
CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Rice University

https://core.ac.uk/display/85161251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RICE UNIVERSITY

Novel Techniques for the Zero-Forcing and

p-Median Graph Location Problems

by

Caleb C. Fast

A Thesis Submitted
in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Illya V. Hicks, Chair
Professor of Computational and Applied
Mathematics

Robert E. Bixby
Noah Harding Professor Emeritus of
Computational and Applied Mathematics

Keith D. Cooper
L. John and Ann H. Doerr Professor of
Computational Engineering

Richard A. Tapia
University Professor, Maxfield-Oshman
Professor in Engineering

Houston, Texas

May, 2017

ABSTRACT

Novel Techniques for the Zero-Forcing and p-Median Graph Location Problems

by

Caleb C. Fast

This thesis presents new methods for solving two graph location problems, the p-

Median problem and the zero-forcing problem. For the p-median problem, I present

a branch decomposition based method that finds the best p-median solution that is

limited to some input support graph. The algorithm can either be used to find an

integral solution from a fractional linear programming solution, or it can be used to

improve on the solutions given by a pool of heuristics. In either use, the algorithm

compares favorably in running time or solution quality to state-of-the-art heuristics.

For the zero-forcing problem, this thesis gives both theoretical and computational

results. In the theoretical section, I show that the branchwidth of a graph is a

lower bound on its zero-forcing number, and I introduce new bounds on the zero-

forcing iteration index for cubic graphs. This thesis also introduces a special type of

graph structure, a zero-forcing fort, that provides a powerful tool for the analysis and

modeling of zero-forcing problems.

In the computational section, I introduce multiple integer programming models

for finding minimum zero-forcing sets, and integer programming and combinatorial

branch and bound methods for finding minimum connected zero-forcing sets. While

the integer programming methods do not perform better than the best combinatorial

method for the basic zero-forcing problem, they are easily modified to enforce con-

nectivity, and they are the best methods for the connected zero-forcing problem.

iii

Acknowledgements

For any project I may undertake, the outcome of that project is known and

ordained beforehand by my Creator. Consequently, any listing of acknowledgements

would be incomplete without thanking God for His providence, in which I

completed this work. In addition, mathematics and engineering are attempts to

understand and exploit the order instituted at creation. Thus, I must thank God for

creating a world in which mathematics could be studied and placing me in a

position to study it.

I would like to thank my advisor, Illya V. Hicks, for his support throughout the

long process of writing this thesis. His encouragement and belief in my ability

helped me through the times when I did not see a way forward in my research.

Additionally, I would like to thank him for the life experience, wisdom, and

leadership lessons that he has passed on to me during my time as his student.

I would like to thank my beloved wife, Bethany, for her support through this

time. From beginning to end of my graduate studies, she has lifted me up when I

was despondent, provided me motivation to keep studying, and done everything she

could to assist me in this effort.

I would also like to thank my father, under whose teaching I first learned of the

beauty and challenge of mathematics; my commitee (Richard Tapia, Robert Bixby,

and Keith Cooper), for guiding my research into productive and marketable

directions; and Randy Davila, for introducing me to the zero-forcing problem. The

research on these pages was funded through an ExxonMobil Graduate Fellowship, a

Lodieska Stockbridge Vaughn Fellowship, and NSF grants CMMI-1300477 and

CMMI-1404864.

Contents

Abstract ii

List of Illustrations vii

List of Tables ix

1 Introduction 1

1.1 Preliminary Graph Theory Definitions 2

1.2 The p-Median Problem . 3

1.3 The Zero-Forcing Problem . 4

1.4 Branch Decompositions . 7

2 p-Median Literature 12

3 Solving the p-Median Problem with Branch Decomposi-

tions 25

3.1 Introduction . 25

3.2 Preliminaries . 26

3.3 The Branch Decomposition Heuristic 29

3.3.1 Performance Tweaks . 34

3.4 Complexity and Error Bounds . 37

3.5 Computational Experiments . 39

3.5.1 BDPM-GRASP . 41

v

3.5.2 BDPM-LP . 52

3.6 Conclusions . 62

4 Zero-Forcing Literature 64

5 Theory of Minimum Zero-Forcing Sets 75

5.1 Introduction . 75

5.2 A Branchwidth Bound on the Zero-Forcing Number 76

5.3 Subgraph Bounds on the Zero-Forcing Number 80

5.4 Bounding the Iteration Index . 88

5.5 Conclusion . 100

6 Computing Minimum Zero-Forcing Sets 102

6.1 Wavefront Algorithm . 102

6.2 Integer Programming Methods . 105

6.2.1 Infection Perspective . 106

6.2.2 Fort Covering Perspective . 108

6.3 Computational Results for Zero-Forcing 117

6.3.1 Implementation Details . 117

6.3.2 Computational Tests . 119

6.4 Connected Zero-Forcing . 137

6.4.1 Branch and Bound Algorithm 138

6.4.2 Integer Programming Methods 139

6.5 Computational Results for Connected Zero-Forcing 146

6.5.1 Implementation Details . 146

6.5.2 Computational Tests . 147

vi

6.6 Conclusions . 156

7 Conclusions 159

Bibliography 164

Illustrations

1.1 An example of a branch decomposition. 7

1.2 An example of a rooted branch decomposition. 8

1.3 An example of vertices shared by decomposition subtrees. 10

3.1 Dynamic programming base cases for leaves of decomposition. 31

3.2 Comparison of BDPM-GRASP to GRASP for small TSPLIB instances. 45

3.3 Comparison of BDPM-GRASP to GRASP for large TSPLIB instances. 46

3.4 Comparison of BDPM-LP to HHP and imp-GA for small TSPLIB

instances. 55

3.5 Comparison of BDPM-LP to HHP and imp-GA for large TSPLIB

instances. 56

3.6 Comparison of BDPM-LP to HHP and imp-GA for large TSPLIB

instances without fixing. 57

4.1 Zero-forcing logic gates. 67

4.2 The dart graph . 72

4.3 Counterexample for δ = 4. 72

5.1 Construction of a branch decomposition from zero-forcing 78

viii

5.2 An example of a graph that contains a family of forts, but only one

disjoint fort. 82

5.3 Examples of S2, M1, and SS
1 vertices. 92

5.4 An example of a graph for which Theorem 5.4 is tight. 98

Tables

3.1 Compatibility for middle set nodes 32

3.2 Average results for BDPM-GRASP. 44

3.3 Average relative errors for BDPM-GRASP on small TSPLIB

instances broken down by p. 44

3.4 Average relative errors for BDPM-GRASP on large TSPLIB

instances broken down by p. 45

3.5 Results for OR-Library instances using branch decompositions of four

GRASP heuristic runs. 47

3.6 Results for small TSPLIB instances using branch decompositions of

four GRASP heuristic runs. 48

3.7 Results for large TSPLIB instances using branch decompositions of

four GRASP heuristic runs. 49

3.8 More results for large TSPLIB instances using branch decompositions

of four GRASP heuristic runs. 50

3.9 Results for instances using branch decompositions of less than four

GRASP heuristic runs. 51

3.10 Average results for BDPM-LP. 58

3.11 Average relative errors for BDPM-LP on small TSPLIB instances

broken down by p. 58

x

3.12 Average relative errors for BDPM-LP on large TSPLIB instances

broken down by p. 59

3.13 Branch-Widths of PMPLP Support Graphs for OR-Library Instances. 59

3.14 Results for small TSPLIB instances using branch decompositions of

the PMPLP support graph. 60

3.15 Results for large TSPLIB instances using branch decompositions of

the PMPLP support graph. 61

4.1 Zero-forcing for special graphs . 70

6.1 Comparison of average running times for the Fort Cover IP on cubic

graphs with and without checking whether forts are facet-inducing. . 121

6.2 Comparison of average running times for the Fort Cover IP on

Watts-Strogatz graphs with parameters (5, 0.3) with and without

checking whether forts are facet-inducing. 122

6.3 Comparison of average running times for the Fort Cover IP on

Watts-Strogatz graphs with parameters (10, 0.3) with and without

checking whether forts are facet-inducing. 123

6.4 Size of graphs where methods start to fail. 123

6.5 Average running times for zero-forcing algorithms on random cubic

graphs. 125

6.6 Average running times for zero-forcing algorithms on random

connected Watts-Strogatz graphs with parameters (5, 0.3). 126

6.7 Average running times for zero-forcing algorithms on random

connected Watts-Strogatz graphs with parameters (10, 0.3). 127

xi

6.8 Comparison of running times for Wavefront and the Fort Cover IP on

stars. 128

6.9 Average percentage of time spent generating forts. 130

6.10 Running times for zero-forcing algorithms on random cubic graphs. . 131

6.11 Running times for zero-forcing algorithms on random connected

Watts-Strogatz graphs with parameters (5, 0.3). 132

6.12 Running times for zero-forcing algorithms on random connected

Watts-Strogatz graphs with parameters (10, 0.3). 133

6.13 Comparison of Fort Cover IP with and without checking for facets on

cubic graphs. 134

6.14 Comparison of Fort Cover IP with and without checking for facets on

random connected Watts-Strogatz graphs with parameters (5, 0.3). . 135

6.15 Comparison of Fort Cover IP with and without checking for facets on

random connected Watts-Strogatz graphs with parameters (10, 0.3). . 136

6.16 Comparison of the number of forts required in connected vs.

unconnected forcing. 149

6.17 Average percentage of time spent generating forts for connected

zero-forcing. 150

6.18 Number of instances solved by each method. 151

6.19 Size of graphs where methods start to fail. 151

6.20 Average running times for connected zero-forcing algorithms on

random cubic graphs. 152

6.21 Average running times for connected zero-forcing algorithms on

random Watts-Strogatz graphs with parameters (5, 0.3). 153

xii

6.22 Average running times for connected zero-forcing algorithms on

random Watts-Strogatz graphs with parameters (10, 0.3). 153

6.23 Running times for connected zero-forcing algorithms on cubic graphs. 154

6.24 Running times for connected zero-forcing algorithms on random

Watts-Strogatz graphs with parameters (5, 0.3). 155

6.25 Running times for connected zero-forcing algorithms on random

Watts-Strogatz graphs with parameters (10, 0.3). 156

1

Chapter 1

Introduction

This thesis explores new ways that combinatorial information can be combined with

integer programming information to solve the p-median and zero-forcing problems.

In particular, for the p-median problem, this thesis introduces a new algorithm

based on branch decompositions that is able to provide close to optimal integer

solutions from a linear programming relaxation and is also able to improve the

quality of a pool of sub-optimal heuristic solutions. For the zero-forcing problem,

this thesis provides bounds on the zero-forcing number and zero-forcing iteration

index that are based on the branchwidth of the graph and combinatorial structures

within the graph. This thesis also introduces new integer programming formulations

for the zero-forcing and connected zero-forcing problems.

This thesis is organized as follows. Chapter 1 introduces the problems to be

studied as well as some preliminary notations and techniques that will be used

throughout. Chapter 2 reviews the existing literature related to the p-median

problem, and Chapter 3 introduces a new branch decomposition based heuristic for

the p-median problem. Chapter 4 reviews the existing literature for the zero-forcing

problem. Chapter 5 presents new bounds on the zero-forcing number and iteration

index of a graph, and Chapter 6 introduces an integer programming strategy for

finding minimum cardinality zero-forcing sets. Chapter 7 summarizes the results

and offers some interesting directions for future research.

The following sections of this introduction present the problems addressed in

2

this thesis. Section 1.1 explains the terminology that will be used throughout this

thesis. Section 1.2 introduces the p-median problem, and Section 1.3 introduces the

zero-forcing problem. Section 1.4 introduces branch decompositions, a major tool

that I will use throughout this thesis.

1.1 Preliminary Graph Theory Definitions

I will use the following terminology in this thesis, a graph G consists of a set V of

vertices and a set E ⊂ V × V of edges. A graph can be simple, in which case there

are no edges that begin and end on the same vertex, i.e. ∀{v, w} ∈ E, v ̸= w, and

there are not multiple edges between the same pair of vertices, i.e. ∀e1, e2 ∈ E,

e1 ̸= e2. A graph can also be either directed or undirected. The edges of a directed

graph are ordered pairs, whereas the edges of an undirected graph are simply sets.

Any simple directed graph has an underlying simple undirected graph that is

obtained by simply removing the direction from the edges (the order from the

ordered pairs), and removing any duplicate edges formed in the process. If

H = (VH , EH) and G = (VG, EG) are graphs, then H is a subgraph of G if VH ⊂ VG

and EH ⊂ EG. If EH is maximal, that is if EH = {{a, b}|a, b ∈ VH , {a, b} ∈ EG},

then H is called a vertex induced subgraph of G, or simply an induced subgraph of

G. If H is a subgraph (or induced subgraph) of G, then G is said to contain H as a

subgraph (or induced subgraph). For a set of edges EH ⊂ EG, there is a

corresponding set of vertices VH that contains all the vertices that are in an edge of

EH . The graph H = (VH , EH) is the subgraph induced by the edge set EH .

For a given vertex v of an undirected graph, if there exists an edge {v, w} ∈ E,

then we call w a neighbor of v. The open neighborhood of a vertex is the set of all

neighbors of that vertex. The closed neighborhood also includes the vertex itself.

3

The degree of a vertex is the number of neighbors of that vertex, i.e. the cardinality

of the open neighborhood of the vertex.

An undirected graph in which every vertex has the same degree is called a

regular graph or a k-regular graph, where k is the degree of a vertex in the graph.

Some regular graphs have special names. A 2-regular graph is a cycle, and a

3-regular graph is a cubic graph. A tree is a graph that does not contain an

edge-induced subgraph that is a cycle. A leaf of a tree is a vertex in the tree that

has a degree of 1. All other vertices of the tree are called interior vertices.

1.2 The p-Median Problem∗

The p-Median Problem (PMP) falls into the general category of facility location

problems, and it is one of the four most important problems in facility

location [109]. Given a set of locations that serve as both customer locations and

potential facility locations and given a set of costs associated with serving each

customer from each potential facility location, the PMP asks for the set of p facility

locations that minimizes the cost of serving the locations that are not chosen. The

PMP can also be stated in graph theoretical terms. Given a simple, undirected

graph with weighted edges, the PMP asks for the set of vertices, M , with |M | = p

and a set of edges, A, connecting each vertex not in M to a vertex in M such that

the total weight of the edges chosen to be in A is minimized. In industrial problems,

it may be necessary to add additional constraints to the problem. For example, each

facility may have a capacity so that there is a maximum number of edges in A that

can be incident to the same vertex, or there may also be a cost associated with

∗This section is adapted from [68].

4

choosing each particular vertex to be in M . However, in this thesis, I limit my

consideration to the basic problem without any additional constraints.

For the p-median problem, this thesis introduces a new algorithm based on

branch decompositions that is able to provide close to optimal integer solutions

from a linear programming relaxation and is also able to improve the quality of a

pool of sub-optimal heuristic solutions. The edges in a solution to the linear

programming relaxation or the pool of heuristic solutions can be combined to give a

graph. My algorithm decomposes this graph using a branch decomposition. Then, I

use dynamic programming to build up a complete solution from the solutions on the

leaves of the decomposition. This algorithm works well and can beat state-of-the-art

methods when the graphs given by the linear program or heuristic solutions allow a

good branch decomposition.

1.3 The Zero-Forcing Problem †

Like the PMP, the Zero-Forcing Problem (ZFP), can be thought of as a facility

location problem, and I will show in Chapter 6 that it is a minimum set cover

problem. However, the most natural way to think of it is as a graph infection

problem on a simple, undirected graph. As a graph infection problem, the ZFP

obeys the following infection rule. An uninfected vertex becomes infected if it is the

only uninfected neighbor of an infected vertex. A set of infected vertices that is

capable of infecting the entire graph through repeated applications of the infection

rule is called a zero-forcing set. The ZFP asks for the minimum cardinality

zero-forcing set of a given graph.

†This section is adapted from [67].

5

The ZFP holds an interesting place in the population of graph infection models.

Most infection models focus on conditions under which an uninfected vertex will

become infected. On the other hand, the ZFP focuses on a condition under which

an infected vertex can infect its neighbors. This difference can be seen by

constrasting the ZFP with irreversible k-threshold processes such as the processes

studied by Dreyer and Roberts [53]. In the k-threshold infection process, a vertex

becomes infected if at least k of its neighbors are infected. There are at least two

major differences between the ZFP and the k-threshold process. First, as previously

mentioned, the k-threshold process focuses on the uninfected vertices and construct

rules for becoming infected based on interaction with infected vertices, but the ZFP

focuses on the infected vertices and a rule for how those vertices can spread the

infection. This difference in focus leads to the second major difference. Where the

k-threshold is constant throughout the graph, the threshold in ZFP changes from

vertex to vertex depending on degree. Thus, in the ZFP, some vertices can be seen

as more capable, or requiring less resources to spread the infection than others.

Thus, the two models belong to two distinct categories of infection models. In fact,

Amos, Caro, Davila, and Pepper [6] have introduced a k-threshold type

generalization of zero-forcing where instead of requiring only one uninfected

neighbor for infection, at most k uninfected neighbors are required.

The zero-forcing infection rule leads to two interesting graph invariants. The

first is the size of a minimum zero-forcing set, called the zero-forcing number. The

second is the minimum number of applications of the infection rule required to

infect the entire graph from a minimum zero-forcing set, called the zero-forcing

iteration index. Throughout this thesis, I will denote the zero-forcing number by

Z(G) and the iteration index by I(G).

6

The iteration index quantity has taken on two different names in the literature.

The term iteration index was introduced by Chilakamarri, Dean, Kang, and Yi [40],

but Hogben et al. [83], in the same year, used the term minimum propagation time.

To avoid confusion, I use the term iteration index to refer to the minimum number

of iterations required to color the graph starting from a minimum zero-forcing set,

and I use the term propagation time to refer to the minimum number of iterations

required to color the graph from a specific zero-forcing set. Thus, the iteration index

is an invariant of a given graph, but the propagation time is a property of a given

zero-forcing set of the graph.

For the zero-forcing problem, this thesis provides bounds on the zero-forcing

number and zero-forcing iteration index that are based on the branchwidth of the

graph and combinatorial structures within the graph. In particular, I prove that the

zero-forcing number of a graph is at least as large as the branchwidth of the graph,

and I prove that any zero-forcing set must contain a vertex from every fort, which is

a set of vertices in the graph that satisfies certain conditions. The bounds on the

zero-forcing iteration index are based on the combinatorial structures within the

graph. In particular, I prove that the zero-forcing iteration index of a cubic graph is

at most 3
4
of the number of vertices in the graph, and I prove that claws and leaves

in any graph can be used to bound the iteration index. Finally, this thesis

introduces three different integer programming formulations for the zero-forcing

problem. I compare these formulations to my C++ implemenation of the Wavefront

algorithm [35] which was previously only available in Sage [129]. Our results show

that while integer programming methods do not perform as well as Wavefront for

the zero-forcing problem, they are the best performing methods for solving the

connected zero-forcing problem.

7

1.4 Branch Decompositions

Branch decompositions were introduced by Robertson and Seymour [113] in their

study of the Graph Minor Theorem, and they have since proved to be an efficient

means of solving NP-hard problems on certain graphs. For example, Cook and

Seymour [41] used branch decompositions in a heuristic for the traveling salesman

problem, and Hicks [81] used them to solve the graph minor containment problem.

In this thesis, I use branch decompositions to solve the p-median problem, and to

bound the size of a minimum zero-forcing set.

A branch decomposition of a graph is simply an assignment of the edges of the

graph to the leaves of a tree such that every interior (i.e. non-leaf) vertex of the tree

has degree 3. The subtrees of this tree provide a hierarchical division of the graph

into the subgraphs induced by the edges assigned to the leaves of the subtrees. Such

hierarchical decompositions are the foundation of dynamic programming algorithms.

Figure 1.1 gives an example of a branch decomposition.

Figure 1.1 : An example of a branch decomposition. Each of the edges in the original

graph (left graph) is assigned to one of the leaves of the the branch decomposition

(right graph). Also, each interior vertex has degree exactly 3.

I now give a formal definition of a branch decomposition.

8

Definition 1.1 Consider a graph, G = (V,E), and a tree, T , and denote the leaves

of T by L. Suppose that each vertex of T\L has degree exactly 3, and suppose

further there exists a bijection, τ : E ↔ L. Then, the pair (T, τ) is a branch

decomposition of G.

One of the uses of branch decompositions is to define the subproblems in a

dynamic programming scheme. For this purpose, it is convenient to work with

rooted branch decompositions. If a branch decomposition tree contains an edge,

then the rooted version of that branch decomposition has one additional vertex with

degree 2 that is designated as the root vertex of the tree. Any branch decomposition

of a graph with more than one edge can be rooted by subdividing an edge of the

tree and designating as the root the degree 2 vertex that is created by the

subdivision. If a branch decomposition tree contains only a single vertex, then that

vertex is designated as the root. If a branch decomposition tree is empty, then the

rooted branch decomposition tree is also empty. Figure 1.2 gives an example of a

rooted branch decomposition.

Figure 1.2 : An example of a rooted branch decomposition. The root (labeled h)

has been inserted by subdividing the g-d edge. Each interior vertex except the root

(labeled h) has degree exactly 3.

Dynamic programming works by breaking a problem into a hierarchy of

9

subproblems so that the solutions on the smaller subproblems can be reused and

combined to form the solution to a larger subproblem. Qualitatively, the less

interaction that exists between subproblems (i.e. the less vertices or edges of the

graph that are shared by the subproblems) the less effort is required to merge the

solutions of the subproblems to form a solution of a larger subproblem. Thus, the

goal of decompositions, in terms of dynamic programming, is to minimize the

interaction between different subproblems.

For branch decompositions, the interaction between different problems is

measured by a property called width. Informally, the width of a branch

decomposition is the maximum number of vertices that a subtree of the branch

decomposition shares with the rest of the branch decomposition tree. Figure 1.3

gives an example of how subtrees share vertices. More formally, for a given subtree

of the decomposition, the set of nodes of G that have incident edges from both the

subgraph defined by the subtree and the subgraph defined by the rest of the

decomposition is called the middle set of the subtree (These middle sets are the

black vertices in Figure 1.3). In this thesis, I will identify the middle set of a subtree

by the edge that joins the two branches of the decomposition tree. The width of a

given branch decomposition is the cardinality of its largest middle set (i.e. the

maximum cardinality of the middle set of an edge of the branch decomposition tree).

The branchwidth of a graph is the minimum width over all branch decompositions of

that graph. Thus, branchwidth is a graph invariant. In some cases, the branchwidth

provides a bound on other graph invariants. In particular, I show in this thesis that

branchwidth provides a lower bound on the zero-forcing number.

Obviously, there are multiple possible branch decompositions for non-trivial

graphs, but for the purpose of developing a dynamic programming algorithm, the

10

Figure 1.3 : An example of vertices shared by decomposition subtrees. The bottom

graphs show the subgraphs induced (dark edges) by the subtrees above them. The

black vertices are shared by both subgraphs. The full graph and branch decomposition

are in Figure 1.1.

best branch decomposition to use is the one with smallest width. Consequently, the

focus of algorithms for finding branch decompositions is to minimize width. Ideally,

the width of a branch decomposition will be equal to the branchwidth of the graph.

However, while finding such a minimum width branch decomposition can be done in

polynomial time for planar graphs, as shown by Seymour and Thomas [125] and

implemented by Hicks [82], finding such decompositions for general graphs is

NP-hard [125]. However, this fact does not preclude the development of effective

algorithms based on branch decompositions because the width of the branch

decomposition only affects the efficiency of the algorithm based on it and not the

quality of the solution that it finds. In other words, even if an algorithm is run with

two different branch decompositions, the solution produced by the algorithm will be

the same. The particular decomposition that is used will only affect the running

time of the algorithm. Thus, a branch decomposition based algorithm can use a

11

branch decomposition obtained by heuristic methods. Such heuristics allow a “good

enough” branch decomposition to be found quickly and then used to solve the

original problem. If the heuristic branch decomposition is close to optimal, then the

time required to prove optimality for the branch decomposition will likely surpass

any time saved by using a potentially better branch decomposition. Therefore,

throughout this thesis, I use a heuristic to find branch decompositions. Hicks [80]

developed the branch decomposition heuristic that I use in this thesis.

12

Chapter 2

p-Median Literature∗

The p-Median Problem (PMP) is useful in a wide variety of applications, and, as is

the case with other important facility location problems, it is NP-hard [88]. The

PMP was introduced by Hakimi [78] in 1965 to distribute switching centers in a

communication network. The most common integer programming formulation for

the problem, and the formulation I use in this thesis, was introduced by ReVelle and

Swain [112] in 1970. These authors were studying facility location problems with

the goal of minimizing the average distance between a fixed number of chosen

supply points (the medians) and the given demand points. In general, the PMP is

useful for facility location problems when temporal or political constraints preclude

the ability to increase the number of facilities. For example, given a limited amount

of medical supply units, Kunkel, Van Itallie, and Wu [92] used the PMP to

distribute these units to villages in Malawi. In this case, the number, p, of medians

that must be chosen is given by the number of medical supply units, and the

available locations for placement are given by the location of villages in Malawi.

In addition to its basic form, the p-median problem has also been modified for

similar problems. For example, while many facilities, such as medical supplies, are

desirable and should be located as close as possible to customers, other facilities,

such as sewage treatment facilites or chemical plants, are not desirable and should

be located as far as practically possible from customers. Such undesirable facilities

∗This chapter is expanded from [68].

13

are labeled “obnoxious,” and the problem of locating them is called the obnoxious

p-median problem, see for example Welch and Salhi [134]. Tamir [127] showed that,

like the PMP, the obnoxious PMP is also NP-hard. Another possible circumstance

is that some number of facilities are already existing, and some specified number of

facilities need to be added. This circumstance is called the conditional p-median

problem or the (p,q)-median problem where q is the number of existing facilities, see

for example Minieka [99] or Drezner [55]. A related possibility is that additional

facilities will become available at certain points over a time interval. The problem of

placing the facilities to minimize distance over the whole time interval is the

progressive p-median problem, see for example Drezner [54]. However, in this thesis,

I focus on the basic PMP.

The PMP is also useful for data clustering. In the data clustering context, the

PMP is sometimes called the k-medoid problem. The data clustering application is

easy to understand since it simply requires reinterpreting the medians as the median

of a cluster instead of as a facility. Mulvey and Crowder [102] used the p-median

model for data clustering in this way. Ng and Han [104] showed that the p-median

model was useful for detecting patterns and mining data as well as clustering.

Hansen, Brimberg, Urošević, and Mladenović [79] noted that the p-median model is

very general since the the distance measure that is used can be changed based on the

practicioners preference. For example, by replacing the pairwise distance between

points by the squared distance, the p-median model gives a discrete version of the

popular k-means model where the p (or k) centers must be on given data points

(the k-means model seeks to find k center points in a given space, not necessarily on

the given data points, that minimizes the sum of squared distances between the

data points their closest center point). Fung and Mangasarian [74] showed that the

14

PMP could be combined with support vector machines to form a semi-supervised

machine learning algorithm for labeling unlabeled data. The PMP is used in this

context to choose the best pieces of data to have labeled by an expert and the

support vector machine then uses that information to label the rest of the data.

Beyond facility location and data analysis, Briant and Naddef [24] used the

PMP to solve the Optimal Diversity Management Problem. Many manufacturers,

for example automotive manufacturers, will need many different configurations of a

certain part corresponding to the different models and configurations of automobile

that they produce. Unfortunately, the number of configurations of the part can be

large enough to make it impractical to produce each configuration. For example,

Briant and Naddef [24] state that some European manufacturers consider up to

7,000 different wiring designs for their cars. Some of these designs are capable of

substituting for cheaper designs. Thus, in practice, only a small number, p, of

different part configurations are produced. However, this requires an additional cost

when a more expensive part configuration is used in place of a cheaper part

configuration that is not produced. The Optimal Diversity Management Problem is

to find the best p configurations to produce to minimize these extra costs. The

connection to the PMP is clear. The part configurations are the demand points and

the configurations actually produced are the chosen facilities in the PMP.

Because of its broad applicability, the PMP has been attacked with many

different solution methods. Since the PMP is NP-hard [88], many of the methods

used are approximation algorithms or heuristics; however, some researchers have

used exact integer and linear programming methods. As previously mentioned,

ReVelle and Swain [112] gave the most commonly used linear programming

formulation for the PMP, which is the formulation that I use in this thesis. Avella

15

and Sassano [12] studied the p-median polytope and showed that the p-median

problem could be modeled as a special case of the stable set problem on a specified

auxiliary graph. This transformation uses the fact that no customer needs to be

served by two different facilities. Therefore, from a graph perspective, no customer

node will have two incoming edges in an optimal solution. Likewise, no node that is

chosen to be a median will have an edge coming into it, and no node will have both

an incoming edge and an outgoing edge since if it has an outgoing edge then it must

be a median. Two edges that will never be in an optimal solution together are said

to be dependent. The auxiliary graph defined by Avella and Sassano [12] has an

vertex for each directed edge in the graph of the PMP instance and an edge between

the vertices if the two edges of the PMP instance are dependent. Now, since a

solution of the PMP will have N − p edges where N is the number of vertices in the

PMP instance, a stable set (or independent set) of size N − p in the auxiliary graph

is a solution to the PMP. The main focus of Avella and Sassano’s [12] study was to

find new facet-inducing inequalities rather than a new formulation. Therefore,

although they performed some computational tests using a formulation based on the

stable set perspective, they did not compare their formulation with the standard

formulation given by ReVelle and Swain [112].

Cornuejols, Nemhauser, and Wolsey [43] developed another formulation (I will

call it the CNW formulation) for the PMP using a canonical form for location

problems. Instead of assigning each client to a specific vertex, this formulation

tracks the distance from each client to any chosen facility vertex. Cornuejols,

Nemhauser, and Wolsey [43] showed that the CNW formulation and its linear

relaxation are equivalent to the standard formulation in the sense that their feasible

regions are the same; however, their formulation can be smaller than the standard

16

formulation when the vertices are equidistant from multiple other vertices.

Elloumi [60] improved on the CNW formulation by noting a recursive relationship

between the variables used to track the distances from clients to chosen facilities.

By altering the constraints to enforce this relationship, Elloumi [60] improved the

CNW formulation to get a tighter formulation in the sense that the feasible region

of the linear relaxation of Elloumi’s formulation is strictly contained within the

feasible region of the linear relaxation of the CNW formulation. However, even

though Elloumi’s [60] formulation is tighter than the CNW formulation, the optimal

objective values of the two formulations (and of the standard formulation) are the

same. Because the computational performance of the formulation is not the focus of

this thesis, and they all have the same optimal objective value, I chose to use the

simpler, more common standard formulation for this thesis.

One of the challenges to integer programming solutions to the PMP is the

memory required to solve large instances. Consequently, there has been considerable

research into solving larger and larger instances of the problem. Garfinkel, Neebe,

and Rao [76] introduced the idea of column generation on a Set Partitioning

formulation of the PMP, and this idea was further developed by du Merle,

Villeneuve, Desrosiers, and Hansen [56]; and by Lorena, Senne, and Pereira [121]

who proposed different ways of stabilizing the column generation approach to attain

faster convergence. Lorena, Senne, and Pereira later incorporated their stablized

column generation approach [121] into a branch-and-price method [122]. Avella,

Sassano, and Vasil’ev [13] used a branch-cut-price approach together with the

standard formulation to solve large problems. Their approach was very effective at

increasing the size of problems that could be solved exactly; however, several of the

moderately-sized test problems that they used remained intractable to their

17

approach. Thus, there is still a need for heuristic methods and approximation

algorithms of the type developed in this thesis.

As with all well-known NP-hard problems, the PMP has been attacked with

many different heuristic methods. These methods try to produce optimum or nearly

optimum solutions in a practical amount of computational time. Unfortunately, to

acheive practical running times, the heuristics must sacrifice guaranteed optimality,

and they often have no guaranteed error bound. However, they remain useful

because in many cases heuristics are the only practical methods for solving large

problems. Mladenović, Brimberg, Hansen, and Moreno-Pérez [100] give a review of

heuristic methods that have been applied to the PMP, and they divide the

heuristics into four types: constructive heuristics, local search heuristics,

mathematical programming heuristics, and metaheuristics. Although there is some

overlap between these categories, I think that they provide a good framework for

understanding the methods that have been applied to the PMP, and my explanation

follows their framework.

Constructive heuristics build up a feasible solution from scratch. They do not

need to start from some given initial feasible solution. The greedy algorithm is an

example of a constructive heuristic. In a greedy algorithm for the p-median, the

medians are chosen one-by-one until p medians have been chosen by choosing the

median that optimizes some desired property. For example, Kuehn and Hamburger

[91] developed a greedy algorithm for the PMP that at each step chooses the

median that most reduces the total cost of supplying the demand points. A similar

type of algorithm is the greedy-drop algorithm of Feldman, Lehrer, and Ray [69]

which start with each demand point being a median and greedily removes medians

until only p medians are left. Another type of constructive heuristic that has been

18

used for the p-median is the dual ascent heuristic developed by Erlenkotter [61] for

uncapacitated facility location problems. Captivo [37] adapted the dual ascent

strategy for the PMP.

Local search heuristics start from some given feasible solution and search for a

better solution within the location of the current solution. For example, an early

heuristic by Maranzana [95] starts from an arbitrary given set of p medians (for

example, the output of a greedy algorithm) and assigns demand points to their

closest median. Then for each set of demand points that is assigned to the same

median, a 1-median problem is solved and the median is moved to the demand point

that is the solution of the 1-median problem for that set of demand points. After

choosing the new medians, all the demand points are again reassigned to their

closest median, and the process repeats until no more changes are made. Another

local search method is to start from some set of medians and move some median to

a demand point that is not currently a median. If such a move reduces the total

cost of the solution, then the current solution is kept and the process is repeated

until no move can be found that decreases the solution cost. This method is called

the interchange method and was introduced for the PMP by Teitz and Bart [128].

The error of local search methods for the p-median problem was investigated by

Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [9]. Of course, the error

of a local search method depends on the size of the location searched, and Arya et

al. [9] showed that if the costs of the p-median instance are metric, and k facilities

are allowed to be moved at once, then the cost of the local optimal solution found

by the local search is at most 3 + 2
k
times the cost of the global optimum solution.

To our knowledge, the current best approximation guarantee for a p-median

algorithm is the 1 +
√
3 + ϵ bound of Li and Svensson [93]. The branch

19

decomposition algorithm presented in this thesis can be thought of as a local search

heuristic since it essentially finds the best solution within a location given by some

input heuristic or linear programming solutions.

Mathematical programming heuristics solve a reduction or relaxation of the

PMP. For example, Baker [15] and Hribar and Daskin [85] gave dynamic

programming schemes for the p-median that limit the state space of the dynamic

program. Hribar and Daskin’s [85] scheme builds up an i-median solution out of

(i-1)-median solutions at each step. Their heuristic reduces computational effort by

only storing some specified number, H, of i-median solutions at each step. Hribar

and Daskin [85] note that that their heuristic is identical to greedy if H = 1 and is

an exact algorithm if H > max
0≤j≤P

(
N
j

)
. Baker’s [15] scheme allows the state space to

increase linearly with problem size.

Other mathematical programming heuristics solve a relaxation of some

formulation of the PMP. Such heuristics use a Lagrangean relaxation of some

constraint in the formulation. The resulting relaxation solution gives a lower bound

on the cost of an optimal solution and some adjustment can be applied to the

relaxation solution to give a feasible heuristic solution. For example, a common

relaxation used by Cornuejols, Fisher, and Nemhauser [42]; Narula, Ogbu, and

Samuelsson [103]; and Beasley [21] relaxes the constraint requiring each facility to

receive exactly 1 unit of supply. Since the formulation still requires p medians to be

chosen, it is easy to find a feasible solution by assigning each demand point to its

closest open median.

