

2

K�1X

k=0

u2

k

subject to yk+1

= ⇢yk + uk

y
0

= 1

(A.3.2)

where K = 1000, r = 100, ⇢ = 0.99.

2. The 1D boundary control problem (3.6.1) in Section 3.6.1.

3. The 1D distributed control problem (3.6.5) in Section 3.6.3. Figure A.4 explic-

itly plots the sparsity pattern of the implicitly constructed matrix HL for this

test case.

Figure A.4: sparsity pattern of the HL, N = 4 subdomains, for test case 2 ((3.6.5) in

Section 3.6.3 where nu = ny = 31, K = 30)
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Figure A.5: Performance of the parallel Krylov subspace solver on problem (A.3.2).

The red dot represent the serial bench mark. The horizontal axes are number of

subdomains. The Top plot shows the number of iterations, I(N), to reduce control

error from initial 1e � 1 to 1e � 12. Theoretical speed-up is N · I(1)/I(N). Parallel

e�ciency is I(1)/I(N).
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Figure A.6: Performance of the parallel Krylov subspace solver on problem (3.6.1).

The red dot represent the serial bench mark. The horizontal axes are number of

subdomains. The Top plot shows the number of iterations, I(N), to reduce control

error from initial 1e1 to 1e � 9. Theoretical speed-up is N · I(1)/I(N). Parallel

e�ciency is I(1)/I(N).
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Figure A.7: Performance of the parallel Krylov subspace solver on problem (3.6.5).

The red dot represent the serial bench mark. The horizontal axes are number of

subdomains. The Top plot shows the number of iterations, I(N), to reduce control

error from initial 1e2 to 1e � 5. Theoretical speed-up is N · I(1)/I(N). Parallel

e�ciency is I(1)/I(N).
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Figure A.5, Figure A.6, and Figure A.7 present contrasting numerical results for

three test cases. In Figure A.5 for problem (A.3.2), it is observed that for less than 20

subdomains, the parallel algorithm takes less iteration than the serial algorithm, in

which case the scaling is better than strong scaling with parallel e�ciency larger than

100%. In Figure A.6 for problem (3.6.1), by introduction of the parallelism, number

of iterations immediately tripled from around 30 to 100 and stayed roughly constant

with less than 10 subdomains with parallel e�ciency around 30%. In Figure A.7 for

problem (3.6.5), parallelism does not yield any speed-up in all the tests with various

number of subdomains.

However, I do not have explanation for the di↵erent parallel performance in the

three test cases currently.



Appendix B

Reservoir Simulation

To do a reservoir simulation is to simulate the behavior of reservoir variables, such as

pressure, saturation, etc. , by a math model based computer program. I summarize

the basic reservoir physics in the PDE model and explain the numerical scheme to do

the simulation, which follows the framework of [CHM06], [CJ86], and [Pea77].

B.1 Basic Physics

In this project, I use a two-phase, immiscible, incompressible flow model [AGL07]

[CHM06]. There is a water phase and a oil phase. Being immiscible means that no

mass transfer between phases. The water phase consists of pure water; the oil phase

consists of pure oil. Being incompressible means rock, water and hydrocarbon are

all incompressible, i.e. rock porosity and fluid density does not change due to the

pressure change.

⌦ ⇢ R3 open set representing the dimension of the reservoir

x 2 ⌦ space coordinate of 3-dimensional reservoir

T 2 IR+ total simulation time

t 2 [0, T ] time after the beginning of simulation

↵ 2 {water(w),oil(o)} phase in the composite fluid

244
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K(x) 2 IR3⇥3 permeability matrix at location x

�(x) 2 R reservoir porosity

⇢↵ 2 R density of phase ↵, assumed to be constant all space all time

s↵(x, t) 2 IR saturation of phase ↵. 8x, 8t, sw(x, t) + so(x, t) = 1

p↵(x, t) 2 IR pressure of phase ↵

pcow(sw) 2 IR capillary pressure, po � pw = pcow

p(x, t) 2 IR global pressure, defined in (B.1.5)

q↵(x, t) 2 IR well (mass) rate of phase ↵ at location x at time t

q(x, t) 2 IR total well (volume) rate, i.e. q
w

(x,t)
⇢
w

+ q
o

(x,t)
⇢
o

v↵(x, t) 2 IR3 flux of phase ↵, volume flow rate per unit area

v(x, t) 2 IR3 total flux, i.e. vw(x, t) + vo(x, t)

kr↵(sw) 2 IR relative permeability coe�cient for phase ↵, fully dependent

on the local phase saturation

µ↵ 2 IR viscosity of phase ↵, assumed to be constant all space all time

�↵(sw) 2 IR phase mobility, defined as k
r↵

(s
w

)

µ
↵

�(sw) 2 IR total monility, i.e. �w(sw) + �o(sw)

fw(sw) 2 IR fractional flow function, fw(sw) =
�
w

(s
w

)

�(s
w

)

G 2 IR3 vector of gravity acceleration, pointing downward

sor 2 IR+ irreducible oil saturation

i.e. the assumed lowest oil saturation that can be achieved

by a certain kind of recovery

swc 2 IR+ connate water saturation

i.e. the saturation of water trapped permanently in the rock

Pd 2 IR+ entry pressure, used in Brooks-Corey formula

Table B.1: Nomenclature for the Reservoir Simulation

Derivation of Pressure Equation Water saturation sw(x, t) and oil saturation

so(x, t) describe the volume fraction of water and oil phase in the mixed fluid. In the
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two phase model sw(x, t) + so(x, t) = 1. Phase density ⇢w, ⇢o define the density of

each fluid phase and, due to the incompressibility assumption, they are constant in

all space and time of simulation. Porosity �(x) is the the ratio of porous medium pore

space and the bulk volume of the rock. For the incompressibility assumption, �(x)

is a function of position and invariant with respect to time. I use vw(x, t), vo(x, t) to

denote phase flux/velocity, in the dimension of volume per area per time [ L3

L2T
= L

T
].

qw(x, t) and qo(x, t) is the rate of fluid phase mass injected/produced in a unit volume

[ M
TL3

]. By mass conservation of two phases, for ↵ 2 {o, w},

@⇢↵�(x)s↵(x, t)

@t
+rx· (⇢↵v↵(x, t)) = q↵(x, t) (B.1.1)

