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Telogenetic epikarst carbon sourcing and transport processes and the associated 

hydrogeochemical responses are often complex and dynamic. Among the processes 

involved in epikarst development is a highly variable storage and flow relationship that is 

often influenced by the type, rate, and amount of dissolution kinetics involved. Diffusion 

rates of CO2 in the epikarst zone may drive hydrogeochemical changes that influence 

carbonate dissolution processes and conduit formation. Most epikarst examinations of 

these defining factors ignore regional-scale investigations in favor of characterizing more 

localized processes. This study aims to address that discrepancy through a comparative 

analysis of two telogenetic epikarst systems under various land uses to delineate regional 

epikarst behavior characteristics and mechanisms that influence carbon flux and 

dissolution processes in south-central Kentucky. High-resolution hydrogeochemical and 

discharge data from multiple data loggers and collected water samples serve to provide a 

more holistic picture of the processes at work within these epikarst aquifers, which are 

estimated to contribute significantly to carbonate rock dissolution processes and storage 

of recharging groundwater reservoirs on the scale of regional aquifer rates. Data indicate 

that, in agricultural settings, long-term variability is governed by seasonal availability of 

CO2, while in urban environments extensive impermeable surfaces trap CO2 in the soil, 

governing increased dissolution and conduit development in a heterogonous sense, which 

is often observed in eogenetic karst development, as opposed to bedding plane derived 
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hydraulic conductivity usually observed in telogenetic settings. These results suggest 

unique, site-specific responses, despite regional geologic similarities. Further, the results 

suggest the necessity for additional comparative analyses between agricultural settings 

and urban landscapes, as well as a focus on carbon sourcing in urban environments, 

where increased urban sprawl could influence karst development.  
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Chapter 1: Introduction 

Due to the complexity of karst systems, assessing the primary hydrogeochemical 

processes involved in dissolution kinetics and aquifer storage and flow can be extremely 

difficult. Hydrogeochemical processes that influence karst development and recharge and 

discharge often begin in the epikarst zone, or “skin,” of the karst system, and result from 

geochemical changes due to aggressive water-rock interactions (Bakalowicz 2004). The 

extent of epikarst dissolution processes are highly influenced by surface conditions such 

as soil and vegetation type and thickness, as well as storm event variability and 

associated frequency of recharge intensity (Williams 2008). Excess atmospheric carbon 

dioxide (CO2) derived from an increase in human industrialization over the past few 

centuries has generated interest among scientists. It has been suggested that karst systems 

can serve as an extensive carbon sink, due to their ability to absorb and utilize CO2 in 

dissolution kinetics, which is the primary driver in karst development (Emblanch et al. 

2003; Bakalowicz 2004; Palmer 2007a). Since the epikarst zone is where dissolution 

initially occurs, and often is fastest, it is within this upper layer of the karst system where 

special attention needs to be paid (Yang et al. 2012).  

In the past, hydrogeochemical studies relied on low-resolution investigations to 

account for changes in karst properties in relation to dissolution rates of limestone; 

however, the need for higher-resolution examinations to capture speedy aquifer responses 

has become vital to deriving a clearer and more thorough understanding of the connective 

tissue which exists between the epikarst and the deeper-seated aquifer. One of the many 

ways these high-resolution examinations have been achieved is through the deployment 

of hydrogeochemical analyses in conjunction with current water monitoring technology. 
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Additionally, the sourcing of carbon by examination of carbon isotopes, as well as 

assessing the concentrations of dissolved inorganic carbon, can shed light on the extent of 

carbon dioxide’s role in karst systems and, in particular, the epikarst zone. The 

employment of these types of investigations can further delineate the influence excess 

atmospheric CO2 has on karst regions and their feasibility as carbon sinks (Zhang et al. 

1995; Emblanch et al. 2003; Li et al. 2010; McClanahan et al. 2016; Huang et al. 2015).  