The last type of heuristics are metaheuristics. The bulk of recent work on the

PMP falls into the metaheuristic category. The goal of metaheuristics is to find a

close to optimal solution; however, they generally do not provide any information

20

about the error of their solutions. Without running a metaheuristic, there is no

theory for determining how far the solution provided by the metaheuristic will be

from optimal. Also, metaheuristics contain a random element to escape from local

optima and running the algorithms multiple times may give multiple distinct

solutions. Consequently, these methods are often run multiple times and the best

solution from the multiple runs is used. For a survey of metaheuristic approaches

that have been applied to the PMP, see Mladenović, Brimberg, Hansen, and

Moreno-Pérez [100]. For the purposes of this thesis, the most important

metaheuristics are the genetic algorithms, the hybrid heuristic of Resende and

Werneck [111], and the heuristic concentration methods.

The genetic algorithms are based on the idea of genetic drift, in which a living

population reacting to selection pressure tends to produce children that are better

adapted to the selection pressure. The idea of genetic algorithms is to model

solutions to the PMP (or whatever problem is being solved) as chromosomes and

have those solutions breed together to produce offspring solutions while selecting for

the lowest cost solutions. A random mutation is also introduced to the offspring in

an attempt to mimic the mutations seen in natural populations and allow better

solutions to be produced even if the initial population is low quality. As more

generations of chromosomes are produced, the population is expected to drift

towards the optimum solution. The output of the genetic algorithm is the best

solution found after some number of generations. Hosage and Goodchild [84] were

the first to apply the genetic algorithm framework to the PMP; however, they did

not require their solutions to have exactly p medians. Instead, they penalized the

objective for solutions that had the wrong number of medians. Unfortunately, as

Correa, Steiner, Freitas, and Carnieri [44] noted, allowing solutions to have the

21

wrong number of medians greatly increases the number of solutions that may be in

the population, and time can be wasted generating solutions that are infeasible.

Dibble and Densham [52] gave a better encoding of p-median solutions that requires

solutions to have exactly p medians, and their encoding has been used by

subsequent authors. Bozkaya, Zhang, and Erkut [23] and Alp, Erkut, and Drezner

[5] made improvements to the way that offspring are produced. Correa et al. [44]

proposed adding a new type of mutation, which they called a hypermutation. This

hypermutation is basically the application of a local search heuristic to improve

each element of the current population. Correa et al. [44] used an interchange

heuristic similar to Teitz and Bart’s [128] heuristic. Their computational

experiments showed that the addition of the hypermutation allowed their genetic

algorithm to outperform their implementation of the tabu search heuristic for the

capacitated PMP. Recently, Rebreyend, Lemarchand, and Euler [108] created an

improved version of Correa et al.’s [44] method, which they called imp-GA.

Rebreyend et al.’s [108] adaption was to limit the size of the local search by just

interchanging some small number of the chosen facilities instead of all of them.

Their computational results show that this adaption allows imp-GA to perform

better on instances of the PMP with at least 1000 demand points. Because of its

performance on large instances of the PMP, imp-GA is one of the algorithms to

which I compare my branch decomposition algorithm in this thesis.

Another algorithm that I use for comparison in this thesis is the hybrid heuristic

of Resende and Werneck [111]. This algorithm is an improvement built onto the

GRASP heuristic of Feo and Resende [70]. GRASP stands for Greedy Randomized

Adaptive Search Procedure, a description of this procedure for generic problems was

given by Feo and Resende [71]. At a high level, a GRASP consists of a randomized

22

greedy construction of a feasible solution that is then passed to a local search

method that improves the greedily constructed solution. The randomization comes

during the greedy construction of a solution. In a GRASP, the best candidate is not

necessarily chosen as it would be in a pure greedy method. Instead, a candidate is

chosen randomly from a list of the best candidates available. The function

determining the value of the candidates can be changed as the greedy construction

progresses and provides the adaptive part of the procedure.

Resende and Werneck [111] applied the GRASP heuristic to the PMP with an

additional path-relinking step and an additional population generation phase that

creates a new population of solutions by combining the best solutions from the

previous iteration, similar to a genetic algorithm. GRASP with path-relinking has

since been applied to different variants of the PMP. For example, Arroyo, Soares,

and dos Santos [8] applied it to the bi-objective PMP, and Pérez, Almeida, and

Moreno-Vega [105] applied it to the capacitated PMP. According to Avella, Boccia,

Salerno, and Vasil’ev [10]; Avella, Sassano, and Vasil’ev [13]; Mladenović et al.

[100]; and Sáez-Aguado and Trandafir [120], Resende and Werneck’s [111] hybrid

heuristic has been one of the most effective algorithms for the PMP. Consequently, I

use it to evaluate the algorithm presented in this thesis.

The algorithm presented in this thesis belongs to the class of heuristic

concentration algorithms. The unifying idea of these algorithms is to create a pool

of solutions from different heuristics or from multiple runs of a single heuristic, and

to use this pool of solutions to inform the creation of a new, hopefully improved,

solution. Heuristic concentration was introduced by Rosing and ReVelle [115].

These authors used multiple runs of Teitz and Bart’s [128] interchange heuristic to

build up a list of heuristic solutions. Then, they built a concentration set of

23

locations where a facility was assigned by at least a threshold percentage of the

heuristic runs. Finally, they used integer programming with CPLEX to find the best

solution to the reduced problem where facilities must be assigned to locations from

the concentration set. Rosing, ReVelle, Rolland, Schilling, and Current [116]

compared Rosing and ReVelle’s [115] heuristic concentration method to Rolland,

Schilling, and Current’s [114] tabu search heuristic. They found that the heuristic

concentration method was superior in terms of solution quality. In terms of

computational time, the heuristic concentration method was faster on some

instances and the tabu search was faster on others.

The difference between the method presented in this thesis and the previous

heuristic concentration methods is in both the method used to solve the reduced

problem and in the number and type of heuristic runs that are used to build the

concentration set. Exact methods of solving the reduced problem have used integer

programming. Serra, ReVelle, and Rosing [123] used an improved version of Teitz

and Bart’s [128] heuristic created by Densham and Rushton [51] to both create the

concentration set and heuristically solve the reduced problem. Rosing, ReVelle, and

Schilling [117] use a 2-opt procedure. In contrast, the method presented here uses a

branch decomposition based dynamic programming algorithm to solve the reduced

problem. In addition, Rosing and ReVelle’s [115] initial paper used 200 runs of Teitz

and Bart’s [128] interchange heuristic to create the concentration set. One of the

questions with which Rosing and ReVelle [115] ended their paper was whether such

a large number of heuristic runs was necessary. This thesis uses a much smaller

number of runs and still acheives improvements over the concentration set. Finally,

instead of the interchange heuristic, this thesis shows that the linear programming

relaxation and Resende and Werneck’s [111] GRASP heuristic also provide good

24

concentration sets.

25

Chapter 3

Solving the p-Median Problem with Branch

Decompositions∗

3.1 Introduction

Solution approaches to NP-hard problems fall into four basic categories:

meta-heuristics, combinatorial approximation algorithms, exact combinatorial

algorithms, or integer programming. Since the problems are NP-hard, exact solution

methods are often impractical. On the other hand, sub-optimal solutions such as

those provided by meta-heuristics and approximation algorithms require

practicioners to accept costs that could be avoided with a better solution.

In this chapter, I use a branch decomposition technique to improve

approximations to the p-median problem. This technique can be used to develop a

solution from the linear relaxation of the problem, or to combine a pool of heuristic

solutions into a solution of higher quality than any in the original pool. My

computational results show that my technique provides solutions of better quality

than popular heuristics, while being significantly faster than integer programming

on graphs with a low width branch decomposition.

The p-Median Problem (PMP) was introduced in Chapter 1.2. Although it is

NP-hard in general [88], ReVelle and Swain [112] observed that their linear

programming formulation of the PMP often gave integer solutions. Since linear

∗This chapter is adapted from [68].

26

programming is solvable in polynomial time (for example by Khachiyan’s ellipsoid

method [90] or Karmarkar’s interior point method [89]), this observation leads to

the question of whether linear programming can be used in practice to solve the

PMP. Unfortunately, as problem sizes get larger, fractional solutions to the linear

program become more common. However, in many cases these fractional solutions

have simple structure. For example, half-integral fractional solutions are common.

Some preliminary computational experience showed that the simple structure of the

linear programming solutions translated to low branchwidth. Consequently, the

PMP is a prime target for a branch decomposition algorithm.

In this chapter, I develop a heuristic for the PMP using branch decompositions

of support graphs produced either by heuristics or by linear programming. Section

3.2 gives the integer programming formulation of the PMP. Section 3.3 introduces

my algorithm. I show complexity results and theoretical error bounds in Section 3.4.

I give computational results comparing my algorithm to other state-of-the-art

algorithms in Section 3.5, and I offer conclusions in Section 3.6.

3.2 Preliminaries

I will consider the PMP defined on a complete directed graph (that is, a graph

where directed edges exist in both directions between each pair of nodes), call it
→
K(V,A), with edge costs c. The problem asks for a subset M ⊆ V such that |M | = p

and the sum of the distances from each node of V \M to it’s closest neighbor in M

is minimized. Definition 3.1 gives the standard, straightforward formulation for the

PMP. Alternative formulations exist for the problem. Avella and Sassano [12] gave

a formulation that relates the PMP to the stable set problem. Elloumi [60] gave a

formulation in terms of neighborhoods, which requires less linear constraints if the

27

distance matrix is sparse. However, since I deal with complete graphs in this

chapter, the distance matrix is dense, and I use the standard formulation.

Definition 3.1 Integer Program Model of the PMP (PMPIP)

minimize cTx

subject to:
∑
v∈V

xv,v = p (1)∑
vi∈V

xv,vi = 1 ∀v ∈ V (2)

xv1,v2 ≤ xv2,v2 ∀v1, v2 ∈ V (3)

0 ≤ xv1,v2 ≤ 1 ∀v1, v2 ∈ V, v1 ̸= v2 (4)

xv1,v2 ∈ {0, 1} ∀v1, v2 ∈ V, v1 = v2 (5)

The linear relaxation of an integer program is the linear program that arises

when the integrality constraints of an IP (the constraints (5) in the PMPIP) are

relaxed to allow fractional values. I wish to solve the linear relaxation of the PMP

integer program (PMPIP) and exploit this solution to find low-cost feasible

solutions to the PMPIP. I will call this relaxation the PMPLP. In particular, I am

interested in the support graphs of the relaxations. In my case, since I posed the

PMP over a complete graph, where the nodes are demand/median locations, the

support graph of the PMPLP solution contains the nodes of the complete graph

together with all edges whose corresponding variables take on positive value in the

solution of the PMPLP. All the edges whose corresponding variables have a value of

0 in the PMPLP solution are not in the support graph.

Note that in considering the support graph of the PMPLP, I simply use the

edges whose corresponding variables exceed a threshold value of 0.0001 in the

PMPLP solution. I do not create any new edges by shortcutting shortest paths

(shortcutting means adding a new edge between two nodes with cost equal to the

28

cost of the minimum cost path between the two nodes). Thus, if an edge variable is

not positive in the PMPLP, then that edge is not in the PMPLP support graph,

and the two ends of that edge cannot be linked in a PMP solution contained in the

PMPLP support graph. Since many of the edges present in the complete graph may

not be present in the PMPLP support graph, it is possible that for every potential

subset of nodes, M , with |M | = p, there exists a node, v ∈ V \M , such that none of

the edges directly connecting v to a node in M are present in the PMPLP support

graph. That is, it is possible that no dominating set of size p exists in the PMPLP

support graph. In this case, for any choice of p medians, there will be some node

that cannot be linked to a median using an edge of the PMPLP support graph.

Thus, the support graph of the PMPLP will not contain a solution of the PMP, and

some alteration of the PMPLP will be required. I explore three ways to alter the

PMPLP in Section 3.3.1.

In certain cases, for example when the PMP instance is too large to be solved by

current linear programming software or if the linear program is too slow, it is

necessary to solve the PMP using heuristics. Although these heuristic solutions may

not be optimal, I expect that a combination of these solutions will contain

information that will help us build a better solution than any of the individual

solutions. In a similar manner to the PMPLP, I can build a support graph out of

multiple heuristics by simply including any edge of the complete graph that is used

in at least one of the heuristic solutions.

Whether I use the PMPLP or heuristics to create a support graph, I will use

dynamic programming to mine the useful information contained in it. While Hribar

and Daskin [85] have previously developed a dynamic programming heuristic for the

PMP, my method is unique because I use branch decompositions to form the

29

dynamic programming subproblems. See Section 1.4 for further explanantion of

branch decompositions.

3.3 The Branch Decomposition Heuristic

Dynamic programming algorithms have two essential components: a decomposition

of the problem into subproblems and a method for using smaller subproblem

solutions to build solutions for larger subproblems. In this section, I describe how I

use branch decompositions to build these components and incorporate them into my

algorithm.

In my algorithm, I consider the directionality of the edges when I solve the

smallest subproblems in the dynamic programming. Thus, rather than using branch

decompositions of directed graphs I only consider the branch decompositions of the

underlying undirected graphs. In theory, this distinction makes little difference

because, given a directed graph, the branch decomposition of the underlying

undirected graph can be extended to a branch decomposition of the directed graph

by simply adding a pair of leaves representing each direction descending from the

leaf representing the undirected edge. This extension does not affect the width of

the decomposition.

For my heuristic, given a support graph, G, that comes from either linear

programming or heuristics, and a branch decomposition of G, I start by defining the

subproblems for dynamic programming. I have a subproblem for each vertex of the

branch decomposition tree, and for a given tree vertex, the corresponding

subproblem is a p-median problem on the subgraph induced by the leaves

descending from that tree vertex. For leaf vertices of the branch decomposition tree,

these subproblems are p-median problems on single edges of G. For my algorithm, I

30

must determine how the allowed p medians will be distributed on the subgraphs. It

is likely that, in an optimal solution, the medians will be spread throughout the

graph, and the subgraphs will only use a fraction of the medians. However, I know

of no theory that will allow me to distribute the medians to the branches of the

decomposition while guaranteeing that solution quality will not suffer. Therefore, I

simply allow each branch of the decomposition to use the full allotment of p

medians. I ensure that no more than p medians are used in the final solution by

only merging partial solutions that together have no more than p medians.

Since all p medians are allowed on each branch, there are six possible solutions

to the subproblems on the leaves of the decomposition, see Figure 3.1. Each end of

the corresponding edge can either be a median, be linked to the other end of the

edge, or it can be free. Free nodes are necessary because, in a solution of the full

problem, it is possible that a node may be linked to a median that is not part of the

current subproblem, and if a node is either a median or linked to a median in a

subproblem it will never be linked to a median outside of the subproblem. However,

if one of the nodes incident to the edge corresponding to a leaf vertex has a degree

of 1 in G, then that node will not be part of the middle set of any branch

decomposition vertex and cannot be free. For such edges, there are at most the 4

possible solutions where the node with degree 1 is not free.

Once I have solutions for the leaves of the decomposition, I form solutions to the

interior vertex subproblems by merging a partial solution from one of the children of

the interior vertex with a partial solution from the other child of the vertex. The

operation of merging solutions forms the solution of the new subproblem by

scanning through each of the child subproblems and setting each node and edge in

the new subproblem to have the same value as in one of the child subproblems.

31

Figure 3.1 : Dynamic programming base cases for leaves of decomposition. M

denotes a median node, L denotes a node linked to a median, and F denotes a free

node.

Thus, a node that is linked to a median in a child subproblem remains linked, a

node that is a median remains a median, etc. Nodes that are not in either child

subproblem are also not part of the subproblem on the new vertex. It is obvious

that this process leads to conflicts if the two child subproblems disagree on the state

of a node, i.e. one child has a node linked to certain median and the other child has

the node linked to a different median. I call these partial solutions incompatible.

My goal with defining compatible solutions is to reduce the number of partial

solutions that I need to merge in the dynamic programming stage. Since I do not

need to merge an incompatible pair of solutions, it is in my best interest to make as

many pairs incompatible as possible while still retaining an optimal solution. I say

that two states of a middle set node are compatible if a partial solution with one

state at the node can be merged with a partial solution that has the other (not

necessarily different) state on that node without violating some property of integral

p-median solutions. I say that two partial solutions are compatible if each of the

nodes in the intersection of their middle sets have compatible states. The

compatibilities of the three states for middle set nodes are given in Table 3.1.

Most of the definitions in Table 3.1 are straightforward; however, I will still take

the time to explain them here. A median state is compatible with a median state

32

Table 3.1 : Compatibility for middle set nodes

Median Linked Free

Median Compatible Incompatible Incompatible

Linked Incompatible Incompatible Compatible

Free Incompatible Compatible Compatible if in middle set

because both partial solutions agree on the state of the node, thus the solutions can

be merged without a problem. However, the median state is not compatible with

the linked state because a merged solution would have that node being both a

median and linked to another median, which is unnecessary because a median node

is considered to satisfy its own demand. Median nodes are also defined to be

incompatible with free nodes. I chose to make these states incompatible to reduce

the number of compatible solutions. This definition is safe because if a middle set

node is a median in one partial solution (L) and free in the other (R), then it will be

a median in the merged solution. Thus, I get the same merged solution as I would

have by merging L with the partial solution (P) obtained by changing the node to a

median in R. P must be one of the partial solutions of the R child branch because if

L and R could be merged without exceeding p medians, then there are no more than

p medians in P. Thus, P must be in the list of partial solutions for the R child

branch. It follows that I am not discarding any possible solutions by declaring the

median state to be incompatible with the free state.

We saw that the linked state was incompatible with the median state. The

linked state is also incompatible with the linked state. If a middle set node is linked

to a node that is not in the middle set in one of the partial solutions, then in the

33

merged solution, it will be linked to two different nodes, which is unnecessary

because linking to one median is all that is needed to satisfy a node’s demand. If

the node is linked to the same middle set node in both partial solutions, then I

could have just used one partial solution where the node was free. Thus, the linked

state is incompatible with the linked state. However, the linked state is compatible

with the free state, because in that case the node is linked to a single median in the

merged solution.

The only pair left to determine is the compatibility of the free state with the free

state. If the node is not just in the middle set of the child branches but is also in

the middle set of the current branch decomposition vertex, then we must have that

the free state is compatible with the free state. However, nodes cannot be free in

the final solution. So, if the node is in the middle set of the child vertices but not in

the middle set of the current branch decomposition vertex, then the free state is not

compatible with the free state.

Now that I have a rule for determining compatibility, I build partial solutions for

a branch decomposition vertex by merging compatible partial solution pairs from its

two children. However, when building solutions in this manner, it is possible that

two partial solutions, A and B, will have the same number of medians and the same

middle set configuration, but different configurations on the nodes that are not in

the middle set. A and B will both be compatible with the exact same set of

solutions from the other branch decomposition vertices. However, if A costs less

than B, then A will give the lower cost in the merged solutions. Thus, I only need to

store the lowest cost partial solution with each middle set configuration and number

34

of medians. I store the partial solutions in a hash table with the hashing function

f(x0, x1, . . . , xK−1,m) =
K−1∑
i=0

3ixi + 3Km

where xi ∈ {0, 1, 2} represent the state of the middle set node i, K is the width of

the branch decomposition, and m is the number of medians used.

Since I am building solutions by merging partial solutions from the children, I

must first obtain the partial solutions on the children. A post-depth-first search

ordering ensures that the children will be processed before the parent. When I

finally reach the root vertex of the branch decomposition, the partial solutions

become complete, and I choose the lowest cost solution at the root vertex to be the

solution returned by my algorithm. The dynamic programming procedure is

summarized in Algorithm 3.1.

3.3.1 Performance Tweaks

In my numerical experiments, and in practical application, situations arise where

Algorithm 3.1 needs to be tweaked somewhat. First, as explained in Section 3.2, it

is possible that no feasible solution exists for the given p on the PMPLP support

graph. Since my branch decomposition algorithm on the PMPLP support

(BDPM-LP) finds solutions only on the PMPLP support graph, my algorithm may

not be able to find a feasible solution. There are three ways to deal with this

problem. The first way is to shortcut the graph. This method essentially entails

adding edges to the support graph until a feasible solution can be found.

Unfortunately, adding edges to the graph can increase its branchwidth, and since

the complexity of my algorithm is so closely tied to branchwidth, shortcutting will

likely have a detrimental effect on efficiency.

35

Algorithm 3.1: Dynamic Programming on Branch Decompositions

Data: post-DFS ordering of a branch decomposition of G

Result: Solution of p-Median problem on G

Initialize leaves of branch decomposition with their possible solutions;

for branch decomposition vertices in post-DFS order do

for i a solution of left child do

for j a solution of right child do

if (i and j are compatible) then

Store the compatible pair (i,j);

end

end

end

for each compatible pair (i,j) do

merge i and j to get new solution;

if (cost of new solution < cost of solution in hash table) then

Store new solution in hash table;

end

end

end

Output least cost solution of root vertex;

36

The second way to deal with the problem, is to add a cutting plane to the

PMPLP. If no integral solution exists on the support graph of the PMPLP, then any

integral solution must contain an edge that is not in the support graph. Let E be

the set of edges in the support graph of the PMPLP. Then the constraint

∑
(i,j)/∈E

xi,j ≥ 1

is a valid cutting plane for the PMPIP. Adding these cutting planes will eventually

force an integral solution to exist on the support graph of the linear program.

Unfortunately, this cutting plane does not seem to be facet-inducing. In my

preliminary experiments, this method did not perform well because each cutting

plane did not cut off enough of the feasible region. Also, this method tended to

increase the branchwidth of the support graph.

The third method, the one that I use in my computational experiments, is what

I will call fixing. Fixing entails picking some node variable, xi,i, that takes positive,

fractional weight in the PMPLP, and adding the constraint xi,i = 1. The PMPLP is

then resolved with this added constraint, and I run my algorithm on the support

graph of this new solution. Although this approach prevents the method from

finding solutions where the fixed node is not a median, it does eventually force a

feasible solution to exist on the PMPLP support graph.

Because the performance of BDPM-LP depends on the branchwidth of the

PMPLP support, I want to avoid runnning the heuristic on graphs with high

branchwidth. Fixing a single variable will not necessarily decrease the branchwidth

and may in fact increase it. However, repeatedly fixing variables will eventually

reduce the branchwidth of the support graph. This statement can easily be seen

from the fact that fixing will eventually cause the PMPLP solution to be integral.

37

Consequently, I can limit the branchwidths of the support graphs that I use for

BDPM-LP by fixing whenever the width of my branch decomposition is above some

given limit. In my numerical experiments, my heuristic became impractical with

widths larger than 7. Consequently, I tweaked BDPM-LP by fixing whenever the

width of the branch decomposition was above 7. In a similar manner, the algorithm

using multiple heuristic runs (BDPM-H) can have widths that are too high. I

correct this by using fewer heuristics to create the support graph.

There are multiple fixing strategies, such as fixing lexicographically or fixing the

node with largest fractional weight. In my numerical experiments, I use

lexicographic fixing. Given some indexing of the nodes, I simply scan the list of

node variable values from the LP solution and fix the fractional node with the

lowest index.

3.4 Complexity and Error Bounds

In this section, I give a complexity result and a theoretical error bound for

BDPM-LP. I do not give similar error bounds for the version of my algorithm where

the support graph comes from heuristics (BDPM-H) because the heuristics

themselves generally do not have error bounds. In general, all that I can say about

the error of BDPM-H is that it is at least as good as the heuristics used to build the

support graph.

Theorem 3.1

Let K be the width of a branch decomposition of a graph with N vertices and M

edges. Then, Algorithm 3.1 using the given decomposition requires

O(2M(N + p29K(K + 1) + p25KN)) operations.

38

Proof: The branch decomposition has 2M − 2, or O(2M), vertices, and at each

vertex the algorithm needs to find the pairs of compatible solutions and merge

them. To do this, I first need to find the middle set of the branch decomposition

vertex. This step requires checking the induced degree of each node against its

actual degree. Thus, the step requires N comparisons. Now, each node in a middle

set can have at most three configurations. Thus, each vertex of the decomposition

has at most p3K partial solutions.

To find the compatible solutions, the algorithm compares the configuration of

each node in the middle set for each pair of partial solutions, one from each child

vertex in the decomposition. Since the number of nodes in the middle set is limited

by K, this step uses at most p3Kp3K(K + 1) = p29K(K + 1) comparisons. Finally,

the compatible solutions must be merged. Since all configurations are not

compatible with each other, there are a maximum of p25K compatible pairs. The

solutions are merged by simply scanning through each of the partial solutions and

setting the new solution to its values in the partial solutions. Since there are at

most N nodes that must be scanned, merging the solutions requires p25KN steps.

Thus, the complexity of the algorithm is O(2M(N + p29K(K + 1) + p25KN)). ■

The fixing strategy introduced in Section 3.3.1 complicates the development of

theoretical worst-case error bounds for BDPM-LP because the optimal cost of the

linear program increases when fixing occurs, but if the fixing step is not necessary,

then I can provide a theoretical bound.

Theorem 3.2

Let x̄ be the optimal solution to the PMPLP, and let α be the smallest integer such

that αx̄ is integral. Let h̄ be the solution returned by algorithm 3.1, and let c be the

cost vector for the instance. If no fixing is required, then cT h̄ ≤ αcT x̄.

39

Proof: Since αx̄ is integral, it contains at least one copy of each edge in the

PMPLP support graph. Algorithm 3.1 returns a solutions whose edges are limited

to the PMPLP support, and this solution has at most one copy of each of these

edges. So, αx̄ has at least as many copies of each edge as are contained in h̄. Thus,

cT h̄ ≤ αcT x̄. ■

For the interesting case of half-integral solutions, Theorem 3.2 gives an error

bound of 2 when fixing is not needed. Note that on these limited instances, my

bound is better than the 1 +
√
3 + ϵ bound of Li and Svensson [93], but in general it

is worse. However, in my computational experiments, whether fixing was needed or

not, the average performance of my algorithm is much better than the worst-case

bound.

3.5 Computational Experiments

In this section, I report computational results for both the PMPLP-based algorithm

and the heuristic-based algorithm. The first strategy for which I report

computational results is the use of multiple runs of the GRASP heuristic of Feo and

Resende [71] to create the support graph. In my experiments, I use four runs of

GRASP to create the support graph on which I run BDPM. An edge is in this

support graph if and only if it is in one or more of the four GRASP solutions. I call

this heuristic BDPM-GRASP. The second strategy for which I report results is

BDPM-LP. In this method, an edge is in the support graph if and only if its

corresponding variable has a value at least 0.0001 in the linear programming

solution. I compare the results of my algorithm to GRASP, integer programming,

the imp-GA algorithm of Rebreyend, Lemarchand, and Euler[108], and the hybrid

heuristic (HHP) of Resende and Werneck [111]. The imp-GA algorithm was

40

demonstrated by Rebreyend et al. [108] to outperform other genetic algorithms on

large problems, and HHP is also known to be state-of-the-art for p-median problems

(see for example Avella et al. [10] or Mladenović et al. [100]).

My computational results were obtained on a Dell Precision T1650 workstation

with a 3.3 GHz Intel Core i3-2120 CPU, 3.7 GB of RAM, and Red Hat Enterprise

Linux version 6.6. The code was written in C++ and compiled with g++ version

4.4.7. Integer and linear programs were solved using Gurobi version 5.5.0 with the

dual simplex method and a single thread. Branch decompositions were found using

the C++ code of Hicks [80]. GRASP results and HHP results were obtained from

the POPSTAR code of Resende and Werneck [111]. I obtained imp-GA results from

my own implementation in C++.

The test instances that I use in this section come from the TSPLIB [110] or the

ORLIB [20]. These two libraries are the standard test instances for the PMP (for

example, see Mladenović et al. [109]). From the TSPLIB, I used lin318, rd400,

si535, ali535, rat575, gr666, u724, dsj1000, pr1002, rl1304, nrw1379, fl1400, u1432,

vm1748, d2103, and pcb3038. Many of these instances have been used before as test

instances for the p-median problem, see for example Avella et al. [13] and Garcia et

al. [75]. For each file chosen from the TSPLIB, I ran instances with the number of

medians, p, in the set 5, 10, 50, 100, 200, 300, 400, 500, up to half the number of

vertices in the instance. In keeping with standard practice in recent papers on

p-median, see for example [13], [60], and [75], I only report computational results for

instances pmed26-pmed40 from the ORLIB.

The running times of both BDPM versions show a loose correlation with the

width of the branch decomposition used, which should be expected given Theorem

3.1. However, since it is possible for the decomposition to have only one large

41

middle set and for the rest of the middle sets to be small, or for a linear program

solution to be mostly integer with only a small fractional part with high width,

higher widths do not necessarily lead to higher running times.

For both the TSPLIB instances and the OR-Library instances, BDPM-LP is

generally faster and can solve larger problems than integer programming. It is also

more accurate than HHP when fixing is not required. BDPM-LP was faster than

imp-GA and more accurate than imp-GA when p > 50. If the time to solve the

linear program is not counted, then the running times of BDPM-LP were

competitive with HHP for low widths. Also, BDPM-GRASP was able to improve on

the best GRASP run; was faster than imp-GA; and was more accurate than imp-GA

for p > 100. The following subsections give more detailed discussion of these results.

3.5.1 BDPM-GRASP

For BDPM-GRASP, I use four runs of GRASP to form the support graph for my

algorithm. For some instances, the width of the decomposition of the support graph

using four runs was too high for BDPM-GRASP to be practical. If BDPM-GRASP

was unable to solve an instance, I simply decreased the number of GRASP runs

that I use to build the support graph. Detailed results for these difficult instances,

including the number of runs required, are reported in Table 3.9. I compare the

results of BDPM-GRASP to integer programming, imp-GA, HHP, and to the best

GRASP run from the four used to build the support graph. Average results for each

of these methods are reported in Table 3.2. The averaged results in this table show

that BDPM-GRASP slightly reduced the error of the best GRASP run, and

BDPM-GRASP only had smaller error than imp-GA on the ORLIB instances.

However, the averaging hides a clear trend in my data. My data shows that

42

BDPM-GRASP performs better as p increases, and imp-GA performs worse. I

consistently saw improvement over the best GRASP run when p was at least 50.

Likewise, BDPM-GRASP consistently had less error than imp-GA when p was at

least 200 for small instances and 100 for large instances. These trends are seen in

Tables 3.3 and 3.4.

For the OR-Library instances, the best GRASP run was often exact. However,

on average over all the OR-library instances, the average error ratio (calculated as

the average of the heuristic cost divided by the true solution cost for each instance)

of BDPM-GRASP was 1.00018 (this error ratio was calculated using the best

GRASP solution for the two instances pmed37 and pmed40 where the width was

too high for BDPM-GRASP), while the best of the GRASP runs had an average

error ratio of 1.00153. Imp-GA had an average error ratio of 1.00136. On average

BDPM-GRASP removed 32.9% of the error of the best GRASP run (calculated as

the average of the percentage of the GRASP error that was still present in

BDPM-GRASP for each instance). Thus, on these instances, BDPM-GRASP was

more accurate than both imp-GA and GRASP. Detailed results for these instances

are reported in Table 3.5.

For the TSPLIB instances, I divide the instances into two groups. The small

instances have less than 1000 vertices, and the large instances have at least 1000

vertices. The average error ratio of my algorithm for small instances was 1.0373

compared to an average error ratio of 1.0392 for the best GRASP run and 1.004 for

imp-GA. On average for small instances, BDPM-GRASP removed 27.8% of the

error of the best GRASP run. Detailed results for small instances are reported in

Table 3.6. The average error ratio of BDPM-GRASP for large instances was 1.0353

compared to an average error ratio of 1.0388 for the best GRASP run. On average

43

for large instances, BDPM-GRASP removed 37.0% of the error of the best GRASP

run. Detailed results for large instances are reported in Tables 3.7 and 3.8.

Although the average results show a small improvement from using

BDPM-GRASP over GRASP, and no improvement from using BDPM-GRASP over

imp-GA, the benefit of using BDPM-GRASP becomes apparent when results are

broken down according to the p values in the instances. Tables 3.3 and 3.4 and

Figures 3.2 and 3.3 show average relative errors for different p values, and it is clear

from Figures 3.2 and 3.3 that as p increases, the average BDPM-GRASP solution

improves relative to the GRASP solution. Tables 3.3 and 3.4 indicate that

BDPM-GRASP offers significant improvement over GRASP when p is at least 50.

For the small instances, Table 3.3 shows that BDPM-GRASP outperforms imp-GA

when p is 200 or 300, and for the large instances, Table 3.4 shows that

BDPM-GRASP outperforms imp-GA when p is at least 100.

Except for a few instances, the HHP algorithm is slightly more accurate than

BDPM-GRASP. However, HHP is slower than BDPM-GRASP when branchwidths

are less than 6. This result is expected since HHP is also an improvement built on

top of GRASP, but HHP explores a larger search space while attempting to improve

the GRASP solution. Also, since HHP uses different methods than BDPM, the two

methods could potentially be combined to form a new method for the p-median

problem.

44

Table 3.2 : Average results for BDPM-GRASP.

Algorithm ORLIB (15 instances) Small TSP (36 instances) Large TSP (64 instances)

solved time error # solved time error # solved time error

BDPM-GRASP 13 45.3 1.0002 36 22.19 1.037 69 65.7 1.032

Best GRASP 15 0.03 1.0015 36 0.025 1.039 70 0.14 1.036

imp-GA 15 730 1.0014 36 551.3 1.004 70 8130 1.024

IP 12 998.6 1.0 36 270.6 1.0 29 162.1 1.0

HHP 15 1.37 1.0 36 1.21 1.037 70 10.15 1.030

Note: The # solved column indicates the number of instances that the relevant algorithm solved without exhausting

available memory. Time is reported in seconds. The time reported for BDPM-GRASP does not include the time

required to run GRASP.

Table 3.3 : Average relative errors for BDPM-GRASP on small TSPLIB instances

broken down by p.

Algorithm p=5 p=10 p=50 p=100 p=200 p=300

BDPM-GRASP 0.12 0.0519 0.0107 0.0052 0.0021 0.00035

Best GRASP 0.12 0.0520 0.0126 0.0073 0.0059 0.0085

imp-GA 0.00054 0.0022 0.0039 0.0044 0.0063 0.0145

HHP 0.122 0.0517 0.0087 0.0058 0.0013 0.0003

Note: BDPM-GRASP performs better as p increases, while imp-GA performs worse as p increases. Bold text indicates

the method that had the least error.

45

Table 3.4 : Average relative errors for BDPM-GRASP on large TSPLIB instances

broken down by p.

Algorithm p=5 p=10 p=50 p=100 p=200 p=300 p=400 p=500

BDPM-GRASP 0.1911 0.0623 0.0131 0.0079 0.0043 0.0053 0.0049 0.0041

Best GRASP 0.1911 0.0623 0.0137 0.0105 0.0084 0.0106 0.0117 0.0103

imp-GA 0.0007 0.0009 0.0070 0.0087 0.0211 0.0409 0.0544 0.0536

HHP 0.1911 0.0622 0.0101 0.0038 0.0020 0.0018 0.0017 0.0026

Note: BDPM-GRASP performs better as p increases, while imp-GA performs worse as p increases. Bold text indicates

the method that had the least error.

p
50 100 200 300

er
ro

r

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Small Instances

GRASP

BDPM-GRASP

Figure 3.2 : Comparison of BDPM-GRASP to GRASP for small TSPLIB instances.

This plot compares average relative error for BDPM-GRASP (solid line, +) and the

best GRASP run (dashed line, □) for different values of p and test instances from

the TSPLIB with less than 1000 vertices.

46

p
50 100 300 500

er
ro

r

0.004

0.006

0.008

0.01

0.012

0.014

0.016
Large Instances

GRASP
BDPM-GRASP

Figure 3.3 : Comparison of BDPM-GRASP to GRASP for large TSPLIB instances.

This plot compares average relative error for BDPM-GRASP (solid line, +) the best

GRASP run (dashed line, □) for different values of p and test instances from the

TSPLIB with at least 1000 vertices.

47

Table 3.5 : Results for OR-Library instances using branch decompositions of four
GRASP heuristic runs.