Rock absolute permeability K(x) 2 R3⇥3 defines the flow direction in the presence

of pressure gradient, each component of which has dimension [L2]. Relative perme-

ability kr↵(s↵(x, t)) describes the influence of phase saturation on the phase velocity

magnitude, dimensionless. Both absolute and relative permeability a↵ects the phase

flow through Darcy’s Law

v↵(x, t) = �K(x)
kr↵(s↵(x, t))

µ↵

(rxp↵(x, t)� ⇢↵G)

where µ↵ represents phase viscosity in the dimension of [F
T
]. G is the vector of

gravitational acceleration [ L
T 2

]. Define phase mobility

�↵(s↵(x, t)) =
kr↵(sw(x, t))

µ↵

and total velocity

v(x, t) := vo(x, t) + vw(x, t) (B.1.2)

and the source term of total volume rate per space in the dimension of [ 1
T
]

q(x, t) := qw(x, t)/⇢w + qo(x, t)/⇢o (B.1.3)

Adding (B.1.1) of two phases and using the definitions above yields
8
><

>:

v(x, t) = �[K(x)�
w

(s
w

(x, t))(r
x

p

w

(x, t)� ⇢

w

G) +K(x)�
o

(s
o

(x, t))(r
x

p

o

(x, t)� ⇢

o

G)]

r
x

· v(x, t) = q(x, t)

(B.1.4)
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Following [AGL07, P.27] and [CHM06, P.24], define a global pressure p

p(x, t) := po(x, t)�
Z s

w

(x,t)

1

fw(⇠)
dpcow
dsw

(⇠)d⇠ (B.1.5)

in which capillary pressure pcow(sw(x, t)) represents the pressure di↵erence between

oil phase and water phase, pcow = po � pw. It is determined by the phase saturation

and I wrote it as a function of water saturation.

rxp(x, t) = rxpo(x, t)� fw(sw(x, t))
dpcow
dsw

(sw(x, t))rxsw(x, t)

= rxpo(x, t)� fw(sw(x, t))rxpcow(sw(x, t))

= rxpo(x, t)�
�w(x, t)

�w(x, t) + �o(x, t)
rx(po(x, t)� pw(x, t))

=
�o(x, t)

�w(x, t) + �o(x, t)
rxpo(x, t) +

�w(x, t)

�w(x, t) + �o(x, t)
rxpw(x, t) (B.1.6)

Define total mobility

�(sw(x, t)) := �w(sw(x, t)) + �o(sw(x, t)) (B.1.7)

Insert (B.1.6) into (B.1.4). Instead of two phase pressures, global pressure is the new

unknown variable
8
><

>:

v(x, t) = �[K(x)�(s
w

(x, t))r
x

p(x, t)�K(x)(�
w

(s
w

(x, t))⇢
w

+ �

o

(s
w

(x, t))⇢
o

)G]

r
x

· v(x, t) = q(x, t)

(B.1.8)

This is the pressure equation

�rx· [K(x)�(sw(x, t))rxp(x, t)�K(x)(�w(sw(x, t))⇢w + �o(sw(x, t))⇢o)G] = q(x, t)

(B.1.9)

Derivation of Saturation Equation Define fractional flow function

fw =
�w

�w + �o
(B.1.10)

Start from water phase of (B.1.1), apply Darcy’s Law, and plug in vo = v � vw
8
>>>>><

>>>>>:

vw(x, t) = fw(sw(x, t))
h
v(x, t) +K(x)�o(sw(x, t))rxpcow(x, t)

+K(x)�o(sw(x, t))(⇢w � ⇢o)G
i

�(x)@sw(x,t)
@t

+rx· vw(x, t) = q
w

(x,t)
⇢
w

(B.1.11)
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This is the saturation equation.

About Capillary Pressure The capillary pressure pcow is a scalar argument func-

tion of saturation sw(x, t), so

rxpcow(sw(x, t)) = p0cow(sw(x, t))rxsw(x, t) (B.1.12)

where p0cow is the derivative of scalar argument function pcow. The capillary pressure

related part of rx · vw is

rx· [fw(sw(x, t))K(x)�o(sw(x, t))rxpcow(sw(x, t))]

=rx· [fw(sw(x, t))K(x)�o(sw(x, t))p
0
cow(sw(x, t))rxsw(x, t)]

=rx· [K(x)
�w(sw(x, t))�o(sw(x, t))

�w(sw(x, t)) + �o(sw(x, t))
p0cow(sw(x, t))rxsw(x, t)] (B.1.13)

Following Brooks-Corey formula [BC64] for approximation of capillary pressure, with

normalized saturation s⇤w(x, t) :=
s
w

(x,t)�s
wc

1�s
or

�s
wc

, I use Pds
⇤
w(x, t)

� 1

2 to approximate cap-

illary pressure. This approximation has a singularity at s⇤w(x, t) = 0. Numerically, I

apply a linearization near the singularity

pcow(sw) =

8
><

>:

Pd(
s
w

�s
wc

1�s
or

�s
wc

)�
1

2 if ✏  s
w

�s
wc

1�s
or

�s
wc

�1

2

Pd✏
� 3

2 ( s
w

�s
wc

1�s
or

�s
wc

� ✏) + Pd✏
� 1

2 if 0  s
w

�s
wc

1�s
or

�s
wc

< ✏

(B.1.14)

Since, p0cow < 0 everywhere, (B.1.13) is a nonlinear di↵usion term in the saturation

equation.

Coupled System The PDE system (B.1.9) and (B.1.11) describes the subsurface

flow in oil reservoir. Pressure equation (B.1.9) and saturation equation (B.1.11)

are coupled. In pressure equation, mobilities depend on saturation; in saturation

equation, total velocity is computed in pressure equation.

I neglect gravity. Let ⌦ be an open set in R3. In domain ⌦ ⇥ [0, T ], the PDE
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system is

for x 2 ⌦, t 2 [0, T ]

�rx· [K(x)�(sw(x, t))rxp(x, t)] = q(x, t) (B.1.15a)

�K(x)�(sw(x, t))rxp(x, t) = v(x, t) (B.1.15b)

fw(sw(x, t))(v(x, t) +K(x)�o(sw(x, t))rxpcow(sw(x, t))) = vw(x, t) (B.1.15c)

�(x)
@sw(x, t)

@t
+rx· vw(x, t) =

qw(x, t)

⇢w
(B.1.15d)

for x 2 @⌦, t 2 [0, T ]

v(x, t) · n = 0 (B.1.15e)

vw(x, t) · n = 0 (B.1.15f)

for x 2 ⌦

sw(x, 0) = s
0

(x) (B.1.15g)

n is the outward normal vector on the boundary. The water phase source term is

determined by the total source term through

qw(x, t) =

8
<

:
q(x, t) q(x, t) � 0

fw(sw(x, t))q(x, t) q(x, t) < 0

By (B.1.2), two Neumann boundary conditions (B.1.15e)(B.1.15f) enforces no flow

condition for both water and oil phase.

