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Rising atmospheric CO2 concentrations have motivated efforts to better quantify 

reservoirs and fluxes of Earth’s carbon. Of these fluxes from the atmosphere, one that has 

received relatively little attention is the atmospheric carbon sink associated with 

carbonate mineral dissolution.  Osterhoudt (2014) and Salley (2016) explored new 

normalization techniques to improve and standardize a process for measuring this flux 

over large river basins. The present research extends this work to the 490,600 km2 Ohio 

River drainage basin and 11 subbasins. The study estimated the DIC flux leaving these 

basins between October 1, 2013, and September 30, 2014, based on secondary hydro-

geochemical, geologic, and climatic data. The total annual DIC flux for the Ohio River 

basin was estimated to be 7.54 x 1012 g carbon (C). The time-volume normalized value of 

DIC flux for the Ohio basin was 3.36 x 108 g C/km3 day, where the km3 refers to the 

amount of water available during the year. This was within 71.4% agreement with the 

Barren River data (Salley, 2016) and within 63.9% agreement with the Green River data 

(Osterhoudt, 2014).  In general, normalized DIC flux values of sub-basins containing at 

least modest amounts (more than 8%) of exposed carbonates (Tennessee, Cumberland, 

Green, Kentucky, Licking, Monongahela, and Allegheny) were in strong agreement with 

the normalized DIC flux of the Ohio River basin, whereas inclusion of basins with little 

or no near surface carbonates (Wabash, Great Miami, Scioto and Kanawha) yielded poor 

agreement.  Regression analysis yielded strong agreement between DIC flux and the 
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normalization parameters for the carbonate-bearing sub-basins (R2 = 0.97, p = <0.001). 

Therefore, the normalization procedure appears to be an effective means of estimating 

DIC flux where surface carbonates serve as the primary source of alkalinity, even though 

these can constitute even a relatively small percentage of rock outcrop area. However, the 

normalization technique does not appear to be as effective among basins that do not 

receive alkalinity from interactions with surface carbonates.  Additional study is required 

to refine this technique to become more broadly applicable in generating estimates of 

atmospheric C flux from carbonate mineral weathering processes. 
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Chapter 1. Introduction 

 

Atmospheric carbon dioxide (CO2) has steadily increased in association with 

human activities since the mid-seventeenth century (Figure 1.1).  Concentrations 

currently exceed 400 ppm (Tans and Keeling, 2017) (Figure 1.2) and are expected to 

continue rising (Cox et al., 2000).  CO2 is a known greenhouse gas (GHG), shown to trap 

heat within the atmosphere leading to increasing global temperatures (Solomon et al., 

2009).  Concerns over the effects of these increases with regard to mitigating and 

predicting climate change have led to much investigation into the factors that control 

atmospheric concentrations of CO2.  Some have suggested that atmospheric CO2 must be 

balanced among other C stores to control the effects of climate change (Le Quéré et al., 

2009). 

 

 

Figure 1.1.  Atmospheric CO2 concentration over the past 420,000 years.  

Source: Modified from Falkowski et al. (2000). 
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Carbon budgeting is an appropriate method for tracking fluctuations of C as it 

cycles through the major reservoirs.  The C cycle circulates C among various reservoirs, 

including the atmosphere, hydrosphere, lithosphere, and biosphere (Figure 1.3).  Recent 

studies estimate that approximately half of the billions of tons of C produced annually 

remains in the atmosphere, while the remaining C is unaccounted for, leading to the so-

called “missing sink” (Sabine et al., 2004).  The remaining C is assumed to be stored in 

the ocean and terrestrial reservoirs.  However, the comparative roles of ocean and 

terrestrial storage are not fully understood, and conflicting reports of the magnitude of C 

uptake by the oceans present a challenge to the goal of understanding where and how C is 

exchanged among Earth’s reservoirs (Siegenthaler and Sarmiento, 1993). 

Figure 1.2.  Historical record of changes in atmospheric carbon dioxide levels since 

the early eighteenth century. 

Source: Tans and Keeling (2017). 
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Among the terrestrial reservoirs, the lithosphere is thought to have substantial sink 

capacity. Through the process of carbonate rock dissolution, CO2 is removed from the 

atmosphere.  Here, waters that have been acidified through interactions with CO2 in the 

air and soil react with calcium carbonate (CaCO3) found in carbonate rocks.  Carbonate 

rocks are considered an atmospheric sink because they contribute alkalinity and consume 

CO2 from the atmosphere via dissolution of carbonate minerals.  The resulting solutions 

contain various inorganic C species that are dominated by carbonic acid (H2CO3) at low 

pH, and bicarbonate (HCO3
-) and carbonate (CO3

2-) ions under neutral and basic 

conditions, respectively.  This process of chemical weathering can result in the burial of 

carbon-bearing sediments among inland waters, or the transport of dissolved aqueous 

species to the oceans where they are eventually precipitated.  It is believed that the North 

American continent is particularly well-suited to act as a terrestrial sink with relatively 

Figure 1.3.  Components of the carbon cycle  

Source: Pidwirny (2006). 
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widespread carbonate rock outcrops (Figure 1.4), but uncertainty exists as to the actual 

magnitude of the potential sink.  Estimates of the North American sink have yielded 

values ranging from 0.1 to 2.0 Pg C yr-1 (King et al., 2007).  This broad range is most 

likely a consequence of the fact that a variety of methods has been used to measure the 

carbonate dissolution sink and a lack of a uniform approach to conducting such 

measurements.  Standardized methods for measurement are required to assess more 

accurately the capacity of carbonate rock to sequester atmospheric carbon. 

Figure 1.4 Carbon reservoirs and fluxes. 

Source: Sundquist (1993). 

 

This research has sought to evaluate a method for calculating the atmospheric C 

sink via a better understanding of carbonate dissolution processes.  Available secondary 

data as provided by geospatial and other publicly available databases were used to 

determine total C flux leaving the Ohio River basin.  In doing so, this research evaluated 

Figure 1.4. Carbon reservoirs and fluxes. 

Source: Sundquist (1993). 
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the validity of the proposed calibration for the carbon flux of Salley (2016), to test its 

applicability over a broad range of basin areas, geological conditions, study periods, and 

climate types.  The study evaluated previous work that suggested by normalizing 

calculations of inorganic C flux according to area of carbonate-rock outcrop, length of 

exposure, and the volume of water available for dissolution, the major variables affecting 

C flux have been determined. If the primary factors that influence DIC flux are captured 

within the model, it would indicate that other factors, such as land-use practices and 

carbon-soil interactions, do not significantly impact the inorganic C flux for a given basin 

and, thus, are negligible in terms of calculating flux. Prior investigations suggest that 

such a calibration exists that would enable researchers to arrive at a value for the 

inorganic C flux leaving a drainage basin, using only the known area of the carbonate 

rock outcrop and the total amount of water available (rainfall-evapotranspiration) over a 

given time interval. Studies employing this technique over smaller regional basins have 

yielded results in very close agreement. Regression analysis of these data points reveals a 

linear correlation (R2 = 0.97, p = <0.001) (see Osterhoudt, 2014; Salley, 2016) for the 

inorganic C flux (grams of C) as a function of the flux of water in contact with carbonate 

rock areas of each basin (km3 H20 day1).  Prior to this investigation, the approach had not 

been tested at much larger scales. Furthermore, the data collected previously by 

Osterhoudt (2014) were acquired through a labor-intensive process requiring direct 

measurements of water chemistry. These methods are not practical for application in 

many locations and are not feasible for implementation at the continental or global scale.  

This project aimed to determine whether the methods used by Osterhoudt (2014) in the 

Green River basin, and by Salley (2016) in the Barren River basin, could be applied to 
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substantially larger drainages by inclusion of additional data points to that linear 

relationship, such that the probability of a chance linear relationship among these points 

became less as the number of data points increased. The project also sought to determine 

whether the use of secondary data provided similarly accurate flux estimates for the Ohio, 

Tennessee, Cumberland, Green, Kentucky, Licking, Kanawha, Monongahela, Allegheny, 

Scioto, Great Miami, and Wabash drainages as did the high-resolution data used in prior 

studies. 

The Ohio River drainage basin was used as the study area as part of an ongoing 

series of investigations intended to improve the methods by which the inorganic carbon 

flux from the associated carbonate rock weathering could be applied to drainage basins of 

various sizes, time intervals, and volumes of water available for dissolution. The total 

inorganic carbon sink from the atmosphere by carbonate rock weathering may be 

estimated as one half of the total DIC flux leaving a river basin influenced by carbonate 

rock interactions (Jiang and Yuan, 1999; Liu and Zhao, 2000; Groves and Meiman, 2001; 

Groves et al., 2002; Amiotte Suchet et al., 2003; He et al., 2013).  The following research 

questions are addressed by this study: 

1. What are the inorganic carbon flux rates for the Ohio River basin and its major 

subbasins? 

 

2. Are the variables of carbonate rock outcrop area, volume of water available 

(precipitation – evapotranspiration), and time of exposure suitable considerations 

in the normalization of carbon flux for a large drainage basin? 

 

3. If so, does the use of secondary water chemistry data appear to be as effective in 

determining carbon flux as similar methods employing high-resolution 

measurements? 
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Chapter 2.  Literature Review 

2.1 Introduction 

Revelle and Suess (1957: 19) described a natural experiment taking place at the 

global scale wherein humans were “… returning to the atmosphere and oceans the 

concentrated organic C (Corg) stored in sedimentary rocks over hundreds of millions of 

years.”  Although the experiment had no deliberate design, it brought valuable awareness 

to the impacts of human activities on carbon cycling. Contemporary concerns over 

climate change have subsequently motivated a more precise understanding of what 

factors contribute to the observed changes in climate patterns and how these variables 

may be managed to minimize risk to human and environmental well-being (Fan et al., 

1998; Cox et al., 2000; Falkowski et al., 2000). Atmospheric CO2 concentrations have 

been an important governing factor in determining global climate, which has been 

significantly impacted by human activity. Studies of the impacts of atmospheric CO2 

have demonstrated an increase in temperature associated with the heat-trapping GHGs 

(Solomon et al., 2009).  Scientists expect that, without interventions, both atmospheric 

CO2 concentrations and temperature should experience a steady increase over the coming 

century (Hoffert et al., 1998; Cox et al., 2000).  Research has suggested that, to 

counteract the effects of climate change, atmospheric CO2 concentrations must be 

stabilized (Le Quéré et al., 2009).  One way to accomplish this is to reduce anthropogenic 

CO2 emissions, yet the potential impacts on national economies and soaring human 

populations make implementation of these goals politically difficult.  Because the level of 

atmospheric C is controlled by various fluxes that either add or remove C from the 

atmosphere, many are now looking in the direction of C sinks to regulate naturally the 

excess C contributed by human activities.  Atmospheric CO2 budgeting has become an 
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area of great interest in contributing to a better understanding of climate change through 

developing an understanding of CO2 exchange among various reservoirs by identifying 

and quantifying the C flux from each.  This review aims to establish a context for 

evaluating the extent of the C sink created by carbonate rock dissolution on the 

continents. 

 

2.2 The Carbon Cycle 

Carbon is the fundamental unit of all living organisms and is important in many of the 

chemical processes occurring on Earth.  Carbon circulates on a global scale through 

various reservoirs via a series of transfers between those reservoirs (fluxes) in chemical 

composition in a process known as the carbon cycle.  The three major C reservoirs 

include the atmosphere, ocean, and terrestrial systems (Post et al., 1990).  The Earth’s 

crust represents the largest global carbon reservoir (Sundquist, 1993), within which most 

carbon is stored in carbonate rocks (Liu and Zhao, 2000). Other sources of carbon storage 

(in order of decreasing magnitude) include the intermediate and deep ocean, terrestrial 

soils and detritus, the surface ocean, the atmosphere, and land biota (Figure1.4) 

(Siegenthaler and Sarmiento, 1993; Sundquist, 1993). Carbon is cycled between the 

atmosphere and ocean by gas transfers, while biota exchange C with the atmosphere and 

terrestrial environment via photosynthesis and respiration (Siegenthaler and Sarmiento, 

1993). The amount of C interchanged between these stores is known as the overall carbon 

cycle and is dependent on the amount of C in each reservoir, in addition to turnover rates 

that fluctuate according to several environmental variables (Post et al., 1990).  Humans 

influence the C budget in numerous ways, including emissions produced from burning 

fossil fuels.  Fossil fuel combustion mobilizes carbon previously sequestered in the 
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preserved products of photosynthesis in the distant geologic past, resulting in carbon 

exchange between terrestrial features and the atmosphere. Other anthropogenic practices, 

such as deforestation, decrease the capacity of vegetation to store C via uptake for 

photosynthetic processes (Post et al., 1990). Attempts to quantify the net fluxes have 

yielded an imbalance of C storage within the three major reservoirs relative to known 

magnitudes of CO2 introduced into the atmosphere by human activities since the 

Industrial Revolution. An understanding of the magnitude and location of atmospheric C 

sources and sinks is crucial for predicting how changes in atmospheric C are likely to 

influence climate. 

 

2.3 The “Missing Sink” and Changes in Storage 

The atmospheric concentration of CO2 for the remote, unpolluted atmosphere is 

accurately known from a record of continuous measurements at Mauna Loa, Hawaii 

Observatory, since 1958, and is currently over 400 ppm. Estimates of the C uptake and 

storage by the oceans compared to the measured atmospheric C sink reveal that less C 

has been sequestered between these reservoirs than what has been contributed to the 

atmosphere by anthropogenic C emissions. Thus, a large balance of C is unaccounted for 

and is assumed to be held within terrestrial reservoirs. The term ‘missing sink’ has been 

used to describe this disparity and the existence of inaccuracy in attempts to quantify a 

global C flux (Tans et al. 1990; Sarmiento and Sundquist, 1992; Siegenthaler and 

Sarmiento, 1993; Sundquist, 1993). During the 1980s alone, CO2 emissions from fossil-

fuel combustion and the deficit in CO2 uptake from deforestation totaled about 7 Gt C yr-

1 (gigatons C per year) (1 Gt = 109 tons). Increases in atmospheric CO2 accounted for 

approximately half the amount of C emissions released during this time (Siegenthaler and 
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Sarmiento, 1993).  Tans et al. (1990) examined C budgets for the period 1980-1989 and 

found that, of the 7 ± 1 Gt C yr-1 total C emissions, only ~4.5 Gt C yr-1 were accounted 

for between the 3.5 Gt C yr-1 stored in the atmosphere and <1 Gt C yr-1 from ocean 

uptake. Siegenthaler and Sarmiento (1993) reexamined this same period using surface 

water pCO2 data and determined that ~5.5 Gt C yr-1 were accounted for between the 

atmospheric and oceanic reservoirs, with atmospheric storage remaining equal to 

previous estimates, but considered ~2 Gt C yr-1 as coming from ocean uptake. More 

recent studies by Sabine et al. (2004) suggested approximately 3.4 Gt of the total 7 Gt C 

produced annually are contained within the atmosphere, while 3.6 Gt remains 

unaccounted for.  The residual CO2 must, therefore, be taken up by the oceans, terrestrial 

biosphere, or a combination of the two (Sabine et al., 2004).  The so-called missing sink 

has led to detailed exploration into development of an overall C budget that could explain 

the discrepancy (Liu and Zhao, 2000; Liu et al., 2008). 

Further obscuring our knowledge of C sinks are changes in the storage capacities 

of the various sinks themselves.  A study of observed trends in C sources and sinks found 

that, between 1959 and 2008, an average of 43% of all emissions produced remained 

within the atmosphere, with the other 57% absorbed by combined terrestrial and oceanic 

sinks.  Over the past several decades, the amount of C remaining in the atmosphere has 

increased to 45% and models suggest that this trend is highly influenced by decreased 

CO2 uptake by C sinks, which is thought to be a result of positive feedback cycles 

contributing to climate change and variability. At present, the magnitude of the change in 

C uptake among various sinks in response to climate change is highly uncertain but may 

significantly impact atmospheric CO2 concentrations into the future.  Therefore, a clearer 



 

11 
 

understanding of the available C sources and sinks, particularly the less-explored 

terrestrial sinks, and fluctuations in the amount of C being removed from the atmosphere 

by each, is crucial for managing future climate change (Le Quéré et al., 2009). 

2.4 Overview of Carbon Reservoirs 

2.4.1 Atmospheric Carbon Storage 

The burning of fossil fuels has been identified as a major agent responsible for the 

observed increase in atmospheric CO2 concentrations (Sabine et al., 2004; Tans and 

Keeling, 2017). Atmospheric CO2 concentrations before the Industrial Revolution 

averaged about 6 Pg C (1 Pg = 1015 g) (Sigman and Boyle, 2000), but this average 

increased considerably around the mid eighteenth century. Approximately 337 Gt of C 

have been introduced into the atmosphere from fossil fuel burning and production of 

cement from 1751 to the present. Particularly alarming is the fact that over of half that 

amount has been released by human activities since 1970 (Boden et al., 2010).  The 

Scripps Institute of Oceanography observatory in Mauna Loa, Hawaii, has a record of 

atmospheric CO2 concentrations dating from 1958 to the present. The well-known 

Keeling Curve generated from these data shows a continuous increase in CO2 

concentrations in Earth’s atmosphere over the entire span of the record. Currently, the 

remote atmospheric CO2 concentration is over 400 ppm throughout the year, though this 

level fluctuates seasonally with the timing of deciduous forest activities (i.e., growth and 

photosynthesis) in the northern hemisphere (Keeling et al., 2005). 

Some have questioned whether recent increases in atmospheric C concentrations 

could be the result of the natural cyclic fluctuations in the C cycle. These arguments 

suggest that natural fluxes between C reservoirs may outweigh those resulting from 
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anthropogenic perturbations. Several lines of opposition refute this, including a multitude 

of evidence that indicates a relatively stable balance of the sum fluxes into and out of all 

reservoirs prior to industrialization. Estimates of CO2 fluxes into and out of the 

atmosphere prior to the industrial period reveal that C emissions to the atmosphere were 

roughly equal to the C stored within the atmosphere and ocean (see Siegenthaler and 

Sarmiento, 1993; Falkowski et al., 2000; Sabine et al., 2004).  Data from ice cores taken 

from the Antarctic, and dated between 1000 and 1800 CE, demonstrate that atmospheric 

CO2 levels varied with a range of only ~10 parts per million (ppm) over the past 1,000 

years (Siegenthaler and Sarmiento, 1993).  Falkowski et al. (2000) reported that, over the 

past 420,000 years, atmospheric CO2 oscillated in approximately 100,000-year cycles 

between about 180 and 280 ppm (Figure 1.1). Sabine et al. (2004) offered a slightly more 

concise estimate of 200-280 ppm. The current rate of increase in atmospheric carbon is 

equal to at least 10 and perhaps as much as 100 times greater than during any period 

within the past 420,000 years (Falkowski et al., 2000). Evidence of the annual mean CO2 

concentration measurements in the Northern Hemisphere, where about 95% of fossil fuel 

emissions originate, has consistently exceeded the levels in the Southern Hemisphere 

since the onset of atmospheric monitoring (Siegenthaler and Sarmiento, 1993).  The 

Intergovernmental Panel on Climate Change (IPCC, 2014) provided a summary of the 

observed changes and causes of climate change, prediction of future climate change, risks 

and impacts, and the development and implementation of adaptive and mitigation 

strategies including best management practices. With regard to the existence and causes 

of climate change, the IPCC (2014: 1) wrote: 

“Anthropogenic greenhouse gas emissions have increased since the 

pre-industrial era, driven largely by economic and population 
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growth, and are now higher than ever. This has led to atmospheric 

concentrations of carbon dioxide, methane and nitrous oxide that are 

unprecedented in at least the last 800,000 years.  Their effects, 

together with those of other anthropogenic drivers, have been 

detected throughout the climate system and are extremely likely to 

have been the dominant cause of the observed warming since the 

mid-20th century.” 

 

2.4.2 Carbon Storage in the Ocean 

A large portion of the remaining CO2 contributed by human activity is absorbed 

by the ocean. Although it is known that the oceans function as impressive C reservoirs, 

many of the details remain unknown. Conflicting estimates of the actual amount of C 

uptake have been noted in reviews (Siegenthaler and Sarmiento, 1993), and the 

comparative roles of terrestrial and ocean CO2 uptake are not well known. The current 

estimates are derived from simulations and do not fully consider the actual DIC 

measurements from the ocean (Sabine et al., 2004).  Sabine et al. (2004) developed an 

estimate of the global oceanic CO2 sink between 1800 to 1994 equal to 118 ± 19 Pg C, 

which accounts for approximately 48% of all C emission products of fossil fuel and 

cement manufacturing during that time. Tracer-calibrated models used by Sarmiento and 

Sundquist (1992) estimated the total oceanic uptake of anthropogenic CO2 at ~2 Gt C yr-1. 