Instance Data IP Results BDPM-GRASP GRASP imp-GA HHP

Name size p cost time BW time error time error time error time error

pmed26 600 5 9917 1334 5 0.55 1.000 0.04 1.000 110 1.000 1.32 1.000
pmed27 600 10 8307 672 4 0.14 1.000 0.03 1.000 194 1.000 1.03 1.000
pmed28 600 60 4498 8.8 14 K N/A 0.01 1.0004 692 1.0009 0.48 1.000
pmed29 600 120 3033 6.9 4 1.77 1.000 0.01 1.002 912 1.0046 0.48 1.000
pmed30 600 200 1989 7.1 3 0.25 1.000 0.01 1.009 921 1.0065 0.57 1.000
pmed31 700 5 10086 1687 4 0.62 1.000 0.05 1.000 128 1.000 1.86 1.000
pmed32 700 10 9297 1678 6 0.36 1.000 0.04 1.000 268 1.000 1.32 1.000
pmed33 700 70 4700 13.1 11 K N/A 0.01 1.001 1085 1.000 0.61 1.000
pmed34 700 140 3013 12.1 8 K N/A 0.01 1.006 1522 1.0033 0.77 1.000
pmed35 800 5 K K 3 0.06 1.000 0.05 1.000 168 1.000 2.45 1.000
pmed36 800 10 K K 15 K N/A 0.05 1.000 350 1.000 1.88 1.000
pmed37 800 80 5057 18.8 16 K N/A 0.01 1.000 1652 1.0024 0.80 1.000
pmed38 900 5 11060 6520 4 0.07 1.000 0.08 1.000 290 1.000 3.80 1.000
pmed39 900 10 K K 6 0.13 1.000 0.05 1.000 381 1.000 2.11 1.000
pmed40 900 90 5128 26.1 22 K N/A 0.02 1.002 2274 1.0027 1.00 1.000

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The time reported for BDPM-GRASP does not include the time required for the GRASP
runs. K indicates that the algorithm ran out of memory. BW stands for the width of the branch decomposition that
was used. The column labeled GRASP gives the result of the best of the GRASP runs. Optimal solutions specified
in the OR-Library data set were used to calculate error ratios.

48

Table 3.6 : Results for small TSPLIB instances using branch decompositions of four
GRASP heuristic runs.

Instance Data IP Results BDPM-GRASP GRASP imp-GA HHP

Name p cost time BW time error time error time error time error

lin318 5 179778 6.08 3 0.18 1.173 0.01 1.173 38 1.00002 0.68 1.173
lin318 10 109398 2.73 1 0.01 1.047 0.01 1.047 58 1.00005 0.25 1.047
lin318 50 40350 3.42 5 0.54 1.010 0.01 1.014 226 1.001 0.20 1.010
lin318 100 18959 1.61 3 0.05 1.008 0.01 1.010 186 1.0024 0.13 1.008
rd400 5 68071 13.3 2 0.04 1.118 0.05 1.118 70 1.0004 1.35 1.118
rd400 10 46082 9.35 6 0.21 1.048 0.02 1.048 133 1.0031 0.77 1.048
rd400 50 17295 2.87 4 0.34 1.010 0.01 1.011 273 1.0014 0.30 1.009
rd400 100 10108 2.74 2 0.04 1.007 0.01 1.007 336 1.002 0.2 1.007
rd400 200 4532 1.93 2 0.08 1.007 0.01 1.012 293 1.0040 0.33 1.0044
si535 5 81303 11.6 1 0.02 1.042 0.04 1.042 108 1.000 1.57 1.040
si535 10 69532 13.4 2 0.04 1.022 0.02 1.022 211 1.000 0.87 1.022
si535 50 47195 4.29 5 0.33 1.002 0.01 1.004 469 1.0019 0.48 1.0017
si535 100 38281 3.49 4 0.18 1.0003 0.01 1.0009 691 1.0021 0.39 1.000
si535 200 26992 3.50 3 0.04 1.000 0.01 1.0005 619 1.0002 0.43 1.000
ali535 5 965580 16.2 1 0.01 1.132 0.07 1.132 98 1.000 2.41 1.132
ali535 10 629984 15.8 6 3.40 1.080 0.03 1.080 237 1.0006 1.96 1.079
ali535 50 232100 7.60 6 9.28 1.014 0.01 1.017 481 1.0031 0.58 1.014
ali535 100 130639 5.92 3 0.32 1.007 0.01 1.008 759 1.0047 0.53 1.007
ali535 200 53127 5.53 3 0.07 1.0025 0.01 1.005 687 1.0052 0.53 1.0015
rat575 5 34971 2201 5 0.72 1.116 0.05 1.116 178 1.0032 2.54 1.116
rat575 10 23637 36.1 9 171 1.051 0.04 1.052 324 1.0012 2.02 1.051
rat575 50 9860 685 13 K N/A 0.01 1.021 659 1.0131 0.73 1.010
rat575 100 6351 14.0 7 413 1.008 0.01 1.015 801 1.0113 0.57 1.006
rat575 200 3690 6.73 2 0.05 1.003 0.01 1.011 904 1.0079 0.60 1.002
gr666 5 1491343 36.8 1 0.02 1.128 0.09 1.128 202 1.000 3.21 1.128
gr666 10 993899 28.8 5 0.36 1.065 0.09 1.065 328 1.0096 3.14 1.065
gr666 50 401015 14.0 6 31.4 1.007 0.01 1.007 795 1.0039 0.83 1.006
gr666 100 250318 23.3 7 80.7 1.0023 0.01 1.005 1178 1.0053 1.01 1.0018
gr666 200 132376 10.4 3 0.09 1.0002 0.01 1.002 1290 1.0079 0.91 1.00002
gr666 300 75917 5.25 2 0.22 1.0007 0.01 1.005 1036 1.0116 0.95 1.0002
u724 5 268898 127 5 4.53 1.148 0.12 1.148 243 1.0001 4.97 1.148
u724 10 181564 6328 8 18.3 1.050 0.05 1.050 457 1.0006 3.80 1.050
u724 50 70291 51.9 9 57.8 1.011 0.01 1.014 1109 1.0031 1.17 1.010
u724 100 43949 12.9 4 0.74 1.0035 0.01 1.005 1486 1.0028 0.94 1.0035
u724 200 25756 9.33 3 0.22 1.0002 0.01 1.005 1580 1.0126 0.77 1.000
u724 300 16909 21.1 3 0.23 1.000 0.01 1.012 1303 1.0174 1.39 1.0004

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The time reported for BDPM-GRASP does not include the time required for the GRASP
runs. K indicates that the algorithm ran out of memory. BW stands for the width of the branch decomposition that
was used. The column labeled GRASP gives the result of the best of the GRASP runs. Where the PMPIP could not
be solved, the PMPLP solution was used to calculate the error ratios.

49

Table 3.7 : Results for large TSPLIB instances using branch decompositions of four
GRASP heuristic runs.

Instance Data IP Results BDPM-GRASP GRASP imp-GA HHP

Name p cost time BW time error time error time error time error

dsj1000 5 142469699 157 1 0.06 1.134 0.23 1.134 402 1.000002 7.00 1.134
dsj1000 10 81510884 87.3 2 0.11 1.091 0.09 1.091 731 1.00005 4.49 1.091
dsj1000 50 34012410 71.7 5 8.40 1.011 0.02 1.012 2253 1.0073 2.28 1.010
dsj1000 100 22561557 65.5 6 2.53 1.0060 0.02 1.009 3424 1.0076 2.06 1.0056
dsj1000 200 13689404 28.7 3 0.53 1.0032 0.02 1.005 3417 1.0140 1.75 1.0031
dsj1000 300 9431896 30.6 4 0.56 1.004 0.03 1.006 3033 1.0347 2.06 1.002
dsj1000 400 6694084 10.5 2 0.46 1.003 0.03 1.007 2653 1.0431 2.04 1.002
dsj1000 500 4706364 17.2 2 0.39 1.003 0.03 1.008 2272 1.0490 2.54 1.002
pr1002 5 1923290 160 5 11.4 1.198 0.25 1.198 430 1.00002 9.47 1.198
pr1002 10 1263290 129 1 0.06 1.045 0.10 1.045 810 1.00002 3.08 1.045
pr1002 50 503512 85.7 6 12.4 1.012 0.02 1.012 2187 1.0040 2.25 1.010
pr1002 100 331435 33.3 6 7.38 1.003 0.02 1.008 3256 1.0060 2.04 1.001
pr1002 200 200172 43.4 4 0.49 1.001 0.02 1.006 3435 1.0179 1.98 1.0002
pr1002 300 139232 17.0 3 0.55 1.0001 0.03 1.007 3053 1.0388 1.85 1.0001
pr1002 400 104068 36.8 4 0.57 1.001 0.03 1.009 2667 1.0364 2.00 1.0002
pr1002 500 78383 18.5 2 0.52 1.001 0.03 1.005 2287 1.0252 2.66 1.0001
rl1304 5 3099632 633 7 42.0 1.137 0.57 1.137 1066 1.00001 22.73 1.137
rl1304 10 K K 10 K N/A 0.27 1.063 1713 1.0012 14.73 1.063
rl1304 50 795468 161 8 K N/A 0.04 1.019 4179 1.0058 3.30 1.013
rl1304 100 491929 448 6 17.3 1.008 0.04 1.013 6048 1.0101 4.05 1.007
rl1304 200 268735 75.2 5 1.48 1.0044 0.04 1.008 6186 1.0288 2.94 1.0037
rl1304 300 177445 76.0 5 1.03 1.0033 0.04 1.009 5672 1.0486 3.17 1.0028
rl1304 400 128418 49.7 3 1.22 1.0017 0.05 1.012 5139 1.0811 3.86 1.0016
rl1304 500 97084 73.2 3 2.48 1.002 0.04 1.013 4675 1.0790 4.44 1.001
nrw1379 5 433349 384 2 0.14 1.124 0.50 1.124 1106 1.0003 17.08 1.124
nrw1379 10 K K 9 29.2 1.052 0.22 1.052 2021 1.0006 15.43 1.052
nrw1379 50 K K 15 K N/A 0.07 1.015 5406 1.0098 7.36 1.012
nrw1379 100 K K 14 K N/A 0.04 1.016 7597 1.0079 3.78 1.005
nrw1379 200 K K 8 K N/A 0.04 1.011 7006 1.0251 4.62 1.003
nrw1379 300 K K 4 2.84 1.003 0.04 1.009 6456 1.0393 4.42 1.001
nrw1379 400 K K 3 1.36 1.002 0.05 1.006 5870 1.0462 4.28 1.001
nrw1379 500 K K 4 0.53 1.002 0.06 1.006 5352 1.0481 4.30 1.001
fl1400 5 174844 311 2 0.13 1.468 0.26 1.468 680 1.0040 9.83 1.468
fl1400 10 100872 210 2 0.82 1.082 0.16 1.082 1504 1.0035 6.93 1.082
fl1400 50 28837 121 6 22.6 1.009 0.05 1.013 4320 1.0111 3.55 1.009
fl1400 100 K K 8 132 1.0009 0.04 1.005 6577 1.0124 4.96 1.0005
fl1400 200 K K 9 K N/A 0.04 1.006 7243 1.0139 4.10 1.002
fl1400 300 K K 10 K N/A 0.04 1.011 6689 1.0371 5.66 1.005
fl1400 400 K K 9 K N/A 0.05 1.020 6086 1.0652 5.96 1.001
fl1400 500 K K 9 K N/A 0.05 1.025 5557 1.0671 6.54 1.014

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The time reported for BDPM-GRASP does not include the time required for the GRASP
runs. K indicates that the algorithm ran out of memory. BW stands for the width of the branch decomposition that
was used. The column labeled GRASP gives the result of the best of the GRASP runs. Where the PMPIP could not
be solved, the PMPLP solution was used to calculate the error ratios.

50

Table 3.8 : More results for large TSPLIB instances using branch decompositions
of four GRASP heuristic runs.

Instance Data IP Results BDPM-GRASP GRASP imp-GA HHP

Name p cost time BW time error time error time error time error

u1432 5 1210479 566 1 0.14 1.113 0.50 1.113 1063 1.0001 14.13 1.113
u1432 10 850078 600 7 28.4 1.054 0.22 1.054 2197 1.0001 16.58 1.054
u1432 50 K K 11 K N/A 0.04 1.015 4809 1.0075 4.91 1.011
u1432 100 K K 9 K N/A 0.04 1.013 7454 1.0117 4.55 1.006
u1432 200 K K 8 K N/A 0.04 1.016 7511 1.0239 4.21 1.003
u1432 300 K K 12 K N/A 0.04 1.026 6962 1.0401 5.79 1.004
u1432 400 K K 11 K N/A 0.04 1.028 6414 1.0400 6.36 1.007
u1432 500 K K 9 K N/A 0.04 1.001 5879 1.0040 4.20 1.000
vm1748 5 K K 1 0.21 1.155 0.64 1.155 1657 1.00002 32.26 1.155
vm1748 10 K K 7 20.0 1.057 0.34 1.057 3083 1.0018 26.2 1.057
vm1748 50 K K 9 K N/A 0.09 1.014 7708 1.0055 8.40 1.014
vm1748 100 K K 7 825 1.007 0.05 1.009 12091 1.0067 6.00 1.006
vm1748 200 K K 5 4.63 1.0020 0.06 1.007 11628 1.0254 5.50 1.0017
vm1748 300 K K 6 7.05 1.0010 0.06 1.007 10933 1.0511 7.22 1.0006
vm1748 400 K K 5 4.92 1.0002 0.07 1.006 10140 1.0727 6.88 1.0001
vm1748 500 K K 5 3.00 1.001 0.08 1.008 9477 1.0803 7.58 1.0003
d2103 5 K K 1 0.3 1.122 1.20 1.122 2874 1.0006 37.27 1.122
d2103 10 K K 9 149 1.048 0.41 1.048 3767 1.0012 25.6 1.048
d2103 50 K K 16 K N/A 0.11 1.014 11033 1.0117 13.7 1.009
d2103 100 K K 21 K N/A 0.07 1.012 17721 1.0095 9.51 1.003
d2103 200 K K 8 K N/A 0.06 1.010 16859 1.0241 10.65 1.001
d2103 300 K K 7 62.7 1.003 0.06 1.011 16149 1.0356 11.87 1.001
d2103 400 K K 8 24.0 1.004 0.07 1.008 15344 1.0382 11.99 1.002
d2103 500 K K 5 8.69 1.007 0.08 1.018 14450 1.0459 15.61 1.005

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The time reported for BDPM-GRASP does not include the time required for the GRASP
runs. K indicates that the algorithm ran out of memory. BW stands for the width of the branch decomposition that
was used. The column labeled GRASP gives the result of the best of the GRASP runs. Where the PMPIP could not
be solved, the PMPLP solution was used to calculate the error ratios.

51

Table 3.9 : Results for instances using branch decompositions of less than four
GRASP heuristic runs.

Instance Data BDPM-GRASP GRASP imp-GA HHP

Name size p runs BW cost time error time error time error time error

pmed28 600 60 2 6 4500 3.73 1.0004 0.01 1.0004 692 1.0009 0.48 1.000
pmed33 700 70 2 5 4700 14.9 1.000 0.01 1.001 1085 1.000 0.61 1.000
pmed34 700 140 3 4 3014 2.74 1.0003 0.01 1.006 1522 1.0033 0.77 1.000
pmed36 800 10 2 10 9934 564 1.000 0.05 1.000 350 1.000 1.88 1.000
pmed37 800 80 2 16 K K N/A 0.01 1.000 1652 1.0024 0.80 1.000
pmed40 900 90 2 8 K K N/A 0.02 1.002 2274 1.0027 1.00 1.000
rat575 575 50 2 5 10064 4.18 1.021 0.01 1.021 659 1.0131 0.73 1.010
rl1304 1304 10 3 7 2266366 16.9 1.063 0.27 1.063 1713 1.0012 14.73 1.063
rl1304 1304 50 3 6 807157 15.9 1.015 0.04 1.019 4179 1.0058 3.30 1.013
nrw1379 1379 50 2 4 132525 5.50 1.016 0.06 1.016 5406 1.0098 7.36 1.012
nrw1379 1379 100 2 5 89757 26.6 1.016 0.03 1.017 7597 1.0079 3.78 1.005
nrw1379 1379 200 3 6 58789 287 1.006 0.04 1.011 7006 1.0251 4.62 1.003
fl1400 1400 200 3 7 9205 212 1.003 0.04 1.006 7243 1.0139 4.10 1.002
fl1400 1400 300 3 7 6520 427 1.008 0.04 1.011 6689 1.0371 5.66 1.005
fl1400 1400 400 3 7 4953 172 1.015 0.04 1.020 6086 1.0652 5.96 1.001
fl1400 1400 500 3 7 3934 110 1.018 0.04 1.025 5557 1.0671 6.54 1.014
u1432 1432 50 2 5 367198 3.40 1.014 0.04 1.015 4809 1.0075 4.91 1.011
u1432 1432 100 2 4 246988 9.32 1.012 0.04 1.013 7454 1.0117 4.55 1.006
u1432 1432 200 3 7 161386 201 1.009 0.04 1.016 7511 1.0239 4.21 1.003
u1432 1432 300 2 3 125997 3.41 1.019 0.04 1.028 6962 1.0401 5.79 1.004
u1432 1432 400 3 7 104758 144 1.013 0.04 1.028 6414 1.0400 6.36 1.007
u1432 1432 500 2 3 93200 2.66 1.000 0.04 1.002 5879 1.0040 4.20 1.000
vm1748 1748 50 3 7 1018934 683 1.014 0.09 1.014 7708 1.0055 8.40 1.014
d2103 2103 50 2 5 306145 27.4 1.014 0.11 1.014 11033 1.0117 13.7 1.009
d2103 2103 100 2 5 196578 68.8 1.009 0.07 1.013 17721 1.0095 9.51 1.003
d2103 2103 200 3 8 118888 23.3 1.004 0.06 1.010 16859 1.0241 10.65 1.001
pcb3038 3038 10 3 7 1297532 216 1.0687 1.27 1.0687 9929 1.000 90.50 1.0680
pcb3038 3038 50 2 7 K K N/A 0.24 1.0093 27316 1.000 26.67 1.003
pcb3038 3038 100 2 5 357653 138 1.0091 0.15 1.0098 37658 1.006 21.69 1.000
pcb3038 3038 200 2 5 240436 173 1.006 0.13 1.007 36296 1.017 19.02 1.000
pcb3038 3038 300 2 4 189091 58.3 1.006 0.15 1.009 35052 1.043 16.43 1.000
pcb3038 3038 400 2 4 157828 13.6 1.004 0.16 1.009 33699 1.067 17.94 1.000
pcb3038 3038 500 3 7 135969 57 1.003 0.19 1.009 32542 1.084 17.79 1.000

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The time reported for BDPM-GRASP does not include the time required for the GRASP
runs. K indicates that the algorithm ran out of memory. BW stands for the width of the branch decomposition that
was used. The column labeled GRASP gives the result of the best of the GRASP runs. For TSPLIB instances where
the PMPIP could not be solved, the PMPLP solution was used to calculate the error ratios. For the pcb3038 instances
the PMPLP could not be solved. So, I use the best available solution to calculate the error ratios.

52

3.5.2 BDPM-LP

For BDPM-LP, I use the linear programming support graph to form the support

graph for my algorithm. A variable was considered to be positive and its

corresponding edge was in the support graph if the variable had a value at least

0.0001 in the linear programming solution. As with BDPM-GRASP, there were

instances for which the width of the decomposition of the support graph was too

high for BDPM-LP to be practical. Also, for some instances a feasible p-median

solution did not exist on the linear programming support graph. In either case, I

used lexicographic fixing, as explained in Section 3.3.1, and resolved the linear

program until a suitable support graph was obtained. I compare the results of

BDPM-LP to integer programming, imp-GA, and to the HHP algorithm.

The results of BDPM-LP show that my algorithm obtains high quality solutions

and usually gets a better quality solution than both HHP and imp-GA. Table 3.10

gives average results for the different methods. The BDPM-LP algorithm does have

a much higher computational cost than HHP since the PMPLP must be solved.

However, when the linear program solution is already known, and the width of the

branch decomposition of the support graph is at most 5, then BDPM-LP is faster

than the HHP algorithm. Over all the TSPLIB instances, the average time required

by the BDPM portion of BDPM-LP was 106 seconds compared to 4.8 seconds for

the HHP algorithm. However, for the instances that did not require fixing, the

average time required was 10.2 seconds compared to 3.6 seconds for the HHP

algorithm. If we only consider instances that did not require fixing and had width

at most 5, then the average time required by the BDPM portion of BDPM-LP was

1.2 seconds compared to 3.7 seconds for the HHP algorithm. So, if the root

relaxation solution is already known and it has a decomposition of width at most 5,

53

then BDPM-LP is actually faster than the HHP algorithm. The BDPM-LP method

also outperforms the imp-GA method. In contrast to the results for

BDPM-GRASP, Table 3.10 shows that BDPM-LP has less error than imp-GA even

when results are averaged over all p values.

For most of the OR-Library instances, the HHP algorithm acheives an optimum

solution, and the PMPLP solution is either integral or has a high width

decomposition. Table 3.13 lists the widths for these instances. Because they either

could not be solved or were solved by fixing without using the branch decomposition

algorithm, I do not report results for these instances.

For the small (less than 1000 vertices) TSPLIB instances where the linear

program solution was not integral, the average error ratio of BDPM-LP was

1.000783 compared to 1.0147 for the HHP algorithm and 1.0063 for imp-GA. On

average for small instances, BDPM-LP had 79.2% less error than the HHP

algorithm and 64.9% less error than imp-GA. Detailed results for these instances are

reported in Table 3.14. Thus, BDPM-LP outperforms both HHP and imp-GA on

these instances.

For the large (at least 1000 vertices) TSPLIB instances where the linear program

solution was not integral, the average error ratio of BDPM-LP was 1.00238

compared to 1.00951 for the HHP algorithm and 1.0266 for imp-GA. On average for

large instances, BDPM-LP had 33.3% less error than the HHP algorithm and 86.0%

less error than imp-GA. Detailed results for these instances are reported in Table

3.15. Thus, BDPM-LP outperforms both HHP and imp-GA on these instances.

Much of the additional error for the large instances appears to be caused by

fixing when the width of the linear program solution support graph decomposition

was too high. If we remove the instances where I used fixing to reduce the width,

54

then BDPM-LP had an average error ratio of 1.000413 compared to an average

error ratio of 1.00656 for the HHP algorithm and 1.0290 for imp-GA. On average for

these instances, BDPM-LP had 44.6% less error than the HHP algorithm and 96.4%

less error than imp-GA.

As with the BDPM-GRASP results, I break the average results down by p

values. Tables 3.11 and 3.12 and Figures 3.4 and 3.5 show average relative errors for

different p values. Unlike BDPM-GRASP, BDPM-LP performs well for all p-values.

For p values of 400 and 500, the linear program support graphs often had high

width that was corrected with fixing. This fixing leads to higher errors for

BDPM-LP for these p-values. However, Figure 3.6 shows that BDPM-LP still

outperforms HHP for instances that did not require fixing to correct high widths.

BDPM-LP also outperforms imp-GA across almost all p-values, with imp-GA only

having less error for the small instances with p values either 5 or 10.

55

p
0 100 200 300

er
ro

r

0

0.02

0.04

0.06

0.08

0.1

0.12
Small Instances

HHP
BDPM-LP
Imp-GA

Figure 3.4 : Comparison of BDPM-LP to HHP and imp-GA for small TSPLIB

instances. This plot compares average relative error for BDPM-LP (solid line, +),

HHP (dashed line, □), and imp-GA (dash-dotted line, ▶) for different values of p

and test instances from the TSPLIB with less than 1000 vertices.

56

p
0 50 100 150 200 250 300 350 400 450 500

er
ro

r

0

0.01

0.02

0.03

0.04

0.05

0.06
Large Instances

HHP
BDPM-LP
Imp-GA

Figure 3.5 : Comparison of BDPM-LP to HHP and imp-GA for large TSPLIB

instances. This plot compares average relative error for BDPM-LP (solid line, +),

HHP (dashed line, □), and imp-GA (dash-dotted line, ▶) for different values of p

and test instances from the TSPLIB with at least than 1000 vertices.

57

p
0 50 100 150 200 250 300 350 400 450 500

er
ro

r

0

0.01

0.02

0.03

0.04

0.05

0.06
Large with No BW Fixing

HHP
BDPM-LP
Imp-GA

Figure 3.6 : Comparison of BDPM-LP to HHP and imp-GA for large TSPLIB

instances that did not require fixing to correct high width. This plot compares average

relative error for BDPM-LP (solid line, +), HHP (dashed line, □), and imp-GA (dash-

dotted line, ▶) for different values of p and test instances from the TSPLIB with at

least than 1000 vertices that did not require fixing to correct high widths.

58

Table 3.10 : Average results for BDPM-LP.

Algorithm Small TSP (16 instances) Large TSP (39 instances)

solved time error # solved time error

BDPM-LP 16 25.2 1.0008 39 493 1.0024

HHP 16 0.97 1.0147 39 6.38 1.0095

imp-GA 16 713 1.0063 39 5583 1.0266

IP 16 585 1.0 12 83 1.0

Note: The # solved column indicates the number of instances that the relevant algorithm solved without exhausting

available memory. Time is reported in seconds.

Table 3.11 : Average relative errors for BDPM-LP on small TSPLIB instances

broken down by p.

Algorithm p=5 p=10 p=50 p=100 p=200 p=300

BDPM-LP 0.0040 0.0010 0.0013 0.0003 0.0005 0.0001

HHP 0.1160 0.0500 0.0100 0.0060 0.0020 0.0003

imp-GA 0.0032 0.0006 0.0058 0.0046 0.0062 0.0145

Note: BDPM-LP performs better than HHP for all p values, and better than imp-GA for p at least 50. Bold text

indicates the method that had the least error.

59

Table 3.12 : Average relative errors for BDPM-LP on large TSPLIB instances

broken down by p.

Algorithm p=10 p=50 p=100 p=200 p=300 p=400 p=500

BDPM-LP 0.0006 0.0019 0.0006 0.0010 0.0023 0.0044 0.0049

HHP 0.0550 0.0110 0.0051 0.0022 0.0026 0.0019 0.0026

imp-GA 0.0012 0.0076 0.0094 0.0190 0.0418 0.0521 0.0504

Note: BDPM-LP performs better than HHP for p less than 400, and better than imp-GA for all p values. Bold text

indicates the method that had the least error.

Table 3.13 : Branch-Widths of PMPLP Support Graphs for OR-Library Instances.

Instance Data IP Results

Name size p cost time Width

pmed26 600 5 9917 1334.1 22
pmed27 600 10 8307 671.8 33
pmed28 600 60 4498 8.8 1
pmed29 600 120 3033 6.9 1
pmed30 600 200 1989 7.1 1
pmed31 700 5 10086 1686.8 7
pmed32 700 10 9297 1677.6 34
pmed33 700 70 4700 13.1 1
pmed34 700 140 3013 12.1 1
pmed35 800 5 K K 10
pmed36 800 10 K K 40
pmed37 800 80 5057 18.8 2
pmed38 900 5 11060 6520 23
pmed39 900 10 K K 34
pmed40 900 90 5128 26.1 1

Note: Most of these instances are either integral (indicated by a width of 1) or have width much higher than 7.

60

Table 3.14 : Results for small TSPLIB instances using branch decompositions of
the PMPLP support graph.

Instance Data IP Results BDPM-LP HHP Algorithm imp-GA

Name p cost time width LP time BD time error time error time error

lin318 50 40350 3.42 2F 1.02 0.53 1.002 0.20 1.010 226 1.001
lin318 100 18959 1.61 2 0.76 0.04 1.000 0.13 1.008 186 1.0024
rd400 100 10108 2.74 2 1.39 0.07 1.000 0.20 1.007 336 1.002
rd400 200 4532 1.93 2 0.91 0.05 1.0007 0.33 1.004 293 1.004
ali535 100 130639 5.92 2 3.41 0.11 1.000 0.53 1.007 759 1.0047
ali535 200 53127 5.53 3 2.31 0.16 1.001 0.53 1.002 687 1.0052
rat575 5 34971 2201 2BW 62.5 12.6 1.004 2.54 1.116 178 1.0032
rat575 50 9860 685 7BW 17.3 93.3 1.002 0.73 1.010 659 1.0131
rat575 100 6351 14.0 3F 9.83 1.85 1.0003 0.57 1.006 801 1.0113
rat575 200 3690 6.73 2 6.50 0.16 1.0003 0.60 1.002 904 1.0079
gr666 100 250318 23.3 2F 8.72 0.74 1.001 1.01 1.002 1178 1.0053
gr666 200 132376 10.4 2F 4.98 1.32 1.00002 0.91 1.00002 1290 1.0079
gr666 300 75917 5.25 2 2.75 0.10 1.000 0.95 1.0002 1036 1.0116
u724 10 181564 6328 1F 93.6 14.8 1.001 3.80 1.050 457 1.0006
u724 50 70291 51.9 6 24.5 27.6 1.00001 1.17 1.010 1109 1.0031
u724 300 16909 21.1 2 9.48 0.15 1.0002 1.39 1.0004 1303 1.0174

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The LP time column gives the time required to solve the root relaxation. The BD time
column gives the time required for BDPM-LP after the root relaxation was solved. K indicates that the algorithm ran
out of memory. If fixing was required, I indicate that with superscripts on the width. The BW superscript indicates
that I fixed because of high widths, and the F superscript indicates that I fixed because the PMPLP support graph
did not contain a feasible solution. Where the PMPIP could not be solved, the PMPLP solution cost was used to
calculate the error ratios. Instances for which the PMPLP solution was integral are not reported.

61

Table 3.15 : Results for large TSPLIB instances using branch decompositions of
the PMPLP support graph.

Instance Data IP Results BDPM-LP HHP Algorithm imp-GA

Name p cost time width LP time BD time error time error time error

dsj1000 50 34012410 71.7 2F 53.2 3.36 1.001 2.28 1.010 2253 1.0073
dsj1000 100 22561557 65.5 5 39.1 0.83 1.0003 2.06 1.006 3424 1.0076
dsj1000 200 13689404 28.7 2 23.3 0.52 1.000 1.75 1.003 3417 1.0140
dsj1000 300 9431896 30.6 2F 15.1 5.26 1.0002 2.06 1.002 3033 1.0347
dsj1000 500 4706364 17.2 2 6.4 0.26 1.0003 2.54 1.002 2272 1.0490
pr1002 50 503512 85.7 2F 70.0 1.64 1.0003 2.25 1.010 2187 1.0040
pr1002 200 200172 43.4 2F 18.9 3.85 1.0001 1.98 1.0002 3435 1.0179
pr1002 400 104068 36.8 2F 25.4 3.22 1.0003 2.00 1.0002 2667 1.0364
pr1002 500 78383 18.5 2F 4.99 2.04 1.0005 2.66 1.0001 2287 1.0252
rl1304 10 K K 1FBW 1305 119 1.002 14.73 1.063 1713 1.0012
rl1304 100 491929 448 3 109 0.75 1.0001 4.05 1.007 6048 1.0101
rl1304 300 177445 76.0 2 58.1 1.2 1.000 3.17 1.003 5672 1.0486
rl1304 500 97084 73.2 2 46.4 1.38 1.0001 4.44 1.001 4675 1.0790
nrw1379 10 K K 3 714 0.73 1.00005 15.43 1.052 2021 1.0006
nrw1379 50 K K 1BW 437 460 1.004 7.36 1.012 5406 1.0098
nrw1379 100 K K 6 109 157 1.001 3.78 1.005 7597 1.0079
nrw1379 200 K K 7 183 45.1 1.001 4.62 1.0027 7006 1.0251
nrw1379 300 K K 2 103 1.26 1.0003 4.42 1.001 6456 1.0393
nrw1379 400 K K 2F 67.3 19.1 1.0005 4.28 1.001 5870 1.0462
nrw1379 500 K K 2F 54.0 12.0 1.0003 4.30 1.001 5352 1.0481
fl1400 100 K K 5 95.8 1.81 1.0003 4.96 1.0005 6577 1.0124
fl1400 200 K K 6BW 145 169 1.003 4.10 1.002 7243 1.0139
fl1400 300 K K 2FBW 120 313 1.012 5.66 1.005 6689 1.0371
fl1400 400 K K 5F 89.4 20.8 1.002 5.96 1.001 6086 1.0652
fl1400 500 K K 3FBW 128 509 1.033 6.54 1.014 5557 1.0671
u1432 50 K K 1FBW 273 193 1.003 4.91 1.011 4809 1.0075
u1432 100 K K 4F 149 38.4 1.001 4.55 1.006 7454 1.0117
u1432 200 K K 2FBW 121 56.7 1.001 4.21 1.003 7511 1.0239
u1432 300 K K 7BW 107 9.10 1.001 5.79 1.004 6962 1.0401
u1432 400 K K 5BW 163 523 1.019 6.36 1.007 6414 1.0400
u1432 500 K K 3 62.0 2.14 1.000 4.20 1.000 5879 1.0040
vm1748 10 K K 4BW 1640 87.7 1.0002 26.2 1.057 3083 1.0018
vm1748 50 K K 3 232 1.75 1.0002 8.40 1.014 7708 1.0055
vm1748 100 K K 5 268 6.86 1.001 6.00 1.006 12091 1.0067
vm1748 300 K K 4 118 2.52 1.0002 7.22 1.0006 10933 1.0511
vm1748 400 K K 2F 80.7 4.56 1.0001 6.88 1.0001 10140 1.0727
vm1748 500 K K 2 80.2 2.96 1.0003 7.58 1.0003 9477 1.0803
d2103 10 K K 1F 2769 33.1 1.0001 25.6 1.048 3767 1.0012
d2103 50 K K 1BW 3396 2863 1.003 13.7 1.009 11033 1.0117

Note: Bold text indicates the method that had the least error, or the fastest method if the methods had the same error.
Time is reported in seconds. The LP time column gives the time required to solve the root relaxation. The BD time
column gives the time required for BDPM-LP after the root relaxation was solved. K indicates that the algorithm ran
out of memory. If fixing was required, I indicate that with superscripts on the width. The BW superscript indicates
that I fixed because of high widths, and the F superscript indicates that I fixed because the PMPLP support graph
did not contain a feasible solution. Where the PMPIP could not be solved, the PMPLP solution cost was used to
calculate the error ratios. Instances for which the PMPLP solution was integral are not reported.

62

3.6 Conclusions

In this chapter, I introduced BDPM, a branch decomposition based dynamic

programming algorithm for the p-median problem. This algorithm works both for

finding a high quality solution in the linear programming support graph and for

finding an improved solution out of a pool of heuristic solutions. However, BDPM is

sensitive to the width of the decomposition that is used and widths above 7 are not

feasible on a typical desktop computer due to memory requirements. However, my

computational experiments showed that BDPM can perform better than other

state-of-the-art methods when these width restrictions are met.

The computational results in Section 3.5 show that my BDPM algorithm is a

useful tool for improving on a pool of heuristic solutions. Using BDPM to improve a

pool of heuristic solutions works best when p is sufficiently large. BDPM-GRASP

significantly improved on GRASP solutions and also had less error than imp-GA for

instances with p values of at least 100, while still being significantly faster than

integer programming or my implementation of imp-GA. In terms of relative error,

imp-GA was the better heuristic when p values were less than 100. The dependence

of BDPM-GRASP on high p values corresponds to the observation that, as p

increases, the difference between the GRASP runs used to form the support graph

likely increases. Thus, the support graph likely has more edges and contains better

solutions as p increases. A possible direction for future study is to investigate

whether the use of different heuristics leads to a better pool on which to run BDPM.