B.2 Numerical Scheme

I apply Finite Volume Method to discretize (B.1.15) in space [EHM03] [Mic03]

[Wie10], solve pressure equation and saturation equation alternatively in a sequential

time stepping manner [AGL07]. In solving saturation equation, I use backward Euler

method.
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N 2 Z+ grid size (number of cells), N = Nx ⇥Ny ⇥Nz

K 2 Z+ last time step index (time step index is 0 based)

�t 2 R time step size

ei 2 IRN ei = (0, ..., 0, 1, 0, ..., 0)T with ‘1’ at the ith position

pk 2 IRN pressure vector of length N at time step k.

The ith component, pki , is the pressure for cell ⌦i

q̂k 2 IRN
q well injection/production rates (mass per space per time) at time step k.

The jth component, q̂kj , is the well rates for cell ⌦l
j

.

q̂kj =
R
⌦

l

j

q(x, tk)dx with q(x, t) defined in table B.1.

qk 2 IRN qk =
PN

q

j=1

q̂kj elj , source vector of length N at time step k.

The ith component, qki , is positve for injection, negative for production

There are only Nq non-zero components representing Nq controlled wells.

In the context of water flooding, define water source term

qkw,i =

8
><

>:

qki qki � 0

fw(ski )q
k
i qki < 0

corresponding to qw(x, t) in (B.1.15d).fw is defined in (B.1.10).

sk 2 IRN water saturation vector of length N at time step k.

The ith component, ski , is the saturation for cell ⌦i

k 2 IR3⇥3⇥N 3⇥ 3 relative permeability matrix array of length N at time step k.

The ith component, ki , is the 3⇥ 3 relative permeability matrix for cell ⌦i

vk 2 IRM M = (Nx � 1)⇥Ny ⇥Nz +Nx ⇥ (Ny � 1)⇥Nz +Nx ⇥Ny ⇥ (Nz � 1)

flux between adjacent cells at time step k.

The component indexed by ‘ij’, vkij, is the flux from cell ⌦i to ⌦j.

Table B.2: Nomenclature for the Numerical Scheme of Reservoir Simulation

The domain of the reservoir is discretized into a rectangular grid of size

N = Nx ⇥Ny ⇥Nz
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I use a series of evenly spaced time steps

t
0

< t
1

< t
2

< ... < tk < ... < tK = T (B.2.1)

where tk = t
0

+ k�t, 8k 2 {0, 1, ..., K}. Number of wells in the reservoir is Nq. All

of the well locations are fixed during the simulation. Well i 2 Iwell := {l
1

, ..., lN
q

} is

located in cell ⌦i. Iinj and Ipro represent the index set of injection and production

wells respectively

Iinj [ Ipro = Iwell, Iinj \ Ipro = ;, Iinj, Ipro 6= ;

8x 2 ⌦i, 8t 2 [0, T ]

q(x, t)

8
>>>>><

>>>>>:

� 0 i 2 Iinj

 0 i 2 Ipro

= 0 i 62 (Iinj [ Ipro)

(B.2.2)

B.2.1 Solving Pressure Equation

I use Two Point Flux Approximation (TPFA) [AGL07] to solve (B.1.15a). At time

step k, define 3 by 3 relative permeability matrix (x, tk)

(x, tk) = K(x)�(sw(x, tk)) (B.2.3)

and the discretized version of permeability matrix for time step k

k 2 IR3⇥3⇥N

is a 3⇥ 3 matrix array of length N , i.e. an array of length N whose every component

consists of a 3⇥ 3 matrix, approximating (x, tk) by cell wise constant values.

Insert (B.2.3) into (B.1.15a),

�rx·(x, tk)rxp(x, tk) = q(x, tk) (B.2.4)

Apply divergence theorem on grid cell ⌦i,

�
Z

@⌦
i

(x, tk)rxp · n =

Z

⌦

i

q(x, tk) (B.2.5)
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where n is the outward normal vector on the boundary @⌦i of ⌦i. In this project, I

use rectangular hexahedron grid cells. �ij is the interface between grid cell ⌦i and ⌦j

with normal vector nij pointing from ⌦i to ⌦j.

�
Z

@⌦
i

(x, tk)rxp(x, tk) · n = �
X

⌦

j

is adjacent to ⌦

i

Z

�
ij

(x, tk)rxp(x, tk) · nij (B.2.6)

I replace rp · nij on �ij with numerical approximation

�pkij =
(pkj � pki )
�h

i

+�h
j

2

(B.2.7)

where �hi and �hj are the dimensions of grid cell ⌦i and ⌦j in the direction from

⌦i to ⌦j. Then I obtain the approximation

Z

�
ij

(x, tk)rxp(x, tk) · nij ⇡ �pkij

Z

�
ij

(x, tk) (B.2.8)

Since k is discontinuous on �ij, the value of (x, tk) on �ij is approximated by a

distance-weighted harmonic average of ki,ij = nij · ki nij and kj,ij = nij · kjnij,

kij = (�hi +�hj)(
�hi

ki,ij
+
�hj

kj,ij
)�1 (B.2.9)

Combine (B.2.5), (B.2.6),(B.2.7), (B.2.8), and (B.2.9)

Z

⌦

i

q(x, tk) ⇡
X

⌦

j

is adjacent to ⌦

i

2|�ij|(
�hi

ki,ij
+
�hj

kj,ij
)�1(pki � pkj ) (B.2.10)

Conventionally, define TPFA transmissibility

⌧ kij = 2|�ij|(
�hi

ki,ij
+
�hj

kj,ij
)�1 (B.2.11)

Then, I have TPFA discretized version of (B.1.15a) as follows

Z

⌦

i

q(x, tk) ⇡
X

⌦

j

is adjacent to ⌦

i

⌧ kij(p
k
j � pki ) 8⌦i ⇢ ⌦ (B.2.12)

In matrix form

A(sk)pk = qk (B.2.13)
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In which A(sk) = [aim], a N by N matrix, with sk in parenthesis to emphasize �kij’s

dependence on saturation

aim =

8
><

>:

P
⌦

j

is adjacent to ⌦

i

⌧ kij m = i

�⌧ kim m 6= i

(B.2.14)

The matrix A(sk) is singular. When
PN

i=1

qti = 0, this system has solutions which

are determined up to a constant. By adding a positive constant to a
11

, I make this

matrix non-singular and force the resulting pressure in ⌦
1

to be 0.