Carbon is present in the ocean in several forms. Dissolved inorganic carbon (DIC) 

is essentially equal to the sum of the carbon stored as dissolved CO2, carbonic acid 

(H2CO3), or the carbonate (CO3
2-) and bicarbonate (HCO3

-) ions.  Dissolved organic 

carbon (DOC) composed of Corg molecules represents the second most prevalent form of 

C stored in the ocean. The smallest proportion of C storage in the ocean is in the form of 

particulate organic C (POC) represented as living organisms and detritus.  Measurements 
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of ocean C concentrations during the 1990s determined that approximately 37,000 Gt C 

were present as DIC, ~1000 Gt C as DOC and ~30 Gt C as POC (Post et al., 1990). 

2.4.3 The Terrestrial Carbon Sink 

The balance of C not stored in the atmosphere or ocean must be stored within the 

terrestrial biosphere. Terrestrial C sinks include biological, lithological, and pedological 

components. Recent studies suggest that the North American continent has become a 

large sink of atmospheric CO2 (Fan et al., 1998; Myneni et al., 2001; Butler et al., 2010).  

Analysis of the global C budget has suggested that the North American sink may 

represent up to one-third of the combined global land and ocean CO2 sink (Pacala et al., 

2007).  The State of the Carbon Cycle Report (SOCCR) was developed as an anthology 

of late-20th century research on the C budget in North American terrestrial ecosystems 

(King et al., 2007). The report revealed the level of uncertainty associated with 

quantifying the atmospheric C sink in terrestrial systems with sink estimate values 

ranging from 0.1 to 2.0 PgC yr- 1. The large variation in land flux estimates is primarily 

the result of inconsistent methodologies employed to evaluate flux between C sources 

and sinks (Hayes et al., 2012). 

Inland waters are also considered part of the terrestrial C reservoir. However, 

because these bodies occupy a minimal fraction of the Earth’s surface area relative to the 

oceans and continents, they often have been overlooked in attempts to describe the C 

cycle quantitatively at both global and regional scales. Conservative estimates indicate 

that inland waters receive an annual C load about 1.9 Pg C yr-1 from natural background 

and anthropogenic C sources associated with the terrestrial landscape. Of this total load, 

it is estimated that about 0.2 Pg C yr-1
 is diverted to the lithosphere by burial in the 
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sediments, 0.9 Pg C yr-1 is deposited in the oceans, and the other 0.8 Pg C yr-1 is returned 

to the atmosphere by CO2 out-gassing. Thus, only about half of the C load entering inland 

waters is transported to the ocean (Cole et al., 2007). A portion of the C that enters inland 

bodies of water is prevented from entering the ocean because the C is trapped in lakes 

and reservoirs. Investigation of the C source-sink ratio of a eutrophic lake revealed that 

the ratio of C emissions to C sediment burial was equal to 0.8, suggesting that the lake 

behaved as an effective sink (Yang et al., 2008).  Another study found that, although the 

area of lake basins represents only 2% of the land surface area or only 0.8% of the area of 

the ocean surface, a significant amount of atmospheric-source C was contained within the 

lake sediments, equal to 0.07 Pg C yr-1 and equivalent to more than 25% of C 

sedimentation in the oceans (Einsele et al., 2001).  The high productivity associated with 

lacustrine systems leads to increased sedimentation rates, which likely accounts for the 

increased turnover rate among these inland water bodies compared to those observed in 

the ocean. 

The terrestrial C sink exhibits numerous facets aside from the sink associated with 

dissolution of carbonate minerals. Factors such as storage of CO2 in the soil, and the 

weathering of silicates and island basalts, may have substantial influence on the 

drawdown of atmospheric CO2. For example, soils are estimated to store approximately 

80% (2,500 Gt) of the total carbon in the terrestrial biosphere. The carbon pool that is 

stored in the soil is about 4.5 times greater than carbon stored in the biotic reservoir (560 

Gt). The potential capacity of the soil sink is estimated at 55-78 Gt C; however, the actual 

soil-carbon sink capacity is between 50-66% of the potential (Lal, 2004).  Silicate 

weathering due to tectonic uplift is also proposed as a mechanism for enhancing the sink 
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of atmospheric CO2. Silicate weathering is a component of the ‘uplift driven climate 

change’ hypothesis that contends the sequestration of atmospheric CO2 by silicate 

weathering is a strong function of continental relief and a pCO2-weathering feedback 

system (Li and Elderfield, 2013). Silicate weathering is occurring on massive scales in 

the Himalayan and Tibetan Plateaus as a result of climate-change-driven tectonic uplift 

(Garzione, 2008; Li and Elderfield, 2013).  Two of the most accepted potential feedback 

mechanisms for global cooling through decreases in atmospheric CO2 involve increasing 

precipitation of silicates in the deep sea or decreasing the weathering of island basalts due 

to elevated pH of seawater. Models of tectonic-climatic feedback systems associated with 

weathering of the Himalayas and Tibetan Plateau suggests that silicate weathering and 

organic C burial may be responsible for the decrease in atmospheric CO2 necessary to 

foster a global cooling phase (Garzione, 2008). Weathering of island basalts may have an 

important contribution in the atmospheric CO2 sink, as most oceanic islands are in areas 

of high tectonic activity and typically have strong relief leading to increased rates of 

physical erosion (Li and Elderfield, 2013). 

While other forms of atmospheric CO2 sinks are accepted as present in the 

terrestrial reservoir, the significantly greatly higher solubilities and dissolution rates of 

carbonate rocks relative to silicates suggest that the associated sink capacity is immense 

and worthy of consideration, at least over longer timescales. The remainder of the 

discussion on terrestrial C sinks builds on this information to focus on the significance of 

the terrestrial C sink as it arises from water-rock interactions and the process of carbonate 

dissolution. 
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2.5 Carbon Sink from Carbonate Rock Dissolution 

Morse and Arvidson (2002: 51) stated “Among the most important set of 

chemical reactions occurring under near Earth surface conditions are those involved in 

the dissolution of sedimentary carbonate minerals.” In terms of lithology, C sequestration 

by carbonate minerals estimated at 6 x 107 Pg C is about four orders of magnitude greater 

than storage in the biosphere or buried fossil fuels and about five orders of magnitude 

greater than atmospheric C storage (Falkowski et al., 2000) (Table 2.1).  Geologically, 

carbonic acid is the most abundant acid on the planet, whereas bicarbonate and carbonate 

ions are the major contributors of alkalinity (England et al., 2011). Increases in 

atmospheric CO2 have contributed to decreases in surface water pH, thus affecting 

mineral stability in carbonate rocks. It has been proposed, and generally accepted, that 

rivers in carbonate karst terrains have a more significant impact than non-carbonate rivers 

in regulating regional and global carbon cycling via dissolution and precipitation 

reactions among carbonate minerals. These dissolution and precipitation reactions are 

related to primary production. The Corg in vegetation is fixed from the atmosphere via 

photosynthesis, but as plants decay the carbon once stored in their tissues becomes part of 

the soil, eventually remineralizing in watersheds to form dissolved CO2, and then 

gradually returned to the atmosphere (Martin et al., 2013). Interactions between 

infiltrating precipitation and CO2 contained in the soil from microbial respiration 

processes are also closely associated with carbonate-mineral weathering. Carbonate-rock 

weathering on the continents represents a carbon sink, as carbonate minerals undergo 

dissolution in response to increasing acidity of ground and surface waters resulting from 

interactions of atmospheric and soil CO2, thereby removing carbon that once was held in 
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the atmosphere and preventing release of CO2 from the soil (Yuan, 1997; Ludwig et al., 

1998; Liu and Zhao, 2000). 

 

Table 2.1.  Carbon storage within the major reservoirs on Earth. 

 

Reservoir Quantity (Gt) 

Atmosphere 720 

Oceans 

Total inorganic 

Surface layer 

Deep layer 

Total organic 

75,800 

37, 400 

670 

36,730 

1,000 

Lithosphere 

Sedimentary carbonates 

Kerogens 

 

>60,000,000 

15,000,000 

Terrestrial biosphere (total) 

Living biomass 

Dead biomass 

2,000 

600-1000 

1,200 

Aquatic biosphere 1-2 

Fossil fuels 

Coal 

Oil  

Gas 

Other (peat) 

4,130 

3,510 

230 

140 

250 

 

 

 

 

Source: From Falkowski et al. (2000).  
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Relative to the span of geologic history, sink growth by carbonate dissolution is 

applicable on relatively short time scales.  The close association between carbonate 

mineral weathering and the hydrologic cycle allows for an estimated average turnover 

time for terrestrial carbon leaving a watershed to be akin to that of the ocean-water cycle, 

equal to approximately 2,000 years. By comparison, the atmospheric CO2 turnover rate is 

3-5 years, approximately 50 years for vegetation, and soil release may range from 

decades to millennia (Cao et al., 2012).  Because CO2 sequestration by carbonate 

dissolution process may affect the carbon cycle on time scales relevant to human activity, 

a precise understanding of the extent of this sink is necessary to support global 

source/sink estimates of carbon.  Understanding the role of carbonate mineral dissolution 

sinks on the continents could contribute to better short-term models of the carbon cycle 

over comparatively small time spans coincident with human impact. 

The specific processes by which carbonate mineral weathering acts as a carbon 

sink requires an understanding of the chemical interactions taking place in the system.  

The buffering capacity of carbonate systems represents the primary mechanism for acid 

neutralization among aquatic systems via contribution of bicarbonate ions (Yadav, et al., 

2008).  Hydrolysis of CO2 produces carbonic acid (H2CO3) that contributes hydrogen 

ions to the solution, resulting in lowered pH (Orr et al., 2005).  The hydrolysis of CO2 to 

form H2CO3 and subsequent formation of bicarbonate (HCO3
-) and carbonate (CO3

2-) 

ions is an extensively studied process.  The chemical reactions for CO2 dissolution, 

hydrolysis and equilibrium in water are as follows: 

CO2 (g) + H2O ↔ CO2 (aq) + H2O                                        (1) 

 

CO2 (aq) + H2O ↔ H2CO3                                                    (2) 
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H2CO3
*↔ H+ + HCO3

—                                                          (3) 

and 

HCO3
-- ↔ H+ + CO3

2-.                                                                          (4) 

Carbonate-rock weathering in natural waters can in turn be described by the following set 

of chemical equations for limestone and dolomite respectively: 

         CaCO3 + H2CO3 ↔ Ca2+ + 2HCO3
-                                         (5) 

and 

         CaMg(CO3)2 + 2H2CO3 ↔ Ca2+ + Mg2+ + 4HCO3
-                            (6) 

 

The inorganic C flux leaving a given basin is the product of the concentration of DIC and 

the discharge of the river.  The total dissolved inorganic carbon present in solution is 

found by summing the concentration of each species (H2CO3, HCO3
-, and CO3

2-) present 

in solution. The proportion of each species in solution is controlled by pH, such that for a 

pH of 7 to 9 most of the DIC in ground and ocean water is in the form of bicarbonate, 

while at higher pH values (>9) carbonate dominates ionic concentrations (Figure 2.1) 

(Drever, 1988; Dreybrodt, 1988). In waters of most naturally occurring pHs, DIC can be 

obtained from measurements of HCO3
-, pH and temperature in combination with 

calculations of relevant species activities and equilibrium constants (Stumm and Morgan, 

1981). 
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The molar ratios of reactants and products shown in Equations 5 demonstrate a 

fundamental assumption that is related directly to the partitioning of DIC sources. The 

basis of this assumption relies on the stoichiometry of Equations 5 and 6, showing a 1:1 

molar ratio of C between atmospheric and carbonate rock sources.  Equation 5 shows that 

for every two moles of C produced as bicarbonate ion (HCO3
-) that results from the 

reaction, one is considered to have originated from the atmosphere in the form of CO2 

and one mole is derived from the limestone. In the case of dolomite, the atmospheric to 

carbonate rock ratio for C is also 1:1, but four moles of HCO3
- are produced by the 

reaction, with two moles derived from the atmosphere and two moles from the dolomite 

rock. Using the stoichiometric approach, an estimate of inorganic carbon flux from the 

atmosphere by carbonate rock weathering can be considered as one-half of the total DIC 
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leaving a river basin influenced by carbonate rock interactions (Jiang and Yuan, 1999; 

Liu and Zhao, 2000; Groves and Meiman, 2001; Groves et al., 2002; Amiotte Suchet et 

al., 2003; He et al., 2013). Numerous other factors are proposed to complicate the 

partitioning of DIC observed in natural systems, such that the actual proportion of flux 

contributed by carbonate-mineral weathering is difficult to separate from myriad other 

potential sources of DIC in a drainage basin. However, since the flux of DIC in natural 

systems is primarily associated with weathering of terrestrial carbonates (Falkowski et 

al., 2000) (see Table 1), factors such as DCO2 contributed to waters by decomposition of 

OM and bacterial respiration are responsible for only a small portion of the DIC in 

freshwater systems. Hereafter, numerous major and minor controls on carbonate-mineral 

weathering are discussed with respect to how these processes contribute to DIC flux.   

2.6 Controls on Carbonate Mineral Dissolution and DIC Flux 

Several factors control carbonate mineral dissolution, thereby directly influencing 

the magnitude of the atmospheric carbon sink associated with carbonate rock dissolution.  

Carbonate minerals are highly susceptible to dissolution by weak carbonic acid solutions 

that form within surface and ground waters. At the molecular level, thermodynamic and 

kinetic principles are barriers that govern the solubility properties of minerals and the 

rates of dissolution or precipitation reactions. These topics are discussed first to establish 

a fundamental basis for the macroscale processes (area of carbonate rocks in contact with 

water, amount of water available for dissolution, and time) that serve as constraints for 

the microscale thermodynamic and kinetic processes.   
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2.6.1 Thermodynamic Controls 

The dissolution of calcite in acidic surface waters is a product of chemical 

thermodynamics that dictate the direction of reactions occurring in solutions near 

equilibrium. The use of mass-balance calculations is the classic approach to making 

predictions of chemical systems using thermodynamic principles. The mass-balance 

approach is useful in interpreting mineral weathering, as it accounts for the sources of 

dissolved mineral constituents found in solution using concentration or activity data for 

products and reactants in solution, and the solubility product constant associated with the 

dissolution of a mineral. The mass-balance calculations for the reaction shown in 

Equation 5 are shown in Equations 7, 8, and 9.   

 

[𝐻2𝐶𝑂3] =
[𝐻+][𝐻𝐶𝑂3

−]

𝐾1
       (7) 

 

[𝐻𝐶𝑂3
−] =

[𝐾1][𝐻2𝐶𝑂3]

𝐻+        (8) 

 

[𝐶𝑂3
2−] =

[𝐾2][𝐻𝐶𝑂3
−]

𝐻+         (9) 

 

In non-ideal solutions, activity coefficients must be assigned to determine the degree to 

which individual species participate in a reaction where ionic concentrations do not equal 

species activities. Species activities can be calculated using the Debye-Hückel expression 

(Stumm and Morgan, 1981; Drever, 1988; White, 1988) (Equation 10).   

−log 𝛾𝑖 = 
𝐴𝑧𝑖

2√𝐼

1+𝛼𝑖
°𝐵√𝐼 

                  (10) 
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The relative concentrations of dissolved ions in solution dictate the weather a 

given mineral will be ionized in solution, or if a solid precipitate will form. The 

saturation state of a fluid with respect to calcium carbonate is a major factor in 

determining the potential for carbonate-mineral dissolution. A value for the saturation 

index (SI) can be used to predict the behavior of carbonate minerals based upon 

saturation state. Stumm and Morgan (1981) provided an elegant and functional method 

for calculation of saturation index as follows: 

𝑆𝐼𝑐𝑎𝑙 = 𝑙𝑜𝑔 (
[𝐶𝑎2+][𝐶𝑂3

2−]

𝑘𝑐𝑎𝑙
)     (11) 

where brackets denote species activities and kcal is the temperature dependent equilibrium 

constant (or solubility product) for calcite dissolution. When applied to carbonate 

hydrochemistry, saturation indices predict the direction the reaction will proceed based 

on the chemistry and temperature of the water. In general, SIcal values >0 represent 

oversaturated solutions, where dissolved ions are in abundance and precipitation of solids 

is predicted (though there may be kinetic barriers). Values equal to zero represent 

systems at equilibrium with CaCO3 neither dissolving or precipitating, and values <0 

indicate states of undersaturation wherein soluble minerals would be expected to undergo 

dissolution (Langelier, 1936; Stumm and Morgan 1981). 

 

2.6.2 Kinetic Controls 

 The DIC flux from carbonate mineral weathering cannot be fully defined from a 

purely thermodynamic approach of calculating sum concentration of carbonate species 

present in solution. In natural systems, reactions are controlled by factors other than 

species activities.  Kinetic considerations must be made in evaluating the rate in which a 
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reaction will occur, or if there are barriers that will prohibit a reaction from occurring.  

Three types of kinetic processes govern mineral dissolution/precipitation rates, including 

1) physical detachment of grains from a mineral surface, 2) transport (diffusion) of ions 

in solution to or from the mineral surface, and 3) mixed kinetics (both reaction and 

diffusion controlled) (Drever, 1988). Numerous physical, chemical and biological aspects 

control kinetics of carbonate mineral weathering.  

Kinetics determines the rates at which reactions occur.  Most rate processes can 

be described by the Arrhenius equation:  

𝑅𝑎𝑡𝑒 = 𝐴 exp (
−𝛥𝐸

𝑅𝑇
)    (12) 

Where R is the ideal gas constant, T is the Kelvin temperature, A is an empirical 

constant, and ΔE is the activation energy required to convert the initial reactant to the 

transition state, regarded as the energy difference between the initial state and the 

maximum energy of the intermediate state (Drever, 1988). From Equation 12, 

temperature is clearly an important control on reaction rates, such that an increase in 

temperature results in rate increase. Temperature also affects the saturation state of 

CaCO3 via its influence on kinetic rates that determine the amount of mineral weathering 

that takes place over time, therefore influencing the abundance and behavior of solutes in 

solution and whether these are expected to undergo dissolution or precipitation (Larson 

and Buswell, 1942). Studies of dynamic epikarst regions in China, for example, have 

demonstrated that under dry climatic conditions pH and electrical conductivity exhibited 

diurnal fluctuations and rose in association with increases in water temperature during the 
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day. The increase in conductivity reveals an increase in dissolved ions present in solution 

resultant of increased dissolution under increased temperatures (Cheng et al., 2005).  

Plummer et al. (1978) developed a rate law for predicting the rate of calcite 

dissolution as a function of water chemistry: 

            r = k1[H
+] + k2[H2CO3

*] + k3[H2O] – k4[Ca2+][HCO3
-]                            (13) 

 

where r is dissolution rate in mass dissolved per surface area of mineral/water contact per 

time, the k values are temperature dependent kinetic rate constants (Plummer et al., 1978) 

and bracketed terms denote activities of ion species activities in aqueous solution.  Reedy 

et al. (1981) used calcite precipitation from Ca-HCO3
- solutions to test the reverse 

reaction of the calcite dissolution rate law model and found that measured crystallization 

rates were in close agreement with those predicted by Plummer (Reedy et al., 1981). 

Surface and Transport Reaction 

Specific surface area (SSA) is a type of reaction control that has a significant 

impact on dissolution/precipitation rates. Rates of dissolution/nucleation are much higher 

for mineral surfaces with more than one plane of exposure (Drever, 1988). Since 

chemical weathering occurs along mineral surfaces, the water and acids that control 

chemical weathering require access to the surface. Weathering processes begin on the 

exterior of a mineral, and rates are limited by the area of mineral exposed to solution.  

Physical weathering processes break up rocks to increase the surface area that can be 

exposed to weathering and create pathways for the water to enter rock. The presence of 

bedding planes, joints, and fracture networks in bedrock contributes to the rate of mineral 

weathering by enabling acidic water to penetrate to the interior and allow for weathering 

in a 3-dimensional sense, rather than on the exterior surface only. In bedrock where the 



 

27 
 

number of fractures per unit area is high, the rates of mineral weathering can be increased 

by several-fold relative to massive rocks that contain no bedding planes, joints, or 

fractures (Gabet et al., 2006). As discussed below, biological inputs also affect the 

kinetics of mineral weathering, particularly through root wedging and production of 

humic and fulvic organic acids, which infiltrate fractures to create solution-enhanced 

conduits. Therefore, extensive fracture networks may have a great impact on the amount 

of DIC export from basins due to enhanced weathering rates in the sub-surface.  