The results in Section 3.5 also show that BDPM-LP is able to create high

quality solutions when the width of the linear program support graph

decomposition is at most 7. While slower than the HHP algorithm, BDPM-LP was

more accurate. BDPM-LP was also faster and more accurate than my

63

implementation of imp-GA. However, BDPM-LP requires a solution of the PMPLP,

which may become difficult for larger problems. Higher widths are not feasible on a

typical desktop computer due to memory requirements, and although these higher

widths can be dealt with through fixing, such fixing led to higher errors in my

experiments. Thus, a possible direction for future study is to investigate whether

different fixing rules can lower the branchwidth of the support graph without

hurting solution quality. Also, Theorem 3.2 gives an error bound on the result of

BDPM-LP based on the smallest fractional part of the linear program support

graph. This bound is not known to be tight and can likely be improved.

Of the methods tested in this chapter, HHP is the best general method for when

the integer program is not practical due to time constraints. Imp-GA is best when p

is small. However, if the linear program solution is available and has low

branch-width, then the BDPM-LP method is better than HHP and Imp-GA.

BDPM-GRASP is better than Imp-GA when p is not small and usually is very close

to the solution provided by HHP. When the branch decomposition width is less than

5, then BDPM-GRASP is faster than HHP. Also, combining BDPM-GRASP with

HHP could potentially lead to an improved method. However, the solutions

provided by multiple HHP runs did not have significant variation. Thus, BDPM

cannot be applied directly to HHP solutions to improve them in the way that

BDPM can be applied to GRASP.

64

Chapter 4

Zero-Forcing Literature∗

The zero-forcing process and zero-forcing number of a graph were introduced by the

American Institute of Mathematics Minimum Rank Special Graphs Work Group

(Barioli, Barret, Butler, Ciobă, Cvetković, Fallat, Godsil, Haemers, Hogben,

Mikkelson, Narayan, Pryporova, Sciriha, So, Stevanović, van der Holst, Vander

Muelen, and Wehe) [3] in 2007 to bound the maximum nullity of certain matrices.

Given a symmetric matrix A, define G(A) to be the graph corresponding to the

adjacency matrix with ones at every nonzero element of A not on the diagonal of A

and zeros elsewhere. The AIM Group [3] showed that the zero-forcing number of the

graph of a symmetric matrix is an upper bound on the nullity of that symmetric

matrix. Furthermore, since any symmetric matrix with the same pattern of nonzero

elements will have the same graph, the zero-forcing number of the graph is an upper

bound on the maximum nullity attainable by a matrix with that pattern of nonzero

elements. This maximum nullity is called the maximum nullity of the graph. The

AIM Group [3] used the zero-forcing number to prove bounds on the maximum

nullity of various special classes of graphs, such as Cartesian product graphs,

Möbius ladders, and block-clique graphs. They also showed that the zero-forcing

number is equal to maximum nullity for certain classes of graphs, such as trees,

cliques, cycles, and paths.

In the same year that the AIM Group [3] introduced the zero-forcing process and

∗This chapter is expanded from [67].

65

zero-forcing number, Burgarth and Giovannetti [31] studied the same process under

the name of graph infection and showed that it was theoretically useful for the

control of quantum systems. In their application, the graph to be studied comes

from the quantum coupling of a physical system. The spins of the particles in the

quantum system are represented by the vertices and the edges are derived from the

Hamiltonian representing the system. The goal of the application is to control the

spins on the whole system by enforcing a certain spin configuration on some subset

of the particles. Burgarth and Giovannetti [31] showed that if a certain spin

configuration is enforced on a zero-forcing set of the graph, then all other spins in

the graph will be forced to take the same spin configuration. According to Burgarth

and Giovannetti [31], although a large-scale, practical application of their research is

beyond the capabilities of experimental physicists at the present time, the

zero-forcing process may prove useful for controlling quantum memory in a quantum

computer.

Since Burgarth and Giovannetti’s [31] introduction, the quantum control

application of zero-forcing has received further study. Burgarth and Maruyama [33]

showed that the zero-forcing process was also useful for identifying the Hamiltonian

governing a quantum system. Burgarth, Maruyama, and Nori [34] extended

Burgarth and Maruyama’s [33] method to work with more complicated types of

Hamiltonians. Burgarth, D’Alessandro, Hogben, Severini, and Young [30] showed

that the criterion of quantum controllability was equivalent to a criterion for control

of linear dynamical systems. Thus, the zero-forcing process can be used to control

other dynamical systems on networks, such as those that arise in social networks

and robotics. Liu, Slotine, and Barabási [94] studied a weaker version of control for

dynamical systems on directed networks and showed that this weaker control

66

process can be related to maximum matchings. In constrast, the zero-forcing

process implies a stronger version of controllability [30], and Monshizadeh, Zhang,

and Camlibel [101] showed that, for directed graphs, the number of vertices required

for this stronger version of controllability is equal to the zero-forcing number of the

graph. Trefois and Delvenne [130] showed that the zero-forcing number of a graph is

equal to the size of a maximum constrained matching on a related bipartite graph.

In order to extend the zero-forcing process to work on quantum systems that

cannot be modeled as graphs, Puchala [106] generalized the zero-forcing process to

hypergraphs. A hypergraph is like a graph except the edges are sets of one or more

vertices instead of being limited to two vertices. In the hypergraph setting, the

zero-forcing infection rule introduced by Puchala [106] is that a set of infected

vertices infects a set of uninfected vertices if that uninfected set is in the same edge

as the infected set and that edge is the only edge that contains vertices from the

infected set and also uninfected vertices. Thus, the zero-forcing process is basically

the same. Infection still proceeds from infected vertices through an edge that is the

only edge joining the infected vertex to an uninfected vertex.

Another application for the zero-forcing process was given by Burgarth,

Giovannetti, Hogben, Severini, and Young [32]. These authors showed that

zero-forcing could be used to build logic circuits capable of evaluating any boolean

function. For example, the simple AND and OR operators can be encoded by the

graphs in Figure 4.1. In each of these logic gates, the inputs are given by coloring

the X (or Y) vertex black if the statement X (or Y) is true and leaving it white if

the statement is false. The output of the gate is given by the coloring of the X AND

Y vertex at the end of the zero-forcing process. If the X AND Y vertex is colored

black by the process, then the statement X AND Y is true. Otherwise, the

67

Figure 4.1 : Burgarth et al. [32]. The graph labeled (a) is an AND logic gate. The

graph labeled (b) is an OR logic gate.

statement is false. The OR gate works in a similar fashion except there is an extra

vertex that is always colored black.

As mentioned previously, Puchala [106] gave a generalization of the zero-forcing

process to hypergraphs. Additional generalizations have been introduced in the

mathematics literature. Kang and Yi [87] introduced the probabalistic zero-forcing

number. In probabalistic zero-forcing, each infected vertex, v, infects its neighbors

independently with a probability corresponding to the number of neighbors of v

that are infected. This probability is 1 if v has only one uninfected neighbor. If two

infected vertices have a common neighbor, then they act independently to try to

infect that neighbor. The zero-forcing rule can be recovered from probabalistic

zero-forcing by changing the probability of infection to be 0 if a vertex has more

than one uninfected neighbor.

Amos, Caro, Davila, and Pepper [6] introduced another generalization of

zero-forcing called the k-forcing number. In this generalization, an infected vertex

with k or less uninfected neighbors infects all of those uninfected neighbors, but if it

has more than k uninfected neighbors then it cannot infect any of them. Obviously,

this rule is equivalent to zero-forcing if k = 1. Amos et al. [6] also gave several

68

upper bounds on the k-forcing number of a graph based on maximum degree and

connectivity.

In addition to the generalizations, some modifications to the zero-forcing rule

have led to interesting graph parameters. Barioli, Barrett, Fallat, Hall, Hogben,

Shader, van den Driessche, and van der Holst [17] introduced the positive

semidefinite zero-forcing rule. In this rule, at each iteration of the infection rule, the

uninfected vertices are associated to the component of the graph that would contain

them if all the infected vertices were removed from the graph. Then, an infected

vertex, v, will infect an uninfected vertex, w, if that w is the only uninfected

neighbor of v that is in the component containing w. The positive semidefinite

zero-forcing number is analogous to the zero-forcing number of a graph. It is the

smallest set of initially infected vertices that will infect the entire graph through the

positive semidefinite zero-forcing process. Barioli et al. [17] showed that the positive

semidefinite zero-forcing number provides at least as good an upper bound on the

nullity of Hermitian positive semidefinite matrices as the zero-forcing number.

In a different paper, Barioli et al. [18] also introduced infection rules for the

enhanced zero-forcing number and the loop zero-forcing number. They also provided

infection rules for minor monotone floors of each type of zero-forcing number

(zero-forcing, positive semidefinite, enhanced, loop). These different types of

zero-forcing numbers are each relevant to minimum rank for certain special types of

graphs, but they are also interesting for their relationship to certain other graph

parameters. For example, Barioli et al. [18] showed that the minor monotone floor

of the loop zero-forcing number is the pathwidth of the graph. They also gave a

treewidth zero-forcing rule for which the treewidth zero-forcing number is equal to

the treewidth of the graph.

69

Of the zero-forcing modifications, the positive semidefinite zero-forcing number

has seen the most study. Ekstrand, Erickson, Hay, Hogben, and Roat [59] extended

the definition of the positive semidefinite zero-forcing number to multigraphs.

Multigraphs may have more than one edge between two vertices. Ekstrand et al.’s

[59] extension adds the additional restriction that an infected vertex can only infect

a neighbor if it is joined to that neighbor by only one edge. Ekstrand, Erickson,

Hall, Hay, Hogben, Johnson, Kingsley, Osborne, Peters, Roat, Ross, Row,

Warnberg, and Young [58] characterized graphs that had positive semidefinite

zero-forcing number of 2 and |V | − 2. Fallat, Meagher, and Yang [65] gave a linear

time theoretical algorithm for determining the positive semidefinite zero-forcing

number of chordal graphs; however, they did not implement their algorithm.

Although the zero-forcing process has been studied heavily since its

introduction, almost all of those studies have focused on special types of graphs. In

fact, there has been a proliferation of papers providing bounds on the zero-forcing

number for special types of graphs. Table 4.1 provides a listing of these papers and

the types of graphs studied.

Several papers have also focused on bounding the zero-forcing number for

simple, undirected graphs. However, these bounds have been very weak. Eroh,

Kang, and Yi [63] showed that if a graph has a connected complement graph, then

the zero-forcing number of the graph is at most |V | − 3. Davila and Kenter [50]

showed that for graphs with girth (size of smallest cycle) at least 5, the zero-forcing

number is at least 2δ − 2 where δ is the minimum degree of a vertex in the graph.

Amos, Caro, Davila, and Pepper [6] showed that for connected graphs with

maximum degree (∆) at least 2, the zero-forcing number is at most (∆−2)|V |+2
∆−1

. Very

recently, Gentner, Penso, Rautenbach, and Souza [77] proved a conjecture by Davila

70

Table 4.1 : Literature on zero-forcing for special types of graphs

Author(s) Year Graph Types

Severini [124] 2008 trees

Almodovar, DeLoss, Hogben, et al. [4] 2010 Ciclos and Estrellas

Huang, Chang, Yeh [86] 2010 Block-clique, interval, and product

Row [118] 2011 Cacti

Meyer [97] 2012 Bipartite circulants

Yi [135] 2012 Permutation

Catral, Cepek, Hogben, et al. [39] 2012 Subdivided

Edholm, Hogben, Huynh, et al. [57] 2012 Grids

Eroh, Kang, Yi [62] 2013 Line

Eroh, Kang, Yi [64], [63] 2014 Trees and Unicyclic

Taklimi, Fallat, and Meagher [126] 2014 Block-cycle and outerplanar

Barrett, Butler, Catral, et al. [19] 2014 Complete subdivision

Berliner, Brown, Carlson, et al. [22] 2015 Oriented

71

and Kenter [50] that the zero-forcing number is at least 2δ − 2 for any graph with

girth at least 4 and minimum degree at least 2. While these are interesting

theoretical bounds, they are not tight enough to be useful in computing zero-forcing

numbers for most graphs.

The zero-forcing iteration index has received less attention than the zero-forcing

number. Chilakamarri, Dean, Kang, and Yi [40] defined the iteration index and

gave some non-trivial bounds for certain special graph classes, such as trees and

cartesian product graphs. Hogben, Huynh, Kingsley, Meyer, Walker, and Young [83]

characterized graphs with extreme iteration indices. Warnberg [132] studied the

iteration index for positive semidefinite zero-forcing for graphs with extreme

iteration indices. Butler and Young [36] gave bounds for an index that minimized

the combined sum of the forcing set size and the number of iterations required. To

our knowledge, these are the only published papers that deal with the zero-forcing

iteration index.

Part of the reason for the limited literature on the iteration index is that the

iteration index has been shown to be incomparable to many graph invariants. For

example, Hogben et al. [83] gave the counterexample in Figure 4.2 to show that

iteration index and diameter are not comparable. I give a different counterexample

in Figure 4.3 that shows that these invariants are still not comparable even when

the graph has any given minimum degree. Given any desired minumum degree, δ,

our counterexample is composed of cliques of size δ connected in series as in

Figure 4.3. No matter how many cliques are in the counterexample, the clique on

the end is a minimum forcing set of the graph. Thus, for a counterexample built

from k cliques, the iteration index is I(G) = δ(k − 1), but the diameter is at most k.

Figure 4.3 shows the counterexample for δ = 4.

72

Figure 4.2 : Hogben et al. [83], the dart graph. Note that the diameter is 2, but

I(G) = 3

Figure 4.3 : Counterexample for δ = 4. Note that the diameter is at most k, but

I(G) = 4(k − 1).

There is even less literature on the computation of minimum zero-forcing sets.

Computing the zero-forcing number of a simple, undirected graph was shown to be

NP-hard by Aazami [1]. Trefois and Delvenne [130] extended this result to directed

graphs with loops (a loop is an edge that begins and ends on the same vertex). Row

[119] showed that cut vertices (vertices whose removal causes the graph to become

disconnected) in a graph could be used to help compute the zero-forcing number. In

particular, he related the zero-forcing number of the graph to the zero-forcing

numbers of the components left when the cut vertex is removed. However, this

result is limited to a single cut vertex, the result has not been shown to hold for cut

sets containing more than one vertex.

Aazami [1] also gave a dynamic programming algorithm for computing

zero-forcing sets; however, he did not give any computational results for this

73

algorithm. Furthermore, the complexity of the dynamic programming algorithm is

exponential in the square of the treewidth of the graph [1]. Thus, it will be

impractical for all but graphs with very small treewidth. Aazami [2] also gave a

formulation for the Power Dominating Set problem, which is closely related to the

zero-forcing problem. However, he did not report computational results for this

formulation.

The only algorithm that has been implemented is the Wavefront Algorithm of

Butler, DeLoss, Grout, Hall, LaGrange, McKay, Smith, and Tims [35]. These

authors have published little more than the source code for the algorithm. To my

knowledge neither a proof of correctness nor an analysis of complexity has been

published for this algorithm. I provide both in this thesis.

In addition to modifying the zero-forcing rule, some interesting variants of the

zero-forcing problem arise from restricting the zero-forcing set. For example, every

vertex in the zero-forcing set may be required to have a neighbor in the zero-forcing

set. This restriction is called total zero-forcing and was introduced by Davila [46]

and since studied by Davila and Henning [47], [49].

Another way to restrict the zero-forcing set is to require that the subgraph

induced by the set is connected. This restriction is called connected zero-forcing.

The connected zero-forcing problem was introduced by Brimkov and Davila [26]

who gave formulas for the connected forcing number of trees, snarks, and graphs

with a single maximal clique larger than 2 vertices. They also characterized graphs

with connected zero-forcing number |V | − 1. Davila, Henning, Magnant, and Pepper

[48] gave bounds on the connected forcing number based on properties of the graph

such as girth, minimum degree, and maximum degree. Brimkov [25] showed that

finding a minimum connected zero-forcing set is NP-hard. Brimkov, Fast, and Hicks

74

[28] also characterized graphs that have extreme connected forcing numbers of 2 or

|V | − 2. Up to this point, no methods have been developed for computing connected

zero-forcing sets for general graphs. One of the contributions of this thesis is to

provide such methods. In this thesis, we give integer programming formulations and

computational results for both the zero-forcing problem and the connected

zero-forcing problem.

75

Chapter 5

Theory of Minimum Zero-Forcing Sets∗

5.1 Introduction

The zero-forcing problem was introduced in Chapter 1.3. In this chapter, we

develop lower bounds for the zero-forcing number and upper bounds for the

zero-forcing iteration index of a graph. In particular, I show that the branchwidth

of a graph is a lower bound on the zero-forcing number, and I bound the

zero-forcing number of a graph based on certain subgraphs, which I call zero-forcing

forts. I show that the iteration index of a cubic graph is bounded above by 3
4
the

number of vertices in the graph. I also give a bound on the iteration index of a

graph based on the number of claws and leaves contained in the graph.

This chapter is organized as follows. In Section 5.2, I bound the zero-forcing

number from below using branchwidth, and in Section 5.3 I bound it from below

using certain subgraphs, which I call zero-forcing forts. In Section 5.4, I provide the

first non-trivial upper bound on the iteration index of cubic graphs, and I show that

the iteration index of general graphs is inversely related to the number of disjoint

vertex-induced claws in the graph.

∗This chapter is adapted from [67].

76

5.2 A Branchwidth Bound on the Zero-Forcing Number

In this section, I show that the branchwidth of a graph, bw(G), is a lower bound on

the zero-forcing number. I recall the definition of a branch decomposition in

Definition 5.1. I will again use rooted branch decompositions throughout this

chapter.

Definition 5.1 (Robertson and Seymour [113])

Let G be a graph. A branch decomposition of G is a pair consisting of a tree, T ,

such that every interior vertex of T has degree 3, and a bijection, τ , from the edges

of G to the leaves of T . For a given edge, e, of T , the middle set of e is the set of all

vertices of G that are incident to edges mapped by τ to leaves in both components

of T\e. The width of a given branch decomposition, (T, τ) is the maximum

caridinality of the middle sets over all the edges of T . The branchwidth of G,

bw(G), is the minimum width over all branch decompositions of G.

Barioli et al. [18] have already shown that tree-width, tw(G), is a lower bound

on the zero-forcing number. Robertson and Seymour [113] showed that

bw(G) ≤ tw(G) + 1. Thus, it is already known that bw(G) ≤ tw(G) + 1 ≤ Z(G) + 1.

Our bound improves on this bound by 1 in the cases where bw(G) = tw(G) + 1.

Given a graph G, with a minimum forcing set Z, there may be a timestep in

which two vertices can force the same vertex. Thus, there may be multiple ways in

which the propagation of the infected vertices through the graph can occur. A

forcing chain, F = (f1, f2, ..., f|F |), of G given Z is an ordered set of vertices such

that each vertex fi in the chain forces fi+1. Given a set, S, of iterations of the

infection rule, a maximal forcing chain is a forcing chain that is not a proper subset

of any other forcing chain that also uses the iterations of S. Let F be a set of

77

maximal forcing chains that force the graph G. Then, I call the pair (Z,F) a

minimum forcing system of G.

Our first lemma shows that every maximal forcing chain must start from the

forcing set.

Lemma 5.1

Let G be a graph and let (Z,F) be a minimum forcing system of G. Let

F = (f1, f2, ..., f|F |−1, f|F |) be a maximal forcing chain in F. Then f1 ∈ Z.

Proof: Suppose for contradiction that f1 /∈ Z. Then f1 must be forced by some

vertex. Also, since all of the subsequent vertices of F are forced after f1, f1 must be

forced by some vertex not in F . Assume vertex v is the vertex that forces f1. Since

v forces f1, v cannot be adjacent to any of the other vertices in F because otherwise

v would have at least two unforced vertices and would not be able to force f1. Then

Fv = (v, f1, f2, ..., f|F |−1, f|F |) is a forcing chain that contains F . This contradicts the

assumption that F was a maximal forcing chain. It follows that if F is a maximal

forcing chain, then f1 ∈ Z. ■

Theorem 5.1

Let G be a graph. Then, Z(G) ≥ bw(G).

Proof: Let (Z,F) be a minimum forcing system of G. I will construct a branch

decomposition with width at most Z(G) in the following manner. Let E(Z) be the

set of edges of G that have both ends in the minimum forcing set Z. Let BD be a

rooted branch decomposition of the graph induced by E(Z), with bijection τ . Let

M be any middle set of BD, and note that |M | ≤ |Z|.

Now, if E(Z) is not empty, then order the vertices in V \Z according to the

order that they were forced in (Z,F). For each of these vertices, v, in order, perform

two steps, A and B. In step A, add a new root vertex, r, and a new leaf vertex, l, to

78

Figure 5.1 : Example of the construction of a branch decomposition from a zero-

forcing system. Labels on the interior vertices of the branch decomposition tree give

the width of those vertices. Note that the graph has Z(G) = bw(G).

BD together with edges connecting r to the old root vertex and connecting r to l.

Next, extend τ by mapping the leaf vertex l to the edge used to force v. Then, in

step B, randomly order the edges that have v as one end and the other end either a

vertex in Z or a vertex with lower order than v. For each of these edges, e, in order,

add a new root and a new leaf vertex to BD. Again, extend τ by mapping the edge

e to the new leaf vertex.

On the other hand, if E(Z) is empty, then perform the same steps except that in

the first step, the root and leaf vertex are the same. An example of our construction

is given in Figure 5.1. It remains to show that (BD, τ) is a branch decomposition of

G with width at most Z(G).

79

First, I will show that BD is a rooted ternary tree. BD started out as a rooted

ternary tree since it was a rooted branch decomposition of the graph induced by

E(Z), and except at the root, no edges incident to vertices of this original branch

decomposition were added. Thus, none of the original vertices of BD can be part of

a cycle. Since none of new vertices are connected to vertices that were added before

them except for the single edges between the new root and the previous root, none

of the added vertices can be part of a cycle either. Thus, BD is a tree. Since each

vertex in BD that was added as a root is connected to the previous root, its leaf,

and the subsequent root, each vertex added as a root has degree 3, except for the

final root vertex and possibly the original root vertex. The final root vertex has

degree 2, and the original root vertex may have degree 1 instead of 3 if it initially

had no neighbors. Also, each vertex added as a leaf remains a leaf. Therefore, BD

is a rooted ternary tree.

Since (Z,F) was a minimum zero-forcing system of G, every vertex of G must be

forced by (Z,F). Therefore, every edge of G has a corresponding leaf added in some

step of our process. Also, a leaf corresponding to some edge of G is added to BD

only once. Thus, τ is a bijection from the leaves of BD to the edges of G. It follows

that BD with τ is a rooted branch decomposition of G.

I now show that the width of BD is at most Z(G). Since the original BD was a

branch decomposition of the graph induced by E(Z), it cannot have width greater

than |Z|. So, consider the width of one of the vertices, re, that was added as a root.

Let e = τ(le) where le is the leaf vertex that was added with the root vertex re. The

root vertex re was added in either step A or step B.

Suppose re was added in step B. Then, any end of e must have either been in Z

or incident to an edge added in a previous step A. Thus, each end of e must already

80

be in the middle set of a vertex added as a root in some previous step A. It follows

that the largest middle set of a vertex added as a root in step B cannot be larger

than the largest middle set of a vertex added as a root in step A.

On the other hand, suppose re was added in step A. Then, e must be used to

force in (Z,F). Let v be the end of e that forces the other end, w. All of the

neighbors of v and v itself must be forced previous to w being forced. Thus, all the

other edges incident to v must already have been added to the branch

decomposition. Thus, v cannot be in the middle set of re. In particular, because

vertices cannot be in the middle set after they force another vertex, each forcing

chain f ∈ F can have at most one element in the middle set of any vertex that was

added as a root to BD in a step A. It follows that for any middle set M of BD,

|M | ≤ |F |, and by Lemma 5.1, |F | ≤ |Z|. Therefore, |M | ≤ Z(G). ■

Theorem 5.1 is tight in the sense that there exist graphs that have

Z(G) = bw(G). One such graph is given in Figure 5.1. However, Z(G) can also be

much larger than bw(G). Consider a star, that is, a tree with only one vertex that is

not a leaf. For a star, Z(G) = |V | − 2, but bw(G) = 1. Thus, Z(G) can be as much

larger than bw(G) as desired.

5.3 Subgraph Bounds on the Zero-Forcing Number

Now, I consider the distribution of the zero-forcing set throughout a graph by

showing that certain subgraphs must contain a vertex in any forcing set. When

these sets are disjoint, then their number obviously serves as a lower bound on

Z(G), but under certain conditions, I can still use their number as a lower bound

even when the subgraphs are not disjoint. I start by defining a subgraph that must

contain at least one element from the minimum forcing set.

81

Definition 5.2

Let G = (V,E) be a graph and let ∅ ̸= F ⊂ V be such that there does not exist a

vertex in V \F that has exactly one neighbor in F . I will call F a zero-forcing fort

or simply a fort of G.

Theorem 5.2

Let G be a graph, and let F be a fort of G. Then, any forcing set of G contains at

least one vertex in F .

Proof: Suppose for contradiction that Z is a forcing set of G with Z ∩ F = ∅. Let v

be a vertex in F that is forced in the earliest iteration of the infection rule in which

a vertex from F is forced. Note that v must exist since F ̸= ∅. Since F ∩ Z = ∅ and

none of the vertices of F had been forced previous to the iteration in which v is

forced, v must be forced by some vertex, w that is not in F . However, by definition

of a fort, w must have at least two neighbors in F . Thus, w has at least two unforced

neighbors in the iteration in which it forces v. This forcing contradicts the infection

rule, and it follows that every forcing set contains at least one vertex in F . ■

Corollary 5.1

Let G be a graph, and let S be a set of pairwise disjoint forts in G. Then

Z(G) ≥ |S|.

Some examples of forts are given in Figure 5.2. In fact, Z(G) is equal to the

minimum number of vertices that intersect every fort. This fact follows from the

observation that if a set of infected vertices cannot infect any more vertices, then

the set of uninfected vertices forms a fort. Thus, if every fort is infected, then the

infection must propagate until the entire graph is infected. This fact will be

exploited in Section 6.2.2.

82

Figure 5.2 : An example of a graph that contains a family of forts, but only one

disjoint fort. The set of nodes labeled with a 1, or the set of nodes labeled with a 2,

or the set of nodes labeled with a 3 gives a fort of the graph, but the maximum size

of any set of pairwise disjoint forts is 1. However, a more careful examination of the

forts given by Corollary 5.2 shows that any set containing a vertex in every fort must

have at least two vertices.

Corollary 5.1 provides a bound when forts are disjoint. However, there are

certain graphs, for example the graph in Figure 5.2, that have multiple forts, but the

maximum size of any set of pairwise disjoint forts in the graph is 1. Next, I give a

theorem, Theorem 5.3, to create a bound from forts that are not necessarily disjoint.

To prove Theorem 5.3, I first prove Lemma 5.2 and its Corollary 5.2 that allows

us to say that certain subgraphs contain forts. Next, I define unpacked families,

which determine how the forts that I use to create my bound can intersect. Then, I

prove Lemma 5.3, which shows that, when forts are given by Corollary 5.2, the forts

form an unpacked family, and a vertex is removed from the graph, then a new

unpacked family can be formed with at most one less member. The proof of

Theorem 5.3 then uses Lemma 5.3 inductively to create a bound on the size of a

minimum zero-forcing set.

83

Lemma 5.2

Let G = (V,E) be a graph and let H = (C,EH) be a subgraph of G that has

minimum degree at least 2. Let CB ⊂ C be the set of vertices of H that have

neighbors in V \C in the graph G. If none of the vertices in CB are adjacent in the

graph H, then F = C\CB is a fort of the graph G.

Proof:

V \F can be partitioned into V \C and CB. Thus, for a given vertex v ∈ V \F ,

either v ∈ V \C or v ∈ CB. By definition of CB, vertices in F are only adjacent to

vertices in either F or in CB. Therefore, if v ∈ V \C, then v has no neighbors in F .

On the other hand, if v ∈ CB, then by the fact that H has minimum degree at least

2 and the fact that no two vertices in CB are adjacent in H, v must have at least 2

neighbors in F . It follows that F is a fort of G. ■

Corollary 5.2

Let G = (V,E) be a graph and let H = (C,EH) be a subgraph of G with minimum

degree at least 2. Let ∅ ≠ CF ⊂ C be the set of vertices in C that have degree

exactly 2 in G. Assume none of the vertices of C\CF are adjacent in H. Then, CF

is a fort of G.

For the following proofs, it will be convenient to deal with various induced

subgraphs of a graph G = (V,E). To that end, I will use the following notation. For

a subgraph H = (C,EH) of G, let CF
G denote the set of vertices in C that have

degree 2 in G. I will call graphs that have even degree at each vertex, but are not

necessarily connected, even-degree graphs. For, two graphs G = (V,E) and

H = (C,EH), the symmetric difference of the two graphs, G△H, is the graph

induced by the symmetric difference of the edge sets of G and H, i.e. G[E△EH].

For a set D of graphs, the repeated symmetric difference of D is denoted by △D.

84

Definition 5.3

Let G be a graph and let H be a set of subgraphs of G such that no subgraph

H ∈ H is the symmetric difference of some subset of subgraphs in H\H. Then, I

call H an unpacked family of subgraphs of G.

Lemma 5.3

Let G be a graph, and let H be an unpacked family of vertex-induced even-degree

subgraphs of G. For H ∈ H, assume that no two vertices in CF
G are adjacent in H.

Let v be a vertex with degree 2 in G, and let R be the graph obtained by deleting v

from G. Then, there is an unpacked family of even-degree subgraphs, HR, in R with

|HR| ≥ |H| − 1, and for H = (C,EH) ∈ HR, no two vertices in C\CF
G are adjacent

in G.

Proof: I will construct a family, HR, of subgraphs of R. For each subgraph H ∈ H

such that H is also a subgraph of R, i.e. if v /∈ H, I have H ∈ HR. I choose one

subgraph H1 ∈ H such that v ∈ H1 so that H1 does not exist in R. For each of the

remaining subgraphs, Hi ∈ H, such that v ∈ Hi, I add H1△Hi to HR. Note that

H1 ̸= Hi since H is an unpacked family; therefore, H1△Hi ̸= ∅. Since both H1 and

Hi are even-degree, H1 △Hi is also even-degree. Also, since v has degree 2 and all of

the subgraphs in H are even-degree subgraphs, both of the edges incident to v must

be in both H1 and Hi. Therefore, v is not in H1 △Hi, and H1 △Hi is a subgraph of

R. Note that after H1△Hi has been added to HR for each i ̸= 1, |HR| ≥ |H| − 1.

Now I show that HR satisfies the requirement that for H ∈ HR, no two vertices

in C\CF
G are adjacent in G. For H = (C,EH) ∈ HR, either H ∈ H or H = H1 △Hi

for two subgraphs H1, Hi ∈ H. If H ∈ H, then by assumption, no two vertices in

C\CF
G are adjacent. On the other hand, suppose H = H1 △Hi for two subgraphs

H1 = (C1, E1), Hi = (Ci, Ei) ∈ H. Let h1 and h2 be two vertices in C\CF
G . By the

85

assumption on H, h1 and h2 cannot be adjacent in either of H1 and Hi. Therefore,

they also cannot be adjacent in H1△Hi.

It remains to show that HR is an unpacked family. Suppose for contradiction

that HR is not an unpacked family. Then, there exists some subgraph H ∈ HR that

is the symmetric difference of some subset of subgraphs in HR\H.

Case 1: Suppose H ∈ H. Note that by the construction of HR, every subgraph

in HR\H can be formed either as a subgraph from H\H or as the symmetric

difference of two subgraphs in H\H. Therefore, since H is the symmetric difference

of some subset of subgraphs in HR\H, H must also be the symmetric difference of

some subset of subgraphs in H\H. However, this construction contradicts the

assumption that H was an unpacked family.

Case 2: Suppose H /∈ H. Let H2 be the subgraph in H such that H = H1 △H2.

Let D ⊂ HR\H be the set of subgraphs whose symmetric difference is H.

Case 2.1: Suppose D ∩H ̸= ∅. Let K be a subgraph in D ∩H. Since H = △D

and K ∈ D, I have that K = △((D\K) ∪H). Thus, K is a subgraph in HR that is

also in H, and K is the symmetric difference of sets in HR\K. Therefore, this case

is equivalent to case 1.

Case 2.2: Suppose D ∩H = ∅. By this supposition, each subgraph in D is of

the form H1△Hi for some subgraph Hi ∈ H with i /∈ {1, 2}. Let S be the set of all

i such that H1 △Hi ∈ D. Note that H2 /∈ S. Thus, I have

△
i∈S

(H1△Hi) = H2 △H1

By the associative and commutative properties of the symmetric difference, this

expression is equivalent to either

H1 △(△
i∈S

Hi) = H2 △H1

86

or

△
i∈S

Hi = H2 △H1

depending on whether |S| is odd or even, respectively. By taking the symmetric

difference with H1 on both sides, I get that either

△
i∈S

Hi = H2

or

H1 △(△
i∈S

Hi) = H2

depending on whether |S| is odd or even, respectively. In either case, H2 is the

symmetric difference of sets in H\H2. Therefore, H could not have been an

unpacked family. From this contradiction, it follows that HR must be an unpacked

family.

Since HR is an unpacked family with at least |H| − 1 subgraphs, the lemma

holds. ■
Theorem 5.3

Let G be a graph, and for a subgraph H of G, let HF be the set of vertices in H

that have degree 2 in G. Let H be an unpacked family of even-degree,

vertex-induced subgraphs of G such that for H ∈ H, none of the vertices in H\HF
G

are adjacent. Then Z(G) ≥ |H|+ 1.

Proof: If G is acyclic then the theorem is trivial. If G contains a single even-degree

subgraph, then G contains a cycle. Therefore, Z(G) ≥ 2 and the theorem holds. So,

assume H ≥ 2.

Case 1: Suppose the subgraphs H ∈ H are pairwise disjoint. Then, by

Corollary 5.2, there is a fort of G corresponding to each subgraph H ∈ H. Since the

subgraphs are pairwise disjoint, the forts given by Corollary 5.2 must also be

87

pairwise disjoint, and by Lemma 5.2, any minimum forcing set contains at least one

element from each fort. Thus, Z(G) ≥ |H|.

Now, the initial forcing set must have a vertex that is able to force. Thus, there

must be a vertex that is in Z and also has all but one of its neighbors in Z. If this

vertex is on an even-degree subgraph, then at least two vertices from that

even-degree subgraph must be in Z. If the vertex is not on such a subgraph, then it

is not part of one of the aforementioned forts of G. Thus, Z(G) ≥ |H|+ 1.

Case 2: Suppose the subgraphs H ∈ H are not pairwise disjoint. Thus, the

forts given by Corollary 5.2 are not necessarily disjoint. Let Z be a minimum

forcing set and let v be a vertex in Z that is in more than one fort. Let R be the

graph obtained by deleting v from G. Then by Lemma 5.3, there is an unpacked

family of size |H| − 1 in R. I can repeat this process to choose a set S with

|S| = |H| and each vertex in S must be in Z.

Now, the initial forcing set must have a vertex that is able to force. Thus, there

must be a vertex, v, that is in Z and also has all but one of its neighbors in Z. If

v /∈ S then |Z| ≥ |H|+ 1. If v ∈ S then it has degree 2. So, v has a neighbor w that

is also in Z. If w does not have degree 2, then it is not in one of the forts given by

Corollary 5.2, and thus |Z| ≥ |H|+ 1. If w does have degree 2, then any even degree

subgraph that contains v also contains w and vise-versa. Thus, after either v or w is

deleterd, the other cannot be part of a fort given by corollary 5.2. Consequently, it

can be in at most one of the forts given by Corollary 5.2 and that fort must be the

fort that contains v. Thus, again |Z| ≥ |H|+ 1. ■

Although the assumptions of Theorem 5.3 may seem to be extremely restrictive,

the theorem is useful for some very simple graphs. For example, for the graph in

Figure 5.2, the maximum cardinality of a set of pairwise disjoint forts is 1. However,

88

the left and right cycles form an unpacked family of size 2 that satisfies the

assumptions of the theorem. Thus, Theorem 5.3 shows that the zero-forcing number

of the graph is at least 3, and for this example, the bound is tight.