The flux from ⌦i to adjacent cell ⌦j is computed by
Z

�
ij

v(x, t) · nij ⇡ vkij = ⌧ kij(p
k
i � pkj ) (B.2.15)

B.2.2 Solving Saturation

For the time dependent saturation equation, (B.1.15d), integrate over grid cell ⌦i

Z

⌦

i

�(x)
@sw(x, t)

@t
+

Z

⌦

i

rx · vw(x, t) =
R
⌦

i

qw(x, t)dx

⇢w
(B.2.16)

substitute (B.1.15b) into the equation above
Z

⌦

i

rx · vw(x, t) =
Z

⌦

i

rx · fw(sw(x, t))K(x)�o(sw(x, t))rxpcow(sw(x, t))

+

Z

⌦

i

rx · fw(sw(x, t))v(x, t) (B.2.17)

The first integral of (B.2.17)
Z

⌦

i

rx · fw(sw(x, t))K(x)�o(sw(x, t))rxpcow(sw(x, t))

corresponds to capillary pressure, by (B.1.13) and divergence theorem
Z

⌦

i

rx ·K(x)�o(sw(x, t))rxpcow(sw(x, t))

=

Z

⌦

i

rx· [K(x)
�w(sw(x, t))�o(sw(x, t))

�w(sw(x, t)) + �o(sw(x, t))
p0cow(sw(x, t))rxsw(x, t)]

=

Z

@⌦
i

n· [K(x)
�w(sw(x, t))�o(sw(x, t))

�w(sw(x, t)) + �o(sw(x, t))
p0cow(sw(x, t))rxsw(x, t)] (B.2.18)
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Below, I derive its discrete version. In the computation from time step k to time step

k+1, in terms of evaluating (B.2.18), I either choose k or k+1 as the time index for

saturation. For example, in a backward Euler scheme, all of the saturation used in

(B.2.18) is in step k + 1. Since the superscripts are all the same, I will omit them on

the saturation notation below for simplicity. Since,

@⌦i = [
⌦

j

is adjacent to ⌦

i

�ij

Look at the integration of (B.2.18) on the boundary surface of two cells,

Z

�
ij

nij· [K(x)
�w(sw(x, t))�o(sw(x, t))

�w(sw(x, t)) + �o(sw(x, t))
p0cow(sw(x, t))rxsw(x, t)] (B.2.19)

The permeability term, K(x), on the face is approximated by a constant, the har-

monic average of permeability on the two cells, ⌦i and ⌦j, sharing this face, �ij. In

this project, K(x) is diagonal. Assume the permeability diagonal component of the

direction normal to �ij is indexed by s (s = 1, 2, 3),

Ks(x) ⇡
2Ki,sKj,s

Ki,s +Kj,s

(B.2.20)

Saturation used in the rest of the integral is the arithmetic average of saturation in

⌦i and ⌦j,

s̄w =
si + sj

2
(B.2.21)

And in (B.2.19) the term

�w(sw(x, t))�o(sw(x, t))

�w(sw(x, t)) + �o(sw(x, t))
p0cow(sw(x, t)) ⇡

�w(s̄w)�o(s̄w)

�w(s̄w) + �o(s̄w)
p0cow(s̄w) (B.2.22)

The component in the direction between ⌦i and ⌦j of rxsw(x, t) is approximated by

a two point finite di↵erence. Combine (B.2.20) and (B.2.21), on �ij,

nij ·K(x)rxsw(x, t) ⇡
2Ki,sKj,s

Ki,s +Kj,s

sj � si
h

(B.2.23)
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Lastly, by (B.2.22) and (B.2.23), (B.2.18) is approximated numerically
Z

@⌦
i

n· [K(x)
�w(sw(x, t))�o(sw(x, t))

�w(sw(x, t)) + �o(sw(x, t))
p0cow(sw(x, t))rxsw(x, t)]

⇡
X

⌦

j

is adjacent to ⌦

i

|�ij|
�w(s̄w)�o(s̄w)

�w(s̄w) + �o(s̄w)
p0cow(s̄w)

2Ki,sKj,s

Ki,s +Kj,s

sj � si
h

(B.2.24)

and I define

Eij(s
m) = |�ij|

�w(s̄mw )�o(s̄
m
w )

�w(s̄mw ) + �o(s̄mw )
p0cow(s̄

m
w )

2Ki,sKj,s

Ki,s +Kj,s

smj � smi
h

(B.2.25)

The second part of (B.2.17)
Z

⌦

i

rx · fw(sw(x, t))v(x, t)

represents the fluid flow due to pressure gradient, apply divergence theorem
Z

⌦

i

rx · fw(sw(x, t))v(x, t) =
Z

@⌦
i

fw(sw(x, t))v(x, t) · n

=
X

⌦

j

is adjacent to ⌦

i

Z

�
ij

fw(sw(x, t))v(x, t) · nij (B.2.26)

Here, to do approximation, I want

Fij(s
m, vkij,p

k) ⇡
Z

�
ij

fw(sw(x, tm))v(x, tk) · nij (B.2.27)

The numerical approximation of saturation is cell wise constant and discontinuous

on the boundary of cells. I use upstream weighting for the fractional flow

Z

�
ij

fw(sw(x, tm))v(x, tk) · nij ⇡

8
><

>:

R
�
ij

fw(smi )v(x, tk) · nij pki � pkj
R
�
ij

fw(smj )v(x, tk) · nij pki < pkj

(B.2.28)