Weathering rates are also a function of grain size, which is related to SSA, with fine 

grains entering solution more rapidly. This association may offer insight to the 

comparatively large DIC flux export among the sub-basins where calcium-rich, fine-

grained, unconsolidated sediments constitute surface geology.  

Variation in Carbonate Mineral Type and Purity 

 Additionally, inherent differences exist in the behavior of carbonate minerals as 

they interact with water. The properties of minerals undergoing weathering processes 

dictate the extent to which these influence DIC in aqueous systems. This can be observed 

from the difference in solubility products among various carbonate minerals. For 

example, calcite solubility under neutral pH at standard temperature and pressure (STP) 

is reported to be 100 mg/L. The solubility of dolomite is lower under neutral pH and STP 

(90 mg/L). In systems where pH is not neutral the difference in solubility between calcite 

and dolomite increases (Freeze and Cherry, 1979).  Drever (1988) noted that these 

differences are due not only to the constituents of the minerals themselves, but also to the 

ratio of these in relation to other constituents that make up the mineral and crystallo-

graphic orientation of minerals. Large differences exist in mineral stability among calcite, 
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dolomite, calcite concretions, and in rock units where carbonates are interbedded in other 

rock types (Drever, 1988). Such differences translate to variation in dissolution rates and 

affect the chemical signature of water as it interacts with these minerals. Basins with less 

carbonate area may still produce a large DIC flux if the type of carbonate present is very 

pure, soluble or has a high weathering rate. Alternatively, basins with a large area of 

carbonate rocks may produce a small flux if the carbonates are impure, have lower 

solubility or the conditions within the basin dictate low weathering rates. Carbonate rocks 

were not distinguished on the basis of solubility or the rate at which these minerals 

contribute alkalinity to aqueous systems in this pursuit, but future studies may wish to 

evaluate the comparative roles of different types of carbonate rocks in contributing 

carbonate alkalinity to streams. 

2.6.3 Proposed Major Controls  

Although the thermodynamic and kinetic processes described in the previous 

section exert considerable influence upon the carbonate dissolution process, at the 

landscape scale these microscale processes ultimately depend on macroscale events. This 

study investigated the hypothesis that the primary macroscale controls that influence 

carbonate dissolution and the amount of carbon removed from the atmosphere include: 1) 

the surface area of carbonate rock exposed, 2) the duration of the study period, and 3) the 

volume of water available for mineral dissolution.   

Area of Carbonate Outcrop 

Carbonate-mineral dissolution and the magnitude of the associated DIC flux is 

certainly a function of the surface area of rock in contact with water. Geometric surface 

areas have been used successfully in estimating weathering rates in situ (White and 
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Peterson, 1990). A large area of carbonate rock outcrop will yield more carbonate 

dissolution as greater surface areas are exposed to chemically undersaturated waters.  

Since calcite dissolution consumes CO2 from the fluid solution, as increased carbonate 

dissolution occurs the amount of carbon being sequestered from the atmosphere as a 

result of these dissolution processes also increases. Several other studies have suggested 

it is appropriate to normalize flux calculations by the area of the carbonate rock present in 

the drainage basin for the purposes of calculating global carbon fluxes and the sink due to 

carbonate dissolution (Lǖttge, 2005; Osterhoudt, 2014; Salley, 2016).  Accordingly, the 

model used in this project to estimate DIC flux from carbonate mineral weathering 

normalizes flux by area of carbonate outcrop exposed within the basin.  Carbonate 

outcrop area represents the geologic component of the normalization of calculated DIC 

flux values for the Ohio River Basin and major nested sub-basins. 

Duration of Water-Rock Contact 

The duration of the water-rock interaction must also be quantified in estimates of 

the carbon sink from dissolution. For example, a mineral sample left in a solution to 

dissolve for twice as much time will experience a two-fold reduction in mass.  Increases 

in contact time between chemically active water and minerals promotes weathering of 

base cations, resulting in increases in weathering products (Finlay, 2003). The U.S. 

Geological Survey uses a 12-month period known as a water year to report on matters 

associated with surface-water supply; defined as the period between October 1 of a given 

year and September 30 of the following year, and is designated as the calendar year in 

which it ends. The water year 2014 was used in this research. The period of interaction 

between potentially understaurated water and carbonate minerals represents the temporal 
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component of the parameters used to normalize DIC flux from the Ohio River Basin and 

major sub-basins.  

Amount of Water Available for Dissolution 

Probably the most significant control on the sink from carbonate-mineral 

weathering is the volume of water available for dissolution. This value can be estimated 

as precipitation minus evapotranspiration (P-ET) over the area of the carbonate rock 

outcrop within a drainage basin (Cao et al., 2011; Haryono, 2011) or as the discharge 

coming out of the drainage area (Groves and Meiman, 2001; White, 2013). DIC 

dynamics have been shown to vary greatly with stream size and channel flow. Finlay 

(2003) demonstrated that aqueous CO2 is positively related to discharge for large, open-

canopied rivers, where the expanse of the channel prevents canopy formation, with 

larger/wider channels indicative of greater discharge. Additionally, HCO3
- and Ca2+ were 

found to be inversely related to discharge, a pattern consistent with expected results for 

large contributions from carbonate weathering during periods of high discharge and 

control of HCO3
- via the duration of contact between groundwater and carbonate-mineral 

surfaces. Finlay (2003) also determined that aqueous CO2 was correlated to Ca2+ and 

HCO3
- only among small streams, indicating that relationships between CO2 (aq) and 

HCO3
- are increasingly decoupled as stream size increases. In contrast, Groves and 

Meiman (2005) found the inorganic carbon flux to be almost linearly correlated to 

discharge from a study of carbonate weathering in an underground river in south-central 

Kentucky. It was determined that although the highest discharge stage in the conduit was 

observed only <5% of the time, this stage resulted in the largest amount of carbonate 

dissolution, or 38% of the total dissolution for all stages. A study by White (2013) in a 
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karst landscape found that carbon flux corresponded to discharge. Liu et al. (2008) found 

that the atmospheric CO2 sink factor doubled during rainstorms due to increased stage 

height. He et al. (2013) used monitoring data from the Banzhai subterranean stream 

located in the Guizhou province of China to support the conclusion that the amount of 

karst carbon sequestration depends on the discharge of karst catchment in addition to the 

inorganic carbon concentration of the water. They determined that about 353 t C yr-1 are 

removed from the atmosphere via carbonate dissolution processes in this basin and that a 

good linear relationship existed between the carbon flux leaving the basin and the stream 

discharge across various time scales. The amount of water available for dissolution is 

controlled by climate patterns for a given location. As such, the balance of P-ET 

represents the climatic component and the final proposed parameter used to normalize 

DIC flux observed in the Ohio River Basin and the major tributary sub-basins.  

2.6.4 Proposed Lesser Controls  

 Aside from the temporal, geologic, and climatic variables discussed above, 

numerous “lesser” factors are capable of influencing carbonate weathering and thus the 

capacity of the C sink from those processes.  Collectively, these processes may have a 

substantial influence on the drawdown of atmospheric C.  The emphasis of this work is to 

evaluate the relative contribution of the proposed major controls (time, area of carbonate 

rock, and water available for dissolution) relative to a host of other events occurring over 

broad scales. Time, geology, and climate-regulated water availability were accounted for 

in the normalization procedure applied in this study. While the time- and climate-based 

controls on carbonate dissolution are definitive, the geologic aspects of the normalization 

procedure create complexity in evaluating the success of the model described herein.  
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Challenges exist in geologic characterizations of drainage basins that may affect the 

reliability of flux estimates generated by the model as currently described.  The following 

discussion includes several considerations that may complicate the direct interpretation of 

DIC flux patterns that are not included within the scope of this work.  A summary of 

myriad additional variables that may contribute to the observed DIC flux issuing from a 

river basin is presented in Table 2.2. 

A. Carbonate Minerals Not Mapped as Surface Deposits 

 The research design of this project relies on maps of surface geology. The 

existence of calcium and carbonate sources of DIC beyond the mapped carbonate 

bedrock (see Weary and Doctor (2014) U.S. karst map) is an important consideration 

when estimating DIC flux over very large areas, such as the Ohio River Basin. The DIC 

observed in a water sample may include C contributed from a variety of additional 

sources including: 1) carbonate minerals in the subsurface, 2) calcium-rich loess deposits, 

3) calcium- and magnesium-rich lacustrine facies, 4) thin surface carbonates and 

interbedded carbonate lenses, 5) grain replacement of non-carbonate rocks by carbonate 

minerals found in calcite cements, 6) bedload carbonate grains in streams, and 7) DIC 

flux contributed from non-carbonate rocks associated with climate-driven feedback 

mechanisms. These additional factors become more important considerations among 

drainages where carbonate rock outcrops are less prevalent and observed DIC must be 

contributed from other sources. A basic discussion of the auxiliary processes that may 

influence DIC in surface streams within the Ohio River Basin, aside from exposed 

carbonate rocks related to the project objective of defining the magnitude of the DIC flux 

from carbonate mineral weathering, is presented in the following sections.  
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Variable Control Type Action Reference(s) 

Carbonate Mineral Type Thermodynamic Ksp limestone ≠ Ksp dolomite ≠ Ksp Loess ≠ Ksp calcite concretions Drever (1988) 

Specific Surface Area Kinetic Affects surface reaction rates Drever (1988) 

Buried Carbonates Geochemical 
Contribute DIC from areas unaccounted for by 

surface geology maps 

Ray (1965; 1974); Thompson 

et al. (2016) 

Ca2+/Mg2+-Rich 

Quaternary Deposits 
Geochemical Same as above 

Cook and Montgomery (1914); 

Thornbury (1940); Ray (1965) 

Thin Surface Carbonates Geochemical Same as above 
Shrock and Malott (1929); 

Bodine (2016)  

Impure/Interbedded 

Carbonates 

-Thermodynamic 

-Kinetic 

-Solubility products ≠ 

-Weathering rates ≠ 

Bodine (2016) 

Calcite Replacement 
-Thermodynamic 

-Kinetic 
Same as above 

Butler (2016) 

Carbonate Precipitation 

and CO2 Outgassing 

-Thermodynamic 

-Geochemical 

Portions of C load that are not captured by 

chemical signature (DIC) of stream 

Jiang and Yuan (1999); Richey 

(2003); White (2013); Khadka 

et al. (2014) 

Vegetation Biological 
-Physical and chemical weathering 

-Increase C storage beyond saturation thresholds 

Li et al. (2005); Thorley et al. 

(2015); Lambers et al. (2015); 

Silva (2017) 

Organic Acids 
-Kinetic 

-Biological 
Chiefly by affecting pH 

Huang and Keller (1970); Tan 

(1986); Drever (1988); Drever 

and Stillings (1997) 

Microorganisms Biological 

-Bacterial respiration affects pH of soil solutions 

-Microbial production of carbonic anhydrase (CA) 

 

Li et al. (2005); Taylor et al. 

(2012); Thorley et al. (2015); 

Lambers et al. (2015) 

Climate Feedback 

Systems 

-Geochemical 

-Biological 

-Kinetic 

-Increased uplift of silicates in Tibetan Plateau  

-Increased soil microbial activity produces more 

CO2 under increased temperatures 

-Weathering rates are function of temperature 

Drever (1988); Walter et al. 

(2006); Garzione (2008); Li 

and Elderfield (2013) 

 Table 2.2.  Summary of lesser factors that may influence DIC flux in a drainage basin.  Source: Compiled by the author. 
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Subsurface Carbonate Minerals  

 Much of the Wabash, Great Miami, and Scioto river basins were impacted by 

Wisconsin and Illinoian glaciations. Here, glacial sediments form a thick covering over 

extensive deposits of carbonate bedrocks (Ray, 1965; 1974; Thompson et al., 2016). The 

glacial till overlying limestone units is of variable thickness, reaching 300 feet in some 

places (Veni et al., 2001; Weary and Doctor, 2014). These areas of carbonate bedrock 

beneath mapped surface deposits may supply alkalinity to rivers through baseflow. The 

DIC contribution from sub-surface carbonates is undoubtedly reflected in the chemical 

signature of the water, yet the area representing these deposits is not included in the 

carbonate area used in flux normalization as a part of this investigation. The use of 

mapped surface or near surface carbonates was chosen for a first approximation and 

based on the assumption that acidified waters are gradually neutralized through 

interactions with carbonate minerals beginning with the first interactions with rocks 

exposed to the surface, and waters tend to approach equilibrium with respect to carbonate 

rocks as a result. As such, vadose and phreatic water are at or near equilibrium, and 

minimal alkalinity is contributed from interactions with the subsurface carbonates. The 

example drawn from the formerly glaciated basins presents the complexity that 

incorporation of subsurface carbonate area may be necessary among river systems where 

alkalinity is high but surface carbonate deposits are not well-represented. 
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Figure 2.2.  Relative distribution of exposed and buried carbonate rocks in the eastern portion 

of North America. 

Source: Veni et al. (2001).   
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Loess Deposits 

 The presence of calcium-rich loess deposits may act as a source of alkalinity 

among the Wabash, Great Miami, and Scioto rivers. Extensive Quaternary deposits 

comprise much of the surface geology of southern Indiana and southwest Ohio, including 

widely distributed loess deposits. Most of the loess in the Wabash and Ohio basins is of 

Illinoian or Wisconsin age. Loess deposits from the Wisconsin glaciation are consistent 

with the Peorian Loess described in Iowa and Illinois by Kay and Leighton (1933).  

Figure 2.3 displays the distribution of Peoria Loess in North America.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Peoria Loess deposits in North America. 

Source: Mason et al. (2006). 



 

37 
 

Loess is physically characterized as fine grained, silicious material that is ashy in color 

with a slight yellow hue and often highly calcareous. Calcareous concretions are hallmark 

features of loess and occur in belts at various depths throughout the deposits and assume 

various physical forms that are generally spherical or oblong and studded with rough 

projections (Figure 2.4).   

 

 

 

 

 Call (1882) examined over 2,800 calcareous concretions taken from loess units.  

The specimens were found to be hollow, and exhibited a deeply fissured interior 

associated with evaporation of water and contraction of the calcium nodules. The portion 

interior to the calcareous envelope is composed of over one-half calcium carbonate, a 

third is silica, and a small percentage of aluminum. The composition of the calcium 

Figure 2.4.  Calcite concretions found in the loess deposits of south central Indiana 

Source: Ray (1965).   
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concretions is roughly the same as the loess proper. From this, Call (1882) concluded the 

concretions to be decidedly hydraulic, formed as soil-zone precipitates, based on their 

composition. Whitney (1877: 709) described the mode of formation of the concretions, 

stating that they “… have been formed in the loess by infiltration along the lines of 

cleavage and resultant chemical action on calcareous matter occurring in large quantity 

along certain planes…”  Substantial loess deposits are present in south-central Indiana 

(Cook and Montgomery, 1914).  Loess and lake silts are well known to the lower Wabash 

Valley and were described in New Harmony, IN, as early as 1862 (Thornbury, 1940). In 

the southwest portion of Indiana, loess deposits have been reported with thicknesses of 12 

to 15 meters (Thornbury, 1950). Ray (1965) described the hilly uplands near the Ohio 

valley as blanketed in a dense layer of loess that is thickest on the uplands adjacent to the 

alluviated valley, growing progressively thinner with distance. Within the Owensboro 

quadrangle in southcentral Indiana, loess deposits average about one-meter thickness, but 

depths up to three meters are reported. The mantle of loess deposits is so extensive that 

bedrock is only exposed at bluffs, roadcuts, and in excavated areas. Here, at least three 

distinct units of loess deposits are present and have considerable regional distribution.  

These units are not regarded as formations because, although they are distinct, they are 

not able to be individually mapped (Ray, 1965). The surface geology of southwestern 

Ohio also exhibits extensive loess deposits, with an average thickness of 1.5 meters 

covering the uplands in this region (Cook and Montgomery, 1914). Considering the well-

documented and widely distributed presence of calcium-rich loess soils and the presence 

of calcareous concretions containing up to 50 percent calcium carbonate within the 

Wabash, Great Miami, and Scioto basins, it is likely that such factors contribute alkalinity 
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to the water. However, the area covered by these loess deposits is not accounted for in the 

current model because they are not classified as karst features or exposed bedrock. 

Lacustrine Facies 

 Lacustrine facies developed within the tributaries draining glacial meltwaters, as 

sediment deposition along glacial sluiceways blocked rivers causing pooling at the 

former outlets. Carbonate-rich layers of silts and clays known as marls have formed by 

the precipitation of calcite in the bottom of former lakes and swamps in Indiana. Along 

the lower Wabash River, lake sediments comprise more of the surficial deposits than do 

the true wind-blown loess sediments. Ray (1965) described the calcium and carbonate 

composition of the near-surface lacustrine deposits in the Owensboro quadrangle of 

southwestern Indiana. Where least weathered, the lacustrine deposits were reported as 

calcareous clayey silts. The outcrop transitions were marked by numerous calcareous 

nodules weathered from lacustrine deposits directly above. Within the upper meter of soil 

the transition between the superficial deposits and calcareous clayey silts can be 

identified by a dense concentration of small (typically <1.25 cm) calcareous nodules 

termed “popcorn” for their physical appearance. The clayey zone at 1.5 meters contained 

films of calcite and occasionally horizontal blocks of limestone up to 0.63 cm thick and 

20 to 25 cm long. Below the calcium-rich clay zone are compact calcareous silts with 

abundant nodules, some of which flattened. The differences in the shape of nodules at 

varying depths have been cited as evidence that these features are secondary, formed 

from redeposition of carbonates leached from surficial zones (Ray, 1965). Thornbury 

(1950) noted that, although the percentage of calcium carbonate within lacustrine 

deposits tends to decrease moving upvalley, highly calcareous sands may extend several 
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kilometers beyond the main valley sluiceway that supplied the sediments. In general, the 

lacustrine deposits are more calcareous than the loess and are likewise prolific in 

distribution. Thus, it is probable that lacustrine sediments contribute to the alkaline 

chemical signature of the rivers in the glaciated basins to the north. As with the loess 

sediments, lacustrine facies are unconsolidated surficial features that are not represented 

in the carbonate bedrock geology maps used in the model. Although these sediments 

surely act as sources of alkalinity, no area is designated to the deposits in the 

normalization process for DIC flux. The use of Quaternary soil maps may be of use to 

this end in future studies. 

Thin Surface Carbonate Deposits 

 Thin surface carbonates that are not regarded as karst environments may also 

influence the alkalinity observed in the rivers flowing through terrain shaped by recent 

glaciations in the Ohio Valley. The West Franklin Limestone member of the Shelburn 

Formation in southern Indiana and its equivalent member in northwest Kentucky, the 

Somerville Limestone, represent examples of thin surface carbonates that may contribute 

to the observed DIC flux issuing from the Wabash Basin, despite the absence of these 

units in the U.S. karst map (Weary and Doctor, 2014). The West Franklin consists of a 

lower, brecciated limestone member with an average thickness of about 1.5 m, below a 

shale layer of varying thickness over which lies the upper, dense crystalline limestone 

member with an average thickness of about 1 m (Shrock and Malott, 1929). In south-

western Ohio, abundant outcrops of upper Ordovician shale and limestone units comprise 

the hills of Cincinnati and surrounding areas. In central Ohio, the Columbus and 

Delaware limestones are exposed. Surface rocks in eastern Ohio are Pennsylvanian and 
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Permian in age and are composed of interbedded sandstones, shales, coals, and thin 

limestones. Nearly outcropping limestones interbedded in the Big Clifty Sandstone have 

been described in Logan County, Kentucky (Figure 2.5) (Bodine, 2016). The existence of 

these thin surface carbonate deposits may act as a source of alkalinity for the river basins 

in question.  However, as has been noted for the loess and lacustrine deposits, any area 

occupied by these deposits was not used in the normalization calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

Calcite Replacement of Non-Carbonate Grains 

 Other sources of alkalinity not captured by mapped surface carbonates may 

include diagenetic changes in clastic rocks involving replacement of framework grains by 

calcite minerals. This event has been reported in the Chester Series sandstone formations 

of southcentral Kentucky (Butler, 2016) (Figure 2.6).  Here, the aggressiveness of calcite 

Figure 2.5.  Near-surface carbonate lens in the Big Clifty Sandstone in Kentucky 

Source: Bodine (2016).   
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replacement of silicate minerals is so great that the phenomenon has been described as a 

“metastasis” of framework minerals by calcite. Calcite cements in sandstones of Indiana 

and Ohio may be replacing quartz crystals, thereby contributing alkalinity observed in the 

Wabash, Great Miami, and Scioto rivers through water-rock interaction. Interactions of 

infiltrating precipitation with the carbonates found within rocks described as non-

carbonate in geologic maps may contribute significant carbonate alkalinity to streams in 

the drainage via baseflow and springs.  