5.4 Bounding the Iteration Index

In this section, I present bounds on the zero-forcing iteration index for cubic graphs,

and I show that vertex-induced claws in a graph reduce its maximum possible

iteration index. I will use the following terminology. A maximum forcing chain, F

of G with respect to Z is forcing chain such that there does not exist a forcing chain

D arising from a different sequence of forcing steps but the same initial forcing set

Z with |D| > |F |. The length of a forcing chain is the number of edges in the

forcing chain path. If a vertex is the only vertex forced in the iteration of the

infection rule in which it is forced, then I call that vertex a 1-vertex.

The main theorem of this section is Theorem 5.4, which states that a forcing set

of a cubic graph must force the graph in no more than 3|V |
4

iterations. Our strategy

to prove this theorem is to bound the maximum possible number of iterations

required to force a graph. Therefore, I first prove Lemma 5.4 to show that a forcing

set must force at least one vertex in each iteration. Then, I prove Lemma 5.5, which

shows that each forcing chain must start from a unique vertex in the forcing set. I

will use Lemma 5.5 to prove that a certain number of vertices are in the forcing set

and therefore don’t require an iteration to force. Next, I prove Lemma 5.6, and use

it in the proof of Theorem 5.4 to characterize the vertices in each forcing chain

based on their neighbors. Lemmas 5.7, 5.8, 5.9, and 5.10 are all used in the proof of

Theorem 5.4 to bound the maximum possible propagation time of a forcing set

based on the characterization of the vertices in each forcing chain.

89

Lemma 5.4

Let G be a cubic graph and let (Z,F) be a zero-forcing system of G. Then (Z,F)

forces at least one vertex in each iteration of the infection rule.

Proof: Suppose for contradiction that there exists an iteration, i, of the infection

rule in which no vertex is forced. Then, no vertices of G were capable of forcing in

iteration i. Since no vertices were forced in the iteration, no new vertices are

capable of forcing in iteration i+ 1. By induction, it follows that no vertices can be

forced in any iteration after i. It follows that (Z,F) must force at least one vertex in

each iteration of the infection rule. ■

While I showed in Lemma 5.1 that forcing chains must start from the forcing

set, the next lemma shows that these starting vertices must be unique to each

forcing chain.

Lemma 5.5

Let G be a graph and let (Z,F) be a minimum forcing system of G. Let

F = (f1, f2, ..., f|F |−1, f|F |) and D = (d1, d2, ..., d|D|−1, d|D|) be two distinct maximal

forcing chains in F. Then f1 ̸= d1.

Proof: Suppose for contradiction that f1 = d1. Since F and D are maximal, F ̸⊂ D

and D ̸⊂ F . Since I also have F ̸= D, there must exist some 1 < i ≤ |F | such that

fi ̸= di. Let i be the minimum such index. Then, fi−1 = di−1. Since both F and D

are forcing chains, fi−1 must be capable of forcing both fi and di. However, fi can

only be capable of forcing if it only has one unforced neighbor. Thus, both fi and di

cannot be unforced, and fi−1 cannot force both fi and di. It follows that f1 ̸= d1. ■

The next lemma shows that vertices in a forcing chain cannot be adjacent to

other vertices in the chain that are not either immediately before or after in the

forcing chain.

90

Lemma 5.6

Let G be a cubic graph and let (Z,F be a minimum zero-forcing system of G. Let

F = (f1, f2, ..., f|F |−1, f|F |) be a forcing chain in F. Then for i ∈ {1...|F |}, fi is not

adjacent to any fj ∈ F with j /∈ {i− 1, i+ 1}.

Proof: Suppose for contradiction that there exists an i such that fi is adjacent to

fj ∈ F and j /∈ {i− 1, i+ 1}. Consider the minimum such i. Since i is minimum,

j > i+ 1. Thus, fi is adjacent to both fi+1, since fi forces fi+1, and fj. However,

since j > i+ 1 and fj is part of F , fj cannot be forced until after fi+1 is forced.

Since fi is adjacent to fj, fi cannot force fi+1 until after fj is forced. However, in

the forcing chain F , fi forces fi+1 before fj is forced. From this contradiction, it

follows that there does not exist an i such that fi is adjacent to fj ∈ F and

j /∈ {i− 1, i+ 1}. ■

Definition 5.4

Let G be a graph and let (Z,F) be a minimum forcing system of G. Number the

iterations of the infection rule consecutively starting from 0. I will call the iteration

in which a vertex v is forced the forcing time of v, and I will denote its number by

T (v).

In our consideration of forcing chains, it will be convenient to name the different

parts of the forcing chains. Consequently, for a maximal forcing chain

F = (f1, f2, ..., fk−1, fk), I will call f1 the start vertex, fk the end vertex, and all

other vertices middle vertices of the forcing chain. I can partition the vertices of a

graph into sets based on their place in their own forcing chain and their relation to

adjacent forcing chains. Note that Definition 5.5 does not require the graph to be

cubic.

91

Definition 5.5

Let G be a graph and let (Z,F) be a minimum forcing system of G. Let M be the

set of all interior vertices of forcing chains in F. Let S be the set of start vertices of

forcing chains with length at least 1, and let E be the set of end vertices of forcing

chains with length at least 1. Let L be the set of vertices of forcing chains with

length 0. Let Ei (likewise Si,Mi, Li) be the set of vertices in E (S,M,L) that are

adjacent to i vertices in M that are in a different forcing chain. Let SS
1 be the set of

vertices in S1 that are adjacent to a vertex in either S or L, and let SE
1 be the set of

vertices in S1 that are adjacent to a vertex in E and in a different forcing chain.

It is easy to see from Figure 5.3(a) that a vertex in S2 and one of its neighbors

must force in the same iteration. This observation leads to the following lemma.

Lemma 5.7

Let G be a cubic graph and let (Z,F) be a minimum forcing system of G. Let

F = (f1, f2, ..., f|F |), D = (d1, d2, ..., d|D|), and W = (w1, w2, ..., w|W |) be forcing

chains, not necessarily unique, in F. If f1 is adjacent to interior vertices di and wj of

D and W , then f2 is forced in the same iteration as either di+1 or wj+1.

Proof: Assume without loss of generality that T (di) ≤ T (wj). By the definition of

zero-forcing, f1 cannot force f2 until both di and wj are forced. Thus,

T (f2) = T (wj) + 1. However, at T (wj), wj−1 and f1 are already forced. So, wj+1

must be forced in the next step and T (wj+1) = T (wj) + 1. Since I have shown that

T (f2) = T (wj+1), f2 is forced in the same iteration as wj+1, and the result follows. ■

Likewise, Figure 5.3(b) shows that each pair of vertices in M1 must force in the

same iteration, and I again obtain a lemma.

Lemma 5.8

Let G be a cubic graph and let (Z,F) be a minimum forcing system of G. Let

92

(a) (b) (c)

Figure 5.3 : Examples of S2, M1, and SS
1 vertices. In (a), as soon as both neighbors

of the S2 vertex, f1, are forced, then it is capable of forcing, but one of its neighbors

is also capable of forcing in the same iteration. The gray vertex may be forced at any

iteration up to the iteration in which the S2 vertex is able to force. In (b), as soon

as both vertices in M1 are forced, then they are both capable of forcing, but they are

both not capable of forcing until that iteration. In (c), as soon as the neighbor, x, in

M is forced, x and the SS
1 vertex, w, are both capable of forcing.

93

F = (f1, f2, ..., f|F |) and D = (d1, d2, ..., d|D|) be distinct forcing chains in F. If, some

vertex fi ∈ F for 1 < i < |F | is adjacent to a vertex dj ∈ M for 1 < j < |D|, then

fi+1 and dj+1 are forced in the same iteration of the infection rule.

Proof: Neither dj nor fi can force the next vertex in their respective chains until

both of them are forced since they will either have two unforced neighbors or be

unforced themselves up to that point. When both dj and fi are forced, then they

are both capable of forcing the next vertex in their respective chains. Thus, the

forcing step that forces fi+1 must also force dj+1. ■

I can obtain another lemma from Figure 5.3(c), which shows that a vertex in SS
1

must force in the same iteration as one of its neighbors.

Lemma 5.9

Let G be a cubic graph and let (Z,F) be a minimum forcing system of G. Let v be

a vertex that is preceded in its forcing chain by a vertex, w ∈ SS
1 , and let x be the

vertex in M that is adjacent to w. Then, v is forced in the same iteration as the

vertex that follows x in its forcing chain.

Proof: Note that since x ∈ M , it must have a vertex following it in its forcing

chain. Since w ∈ SS
1 , it only has two unforced neighbors in the initial iteration,

namely v and x. Thus, w is capable of forcing as soon as x is forced. The vertex

preceding x in its forcing chain must be forced before x, and w is in Z. Thus, x is

capable of forcing as soon as x is forced. Therefore, both w and x must force the

subsequent vertices in their respective forcing chains in the same iteration. ■

Lemma 5.10

Let G be a cubic graph and let (Z,F) be a minimum forcing system of G. Then

|E1|+ 2|E0| ≥ |SE
1 |.

94

Proof: By definition of SE
1 , each vertex in SE

1 must be adjacent to a vertex in E.

Let w be a vertex in E. Since G is cubic, w has three neighbors. Since w ∈ E, one

of these neighbors must be the preceding vertex in the forcing chain that contains

w. Now w is in exactly one of E2, E1, or E0. If w is in E2, then it is adjacent to two

vertices that are in M and not from the same forcing chain as w. Therefore, w

cannot be adjacent to a vertex from SE
1 . If w is in E1, then it is adjacent to exactly

one vertex that is in M and not from the same forcing chain as w. Therefore, w can

be adjacent to at most one vertex from SE
1 . Finally, if w is in E0, then w can be

adjacent to at most two vertices from SE
1 . It follows that |E1|+ 2|E0| ≥ |SE

1 |. ■

With the previous lemmas, I am ready to prove my bound on the iteration index

of cubic graphs.

Theorem 5.4

Let G = (V,E) be a cubic graph, and let (Z,F) be a forcing system of G. Then

(Z,F) forces G in at most 3|V |
4

iterations.

Proof: Consider a cubic graph G with a forcing system (Z,F). Let

F = (f1, f2, ..., f|F |) be a maximal forcing chain in F. Since G is cubic, then by

Lemma 5.6, for each interior vertex fi ∈ F , there exists a vertex wi /∈ F such that

wi is adjacent to fi. There are four possibilites for these vertices.

• wi ∈ L. That is, wi ∈ Z and wi is part of a maximal forcing chain of length 0.

• wi ∈ S. That is, wi ∈ Z and wi is the start vertex of some maximal forcing

chain W = (w1, ..., w|W |) with length at least 1.

• wi ∈ M . That is, wi is an interior vertex of some maximal forcing chain

W = {w1, ..., w|W |}.

95

• wi ∈ E. That is, wi the end vertex of some maximal forcing chain

W = {w1, ..., w|W |} with length at least 1.

First, I will count the number of forcing iterations required to force G. Let T be

the number of iterations required for (Z,F) to force G. The only vertices that will be

forced are the middle and end vertices of forcing chains. I can identify these vertices

by the type of vertex that forces them. Middle and end vertices must be forced by

either middle or start vertices of their forcing chain. By Lemma 5.4, a vertex must

be forced in each iteration. Therefore, T ≤ |S0|+ |S1|+ |S2|+ |M1|+ |M0|.

From Lemma 5.7, I know that each middle or end vertex, f2, that is preceded in

its forcing chain by a vertex, f1 ∈ S2, is forced in the same iteration as another

vertex, wj+1, that is preceded by a vertex, wj ∈ M0 with wj adjacent to f1 (see

Figure 5.3(a)). Therefore, I only need to consider one iteration for the pair of f2 and

wj+1. Therefore, each vertex preceded by a vertex in S2 is paired with a vertex that

is preceded by a vertex in M0. This observation allows us to reduce the maximum

possible number of iterations by |S2|. So I have,

T ≤ |S0|+ |S1|+ |M1|+ |M0|

From Lemma 5.8 I have that each pair of vertices in M1 force the next vertex in

their respective chains in the same iteration. So, I only need to consider one

iteration for each such pair. This consideration gives

T ≤ |S0|+ |S1|+
1

2
|M1|+ |M0|

Since G is cubic, and Lemma 5.6 prevents a vertex from being adjacent to more

than two vertices in its own forcing chain, each vertex in M is adjacent to a unique

vertex from a different forcing chain. For the vertices in M0, the adjacent vertex

96

cannot be from M . Therefore,

|M0| = 3|L3|+ 2|L2|+ |L1|+ 2|S2|+ |S1|+ 2|E2|+ |E1|

. Using the above identity gives

T ≤ 2|S2|+ 2|S1|+ |S0|+
1

2
|M1|+ 3|L3|+ 2|L2|+ |L1|+ 2|E2|+ |E1|

Since, by Lemma 5.5, each maximal forcing chain of length at least 1 must

contain one start vertex and one end vertex, I have that

|E2|+ |E1|+ |E0| = |S2|+ |S1|+ |S0|. I use this identity to get

T ≤ |S2|+ |S1|+
1

2
|M1|+ 3|L3|+ 2|L2|+ |L1|+ 3|E2|+ 2|E1|+ |E0|

I can also partition S1 into SE
1 and SS

1 to get

T ≤ |S2|+ |SE
1 |+ |SS

1 |+
1

2
|M1|+ 3|L3|+ 2|L2|+ |L1|+ 3|E2|+ 2|E1|+ |E0|

Now from Lemma 5.9, I have that a vertex, v, that is preceded by a vertex, w, in SS
1

is forced in the same iteration as a vertex, y, that follows a vertex x ∈ M0 with x

adjacent to w (see Figure 5.3(c)). Thus, I only need to consider one iteration for the

pair of v and y. Note that these pairs are different from the previous pairs that I

obtained from Lemma 5.7 because the vertex in M0 that precedes y must be

adjacent to a vertex in S1 whereas the vertex that precedes wj+1 in the pair from

Lemma 5.7 was adjacent to a vertex in S2 (see Figure 5.3(a)). This observation

allows us to reduce the maximum possible number of iterations by |SS
1 |. Thus I have,

T ≤ |S2|+ |SE
1 |+

1

2
|M1|+ 3|L3|+ 2|L2|+ |L1|+ 3|E2|+ 2|E1|+ |E0|

Now, I count the number of vertices in G. Since each vertex of G is in one of the

sets L, S, M , or E, the number of vertices in G is

|V = |L3|+ |L2|+ |L1|+ |L0|+ |S2|+ |S1|+ |S0|+ |M1|+ |M0|+ |E2|+ |E1|+ |E0|

97

Using the identity,

|M0| = 3|L3|+ 2|L2|+ |L1|+ 2|S2|+ |S1|+ 2|E2|+ |E1|

I get that

|V | = 4|L3|+ 3|L2|+ 2|L1|+ |L0|+ 3|S2|+ 2|S1|+ |S0|+ |M1|+ 3|E2|+ 2|E1|+ |E0|

Now, using the identity |E2|+ |E1|+ |E0| = |S2|+ |S1|+ |S0| gives

|V | = 4|L3|+ 3|L2|+ 2|L1|+ |L0|+ 2|S2|+ |S1|+ |M1|+ 4|E2|+ 3|E1|+ 2|E0|

By Lemma 5.10, I have that |E1|+ 2|E0| ≥ |SE
1 |. Partitioning S1 into SE

1 and SS
1

and using Lemma 5.10, I have that

|V | ≥ 4|L3|+3|L2|+2|L1|+ |L0|+2|S2|+
4

3
|SE

1 |+ |SS
1 |+ |M1|+4|E2|+

8

3
|E1|+

4

3
|E0|

Taking the ratio of T to V , I have that T
V
≤

3|L3|+ 2|L2|+ |L1|+ |S2|+ |SE
1 |+ 1

2 |M1|+ 3|E2|+ 2|E1|+ |E0|
4|L3|+ 3|L2|+ 2|L1|+ |L0|+ 2|S2|+ 4

3 |S
E
1 |+ |SS

1 |+ |M1|+ 4|E2|+ 8
3 |E1|+ 4

3 |E0|

For each term in the above expression, the coefficient in the denominator is at least

4
3
the coefficient of the term in the numerator. This relationship gives the result,

T
|V | ≤

3
4
. ■

Corollary 5.3

Let G be a cubic graph. Then, I(G) ≤ 4|V |
3
.

Figure 5.4 shows that the bound of Theorem 5.4 is asymptotically tight.

However, Corollary 5.3 is not necessarily tight since there may be minimum forcing

sets that force the graph in fewer iterations. In other words, there may be minimum

forcing sets that force the graph in less iterations than the forcing set that uses the

most iterations.

98

Figure 5.4 : An example of a graph for which Theorem 5.4 is tight. The num-

ber of iterations required by the minimum forcing set given by the colored vertices

approaches 3|V |
4

as the structure on the bottom of the graph is repeated.

Now, I shift my attention to general graphs and the relationship between the

iteration index and certain subgraphs called claws. Given a graph G, a claw is just

a vertex-induced complete bipartite graph K1,3.

Theorem 5.5

Let G be a graph, and let K be a set of disjoint claws in G. Then I(G) ≤ |V |− 1
2
|K|.

Proof: Let (Z,F) be a minimum forcing system of G. By Lemma 5.6, at most three

of the vertices in the claw are in the same forcing chain. There are two possible

cases: either all vertices in the claw are in M , or the claw contains a vertex in L, S,

or E. If all vertices in the claw are in M , then the claw contains two adjacent

middle vertices from different forcing chains and by Lemma 5.8, the vertices that

come after these two middle vertices in their respective chains must be forced in the

same timestep. Therefore, the maximum possible iteration index of the graph must

be reduced by one for each such pair of adjacent middle vertices.

On the other hand, if there is at least one start or end vertex in the claw

(vertices in L are considered to be both start and end vertices), let K2 be the set of

claws that contain a start or end vertex. Since each start and end vertex belongs to

99

exactly one forcing chain, there are at least 1
2
|K2| forcing chains in G. By

Lemma 5.5, there is a distinct member of Z for each forcing chain. Thus, the

maximum possible number of vertices that are not in Z is |V | − 1
2
|K2|. Now, let K1

be the set of claws that contain four vertices in M . For each such claw, there is a

pair of vertices that are forced in the same iteration, and since the claws are

disjoint, these pairs are unique to each claw. It follows that the maximum possible

number of iterations required to force G is |V | − |K1| − 1
2
|K2|. Since K1 ∩K2 = ∅, I

have that |K| = |K1|+ |K2|. It follows that I(G) ≤ |V | − 1
2
|K|. ■

Leaves of a graph also allow a better bound on both the forcing number and the

iteration index.

Theorem 5.6

Let G be a graph, and let C be the set of vertices with degree 1 in G. Then

Z(G) ≥ 1
2
|C|.

Proof: Let (Z,F) be a minimum forcing system of G, and let v be a vertex with

degree 1 in G. Then, since v has degree 1, it is either in Z or is an end vertex of a

forcing chain in F. Therefore, |F| ≥ 1
2
|C|. By Lemma 5.5, each of the forcing chains

in F contains a distinct vertex in Z. Thus, Z(G) ≥ 1
2
|C|. ■

Corollary 5.4

Let G = (V,E) be a graph, and let C be the set of vertices with degree 1 in G.

Then I(G) ≤ |V | − 1
2
|C|.

I can also combine Theorem 5.5 and Corollary 5.4.

Theorem 5.7

Let G = (V,E) be a connected graph, let K be a set of disjoint claws in G, and let

C be the set of vertices with degree 1 in G and such that C ∩K = ∅. Then,

I(G) ≤ |V | − 1
2
|C| − 1

2
|K|.

100

Proof: Let (Z,F) be a minimum forcing system of G. Let K2 be the set of claws

that contain a start or end vertex and let K1 be the set of claws that contain four

vertices in M . Since each claw in K2 and each leaf contains either a start or end

vertex and the claws and leaves are disjoint, there must be at least 1
2
(|K2|+ |C|)

forcing chains in F. It follows that the maximum possible number of vertices that

are not in Z, and therefore the maximum possible number of iterations required to

force G, is |V | − 1
2
(|C|+ |K2|). Again by the same reasoning that was used in the

proof of Theorem 5.5, there must be a distinct pair of vertices that are forced in the

same iteration for each member of K1. This fact reduces the maximum possible

number of iterations required to |V | − 1
2
|C| − 1

2
|K2| − |K1|. Since |K| = |K1|+ |K2|,

I have that I(G) ≤ |V | − 1
2
|C| − 1

2
|K|. ■

5.5 Conclusion

In this chapter, I presented bounds for the zero-forcing number and zero-forcing

iteration index of a graph. For the zero-forcing number, I showed that the

branchwidth of a graph is a tight lower bound on the zero-forcing number of the

graph. This bound complements the treewidth bounds of Barioli et al. [18]. I also

showed that any zero-forcing set must contain a vertex in every zero-forcing fort.

Thus, if the forts are disjoint, the number of forts provides a bound on the

zero-forcing number. I will exploit the fort theory in the next chapter to build

integer programming formulations for the zero-forcing problem.

For the zero-forcing iteration index, I showed that any forcing set of a cubic

graph forces the graph in at most 3|V |
4

iterations, where |V | is the number of vertices

in the graph. This bound is asymptotically tight; however, there may be other

minimum forcing sets of the graph that force the graph in fewer iterations. Thus,

101

the iteration index, I(G), of a cubic graph is at most 3|V |
4
, but it is not known

whether this bound is tight. I also showed that disjoint claws and leaves in a graph

reduce its maximum possible iteration index. Cubic graphs do not have leaves, and

they can have at most |V |
4

disjoint claws. Thus, the bound of Corollary 5.3 is at

least as good as the bound based on disjoint claws; however, the claw bound applies

to any graph, not just cubic graphs.

102

Chapter 6

Computing Minimum Zero-Forcing Sets∗

This chapter examines computational methods for finding minimum cardinality

zero-forcing sets. The chapter is organized as follows. First, I give a description of

the Wavefront algorithm of Butler et al. [35], which is the current state-of-the-art

method in zero-forcing computatation. I show that the Wavefront algorithm is

correct and give a bound on its worst-case memory requirements. To my knowledge,

neither complexity nor correctness of the Wavefront algorithm has been addressed

in the literature. Second, I derive integer programming formulations for the

zero-forcing problem and compare them to each other and to Wavefront. The first

formulation strategy is based on the times at which vertices are forced, but the

second formulation strategy is based on generating violated forts. Thus, both

strategies use results from Chapter 5.

6.1 Wavefront Algorithm

In this section, I give a description of the Wavefront algorithm [35]. I also prove

that it is correct in Theorem 6.1 and give a result about its worst-case memory

requirements in Theorem 6.2. It will be convenient to define the derived set of a set

of infected vertices. The derived set of a set, S, will be denoted by zfs(S) and is

the set of all vertices that will become infected using S as an initial infected set. As

∗This chapter is adapted from [27]

103

has been noted by the AIM Minimum Rank – Special Graphs Work Group [3],

zfs(S) is uniquely determined by S. This can easily be seen by noting that the set

of vertices that are not forced are precisely those vertices that are contained in some

fort that does not intersect S.

Algorithm 6.1: Wavefront Algorithm [35]

Data: G = (V,E)
Result: Size of minimum forcing set of G
C = {(∅, 0)};
for R ∈ {1, 2, ..., N} do

for (S, r) ∈ C do
for v ∈ G do

k = number of unforced neighbors of v;
C = zfs(S ∪ {v} ∪N(v));
if (C, i) /∈ C for i ≤ R then

if v /∈ S and k ≤ R− r then
Add (C, r + k) to C;

end
if v ∈ S and k − 1 ≤ R− r then

Add (C, r + k − 1) to C;
end

end

end

end
if (V, z) ∈ C then

Return z;
end

end

Recall Definition 5.2 of a fort from Chapter 5. A fort is a non-empty set of

vertices such that no vertex outside the fort is adjacent to exactly one vertex in the

fort. To prove the correctness of the Wavefront algorithm, I first need to prove

Lemma 6.1 concerning the existence of forts inside other forts.

104

Lemma 6.1

Let F be a fort of a graph G and let N [F] be the set containing F and all the

neighbors of vertices in F . Let S be a set that does not contain some vertex

v ∈ N [F] and all but one of the vertices in N(v) ∩ F . Then F\S is a fort of G.

Proof: Since F was a fort, every vertex in N [F] is either in F or has at least two

neighbors in F . Let w be a vertex in N [F\S]. Then, w must be in N [F]. Since S

did not contain some vertex in N [F] and all but one of its neighbors, w must either

not be in S or w must have at least two neighbors that are in F but not in S. Thus,

w must either be in F\S or w must have at least two neighbors in F\S. Thus, F\S

is a fort of G. ■
Theorem 6.1

The Wavefront algorithm returns a minimum zero-forcing set.

Proof: For a set H ⊂ V , let ZH be a zero-forcing set that has minimum size

subject to the constraint that it contains H as a subset. Suppose H0 = ∅, then by

Lemma 6.1, ZH0 must contain some vertex, v1 of G and all but one of its neighbors.

This set, call it H1, must be added to C by step |N(v1)| of the Wavefront algorithm.

Now, again by Lemma 6.1, ZH1 must contain the members of H2, which contains

some vertex v2 and all but one of its neighbors, that are not in zfs(H1). The

uninfected members of H2, call this set H
U
2 must be added to H1 by step

|N(v1) ∪HU
2 | of the wavefront algorithm. This process can be repeated as necessary

until zfs(N(v1) ∪HU
2 ∪ ... ∪HU

i) = V . By Lemma 6.1,

|Z(G)| = |ZH0 | = |ZH1 | = ... = |ZHi
|. Therefore, the Wavefront Algorithm returns a

minimum zero-forcing set. ■

Theorem 6.2

For a graph with N vertices and zero-forcing number z, at any step, s, of the

105

Wavefront algorithm,

|C| ≤
s∑

i=1

N !

(N − i)!i!

.

Proof: Wavefront does not add multiple sets that have the same closure to C. Since

each permutation of a set has the same closure as the other permutations, the

maximum number of sets added to C by step s, is the number of combinations of

vertices with size at most s. This number of combinations is
s∑

i=1

N !
(N−i)!i!

. ■

Note that Theorem 6.2 is a worst-case bound. Although the Wavefront

algorithm in the worst case is no better than enumerating all possible subsets, the

Wavefront algorithm performs much better than the worst case bound when the

closure of vertex subsets is larger than the starting subset. This improvement comes

from some vertices being forced and having no unforced neighbors, and therefore

never being a possible choice to add to the sets in C. The worst case performance of

Wavefront is realized in graphs with only isolated vertices (vertices that have no

neighbors), but since these vertices must be in any forcing set, the graph can be

preprocessed to remove all isolated vertices before Wavefront is run. However, stars

(trees with only one interior vertex) also lead to very poor complexity. Since any

two leaves of the star form a fort, Wavefront is required to check every combination

of leaves of size less than N − 2 before it will find a forcing set.

6.2 Integer Programming Methods

This section describes integer programming formulations and solution strategies for

the zero-forcing problem. The integer programming formulations presented here

come from two distinct perspectives on the zero-forcing problem. The first

106

perspective is straightforward and tries to model zero-forcing as a dynamic graph

infection process. This approach must consider the time that each vertex is forced

and uses the vertices forced at each timestep to determine the vertices that can be

forced in the next timestep. The second perspective uses the theory of zero-forcing

forts from Chapter 5. This approach sees zero-forcing not as a dynamic graph

infection process, but rather as a type of fort covering problem.

6.2.1 Infection Perspective

I now give the formulation for zero-forcing as a dynamic process. In the

formulation, the graph is viewed as a directed graph. Each edge of the initial

undirected graph is replaced by two edges giving both possible directions of that

edge. Let V be the vertex set of the graph, E the edge set of the directed graph and

T the maximum number of timesteps required to force the graph. I use three sets of

variables. There is a binary variable, s, for each vertex that indicates whether the

corresponding vertex is in the forcing set. Also, for each vertex, there is an integer

variable, x, between 0 and T that indicates the iteration of the zero-forcing infection

rule in which the corresponding vertex is forced. Finally, there is a binary variable,

y, for each directed edge that indicates whether the tail of the corresponding edge

forces the head of the edge. For an edge e and vertex v, I use the notation e → v to

indicate that v is the head of e.

Model 6.1 Integer Program Model of the Zero-Forcing Problem based on Infection

107

minimize
∑
v∈V

sv

subject to: sv +
∑
e→v

ye = 1 ∀v ∈ V (1)

xu − xv + (T + 1)ye ≤ T ∀e = (u, v) ∈ E (2)

xw − xv + (T + 1)ye ≤ T ∀e = (u, v) ∈ E, ∀w ∈ N(u)− v (3)

x ∈ {0, 1, ..., T}

s ∈ {0, 1}

y ∈ {0, 1}

Theorem 6.3

The optimum of Model 6.1 is equal to the size of a minimum zero-forcing set.

Proof: Consider a zero-forcing system (Z,F) (zero-forcing systems were defined in

Section 5.2) of a graph G. Every vertex of G must be forced. Therefore, every

vertex, v, of G is either in Z (i.e. sv = 1) or is forced by some other vertex of G (i.e.

ye = 1 and v is the head of e). Thus, constraint (1) must be satisfied. Now, let xv

be the iteration in which v is forced by (Z,F). Since a vertex cannot force until all

but one of its neighbors are forced, we have that for every edge, e = (v, w) for which

ye = 1, it must be that v is forced before w and thus xv < xw. Likewise xi < xw for

all neighbors i of v. Thus, constraints (2) and (3) are satisfied. If ye = 0, then

constraints (2) and (3) are satisfied since T is the maximum difference between the

forcing times of two vertices. Thus, the constraints are valid for any zero-forcing

system.

Now, let (s, x, y) be a solution of Model 6.1 for a given graph G. Then let Z be

the set of all vertices for which sv = 1. Let F be the set of paths induced by the

edges for which ye = 1. For any edge e = (v, w) for which ye = 1, by constraints (2)

and (3) it must be the case that v can force w through some number of applications

108

of the zero-forcing rule. Since we also have that every vertex is either in Z or has an

incoming edge with ye = 1 it follows that every vertex in G eventually is forced.

Therefore, (Z,F) is a zero-forcing system of G. The result follows. ■

Model 6.1 has several nice features. It not only finds the minimum zero-forcing

number and a minimum zero-forcing set, but it also gives the paths that the

zero-forcing infection takes through the graph. Also, there is a polynomial number

of constraints and variables relative to the graph size; therefore, column and row

generation is not needed. However, the downfall of this model is its reliance on

constraints (2) and (3) which are of a big-M form. Even though we have worst-case

bounds on the size of T from Section 5.4, the big-M constraints still lead to poor

performance.

6.2.2 Fort Covering Perspective

My next formulation has no big-M constraints. In Model 6.2, the variables sv again

indicate whether vertex v is in the zero-forcing set. The set B is the set of all forts

of the given graph (recall that forts were defined in Definition 5.2).

Model 6.2 Integer Program Model of the Zero-Forcing Problem based on Forts

minimize
∑
v∈V

sv

subject to:
∑
v∈B

sv ≥ 1 ∀B ∈ B (1)

s ∈ {0, 1}

Theorem 6.4

The optimum of Model 6.2 is equal to the size of a minimum zero-forcing set.

Proof: Let s be a solution of Model 6.2 for a given graph G = (V,E), and let Z be

the set of all vertices v for which sv = 1. Suppose for contradiction that Z is not a

109

zero-forcing set of G. Then, let zfs(Z) be the derived set of Z. Since Z is not a

forcing set of G, zfs(Z) ̸= V . Therefore, V \zfs(Z) is a fort of G that does not

contain a vertex in Z. However, this case requires that constraint (1) of Model 6.2

be violated. It follows that Z must be a zero-forcing set of G.

Now, let Z be a zero-forcing set of G. Since zfs(Z) = V , G cannot contain a

fort that does not contain some element of Z. Therefore, Z is a feasible solution of

Model 6.2. The result follows. ■

In contrast to Model 6.1, Model 6.2 has the advantage of having no big-M type

constraints. However, unlike Model 6.1, it does not find the paths of the zero-forcing

process. The most important issue with Model 6.2 is that there are potentially

exponentially many forts in a given graph. Therefore, solution methodologies for

Model 6.2 must use a constraint generation approach.

The constraint generation or cutting plane approach was introduced in a 1954

paper by Dantzig, Fulkerson, and Johnson [45]. These authors were using what is

now known as the subtour elimination formulation of the Traveling Salesman

Problem. This subtour elimination formulation has an exponential number of

subtour elimination constraints, but Dantzig et al. showed that the formulation

could be solved by first solving a reduced problem without any subtour constraints

and then adding violated subtour constraints as needed. Dantzig et al.’s work was

extremely important to the field of linear and integer programming as, according to

Applegate et al. ([7], p. 91), it led to the development of both cutting plane

algorithms and polyhedral combinatorics.

The usefulness of constraint generation depends on the development of a

practical method for finding violated constraints. I will present two methods for

generating violated constraints. The first method is simply to find the zero-forcing

110

closure of a solution to Model 6.2. If the closure is not the entire graph, then the set

of vertices that are not in the closure forms a fort that gives a violated constraint.

The second method is to use the secondary integer program in Model 6.3 to find

violated forts.

For Model 6.3, define the set S to be the set of all vertices for which sv = 1 in

the current optimal solution of Model 6.2. Note that since the value for each sv is

taken from the current optimal solution of Model 6.2, S is constant for Model 6.3.

The xv variables indicate whether vertex v is in the fort. N(v) is the open

neighborhood of v (all the neighbors of v, but not v itself). The constant vector c

enforces some desired property. For example, in my experiments, I set cv = 0.0001

for each v to make the model find minimum size forts.

Model 6.3 Integer Program Model for Finding Forts

minimize
∑
v∈V

cvxv

subject to:
∑
v∈V

xv ≥ 1 (1)

xw − xv +
∑

a∈N(w)\v
xa ≥ 0 ∀(v, w) with v ∈ V , w ∈ N(v) (2)

xv = 0 ∀v ∈ zfs(S) (3)

x ∈ {0, 1}

Theorem 6.5

Model 6.3 finds a minimum weight violated fort with respect to the weights given by

c.

Proof: Let B be a violated fort of G. Let xv = 1 for all v ∈ B and xv = 0 for all

other vertices. By the definition of a fort B must contain at least one vertex;

therefore, constraint (1) of the model is satisfied. Also by the definition of a fort,

111

any neighbor of a vertex in the fort must either be in the fort or have at least one

other neighbor in the fort; therefore, constraint (2) of the model is satisfied. Finally,

since B is a violated fort, there cannot exist v ∈ B with v ∈ zfs(S). Therefore,

constraint (3) is also satisfied.

Now, let x be an solution of Model 6.3. Let B be the set of vertices of G for

which xv = 1. By constraint (1), B is not empty. By constraint (2), every neighbor

of a vertex in B must either be in B itself or have at least two neighbors in B. By

constraint (3), no vertex in B can be in zfs(S). Thus, B is a violated fort of G.

The result follows. ■

Model 6.3 separates violated constraints for Model 6.2. Unfortunately, solving

an integer program is NP-hard. However, there is precedent in literature for using

an integer programming separation method (see for example Fischetti and Lodi [73]

or Avella, Boccia, and Vasilyev [11]). In our computational experiments, Model 6.3

solved quickly, and the forts found using this method are smaller and more effective

at solving Model 6.2 than those found by the closure method.

Some explanation for why the forts found by Model 6.3 are more effective than

those found by the closure method can be found in polyhedral theory. Since

Model 6.2 is a set covering problem, the theory of Balas and Ng [16] on the set

covering polytope applies. These authors gave necessary and sufficient conditions

for the inequalities with right hand side of 1 (such as the fort constraints) to be

facet-inducing. Their relevant theorem, restated in terms of forts, is given in

Theorem 6.6.

Theorem 6.6 (Balas and Ng [16])

Given a fort B, the inequality ∑
v∈B

sv ≥ 1

112

defines a facet of the zero-forcing polytope if and only if the following two

conditions hold.