In addition to carbon-based dissolution kinetics, understanding epikarst conduit 

development can help infer the rate at which carbon is fluctuating within the system, 

which can contribute to the karst system’s ability to serve as a carbon sink; therefore, it is 

important to characterize epikarst storage and flow properties. Storage and flow rates 

may be highly dependent on epikarst thickness, permeability and porosity, and the 

existence of faults and fractures (Bakalowicz 2004). When recharge rates exceed 

discharge rates, extensive storage may be actively occurring. In addition to high water 

infiltration near the top of the epikarst zone, especially during storm inputs, a contrasting 

property of water storage may exist near the base of the epikarst, allowing for longer 

residence times and more extensive dissolution of the surrounding rock body (Aquilina et 

al. 2004; Bakalowicz 2004; Chemseddine et al. 2015). 

Regional examinations into karst landscape processes, such as the extent and rate 

of water storage and flow velocities, and the evolution of karst conduit systems related to 

dissolution kinetics, are prevalent for south-central Kentucky (Crawford 1984a; Crawford 

1984b; Crawford 1989; Crawford 2003; Crawford 2005; Brewer and Crawford 2005; 

Cesin and Crawford 2005; Nedvidek 2014); however, most of these investigations were 

constrained to a single, specific cave system and fail to examine how epikarst processes 
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change over a regional scale. Additionally, where most studies in the past focused on the 

primary underground rivers theorized to contain the majority of groundwater flow 

(Palmer 2007a) at relatively low resolution (seasonal to bi-weekly), few studies quantify 

the epikarst’s role in depth at a high resolution as a means to capture hydrogeochemical 

variations with respect to carbon that occur in these systems, especially during storm 

events (Lawhon 2014; Nedvidek 2014). 

This study characterizes epikarst processes in a well-developed telogenetic karst 

region at four individual epikarst-derived springs at two separate locations over the 

course of nine months to capture seasonal changes, storm-event influences, and 

hydrogeochemical responses. A combination of high-resolution hydrogeochemical 

parameters, carbon isotope analysis, and hydrologic evaluations were employed. This 

study addresses the following questions:  

 How does the sourcing and fluctuation of dissolved inorganic carbon change in 

response to seasonal influences and storm events regionally in telogenetic epikarst 

systems? 

 How do these fluctuations influence carbonate rock dissolution and carbon flux in 

telogenetic epikarst systems? 

The collected data from this investigation have illuminated the importance of 

several key factors in karst processes, including a better understanding of the role of 

carbon flux by karst systems, the extent to which that carbon is utilized within the 

epikarst zone, and the feasibility of epikarst portions of karst systems to be referenced as 

impactful carbon sinks. 
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Chapter 2: Literature Review 

2.1 Karst Landscapes 

Nearly 15% of all non-glaciated landscapes are karst landscapes and supply about 

25% of the world’s fresh drinking water supply (Veni et al. 2001; De Waele et al. 2009; 

Anaya et al. 2014). Karst is a term applied to any lithological landform that is capable of 

producing conduits or caves through chemical dissolution (LeGrand 1983; Veni et al. 

2001; White 2007; Mylroie 2013; Anaya et al. 2014). Karst environments are 

characterized predominantly by limestones and dolomites, and less commonly by 

gypsum, marble, and other evaporites (LeGrand 1983; Veni et al. 2001). The evolution of 

a karst landscape is often governed by the interaction of five components: the type of 

bedrock; the fluid involved in dissolution; the presence of structural influences such as 

stratigraphic dip and tectonic deformation; the hydraulic gradient of subsurface flow; and 

changes within local and regional climates over long periods of time (Palmer 1991; Ritter 

et al. 2002; Palmer 2003a; Palmer 2003b; Palmer 2007a; Palmer 2007b). Since each karst 

system is a unique combination of these elements, it can be difficult to categorize fully 

the dominant processes within; often, individual case studies, where observations are 

based on the interaction of one or more of these principles, are employed when 

identifying aquifer properties and specific behaviors conducive to overall development.  