Since,
R
�
ij

fw(smi )v(x, tm) ·nij = fw(smi )v
m
ij and

R
�
ij

fw(smj )v(x, tm) ·nij = fw(smj )v
m
ij

by (B.2.15) Then, (B.2.27) and (B.2.28) are reduced to

Fij(s
m, vkij,p

k) :=

8
><

>:

fw(smi )v
k
ij pki � pkj

fw(smj )v
k
ij pki < pkj

(B.2.29)
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Since, flux fully depends on pressure. By (B.2.15), I can hide the dependence of

Fij on vkij into the dependence on pk as follows

Fij(s
m, vkij,p

k) = Fij(s
m,pk) =

8
><

>:

fw(smi )⌧
k
ij(p

k
i � pkj ) pki � pkj

fw(smj )⌧
k
ij(p

k
i � pkj ) pki < pkj

(B.2.30)

Assemble two parts of (B.2.17) With Eij(sm) and Fij(sm,pk) calculated in the

above two parts, (B.2.17) yields the discrete relationship for saturation

�i

�t
(sk+1

i � ski ) +
1

|⌦i|
X

⌦

j

is adjacent to ⌦

i

[✓Gij(s
k+1,pk) + (1� ✓)Gij(s

k,pk)] =
qkw,i

⇢w

(B.2.31)

where

Gij(s
m,pk) = Eij(s

m) + Fij(s
m,pk) (B.2.32)

✓ switches the scheme between implicit and explicit, 1 for implicit and 0 for explict.

Implicit Saturation Equation When ✓ is set to 1, (B.2.31) yields a backward

Euler implicit scheme for the saturation equation

�i

�t
(sk+1

i � ski ) +
1

|⌦i|
X

⌦

j

is adjacent to ⌦

i

Gij(s
k+1,pk) =

qkw,i

⇢w
(B.2.33)

I use a quasi-Newton method to solve this equation.

B.3 Trilinos Implementation

Trilinos Project Packages [HBH+05] are extensively used in this reservoir simulation.

• Epetra provides the data structures and routines in parallel linear algebra. I

use it to store saturation, pressure, permeability, porosity in distributed memory

and sparse system matrices in distributed memory.
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• AztecOO provides an object-oriented interface to the Aztec linear solver li-

brary. It solves the symmetric pressure systems by Conjugate Gradient and

solves the asymmetric linear equation systems arising from nonlinear satura-

tion equation by GMRES.

• ML provides a black-box parallel multigrid preconditioner which significantly

accelerates the linear solvers in forward simulation and backward adjoint com-

putation.

• SACADO provides classes for automatic di↵erentiation.

• Teuchos provides a set of convenient common tools, e.g. smart pointers, pa-

rameter lists, XML parsers.



Appendix C

Parallel-In-Time Gradient-Type

Method Implementation Details In

Reservoir Optimization

The reservoir optimization problem (6.2.2) has three characteristics that influences

the parallel-in-time gradient-type method implementation:

1. its state equations are implicit, i.e., the state in a new time step is given by

solving an equation system, which has an impact on adjoint variable values;

2. there are two state equations in each time step, i.e., the pressure equation

(6.2.2b) and the saturation equation (6.2.2c);

3. there are two state variables, i.e., pressure and saturation.

Of course, it can be reduced to the standard form of (5.2.1) and apply for the parallel-

in-time gradient-type method, Algorithm 13. However, in the implementation, some

new aspects needs to be considered, e.g. data communication with the implicit state

equation. In addition, I made slight adjustment of the backward computation time

subdomain partition in Algorithm 13 so that the parallel gradient-type algorithm is

more e�cient.

258
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Therefore, for clarity, I give the implementation details of the parallel-in-time

gradient-type method applied to the reservoir problem.

I first give the parallel-in-time gradient-type algorithm with implicit state equa-

tions and show its equivalence to the parallel-in-time gradient-type algorithm with

explicit state equations in the sense that they produce exactly the same control up-

date. Then, I discuss the parallel-in-time gradient-type algorithm used in the reservoir

optimization.

C.1 Algorithms For Explicit/Implicit Formulation

of State Equations

In Chapter 5, the state equations of the model problem (5.2.1) has explicit form. For

reading convenience, I repeat (5.2.1) here:

Minimize
KX

k=0

Jk(yk, uk) (C.1.1a)

subject to yk+1

= Fk(yk, uk), k = 0, ..., K � 1, (C.1.1b)

y
0

= y
given

(C.1.1c)

u 2 D (C.1.1d)

In practice, as the case in the reservoir optimization problem, state equations are

often implicitly defined as in (C.1.2b).

Minimize
KX

k=0

Jk(yk, uk) (C.1.2a)

subject to F̃k(yk, yk+1

, uk) = 0, k = 0, ..., K � 1, (C.1.2b)

y
0

= y
given

(C.1.2c)

u 2 D (C.1.2d)

Assume that, for k = 0, ..., K� 1, given yk, uk, the state equation Fk(yk, yk+1

, uk) = 0

uniquely determine yk+1

.
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C.1.1 Gradient Computation with Implicit State Equations

Lagrangian of problem (C.1.2),

L̃ =
KX

k=0

Jk(yk, uk) +
K�1X

k=0

�Tk F̃k(yk, yk+1

, uk) +  T (y
0

� y
given

) (C.1.3)

Take derivatives of L̃ with respect to state variables, set them to be zero and obtain

adjoint equations,

0 =
@L
@yK

=
@JK(yK , uK)

@yK
+ [

@F̃K�1

(yK�1

, yK , uK�1

)

@yK
]T�K�1

(C.1.4a)

0 =
@L
@yk

=
@Jk(yk, uk)

@yk
+ [

@F̃k�1

(yk�1

, yk, uk�1

)

@yk
]T�k�1

+ [
@F̃k(yk, yk+1

, uk)

@yk
]T�k

k = 1, ..., K � 1 (C.1.4b)

Denote the reduced control space objective as Ĵ . The gradient is

@Ĵ

@uK

=
@JK(yK , uK)

@uK

(C.1.5a)

@Ĵ

@uk

=
@Jk(yk, uk)

@uk

+ [
@F̃k(yk, yk+1

, uk)

@uk

]T�k k = 1, ..., K � 1 (C.1.5b)

C.1.2 Gradient Computation with Explicit State Equations

Note that problem with explicit state equations (C.1.1) is closely related to the special

case of (C.1.2) with F̃k(yk, yk+1

, uk) = Fk(yk, uk)� yk+1

.