 

 

 

 

 

Bedload Carbonate Minerals and CO2 Outgassing 

Precipitation of carbonate minerals within the basin also influences DIC flux.  

This has been observed as bedload carbonate minerals, mineral deposits of speleothems, 

and as tufa-carbonate minerals formed near springs and waterfalls. White (2013) found 

Figure 2.6.  Calcite replacement of quartz crystals, in a sample taken from the Big 

Clifty Sandstone in Kentucky. Replacive calcite (yellow) has embayed earlier cements 

and framework grains (white arrowheads) creating several contacts between 

framework grains (white arrows).  

Source: Butler (2016).  
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that speleothem precipitation is not a significant loss in terms of carbon flux because such 

a minor fraction of the total carbon load is precipitated in this way and because air-filled 

conduits intercept only a fraction of all water descending from the epikarst or infiltrating 

from the surface. Jiang and Yuan (1999) examined a carbonate rock-dominated basin in 

China and found that the distribution area over which tufa deposition takes place was 

much smaller than that for carbonate mineral dissolution. This study suggested that the 

carbon sink to dissolution was greater than the carbon source from precipitation. 

 Transfer of CO2 from basin waters to the atmosphere by degassing can also 

potentially impact the carbon flux from dissolution. The partial pressure of aqueous 

carbon dioxide (pCO2) determines the behavior of gas exchange along the air-water 

interface and is indicative of whether rivers act as a sink or source of atmospheric CO2 

(Richey, 2003). When pCO2 is high, water is approaching a state of supersaturation that 

favors CO2 out-gassing to the atmosphere, such that these conditions among inland 

waterways result in an atmospheric carbon source. White (2013) found that, for some 

spring-runs, degassing translates to a 5-10% loss of total carbon load to the atmosphere.   

Khadka et al. (2014) examined the effects of degassing among two unique hydrogeologic 

environments of a carbonate karst dominated region of the Santa Fe River located in 

north-central Florida. The upper river catchment flows over portions of the Floridian 

aquifer that are confined by clastic silicates, while the lower river catchment flows over 

the unconfined carbonate karst Floridian aquifer. The study found that the upper 

catchment degassed more CO2 to the atmosphere (1156 g C m-2 yr-1) than the lower 

catchment (402 g C m-2 yr-1), due to an increase in carbon from soil respiration processes 

and higher organic matter decomposition that increased dissolved CO2 concentrations. 
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However, increases in dissolved CO2 are consumed during carbonate dissolution 

processes in the lower basin regions where the Santa Fe River flows over carbonate rocks 

not confined by silicates. The study illustrated that, while degassing occurs to a lesser 

degree among basin regions that exhibit relatively pure carbonate rocks, regions upstream 

or downstream may exhibit different hydrogeologic environments that favor CO2 

degassing and, thus, influence whether a given drainage acts as a carbon sink or source. 

Climate-Driven Feedback in Geologic Processes 

 There is strong evidence to suggest climate change has affected weathering of 

silicates and island basalts, and that these processes may enhance the terrestrial sink of 

the atmospheric CO2 (e.g., Garzione, 2008; Li and Elderfield, 2013). This process has 

been referred to as uplift driven climate change (Li and Fang, 1999; Li and Elderfield, 

2013). Records of Strontium (Sr) isotopes in seawater suggest an increase in continental 

weathering since approximately 40 million years ago (mya) (Garzione, 2008). Reduction 

of CO2 degassing has been proposed as the primary driver for the decrease in pCO2 in the 

atmosphere through negative feedbacks between pCO2 and silicate weathering (Berner et 

al., 1983). According to such models, weathering reactions are largely controlled by 

climatic factors that are sensitive to fluctuations in pCO2, such as temperature and runoff.  

These findings have led researchers to hypothesize that tectonic uplift and erosion of the 

Himalayan-Tibetan Plateau during the past 40 million years have acted as a sink for 

atmospheric CO2, resulting in the glacial climate that persists today (e.g., Taymo and 

Ruddiman, 1992; Edmond, 1992).   
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B.  Biological Activity 

 The flux estimates generated by this study do not account for biological controls 

on mineral weathering. The objective of the investigation was to evaluate whether or not 

the major controls on carbonate weathering (and the associated sink of atmospheric CO2) 

could be described sufficiently absent a host of other processes. However, it bears 

acknowledging that biological factors may have substantial influence with respect to rates 

of carbonate mineral weathering. The following examples illustrate how vast networks of 

seemingly weak interactions between soil, plants, and the atmosphere may result in 

strong fluctuations among terrestrial C stocks.   

Vegetation 

 Ecosystem productivity and C storage depend on interactions of relatively fast 

processes (e.g., photosynthesis and respiration) and slower processes that occur over 

broad spatial scales (e.g., bedrock weathering and soil production). Recent studies 

suggest that the influence of plants on mineral weathering may substantially increase C 

storage beyond lithological saturation thresholds (Silva, 2017). Terrestrial plants 

influence weathering process through chemical and physical action. The root systems of 

large trees may break up rock, creating fracture networks within which chemically 

aggressive waters can enter and begin to weather rock. Plants also secrete acids and 

contribute to the accumulation of high CO2 levels in the soils, which interacts with 

infiltrating precipitation to enhance rates of carbonate mineral weathering (Berner, 1992).  

Trees and associated microbial flora of the soil act as major drivers for continental 

weathering (Thorley et al., 2015). In particular, the effect of symbiotic root-mycorrhizal 

associations (Taylor et al., 2012) and carboxylate-releasing root clusters (Lambers et al., 
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2015) on mineral weathering is several times greater than the influence of climate.  

Increased soil acidification linked to symbiotic partnerships between tree roots and 

ectomycorrhizal (EM) fungi was shown to significantly enhance weathering among 

calcite-containing grains. The process is so effective that contemporary studies have 

theorized that planting of fast-growing EM angiosperm taxa in carbonate-rich terrains 

may accelerate the sink of atmospheric CO2 (Thorley et al., 2015). The mechanism by 

which soil microorganisms influence carbonate diagenesis is via production of carbonic 

anhydrase (CA). CA is an enzyme that converts soil CO2 to carbonic acid and 

bicarbonate ions and is also involved in the reverse reaction wherein bicarbonate is 

converted to CO2. Investigations of soil science have demonstrated that mean activity of 

CA is strongly correlated to the amount of Ca2+ found in leachates (R2 = 0.86, p <0.01).  

Therefore, microbial CA may be highly influential in the control of Ca2+ release and 

leaching in karst systems (Li et al., 2005). As vegetation decays, the C that was stored as 

cellulose in the plant during photosynthesis is released as CO2.  Decomposition of plant 

material in the epikarst regions supplies that primary source of C that enters karst 

systems, and a great deal of the karst denudation process takes place as rainwater 

infiltrates through the epikarst, which has been acidified by the breakdown of OM.   

Organic Acids 

 Organic acids may alter rates of weathering by affecting both surface reaction- 

and transport-controlled mechanisms. Surface reaction-controlled processes (i.e., 

adsorption, surface complexing, and pH) alter mineral dissolution rates by affecting 

mineral-solution systems far from equilibrium through lowering of activation energy, 

mobilization of metallic central atoms from complexes, increasing the rates of 
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decomposition for transition state compounds, and formation of polydentate ligands that 

produce mononuclear complexes that affect stability of mineral surfaces. The distinction 

between these mechanisms is difficult to parse out since the effects of complexing and 

adsorption are closely linked to changes in pH. Experimental data suggest that the effect 

of pH is relevant only when values are below about 4.8. OA may accelerate or dampen 

dissolution rates by adsorption to mineral surfaces to form surface complexes or 

mobilization of central metal ions from existing complexes. OA influence transport-

controlled processes by affecting saturation state near the solid-fluid interface, and by 

speciation of Al and other ions. Naturally occurring levels of OA in soil solutions do not 

appear to be concentrated enough to produce a significant increase in dissolution rates, 

and in general concentrations of 1 mM or greater are required to observe enhanced 

dissolution. However, in the microenvironments associated with plant roots, fungal 

hyphae, and in areas of high microbial activity, OA concentrations are capable of 

significantly accelerating dissolution rates. Saturation state inherently limits the 

dissolution of carbonates and oxyhydroxides of iron and aluminum (Drever and Stillings, 

1997). Soil and surface waters are often near saturation with respect to K-feldspar, such 

that OA may accelerate the dissolution of the mineral. In contrast, plagioclase feldspars 

and other silicates are typically highly undersaturated in the soil; however, solutions in 

microenvironments are closer to saturation than the bulk solution. Mineral dissolution 

may be inhibited through chemical affinity effects, a process that may be unaffected by 

presence of OA. A lack of well-controlled experimental data representative of conditions 

in natural environments regarding the effects of chemical affinity on dissolution rates 

obscures a clear understanding of the influence this process has on mineral weathering.  
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The influence of OA on inorganic Al speciation appears to be insignificant since 

concentrations of Al species are controlled by solubility of aluminum hydroxide phases 

irrespective of the present of OA. Secondary processes such as transport of metal ions 

may increase permeability on macro- and microscopic scales, indirectly influencing 

dissolution rates. Overall, the influence of OA in natural systems is apparently minimal 

(Huang and Keller, 1970; Tan, 1986; Drever, 1988; Drever and Vance, 1994; Drever and 

Stillings, 1997; Jones, 1998).   

Climate-Driven Feedback in Biological Processes 

 The influence of biological interactions on mineral weathering, and the carbon 

cycle in general, is further complicated by positive feedback mechanisms associated with 

increased production of CO2 and methane (CH4) from microorganisms proliferating in 

areas where permafrost is thawing. These processes release vast amounts of previously 

sequestered C as greenhouse gases, which then trap heat in the atmosphere (Walter et al., 

2006). At the same time, the respiration by-products of these microorganisms contributes 

acidity to the soil, and the increase in atmospheric carbon yields more aggressive 

rainwater, both contributing to increased weathering of carbonate minerals. Land-use 

practices such as whole tree removal extract base cations from the system leading to soil 

acidification. Nitrification processes result in short-term release of acidity in the form of 

nitrate. Furthermore, the decomposition of organic matter from forested areas contributes 

protons (acidity) to the soil solution, thus affecting the acid-alkaline balance and 

promoting the weathering of base minerals (Drever, 1988).   
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C.  Soil and Land Use  

The amount of CO2 present in the soil is one such driving force among carbonate 

rock dissolution processes. The uptake of atmospheric and soil CO2 by carbonate rock 

dissolution significantly impacts the global carbon cycle and is one of the most important 

sinks (Cao et al., 2012). Soil CO2 concentrations range from fractions of a percent to as 

much as ten percent due to OA and CA produced in associated with plant roots, microbial 

activity, and from decomposition of organic matter (OM) (White, 2013). A study by 

Zhang (2011) demonstrated that carbonate-rock dissolution is much greater beneath soil 

than for exposed rocks. Cao et al. (2011) substantiated this, reporting soil CO2 

concentrations that far exceed those of the air (Zhang, 2011). It has been argued that the 

contributions of CO2
 to aqueous solutions are much greater than the amount sourced from 

the atmosphere (Cao et al., 2011; Zhang, 2011; White, 2013). Thus, processes that affect 

soil acidity, including plant and tree root excretion, decay of vegetation, microbial 

activity in the soil, and land-use practices, may have strong influence on carbonate 

mineral weathering processes. 

Land-use practices and land cover may also influence the magnitude of the 

carbonate dissolution sink. Zhang (2011) found that carbonate dissolution increased with 

land cover from (in increasing order) tilled land, to shrub land, secondary forest, 

grassland and, lastly, primary forest. Thus, it was concluded that regeneration of 

vegetation can significantly augment rates of carbonate dissolution (Liu et al., 2008).  

Calculated dissolution rates of limestone tablets in association with various land-use 

practices were found to be higher for some land uses than others. However, when the 

average rate for all land-use types was compared against the total rate for the basin as 
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determined from hydrochemical data, the two values were found to be in close 

agreement. It has been suggested that dissolution rates for a basin should consider the 

different land-use types represented therein, rather than applying a blanket land-use type 

(Zhang, 2011). This study sought to determine whether factors such as soil type, land 

cover, and land-use practices significantly influence DIC flux, or if the hypothesized 

normalization factors capture sufficient detail to improve large-scale flux estimates 

without consideration of the aforementioned processes. 

 

2.8 Previous Estimates of the Sink by Carbonate Dissolution 

The carbon sink effect from carbonate dissolution has been evaluated using a 

range of approaches mainly determined as a function of spatial scale and data availability 

(Amiotte Suchet and Probst, 1995; Liu and Zhao, 2000; Groves and Meiman, 2001; 

Amiotte Suchet et al., 2003; Cao et al., 2011; He et al., 2013; Osterhoudt, 2014; Salley, 

2016). However, there may be special challenges associated with “scaling up” the results 

of these efforts to a basin the size of the Ohio River Basin. Several approaches have been 

used to estimate the sink from carbonate-mineral dissolution, some of which are 

described below.   

A formula for calculating the denudation rate of carbonate rocks was derived by 

Sweeting (1972) as: 

Dr = 0.0043P1.26                                                     (9) 

where Dr is dissolution rate and P is precipitation.  Amiotte Suchet and Probst (1995) 

successfully correlated runoff and weathering coefficients for the major rock types from 
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statistical data taken from 232 small, monolithic basins in France using the Global 

Erosion Model for CO2 fluxes (GEM-CO2) model to give the carbon flux as: 

FCO2 = a * Q                                                                 (10) 

where FCO2 represents CO2 consumption rate, a is a weathering coefficient assigned to 

different rock types and Q is the runoff discharge. Liu and Dreybrodt (1997) developed a 

linear rate law that calculated carbonate dissolution in turbulent CO2-H2O solutions by: 

R=α(Ceq-C)                                                              (11) 

where R is the dissolution rate, C is the Ca2+ concentration, and Ceq is the equilibrium 

concentration of Ca2+, and α is a rate constant dependent on temperature, PCO2, thickness 

of the diffusion boundary layer adjacent to the mineral and the thickness of the sheet of 

water flowing over the mineral. Marble and limestone disks 3 cm in diameter were cored 

from marble slabs 5 mm in thickness, with 7 cm2 of the disk surface area in contact with 

a solution of bovine carbonic anhydrase (BCA). It is important to note that the rate law 

developed from this study reflects laboratory conditions, and these may not be realistic 

for describing carbonate-mineral weathering in situ. Liu and Zhao (2000) resolved a 

linear correlation between runoff and carbonate rock denudation from secondary data 

sources using: 

Dr=0.0544 (P-E)-0.0215                                  (12) 

where Dr is dissolution rate, P is precipitation and E is evapotranspiration.  Regression 

analysis (a statistical measure for how well two parameters correlate, where R2 = 1.0 

indicates total correlation) of this relationship yielded strong agreement of 0.98. 
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2.9 Summary  

Mounting concerns over global climate change have motivated an understanding 

and quantification of the capacity for terrestrial carbon sequestration. It is clear that the 

amount of carbon removed from the atmosphere by the ocean, in addition to the amount 

still contained within the atmosphere, is less than known contributions from anthro-

pogenic emissions. Several approaches have been employed in efforts to quantify the 

extent of the terrestrial carbon sink, with mixed results. The carbon sink by carbonate 

rock dissolution on the continents is an area of particular interest in this search for 

understanding. Previous studies have yielded estimates of the global carbon sink from 

carbonate weathering spanning a broad range, from 0.088 Pg C/a (Hartmann et al., 2009) 

to 0.6433 Pg C/a (Liu et al., 2008). While variation is expected among regional basins 

due to inherent differences in basin area, precipitation, lithology, and other factors, such 

variation is not useful in making accurate assessments of predictions based on global CO2 

sequestration. The disparity of these results reveals the inadequacy of the current level of 

research in estimating this component of the terrestrial carbon sink. A more 

comprehensive method for evaluating the sink from carbonate dissolution that can be 

applied equally well over a wide range of carbonate rock-bearing drainage basins is 

critical to enhancing our understanding of carbon cycle processes and how these might be 

managed to ameliorate long-term repercussions for human and environmental health.  

This research thus seeks to develop further the methods used by Osterhoudt (2014) and 

Salley (2016) to arrive at a value for carbon sink due to carbonate mineral dissolution, 

normalized by area, time, and rainfall minus ET over a large and ecologically significant 

drainage basin.  In doing so, the methods will be appraised for their range of 
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applicability. The aim of this research is to determine whether these methods do prove 

valid in large-scale settings and that existing data could be used to significantly increase 

the efficiency and accuracy associated with making global carbon sink estimates. 
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Chapter 3.  Study Area 

 

 

3.1 Introduction to the Ohio River Basin 
 

White et al. (2005) described the Ohio River drainage system, including the 

hydrology, geology, ecology, climate, landscape, and land-use patterns of the Ohio River 

and its major tributaries. The Ohio River basin has the third largest discharge (average 

8,733 m3/s) in the United States. The basin spans an area between 34°N and 41°N latitude 

and 77°W and 89°W longitude that drains major portions of eight states and parts of six 

more, totaling 490,601 km2 (Figure 3.1). The basin extends from New York in the 

northeast to Georgia and Alabama in the south to Illinois in the west, and slopes generally 

from east to west (White et al., 2005).  

 

3.2 Geologic Setting 

The Ohio River basin spans six physiographic provinces (Hunt, 1967). The 

eastern region of the basin originates in the Blue Ridge, Valley and Ridge, and 

Appalachian Plateaus within the Appalachian Highlands province. The north and central 

portions of the basin drain the Interior Low Plateaus and glaciated Central Lowland 

provinces. The western end extends to the Gulf Coastal Plains (White et al., 2005; Weary 

and Doctor, 2014) (Figure 3.2). Numerous stratigraphic units are present among the 

provinces encompassed within the Ohio River basin (Figure 3.3). Within the Blue Ridge 

province are some of the highest peaks in the eastern United States, formed of 

metamorphic Precambrian granites, gneiss, sandstone, and conglomerate units.  The 

Valley and Ridge province contains mostly Paleozoic limestones, shale, and sandstones, 

as well as anthracite coal deposits.
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 Figure 3.1.  Geographic extent of the Ohio River drainage basin.   

Source: Created by author from USGS (2016a,b) data.   
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The larger Appalachian Plateaus province exhibits younger Ordovician, Silurian, 

and Devonian limestone, sandstone, shale, and bituminous coal in the east. The western 

region of the Appalachian Plateau covers eastern Tennessee, Kentucky, and Ohio and 

contains Mississippian and Pennsylvanian limestones. The Mississippian rocks within the 

Appalachian Plateau demonstrate extensive karst development. This karst topography 

stretches from southcentral Indiana through northern Alabama, and includes the world’s 

most extensive cave system, Mammoth Cave, in Kentucky. Relatively few surface 

streams are found in this area, with most water flowing in subsurface conduits. Finally, 

the portion of the basin from Ohio to central Illinois represents the Central Lowland 

province. Here the landscape has been influenced by Pleistocene glaciation, which 

persisted as recently as 15,000 years ago. The topography varies in this physiographic 

province, including rolling and flat plains and deeply incised rivers with intermittent 

Pennsylvanian limestone outcrops (White et al., 2005). Surface geology to the north of 

the Ohio River is distinct from other parts of the basin, where Illinoian and Wisconsin 

glaciation has formed a buried landscape (Thornbury, 1940). Here, thick deposits of 

unconsolidated Quaternary materials include glacial till, loess, and lacustrine deposits 

that overlie carbonate bedrock, resulting in a sparse presence of exposed carbonates in the 

region (Thornbury, 1940; Ray, 1965; Weary and Doctor, 2014) (Figure 3.4).  This is 

particularly evident among the Wabash, Great Miami and Scioto drainages.



 

57 
 

Figure 3.2.  Physiographic provinces of the Ohio River Basin.   

Source: Created by author from USGS (2016k) data.   
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Figure 3.3.  Bedrock geology of the Ohio River Basin and nested sub-basins.   

Source: Created by author from USDA (2016a,b) and USGS (2016a,b) data.   
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Figure 3.4.  Carbonate karst of the conterminous United States.  