Solution-derived karst systems can be divided into two main sections, with each 

section governed by its own chemical and physical properties. The top layer, or “skin,” of 

the karst system is known as the epikarst, which has been suggested also to include the 

vadose or unsaturated zone (Bakalowicz 2004; Petrella et al. 2007; Trček 2007; Jacob et 

al. 2009). Directly beneath the vadose zone is the phreatic or saturated zone. It is within 
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this zone that the main aquifer is located (Aquilina et al. 2004; Bakalowicz 2004; De 

Waele et al. 2009). Because karst systems are governed by dissolution kinetics, which 

happen to be at their most impactful within the epikarst, it is this top layer of a karst 

system that requires special attention in research.  

The epikarst can be thought of as a protective layer for the entirety of the karst 

system. Previous investigations have shown that the majority of chemical changes within 

the epikarst are driven by high concentrations of atmospheric and soil derived carbon 

dioxide (CO2) (Zhongcheng and Daoxian 1999; Bakalowicz 2004; Palmer 2007a; Petrella 

et al. 2007; Trček 2007; White 2007; Jacob et al. 2009; Liu et al. 2010; Yang et al. 2012; 

Peyraube et al. 2014; Milanolo and Gabrovšek 2015; Zhang et al. 2016). This carbon 

dioxide enters the karst system as dissolved CO2 in meteoric water or in antecedent 

moisture in the topsoil. 

The subsurface path that meteoric water follows is wrought with complexities 

because of the heterogenetic nature of the epikarst, which is usually a result of several 

processes including diagenesis, secondary and tertiary porosity and permeability, and 

post-depositional structural deformation (LeGrand 1983; Aquilina et al. 2004; Palmer 

2007a; De Waele et al. 2009; Pu et al. 2014a; Pu et al. 2014b). Diagenesis derived 

variability originates from the unique mixture of deposited sediment before it undergoes 

lithification. Depending on the orientation, shape, and size of each individual grain, small 

gaps can form as the material is compressed. This is referred to as the rock’s porosity, 

while frequency and proximity of void spaces, and thus the ability for the rock to transmit 

fluid through those spaces, is considered the rock’s permeability. As the limestone 

undergoes temporal diagenesis, permeability reduces due to overburden pressure from 
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overlying sediment deposition compressing the material and shrinking the size of the void 

spaces within the matrix, reducing the rock’s ability to transmit fluid; however, as 

temporal diagenesis serves to reduce primary porosity and permeability, it also allows  

time for infiltrating water to dissolve along vertical fractures and horizontal bedding 

planes, generating a condition known as secondary porosity resulting from dissolution 

kinetics. Under these new conditions, the extent of water storage reduces as well, as pipe-

style conduits provide a means for secondary permeability and, thus, more efficient 

hydraulic conductivity, unless the flow encounters a clog within the conduit system or it 

enters the phreatic zone (Aquilina et al. 2004; Veni et al. 2001; Palmer 2007a; 

Worthington 2007; De Waele et al. 2009; Anaya et al. 2014). The phreatic zone often 

leads to springs and outlet systems, where discharge rates are governed by water table 

fluctuations and the amount of recharge the system receives over time (Aquilina et al. 

2004; Palmer 2007a). 

Post-diagenetic structural deformation is usually a result of tectonic processes, 

such as rifting or uplift. These processes can alter the stratigraphic dip of the region and 

generate fractures and fissures, which then influence the hydraulic conductivity within 

the system. Hydraulic conductivity is a more concise term applied to subsurface water 

flow, such as slow percolation through a permeable medium, and the rapid drainage of 

water through pipe-style conduits. Landscapes wrought with structural deformation will 

aid in karst development and, thus, the transition between primary and secondary porosity 

(Aquilina et al. 2004; Palmer 2007a). Hydraulic conductivity is also governed by the dip 

of the landscape. As water infiltrates the bedrock, its ultimate goal is to reach local base 

level; thus, water will follow the path of least resistance. Stratigraphic dip will serve to 
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govern the direction of water flow and the depth of conduit formation as surface rivers 

simultaneous incise the landscape, dropping base level to a new position (Aquilina et al. 