1. There does not exist a fort A with A ⊂ B.

2. For each v ∈ V \B, there exists a w ∈ B such that w is in all forts A with

v ∈ A and A ⊂ B ∪ v.

Condition 1 in Theorem 6.6 explains why Model 6.3 performs better than the

closure method. The closure method makes no effort to minimize the size of the

forts that are found. Thus, they are unlikely to satify condition 1 and be

facet-inducing. On the other hand, Model 6.3 finds minimum size violated forts;

therefore, the forts found cannot contain a smaller violated fort. Thus, the forts

found by Model 6.3 satisfy condition 1 of Theorem 6.6. However, condition 2 is not

necessarily satisfied by either method.

Although it is difficult to enforce condition 2, I will define an auxilliary integer

programming model that can be used to encourage the constraints that I add to

Model 6.2 to be facet-inducing. Note that if condition 2 of Theorem 6.6 is violated

for a fort F , then there exist P forts A1, ..., AP ⊂ F ∪ v with v ∈ Ai for

i ∈ {1, ..., P} but
∩

i∈{1,...,P}
(Ai\v) = ∅. Observe also that the fort constraints given by

F and Ai for i ∈ {1, ..., P} can be combined to give the following valid cut∑
i∈F∪v

xi ≥ 2

This valid cut is found by first summing the fort constraints corresponding to F and

all the Ai. Since
∩

i∈{1,...,P}
Ai = ∅, the coefficients of each vertex variable in the sum

is at most P , but the right hand side is P + 1. Thus, the valid cut can be obtained

by dividing through by P and taking the ceiling of each coefficient.

I make the following observation about the size of P .

113

Theorem 6.7

If there exist P forts A1, ..., AP ⊂ F ∪ v with v ∈ Ai for i ∈ {1, ..., P} but∩
i∈{1,...,P}

(Ai\v) = ∅. Then P can be chosen to be at most |F |.

Proof: If P ≤ |F |, then there is nothing to prove. On the other hand, if P > |F |,

then for each vertex w ∈ F , choose one fort out of the P forts that does not include

the vertex w. Since
∩

i∈{1,...,P}
(Ai\v) = ∅, such a fort must exist. Now, at most |F |

forts are chosen and the intersection of the chosen forts is empty except for v. Thus,

the set of forts that are chosen has the required properties. ■

Given the above theory, I use Model 6.4 to check whether a fort generated by

Model 6.3 is facet-inducing. If the generated fort is not facet-inducing, then instead

of a fort constraint, I add the valid cut generated as in the previous paragraph. For

Model 6.4, I use two sets of variables. The variables xij indicate whether a vertex j

is chosen to be in fort i, and the variables yi indicate whether fort i is empty.

Model 6.4 Integer Program Model for Checking if a Fort is Facet-Inducing

min
∑

i∈{1,...,|F |}
yi

s.t.:
∑

v∈V \F
xv = 1 (1)

∑
v∈V \F

xiv = yi ∀i ∈ {1, ..., |F |} (2)

xiv ≤ xv ∀i ∈ {1, ..., |F |}, ∀v ∈ V \F (3)∑
i∈{1,...,|F |}

xiw ≤
∑

i∈{1,...,|F |}
yi − 1 ∀w ∈ F (4)

xiw − xiu +
∑

a∈N(w)\u
xia ≥ 0 u ∈ V , w ∈ N(v), ∀i ∈ {1, ..., |F |} (5)

xiw ≤ yi ∀i ∈ {1, ..., |F |}, ∀w ∈ V (6)

x, y ∈ {0, 1} (7)

114

Theorem 6.8

If Model 6.4 is infeasible, and F is a minimum size fort, then the fort F is

facet-inducing. If Model 6.4 has an optimal solution, then the set of forts with

yi = 1 shows that F is not facet-inducing by property 2 of Theorem 6.6.

Proof: Suppose F is not facet-inducing. Since F is minimum size, it must satify

property 1 of Theorem 6.6. Thus, F can only violate property 2 of Theorem 6.6.

Therefore, there must exist P forts A1, ..., AP ⊂ F ∪ v with v ∈ Ai for i ∈ {1, ..., P}

but
∩

i∈{1,...,P}
(Ai\v) = ∅. By Theorem 6.7, I can assume that P ≤ |F |. Let yi = 1 for

i ∈ {1, ..., P}, and let yi = 0 otherwise. Let xiw = 1 if w is in fort Ai for

i ∈ {1, ..., P} and xiw = 0 otherwise. Let xv = 1 and xiv = 1 if i ∈ {1, ..., P}. All

variables not otherwise set are set to 0. The solution x, y defined in this manner is a

feasible solution to Model 6.4. To see this fact, note that constraint (1) is satisfied

because xw = 0 for all w ̸= v, and xv = 1. Constraint (2) is satisfied because each

fort Ai contained v. Constraint (3) is satisfied because xiv is either 0 or 1 and

xv = 1. Constraint (4) is satisfied because
∩

i∈{1,...,P}
(Ai\v) = ∅. Constraint (5) is

satisfied because each Ai was a fort, and constraint (6) is satisfied because x

variables are chosen to be 1 only for the forts with y variables chosen to be 1. Thus,

x, y is a feasible solution to Model 6.4. Therefore, if Model 6.4 is infeasible, then the

fort F must be facet-inducing.

On the other hand, if Model 6.4 has a optimal solution, then defining the forts

Ai = {w ∈ V : xiw = 1} gives a set of forts which shows that F does not satisfy

property 2 of Theorem 6.6. ■

In addition to using Model 6.4 to determine exactly whether a fort constraint is

facet-inducing, the model can also be used to determine this characteristic in a

heuristic manner. For example, the model can be simplified by limiting the number

115

of forts that can be chosen, i.e. require at most 2 forts instead of |F | forts. This

simplified model is given in Model 6.5.

Model 6.5 Simplified Integer Program Model for Checking if a Fort is “Likely” to

be Facet-Inducing

min
∑

i∈{1,...,|F |}
yi

s.t.:
∑

v∈V \F
xv = 1 (1)

∑
v∈V \F

xiv = 1 ∀i ∈ {1, 2} (2)

x1v ≤ xv ∀v ∈ V \F (3)

x1v + x2v ≤ 1 ∀v ∈ F (4)

xiw − xiu +
∑

a∈N(w)\u
xia ≥ 0 u ∈ V , w ∈ N(v), ∀i ∈ {1, 2} (5)

x ∈ {0, 1} (7)

The simplified model will be easier to solve, but it will not determine exactly

whether a fort constraint is facet-inducing. If a feasible solution is found for

Model 6.5, then the fort constraint is not facet-inducing. However, if the simplified

model is infeasible, then the constraint may or may not be facet-inducing; although,

it may be more likely to be facet-inducing. In other words, Model 6.5 being

infeasible is a necessary, but not sufficient, condition for the fort constraint to be

facet inducing. In my computational experiments, I use the simplified model.

Although Model 6.2 is elegant and shows that the zero-forcing problem is

actually a set covering problem where the sets are given by the forts of the graph, it

is still not necessarily easy to solve. The model can be improved by adding

variables, which I call zv, that correspond to the vertex v and all but one of its

neighboring vertices being in the forcing set. These variables will have a cost of

116

|N(v)| where N(v) is the open neighborhood of v (all the neighbors of v but not v

itself). The improved model is Model 6.6.

Observe that any forcing set of a graph must contain some vertex that can force

at the first iteration of the forcing rule. Therefore, any forcing set must contain a

vertex, v, and all but one of v’s neighbors. This property can be modeled by adding

the zv variables and requiring at least one to be positive. This property is enforced

by constraint (2) of Model 6.6. Note that if a vertex, w, is in the zero-forcing

closure of a the neighborhood of v and zv is positive, then v will be forced by the

corresponding solution. Therefore, xw and zw will never both be positive. This

property is enforced by constraint (3) of Model 6.6. Finally, the fort constraints

(constraint (1) of Model 6.2) must be modified to allow satisfaction by zv variables.

Despite the increased number of variables, Model 6.6 performs better in my

experiments than Model 6.2.

Model 6.6 Integer Program Model with Neighborhood variables

min
∑
v∈V

|N(v)|zv +
∑
v∈V

sv

s.t.:
∑
v∈B

((sv) +
∑

v∈zfs(N(w)∪w)

zw)) ≥ 1 ∀B ∈ B (1)

∑
v∈V

zv ≥ 1 (2)

sv + zi ≤ 1 ∀i ∈ V, ∀v ∈ zfs(N(i) ∪ i) (3)

s ∈ {0, 1}

z ∈ {0, 1}

Given the extra variables in Model 6.6, Model 6.3 must be expanded to generate

violated forts. Also, instead of minimizing the number of vertices in the fort, my

preliminary experiments showed better performance from minimizing the number of

vertices in the fort that are adjacent to vertices outside of the fort. Such minimum

117

border forts can be found using the integer program in Model 6.7. In this model, cv

is a penalty term to penalize vertices that are adjacent to the derived set (in our

implementation all cv values were set to 0.0001), and bv is a binary variable that

indicates whether the vertex v is adjacent to vertices outside of the fort. S is the set

of all vertices, v, such that either sv = 1 in the current solution of Model 6.6 or v is

in the neighborhood of some vertex, w, for which zw = 1 in the current solution.

Constraint (3) ensures that the bv variables correctly indicate whether the variable v

is on the border of the fort.

Model 6.7 Integer Program Model for Finding Minimum Border Forts

min
∑
v∈V

cvbv

s.t.:
∑
v∈V

xv ≥ 1 (1)

xw − xv +
∑

a∈N(w)\v
xa ≥ 0 ∀(v, w) with v ∈ V , w ∈ N(v) (2)

|N(v)|xv − |N(v)|bv −
∑

a∈N(v)

xa ≤ 0 ∀v ∈ V (3)

xv = 0 ∀v ∈ zfs(S) (4)

x, b ∈ {0, 1}

6.3 Computational Results for Zero-Forcing

This section presents computational results and implementation details from finding

minimum zero-forcing sets using the methods previously mentioned in this chapter.

6.3.1 Implementation Details

My computational results were obtained on a Dell Precision T1650 workstation with

a 3.3 GHz Intel Core i3-2120 CPU, 3.7 GB of RAM, and Red Hat Enterprise Linux

118

version 6.6. The code was written in C++ and compiled with g++ version 4.8.

Integer programs were solved using Gurobi version 5.5.0 set to use a single thread.

Model 6.1 was simply solved in Gurobi with a MIPNODE callback to terminate

the solution after 2 hours. Model 6.2 was solved in Gurobi with a POLLING

callback to terminate the solution after 2 hours. A maximal set of disjoint forts was

added to the formulation before solving. This maximal set is found by iteratively

finding minimum size forts (using Model 6.3) that are disjoint from each other until

no more such forts can be found. Other fort constraints were added to the model

using a MIPSOL callback to add violated forts. Gurobi calls this callback whenever

it finds a new integral incumbent solution. The callback generates minimum size

violated forts by using Gurobi to solve Model 6.3. The callback can also test

whether the generated fort is facet-inducing using Model 6.4.

I tested Model 6.2 both with and without testing whether forts are facet

inducing. In preliminary testing, I found that the reduced Model 6.5 provided

better performance than Model 6.4. This reduced version only checks if property 2

of Theorem 6.6 can be violated by 2 forts instead of up to |F | forts. Although this

reduced model does not guarantee the facet-inducing property, it worked better in

practice because of the reduced time necessary to solve the model. Consequently, I

use the reduced model for testing whether forts were facet-inducing. If a violated

fort is found, the MIPSOL callback adds that fort to the formulation as a lazy

constraint. If a violated fort is not found, then Gurobi terminates with an optimal

solution. To enable lazy constraints, the “PreCrush” and “LazyConstraints”

parameters were both set to 1. In the version of the method that checks whether

forts are facet-inducing, if a generated fort is not facet-inducing, then the valid cut

associated with the forts that show that the generated fort is not facet-inducing is

119

added instead of the generated fort.

Model 6.6 was solved similarly to Model 6.2. A POLLING callback was used to

terminate after 2 hours and violated forts were added using a MIPSOL callback. I

do not check whether generated forts are facet-inducing for this model. I also use

Model 6.7 instead of Model 6.3 to generate violated forts that have a minimum

number of vertices adjacent to vertices outside of the fort. As with Model 6.2, a

maximal set of disjoint forts is added to the formulation before solving. In addition,

the derived set of the closed neighborhood of each vertex gives a fort which is the

set of all vertices not in the derived set. These forts were also added to the

formulation before solving.

For all three models, the parameters not mentioned in the discussion above were

left to their defaults in Gurobi. Some testing showed that tuning some parameters

(such as the branching direction (BranchDir), aggressiveness of cut generation

(Cuts), or the focus of the solver (MIPFocus)) could improve performance on some

specific instances, but not in general. The branching strategy was also left to the

Gurobi default. The times reported in this section are the time taken by Gurobi to

optimize the relevant model. The time necessary for data input and setting up the

Gurobi model is not reported.

6.3.2 Computational Tests

I test the different algorithms on three classes of random graphs: cubic, connected

Watts-Strogatz [133] graphs with parameters 5 and 0.3, and connected

Watts-Strogatz graphs with parameters 10 and 0.3. The parameters for the

Watts-Strogatz graphs refer to the number of neighbors initially given to each

vertex (A setting of 5 gives 4 neighbors to each vertex and a setting of 10 gives 10

120

neighbors to each vertex.) and to the probability that an edge is rewired,

respectively. I used my own C++ implementation to generate random cubic graphs,

and I used the connected Watts-Strogatz graph generator from the NetworkX

version 1.8.1 package in Python 2.7.6. For the cubic and Watts-Strogatz graphs

with parameters 5 and 0.3, I generated 5 random instances with 10, 20, ..., 100

vertices. For the Watts-Strogatz graphs with parameters 10 and 0.3, I generated 5

random instances with 20, ..., 100 vertices. I tested each algorithm until all 5 graphs

of a certain size could not be solved by the algorithm within 2 hours.

The method that uses Model 6.2 without checking whether generated forts are

facet-inducing can be compared with the method that does check using Model 6.5.

Complete results for this comparison are given in Tables 6.13, 6.14, and 6.15, which

appear on pages 134, 135, and 136, respectively. The average results for this

comparison are given in Tables 6.1, 6.2, and 6.3. The results show that while

checking for facet-inducing forts provides a small benefit in average running time

and reduces the number of forts that must be generated, it is not effective enough to

increase the size of the instances that can be solved within 2 hours. Because

checking for facet-inducing forts provided no consistent benefit, subsequent results

for Model 6.2 use the model without checking whether forts are facet-inducing.

121

Table 6.1 : Comparison of average running times for the Fort Cover IP on cubic

graphs with and without checking whether forts are facet-inducing.

Without Facets With Facets

|V | Avg. Z(G) time forts time constraints

10 3.8 0.022 17.6 0.57 9.2

20 5.2 0.318 67.2 0.457 66.4

30 6.6 1.73 153.2 1.88 116.4

40 8.8 35.74 1834.2 24.60 824.6

50 9.2 274.04 4569 200.56 3269.6

60 11.4 5925.79* 27082 5986.44* 27098

Note: All times are in seconds. Asterisks indicate that not all instances of the spec-

ified size were solved. In these cases, the reported result is the average time for the

instances that were successfully solved. Bold text indicates the algorithm with the best

performance.

122

Table 6.2 : Comparison of average running times for the Fort Cover IP on Watts-

Strogatz graphs with parameters (5, 0.3) with and without checking whether forts

are facet-inducing.

Without Facets With Facets

|V | Avg. Z(G) time forts time constraints

10 4.4 0.048 22.8 0.197 21.4

20 6.2 0.566 102.8 1.398 100

30 7 4.75 245.2 5.79 245.2

40 9.4 81.06 2334.2 73.79 1589.6

50 10.8 2694.03* 15801 2552.73* 14650.8

60 11.6 475.11* 1489 438.14* 1374

Note: All times are in seconds. Asterisks indicate that not all instances of the spec-

ified size were solved. In these cases, the reported result is the average time for the

instances that were successfully solved. Bold text indicates the algorithm with the best

performance.

123

Table 6.3 : Comparison of average running times for the Fort Cover IP on Watts-

Strogatz graphs with parameters (10, 0.3) with and without checking whether forts

are facet-inducing.

Without Facets With Facets

|V | Avg. Z(G) time forts time constraints

20 12 10.49 1133 100.48 1104

30 15.4 1069.8 16792.2 2492.30 16792.2

Note: All times are in seconds. Asterisks indicate that not all instances of the spec-

ified size were solved. In these cases, the reported result is the average time for the

instances that were successfully solved. Bold text indicates the algorithm with the best

performance.

Table 6.4 gives the size of instances for which each method failed on at least one

instance. These results show that the Fort Cover IP (Model 6.2) and the Extended

Cover IP (Model 6.6) perform similarly and they are both much better than the

Infection IP (Model 6.1). However, Wavefront performs better than any of the

integer programs and is also less sensitive to the density of the graph.

Table 6.4 : Size of graphs where methods start to fail.

Graph Type Wavefront Infection IP Fort Cover IP Extended Cover IP

Cubic 80 30 60 60
WS (5, 0.3) 80 30 50 60
WS (10, 0.3) 80 20 40 40

Note: Bold text indicates the algorithm with the best performance. Wavefront can
handle the largest graphs and also is less sensitive to the density of the graphs.

124

Table 6.5 gives the average results for cubic graphs over each graph size for each

algorithm. These results again show that the Wavefront algorithm performs best,

followed by the Extended Cover IP. While the size of the instances that Fort Cover

IP and the Extended Cover IP can handle is similar, the Extended Cover IP solves

the instances faster on average. The complete results for cubic graphs are given in

Table 6.10 on page 131.

Tables 6.6 and 6.7 give the average results for the Watts-Strogatz graphs with

parameters (5,0.3) and (10,0.3) respectively. These results are similar to those for

cubic graphs; however, they indicate that the Wavefront algorithm is less sensitive to

changes in the graph structure than the integer programs. The results also indicate

that both integer programs are sensitive to the degree of vertices in the graph, but

the Extended Cover IP (Model 6.6) seems to be more sensitive than the Fort Cover

IP (Model 6.2). The Fort Cover IP actually beats the Extended Cover IP for the

instances with parameters 10 and 0.3. The complete results for the Watts-Strogatz

graphs are in Tables 6.11 and 6.12 on pages 132 and 133, respectively.

Although the Wavefront algorithm performs best on the cubic and

Watts-Strogatz graphs, it does not perform well on stars. Table 6.8 compares the

performance of Wavefront and the Fort Cover IP on stars of up to 101 vertices.

While the Fort Cover IP is able to solve all of these stars quickly, the Wavefront

algorithm fails for stars with only 31 vertices.

125

Table 6.5 : Average running times for zero-forcing algorithms on random cubic

graphs.

|V | Avg. Z(G) Wavefront Infection Fort Cover Extended Cover

10 3.8 0.0013 0.0470 0.022 0.024

20 5.2 0.017 77.43 0.32 0.11

30 6.6 0.18 206.20* 1.73 0.64

40 8.8 2.79 T 35.74 7.18

50 9.2 9.68 T 274.04 40.33

60 11.4 227.02 T 5925.79* 1813.21*

70 12 525.46 T T T

80 12 681.13* T T T

Note: All times are in seconds. Asterisks indicate that not all instances of the specified

size were solved. In these cases, the reported result is the average time for the instances

that were successfully solved. T indicates that none of the 5 instances were solved

within 2 hours. Bold text indicates the algorithm with the best performance.

126

Table 6.6 : Average running times for zero-forcing algorithms on random connected

Watts-Strogatz graphs with parameters (5, 0.3).

|V | Avg. Z(G) Wavefront Infection Fort Cover Extended Cover

10 4.4 0.0013 0.70 0.048 0.047

20 6.2 0.018 152.47 0.57 0.55

30 7 0.072 5320.23* 4.75 3.58

40 9.4 1.32 T 81.06 47.58

50 10.8 10.47 T 2694.03 2234.27

60 11.6 69.30 T 475.11* 2387.36*

70 14 678.89 T T T

80 14.5 1306.57* T T T

Note: All times are in seconds. Asterisks indicate that not all instances of the specified

size were solved. In these cases, the reported result is the average time for the instances

that were successfully solved. T indicates that none of the 5 instances were solved

within 2 hours. Bold text indicates the algorithm with the best performance.

127

Table 6.7 : Average running times for zero-forcing algorithms on random connected

Watts-Strogatz graphs with parameters (10, 0.3).

|V | Avg. Z(G) Wavefront Infection Fort Cover Extended Cover

20 12 0.010 T 10.47 11.52

30 15.4 0.11 T 1069.80 1370.70

40 18 0.93 T T T

50 21.8 9.41 T T T

60 24.6 65.51 T T T

70 27.4 416.65 T T T

80 30 2192.86* T T T

Note: All times are in seconds. Asterisks indicate that not all instances of the specified

size were solved. In these cases, the reported result is the average time for the instances

that were successfully solved. T indicates that none of the 5 instances were solved

within 2 hours. Bold text indicates the algorithm with the best performance.

128

Table 6.8 : Comparison of running times for Wavefront and the Fort Cover IP on

stars.

|V | Z(G) Wavefront Fort Cover

11 9 0.41 0.03

21 19 3087.20 0.15

31 29 K 0.46

41 39 K 0.94

51 49 K 2.19

61 59 K 4.10

71 69 K 7.44

81 79 K 12.72

91 89 K 19.86

101 99 K 31.67

Note: All times are in seconds. K indicates that the algorithm ran out of memory.

Bold text indicates the algorithm with the best performance.

129

Some additional insights can be gained by looking at the time taken to generate

forts in the Fort Cover and Extended Cover integer programs. Table 6.9 gives the

average percentage of the time spent by these two methods that was spent

generating violated forts for all three types of graphs. These results show that the

Extended Cover IP spends a lower percentage of its time generating forts than the

Fort Cover IP. Both integer programs spend the majority of their time generating

forts. However, this percentage decreases when the instances reach a size where the

methods start to fail. This percentage then increases again as the size of failure is

surpassed. This behavior indicates that at the size of failure, Gurobi was not able to

generate as many incumbent solutions and spent more time trying to prove

optimality. This behavior makes sense because as the set of fort constriants in the

model approaches a set of forts necessary to solve the zero-forcing problem, then

generating additional feasible solutions of lower cost will become more difficult, and

the solver will spend more time proving optimality.

130

Table 6.9 : Average percentage of time spent generating forts.

Cubic WS (5,0.3) WS (10,0.3)

|V | Fort Cover Ext. Cover Fort Cover Ext. Cover Fort Cover Ext. Cover

10 75.9 72.6 88.8 85.9 N/A N/A

20 92.6 56.5 93.4 91.1 91.4 88.9

30 89.9 74.9 89.6 86.2 52.4 39.9

40 77.9 55.4 71.9 67.3 36.1* 32.6*

50 73.1 58.9 46.0* 48.1

60 20.8* 23.8* 93.8* 86.6*

70 57.0* 71.1* 82.7* 93.1*

Note: Asterisks indicate that not all instances of the specified size were solved within

2 hours. In these cases, the reported percentage is the percentage of the 2 hours that

was used to generate forts.

131

Table 6.10 : Running times for zero-forcing algorithms on random cubic graphs.

Wavefront Infection Fort Cover Extended Cover

Graph Z(G) time time time forts fort time time forts fort time

cubic10 1 4 0.001 0.070 0.025 19 0.017 0.030 20 0.023
cubic10 2 4 0.001 0.055 0.026 19 0.019 0.032 21 0.023
cubic10 3 4 0.002 0.092 0.033 23 0.029 0.038 22 0.024
cubic10 4 4 0.002 0.067 0.012 17 0.007 0.014 18 0.010
cubic10 5 3 0.0005 0.065 0.013 10 0.012 0.005 8 0.004
cubic20 1 5 0.015 49.38 0.335 58 0.318 0.097 28 0.048
cubic20 2 5 0.011 31.61 0.180 46 0.167 0.041 27 0.029
cubic20 3 6 0.039 219.87 0.453 119 0.401 0.235 63 0.157
cubic20 4 5 0.011 49.81 0.273 51 0.254 0.099 31 0.029
cubic20 5 5 0.009 36.47 0.349 62 0.328 0.071 30 0.047
cubic30 1 8 0.504 539.58 1.70 221 1.51 0.38 73 0.34
cubic30 2 6 0.061 T 1.40 102 1.33 0.19 43 0.15
cubic30 3 7 0.206 T 4.09 317 2.96 2.40 123 0.96
cubic30 4 6 0.057 29.10 0.64 52 0.62 0.11 34 0.10
cubic30 5 6 0.058 49.91 0.82 74 0.79 0.12 36 0.09
cubic40 1 9 2.84 T 20.51 910 14.99 5.66 212 3.26
cubic40 2 9 3.24 T 31.93 2064 27.16 6.66 239 3.87
cubic40 3 9 3.68 T 78.56 3988 56.58 14.71 425 6.87
cubic40 4 9 3.10 T 38.43 1830 28.41 6.32 262 3.75
cubic40 5 8 1.09 T 9.27 379 7.93 2.55 106 1.41
cubic50 1 9 6.49 64.37 1283 54.65 14.50 256 8.19
cubic50 2 9 5.39 134.18 2090 106.40 16.83 271 8.96
cubic50 3 8 1.92 25.91 402 23.40 12.54 174 9.83
cubic50 4 10 16.7 377.05 8864 260.38 41.23 603 17.12
cubic50 5 10 17.88 768.71 10206 322.05 116.53 2230 75.48
cubic60 1 11 126.99 T 20819 1307.51 T 11587 1083.08
cubic60 2 13 686.62 T 22586 793.37 T 14200 725.40
cubic60 3 11 101.59 T 23412 1415.18 T 21254 1819.79
cubic60 4 11 120.52 T 31360 1894.49 T 14359 1264.73
cubic60 5 11 99.4 5925.79 27082 1701.73 1813.21 13061 921.07
cubic70 1 12 366.54 T 22052 3317.08 T 16028 3149.15
cubic70 2 13 1362.46 T 24073 2472.74 T 28902 5194.53
cubic70 3 11 138.38 T 27041 5645.79 T 13911 6417.39
cubic70 4 12 372.85 T 30200 4423.89 T 24618 5984.35
cubic70 5 12 387.08 T 37628 4674.44 T 21687 4868.10
cubic80 1 K
cubic80 2 K
cubic80 3 K
cubic80 4 12 656.72
cubic80 5 12 705.54

Note: All times are in seconds. The time columns give the total time required. The fort time columns give the time
used to generate forts. The forts columns give the number of forts generated. T indicates the algorithm did not find
a solution within 2 hours. K indicates that the algorithm ran out of memory. Bold text indicates the algorithm with
the best performance.

132

Table 6.11 : Running times for zero-forcing algorithms on random connected Watts-

Strogatz graphs with parameters (5, 0.3).

Wavefront Infection Fort Cover Extended Cover

Graph Z(G) time time time forts fort time time forts fort time

WS10 5 0.3 1 4 0.0003 0.52 0.034 15 0.031 0.038 19 0.032
WS10 5 0.3 2 4 0.0005 0.44 0.031 15 0.027 0.033 19 0.029
WS10 5 0.3 3 4 0.0004 0.62 0.052 17 0.047 0.042 19 0.036
WS10 5 0.3 4 5 0.0028 1.02 0.054 32 0.047 0.050 37 0.042
WS10 5 0.3 5 5 0.0027 0.92 0.067 35 0.059 0.072 41 0.063
WS20 5 0.3 1 6 0.014 291.61 0.55 94 0.52 0.56 89 0.52
WS20 5 0.3 2 6 0.0098 241.28 0.54 78 0.52 0.51 66 0.47
WS20 5 0.3 3 6 0.0135 81.46 0.55 84 0.52 0.51 85 0.47
WS20 5 0.3 4 7 0.035 105.63 0.61 171 0.53 0.65 151 0.56
WS20 5 0.3 5 6 0.019 42.38 0.58 87 0.55 0.50 79 0.46
WS30 5 0.3 1 6 0.020 T 2.65 102 2.58 1.25 84 1.19
WS30 5 0.3 2 8 0.18 T 9.21 559 7.38 7.29 335 5.46
WS30 5 0.3 3 7 0.052 T 4.29 204 3.74 3.53 155 2.78
WS30 5 0.3 4 7 0.053 5320.23 3.70 184 3.46 2.97 143 2.69
WS30 5 0.3 5 7 0.056 T 3.91 177 3.52 2.84 136 2.60
WS40 5 0.3 1 9 0.88 T 50.81 1379 39.22 26.14 581 18.83
WS40 5 0.3 2 9 0.67 T 75.17 1551 47.92 53.28 809 32.01
WS40 5 0.3 3 10 2.33 T 82.37 2678 60.84 68.57 1955 52.85
WS40 5 0.3 4 10 1.89 T 118.95 4591 88.52 47.16 1364 32.58
WS40 5 0.3 5 9 0.83 T 77.98 1472 54.65 42.73 606 24.95
WS50 5 0.3 1 11 11.32 2888.01 16692 1024.05 1016.52 7237 543.21
WS50 5 0.3 2 11 11.58 3298.80 19076 1181.12 1861.02 13775 1019.08
WS50 5 0.3 3 10 4.01 742.90 6639 563.88 246.55 1624 150.09
WS50 5 0.3 4 11 15.11 3846.42 20797 1369.44 2245.79 14450 1141.41
WS50 5 0.3 5 11 10.34 T 46162 3382.67 5801.49 12730 1204.41
WS60 5 0.3 1 11 17.14 T 23938 5331.91 3527.24 7140 2874.11
WS60 5 0.3 2 13 172.46 T 30016 3059.41 T 32814 4978.93
WS60 5 0.3 3 10 5.46 475.11 1489 445.70 196.22 458 186.67
WS60 5 0.3 4 13 134.9 T 27404 3547.67 T 32417 6576.26
WS60 5 0.3 5 11 16.54 T 26113 5378.09 3438.63 9926 2861.53
WS70 5 0.3 1 14 680.95 T 19577 6487.26 T 14466 6932.66
WS70 5 0.3 2 13 109.31 T 15068 6518.36 T 8742 6831.20
WS70 5 0.3 3 14 406.7 T 19410 6608.86 T 10355 6994.96
WS70 5 0.3 4 14 596.85 T 23392 5742.50 T 20093 6974.45
WS70 5 0.3 5 15 1600.63 T 21508 4430.44 T 17387 5776.49
WS80 5 0.3 1 K
WS80 5 0.3 2 K
WS80 5 0.3 3 14 859.39
WS80 5 0.3 4 K
WS80 5 0.3 5 15 1753.74

Note: All times are in seconds. The time columns give the total time required. The fort time columns give the time
used to generate forts. The forts columns give the number of forts generated. T indicates the algorithm did not find
a solution within 2 hours. K indicates that the algorithm ran out of memory. Bold text indicates the algorithm with
the best performance.

133

Table 6.12 : Running times for zero-forcing algorithms on random connected Watts-

Strogatz graphs with parameters (10, 0.3).

Wavefront Infection Fort Cover Extended Cover

Graph Z(G) time time time forts fort time time forts fort time

WS20 10 0.3 1 12 0.012 T 12.15 1137 11.29 12.43 1047 11.29
WS20 10 0.3 2 12 0.0071 T 10.52 1170 9.51 12.82 1332 11.49
WS20 10 0.3 3 12 0.0080 T 10.42 1077 9.58 12.25 1250 11.10
WS20 10 0.3 4 12 0.011 T 8.92 1009 7.98 9.99 971 8.65
WS20 10 0.3 5 12 0.012 T 10.42 1272 9.64 10.12 1069 8.79
WS30 10 0.3 1 15 0.086 785.53 14111 449.48 948.81 12733 435.29
WS30 10 0.3 2 16 0.16 1361.35 21037 560.35 1797.93 16548 448.42
WS30 10 0.3 3 14 0.039 480.65 10763 418.68 489.51 10088 391.99
WS30 10 0.3 4 16 0.14 1464.43 21577 599.60 1787.75 15418 428.27
WS30 10 0.3 5 16 0.13 1257.04 16473 445.57 1829.52 15337 450.75
WS40 10 0.3 1 19 1.80 T 49527 2932.56 T 31067 2194.36
WS40 10 0.3 2 17 0.53 T 27590 1929.74 T 20556 1666.13
WS40 10 0.3 3 18 0.75 T 39648 3247.84 T 30816 2636.68
WS40 10 0.3 4 18 0.72 T 30868 2429.47 T 25028 2301.58
WS40 10 0.3 5 18 0.84 T 31577 2453.37 T 30280 2897.96
WS50 10 0.3 1 22 10.72
WS50 10 0.3 2 22 9.87
WS50 10 0.3 3 22 9.54
WS50 10 0.3 4 21 5.32
WS50 10 0.3 5 22 11.6
WS60 10 0.3 1 23 24.61
WS60 10 0.3 2 25 66.62
WS60 10 0.3 3 25 70.78
WS60 10 0.3 4 25 81.22
WS60 10 0.3 5 25 84.33
WS70 10 0.3 1 26 137.08
WS70 10 0.3 2 29 854.47
WS70 10 0.3 3 28 554.35
WS70 10 0.3 4 27 295.78
WS70 10 0.3 5 27 241.59
WS80 10 0.3 1 K
WS80 10 0.3 2 K
WS80 10 0.3 3 K
WS80 10 0.3 4 K
WS80 10 0.3 5 30 2192.86

Note: All times are in seconds. The time columns give the total time required. The fort time columns give the time
used to generate forts. The forts columns give the number of forts generated. T indicates the algorithm did not find
a solution within 2 hours. K indicates that the algorithm ran out of memory. Bold text indicates the algorithm with
the best performance.

134

Table 6.13 : Comparison of Fort Cover IP with and without checking for facets on

cubic graphs.

Graphs Z(G) Without Facets With Facets

time forts fort time time constraints fort time

cubic10 1 4 0.025 19 0.017 0.053 5 0.049
cubic10 2 4 0.026 19 0.019 0.047 5 0.044
cubic10 3 4 0.033 23 0.029 0.145 19 0.140
cubic10 4 4 0.012 17 0.007 0.017 7 0.015
cubic10 5 3 0.013 10 0.012 0.021 10 0.020
cubic20 1 5 0.335 58 0.318 0.434 57 0.417
cubic20 2 5 0.180 46 0.167 0.288 43 0.275
cubic20 3 6 0.453 119 0.401 0.741 119 0.687
cubic20 4 5 0.273 51 0.254 0.356 51 0.337
cubic20 5 5 0.349 62 0.328 0.468 62 0.447
cubic30 1 8 1.70 221 1.51 1.43 70 1.36
cubic30 2 6 1.40 102 1.33 1.62 102 1.56
cubic30 3 7 4.09 317 2.96 4.86 317 3.71
cubic30 4 6 0.64 52 0.62 0.50 19 0.49
cubic30 5 6 0.82 74 0.79 0.98 74 0.95
cubic40 1 9 20.51 910 14.99 16.96 586 12.27
cubic40 2 9 31.93 2064 27.16 11.15 216 8.98
cubic40 3 9 78.56 3988 56.58 48.34 1522 36.63
cubic40 4 9 38.43 1830 28.41 38.58 1561 29.68
cubic40 5 8 9.27 379 7.93 7.97 238 7.05
cubic50 1 9 64.37 1283 54.65 34.90 524 28.34
cubic50 2 9 134.18 2090 106.40 147.01 2335 119.31
cubic50 3 8 25.91 402 23.40 20.90 290 18.45
cubic50 4 10 377.05 8864 260.38 378.79 7077 242.45
cubic50 5 10 768.71 10206 322.05 421.21 6122 238.22
cubic60 1 11 T 20819 1307.51 T 20782 1380.10
cubic60 2 13 T 22586 793.37 T 9792 632.30
cubic60 3 11 T 23412 1415.18 T 23373 1494.61
cubic60 4 11 T 31360 1894.49 T 32694 2095.95
cubic60 5 11 5925.79 27082 1701.73 5986.44 27098 2237.68
cubic70 1 12 T 22052 3317.08 T 15878 2753.51
cubic70 2 13 T 24073 2472.74 T 20535 2964.96
cubic70 3 11 T 27041 5645.79 T 27002 5734.30
cubic70 4 12 T 30200 4423.89 T 15709 2915.01
cubic70 5 12 T 37628 4674.44 T 30678 4053.19

Note: All times are in seconds. The time columns give the total time required. The fort time columns give the
time used to generate forts or constraints. The forts or constraints columns give the number of forts or constraints
generated. T indicates the algorithm did not find a solution within 2 hours. Bold text indicates the algorithm with
the best performance.