Source: Modified by author from Weary and Doctor (2014). 
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3.3 Climate 

White et al. (2005) described the climate of the Ohio River basin as temperate 

with cool moist winters and warm humid summers. Mean monthly temperatures in the 

region range from -7°C to 10°C in winter and 24°C to 28°C in the summer. Mean 

monthly precipitation is relatively consistent over the basin area, with significant snow 

accumulations in the north and Appalachian regions. Annual precipitation for the basin 

ranges from 94 cm in northern parts of the basin to about 135 cm in the southernmost part 

of the basin, with slightly increased measurements among high elevations (White et al., 

2005; UTIA, 2016). The commonly referenced Köppen climate classification system that 

describes the climate of locations based on annual and monthly temperature and 

precipitation averages splits the basin into two climate categories. Regions above 40°N 

display moist mid-latitude climates with cold winters, warm summers, and year-round 

moist conditions. Regions between 26° to 45°N latitude exhibit moist mid-latitude 

climates with mild winters and warm-to-hot, humid summers. The Ohio River basin 

contains two climate regimes: fully humid regions that experience warm summers 

throughout most of the basin and fully humid regions that experience hot summers in the 

northern parts of the basin (Kottek et al., 2006) (Figure 3.5). 
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Figure 3.5.  Köppen climate classification map of the United States. 

Source: Kottek et al. (2006). 
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3.4 Hydrologic and Geochemical Setting 

The Ohio River is the main stem of the Ohio River basin system, formed by the 

confluence of the Allegheny and Monongahela Rivers in the northeast region of the basin 

running southwest approximately 1,575 km to the Mississippi River. Major tributaries of 

the Ohio River basin are the Allegheny, Monongahela, Muskingum, Kanawha, Scioto, 

Little Miami, Licking, Great Miami, Kentucky, Salt, Green, Wabash, Cumberland, and 

Tennessee rivers. The major tributaries constitute 84% of the overall drainage basin. An 

additional 57 tributary basins represent the remaining 16% of the basin area, all of which 

are rather small (<1000 km2). 

Differences in geochemistry and land-use types within the Ohio basin have 

created a dichotomy in tributary characterizations. Those entering the Ohio from the 

north and indeed much of the Ohio main stem itself are geologically young, formed by 

Pleistocene glaciations. Rivers entering the basin from the south and east, such as the 

Tennessee, Cumberland, Green, Kentucky, Kanawha, Monongahela, and Allegheny, are 

much older (White et al., 2005). Differences in geomorphology and fauna in the basin 

have been categorized into two discrete aquatic ecoregions: the Teays—Old Ohio and the 

Tennessee—Cumberland (Abell et al., 2000). The rivers that make up the Teays—Old 

Ohio can be subdivided into three types according to stream gradient and physiography.  

The first category includes the Monongahela, Allegheny, Kanawha, Licking, and 

Kentucky rivers that drain the Appalachians. Here river slopes are relatively steep, with 

rock and cobble substrate typical. Alkalinity within these waters is naturally low. Relief 

in the region has resulted in commercial exploitation and extensive impoundment of 

water for the purposes of hydroelectric power generation, navigation, and flood control.   
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The second group under the Teays—Old Ohio ecoregion includes the Green and 

Salt rivers. Rivers here have moderate gradients among headwaters, and stream bottoms 

are characteristically composed of sand, sediments, and chert cobbles. These rivers also 

tend to display low natural alkalinity. The third group in the Teays—Old Ohio ecoregion 

is represented by the Wabash, Great Miami, and Scioto rivers (and several other smaller 

tributaries). These rivers flow southward from west-central Ohio becoming moderately to 

deeply incised across the gently sloping landscape. Here, river substrate is predominately 

sandy along with coarse glacial till. In contrast to the previous regions, the waters of this 

third group tend to have high alkalinity due to extensive exposures of carbonate rock, and 

high phosphate and nitrate concentrations associated with agricultural land-use patterns.  

The other ecoregion, the Tennessee—Cumberland, consists of the two rivers for which it 

is named. Both have steep gradients within their Appalachian headwaters and parallel 

each other through a series of flatter physiographic provinces to their entry to the Ohio 

main stem. These rivers are the most impounded major rivers in the nation and are 

threatened by agricultural, urban, industrial, and mining drainage (White et al., 2005). 
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Chapter 4.  Methods 

 

4.1 Introduction 

Previous attempts to evaluate the sink by dissolution have primarily relied on 

three basic methods. Mathematical modeling based on a recognized linear correlation 

between dissolution rates and precipitation/discharge has been used over broad-scale 

applications, particularly for global estimations (e.g. Amiotte Suchet and Probst, 1995; 

Liu and Zhao, 2000; Amiotte Suchet et al., 2003; Liu et al., 2008).  Corrosion rates of 

limestone tablets buried in the soil have been used to calculate the CO2 sink. These 

studies considered precipitation, primary production, soil respiration, and the area, type, 

and purity of carbonate rock exposed to create a regression describing carbonate 

corrosion at representative monitoring sites (Cao et al., 2011; Zhang, 2011).  Finally, the 

hydrochem—discharge method utilizes high-resolution water chemistry data, along with 

discharge and basin area, to arrive at an estimate for the total carbon export from a basin 

(e.g., Groves and Meiman, 2001; Haryono, 2011; He et al., 2013; Osterhoudt, 2014; 

Salley, 2016). These studies concluded that the carbon sequestration processes occurring 

within a given basin are a product of the amount of discharge leaving the basin and the 

DIC present within the water. They stress the importance of high-resolution water 

chemistry and discharge data, particularly because flow rates and chemistry are 

commonly highly variable in carbonate rock flow systems (He et al., 2013). This 

variability reflects differences in carbonate type and purity that influence weathering 

rates. Recent investigations of carbon sequestration within the regional drainage basins of 

Kentucky (Osterhoudt, 2014; Salley, 2016) have sought to normalize the atmospheric 

carbon sink, either by time and area of carbonate rock outcrop (Osterhoudt, 2014), or by 
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time and volume of rainfall minus ET over an area of carbonate outcrop (Salley, 2016), to 

give an estimate that could be directly applied to other basins for determining carbon 

flux. Osterhoudt (2014) examined two nested watersheds within the upper Green River, 

Kentucky, using this normalization technique and found the magnitude of the 

atmospheric CO2 sink between the two basins to be within 3% agreement. However, data 

acquisition relied upon high-resolution water chemistry and discharge measurements 

taken by data logger equipment, and required labor-intensive and, thus, relatively 

expensive field work. Salley (2016) employed a similar approach to estimating the 

carbon sink by carbonate rock weathering in the catchment of the Barren River, 

Kentucky.  DIC flux was normalized by carbonate rock outcrop area, time, and the total 

depth of water available for dissolution and transport, using publicly accessible water 

chemistry, discharge, precipitation, and surface temperature data.  The investigations 

performed by Osterhoudt (2014) and Salley (2016) were limited to surface water at base-

level flow and did not consider non-carbonate contributions to the sink of atmospheric C 

from terrestrial weathering such as weathering of silicates, the presence of multiple 

stratigraphic units, or calcite cemented siliciclastics. When compared, the Salley (2016) 

and Osterhoudt (2014) results displayed a strong linear relationship (R2=0.94) for the flux 

as a function of those factors. This method holds promise for substantially improving the 

ease and accuracy with which carbon flux can be estimated on regional scales using 

secondary data. However, the approach has yet to be examined on large regional or 

global scales, and the range of conditions over which it is valid has not been evaluated 

prior to this study. 
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This investigation sought to determine the CO2 dissolution sink for the roughly 

half-million km2 Ohio River basin using an adaptation of the hydrochem-discharge 

method used by Salley (2016). The scope of this research does not include an 

investigation of the contributions of non-carbonate rocks to DIC flux or the atmospheric 

C sink from weathering of silicates, although these may be important considerations for 

future studies. A fundamental a priori hypothesis associated with this project contends 

that the weathering of carbonate minerals is the primary source of DIC flux observed in 

river basins and, because of this, non-carbonate sources of DIC were not considered. The 

study area was chosen for its size and because the basins used in previous studies, 

employing similar methods by Osterhoudt (2014) and Salley (2016), are nested drainages 

within the Ohio River basin. This allowed for direct comparison of results among small 

and large regional basins to determine if the factors of carbonate rock area, time, and 

discharge accounted for in the carbon flux normalization were sufficient considerations, 

or if additional factors should be evaluated as the scale of the study area increases. The 

data used in this research were secondary, such that successful implementation virtually 

eliminates the need for raw data collection in calculating carbon sink for a particular 

basin. The study area was defined by the Hydrologic Unit Code (HUC) basin boundaries 

available through the USDA Natural Resources Conservation Service (NRCS) Geospatial 

Data Gateway, and the area of carbonate rock within each HUC basin is determined from 

the U.S. karst map (Weary and Doctor, 2014). These have been overlain and clipped to 

the basin extent using ArcGIS 10.2.2 software. Public water chemistry data from 

municipal water-treatment facilities within the Ohio River basin and its tributaries were 

used to calculate total DIC present in solution. Precipitation and temperature data were 
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collected from individual weather stations within the study area operated by the National 

Oceanic and Atmospheric Administration (NOAA, 2016) National Centers for 

Environmental Information (NCEI), formerly known as the NOAA National Climatic 

Data Center (NCDC). Discharge data were obtained from the active U.S. Geological 

Survey (USGS) gauging stations located nearest the outlets of the Ohio River and its 

major tributaries (i.e., the Wabash, Great Miami, Scioto, Allegheny, Monongahela, 

Kanawha, Licking, Kentucky, Green, Cumberland, and Tennessee rivers) for each basin 

used in the study, for a total of 12 gauging stations. 

 

4.2 Water Chemistry and Discharge Data 

A critical component in determining the carbon sink for a given basin is to know 

the total inorganic carbon present in the water that is discharged from the basin. This can 

be calculated from routine water-quality measurements taken by municipal treatment 

facilities. Hydrochemical data were evaluated from October 1, 2013, to September 30, 

2014. This study period represents the water year following the study period used by 

Salley (2016) and coincides with the water year set by U.S. Geological Survey. Water 

chemistry data were collected from various public water treatment facilities (Figure 4.1).  

Preference was given to hydrochemical-sampling points located nearest to the river 

mouth. Priority was given to the highest resolution data available, which were adjusted to 

the degree of measurement precision for other parameters such as precipitation or 

discharge. Raw water chemistry data used for this study included pH, temperature, and 

total alkalinity (mg CaCO3/L), which was converted to bicarbonate alkalinity (mg HCO3
-

/L). Methods for the analysis of water samples followed the protocols defined in Standard 

Methods for the Examination of Water and Wastewater (SM) (AWWA 2006a, b), by the 
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U.S. Environmental Protection Agency (EPA), or those of Hach, Inc. (Hach, 2012).  

Water temperature was measured following SM 2550 with a thermometer (AWWA, 

2006a). The total alkalinity of water was calculated by titration of sample with a strong 

acid such as sulfuric or hydrochloric acid (AWWA, 2006b, c). 

Hydrochemical data were aggregated using the highest resolution available to 

represent daily values that were directly comparable to daily resolution discharge 

measurements. The influence of using aggregated and lower resolution data in making 

estimates of DIC flux was evaluated in two ways. First, by comparison of flux values 

calculated from daily resolution data from the Kentucky American Water Company for 

the Kentucky River at Pool 3 for all of WY 2014. Available monthly water-chemistry 

measurements were taken from the Kentucky River at Lockport, KY, between March and 

September, 2014. Second, by comparison of time-area normalized flux calculated from 

high-resolution direct measurements of water chemistry in the Green River for the period 

October 21, 2012, to January 27, 2013, with the analogous period in 2013-2014 as 

calculated from secondary water chemistry data acquired from the EPA Storage and 

Retrieval (STORET) database. 

Discharge data were obtained from USGS gauging stations via the National Water 

Information System (NWIS) for the Ohio River and major tributaries. Daily resolution 

discharge measurements (ft3/s) were assembled for the study period of WY 2014 and 

units converted to liters per day (L/day). Discharge monitoring locations were selected 

based on the distance of each gauging station from the river outlet and the sampling site 

of hydrochemical measurements. Hydrochemical data were aggregated to match 

discharge sampling frequency. This approach was chosen over averaging of high 
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resolution discharge data to match lower resolution chemistry measurements, since the 

range of discharge measurements varied more greatly than hydrochemical data over the 

year. 

 

4.3 Precipitation and Temperature Data 

Annual air temperature and precipitation data, for determination of rainfall and 

evapotranspiration, were collected for the Ohio River drainage basin for the duration of 

the study period.  The NOAA National Climate and Environmental Information database 

(NOAA, 2016) provided annual summaries of monthly precipitation totals (cm) and mean 

monthly air temperature (°C) data reported from various stations located throughout the 

study area. The locations of the weather stations where precipitation and temperature data 

were obtained are shown in Figure 4.2. The climate data selected for this study were 

reported from Cooperative Observer Program (COOP) stations in the Ohio River basin.  

The NCEI Annual Climatological Summary is derived from the National Climate Data 

Centers (NCDC) Summary of the Month dataset (DSI-3320). The NCEI was launched by 

NOAA on April 22, 2015, as a merging of the NCDC, National Geophysical Data Center 

(NGDC), and National Oceanographic Data Center (NODC), including the National 

Coastal Data Development Center (NCDDC), per the Consolidated and Further 

Continuing Appropriations Act, 2015, Public Law 113-235 (NOAA, 2016). This 

information, along with weather-station coordinates, was used in calculating the total 

amount of water available for carbonate-rock dissolution for the Ohio River drainage and 

its major sub-basins.
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Figure 4.1.  Location of hydrochemical monitoring points. Source: Created by the author from IAWC (2016), KAWC 

(2016), KDOW (2016a, b, c); and USGS (2016d-k) data.  
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4.3 Precipitation and Temperature Data 

Annual air temperature and precipitation data, for determination of rainfall and 

evapotranspiration, were collected for the Ohio River drainage basin for the duration of 

the study period.  The NOAA National Climate and Environmental Information (NCEI) 

database provided annual summaries of monthly precipitation totals (cm) and mean 

monthly air temperature (°C) data reported from various stations located throughout the 

study area.  The locations of the weather stations where precipitation and temperature 

data were obtained are shown in Figure 4.2.  The climate data selected for this study were 

reported from Cooperative Observer Program (COOP) stations in the Ohio River basin.  

The NCEI Annual Climatological Summary is derived from the National Climate Data 

Centers (NCDC) Summary of the Month dataset (DSI-3320).  The NCEI was launched 

by NOAA on April 22, 2015 as a merging of the NCDC, National Geophysical Data 

Center (NGDC) and National Oceanographic Data Center (NODC), including the 

National Coastal Data Development Center (NCDDC), per the Consolidated and Further 

Continuing Appropriations Act, 2015, Public Law 113-235 (NOAA, 2016).  This 

information, along with weather-station coordinates, was used in calculating the total 

amount of water available for carbonate-rock dissolution for the Ohio River drainage and 

its major sub-basins.
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Figure 4.2.  Location of NOAA COOP weather stations.   

Source: Created by the author from NOAA (2016) data.  
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4.4 GIS Data 

Several forms of GIS spatial data were used to represent the geologic, hydrologic, 

topographic, basin delineation, and county boundaries within the study area. These data 

were obtained using the U.S. karst map (Weary and Doctor, 2014), USDA NRCS 

Geospatial Data Gateway, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) Global Digital Elevation Model (GDEM), USGS Open-File Report 

2014-1156, and NOAA NCEI Annual Climatological Summaries Database (NOAA, 

2016). Data were imported into ArcMap 10.2.2 and clipped to the basin extent. Drainage 

basin boundaries for the Ohio River and major tributaries were delineated using 

Hydrologic Unit Code (HUC) shapefiles available via the U.S. National Hydrography 

Watershed Boundary Dataset (USGS, 2016a) and ASTER GDEM topographic data 

(NASA, 2016). The carbonate outcrop area was defined by the extent of exposed 

carbonate rock within a basin. A geologic shapefile representing carbonate rock 

distribution was accessed from the U.S. karst map (Weary and Doctor, 2014), and the 

area was calculated in ArcMap 10.2.2 using geoprocessing and summary tools. User-

defined Kriging interpolation of precipitation minus evapotranspiration (P-ET) data taken 

from selected weather stations throughout the Ohio River drainage basin was conducted.  

Kriging interpolation is a spatial statistics tool available in ArcGIS that averages values 

for areas that do not have a direct measurement using the measurements taken at nearby 

points as a function of distance. The results of the Kriging analysis were mapped to show 

contour lines of equal water availability (cm). All GIS data were represented using the 

North American Datum 1983 (NAD 83) geographic coordinate system and the Albert 

Equal Area Conic projected coordinate system. 
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4.5 Data Processing 

Data processing involved several components, including mapping and spatial 

analysis using ArcGIS, spreadsheet data management, and calculations performed in 

Microsoft Office Excel 2013 or Systat Software Sigma Plot 11.0, and graphing and 

statistical analysis using Sigma Plot 11.0. Water chemistry, discharge, precipitation, and 

surface temperature records and calculations were managed and carried out using Excel 

2013 and Sigma Plot 11.0. The ESRI ArcGIS 10.2.2 GIS platform was used to delineate 

the Ohio River basin and sub-basin spatial extents, process geologic data, and implement 

Kriging interpolation of precipitation. As described, Kriging is a means of estimating 

values for points without measurement using measurements from nearby points. Salley 

(2016) compared two methods of interpolation for precipitation-evapotranspiration data 

points within the Barren River drainage basin and found that the more technically 

complex Kriging method of interpolation did not significantly improve the accuracy 

compared to Inverse Distance Weighted (IDW) interpolation. This study also compared 

interpolation surfaces produced by IDW and Kriging interpolation. The contour surface 

produced by the Kriging interpolation was chosen for the improved smoothness of the 

contours versus the IDW surface. 

 

4.6 Drainage Basin Delineation 

The drainage boundaries for the Ohio, Wabash, Great Miami, Scioto, Allegheny, 

Monongahela, Kanawha, Licking, Kentucky, Green, Cumberland, and Tennessee river 

basins were delineated using HUC shapefiles and represented in ArcMap 10.2.2. Basin 

polygons were adjusted based on the location where hydrochemical measurements were 

taken, such that basin areas downstream of a hydrochemical monitoring point were 
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excluded (see Figure 5.1). In other words, basins were considered to “end” at the point 

where the hydrochemical data were collected. Drainage basin corrections were delineated 

along drainage divides as indicated by elevation contours. Coarse elevation contours were 

acquired from ASTER GDEM version 2.0 data. ASTER GDEM v2 is a product provided 

by the Land Processes Distributed Active Archive Center (LP DAAC) managed by the 

NASA Earth Science Data and Information System (ESDIS) project. Elevation contours 

were manually digitized to create basin polygons that reflect only the basin area upstream 

of the hydrochemical sampling locations. The resulting corrected basins more accurately 

reflect the area of the basin where carbonate rocks may contribute alkalinity to the river 

water at a given monitoring location. Adjustment of basin boundaries to represent sub-

surface flow was also considered, but not applied. Among hydrologic environments 

where rock permeability is low (that is, not enhanced by the presence of dissolution 

conduits or rock fractures), basin delineation reflects topographical divides. In contrast, 

rocks that display high permeability can allow for the extension of drainage basins 

beyond those delineated from surface features. Similarly, among karst environments, 

groundwater basins do not necessarily follow surface topography. Previous studies (see 

Salley, 2016) adjusted drainage basins to account for known karst groundwater flow 

paths among smaller basins that alter the effective area of the basins determined from 

surface topography only. The corrected basin delineations added a total of 464.6 km2, or 

roughly 11% of the total 4247.7 km2 drainage area of the Barren River upstream from 

Bowling Green. Basin area extension from groundwater flow paths proves to be an 

important factor in delineating drainage areas for basins that are hundreds of square 

miles, but these considerations may be of less consequence for the 490,600 km2 Ohio 
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River basin. Basin extensions of hundreds of miles would not significantly increase the 

area of a basin the size of the Ohio River drainage and, as such, corrections for basin 

extension from subsurface karst conduits are not be considered within the scope of this 

study. 