Lagrangian of problem (C.1.1),

L =
KX

k=0

Jk(yk, uk) +
K�1X

k=0

�Tk (Fk(yk, uk)� yk+1

) + �T (y
0

� y
given

) (C.1.6)
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Adjoint equation

0 =
@L
@yK

=
@JK(yK , uK)

@yK
� �K�1

(C.1.7a)

0 =
@L
@yk

=
@Jk(yk, uk)

@yk
� �k�1

+ [
@Fk(yk, uk)

@yk
]T�k (C.1.7b)

=
@Jk(yk, uk)

@yk
� �k�1

+ [�{@F̃k(yk, yk+1

uk)

@yk+1

}�1

@F̃k(yk, yk+1

uk)

@yk
]T�k

(C.1.7c)

=
@Jk(yk, uk)

@yk
� �k�1

� [
@F̃k(yk, yk+1

uk)

@yk
]T [
@F̃k(yk, yk+1

uk)

@yk+1

]�T�k (C.1.7d)

k = 0, ..., K � 1

Compare adjoint equations (C.1.4) and (C.1.7) and the adjoint relationship is clear

� [
@F̃k(yk, yk+1

uk)

@yk+1

]T�k = �k, k = 0, ..., K � 1 (C.1.8)

Then, the derivative

@Ĵ

@uK

=
@JK(yK , uK)

@uK

(C.1.9a)

@Ĵ

@uk

=
@Jk(yk, uk)

@uk

+ [
@Fk(yk, uk)

@uk

]T�k (C.1.9b)

=
@Jk(yk, uk)

@uk

+ [�{@F̃k(yk, yk+1

, uk)

@yk+1

}@F̃k(yk, yk+1

, uk)

@uk

]T�k (C.1.9c)

=
@Jk(yk, uk)

@uk

� [
@F̃k(yk, yk+1

, uk)

@uk

]T [
@F̃k(yk, yk+1

, uk)

@yk+1

]�T�k (C.1.9d)

=
@Jk(yk, uk)

@uk

+ [
@F̃k(yk, yk+1

, uk)

@uk

]T�k (C.1.9e)

k = 1, ..., K � 1

This verifies in form that the gradient computed by (C.1.5) and (C.1.9) is the same.

I summarize,

• The form of the state equation is not unique. Consequently, the resulting adjoint

variable corresponding to state equations of di↵erent form can be di↵erent.
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• If the state variables are all feasible, i.e. F̃k(yk, yk+1

, uk) = 0, k = 0, ..., K � 1 or

equivalently Fk(yk, uk) = yk+1

, k = 0, ..., K�1, the adjoint variable relationship

between an implicit and explicit state equation is in (C.1.8).

C.1.3 Algorithm with Explicit State Equations

In the generalized parallel-in-time gradient-type method framework, Algorithm 13 for

problem (C.1.1) has the forward/backward arrangement of

sFi = sBi = Ki, eBi = eFi = Ki+1

i = 0, ..., N � 1 (C.1.10)

Refer to Section 3.4 for the generalized parallel-in-time gradient-type method frame-

work context. In the implementation of the parallel-in-time gradient-type method

applied to the reservoir problem, I adjust the arrangement to

sFi = Ki, eFi = Ki+1

i = 0, ..., N � 1

sBi = Ki � 1, eBi = Ki+1

� 1 i = 1, ..., N � 1

sB
0

= K
0

, eB
0

= K
1

� 1

(C.1.11)

Refer to (4.2.14) for its connection to the multiple shooting reformulation. I give the

pseudo code in Algorithm 17 with explicit state equation.

C.1.4 Algorithm with Implicit State Equations

Suggested by (C.1.8), in the parallel-in-time gradient-type algorithm with implicit

state equation, adjoint variable to communicate between processors are not �k but

�[@
˜F
k

(y
k

,y
k+1

u
k

)

@y
k+1

]T�k, which results in the Algorithm 18.

One can familiarize himself with the Algorithm 17 and Algorithm 18 by comparing

them line by line with the special assumption F̃ (yk, yk+1

uk) = F (yk, uk) � yk+1

and

quickly realizing that both algorithms are performing the same computation under

this assumption.
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Algorithm 17 jth iteration of the parallel-in-time gradient-type method with step

size ↵j > 0 for problem with explicit state equation (C.1.1). Describes the tasks

executed by processor of rank n 2 {0, ..., N � 1}. The first subscript of variables

indicates the subdomain it is associated to.

1: Input control u(j)
n,K

n

, u
(j)
n,K

n

+1

, . . . , u
(j)
n,K

n+1

�1

. . initialization of the iteration

2: if n > 0 and j = 0 then

3: Input initial y(�1)

n,K
n

4: end if

5: if n < N � 1 and j = 0 then

6: Input initial �(�1)

n,K
n+1

7: end if

8: if n = 0 then . solve the state equation forward in time

9: y
(j)
n,K

n

+1

= FK
n

(y
given

, u
(j)
n,K

n

)

10: else

11: y
(j)
n,K

n

+1

= FK
n

(y(j�1)

n,K
n

, u
(j)
n,K

n

)

12: end if

13: for k = Kn + 1, . . . , Kn+1

� 1 do

14: y
(j)
n,k+1

= Fk(y
(j)
n,k, u

(j)
n,k)

15: end for

16: if n = N � 1 then . solve the adjoint equation backward in time

17: �
(j)
n,K

n+1

�1

=
@J

K

n+1

(y
(j)

n,K

n+1

,u
(j)

n,K

n+1

)

@y
(j)

n,K

n+1

18: else

19: �
(j)
n,K

n+1

�1

= �
(j�1)

n+1,K
n+1

�1

20: end if

21: for k = Kn+1

� 1, . . . , Kn do

22: �
(j)
n,k�1

=
@J

k

(y
(j)

n,k

,u
(j)

n,k

)

@y
(j)

n,k

+ (
@F

k

(y
(j)

n,k

,u
(j)

n,k

)

@y
(j)

n,k

)T�(j)n,k

23: end for

(continued on next page)
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24: for k = Kn, . . . , Kn+1

� 1 do . update control

25: u
(j+1)

k = PD
k

(u(j)
n,k � ↵j

h
@J

k

(y
(j)

n,k

,u
(j)

n,k

)

@u
(j)

n,k

+ (
@F

k

(y
(j)

n,k

,u
(j)

n,k

)

@u
(j)

n,k

)T�(j)n,k

i
)