135

Table 6.14 : Comparison of Fort Cover IP with and without checking for facets on

random connected Watts-Strogatz graphs with parameters (5, 0.3).

Graphs Z(G) Without Facets With Facets

time forts fort time time constraints fort time

WS10 5 0.3 1 4 0.034 15 0.031 0.064 15 0.060
WS10 5 0.3 2 4 0.031 15 0.027 0.147 15 0.143
WS10 5 0.3 3 4 0.052 17 0.047 0.143 17 0.138
WS10 5 0.3 4 5 0.054 32 0.047 0.284 26 0.276
WS10 5 0.3 5 5 0.067 35 0.059 0.345 34 0.337
WS20 5 0.3 1 6 0.55 94 0.52 1.21 94 1.18
WS20 5 0.3 2 6 0.54 78 0.52 0.972 64 0.947
WS20 5 0.3 3 6 0.55 84 0.52 1.09 84 1.06
WS20 5 0.3 4 7 0.61 171 0.53 2.56 172 2.48
WS20 5 0.3 5 6 0.58 87 0.55 1.16 86 1.13
WS30 5 0.3 1 6 2.65 102 2.58 3.00 102 2.93
WS30 5 0.3 2 8 9.21 559 7.38 11.87 559 10.02
WS30 5 0.3 3 7 4.29 204 3.74 5.01 204 4.46
WS30 5 0.3 4 7 3.70 184 3.46 4.46 184 4.21
WS30 5 0.3 5 7 3.91 177 3.52 4.61 177 4.22
WS40 5 0.3 1 9 50.81 1379 39.22 58.62 1384 47.38
WS40 5 0.3 2 9 75.17 1551 47.92 81.23 1551 54.15
WS40 5 0.3 3 10 82.37 2678 60.84 59.26 1228 46.01
WS40 5 0.3 4 10 118.95 4591 88.52 85.81 2313 59.65
WS40 5 0.3 5 9 77.98 1472 54.65 84.02 1472 60.95
WS50 5 0.3 1 11 2888.01 16692 1024.05 2361.62 14859 1004.96
WS50 5 0.3 2 11 3298.80 19076 1181.12 3196.08 15868 1056.45
WS50 5 0.3 3 10 742.90 6639 563.88 771.43 6639 592.43
WS50 5 0.3 4 11 3846.42 20797 1369.44 3881.79 21237 1494.53
WS50 5 0.3 5 11 T 46162 3382.67 T 46147 3599.26
WS60 5 0.3 1 11 T 23938 5331.91 T 23536 5380.92
WS60 5 0.3 2 13 T 30016 3059.41 T 30422 3472.54
WS60 5 0.3 3 10 475.11 1489 445.70 438.14 1374 412.96
WS60 5 0.3 4 13 T 27404 3547.67 T 27311 3688.85
WS60 5 0.3 5 11 T 26113 5378.09 T 25752 5420.59
WS70 5 0.3 1 14 T 19577 6487.26 T 19442 6559.93
WS70 5 0.3 2 13 T 15068 6518.36 T 13967 6586.92
WS70 5 0.3 3 14 T 19410 6608.86 T 19280 6673.42
WS70 5 0.3 4 14 T 23392 5742.50 T 22614 5811.77
WS70 5 0.3 5 15 T 21508 4430.44 T 21404 4527.84

Note: All times are in seconds. The time columns give the total time required. The fort time columns give the
time used to generate forts or constraints. The forts or constraints columns give the number of forts or constraints
generated. T indicates the algorithm did not find a solution within 2 hours. K indicates that the algorithm ran out
of memory. Bold text indicates the algorithm with the best performance.

136

Table 6.15 : Comparison of Fort Cover IP with and without checking for facets on

random connected Watts-Strogatz graphs with parameters (10, 0.3).

Graphs Z(G) Without Facets With Facets

time forts fort time time constraints fort time

WS20 10 0.3 1 12 12.15 1137 11.29 108.66 1180 107.71
WS20 10 0.3 2 12 10.52 1170 9.51 99.51 1087 98.49
WS20 10 0.3 3 12 10.42 1077 9.58 107.76 1210 106.75
WS20 10 0.3 4 12 8.92 1009 7.98 90.80 960 89.89
WS20 10 0.3 5 12 10.42 1272 9.64 95.69 1083 94.74
WS30 10 0.3 1 15 785.53 14111 449.48 1880.72 14111 1545.74
WS30 10 0.3 2 16 1361.35 21037 560.35 3134.54 21037 2335.21
WS30 10 0.3 3 14 480.65 10763 418.68 1242.58 10763 1180.34
WS30 10 0.3 4 16 1464.43 21577 599.60 3283.18 21577 2418.98
WS30 10 0.3 5 16 1257.04 16473 445.57 2920.50 16473 2106.39
WS40 10 0.3 1 19 T 49527 2932.56 T 35494 5085.25
WS40 10 0.3 2 17 T 27590 1929.74 T 24238 3858.45
WS40 10 0.3 3 18 T 39648 3247.84 T 35353 5119.25
WS40 10 0.3 4 18 T 30868 2429.47 T 27077 4287.48
WS40 10 0.3 5 18 T 31577 2453.37 T 29593 4060.35

Note: All times are in seconds. The time columns give the total time required. The fort time columns give the
time used to generate forts or constraints. The forts or constraints columns give the number of forts or constraints
generated. T indicates the algorithm did not find a solution within 2 hours. Bold text indicates the algorithm with
the best performance.

137

6.4 Connected Zero-Forcing

It is common for many graph problems to have a connected version. For example,

the dominating set and power dominating set problems also have interesting

connected variants. Likewise, one can consider a connected version of the

zero-forcing problem. In the connected zero-forcing problem, the vertices forming

the zero-forcing set must induce a connected subgraph. The connected version of

zero-forcing has been studied by Brimkov and Davila [26], who gave formulas for the

connected forcing number of certain classes of graphs; Davila, Henning, Magnant,

and Pepper [48], who gave bounds on the connected forcing number using certain

graph invariants; and by Brimkov [25], who showed that the zero-forcing problem is

still NP-hard in the connected version. However, to my knowledge, there have not

been any efforts to develop computational tools for finding minimum connected

zero-forcing sets. In this section, I develop computational methods for connected

zero-forcing.

As mentioned in the previous section, the only computational method previously

known for the zero-forcing problem is the Wavefront algorithm described in

Algorithm 6.1. However, Wavefront fails for connected forcing because of how the

algorithm constructs zero-forcing sets. For a graph, G, Wavefront finds and stores

optimal forcing sets for certain subgraphs of G. Wavefront then builds the optimal

forcing sets of the larger subgraphs by adding neighborhoods of vertices that have

an unforced vertex in them. However, the zero-forcing sets produced in this manner

are not necessarily connected.

While Wavefront could potentially be modified to create connected forcing sets,

such a modification would eliminate the computational advantages of the algorithm.

Wavefront has good performance because it only stores the optimal forcing set for a

138

certain subgraph; however, this optimal forcing set for the subgraph may not be

connected to other vertices that must be added to the forcing set to force all of G.

Thus, to be useful for finding connected forcing sets, Wavefront would need to store

more than just the optimal forcing set for each subgraph, and Wavefront’s

performance would suffer as a result. For these reasons, Wavefront will not be a

viable method for solving the connected zero-forcing problem without significant

alterations that are beyond the scope of this thesis.

6.4.1 Branch and Bound Algorithm

The connected zero-forcing problem can, of course, be solved by a brute force

approach that simply generates subsets of vertices with a certain size, checks if they

are connected, and then checks if they form a zero-forcing set. However, I give next

a branch and bound style algorithm that generates only connected subgraphs,

checks if they form zero-forcing sets, and prunes the search tree based on the best

zero-forcing set found. The central part of this method is the generation of

connected subgraphs, since all connected subgraphs must be generated and I do not

test for connectivity.

Avis and Fukuda [14] showed that a reverse search algorithm will generate the

connected induced subgraphs of a graph. The algorithm that I present here is an

implementation of reverse search. The algorithm is based on the idea that the

connected induced subgraphs of a given graph can be generated by starting from a

subset containing each single vertex of the graph and recursively adding a neighbor

of that subset to the subset of vertices. In essence, the connected subgraphs of the

graph are given by the leaves of a tree defined by the choice of whether or not a

certain neighbor of the current subset is in the connected subgraph. Given a subset

139

of vertices, the choice of whether or not a certain neighbor is in the subgraph gives

two branches of a subtree descending from a vertex representing the current subset.

This tree can be searched, using for example depth-first search, to generate all

connected subgraphs. In addition, each subtree will only include subsets of vertices

that are larger than the subset represented by the root of the subtree. Thus, once I

find a connected zero-forcing set of a certain size, I can prune all branches of the

tree that lead to subsets of equal or greater size. Algorithm 6.2 gives the

psuedocode for my algorithm.

6.4.2 Integer Programming Methods

While the Wavefront algorithm is difficult to adapt to connected zero-forcing, the

integer programming models introduced in the previous section can be adapted to

the problem simply by adding constraints to enforce connectivity on the chosen

zero-forcing set. I focus on adding connectivity constraints to Model 6.2 because it

is the best performing model from the previous section that allows us to ensure

connectivity. Drawing from the literature on connected dominating sets and

connected power dominating sets, there are multiple ways of modeling connectivity.

Fan and Watson [66] compared four methods for enforcing connectivity in integer

programs: Miller-Tucker-Zemlin (MTZ) constraints, Martin constraints,

single-commodity flow constraints, and multi-commodity flow constraints. They

found that the MTZ constraints provided the best computational performance for

both the connected dominating set and connected power dominating set problems.

Another method of enforcing connectivity is to add a,b-separation cutting planes

when needed to cut off disconnected solutions. This method has been used by

Buchanan, Sang Sung, Butenko, and Pasiliao [29] for connected dominating sets; by

140

Algorithm 6.2: Branch and bound connected zero-forcing algorithm

Data: A graph G; three sets of vertices Not, S, N(S) ; and a constant L
Result: A minimum connected zero-forcing set of G
if Not, S, and N(S) are not initialized then

Not = V , S = ∅, N(S) = ∅, L = |V |;
end
if S is empty then

C = Not;
end
else

C = Not ∩N(S);
end
if C is empty then

if S is a zero-forcing set then
L = |S|;
return S;

end
else

return;
end

end
else

Choose any v ∈ C;
Algorithm 6.2(Not− v, S, N(S), L);
if |S| < L− 1 then

Algorithm 6.2(Not− v, S ∪ v, N(S) ∪ neighbors(v), L);
end

end

141

Fishetti et al. [72] for Steiner trees; and by Carvajal et al [38] for forest planning

problems. Wang, Buchanan, and Butenko [131] studied conditions that cause such

inequalities to induce facets of the connected subgraph polytope.

In this section, I compare the use of MTZ constraints and a,b-separation

inequalities to enforce connectivity for the connected zero-forcing problem. I also

compare to a brute force method that generates all connected subsets of vertices

and tests to see if they are zero-forcing, and to the branch and bound method in

Algorithm 6.2.

MTZ constraints were originally introduced by Miller, Tucker, and Zemlin [98] to

study the Traveling Salesman Problem. The basic idea of MTZ constraints is to

enforce the existence of a directed spanning tree in the subgraph induced by the

chosen vertices. For my implementation, I follow Fan and Watson’s [66] explanation

of the method introduced by Quintāo, da Cunha, Mateus, and Lucena [107]. In this

implementation, two new vertices, α and β are added to the graph, and a set Enew of

edges is also added. Enew contains a directed edge from each of the two new vertices

to all the original vertices (I continue to denote the set of original vertices by V).

Enew also contains a directed edge from α to β. The idea behind this alteration of

the graph is that the vertices that are not chosen to be in the forcing set will have a

positive edge variable coming into them from α, while β will have a positive edge

variable going to the root of the directed spanning tree of the chosen connected

zero-forcing set. Model 6.2 combines with the MTZ constraints to form Model 6.8.

Model 6.8 Integer Program Model of the Connected Zero-Forcing Problem using

MTZ Constraints

142

Min.
∑
v∈V

sv

S.t.:
∑
v∈B

sv ≥ 1 ∀B ∈ B (1)∑
v∈V

yβ,v = 1 (2)∑
i:(i,v)∈E

yi,v = 1 ∀v ∈ V (3)

yα,v + yv,i ≤ 1 ∀(v, i) ∈ E (4)

(n+ 1)yi,v + ui − uv + (n− 1)yv,i ≤ n ∀(v, i) ∈ E (5)

(n+ 1)yi,v + ui − uv ≤ n ∀(v, i) ∈ Enew (6)

xv = 1− yα,v ∀v ∈ V (7)

yα,β = 1 (8)

uα = 0 (9)

1 ≤ uv ≤ n+ 1 ∀v ∈ V ∪ {β} (10)

s ∈ {0, 1} (11)

y ∈ {0, 1} (12)

u ∈ Z (13)

In Model 6.8, the constraints (1) and (11) are the original zero-forcing

constraints from Model 6.2. The rest of the constraints are the MTZ constraints.

Constraint (2) ensures that there is an edge chosen from β to some vertex that will

be the root of the directed spanning tree of the zero-forcing set. Constraint (3)

ensures that each vertex has an incoming edge. Constraint (4) ensures that vertices

connected to α cannot be used to connect to any other vertices. Constraints (5) and

(6) ensures that there are no cycles in the chosen edges. Constraint (7) ensures that

vertices chosen to be in the forcing set must be in the spanning tree instead of

connected to α. The rest of the constraints are just bounds.

143

A solution of Model 6.8 is an optimal connected zero-forcing set; however, the

MTZ constraints require that the number of variables in the model is more than

triple that of Model 6.2. Furthermore, some of the variables in Model 6.8 are integer

instead of binary. A second method for finding connected forcing sets does not

require additional variables in the model. Instead of additional variables, valid

inequalities can be added that cut off disconnected solutions. As previously

mentioned, this method has been used for other problems in the literature (see for

example [29], [72], and [38]).

The valid inequalities that I will add to Model 6.2 are known as a,b-separation

inequalities. The idea behind these constraints is that if a set C of vertices is a

vertex cut separating two vertices a and b in a graph and both a and b are chosen to

be in the zero-forcing set, then some vertex from C must also be chosen to be in the

zero-forcing set. Model 6.9 gives the complete integer programming model for

connected zero-forcing using a,b-separation inequalities. Constraints (1) and (3) are

the zero-forcing constraints from Model 6.2, and the constraints (2) are the

a,b-separation inequalities.

Model 6.9 Integer Program Model of the Connected Zero-Forcing Problem using

a,b-separators

Min.
∑
v∈V

sv

S.t.:
∑
v∈B

sv ≥ 1 ∀B ∈ B (1)

sa + sb −
∑
v∈C

sv ≤ 1 ∀ pairs a, b ∈ V,C an a,b-separator (2)

s ∈ {0, 1} (3)

The a,b-separation inequalities can be separated efficiently using the observation

144

that if the chosen zero-forcing set Z is not connected, then the set C = V \Z must

be a vertex cut separating at least two vertices a ∈ Z and b ∈ Z. However, as was

pointed out by Buchanan et al. [29], the resulting vertex cuts are likely larger than

necessary. Since the decision variable for each vertex in C appears in these

constraints, the constraints are stronger when the size of the vertex cut, S, is

minimized. Therefore, Buchanan et al. [29] gave an algorithm for deleting vertices

from a vertex cut of G until it became inclusion minimal. For the dominating set

problem, a valid cutting plane can be obtained from a vertex cut; however, a

zero-forcing set does not have to be dominating. Therefore, I also require that the

vertex cut must be an a,b-separator for a, b ∈ Z. In Algorithm 6.3, I give a modified

version of Buchanan et al.’s [29] algorithm that ensures the resulting vertex cut will

be an a,b-separator.

145

Algorithm 6.3: a,b-Separator Algorithm (adapted from [29])

Data: A graph G = (V,E), two vertices a, b ∈ V , and an a,b-separator C ⊂ V

Result: An inclusion-minimal a,b-separator C ′ ⊂ C

C ′ = {v ∈ C : ∃w /∈ C, {v, w} ∈ E};

S = {S : S is a connected component of G[V \C ′]};

for v ∈ C ′ do

if v is not adjacent to Sa, Sb ∈ S with a ∈ Sa and b ∈ Sb then

C ′ = C ′\v;

Let Sv = {S ∈ S: v is adjacent to S};

Let Snew =
∪

S∈Sv
S ∪ v;

S = Snew ∪ (S\Sv) ;

end

end

146

6.5 Computational Results for Connected Zero-Forcing

This section presents computational results from finding minimum connected

zero-forcing sets using the methods previously mentioned.

6.5.1 Implementation Details

As with the basic zero-forcing problem, computational results were obtained on a

Dell Precision T1650 workstation with a 3.3 GHz Intel Core i3-2120 CPU, 3.7 GB of

RAM, and Red Hat Enterprise Linux version 6.6. The code was written in C++

and compiled with g++ version 4.8. Integer programs were solved using Gurobi

version 5.5.0 set to use a single thread.

Model 6.8 was solved exactly like Model 6.2 with the addition of the MTZ

constraints. Model 6.8 was solved in Gurobi with a POLLING callback to terminate

the method after 2 hours. A maximal set of disjoint forts was added to the

formulation before solving. This maximal set is found by iteratively finding

minimum size forts (using Model 6.3) that are disjoint from each other until no

more such forts can be found. Other fort constraints were added to the model using

a MIPSOL callback to add violated forts. Gurobi calls this callback whenever it

finds a new integral incumbent solution. The callback generates minimum size

violated forts by using Gurobi to solve Model 6.3. If a violated fort is found, the

MIPSOL callback adds that fort to the formulation as a lazy constraint. If a

violated fort is not found, then Gurobi terminates with an optimal solution.

Model 6.9 was solved similarly to Model 6.8. A POLLING callback was used to

terminate the method after 2 hours. Both fort constraints and a,b-separation

inequalities are added to the model using a MIPSOL callback. This callback first

generates a minimum size violated fort by using Gurobi to solve Model 6.3. If a

147

violated fort is found, the MIPSOL callback adds that fort to the formulation as a

lazy constraint. If a violated fort is not found, then the callback checks whether the

current solution is connected. This connectivity check is done using a breadth-first

search to find a component of the graph induced by the current solution. If the

solution is not connected, then Algorithm 6.3 is run on the separator given by all

vertices that are not in the current solution. The a,b-separation inequality

corresponding to the minimal separator given by Algorithm 6.3 is then added to

Model 6.9 as a lazy constraint. If a violated fort is not found and the solution is

connected, then Gurobi terminates with an optimal solution.

To enable lazy constraints, the “PreCrush” and “LazyConstraints” parameters

were both set to 1. All the other parameters were left to their defaults in Gurobi.

The branching strategy was also left to the Gurobi default. The times reported in

this section are the time taken by Gurobi to optimize the relevant model. The time

necessary for data input and setting up the Gurobi model is not reported.

6.5.2 Computational Tests

I again test the different algorithms on three classes of random graphs: cubic,

connected Watts-Strogatz [133] graphs with parameters 5 and 0.3, and connected

Watts-Strogatz graphs with parameters 10 and 0.3. The parameters for the

Watts-Strogatz graphs refer to the number of neighbors initially given to each

vertex and to the probability that an edge is rewired, respectively. I used my own

C++ implementation to generate random cubic graphs, and I used the connected

Watts-Strogatz graph generator from the NetworkX version 1.8.1 package in Python

2.7.6 to generate the Watts-Strogatz graphs. For each class of graph, I generated 5

random instances with 10, 20, ..., 100 vertices (I started at 20 vertices for

148

Watts-Strogatz graphs with parameters 10 and 0.3) and tested each algorithm until

all 5 graphs of a certain size could not be solved by the algorithm within 2 hours.

Table 6.18 gives the number of instances of each type that were solved by each

method. These results show that the Fort Cover IP with MTZ constraints (Model

6.8) performs better than the combinatorial brute force and branch and bound

techinques as well as the Fort Cover IP with A,B separator constraints. This result

is somewhat surprising since the A,B separator constraints have outperformed the

MTZ constraints on other problems such as connected dominating set [29]. The

results also show that the Fort Cover IP with MTZ constraints performs better for

connected zero-forcing than Wavefront did for basic zero-forcing. Thus, the addition

of the connectivity constraint makes the zero-forcing problem easier to solve.

The helpfulness of MTZ constraints can be clearly seen in the number of forts

required to solve the Fort Cover IP with MTZ constraints vs. the plain Fort Cover

IP. Table 6.16 compares the average number of forts required for the connected

problem vs. the basic problem. The results show that the addition of MTZ

constraints drastically decreases the number of forts that must be generated. The

percentage of time used by the algorithm to generate forts is also decreased in the

connected problem. Table 6.17 gives the average percentage of time spent by each

method to generate forts.

Tables 6.20, 6.21, and 6.22 give the average running times on each graph size for

each method on the cubic, Watts-Strogatz(5, 0.3), and Watts-Strogatz(10, 0,3)

graphs, respectively. These results show that the branch and bound method

performs best on small graphs, but as the size of the graphs increase or more

connected subgraphs are contained in the graph, the Fort Cover IP with MTZ

constraints starts to perform better than the branch and bound method. The Fort

149

Table 6.16 : Comparison of the number of forts required in connected vs. uncon-

nected forcing.

Cubic WS (5,0.3) WS (10,0.3)

Graph Size MTZ FC MTZ FC MTZ FC

10 4.4 17.6 20.6 22.8 N/A N/A
20 11.4 67.2 36.4 102.8 887.2 1133.8
30 9.4 153.2 79.8 245.2 6754.75 14024.8
40 8.4 1834.2 168.8 2334.2 T T
50 14.6 4569 388.6 15801 T T
60 45.6 27082 697.5 1489 T T
70 65 T 554 T T T
80 178 T T T T T
90 156.8 T T T T

Note: The MTZ columns give the average number of forts required by the Fort Cover
IP with MTZ constraints. The FC columns give the average number of forts required
by the Fort Cover IP without the MTZ constraints. T indicates that the method did
not solve within 2 hours for all of the instances of the specified size. The averages
reported here are only over the instances that were solved by the methods within the
2 hour time limit.

150

Table 6.17 : Average percentage of time spent generating forts for connected zero-

forcing.

Cubic WS (5,0.3) WS (10,0.3)

|V | MTZ A,B MTZ A,B MTZ A,B

10 21.9 29.6 43.6 57.6 N/A N/A

20 32.3 47.7 34.7 62.7 33.0 75.3

30 6.7 24.8 36.7 63.5 6.9 24.8

40 0.8 7.9 12.8 27.9

50 1.4 7.3 7.5 16.9

60 1.9 4.1 3.1* 13.5*

70 1.3 9.4 2.2* 14.3*

80 0.3 7.8*

90 0.6 7.1*

Note: Asterisks indicate that not all instances of the specified size were solved within

2 hours. In these cases, the reported percentage is the percentage of the 2 hours that

was used to generate forts.

151

Cover IP with MTZ constraints is able to solve the largest instances. The complete

results for cubic, Watts-Strogatz (5, 0.3), and Watts-Strogatz (10, 0.3) graphs are

given in Tables 6.23, 6.24, and 6.25, respectively.

Table 6.18 : Number of instances solved by each method.

Graph Type Total BF B&B IP with MTZ IP with A,B

Cubic 50 15 40 46 36
WS (5, 0.3) 50 15 25 30 28
WS (10, 0.3) 45 5 5 9 10

Note: Columns BF and B&B are the brute force and branch and bound methods,
respectively. Bold text indicates the method with the best performance.

Table 6.19 : Size of graphs where methods start to fail.

Graph Type BF B&B IP with MTZ IP with A,B

Cubic 40 70 100 80
WS (5, 0.3) 40 40 60 60
WS (10, 0.3) 30 30 30 40

Note: Columns BF and B&B are the brute force and branch and bound methods,
respectively. Bold text indicates the method with the best performance.

152

Table 6.20 : Average running times for connected zero-forcing algorithms on random

cubic graphs.

Graph Size Avg. ZFS size Brute Force Branch & Bound IP with MTZ IP with A,B

10 3.8 0.007 0.001 0.02 0.01

20 5.4 0.50 0.0128 0.12 0.09

30 7.8 1334.21 0.28 0.76 0.49

40 9.8 T 537.0 4.49 3.28

50 10.4 T 21.97 19.95 79.79

60 12 T 550.0 56.60 1141.84

70 13.4 T 287.33* 261.54 3541.51

80 15.6 T 2857.07* 1869.82 1685.30*

90 15.2 T 3192.58* 2952.18 T

100 16 T T 2566.91* T

Note: Asterisks indicate that not all instances of the specified size were solved. In these cases, the reported results

is the average time for the instances that were successfully solved. Bold text indicates the method with the best

performance.

153

Table 6.21 : Average running times for connected zero-forcing algorithms on random

Watts-Strogatz graphs with parameters (5, 0.3).

Graph Size Avg. ZFS size Brute Force Branch & Bound IP with MTZ IP with A,B

10 4.4 0.011 0.003 0.07 0.05

20 6.2 1.72 0.21 0.42 0.24

30 7 90.62 1.34 2.73 2.15

40 9.4 T 25.86* 25.47 20.48

50 10.8 T 1102.20* 236.47 267.90

60 11.75 T 2223.9* 2199.54* 1876.90*

70 13 T T 7180.12* T

Note: Asterisks indicate that not all instances of the specified size were solved. In these cases, the reported results

is the average time for the instances that were successfully solved. Bold text indicates the method with the best

performance (measured first by number of instances of the relevant size solved and then by average time).

Table 6.22 : Average running times for connected zero-forcing algorithms on random

Watts-Strogatz graphs with parameters (10, 0.3).

Graph Size Avg. ZFS size Brute Force Branch & Bound IP with MTZ IP with A,B

20 12 112.63 16.49 26.21 9.65

30 15.4 T T 3768.18* 850.94

40 T T T T

Note: Asterisks indicate that not all instances of the specified size were solved. In these cases, the reported results

is the average time for the instances that were successfully solved. Bold text indicates the method with the best

performance.

154

Table 6.23 : Running times for connected zero-forcing algorithms on cubic graphs.

BF B & B IP with MTZ IP with A,B

Graphs Z(G) time time time forts fort time time forts fort time AB cuts AB time

cubic10 1 4 0.009 0.001 0.013 2 0.0003 0.011 2 0.003 5 0.001
cubic10 2 4 0.012 0.001 0.017 2 0.001 0.009 2 0.002 1 0.000
cubic10 3 4 0.007 0.001 0.027 6 0.013 0.010 5 0.003 0 0.000
cubic10 4 4 0.007 0.001 0.016 3 0.001 0.007 3 0.002 3 0.000
cubic10 5 3 0.001 0.001 0.015 9 0.007 0.010 8 0.004 0 0.000
cubic20 1 5 0.33 0.007 0.111 11 0.052 0.077 10 0.050 0 0.000
cubic20 2 6 0.96 0.021 0.093 6 0.004 0.063 15 0.006 9 0.002
cubic20 3 6 0.87 0.019 0.152 18 0.048 0.12 26 0.059 2 0.001
cubic20 4 5 0.16 0.009 0.131 11 0.041 0.078 12 0.046 0 0.000
cubic20 5 5 0.19 0.008 0.099 11 0.047 0.088 10 0.049 1 0.000
cubic30 1 10 5301.21 0.912 1.70 5 0.002 1.00 31 0.040 18 0.006
cubic30 2 6 13.91 0.023 0.25 6 0.016 0.16 17 0.080 0 0.001
cubic30 3 7 41.17 0.067 0.71 24 0.139 1.03 27 0.13 0 0.001
cubic30 4 9 1170.48 0.326 0.85 4 0.002 0.16 16 0.041 19 0.006
cubic30 5 7 144.3 0.084 0.31 8 0.022 0.11 13 0.035 8 0.003
cubic40 1 11 T 10.15 8.98 8 0.013 2.51 43 0.18 49 0.022
cubic40 2 9 T 2511.15 1.52 4 0.012 0.80 30 0.16 19 0.011
cubic40 3 9 T 160.36 2.06 11 0.053 3.42 31 0.19 6 0.004
cubic40 4 10 T 1.89 4.64 10 0.024 6.83 42 0.14 23 0.011
cubic40 5 10 T 1.43 5.26 9 0.010 2.86 26 0.13 9 0.005
cubic50 1 10 T 63.75 7.92 10 0.060 19.05 195 2.53 64 0.039
cubic50 2 11 T 11.71 37.28 14 0.116 38.55 82 0.996 27 0.018
cubic50 3 9 T 1.84 4.98 13 0.254 24.76 123 2.98 17 0.012
cubic50 4 12 T 27.06 36.67 22 0.091 293.73 351 2.86 76 0.047
cubic50 5 10 T 5.49 12.88 14 0.091 22.86 117 1.74 13 0.009
cubic60 1 11 14.7 48.84 72 1.75 475.44 700 30.89 4 0.005
cubic60 2 15 2659.64 96.29 17 0.11 4033.24 1213 21.03 121 0.111
cubic60 3 11 11.48 39.88 58 1.10 731.66 1155 47.51 8 0.008
cubic60 4 11 15.2 36.17 51 0.75 207.21 233 6.19 6 0.006
cubic60 5 12 48.99 61.81 30 0.45 261.63 413 10.00 20 0.018
cubic70 1 13 127.73 200.52 43 1.04 7019.35 14773 1278.55 50 0.057
cubic70 2 14 493.68 278.79 55 1.31 5360.54 7240 447.52 19 0.021
cubic70 3 12 73.97 207.96 154 10.84 2291.46 2036 158.86 17 0.020
cubic70 4 14 453.94 300.41 39 0.90 1880.15 3006 149.05 119 0.125
cubic70 5 14 T 320.02 34 0.61 1156.06 1687 67.19 130 0.130
cubic80 1 15 1199.35 1001.07 94 3.77 T 5279 395.75 63 0.085
cubic80 2 16 T 1463.63 84 2.18 T 4938 208.18 324 0.394
cubic80 3 17 T 5163.61 608 34.61 T 10923 890.99 68 0.098
cubic80 4 16 4514.79 1188.15 49 1.39 T 12015 742.84 353 0.453
cubic80 5 14 T 532.63 55 1.74 1685.30 1246 133.00 66 0.084
cubic90 1 14 830.4 1550.05 142 9.03 T 2406 535.63 3 0.009
cubic90 2 14 3066.68 900.06 158 11.2 T 1456 227.56 15 0.027
cubic90 3 15 2479.32 4095.76 227 16.55 T 1763 442.76 28 0.047
cubic90 4 17 T 5357.49 100 3.97 T 5227 786.14 16 0.029
cubic90 5 16 6393.93 2857.52 157 17.69 T 2868 574.38 73 0.116
cubic100 1 T T 141 5.69
cubic100 2 T T 267 21.36
cubic100 3 T T 154 10.79
cubic100 4 16 T 2566.91 100 16.05
cubic100 5 T T 653 92.4

Note: All times are in seconds. The time columns give the total time required. The fort time and AB time columns
give the time used to generate forts and a,b-separation constraints, respectively. The forts and AB cuts columns give
the number of forts or a,b-constraints generated, respectively. T indicates the algorithm did not find a solution within
2 hours. Bold text indicates the method with the best performance.

155

Table 6.24 : Running times for connected zero-forcing algorithms on random Watts-

Strogatz graphs with parameters (5, 0.3).

BF B & B IP with MTZ IP with A,B

Graphs Z(G) time time time forts fort time time forts fort time AB cuts AB time

WS10 5 0.3 1 4 0.011 0.002 0.064 15 0.034 0.038 14 0.025 0 0.000
WS10 5 0.3 2 4 0.007 0.002 0.099 14 0.017 0.053 14 0.020 0 0.000
WS10 5 0.3 3 4 0.008 0.002 0.058 13 0.023 0.049 14 0.023 0 0.000
WS10 5 0.3 4 5 0.017 0.005 0.067 29 0.034 0.061 30 0.040 0 0.000
WS10 5 0.3 5 5 0.011 0.005 0.080 32 0.046 0.068 30 0.049 0 0.000
WS20 5 0.3 1 6 2.05 0.040 0.391 44 0.156 0.25 46 0.17 1 0.000
WS20 5 0.3 2 6 0.89 0.778 0.335 22 0.094 0.17 27 0.09 7 0.002
WS20 5 0.3 3 6 0.85 0.043 0.354 38 0.181 0.23 41 0.17 0 0.000
WS20 5 0.3 4 7 3.05 0.087 0.639 45 0.091 0.33 75 0.16 0 0.000
WS20 5 0.3 5 6 1.74 0.094 0.388 33 0.155 0.20 29 0.14 0 0.000
WS30 5 0.3 1 6 29.99 0.198 1.58 55 0.945 1.25 61 1.05 0 0.001
WS30 5 0.3 2 8 182.18 2.05 5.47 160 1.553 5.29 210 2.04 0 0.001
WS30 5 0.3 3 7 50.97 0.283 2.63 52 0.602 1.37 74 0.92 0 0.000
WS30 5 0.3 4 7 136.59 3.81 3.76 66 0.693 1.61 76 0.92 0 0.001
WS30 5 0.3 5 7 53.35 0.346 1.78 66 0.728 1.22 71 0.86 6 0.002
WS40 5 0.3 1 9 T 29.21 16.39 124 2.51 14.32 233 4.75 1 0.002
WS40 5 0.3 2 9 T 14.00 28.30 221 4.59 28.01 318 6.91 1 0.002
WS40 5 0.3 3 10 T T 23.26 101 1.33 13.39 190 2.92 7 0.005
WS40 5 0.3 4 10 T 43.0 33.97 202 2.89 26.64 470 5.90 1 0.002
WS40 5 0.3 5 9 T 17.24 25.43 196 4.60 20.06 273 7.60 0 0.001
WS50 5 0.3 1 11 3586.52 140.23 326 12.99 288.44 966 27.24 14 0.011
WS50 5 0.3 2 11 196.02 168.79 183 4.97 268.99 1170 34.78 24 0.016
WS50 5 0.3 3 10 T 78.06 218 9.67 132.52 916 30.83 12 0.009
WS50 5 0.3 4 11 324.67 252.13 521 18.66 259.45 1336 50.15 1 0.002
WS50 5 0.3 5 11 301.57 543.16 695 30.49 390.11 1869 75.33 6 0.005
WS60 5 0.3 1 12 3684.89 3058.47 832 61.92 3017.09 5813 394.68 37 0.035
WS60 5 0.3 2 13 T 4724.15 1392 94.59 T 12962 698.46 8 0.009
WS60 5 0.3 3 11 T 103.84 77 4.53 77.27 227 9.0 40 0.035
WS60 5 0.3 4 T T 2546 215.84 T 13514 1035.18 5 0.007
WS60 5 0.3 5 11 762.91 911.69 489 35.59 659.43 1580 124.49 4 0.007
WS70 5 0.3 1 T T 1718 179.09 T 12723 1453.47 8 0.012
WS70 5 0.3 2 13 T 7180.12 554 76.96 T 4440 645.31 22 0.025
WS70 5 0.3 3 T T 1147 149.10 T 9974 1205.51 7 0.010
WS70 5 0.3 4 T T 1454 139.07 T 6601 768.98 16 0.019
WS70 5 0.3 5 T T 2321 247.83 T 9490 1071.59 25 0.029
WS80 5 0.3 1 T T 1466 341.49
WS80 5 0.3 2 T T
WS80 5 0.3 3 T T
WS80 5 0.3 4 T T
WS80 5 0.3 5 T T
WS90 5 0.3 1 T
WS90 5 0.3 2 T
WS90 5 0.3 3 T
WS90 5 0.3 4 T
WS90 5 0.3 5 T

Note: All times are in seconds. The time columns give the total time required. The fort time and AB time columns
give the time used to generate forts and a,b-separation constraints, respectively. The forts and AB cuts columns give
the number of forts or a,b-constraints generated, respectively. T indicates the algorithm did not find a solution within
2 hours. Bold text indicates the method with the best performance.