4.7 Calculation of Water Volume Available for Carbonate Dissolution 

Average monthly temperature (°C), monthly precipitation totals (cm), and station 

coordinates were collected from 37 Cooperative Observer Network (COOP) weather 

stations distributed throughout the study area, as well as a buffer beyond the basin 

boundaries to avoid edge effect and provide a suitable number of neighboring points for 

interpolation of precipitation values. These averages were adjusted to account for 

monthly volumetric loss due to evapotranspiration at given average monthly air 

temperatures for each weather station evaluated in the study area, such that:  

precipitation-evapotranspiration = volume available for dissolution. The calculation for 

potential evapotranspiration (PET) was performed per the methods of Thornthwaite and 

Mather (1957) as follows: 

𝑃𝐸𝑇 = 1.6𝑥 (
10𝑇𝛼

𝑖
)

𝛼
                                                                                                  (13) 

Where 𝑇𝑎 is the mean monthly air temperature (°C), 𝑎 is an empirically-derived exponent 

that is a function of 𝑖, given by a = [0.49 + 0.0179 * (I – 0.0000771) * I2 + 0.000000675 

*I3] and I is the heat index summed over a 12-month period where: 

𝐼 =  ∑ (
𝑇𝑎𝑖

5
)

1.5
12
𝑖=1                                                     (14) 
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Moisture excess or deficiency was determined as the difference of precipitation and PET 

with negative values representing potential deficiency of water (Thornthwaite and 

Mather, 1955, 1957; Sellinger, 1996). 

 

4.8 Calculation of Dissolved Inorganic Carbon (DIC) 

To calculate the carbon flux from a basin, it was necessary first to determine the 

total alkalinity and dissolved organic carbon (DIC) of the water discharged from the 

basin. Total alkalinity is the equivalent sum of bases titratable with strong acid (Stumm 

and Morgan, 1981). Although other sources of non-carbonate alkalinity are present in 

natural waters, in carbonate rock flow systems these are typically of small consequence 

relative to carbonate species. Waters substantially influenced by limestone are dominated 

by HCO3
- (Dreybrodt, 1988) and, thus, carbonic acid (H2CO3), bicarbonate (HCO3

-), and 

carbonate (CO3
-2) ions are considered primary species present in the system. Relative 

concentrations of carbonate species in solution were calculated from pH, temperature, 

and alkalinity (mg/l HCO3
-) measurements of surface waters from routine monitoring 

programs at water treatment facilities located near basin outlets. Bicarbonate (HCO3
-) 

species activity (𝑎𝑖) was calculated using the extended Debye-Hückel expression 

(Debye-Hückle, 1923; Harned and Owen, 1958; Stumm and Morgan, 1981):  

                             −log 𝛾𝑖 = 
𝐴𝑧𝑖

2√𝐼

1+𝛼𝑖
°𝐵√𝐼 

                                                                 (15) 

 
 

                                   𝑎𝑖 = 𝑚𝑖𝛾𝑖                                                                    (16) 

 

where a and b are constants for a given temperature and solvent, 𝛼° is the effective 

diameter of the HCO3
- ion complex, 𝑧𝑖 is the formal charge of HCO3

- , and 𝐼 is the ionic 

strength of the solution, given by: 
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                                𝐼 =
1

2
∑ 𝑚𝑖𝑧𝑖

2                                                                     (17) 

 

Activities of carbonic acid (H2CO3) and carbonate (CO3
2- ) were calculated using acid-

base equilibria as follows: 

                                        [𝐻2𝐶𝑂3] =
[𝐻+][𝐻𝐶𝑂3

−]

𝐾1
                                                       (18) 

 

                                        [𝐶𝑂3
2−] =

[𝐾2][𝐻𝐶𝑂3
−]

𝐻+                                                           (19) 

 

where k1 and k2 are temperature dependent solubility product constants.  DIC is the sum 

of carbonate species in solution given by: 

 

                                     ∑ H2CO3*, HCO3
-, CO3

2-                                                    (20) 

 

Daily resolution discharge (Q) measurements were obtained from US Geological 

Survey stations located at or very near locations where hydrochemical measurements 

were taken. Dissolved inorganic carbon (DIC) export from each basin was calculated as 

the product of the sum inorganic carbon species in solution and discharge. 

                               𝐷𝐼𝐶 𝐸𝑥𝑝𝑜𝑟𝑡 = (∑ H2CO3*, HCO3
-, CO3

2-) × 𝑄                        (21) 

 

Annual and monthly DIC flux values were calculated for the Ohio basin. Annual DIC 

flux was calculated for the major tributaries during WY 2014. 

4.9 Calculation of Atmospheric Carbon Sink 

The atmospheric carbon sink by carbonate rock dissolution for the Ohio River 

drainage and major sub-basins was estimated for WY 2014 as one-half of the total DIC 

flux leaving the basin per appropriate chemical mass balances (Jiang and Yuan, 1999; Liu 
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and Zhao, 2000; Groves and Meiman, 2001; Groves et al, 2002; Amiotte Suchet et al., 

2003; He et al., 2013). Inorganic carbon flux from the atmosphere to the terrestrial 

reservoir is one-half of the total DIC export from a basin. This is related to the 

fundamental assumption that for every two moles of carbon produced in equation (1), one 

mole of carbon originated as CO2 in the atmosphere and the other mole was derived from 

the carbonate rock itself. 

4.10 DIC Flux Normalization Procedure 

The DIC flux leaving the Ohio basin and sub-basins was normalized by time and 

the volume of water available for dissolution of carbonate minerals (rainfall minus ET 

over the area of carbonate rock), as in Salley (2016). The annual DIC mass exported per 

basin was divided by the product of days in the sample period, area of exposed carbonate 

rock, and depth of precipitation minus ET to achieve normalized DIC flux per time-

volume unit. The competence of the calibration in direct estimation of DIC flux as a 

function of time-volume normalization parameters was tested by statistical correlation.  

DIC flux values were plotted for each basin and compared using linear regression 

analysis to previous work conducted by Osterhoudt (2014) and Salley (2016).  
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Chapter 5.  Results 

5.1 Basin Delineation and Geologic Mapping 

The total area of the Ohio River basin is 460,901 km2 (White et al., 2005) and 

includes 11 major sub-basins ranging in area, from 9479 km2 for the Licking River basin 

to 245194.2 km2 for the Tennessee River basin (USGS, 2016c).  Sub-basins were 

delineated to exclude areas below the location where hydrochemical samples were taken 

to improve accuracy and avoid inclusion of carbonate areas that did not act as a source of 

alkalinity at the monitoring point (Figure 5.1). Delineation was performed in a 

Geographic Information System (GIS) using ASTER GDEM (NASA, 2016) topographic 

raster files.  Geologic maps of carbonate distribution (Weary and Doctor, 2014) were 

manipulated in ArcMap 10.2.2 to match the adjusted basin extents, and the area of 

exposed carbonate rocks present within each corrected basin was calculated. The total 

area of carbonate exposed carbonate rock for the Ohio River basin was 120,401 km2 

(Figure 5.2). The area of exposed carbonate rock among the sub-basins ranged from 0 

km2 in the Kanawha River basin to 44308 km2 in the Tennessee River basin. Values for 

the total basin area and for the corrected carbonate area are given in Table 3. 
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Figure 5.1.  Corrected sub-basins reflecting drainage upstream of hydrochemical monitoring locations.   

Source: Created by the author from IAWC (2016), KAWC (2016), KDOW (2016a,b,c), and USGS (2016a-j). 
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Figure 5.2.  Geographic distribution of exposed carbonate rock surface within the Ohio River Basin.  

Source: Created by the author from Weary and Doctor (2014) data. 
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5.2 Precipitation (P), Evapotranspiration (ET), and (P-ET) Kriging Interpolation 

 

Mean monthly precipitation for the Ohio River basin ranged from 5.67 cm in 

January to 13.6 cm in June. Monthly means for evapotranspiration ranged from 5.72 x  

10-3 cm in January to 13.1 cm in June. The balance of water remaining after volumetric 

losses due to ET were subtracted from total precipitation was considered the amount of 

water available to participate in carbonate-rock dissolution. Comparison of the water 

balance relative to average monthly precipitation and ET values reveals a strong seasonal 

influence of ET on the amount of water available for dissolution processes (Figure 5.3).  

In general, ET is at a minimum during the winter months and rises steadily throughout 

the spring to reach peak levels in the summer before waning during the fall. Therefore, 

the calculated water balance was less than 1 cm during the months of May, June, July, 

August, and September. The effects of ET were especially evident during the months of 

July and September when the calculated water balance was negative. The average depth 

of precipitation over the Ohio River basin for the hydrologic year 2014 was 118.9 cm, 

and the average depth lost to evapotranspiration was 69.2 cm. The balance of water 

calculated at 37 COOP weather stations was interpolated by user-defined Kriging and 

mapped in ArcMap 10.2.2 to represent contours of equal water availability in the Ohio 

River and major sub-basins (Figure 5.4). These data were then converted to raster format 

and clipped to the extent of exposed carbonate rock in each basin. The depth of water 

(cm) that fell on exposed carbonates was calculated, converted to kilometers, and 

multiplied by the total carbonate rock area per basin to arrive at the total volume of water 

available for carbonate dissolution.  The average depth of water available for carbonate 

dissolution for the Ohio basin during WY 2014 was 5.1 x 10-4 km (51 cm).  
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Figure 5.3.  Monthly average water balance available for dissolution, relative to 

precipitation and water lost to evapotranspiration.   

Source: Created by the author from NOAA (2016) data. 
 

Month 
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Figure 5.4.  P-ET surface for depth of water available for carbonate rock dissolution.                                                  

Source: Created by the author from NOAA (2016) data.  
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5.3 Hydrophysical Data 

 

Discharge measurements were obtained for the period October 1, 2013, through 

September 30, 2014 (Figures 5.5-5.8). Discharge of the Ohio River varied considerably, 

ranging from 1.79 x106 L/s to 2.14 x 107 L/s, with a mean discharge of 8.64 x 106 L/s.  

The total volume discharged from the Ohio River during the study period was 2.72 x 1014 

L. In general, discharge reflects seasonal variations in precipitation. Peak discharge 

measurements were observed between late December, 2013, and late April, 2014.  This 

period of maximum discharge corresponds to increased precipitation events during winter 

and spring. Lower discharge values were observed among summer and fall months, 

consistent with decreased precipitation. Discharge measurements for sub-basins ranged 

from 2,888 L/s to 4,847,759 L/s.  Discharge for all basins are summarized in Table 5.1. 

 

 

 

 

Basin 

Minimum 

Discharge 

(L/s) 

Maximum 

Discharge 

(L/s) 

Mean 

Discharge 

(L/s) 

Ohio 1795288 21435853 8639485 

Tennessee 187457 4847759 1598577 

Wabash 67960 4360794 987158 

Cumberland 73623 2755229 736160 

Allegheny 128275 2616476 649352 

Kanawha 63429 2271011 409152 

Green 15574 1517782 392015 

Kentucky 8636 1832100 271842 

Monongahela 33697 1506456 233454 

Scioto 19935 1101525 202246 

Great Miami 19397 1554594 144749 

Licking 2888 645624 92872 

Table 5.1.  Minimum, maximum. and average discharge for the Ohio River and 

major tributaries.   

Source: Created by the author from USACE (2016a, b) and USGS (2016l, m, n, 

o, p, q, r, s, t, u) data.  
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Figure 5.5.  Discharge for the Ohio, Tennessee, and Cumberland rivers.                  

Source: Created by the author from USGS (2016s) and USACE (2016a, b) data.  
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Figure 5.6.  Discharge for the Green, Kentucky, and Licking rivers.          

Source: Created by the author from USGS (2016n, p, q) data.  
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Figure 5.7.  Discharge for the Kanawha, Monongahela, and Allegheny rivers.  

Source: Created by the author from USGS (2016l, o, r) data.  
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Figure 5.8.  Discharge for the Scioto, Great Miami, and Wabash rivers.              

Source: Created by the author from USGS (2016m, t, u) data.  
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5.4 Hydrochemical Data 

Daily resolution water-quality measurements for the parameters of pH, 

temperature, and alkalinity were acquired for the Ohio River and each of the major sub-

basins for use in the calculation of total DIC concentration (Figure 5.9). Alkalinity data 

may be used in the calculation of DIC concentrations based on the assumption that, 

among carbonate dominated waters, alkalinity measurements reflect the basic carbonate 

species (bicarbonate and carbonate ions) in solution (Stumm and Morgan, 1981; Drever, 

1988). The exact proportion of these species is a function of pH; for waters with pH 

values in the range of 7 to 9, bicarbonate species dominate. Water temperature and pH 

measurements were used in conjunction with bicarbonate alkalinity data to provide a 

more accurate calculation of DIC concentration in water. 

The water temperature of the Ohio River during the study period ranged from 

1.11 to 26.7 °C, with an average value of 13.7 °C. (Figure 5.10). Among the major sub-

basins, water temperatures ranged from 0.170 to 35.2 °C (Figure 5.11). Coolest average 

temperatures were observed for the Allegheny River (12.7 °C) and warmest average 

temperatures were associated with the Cumberland River (19.2 °C). Minimum, 

maximum, and mean water temperatures for all sub-basins are presented in Figure 5.12.  

Temperature fluctuations for the Ohio and all evaluated sub-basins follow expected 

seasonal variations for the region. Throughout the hydrologic year under investigation, 

the lowest water temperatures were observed during the winter months, followed by a 

gradual rise throughout the spring, peak temperature conditions in the summer, and a 

gradual decline in water temperature during the fall. 

The pH measurements within the Ohio River exhibited relatively stable conditions 

throughout the hydrologic year, with values ranging from 7.5 to 8.0 pH units and an 
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average value of 7.76 pH units (Figure 5.13). The sub-basin waters exhibited greater 

variation in pH than the Ohio River, with values ranging from 6.93 pH units to 12.5 pH 

units (Figure 5.14). The highest average pH values for WY 2014 were observed in the 

Monongahela River (7.60 pH units), while the lowest average pH values were observed 

in the Kanawha River (8.41 pH units). Minimum, maximum, and average pH values for 

each sub-basin are represented in Figure 5.15. Although the range of pH values varied 

considerably less than temperature among all the basins evaluated, the observed 

variations in pH occurred on shorter time scales without a clear influence on pH signal 

based on time of year. 

Alkalinity measurements were reported as milligrams per liter calcium carbonate 

(mg/L CaCO3) and converted to milligrams per liter bicarbonate (mg/L HCO3
-).  

Bicarbonate alkalinity values for the Ohio River ranged from 109.8 to 175.7 mg/L HCO3
- 

, with a mean value of 139.2 mg/L HCO3
- (Figure 5.16). Within the sub-basins, 

bicarbonate alkalinity ranged from 34.6 to 502 mg/L HCO3
-, representing a much greater 

range than analogous measurements from the Ohio River (Figure 5.17). The lowest 

average bicarbonate alkalinity values were found in the Allegheny River (47.0 mg/L 

HCO3
-), while the highest average bicarbonate alkalinities were observed in the Great 

Miami River (378 mg/L HCO3
-). Overall, bicarbonate alkalinity displayed a similar trend 

as pH, which is to be expected per the relationship between pH and alkalinity. Variations 

in bicarbonate alkalinity occurred at intervals closely aligned to that of pH, rather than 

exhibiting the seasonal fluctuations observed among temperature measurements.  The 

patterns of variation among pH and alkalinity measurements may be substantially 

influenced by changes in discharge over smaller timescales. 



 

93 
 

 

 
 
 
 
  

Figure 5.9.  Water temperature for the Ohio River.                                    

Source: Created by the author from IAWC (2016) data. 
 



 

94 
 

 

 

 

 

Figure 5.10.  Mean water temperature for the major sub-basins.  

Source: Created by the author from KAWC (2016), KDOW (2016a, b, c), and USGS 

(2016d, e, f, g, h, I, j, k) data. 
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Figure 5.11.  Recorded pH values for the Ohio River.                                    

Source: Created by the author from IAWC (2016) data. 
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Figure 5.12.  Mean pH values for the major tributaries to the Ohio River. 

Source: Created by the author from KAWC (2016), KDOW (2016 a, b, c), and 

USGS (2016d, e, f, g, h, I, j, k) data. 
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Figure 5.13.  Recorded alkalinity values for the Ohio River.   

Source: Created by the author from IAWC (2016) data. 
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Figure 5.14.  Mean bicarbonate alkalinity values for the major tributaries to the 

Ohio River.   

Source: Created by the author from KAWC (2016), KDOW (2016a, b, c), and 

USGS (2016d, e, f, g, h, I, j, k) data. 
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5.5 Annual DIC Flux 

 

The DIC flux, or amount of DIC discharged from a given basin, was calculated 

using existing discharge and hydrochemical data available to the public for each basin in 

study. The total mass of DIC removed from the Ohio River basin for WY 2014 was 

estimated at 7.54 x 1012 g C (Figure 5.15). Monthly DIC flux values were also calculated 

for the Ohio River basin. The average mass of DIC export among the major sub-basins 

during WY 2014 ranged from 8.90 x 1010 g C to 1.15 x 1012 g C (Figure 5.16). DIC 

values followed a similar pattern as alkalinity measurements. This was expected since the 

range of pH in each basin fell between 7.2 and 8.8 pH units and is well within the range 

of pH where bicarbonate ions are dominant in solution (7 to 9 pH units), thereby 

contributing most of the measured alkalinity (Drever, 1988). DIC flux ranged from 9.3 x 

104 to 8.6 x 106 L/s (Figures 5.17 to 5.20). 
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Figure 5.15.  Sum DIC for the Ohio River.   

Source: Created by the author from IAWC (2016) and USGS (2016s) data.  
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Figure 5.16.  DIC for the major sub-basins of the Ohio River.                                        

Source: Created by the author from KAWC (2016), KDOW (2016 a, b), USACE (2016a, b), 

USGS (2016a, b, c, d, e, f, g, h, I, j, k, l, m. n. o, p, q, r, s, t, u), and NOAA (2016) data.  
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Figure 5.17.  DIC flux for the Ohio, Tennessee, and Cumberland rivers.              

Source: Created by the author from IAWC (2016), USACE (2016a, b), USGS (2016e, 

s), and NOAA (2016) data.  
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  Figure 5.18.  DIC flux for the Green, Kentucky, and Licking rivers.                   

Source: Created by the author from, KAWC (2016), KDOW (2016 a, b), USACE 

(2016a, b), USGS (2016m. h. p), and NOAA (2016) data. 
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Figure 5.19.  DIC flux for the Kanawha, Monongahela, and Allegheny rivers.         

Source: Created by the author from, USGS (2016d, g, i, l, o), and NOAA (2016) data. 
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Figure 5.20.  DIC flux for the Scioto, Great Miami, and Wabash rivers.                          

Source: Created by the author from USGS (2016f, j, k, m, u, t), and NOAA (2016) data. 
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5.6 Agreement Comparisons of Normalized DIC Flux 

The main objective of the study was to evaluate the efficacy of the normalization 

technique involving time and volume of water available for carbonate dissolution to 

predict DIC flux with suitable precision to be applied at larger scales. Time and volume 

(where volume is the average depth of water of the area of carbonate rock for the basin) 

normalized DIC flux values for the Ohio River basin were estimated from existing data 

and evaluated against flux values obtained from the use of secondary hydrochemical and 

discharge data for the Barren River and Green River employed by Salley (2016). The use 

of time and volume normalization parameters attempts to account for the chief variables 

that affect DIC, without using discharge or water chemistry data, by establishing a 

statistical relationship between DIC flux and the time and volume of water available to 

the system. Agreement of normalized flux values, combined with a strong statistical 

correlation between flux and normalization parameters, would offer support to the 

hypothesis that time and volume are sufficient considerations for estimating DIC flux 

over large basins using climate and geologic data exclusively. 

The normalized DIC flux for the Ohio River was estimated at 3.36 x 108 g C km-3 

day-1 (grams of carbon per cubic kilometer of water, per day). Relative to previous 

estimates of 5.61 x 107 g C km-3 day-1 and 7.43 x 107 g C km-3 day-1 for the Barren and 

Green River (Salley, 2016), respectively, the Ohio River exports 2.80 x 108 g C km-3 day-

1 more DIC than the Barren River and an additional 2.62 x 108 g C km-3 day-1 more DIC 

than the Green River. Normalized flux values for the Ohio River were not considered to 

be in close agreement with previous estimates of the Barren and Green River basins. The 

time-volume normalized DIC flux for the Ohio demonstrated 28.6% agreement with the 
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Barren River and 36.1% agreement with the normalized flux calculated for the Green 

River (Salley, 2016). This suggests that factors other than time and the final volume of 

water available to the carbonate system may account for over 70% error in the estimation 

of DIC flux. 