2004; Palmer 2007a).  

The fluid involved in the dissolution of bedrock is dependent on several factors, 

including the type of recharge (allogenic or autogenic), the amount of recharge (a 

function of climate), and time (Palmer 2007a; Pu et al. 2014a; Pu et al. 2014b). In 

epigenic cave development, the primary ingredients in soluble fluids are water and 

carbon dioxide. The processes involved in dissolution from these soluble fluids are as 

follows: water from precipitation absorbs carbon dioxide (CO2) from the atmosphere as it 

falls onto the surface. The water becomes supersaturated with CO2 as it passes through 

soil that is heavily laden with respiration-derived CO2 from vegetation, and infiltrates the 

epikarst. This supersaturation of CO2 lowers the water’s pH to around 4.7, turning it into 

carbonic acid (H2CO3). When the carbonic acid encounters calcium carbonate (CaCO3), it 

will cause the calcium (Ca+) and carbonate (CO3) to disassociate (Veni et al. 2001; De 

Waele et al. 2009). Furthermore, the additional hydrogen will join with the carbonate to 

form bicarbonate (HCO3). The dissociation of CaCO3 into calcium and bicarbonate is 

shown in the following reaction (White and White 1989; Palmer 2007a):  

2H2O + CO2 + CaCO3 ↔ H2O + Ca2+ + 2HCO3
−               (Eq. 2.1) 

The extent of dissolution is often contingent on recharge type, including allogenic 

and autogenic (Palmer 1991; Palmer 2003a; Palmer 2003b; Palmer 2007a; Palmer 

2007b). Allogenic recharge is derived from surface runoff that starts on non-karst 

landscapes, but flows into karst landscapes. Allogenic recharge is often under-saturated 

with respect to calcium and saturated with carbon dioxide by the time it enters the karst 
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system. As a result, its propensity for dissolution is much higher. In contrast, autogenic 

recharge derived from runoff that immediately flows over a karst system, and is in 

constant contact with soluble bedrock, may be heavily saturated with calcium and carbon 

dioxide; however, its propensity for dissolution is much lower, due to its high calcium 

saturation (Palmer 1991; Veni et al. 2001; Palmer 2003a; Palmer 2003b; Palmer 2007a; 

De Waele et al. 2009; Mylroie 2013). In regions where the climate is more temperate or 

tropical, karst development is more extensive due to higher annual precipitation rates.  

 

Figure 2.1 Conceptual model for a well-developed carbonate aquifer, illustrating the 

direction of water flow from input to output.  

Source: White (2003). 

 

De Waele et al. (2009) suggested that precipitation has the greatest influence on 

karst systems only within the first few meters of the epikarst where CO2 concentrations 

are more abundant and dissolution generates common surface morphologies, such as 

dolines, poljes, and cenotes (Veni et al. 2001). These features tend to play a role in how 

easily water can enter the karst system. Using the hydraulic gradient as a driver, phreatic 

waters will dissolve through the subsurface, forming a maze of conduits that eventually 
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meet the current level of the water table (Figure 2.1). As the water table rises, existing 

caves and conduits will flood, and the processes will begin again at a different subsurface 

elevation. When the water table drops, the phreatic zone will follow suit. Given enough 

time, a series of intertwined conduits and caves develops in the subsurface, generating a 

cave system, provided that surface erosion does not supersede the rate of cave formation 

(Palmer 2007a; Palmer 2007b; De Waele et al. 2009).  

Up to this point, the discussion of karst processes has been primarily through the 

lens of telogenetic karst, or karst that has undergone temporal diagenesis, uplift, and 

subsequent surface erosion; however, eogenetic karst has a hydraulic behavior and 

geologic evolution unique to its environmental conditions as well. Although mostly 

outside the scope of this study, it is important to touch on the primary differences 

between these two karst landscapes, with a focus on hydraulic conductivity as it relates to 

the storage and flow characteristics that are addressed in this study. 