156

Table 6.25 : Running times for connected zero-forcing algorithms on random Watts-

Strogatz graphs with parameters (10, 0.3).

BF B & B IP with MTZ IP with A,B

Graphs Z(G) time time time forts fort time time forts fort time AB cuts AB time

WS20 10 0.3 1 12 114.64 16.67 24.35 854 9.19 9.76 770 7.47 0 0.001
WS20 10 0.3 2 12 111.95 16.4 29.16 938 9.25 10.30 864 7.76 0 0.001
WS20 10 0.3 3 12 112.21 16.54 25.49 906 8.70 9.34 824 7.08 0 0.001
WS20 10 0.3 4 12 112.03 16.48 27.54 869 7.64 9.40 814 6.94 0 0.001
WS20 10 0.3 5 12 112.33 16.37 24.54 869 8.30 9.47 811 7.10 0 0.001
WS30 10 0.3 1 15 T T 2472.75 4773 136.23 662.27 4938 132.91 0 0.002
WS30 10 0.3 2 16 T T 6017.80 9828 244.39 1118.27 9048 195.06 0 0.001
WS30 10 0.3 3 14 T T 786.95 3332 132.75 190.57 2708 98.74 0 0.002
WS30 10 0.3 4 16 T T 5795.21 9086 236.75 1144.46 8384 190.98 0 0.002
WS30 10 0.3 5 16 T T T 9922 281.13 1139.14 8595 204.86 0 0.001
WS40 10 0.3 1 T 13169 826.00 T 20305 1196.88 0 0.002
WS40 10 0.3 2 T 8472 672.62 T 12833 792.71 0 0.001
WS40 10 0.3 3 T 9721 803.86 T 12988 1000.30 0 0.002
WS40 10 0.3 4 T 10461 801.25 T 15714 1093.75 0 0.003
WS40 10 0.3 5 T 9308 726.67 T 14422 1000.56 0 0.003

Note: All times are in seconds. The time columns give the total time required. The fort time and AB time columns
give the time used to generate forts and a,b-separation constraints, respectively. The forts and AB cuts columns give
the number of forts or a,b-constraints generated, respectively. T indicates the algorithm did not find a solution within
2 hours. Bold text indicates the method with the best performance.

6.6 Conclusions

This chapter has introduced new methods for computing minimum zero-forcing sets

of graphs. The computational results show that integer programming models based

on a fort covering perspective perform much better than a model based on the

standard infection perspective. In some cases, the fort covering integer program can

be improved by only adding forts that are facet-inducing; however, this

improvement is not significant enough to increase the size of problems that can be

solved by the integer program. While the fort covering perspective is an

improvement over the infection perspective, the C++ implementation of the

Wavefront algorithm developed for this chapter can solve larger problems than the

integer programs and also solves the problems in less time. Thus, the Wavefront

157

algorithm is the best algorithm for the basic zero-forcing problem. However, some

graphs, such as stars, are difficult for the Wavefront algorithm, but easy to solve

with the Fort Cover integer program.

While the Wavefront algorithm is best for the basic zero-forcing problem, the

integer programming methods allow the addition of different types of constraints,

such as connectivity. Although the combinatorial branch and bound method

presented in this chapter performs well for small problems, it does not scale well to

larger problems. It relies on generating the connected induced subgraphs that are

no larger than the zero forcing number. As graphs get larger and have higher

degrees, they will have more such subgraphs, and the branch and bound method

will have to generate more subgraphs. For the connected zero-forcing problem, the

fort covering based integer program with either MTZ constraints or a,b-separation

constraints is able to solve larger instances than combinatorial methods. On graphs

with at least 40 vertices, these integer programs are also faster on average than the

branch and bound method.

Between the two integer programs, the MTZ constraints are better for the cubic

graphs, which are relatively sparse. For the Watts-Strogatz graphs with parameters

5 and 0.3, the methods showed similar performance. The a,b-separation constraints

are better for the Watts-Strogatz graphs with parameters 10 and 0.3. As the

average degree of the vertices increases, the likelihood that a chosen subset of

vertices will induce a connected graph increases. Therefore, for the Watts-Strogatz

graphs with high average degree (paramers 10 and 0.3), the a,b-separation

inequalities were usually not necessary. In such cases, the a,b-separation inequalities

are not added to the model, and it is solved as a basic zero-forcing problem. In

general for the connected problem, the fort covering integer program with MTZ

158

constraints is the best algorithm.

Both in the connected and basic versions, the zero-forcing problem is difficult at

least in part because of the symmetry of solutions. This symmetry does not arise

from single vertices being indistinguishable, but rather from sets of vertices being

indistinguishable. For each solution, an equivalent solution can be obtained by

simply choosing the end vertices of each forcing chain [17]. This symmetry is harder

to detect than simple isomporphisms in the graph. However, any method for dealing

with the symmetry of zero-forcing problems has the potential to drastically improve

the performance of the integer programs presented in this chapter. Therefore, future

work into this problem should focus on breaking this symmetry.

159

Chapter 7

Conclusions

This thesis has presented improved methods for solving two graph location

problems, the p-Median problem and the zero-forcing problem. I also presented

methods for solving the connected variant of the zero-forcing problem. This thesis

also introduced new bounds on the size of minimum zero-forcing sets and on the

zero-forcing iteration index.

For the p-median problem, this thesis gave a new algorithm based on branch

decompositions of linear programming or heuristic support graphs. The BDPM

algorithm finds the best solution whose edges are a subset of the edges of the input

support graph, and it is a type of exact heuristic concentration. The algorithm run

on a linear programming support graph, BDPM-LP, proved to be an effective

technique to find a high quality integral solution when a branch decomposition of

the linear programming support graph could be found with a width no more than 7.

It is more accurate than the Imp-GA algorithm as long as the number of medians is

not very small. It is also more accurate than the HHP algorithm when the linear

program does not have to be altered because the width of its branch decomposition

is too high.

The version of BDPM that is run on a pool of heuristic solutions, BDPM-H, was

able to produce improved solutions from the heuristic pool using GRASP as the

heuristic. Larger p values generally lead to more significant improvements.

BDPM-GRASP outperforms Imp-GA when the branch decompositions have low

160

width (no more than 7 in our experiments). It is less accurate on average than

HHP. However, the difference is not large, and, in some cases, BDPM-GRASP was

more accurate. BDPM-GRASP is also competitive in running time with HHP when

branchwidths are no more than 5.

The performance of BDPM-H is dependent on the heuristic, or heuristics, chosen

to form the support graph. An interesting future research direction would be to

investigate whether certain classes of heuristics allow for more improvement or

better performance than the GRASP heuristic. Another interesting direction, since

HHP already uses GRASP as a base step, would be to combine BDPM-GRASP as a

subroutine in HHP.

In general, HHP is still a better general algorithm for the p-median problem

than either BDPM-GRASP or BDPM-LP. However, when the linear program is

easy to solve and the support graph has a low width decomposition, the BDPM-LP

algorithm is better than HHP. Since, a heuristic method for finding branch

decompositions is relatively fast compared to either BDPM-LP or HHP, very little

extra compuational time is needed to check whether a low width decomposition is

available. Thus, a potential way to use BDPM is to run the heuristics or the linear

program to get a support graph. Then, check whether a low width decomposition is

found by a heuristic. If a low width decomposition is found, then use BDPM;

otherwise, use a heuristic such as HHP.

For the zero-forcing problem, this thesis presented both theoretical and

computational results. For theoretical results, I showed that branchwidth is a tight

lower bound on the zero-forcing number. I also introduced the concept of

zero-forcing forts and showed that every zero-forcing set must contain a vertex in

each zero-forcing fort. The fort perspective on zero-forcing is useful both for

161

theoretical and computational results. For example, it was used in this thesis to

prove the correctness of the Wavefront algorithm, and it was also used to model the

zero-forcing problem as an integer program.

In addition to the fort theory, I showed that the zero-forcing iteration index of a

cubic graph is at most 3|V |
4
. This bound is the first non-trivial bound on the

zero-forcing iteration index. Although the 3|V |
4

bound is tight in the sense that a

minimum zero-forcing set can be found for certain graphs that takes 3|V |
4

iterations

to force the graph, it is my conjecture that such graphs have a minimum forcing set

that will force the graph in fewer iterations. Thus, a future direction of research is

to improve on the 3|V |
4

bound.

This thesis also introduced new ways to compute minimum zero-forcing sets and

minimum connected zero-forcing sets of a graph. I gave an integer programming

formulation that was based on the infection or color-change rule definition of the

zero-forcing process; however, this modeling perspective requires big-M constraints

to model the infection process. These constraints lead to poor performance for the

integer program. I also used the theory of zero-forcing forts to develop another

integer programming model based on covering all forts in the graph. Although this

method requires separation of violated fort constraints, it still performs better than

the infection perspective. Both of these integer programming models do not perform

better than the existing Wavefront algorithm [35]; however, the Wavefront

algorithm is limited to the basic zero-forcing problem. If additional constraints are

added, such as requiring connectivity of the zero-forcing set, then the Wavefront

algorithm is no longer applicable. However, the integer programming approaches

can easily be adapted to the connected problem.

This thesis introduced two methods for computing minimum connected

162

zero-forcing sets of a graph. The first method is a combinatorial branch and bound

style method based on generating all connected subsets of vertices, but pruning

branches of the search tree that lead to connected subsets larger than the current

best connected zero-forcing set found up to that point. This method works well

when there is a connected forcing set of small size and many branches of the search

tree are pruned quickly. However, it does not work well when the graph has a

relatively large number of connected subgraphs that are smaller than the

zero-forcing set because the branch and bound method must generate all of these

connected subgraphs.

The second method is an integer programming method that simply adds

connectivity constraints, such as Miller-Tucker-Zemlin (MTZ) constraints [98] or

a,b-separation constraints (see for example [29], [72], and [38]), to the fort covering

model of the basic problem. This method requires no special properties of the graph

under consideration and, on cubic graphs, gives performance better than that of

Wavefront on the basic problem. It also beats the branch and bound method in the

size of graphs for which connected zero-forcing sets can be computed and is faster

than the branch and bound method for graphs with at least 40 vertices. Of the two

methods for enforcing connectivity, the MTZ constraints seem to perform better for

sparser graphs and a,b-separation performs better on denser graphs.

For difficult instances of both the basic and the connected zero-forcing problem,

the integer program has difficulty proving optimality, and the lower bound

eventually increases very slowly. Thus, a good direction for future research is to

investigate more facets of the zero-forcing polytope or determine methods for

findings forts that will contribute significantly to the lower bound. Additionally, in

my computiational experiments, I used integer programs to separate violated fort

163

constraints. A faster combinatorial method for separating these constraints would

be interesting.

The most difficult aspect of computing zero-forcing sets seems to be dealing with

the symmetry inherent in the basic problem. Given any zero-forcing set, an

equivalent zero-forcing set can be found by simply reversing the direction that the

infection travels through the graph [17]. This fact leads to multiple equivalent

solutions and unnecessary repetition of work by the solver. Unfortunately, this

symmetry is not immediately apparent as isomorphisms in the graph. So, it is not

immediately apparent how the methods built for dealing with isomorphic variables

in an integer program (see for example, [96]) can be applied to deal with the

symmetry of the zero-forcing problem. Therefore, finding a way to break the

symmetry of the problem, either through constraints in the integer program model

or through branching rules, would be a valuable direction of future research.

164

Bibliography

[1] A. Aazami, Hardness results and approximation algorithms for some

problems on graphs, PhD thesis, University of Waterloo, 2008.

[2] , Domination in graphs with bounded propagation: algorithms,

formulations and hardness results, Journal of Combinatorial Optimization, 19

(2010), pp. 429–456.

[3] AIM Minimum Rank Special Graphs Work Group, Zero forcing sets

and the minimum rank of graphs, Linear Algebra and its Applications, 428

(2008), pp. 1628 – 1648.

[4] E. Almodovar, L. DeLoss, L. Hogben, K. Hogenson, K. Murphy,

T. Peters, and C. A. Raḿırez, Minimum rank, maximum nullity and

zero forcing number for selected graph families, Involve, 3 (2010), pp. 371–392.

[5] O. Alp, E. Erkut, and Z. Drezner, An efficient genetic algorithm for the

p-median problem, Annals of Operations Research, 122 (2003), pp. 21–42.

[6] D. Amos, Y. Caro, R. Davila, and R. Pepper, Upper bounds on the

k-forcing number of a graph, Discrete Applied Mathematics, 181 (2015), pp. 1

– 10.

[7] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The

Traveling Salesman Problem: A Computational Study, Princeton University

165

Press, Princeton, 2006.

[8] J. E. C. Arroyo, M. dos Santos Soares, and P. M. dos Santos, A

grasp heuristic with path-relinking for a bi-objective p-median problem, in 2010

10th International Conference on Hybrid Intelligent Systems, Aug 2010,

pp. 97–102.

[9] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala,

and V. Pandit, Local search heuristics for k-median and facility location

problems, SIAM Journal on Computing, 33 (2004), pp. 544–562.

[10] P. Avella, M. Boccia, S. Salerno, and I. Vasilyev, An aggregation

heuristic for large scale p-median problem, Computers & Operations Research,

39 (2012), pp. 1625 – 1632.

[11] P. Avella, M. Boccia, and I. Vasilyev, Computational experience with

general cutting planes for the set covering problem, Operations Research

Letters, 37 (2009), pp. 16 – 20.

[12] P. Avella and A. Sassano, On the p-median polytope, Mathematical

Programming, 89 (2001), pp. 395–411.

[13] P. Avella, A. Sassano, and I. Vasil’ev, Computational study of

large-scale p-median problems, Mathematical Programming, 109 (2007),

pp. 89–114.

[14] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied

Mathematics, 65 (1996), pp. 21 – 46.

166

[15] K. Baker, A heuristic approach to locating a fixed number of facilities,

Logistics and Transportation Review, 10 (1974), pp. 195–205.

[16] E. Balas and S. M. Ng, On the set covering polytope: I. all the facets with

coefficients in {0, 1, 2}, Mathematical Programming, 43 (1989), pp. 57–69.

[17] F. Barioli, W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben,

B. Shader, P. van den Driessche, and H. van der Holst, Zero

forcing parameters and minimum rank problems, Linear Algebra and its

Applications, 433 (2010), pp. 401 – 411.

[18] , Parameters related to tree-width, zero forcing, and maximum nullity of a

graph, Journal of Graph Theory, 72 (2013), pp. 146–177.

[19] W. Barret, S. Butler, M. Catral, S. M. Fallat, and H. T. Hall,

The maximum nullity of a complete subdivision graph is equal to its zero

forcing number, Electronic Journal of Linear Algebra, 27 (2014).

[20] J. E. Beasley, A note on solving large p-median problems, European

Journal of Operational Research, 21 (1985), pp. 270–273.

[21] , Lagrangean heuristics for location problems, European Journal of

Operational Research, 65 (1993), pp. 383 – 399.

[22] A. Berliner, C. Brown, J. Carlson, N. Cox, L. Hogben, J. Hu,

K. Jacobs, K. Manternach, T. Peters, N. Warnberg, and

M. Young, Path cover number, maximum nullity, and zero forcing number of

oriented graphs and other simple digraphs, Involve, 8 (2015), pp. 147–167.

167

[23] B. Bozkaya, J. Zhang, and E. Erkut, An efficient genetic algorithm for

the p-median problem, in Facility location: Applications and theory, Z. Drezner

and H. W. Hamacher, eds., Springer, Berlin, 2002, ch. 6, pp. 179–205.

[24] O. Briant and D. Naddef, The optimal diversity management problem,

Operations Research, 52 (2004), pp. 515–526.

[25] B. Brimkov, Complexity and Computation of Connected Zero Forcing, ArXiv

e-prints, (2016).

[26] B. Brimkov and R. Davila, Characterizations of the Connected Forcing

Number of a Graph, ArXiv e-prints, (2016).

[27] B. Brimkov, C. C. Fast, and I. V. Hicks, Computational Approaches for

Zero Forcing and Related Problems, Working Paper, (2017).

[28] , Graphs with Extremal Connected Forcing Numbers, ArXiv e-prints,

(2017).

[29] A. Buchanan, J. S. Sung, S. Butenko, and E. L. Pasiliao, An integer

programming approach for fault-tolerant connected dominating sets,

INFORMS Journal on Computing, 27 (2015), pp. 178–188.

[30] D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini, and

M. Young, Zero forcing, linear and quantum controllability for systems

evolving on networks, IEEE Transactions on Automatic Control, 58 (2013),

pp. 2349–2354.

[31] D. Burgarth and V. Giovannetti, Full control by locally induced

relaxation, Physical Review Letters, 99 (2007), p. 100501.

168

[32] D. Burgarth, V. Giovannetti, L. Hogben, S. Severini, and

M. Young, Logic circuits from zero forcing, Natural Computing, 14 (2015),

pp. 485–490.

[33] D. Burgarth and K. Maruyama, Indirect hamiltonian identification

through a small gateway, New Journal of Physics, 11 (2009), p. 103019.

[34] D. Burgarth, K. Maruyama, and F. Nori, Indirect quantum tomography

of quadratic hamiltonians, New Journal of Physics, 13 (2011), p. 013019.

[35] S. Butler, L. DeLoss, J. Grout, H. T. Hall, J. LaGrange,

T. McKay, J. Smith, and G. Tims., Minimum Rank Library (Sage

programs for calculating bounds on the minimum rank of a graph, and for

computing zero forcing parameters), 2014.

https://github.com/jasongrout/minimum rank.

[36] S. Butler and M. Young, Throttling zero forcing propagation speed on

graphs, The Australasian Journal of Combinatorics, 57 (2013), pp. 65–71.

[37] M. E. Captivo, Fast primal and dual heuristics for the p-median location

problem, European Journal of Operational Research, 52 (1991), pp. 65 – 74.

[38] R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and

A. Weintraub, Imposing connectivity constraints in forest planning models,

Operations Research, 61 (2013), pp. 824–836.

[39] M. Catral, A. Cepek, L. Hogben, M. Huynh, K. Lazebnik,

T. Peters, and M. Young, Zero forcing number, maximum nullity, and

path cover number of subdivided graphs, Electronic Journal of Linear Algebra,

23 (2012).

169

[40] K. B. Chilakamarri, N. Dean, C. X. Kang, and E. Yi, Iteration index

of a zero forcing set in a graph, Bulletin of the Institute of Combinatorial

Mathematics and its Applications, 64 (2012), pp. 57–72.

[41] W. Cook and P. D. Seymour, Tour merging via branch-decomposition,

INFORMS Journal on Computing, (2003), pp. 233–248.

[42] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, Exceptional

paper—Location of bank accounts to optimize float: An analytic study of exact

and approximate algorithms, Management Science, 23 (1977), pp. 789–810.

[43] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, A canonical

representation of simple plant location problems and its applications, SIAM

Journal on Algebraic Discrete Methods, 1 (1980), pp. 261–272.

[44] E. S. Correa, M. T. A. Steiner, A. A. Freitas, and C. Carnieri, A

genetic algorithm for solving a capacitated p-median problem, Numerical

Algorithms, 35 (2004), pp. 373–388.

[45] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale

traveling-salesman problem, Operations Research, 2 (1954), pp. 393–410.

[46] R. Davila, Bounding the forcing number of a graph, Master’s thesis, Rice

University, 2015.

[47] R. Davila and M. Henning, Total Forcing Sets in Trees, ArXiv e-prints,

(2017).

[48] R. Davila, M. Henning, C. Magnant, and R. Pepper, Bounds on the

connected forcing number of a graph, ArXiv e-prints, (2016).

170

[49] R. Davila and M. A. Henning, On the Total Forcing Number of a Graph,

ArXiv e-prints, (2017).

[50] R. Davila and F. Kenter, Bounds for the Zero-Forcing Number of Graphs

with Large Girth, Theory and Applications of Graphs, 2 (2015), pp. 1–10.

[51] P. J. Densham and G. Rushton, Strategies for solving large

location-allocation problems by heuristic methods, Environment and Planning

A, 24 (1992), pp. 289–304.

[52] C. Dibble and P. J. Densham, Generating interesting alternatives in gis

and sdss using genetic algorithms, in GIS/LIS Proceedings, vol. 2, American

Society for Photogrammetry and Remote Sensing, November 1993,

pp. 180–189.

[53] P. A. Dreyer Jr. and F. S. Roberts, Irreversible k-threshold processes:

Graph-theoretical threshold models of the spread of disease and of opinion,

Discrete Applied Mathematics, 157 (2009), pp. 1615 – 1627.

[54] Z. Drezner, Dynamic facility location: The progressive p-median problem,

Location Science, 3 (1995), pp. 1 – 7.

[55] , On the conditional p-median problem, Computers & Operations

Research, 22 (1995), pp. 525 – 530.

[56] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen,

Stabilized column generation, Discrete Mathematics, 194 (1999), pp. 229 – 237.

[57] C. J. Edholm, L. Hogben, M. Huynh, J. LaGrange, and D. D. Row,

Vertex and edge spread of zero forcing number, maximum nullity, and

171

minimum rank of a graph, Linear Algebra and its Applications, 436 (2012),

pp. 4352 – 4372. Special Issue on Matrices Described by Patterns.

[58] J. Ekstrand, C. Erickson, H. T. Hall, D. Hay, L. Hogben,

R. Johnson, N. Kingsley, S. Osborne, T. Peters, J. Roat, A. Ross,

D. D. Row, N. Warnberg, and M. Young, Positive semidefinite zero

forcing, Linear Algebra and its Applications, 439 (2013), pp. 1862 – 1874.

[59] J. Ekstrand, C. Erickson, D. Hay, L. Hogben, and J. Roat, Note on

positive semidefinite maximum nullity and positive semidefinite zero forcing

number of partial 2-trees, Electronic Journal of Linear Algebra, 23 (2012).

[60] S. Elloumi, A tighter formulation of the p-median problem, Journal of

Combinatorial Optimization, 19 (2010), pp. 69–83.

[61] D. Erlenkotter, A dual-based procedure for uncapacitated facility location,

Operations Research, 26 (1978), pp. 992–1009.

[62] L. Eroh, C. X. Kang, and E. Yi, Metric dimension and zero forcing

number of two families of line graphs, Mathematica Bohemica, 139 (2014),

pp. 467–483.

[63] , On zero forcing number of graphs and their complements, Discrete

Mathematics, Algorithms and Applications, 07 (2015), p. 1550002.

[64] , A comparison between the metric dimension and zero forcing number of

trees and unicyclic graphs, Acta Mathematica Sinica, English Series, (2017),

pp. 1–17.

172

[65] S. Fallat, K. Meagher, and B. Yang, On the complexity of the positive

semidefinite zero forcing number, Linear Algebra and its Applications, 491

(2016), pp. 101 – 122. Proceedings of the 19th {ILAS} Conference, Seoul,

South Korea 2014.

[66] N. Fan and J.-P. Watson, Solving the connected dominating set problem

and power dominating set problem by integer programming, in Combinatorial

Optimization and Applications: 6th International Conference, COCOA 2012,

Banff, AB, Canada, August 5-9, 2012. Proceedings, G. Lin, ed., Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 371–383.

[67] C. C. Fast and I. V. Hicks, The effect of vertex degrees on the zero-forcing

number and iteration index of a graph, Submitted, (2016).

[68] , A branch decomposition algorithm for the p-median problem, To appear

in INFORMS Journal on Computing, (2017).

[69] E. Feldman, F. A. Lehrer, and T. L. Ray, Warehouse location under

continuous economies of scale, Management Science, 12 (1966), pp. 670–684.

[70] T. A. Feo and M. G. C. Resende, A probabilistic heuristic for a

computationally difficult set covering problem, Operations Research Letters, 8

(1989), pp. 67 – 71.

[71] , Greedy randomized adaptive search procedures, Journal of Global

Optimization, 6 (1995), pp. 109–133.

[72] M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci,

M. Resch, D. Salvagnin, and M. Sinnl, Thinning out steiner trees: a

173

node-based model for uniform edge costs, Mathematical Programming

Computation, (2016), pp. 1–27.

[73] M. Fischetti and A. Lodi, Optimizing over the first chvátal closure,

Mathematical Programming, 110 (2007), pp. 3–20.

[74] G. Fung and O. L. Mangasarian, Semi-supervised support vector

machines for unlabeled data classification, Optimization Methods and

Software, 15 (2001), pp. 29–44.

[75] S. Garćıa, M. Labbé, and A. Maŕın, Solving large p-median problems

with a radius formulation, INFORMS Journal on Computing, 23 (2011),

pp. 546–556.

[76] R. S. Garfinkel, A. W. Neebe, and M. R. Rao, An algorithm for the

m-median plant location problem, Transportation Science, 8 (1974),

pp. 217–236.

[77] M. Gentner, L. D. Penso, D. Rautenbach, and U. S. Souza,

Extremal values and bounds for the zero forcing number, Discrete Applied

Mathematics, 214 (2016), pp. 196 – 200.

[78] S. L. Hakimi, Optimum distribution of switching centers in a communication

network and some related graph theoretic problems, Operations Research, 13

(1965), pp. 462–475.

[79] P. Hansen, J. Brimberg, D. Urošević, and N. Mladenović, Solving

large p-median clustering problems by primal–dual variable neighborhood

search, Data Mining and Knowledge Discovery, 19 (2009), pp. 351–375.

174

[80] I. V. Hicks, Branchwidth heuristics, Congressus Numerantium, 159 (2002),

pp. 31–50.

[81] I. V. Hicks, Branch decompositions and minor containment, Networks, 43

(2004), pp. 1–9.

[82] I. V. Hicks, Planar branch decompositions i: The ratcatcher, INFORMS

Journal on Computing, 17 (2005), pp. 402–412.

[83] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, and

M. Young, Propagation time for zero forcing on a graph, Discrete Applied

Mathematics, 160 (2012), pp. 1994 – 2005.

[84] C. M. Hosage and M. F. Goodchild, Discrete space location-allocation

solutions from genetic algorithms, Annals of Operations Research, 6 (1986),

pp. 35–46.

[85] M. Hribar and M. Daskin, A dynamic programming heuristic for the

p-median problem, European Journal of Operational Research, 101 (1997),

pp. 499 – 508.

[86] L.-H. Huang, G. J. Chang, and H.-G. Yeh, On minimum rank and zero

forcing sets of a graph, Linear Algebra and its Applications, 432 (2010),

pp. 2961 – 2973.

[87] C. X. Kang and E. Yi, Probabalistic zero forcing in graphs, Bulletin of the

Institute of Combinatorial Mathematics and its Applications, 67 (2013),

pp. 9–16.

175

[88] O. Kariv and S. L. Hakimi, An algorithmic approach to network location

problems. ii: The p-medians, SIAM Journal on Applied Mathematics, 37

(1979), pp. 539–560.

[89] N. Karmarkar, A new polynomial-time algorithm for linear programming,

in Proceedings of the Sixteenth Annual ACM Symposium on Theory of

Computing, STOC ’84, New York, NY, USA, 1984, ACM, pp. 302–311.

[90] L. Khachiyan, Polynomial algorithms in linear programming, USSR

Computational Mathematics and Mathematical Physics, 20 (1980), pp. 53 –

72.

[91] A. A. Kuehn and M. J. Hamburger, A heuristic program for locating

warehouses, Management Science, 9 (1963), pp. 643–666.

[92] A. Kunkel, E. Van Itallie, and D. Wu, Optimal distribution of medical

backpacks and health surveillance assistants in malawi, Health Care

Management Science, 17 (2014), pp. 230–244.

[93] S. Li and O. Svensson, Approximating k-median via

pseudo-approximation, SIAM Journal on Computing, 45 (2016), pp. 530–547.

[94] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Controllability of complex

networks, Nature, 473, pp. 167–173.

[95] F. E. Maranzana, On the location of supply points to minimize transport

costs, Operational Research Quarterly, 15 (1964), pp. 261–270.

[96] F. Margot, Symmetry in integer linear programming, in 50 Years of Integer

Programming 1958-2008: From the Early Years to the State-of-the-Art,

176

M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,

G. Reinelt, G. Rinaldi, and L. A. Wolsey, eds., Springer Berlin Heidelberg,

Berlin, Heidelberg, 2010, pp. 647–686.

[97] S. A. Meyer, Zero forcing sets and bipartite circulants, Linear Algebra and

its Applications, 436 (2012), pp. 888 – 900.

[98] C. E. Miller, A. W. Tucker, and R. A. Zemlin, Integer programming

formulation of traveling salesman problems, Journal of the ACM, 7 (1960),

pp. 326–329.

[99] E. Minieka, Conditional centers and medians of a graph, Networks, 10

(1980), pp. 265–272.

[100] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez,

The p-median problem: A survey of metaheuristic approaches, European

Journal of Operational Research, 179 (2007), pp. 927 – 939.

[101] N. Monshizadeh, S. Zhang, and M. K. Camlibel, Zero forcing sets and

controllability of dynamical systems defined on graphs, IEEE Transactions on

Automatic Control, 59 (2014), pp. 2562–2567.

[102] J. M. Mulvey and H. P. Crowder, Cluster analysis: An application of

lagrangian relaxation, Management Science, 25 (1979), pp. 329–340.

[103] S. C. Narula, U. I. Ogbu, and H. M. Samuelsson, Technical note—An

algorithm for the p-median problem, Operations Research, 25 (1977),

pp. 709–713.

177

[104] R. T. Ng and J. Han, Efficient and effective clustering methods for spatial

data mining, in Proceedings of the 20th International Conference on Very

Large Data Bases, VLDB ’94, San Francisco, CA, USA, 1994, Morgan

Kaufmann Publishers Inc., pp. 144–155.

[105] M. Pérez, F. Almeida, and J. M. Moreno-Vega, A hybrid grasp-path

relinking algorithm for the capacitated p–hub median problem, in Hybrid

Metaheuristics: Second International Workshop, HM 2005, Barcelona, Spain,

August 29-30, 2005. Proceedings, M. J. Blesa, C. Blum, A. Roli, and

M. Sampels, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 2005,

pp. 142–153.

[106] Z. Pucha la, Local controllability of quantum systems, Quantum Information

Processing, 12 (2012), pp. 459–466.

[107] F. P. Quintāo, A. S. da Cunha, G. R. Mateus, and A. Lucena, The

k-cardinality tree problem: Reformulations and lagrangian relaxation, Discrete

Applied Mathematics, 158 (2010), pp. 1305 – 1314. Traces from LAGOS07

{IV} Latin American Algorithms, Graphs, and Optimization Symposium

Puerto Varas - 2007.

[108] P. Rebreyend, L. Lemarchand, and R. Euler, A computational

comparison of different algorithms for very large p-median problems, in

Evolutionary Computation in Combinatorial Optimization: 15th European

Conference, EvoCOP 2015, Copenhagen, Denmark, April 8-10, 2015,

Proceedings, G. Ochoa and F. Chicano, eds., Cham, 2015, Springer

International Publishing, pp. 13–24.

178

[109] J. Reese, Solution methods for the p-median problem: An annotated

bibliography, Networks, 48 (2006), pp. 125–142.

[110] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library, INFORMS

Journal on Computing, 3 (1991), pp. 376–384.

[111] M. G. C. Resende and R. Werneck, A hybrid heuristic for the p-median

problem, Journal of Heuristics, 10 (2004), pp. 59–88.

[112] C. S. ReVelle and R. W. Swain, Central facilities location, Geographical

Analysis, 2 (1970), pp. 30–42.

[113] N. Robertson and P. D. Seymour, Graph minors. x. obstructions to

tree-decomposition, Journal of Combinatorial Theory, Series B, 52 (1991),

pp. 153 – 190.

[114] E. Rolland, D. Schilling, and J. Current, An efficient tabu search

procedure for the p-median problem, European Journal of Operational

Research, 96 (1997), pp. 329 – 342.

[115] K. Rosing and C. ReVelle, Heuristic concentration: Two stage solution

construction, European Journal of Operational Research, 97 (1997), pp. 75 –

86.

[116] K. Rosing, C. ReVelle, E. Rolland, D. Schilling, and J. Current,

Heuristic concentration and tabu search: A head to head comparison,

European Journal of Operational Research, 104 (1998), pp. 93 – 99.

[117] K. Rosing, C. ReVelle, and D. Schilling, A gamma heuristic for the

p-median problem, European Journal of Operational Research, 117 (1999),

179

pp. 522 – 532.

[118] D. D. Row, Zero forcing number, path cover number, and maximum nullity

of cacti, Involve, 4 (2011), pp. 277–291.

[119] , A technique for computing the zero forcing number of a graph with a

cut-vertex, Linear Algebra and its Applications, 436 (2012), pp. 4423 – 4432.

Special Issue on Matrices Described by Patterns.

[120] J. Sáez-Aguado and P. C. Trandafir, Some heuristic methods for

solving p-median problems with a coverage constraint, European Journal of

Operational Research, 220 (2012), pp. 320 – 327.

[121] E. L. Senne and L. A. Lorena, Stabilizing column generation using

lagrangean/surrogate relaxation: an application to p-median location problems.

EURO 2001 - THE EUROPEAN OPERATIONAL RESEARCH

CONFERENCE - Erasmus University Rotterdam, July 9-11, 2001.

[122] E. L. Senne, L. A. Lorena, and M. A. Pereira, A branch-and-price

approach to p-median location problems, Computers & Operations Research,

32 (2005), pp. 1655 – 1664.

[123] D. Serra, C. ReVelle, and K. Rosing, Surviving in a competitive spatial

market: The threshold capture model, Journal of Regional Science, 39 (1999),

pp. 637–650.

[124] S. Severini, Nondiscriminatory propagation on trees, Journal of Physics A:

Mathematical and Theoretical, 41 (2008), p. 482002.

180

[125] P. D. Seymour and R. Thomas, Call routing and the ratcatcher,

Combinatorica, 14 (1994), pp. 217–241.

[126] F. A. Taklimi, S. Fallat, and K. Meagher, On the relationships

between zero forcing numbers and certain graph coverings, Special Matrices, 2

(2014), pp. 30–45, electronic only.

[127] A. Tamir, Obnoxious facility location on graphs, SIAM Journal on Discrete

Mathematics, 4 (1991), pp. 550–567.

[128] M. B. Teitz and P. Bart, Heuristic methods for estimating the generalized

vertex median of a weighted graph, Operations Research, 16 (1968),

pp. 955–961.

[129] The Sage Developers, SageMath, the Sage Mathematics Software System,

2016. http://www.sagemath.org.

[130] M. Trefois and J.-C. Delvenne, Zero forcing number, constrained

matchings and strong structural controllability, Linear Algebra and its

Applications, 484 (2015), pp. 199 – 218.

[131] Y. Wang, A. Buchanan, and S. Butenko, On imposing connectivity

constraints in integer programs, Mathematical Programming, (2017), pp. 1–31.

[132] N. Warnberg, Positive semidefinite propagation time, Discrete Applied

Mathematics, 198 (2016), pp. 274 – 290.

[133] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’

networks, Nature, 393 (1998), pp. 440–442.

181

[134] S. Welch and S. Salhi, The obnoxious p facility network location problem

with facility interaction, European Journal of Operational Research, 102

(1997), pp. 302 – 319.

[135] E. Yi, On zero forcing number of permutation graphs, in Combinatorial

Optimization and Applications: 6th International Conference, COCOA 2012,

Banff, AB, Canada, August 5-9, 2012. Proceedings, G. Lin, ed., Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 61–72.