Normalized flux values of the major sub-basins were also compared to 

normalized flux values calculated by Salley (2016) for the Green and Barren rivers. The 

normalized flux for the Cumberland River (1.13 x 108 g C km-3 day-1) agreed 66.4% and 

79.3% with the normalized flux for the Barren and Green Rivers, respectively.  

Normalized flux calculated for the Tennessee River (8.79 x 107 g C km-3 day-1) agreed 

reasonably well with flux calculated for the Barren and Green Rivers (77.9% and 91.6% 

agreement, respectively). Comparison of the normalized flux from the Green River for 

WY 2014 (2.88 x 108 g C km-3 day-1) compared to normalized flux for the Barren and 

Green rivers for WY 2013 did not yield results in close agreement (32.6% and 41% 

agreement, respectively). The normalized flux of the Kentucky River (2.34 x 108 g C km-

3 day-1) agreed 38.7% with the Barren River and agreed 48.2% with the normalized DIC 

flux of the Green River. The normalized flux for the Licking River (3.28 x 108 g C km-3 

day-1) exhibited only 29.2% agreement with the Barren River and 36.9% with the Green 

River.  The normalized flux of the Monongahela River (2.50 x 108 g C km-3 day-1) agreed 

36.6% with the Barren River and 45.8% with the Green River. The Allegheny River 

normalized DIC flux (4.18 x 108 g C km-3 day-1) was in poor agreement (23.7% and 

30.2%) with the Barren and Green Rivers, respectively. Normalized flux values for the 

Kanawha, Scioto, Great Miami, and Wabash rivers exhibited very little agreement to 
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previous estimates of the Barren and Green Rivers, with less than 2% agreement for said 

basins. 

The normalized values for DIC flux among the major sub-basins ranged from 

8.79 x 107 g C day-1km-3) for the Tennessee River to 1.22 x 1011 g C km-3 day-1 for the 

Wabash River. Normalized flux values were compared between the Ohio River basin and 

the major sub-basins for WY 2014. In general, DIC flux of sub-basins containing 

substantial amounts of exposed carbonates (Tennessee, Cumberland, Green, Kentucky, 

Licking, Monongahela, and Allegheny) were in strong agreement with the DIC flux of 

the Ohio River basin, whereas basins with little or no near-surface carbonates (Wabash, 

Great Miami, Scioto, and Kanawha) yielded extremely poor agreement. he normalized 

DIC flux of the Cumberland River basin (1.13 x 108 g C day-1km-3) exhibited 50.3% 

agreement with the Ohio River basin (3.36 x 108 g C day-1km-3). The normalized flux for 

the Tennessee River basin (8.79 x 107 g C day-1km-3) agreed 41.8% with the Ohio River 

basin. For the Green River basin, normalized flux (2.88 x 108 g C day-1km-3) agreed 

92.3% with the value estimated for the Ohio River basin. In the Kentucky River basin, 

normalized DIC flux (2.34 x 108 g C day-1km-3) was found to be within 82.1% agreement 

of the Ohio River basin DIC flux. The Licking River basin flux (3.28 x 108 g C day-1km-

3) was in very close agreement (98.8 %) with the DIC flux from the Ohio River basin.  

The Monongahela River basin DIC flux (2.50 x 108 g C day-1km-3) agreed 92.3% with the 

Ohio River basin. DIC flux estimated for the Allegheny River basin (4.18 x 108 g C day-

1km-3) agreed 89.1% with the Ohio River basin flux. DIC flux for the Great Miami River 

basin (3.46 x 1010 g C day-1km-3) showed only 1.7% agreement with the Ohio River 

basin. Similarly, DIC flux in the Scioto River basin had just 1.5% agreement with the 
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flux from the Ohio River basin. The Wabash River basin normalized flux (1.22 x 1011 g C 

day-1km-3) had virtually no agreement (0.30%) with the flux observed for the Ohio River 

basin. The Kanawha River basin was completely devoid of exposed carbonates and, as 

such, no normalization of DIC flux was possible to compare to the Ohio River basin, so it 

is considered to share zero agreement. Several possible explanations for this are 

discussed in the following section. Annual DIC flux, normalization parameters, and 

normalized flux values for the all basins evaluated are summarized in Table 5.2. 

Lastly, the percent agreement of normalized DIC flux was compared among the 

major tributary basins of the Ohio River. Similar trends were observed as with 

comparisons of sub-basins with the Ohio River. Generally, high percentage agreement 

existed among the river basins that were represented by extensive carbonate surface 

geology; all normalized flux values were in at least 35% agreement, with all but four 

basins in 63% agreement. Basins with limited carbonate rock area were in moderate 

agreement with one another; all normalized flux values were in 44% agreement.  

Agreements were much weaker between the carbonate dominated basins and those with 

little exposed carbonates: ≤3% agreement.   

The basins in closest agreement with respect to normalized DIC flux during WY 

2014 included the Cumberland, Tennessee, Green, Licking, Kentucky, Monongahela, and 

Allegheny rivers. The normalized DIC flux from the Kentucky River was in 99.4% 

agreement with the flux in the Monongahela River, 91% with the Licking River, 71% 

with the Allegheny River, 55.3% with the Tennessee River, 1.1% with the Scioto River, 

0.4% with the Wabash River, and 0.1% with the Great Miami River. The Licking River 

normalized flux was found to be in 9.6% agreement with the Monongahela River, 85.4% 
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with the Green River, 63% with the Allegheny, 62.8% with the Tennessee River, 1.7% 

with the Wabash River, 1.1% with the Great Miami River, and 0.9% with the Scioto 

River. The normalized DIC flux in the Cumberland River was in 88.3% agreement with 

the Green River, 87.5% with the Tennessee River, 74.1% with the Licking River, 65.9% 

with the Kentucky River, 65.3% with the Monongahela River, 42.6% with the Allegheny 

River, 0.7% with the Great Miami River, 0.6% with the Scioto, and 0.2% with the 

Wabash River. Normalized DIC flux for the Green River was in 76.7% agreement with 

the Kentucky River, 76.2% with the Tennessee River, 76.1% with the Monongahela 

River, 51% with the Allegheny River, 0.8% with the Great Miami River, 0.7% with the 

Scioto River and 0.2% with the Wabash River. For the Tennessee River, normalized flux 

was in 73.8% agreement with the Monongahela River, 34.8% with the Allegheny River, 

0.5% with the Great Miami River, 0.4% with the Scioto River, and 0.1% with the 

Wabash River. The normalized DIC flux of the Monongahela River was in 71.6% 

agreement with the Allegheny River, 0.3% with the Great Miami River, 0.2% with the 

Scioto River, and 0.4% with the Wabash River. The normalized DIC flux for the 

Allegheny River agreed 2.6% with the Great Miami River, 2% with the Scioto River and 

0.7% of the Wabash River basin. The normalized DIC flux of the Great Miami River was 

in 91.8% agreement with the Scioto River and in 44.2% agreement with the Wabash 

River.  The normalized DIC flux of the Wabash and Scioto basins was in 50.1% 

agreement.   
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Drainage 

Basin 

DIC Flux 

(g C) 

Total Area 

(km2) 

Carbonate 

Rock Area 

(km2) 

Percent 

Carbonate Area 

(%) 

P-ET on 

Carbonate Rock 

(km) 

Wabash 1.15 x 1012 84433.6 

 

56.8 0.10 4.55 x 10-4 

Scioto 3.78 x 1011 16679.5 

 
55.6 

0.30 4.56 x 10-4 

Great Miami 3.20 x 1011 13804.6 

 
52.9 

0.40 4.78 x 10-4 

Allegheny 1.92 x 1011 30043.8 

 
2374.3 

7.90 5.29 x 10-4 

Ohio 7.54 x 1012 400, 901.0 

 

120401.8 30.0 4.90 x 10-4 

Licking 1.19 x 1011 9479.4 

 

3353.0 35.4 5.06 x 10-4 

Green 3.00 x 1011 23672.5 

 

11506.1 48.6 5.00 x 10-4 

Monongahela 8.94 x 1010 18932.8 

 

2173.3 11.5 4.84 x 10-4 

Kentucky 1.92 x 1011 17793.2 

 

4415.4 24.8 5.10 x 10-3 

Cumberland 5.55 x 1011 45842.8 

 

25181.0 54.9 5.33 x 10-4 

Tennessee 7.49 x 1011 245194.2 

 

44308.6 18.1 5.27 x 10-4 

Kanawha 2.31 x 1011 31597.8 0.00 0.0 0.00 

 

 
Table 5.2.  Summary table for the Ohio River and major sub-basins.   

Source: Created by the author from Weary and Doctor (2014), NASA (2016), IAWC (2016), KAWC (2016), KDOW (2016 

a, b), USACE (2016a, b), USGS (2016a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u), and NOAA (2016) data.  
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5.7 Statistical Correlation by Regression Analysis 

The strength of the relationship between DIC flux and time-volume normalization 

parameters at various basin scales was tested using linear-regression analysis. Linear 

regressions evaluate the closeness of fit for a statistical model based on the variation of 

individual data points from the line of best fit to the entire data set. In regression, R2 

coefficients are used to approximate the agreement of the regression line with the data. A 

model in which the line agrees perfectly with all points in a data set has an R2 value of 

1.0, whereas no agreement between the line and the data points would yield an R2 value 

of 0.0 (Kleinbaum et al., 2013).   

The Wabash, Great Miami, and Scioto sub-basins exhibit elevated normalized 

flux values relative to other basins evaluated. Here, the distribution of carbonate rocks is 

diffuse, with geology characterized by quaternary glacial deposits (e.g., Call, 1882; 

Thornbury, 1940; Ray, 1965). The Kanawha River basin was found to be entirely devoid 

of exposed carbonates, such that zero DIC flux is contributed by carbonate rock 

dissolution. To remove the influence of these basins, which were determined to be 

inappropriate for application of this technique, regression analysis was performed on a 

data sub-set that excluded the Wabash, Great Miami, Scioto, and Kanawha River basins.  

The remaining sub-basins (Tennessee, Cumberland, Green, Kentucky, Licking, 

Monongahela, and Allegheny) were considered to have significant amounts of exposed 

carbonates. When the regression treatment was applied to carbonate dominated sub-

basins for WY 2014, a strong statistical correlation (R2 =0.97, p = <0.001) (Figure 5.21) 

was revealed.   
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Figure 5.21.  Regression analysis of DIC flux vs. time-volume for sub-basins, with 

≥8% of total areas as carbonate outcrops.   

Source: Created by the author from KAWC (2016), KDOW (2016 a, b), USACE 

(2016a, b), USGS (2016a, b, c, d, e, f, g, h, i, j, k, l, m. n. o. p. q. r. s, t, u), and 

NOAA (2016) data. 
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5.8 Magnitude of Atmospheric Carbon Sink by Carbonate Dissolution 

The magnitude of the atmospheric sink from carbonate rock dissolution for the 

Ohio River basin was 1.68 x 108 g C km-3 day-1, or one-half the normalized DIC flux.  

Recall that the atmospheric sink is considered as half the total flux for each basin because 

of the stoichiometric relationship described in Equation 5. For every two moles of carbon 

produced as bicarbonate, one mole was derived from the atmosphere as CO2 (this 

represents the atmospheric sink) and one mole was contributed from the rock as CaCO3. 

5.9 Influence of Hydrochemical Data Resolution on Flux Estimates 

The influence of data resolution on DIC flux was evaluated in two ways: 1) 

comparison of flux values generated from fine and coarse resolution datasets obtained 

from different organizations conducting hydrochemical monitoring near the confluence 

of the Kentucky River with the Ohio, and 2) comparison of flux values calculated from 

high resolution data for the Green River collected by Osterhoudt (2014) to fluxes as 

calculated from lower resolution data for the Green River obtained from secondary 

sources as part of this study. 

To test the usefulness of coarse resolution hydrochemical monitoring programs 

employed by treatment facilities, a pair of hydrochemical datasets collected from the 

Kentucky River were compared. The data represented high resolution daily monitoring 

for all of WY 2014 (KAWC, 2016) and a low resolution monthly dataset for the period 

March 26, 2014, through September 25, 2014 (KDOW, 2016b).  The annual DIC flux for 

the Kentucky River basin calculated from the high-resolution KAWC (2016) data was 

1.92 x 1011 g C year-1. The same calculation using the low-resolution Kentucky Division 

of Water (KDOW, 2016b) data yielded an annual flux of 1.99 x 1011 g C year-1 for the 
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Kentucky River basin. The normalized flux calculated from the high-resolution dataset 

was equal to 2.34 x 108 g C km-3 day-1, and the low-resolution data yielded a normalized 

flux of 2.42 g C km-3 day-1. The normalized flux values generated by the high and low-

resolution datasets were in 98.2% agreement. The very close agreement of the normalized 

flux values for the Kentucky River derived from the high and low-resolution data 

suggests that lower resolution secondary data can be used with confidence, where high 

resolution direct measurement is unavailable. This is of substantial value, as in most 

cases it is not practical, economical, or desirable to make direct measurement for large 

basins or among many basins in an attempt to arrive at global flux estimates. 

An attempt was also made to evaluate the difference in flux estimated from high 

resolution direct measurement techniques relative to lower resolution monitoring systems 

implemented at treatment facilities. Time-volume normalized DIC flux could not be used 

to evaluate agreement of normalized flux between high resolution hydrochemical 

measurements taken using data loggers (Osterhoudt, 2014) and existing chemical data 

from water treatment facilities along the Ohio River and major tributaries during this 

study. The flux values calculated from direct water chemistry measurements by 

Osterhoudt (2014) were normalized per time and area of carbonate rock, rather than time 

and volume, since the basins evaluated in the study were nested and considered to have 

received approximately equal precipitation. Moreover, the study period used by 

Osterhoudt (2014) represented flux values calculated between October 21, 2012, and 

January 27, 2013, rather than the Water Year 2014 (October 1, 2013, through September 

30, 2014) used to study the Ohio River and its major sub-basins.  



 

116 
 

Chapter 6. Discussion and Conclusions 

6.1 Review of Research Objectives 

The objectives of this study were as follows: 1) determine the magnitude of the 

inorganic carbon flux for the Ohio River basin; 2) evaluate whether the variables of area 

of carbonate rock outcrop, depth of P-ET, and duration of exposure (time) are suitable 

considerations in normalization of DIC flux for large drainage basins; and 3) assess the 

use of secondary hydrochemical data as effective alternatives to high resolution direct 

measurement techniques in estimating DIC flux among large basins. Several phases were 

necessary to satisfy this inquiry. Geologic maps and hydrologic data were assembled to 

delineate basin boundaries and represent the area of carbonate rock exposed within each 

basin. Climate data in the form of temperature and precipitation measurements were 

collected and used to calculate evapotranspiration (ET) and the final volume of water 

available for dissolution (P-ET) over the carbonate rock area. Secondary hydrochemical 

and discharge data were used in the calculation of DIC flux for each basin studied.  

Geologic and climate data were used in normalization of DIC flux calculations by time 

and volume of water free to participate in carbonate rock dissolution. The resulting 

normalized DIC flux values were compared to those of previous investigations 

employing similar techniques, and a statistical correlation was established with support 

from empirical evidence. The products of this study are summarized hereafter. 

1. What is the magnitude of the inorganic carbon flux for the Ohio River basin? 

The inorganic carbon flux for the Ohio River basin for Water Year 2014 (October 

1, 2013, through September 30, 2014) normalized by time and volume of water available 

was estimated at 3.36 x 108 g C km-3 day-1. 
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2. Are the variables of area of carbonate rock outcrop, depth of P-ET, and 

duration of exposure (time) suitable considerations in normalization of DIC 

flux for large drainage basins? 

 

The proposed normalization factors appear to be effective when applied to 

drainage basins that display even modest percentages (in this study, over about 8%) of 

exposed carbonate rock relative to total basin area. The basins that displayed minimal 

percentages of exposed carbonates (<1%) exhibited normalized flux values that were 

significantly unlike those of the rest of the data set and these were considered outliers.  

Alkaline waters characterize the Wabash, Great Miami, Scioto, and Kanawha rivers 

despite the minimal presence, and in some cases absence, of exposed carbonate rocks.  

Other sources of alkalinity are present in these rivers, implying that the geologic and 

climatic data used herein may not capture effectively the major controls on DIC flux for 

these basins. Other considerations such as land use, soil type, sub-surfaced carbonates, 

biological activity, and silicate weathering may become increasingly important in such 

environments. As such, the method is not appropriate for use in basins where the percent 

of carbonate outcrop area is <1% and should be excluded from future analysis. When the 

Wabash, Great Miami, Scioto, and Kanawha river basins were excluded from the dataset 

used in regression analysis, a strong agreement existed. Sub-basins where carbonate 

rocks made up ≥7.9% of the total drainage area during WY 2014 yielded a regression 

coefficient that indicated a strongly positive correlation (R2 = 0.97, p = <0.001). These 

findings suggest that model error may increase with decreasing area of carbonate rock 

present in a basin. Thus, the use of geologic and climate data to predict DIC flux appears 

to be successful among basins where carbonate rocks represent as little as 7.9% of the 

total basin area, but is not effective where carbonate rocks make up less than 1%. The 
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true threshold for model success relative to exposed carbonates could be even less, since 

none of the basins involved in the study contained percentages of carbonate rock between 

1% and ~8%. 

3. Does the use of secondary water chemistry data appear to be as effective in 

determining carbon flux as similar methods employing high resolution 

measurements? 

  

 A general difficulty associated with the use of existing hydrochemical data from 

treatment facilities is resolution. Many of the facilities do not maintain regular sampling 

programs. In most instances, bi-monthly or quarterly sampling represented the highest 

resolution chemistry data available for the rivers evaluated. The coarseness of such data 

may result in DIC flux estimates that over- or under-estimate the actual flux. Data gaps 

due to equipment failure or environmental conditions in coarse resolution hydrochemical 

data are also problematic. The use of low resolution water chemistry data where other 

sources of hydrochemical data are absent may explain variable percent agreements of 

normalized flux among basins evaluated in this study compared to the Green and Barren 

basins (Osterhoudt, 2014; Salley, 2016).  

 To account for the irregular frequency and data gaps, measurements were 

aggregated to represent daily conditions. This becomes a somewhat subjective process as 

the investigator must assign a limited number of sample values to an entire water year of 

discharge data to calculate DIC flux. For example, if sampling was conducted on a bi-

monthly basis, the same input values for pH, temperature, and alkalinity must be used for 

every day of the two-month period. This results in generalization and a loss of the 

variation occurring over time scales less than two months. However, this is of less 

concern, as discharge has been shown to vary more considerably, whereas variables such 
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as pH, temperature, and alkalinity are relatively consistent throughout time and are 

largely controlled by discharge (Groves and Meiman, 2005), such that variation occurring 

over shorter timescales is not substantially dampened by use of aggregated water 

chemistry data. Furthermore, normalized flux values for the Kentucky River produced 

from high resolution monitoring data, and those calculated using coarse resolution data 

that was aggregated to match daily discharge measurements, showed very close 

agreement (98%) in flux values. This lends additional support to the use of secondary 

hydrochemical data in investigations at larger scales. 

As discussed, comparison of time-volume normalized flux estimates generated 

from high resolution measurements versus lower resolution scales employed by water 

treatment facilities was not possible. This was a consequence of the fact that DIC flux 

values estimated from high resolution data logger measurements reported by Osterhoudt 

(2014) were normalized by time and area of exposed carbonate rock. A sub-set of data for 

the Green River was restricted to the period of study for Osterhoudt (2014) (October 21, 

2012, to January 27, 2013) and normalized by time and area of carbonate rock yielding 

moderate (46% agreement). 

The difference in flux values calculated for the Green River through use of 

existing hydrochemical data versus the flux calculated from high resolution data by 

Osterhoudt (2014) may expose the potential limitations associated with the method. The 

moderate agreement among normalized flux values for the Green River should be 

interpreted with caution. One consideration associated with this observance involves the 

location at which hydrochemical measurements were taken. The data used for this study 

were obtained very near to the outlet of the Green River with the Ohio at Livermore, KY.   
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By contrast, the hydrochemical measurements of the Green River taken by 

Osterhoudt (2014) were obtained several kilometers upstream at Munfordville, KY. The 

chemical signatures of the water near the outlet of the Green River capture alkalinity 

contributed from the carbonate geology downstream of Munfordville and may provide a 

more holistic estimate of total DIC flux for the Green River. However, it should also be 

noted that the area of exposed carbonates is correspondingly larger for the basin upstream 

of Livermore, KY, compared to the area of carbonates contributing alkalinity upstream of 

Munfordville, KY.  Normalized flux values represent the ratio of total DIC flux to 

exposed carbonates and time. Therefore, if time is held constant, increases in total DIC 

flux based on monitoring location should be accounted for in the normalization process.  