26: end for

27: if n > 0 then . communication between processors

28: send �(j)n,K
n

�1

to rank n� 1

29: receive y
(j)
n�1,K

n

from rank n� 1

30: end if

31: if n < N � 1 then

32: send y
(j)
n,K

n+1

to rank n+ 1

33: receive �(j)n+1,K
n+1

�1

from rank n+ 1

34: end if

C.2 Comparison of Algorithms

In this section, I briefly show Algorithm 17 and Algorithm 18 are equivalent in the

sense that produces exactly the same control iterates. I use a mathematical induction

type of argument. Assume both algorithm has the same state/control variables up to

iteration j and

� [
@F̃k(y

(i)
n,k, y

(i)
n,k+1

u
(i)
n,k)

@y
(i)
n,k+1

]T�(i)n,k = �
(j)
n,k (C.2.1)

is true for i = 0, ...j, n = 0, ..., N � 1, and k = Kn, ..., Kn+1

� 1, with �(i)n,k and �(i)n,k

defined in Algorithm 17 and Algorithm 18 respectively.

By the assumption, the control updates in iteration j will be the same for both

algorithms. Therefore, in iteration (j + 1), the control variables are the same, con-

sequently the state variables are the same, and (C.2.1) is true for i = j + 1, n =

N � 1, k = Kn, ..., Kn+1

� 1.

To show that for i = j + 1, n < N � 1, (C.2.1) is valid for k = Kn, ..., Kn+1

� 1,

the only non-trivial work is to show (C.2.1) holds for k = Kn+1

� 1, i.e., at the time
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Algorithm 18 jth iteration of the parallel-in-time gradient-type method with step

size ↵j > 0 for problem with implicit state equation (C.1.2). Describes the tasks

executed by processor of rank n 2 {0, ..., N � 1}. The first subscript of variables

indicates the subdomain it is associated to.

1: Input control u(j)
n,K

n

, u
(j)
n,K

n

+1

, . . . , u
(j)
n,K

n+1

�1

. . initialization of the iteration

2: if n > 0 and j = 0 then

3: Input initial y(�1)

n,K
n

4: end if

5: if n < N � 1 and j = 0 then

6: Input initial auxiliary variable ⇠(�1)

n+1

7: end if

8: if n = 0 then . solve the state equation forward in time

9: solve F̃K
n

(y
given

, y
(j)
n,K

n

+1

, u
(j)
n,K

n

) for y(j)n,K
n

+1

10: else

11: solve F̃K
n

(y(j�1)

n,K
n

, y
(j)
n,K

n

+1

, u
(j)
n,K

n

) for y(j)n,K
n

+1

12: end if

13: for k = Kn + 1, . . . , Kn+1

� 1 do

14: solve F̃k(y
(j)
n,k, y

(j)
n,k+1

, u
(j)
n,k) for y

(j)
n,k+1

15: end for

(continued on next page)
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16: if n = N � 1 then . solve the adjoint equation backward in time

17: solve

@JK
n+1

(y(j)n,K
n+1

, u
(j)
n,K

n+1

)

@y
(j)
n,K

n+1

+ [
@F̃K

n+1

�1

(y(j)n,K
n+1

�1

, y
(j)
n,K

n+1

, u
(j)
n,K

n+1

�1

)

@y
(j)
n,K

n+1

]T�(j)n,K
n+1

�1

= 0

for �(j)n,K
n+1

�1

18: else

19: solve

[
@F̃K

n+1

�1

(y(j)n,K
n+1

�1

, y
(j)
n,K

n+1

, u
(j)
n,K

n+1

�1

)

@y
(j)
n,K

n+1

]T�(j)n,K
n+1

�1

= ⇠
(j�1)

n+1

for �(j)n,K
n+1

�1

20: end if

21: for k = Kn+1

� 1, . . . , Kn + 1 do

22: solve

@Jk(y
(j)
n,k, u

(j)
n,k)

@y
(j)
n,k

+[
@F̃k�1

(y(j)n,k�1

, y
(j)
n,k, u

(j)
n,k�1

)

@y
(j)
n,k

]T�(j)n,k�1

+[
@F̃k(y

(j)
n,k, y

(j)
n,k+1

, u
(j)
n,k)

@y
(j)
n,k

]T�(j)n,k = 0

for �(j)n,k�1

23: end for

24: if n > 0 then

25: ⇠
(j)
n = �


@J

K

n

(y
(j)

n,K

n

,u
(j)

n,K

n

)

@y
(j)

n,K

n

+ [
@ ˜F

K

n

(y
(j)

n,K

n

,y
(j)

n,K

n

+1

,u
(j)

n,K

n

)

@y
(j)

n,K

n

]T�(j)n,K
n

�

26: end if

(continued on next page)
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27: for k = Kn, . . . , Kn+1

� 1 do . update control

28: u
(j+1)

k = PD
k

(u(j)
n,k � ↵j

h
@J

k

(y
(j)

n,k

,u
(j)

n,k

)

@u
(j)

n,k

+ (
@ ˜F

k

(y
(j)

n,k

,y
(j)

n,k+1

,u
(j)

n,k

)

@u
(j)

n,k

)T�(j)n,k

i
)

29: end for

30: if n > 0 then . communication between processors

31: send ⇠(j)n to rank n� 1

32: receive y
(j)
n�1,K

n

from rank n� 1

33: end if

34: if n < N � 1 then

35: send y
(j)
n,K

n+1

to rank n+ 1

36: receive ⇠(j)n+1

from rank n+ 1

37: end if

subdomain boundaries where the parallel-in-time gradient-type algorithms do data

communication and introduce information lag, since the related control and state
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variables are the same for both algorithms.
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The equality (C.2.2a)-(C.2.2b) is for Algorithm 18 Line 19, (C.2.2b)-(C.2.2c) for

Algorithm 18 Line 25, (C.2.2c)-(C.2.2d) for (C.2.1) with i = j, (C.2.2d)-(C.2.2e)

for implicit function theorem since the explicit state equation and the implicit state

equation define the same relation ship between states and control, (C.2.2e)-(C.2.2f)

for Algorithm 17 Line 22, (C.2.2f)-(C.2.2g) for Algorithm 17 Line 19.

Then, (C.2.1) is true for i = j + 1, n = 0, ..., N � 1, and k = Kn, ..., Kn+1

� 1.