Accordingly, differences in monitoring points and area of exposed carbonates prove 

inadequate in justifying the difference in time-area normalized flux. Variation in 

precipitation, contributing to enhanced carbonate dissolution for the period of interest 

during 2012-2013 compared to the same period evaluated in 2013-2014, is likely of 

greater consequence in the observed difference in time-area normalized flux. 

At present, the degree of confidence in using secondary hydrochemical data in 

lieu of high resolution measurements to predict DIC flux remains uncertain. Although 

comparisons of fine versus coarse resolution within the same basin and year yielded 

normalized flux values in very close agreement, the “fine” resolution data represent only 

daily measurement frequency and are less comprehensive than more frequent 

measurements taken via data loggers, which can be on the scale of minutes or even 

seconds. Similarly, although time-area normalized flux values for the Green River for the 

period October 21 to January 27 differed between 2012-2013 and 2013-2014 and were 
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only in moderate agreement, water availability is not accounted for and this may alter the 

agreement. It is recommended that high resolution hydrochemical data be collected for 

the Green River (or other major sub-basins) representing an entire hydrologic year. This 

would allow DIC flux to be normalized by time and volume of water available for 

carbonate rock dissolution. This value could then be directly compared against time-

volume normalized flux estimates generated from publicly available hydrochemical data 

to evaluate the true usefulness of secondary data in making estimates of DIC flux. 

6.2 Discussion 

This evaluation of the time-volume normalization technique has identified some 

fundamental limitations associated with implementing this technique over large scales.  

Most significant are the following requirements: 1) a large area of exposed carbonate 

minerals in basin (≥8% of total surface area), and 2) all variables used in the 

normalization parameters must represent positive values.   

There appears to be a threshold controlling the effectiveness of the model in 

predicting DIC flux using time-volume normalization parameters that is directly related 

to the carbonate surface area in the basin. All the drainage basins assessed in the study 

exported significant quantities of DIC, including the basins with little or no surface 

carbonates. The basins evaluated by this study can be assigned to one of three categories, 

which are characterized by the distribution of surface carbonates: 1) those in which 

carbonate rocks dominate surface geology, 2) those that display minimal areas of exposed 

carbonates, and 3) those that exhibit zero exposed carbonates. The first category is 

represented by the Ohio, Tennessee, Cumberland, Green, Kentucky, Licking, 

Monongahela, and Allegheny drainages, where carbonate rocks compose substantial 
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areas of the surface geology (≥7.9%). The second category contains the Wabash, Great 

Miami, and Scioto drainages where carbonates are present in limited areas (<1%). The 

Kanawha River is assigned to the third category, as it contains no mapped surface 

carbonates (0%). DIC was observed to vary considerably between these categories. In 

general, the basins exhibiting appreciable areas of surface carbonates yielded DIC flux 

values in good agreement (R2 ≥ 0.90). However, when basins with limited area of surface 

carbonates were included with the basins where carbonates dominate surface geology, the 

similarities in DIC flux were decoupled (R2 ≤ 0.15). These basins include the Wabash, 

Great Miami, and Scioto drainages.   

Positive values for carbonate rock area and depth of water available for 

dissolution during the period of interest are critical to the success of the model in 

predicting DIC flux. If either carbonate rock area or depth of P-ET equal zero, it is not 

possible to normalize existing flux, as dividing by zero renders an undefined quantity. It 

follows that under these circumstances it is not possible to establish a mathematical 

relationship to enable future predictions of flux based on correlation of DIC flux to 

geologic and climatic data. This was evidenced during examination of the DIC flux 

coming from the Kanawha basin, where a total absence of exposed carbonates resulted in 

the inability to normalize the DIC exported from the basin. Similar constraints may 

become apparent as the method is applied over shorter periods where water lost to 

evapotranspiration exceeds rainfall, rendering zero water available for the dissolution of 

carbonate rocks that would otherwise contribute alkalinity to streams. Over longer 

periods an assumption is made that the change in water storage over extended periods is 

equal to zero. This assumption may not hold true over shorter time periods.    
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Both area of carbonate rock and water availability are important controls on the 

drawdown of atmospheric carbon by carbonate mineral weathering, and the extent to 

which each influences DIC flux is mutually dependent. For example, under 

circumstances where more water is lost to evapotranspiration processes than is 

contributed by rainfall, no water is available for the dissolution of carbonate rocks. Thus, 

even if large areas of carbonate rocks are exposed within a basin, the absence of water 

availability results in a scenario where no carbon is removed from the atmosphere 

through interactions of acidified water with carbonate minerals. Likewise, under 

conditions where rainfall exceeds ET, there may be no atmospheric carbon flux if there 

are no exposed carbonate minerals over the area where the precipitation occurred.  

Therefore, DIC flux cannot be approximated from existing geologic and climate data in 

basins where any one of the normalization parameters equals zero, using the proposed 

technique.  

 While other sources of alkalinity exist in river systems, a fundamental assumption 

associated with this research is that carbonate species dominate in natural waters (Drever, 

1988). A secondary assumption is that the primary mechanism by which carbonates 

contribute alkalinity to surface waters occurs through interactions of chemically 

aggressive waters from rainfall and channel storage with surface carbonates that are in 

contact with these solutions. For basins where surface carbonates are diffuse, this 

assumption may prove to be invalid. Other factors, such as the contribution of alkalinity 

from baseflow, may be more influential in controlling the chemical signature of surface 

waters among basins where exposed carbonate geology is minimal. Interactions of 

groundwater in the phreatic zone with carbonate bedrock is one mechanism by which 
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baseflow to stream channels may impart carbonate alkalinity to surface waters. Further 

investigation is needed to compare the hydrochemical signatures of groundwater to those 

observed for surface streams among said basins.   

DIC flux can be described in terms of the proposed primary (time, area of 

carbonates, P-ET depth) and secondary (soil type, land use, weathering of silicates, island 

basalts, and unconsolidated carbonates, etc.) variables affecting DIC flux (y), given as:  

(y = x +μ)                                (22) 

 where x represents time-volume normalization parameters and μ represents the myriad 

other variables that may influence DIC flux from a given basin. In basins where the 

percentage of carbonate rock area and value of P-ET are high, the value of x is large and 

y is small by comparison. Under these conditions, the normalization parameters of time, 

carbonate rock area, and P-ET are effective in generating reliable estimates of DIC flux.  

Alternatively, among basins where the percentage of carbonate rock area and value of P-

ET is low, the value of x is small relative to y. Here, the normalization parameters are 

unable to capture accurately the nature of the primary influences that control the DIC flux 

in a basin and are not recommended for use in making direct estimation of flux.   

 A significant challenge associated with the normalization procedure used for this 

study is represented by DIC contributions from rocks that are not included on maps of 

carbonate outcrops. Some examples include: 1) calcium-rich loess deposits, 2) calcium 

and magnesium-rich lacustrine facies, 3) thin surface carbonates, 4) grain replacement in 

non-carbonate rocks by carbonate minerals found in calcite cements, 5) contributions of 

alkalinity from carbonates in the subsurface, and 6) calcite grains in stream bedload. The 

existence of calcium and carbonate sources of DIC beyond the mapped carbonate 
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bedrock given by the Weary and Doctor (2014) is an especially important consideration 

for DIC flux of the Wabash, Great Miami, Scioto, and Kanawha river basins. The sparse 

distribution of exposed carbonate bedrocks relative to substantial DIC flux issuing from 

said basins results in over-estimation of the normalized flux value. As such, it is 

recommended that maps of bedrock and Quaternary geology be used to supplement maps 

of carbonate geology in regions where exposed carbonate bedrock does not represent the 

surface geology. Although assigning area to calcite cements and bedload grains is not a 

feasible task, inclusion of Quaternary and bedrock carbonates would designate area to 

bedrock and unconsolidated sediments that are high in sources of alkalinity. By 

incorporating area occupied by these other sources with the area taken from maps of 

bedrock geology, the value of the normalized flux would likely be reduced. This would 

bring the normalized flux values for the basins in discussion in closer agreement with the 

flux from basins draining regions where extensive karst development dominates surface 

geology. 

 Differential weathering patterns, and contributions to DIC flux, among various 

rock types are also important factors that may complicate the accuracy of the proposed 

model. These variables affect thermodynamic and kinetic reaction drivers. For example, 

among carbonates, the solubility product of calcite is not equivalent to dolomite or calcite 

cements that may replace grains of a host mineral, such as sandstone. The presence of 

impure and interbedded carbonates presents further difficulty, as weathering rates and 

solubility are highly variable among such stratigraphic units. Furthermore, caution should 

be exercised in assigning the source of DIC in rivers. Other rock types, in addition to 

carbonates, have been extensively studied for their ability to function as a sink of 
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atmospheric C. Weathering of silicate minerals over vast areas is believed to contribute 

substantially to the C sink (Garzione, 2008; Li and Elderfield, 2013). More inclusive 

models used to estimate the C flux between the atmosphere and terrestrial reservoirs 

would be well served to expand considerations beyond solely examining the influence of 

carbonate-mineral weathering of DIC flux.   

 Of interest is the comparatively large DIC flux sourced from the Wabash, Great 

Miami, Scioto, and Kanawha river basins. Despite the elevated DIC flux observed in this 

region, exposed carbonate rocks represent very little of the surface geology. This suggests 

that other sources of alkalinity must be present in the system. Natural waters carry the 

chemical signature of the geologic materials with which they interact, and it is 

appropriate to consider geologic contributors of alkalinity aside from mapped surface 

carbonates. The research design of this project relied on maps of surface geology; 

however, it is worthy of consideration that, in many cases, massive areas of carbonate 

bedrock underlay mapped surface deposits and supply alkalinity to rivers through 

baseflow. The DIC contribution from sub-surface carbonates is undoubtedly reflected in 

the chemical signature of the water, yet the area representing these deposits is not 

included in carbonate outcrop area used in flux normalization for this investigation. A 

special case of this is observed among the Wabash, Great Miami, and Scioto basins, 

where glacial sediments form a thick covering over carbonate bedrocks (Ray, 1965, 1974; 

Thompson et al., 2016). Normalized flux values among the Wabash, Great Miami, and 

Scioto drainages exceeded that of all other basins, including the Ohio basin, by two 

orders of magnitude.  Possible explanations for these observations represent an array of 
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topics including thermodynamic, kinetic, geologic, biologic, climate-driven feedback 

systems, weathering of silicates, soil type, and land-use practices. 

DIC flux for the Kanawha River cannot be normalized per the parameters defined 

in this model since no exposed carbonates were present to act as a source of the observed 

DIC flux from the drainage basin. To evaluate if unmapped sources of DIC flux from 

carbonate minerals exist in the Kanawha basin, several approaches were applied. The first 

was to examine state geologic maps of West Virginia, where the Kanawha basin is 

located, and compare it to the Weary and Doctor (2014) U.S. karst map to determine if 

any areas of carbonates were not included in the more generalized atlas. The Federal 

Energy Regulatory Committee (FERC, 2016) conducted field geologic surveys as part of 

the environmental impact statement for the proposed Atlantic Coast Pipeline and 

indicated over twenty square miles of surface carbonates in Virginia that were not 

identified on the map produced by Weary and Doctor (2014). It was thought that perhaps 

a similar circumstance might exist for regions of the Kanawha Basin. A more detailed 

state geologic map was acquired from the West Virginia Geology and Economic Survey 

(WVGES, 1968). Comparison of the state-level geologic map to the U.S. karst map failed 

to identify any areas of surface carbonate rocks that were not included on the map by 

Weary and Doctor (2014). The second attempt to account for the observed DIC flux 

issuing from the Kanawha basin involved examination of the physiographic provinces 

encompassed by the Kanawha basin to determine whether the basin extended into the 

Valley and Ridge Province of the Appalachian Mountains, where limestone units could 

be exposed among folded rocks. Figure 6.1 demonstrates that the Kanawha basin is 

located entirely within Appalachian plateaus, which are predominantly composed of 
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clastic rocks (USGS, 2016k). As a final check, the geologic maps were revisited, this 

time for examination of the geologic groups present within the various units in the 

Kanawha basin. The Conemaugh, Dunkard, Monongahela, and Pottsville groups are 

present in the geologic units of the Kanawha River basin (Figure 6.2). The Conemaugh 

Group contains cyclic sequences of red and gray shale, siltstone, and sandstone, with thin 

limestones and coals. The Conemaugh Group includes the Ames and Brush Creek 

Limestones. The Dunkard Group represents sequences of sandstone, siltstone, red and 

gray shale, limestone, and coal, and also includes Washington Formation limestones.  

The Monongahela Group represents cyclic sequences of sandstone, siltstone, red and gray 

shale, limestone, and coal, but no major limestone formations. The Pottsville Group is 

predominantly composed of sandstones, with thin shales and coals, and an absence of 

limestones. Considering the geologic units present within the Kanawha basin, it appears 

that the Dunkard and Conemaugh groups are best-suited as potential contributors of the 

DIC flux observed in the Kanawha River basin.   
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Figure 6.1.  Physiographic provinces of the Ohio River basin.  Inset:  the Kanawha Basin is entirely within the 

Appalachian Plateaus physiographic province.  Source: Created by the author from (USGS, 2016k) data. 
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Figure 6.2.  Groups represented by the geologic units of West Virginia.  Inset:  the Kanawha River Basin 

contains the Conemaugh, Dunkard, Monongahela, and Pottsville groups.                                              

Source: Created by the author from USGS (2016o) and WVGES (1968) data.  
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6.3 Future Work 

 From the onset, this work has aimed to evaluate whether the described 

parameters of time, carbonate outcrop area, and depth of P-ET were sufficient 

considerations for producing acceptable approximations of DIC flux. The example drawn 

from the formerly glaciated basins presents the complexity that incorporation of 

unconsolidated material and subsurface carbonate area may be necessary among river 

systems where alkalinity is high but surface carbonate deposits are not well-represented.  

Identifying the need to include additional geologic data is an important step in 

understanding the model’s limits as presently described. It also highlights opportunities 

by which the applied methodology can be refined to produce estimates in closer 

agreement. Subsequent evaluations may choose to account for areas of sub-surface 

carbonates to improve the accuracy of estimates produced using this model. In basins 

where carbonate rocks are present to a lesser degree, considerations such as carbonate 

mineral type and purity, weathering of silicates, vegetation, microbial activity, organic 

acids, soil type, land-use practices, and climate-driven feedback systems may necessitate 

a broader approach to fully understand the C sink from terrestrial weathering processes.   

 The scope of this project was concerned with the possibility of estimating 

atmospheric carbon flux from carbonate mineral weathering as a function of time, area of 

carbonate rock outcrop, and the amount of water available for mineral dissolution. In 

reality, carbonate mineral weathering is a function of numerous processes that 

collectively influence the amount of DIC exported from a drainage basin. This work is a 

first pass at attempting to decipher which processes exert the greatest influence on 

carbonate weathering and how knowledge of these might be used to predict DIC flux 
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without the use of hydrochemical data. The limitations identified in using this technique, 

particularly among basins that exhibit sparse or non-existent areas of carbonate rocks on 

the surface, highlight the potential for continued work.  

 Future efforts to refine this work may evaluate the influence of other sources of 

alkalinity and determine whether inclusion of these variables would render an improved 

representation of the DIC flux for large drainage basins. More complete characterizations 

of carbonate geology are needed to better account for the area of carbonates that 

contributes to the DIC measured in streams. The accuracy of the model in predicting DIC 

flux from large basins would likely be improved by inclusion of carbonates represented 

by Quaternary and bedrock geology. This allows for better accounting of areas that are 

not classified as surface carbonates, but which act as a source of carbonate alkalinity to 

rivers. Incorporation of areas covered by unconsolidated sediments rich in calcium and 

known to contain abundant calcite concretions should expand the normalization 

parameters to include additional areas of geological materials that influence alkalinity 

and, therefore, DIC flux from a basin. Likewise, the massive areas of carbonate bedrock, 

such as those buried by glacial deposits in the northern region of the Ohio Basin, are also 

sources of alkalinity. This area should be reflected in the refined normalization 

parameters of the model. The nature of carbonate rocks present in a basin should be 

considered as well, including solubility properties and weathering rates associated with 

different minerals types. An array of opportunities exists for attempts to account for the 

myriad variables that influence weathering rates that control the DIC flux observed from 

river basins, and these deserve inclusion in on-going studies. Testing of the procedure 

over shorter intervals is suggested to evaluate the influence of changes in water storage 
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observable over abbreviated temporal scales that are dampened over longer periods.  

Additional study is recommended to better assess the strength of the relationship between 

DIC flux and the exposure time and volume of water available for dissolution. In 

continued efforts to validate this method, DIC flux should be estimated for other large 

basins using the described methods and compared to the estimates of the Ohio Basin and 

its major tributaries presented herein and to those given by Osterhoudt (2014) and Salley 

(2016) for the Green and Barren river basins.  

6.4 Conclusion 

 In conclusion, the purpose of this investigation was to evaluate a method for 

estimating the atmospheric carbon sink due to carbonate rock dissolution as a function of 

time, carbonate rock area, and water availability. While numerous processes contribute to 

the DIC flux patterns observed among river basins, it is important to recall that the 

objective of this work was to determine whether DIC flux could be approximated from a 

set of prevailing variables, such that other considerations were minor in comparison and 

would not require inclusion in the model. To attempt to account for every influence on 

carbonate mineral weathering would undermine the goal of arriving at a set of primary 

controls that contribute the majority of the observed DIC removed from large river 

basins. The investigation concluded that time, area of carbonate rock, and the amount of 

water available for dissolution are a good representation of the major influences on DIC 

exported from river basins where large areas of carbonate bedrock is exposed at the 

surface. However, these parameters fail to capture the primary controls on DIC flux from 

carbonate weathering in basins that lack substantial carbonate outcrops. As implemented, 

the method appears to have some limitations among basins where DIC flux is contributed 
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from sources aside from mapped surface carbonate rocks (e.g., loess and lacustrine 

deposits, calcite concretions and nodules, sub-surface carbonates, biological inputs). This 

deficiency is predicted to be amended by inclusion of additional carbonate area 

represented by carbonate bedrock and calcium-rich Quaternary deposits. There are also 

inherent constraints on the use of this technique. For instance, the procedure is not 

suitable for use during periods where ET exceeds rainfall, leaving no balance of water 

available for carbonate dissolution, or in basins that are completely devoid of carbonate 

minerals. 

 Based on these findings, it appears DIC flux can be reliably estimated from 

geologic and climate data for large river basins where carbonate rocks contribute the 

primary source of alkalinity without the direct use of hydrochemical data. The strong 

correlation between DIC flux and time-volume normalization parameters among the 

basins that contain substantial amounts of exposed carbonates gives positive cause to 

continue exploring and refining this technique. The strength of the relationship (R2=0.97, 

p = <0.001) suggests that, for basins with abundant surface carbonates, the primary 

variables influencing DIC flux are captured by the model. On the contrary, in basins that 

lack large areas of surface carbonates, time, area, and water availability fail to capture the 

major events contributing to DIC flux. The observance of elevated DIC flux for the 

Wabash, Great Miami, and Scioto rivers, which lack significant amounts of carbonates in 

the respective drainages, suggests that additional factors contribute to this alkalinity that 

are not accounted for in the current version of the model. Recognition of this threshold 

has improved knowledge of the sensitivity of the model to geologic environments that are 

not well-characterized by karst terrain, but which may possess other forms of carbonate 
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minerals. Identifying the need to expand the geologic aspects of the normalization 

procedure, particularly in regard to accounting for true areas of carbonate rocks 

contributing alkalinity, reveals how the model might be improved so that it is less limited 

by geologic considerations.   

 Where applied to basins where carbonate outcrops dominate surface geology, 

these methods circumvent the need to collect hydrochemical data to make estimates of 

DIC flux from carbonate mineral weathering. By eliminating the labor-intensive work 

associated with hydrochemical sampling regimes, this procedure drastically increases the 

efficiency and lowers the cost of estimating an important component of carbon flux 

between the atmospheric, terrestrial, and, ultimately, oceanic carbon reservoirs. The 

importance of continuing exploration along these lines is reinforced by the fact that 

surface carbonates constitute approximately 20 percent of the Earth’s surface, and the 

amount of carbon drawdown from the atmosphere through this process may be vast. The 

ability to estimate DIC flux for large, potentially global scales, promotes the capacity for 

more informed decision-making as society seeks to understand and control carbon-driven 

climate change and the associated feedback mechanisms that pose challenges to human 

and environmental health.   
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