The mathematical induction completes with a proper base case assumption.

In conclusion, Algorithm 17 and Algorithm 18 are equivalent in the sense that

produces exactly the same control iterates.
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C.3 Application to the Reservoir Problem

In the reservoir problem, saturation and pressure are state variables,

yk =

2

4 sk

pk�1

3

5 , k = 1, ..., K (C.3.1)

Use q as notation for control for compatibility with other parts of this thesis. Let Hk

and Gk represent pressure and saturation equations respectively,

F̃k(yk, yk+1

, qk) =

2

4 Hk(sk, pk, qk)

Gk(sk, sk+1

, pk, qk)

3

5 , k = 1, ..., K � 1 (C.3.2)

Then, Algorithm 18 is used. Naturally, the resulting adjoint variables can be parti-

tioned into two parts

�k =

2

4 µk (for pressure equation Hk)

⌘k (for saturation equation Gk)

3

5 , k = 1, ..., K � 1 (C.3.3)

One special feature of this reservoir application is in the data communication at time

subdomain boundaries. According to Algorithm 18 Line 25, with n < N � 1,
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In the reservoir problem, objective function value does not depends on pressure and

therefore the gradient of the objective with respect to pressure is zero,
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The Jacobian matrix has special structure
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By (C.3.3), (C.3.4), (C.3.5), and (C.3.6), in the adjoint data communication, one does

not need to exchange the full ⇠(j)n , since the lower half of it is zero, but only need to

exchange
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as a summation involving adjoint variables corresponding to both pressure and satu-

ration equation.



Appendix D

A Test on Adjusting Time

Subdomains for Load Balance

I present a simple test on adjusting the time subdomains for the parallel-in-time

gradient-type method to achieve better computation load balance across subdomains.

The parallel-in-time gradient-type method performs parallel forward/backward

computing on di↵erent time subdomains in parallel. With evenly split time subdo-

mains, in each time subdomain, the time steps of computation are the same. However,

the computation load is not necessarily the same as demonstrated in the reservoir op-

timization example in Section 6.3.2.1 and Section 6.3.2.2, where some part of the

time domain takes longer computation time than others. This prevents the parallel

method from obtaining good e�ciency, since processors that finishes their compu-

tation tasks on their subdomain waits idol for processors working subdomains with

heavier computation load, see Figure D.2.

It is natural to attempt to remedy this load imbalance by repartition the time

domain not by number of time steps, but by computation load.

Now, using the model problem in Section 6.3.2.2, I test this idea.

The problem has 1000 time steps, the evenly split subdomains are

[0, 250], [250, 500], [500, 750], [750, 1000]. By a timed test run using initial well rates
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control, I find the adjusted subdomain partition that roughly distribute the workload,

including forward and backward computation, across subdomains. The adjusted sub-

domains are [0, 196], [196, 442], [442, 720], [720, 1000]. See Figure D.1.

even length subdomains
T
0

= 0 T
1

= 250 T
2

= 500 T
3

= 750 T
4

= 1000

adjusted subdomains
T
0

= 0 T
1

= 196 T
2

= 442 T
3

= 720 T
4

= 1000

Figure D.1: Time Subdomains Adjustment

Figure D.2 and Figure D.3 show the 1000 seconds trace plot of the evenly split

subdomain case and the adjusted subdomain case respectively. It can be seen that

by comparison of these two plots,

• the significant waiting time (green) in the even subdomain case is mostly avoided

in the adjusted subdomain case.

• In the 1000 seconds, the adjusted subdomain case runs more iterations. As a

matter of fact, completing 49 iterations, The even subdomain case takes 6077

seconds and the adjusted case takes 5307 seconds.

5307

6077
= 87.3% (D.0.1)

By adjusting the partition, around 10% of time is saved in terms of competing

a fixed number of iterations.

• In the adjust subdomain case, the backward computation in the 3rd and 4th

subdomains takes longer to finish than that in the 1st and 2nd subdomain. It is

because the 3rd and 4th subdomain has more time steps and the time consumed

by a step of backward computation is roughly the same no matter it is at an

earlier or later part of the time domain.
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Figure D.2: Trace graph of 1000 seconds about 8 optimization iterations with evenly

split time subdomains, generated by HPCToolkit [ABF+10].

The time subdomains are [0, 250], [250, 500], [500, 750], [750, 1000] The horizontal axis

is the time axis. From top to bottom, the 16 rows corresponding to 16 cores are

grouped into 4 groups. The top 4 horizontal rows represent computation timing of

the 4 cores performing parallel computing in the first time subdomain, etc. One

optimization iteration consists of three major blocks of one purple, one brown, and

one green block. Purple blocks are for forward computation, brown blocks are for

backward computation, and green blocks are for waiting. Model problem description

in Section 6.3.2.2.
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Figure D.3: Trace graph of 1000 seconds about 9.5 optimization iterations with ad-

justed time subdomains, generated by HPCToolkit [ABF+10].

The adjusted time subdomains are [0, 196], [196, 442], [442, 720], [720, 1000] The hor-

izontal axis is the time axis. From top to bottom, the 16 rows corresponding to 16

cores are grouped into 4 groups. The top 4 horizontal rows represent computation

timing of the 4 cores performing parallel computing in the first time subdomain, etc.

One optimization iteration consists of three major blocks of one purple, one brown,

and one green block. Purple blocks are for forward computation, brown blocks are for

backward computation, and green blocks are for waiting. Model problem description

in Section 6.3.2.2.
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The adjustment of the partition of time subdomains also e↵ects the gradient-

type vector computed. However, in this case, there is not a significant di↵erence in

the objective function value history in the optimization process for the two kinds of

di↵erent partition, see Figure D.4.
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Figure D.4: Comparison of objective function value history between the parallel-in-

time gradient-type method with di↵erent time subdomain partitions. The evenly

split time subdomains are [0, 250], [250, 500], [500, 750], [750, 1000]; The adjusted time

subdomains are [0, 196], [196, 442], [442, 720], [720, 1000]. The first initialization step

of a full gradient-sweep is the same for both cases and is not included in the plot.

Model problem description in Section 6.3.2.2.

In conclusion, in this test problem, by adjusting the partition of the time subdo-

mains according to the computation load, instead of number of time steps, a small

portion of computation time (about 10% according to (D.0.1)) can be saved.
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Above is the test result. I do not provide further discussion.
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