According to Worthington et al. (2000), Vacher and Mylroie (2002), and Florea 

and Vacher (2006), there are three different types of karst defined by stages of deposition 

influencing porosity of the limestone. Eogenetic karst is described as karst that has 

undergone deposition and early exposure to surface processes; mesogenetic karst is that 

which has experienced deep burial but not subsequent uplift; and telogenetic karst is karst 

that has undergone deep burial, subsequent uplift, and surface erosion processes. It is 

these three stages that result in telogenetic karst’s matrix permeability becoming heavily 

altered. In eogenetic karst, permeable limestones having large volumes of interconnected 

pore spaces, allowing for matrix-dominated, diffuse flow, dominate the bedrock. On the 

other hand, deep burial of carbonates results in a reduction of porosity, due to 
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compression of overriding sediments, thus reducing permeability. Once the bedrock is 

uplifted and exposed to surface erosions processes, hydraulic conductivity becomes 

contingent on dissolution processes widening fractures and pore spaces between bedding 

planes, eventually providing for pipe-style transmission of fluids. It is this shift in the 

type of permeability, from matrix-dominated processes to conduit flow, which influences 

subsequent dissolution processes, aquifer development, and overall residence times. 

Florea and Vacher (2006) compiled examinations of spring hydrographs from a 

variety of settings, including both eogenetic karst in Florida, and telogenetic karst in 

Kentucky. They discovered that the responses to aquifer discharges varied greatly 

depending on the type of karst, and attributed these varied responses to the type of flow 

within the limestone. Martin and Dean (2001) found through a hydrogeochemical study 

that the majority of flow within the Santa Fé River in Florida comes from matrix-

dominated flow during low-flow conditions, and this suggested that diffuse flow 

processes are just as important to understanding karst landscape evolution as conduit-

flow processes. This statement is in direct conflict with White (1988), who suggested that 

matrix permeability is negligible when examining spring response and, therefore, could 

be easily dismissed as a major player, especially in high flow events. Despite the conflict 

in the literature, Florea and Vacher (2006) submit that the type of karst will determine the 

influences on aquifer processes by flow type, and that neither can be easily dismissed. In 

fact, the authors suggested that matrix porosity cannot be dismissed as a significant 

player in eogenetic karst, while secondary porosity generated by the growth of solution-

enlarged conduits in telogenetic karst plays a key role in hydraulic conductivity.   
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It is important to note, however, that White (1988) suggested that the primary 

distinctive difference between diffuse flow in eogenetic karst and conduit flow in 

telogenetic karst is in the spring response defined by a hydrograph. By using this tool, 

one can infer the dominant processes within any karst system with respect to hydraulic 

conductivity. According to Florea and Vacher (2006), White (1988) coined the term 

“flashiness” when describing the responses to discharge observed in a hydrograph, and 

describes this flashiness as a three-stage aquifer response: recharge, storage, and 

transmission. Should residence time contribute to storage without ample recharge causing 

a piston push effect, any rapid transmission of fluid discharged from the aquifer will be 

reflected in a “flashy” hydrograph (White 1988; Worthington et al. 2000; Florea and 

Vacher 2006; Worthington 2007). On the other hand, this flashiness could also be a 

reflection of rapid recharge and rapid transmission (White 1988), especially in telogenetic 

karst where water is easily transferred to the subsurface through sinking streams, with the 

possibility of that same water being discharged through the aquifer provided extensive 

storage is not taking place. The extent of storage in these cases, however, would need to 

be delineated by examining the differences in base-flow discharge versus high-flow 

discharge (Worthington et al. 2000; Worthington 2007). Additionally, Florea and Vacher 

(2006) proposed that these types of spring responses are more likely to occur in well-

developed karst systems where flow has shifted from matrix-dominated diffuse flow to a 

combination of matrix, conduit, and fracture flow, with dissolution conduits formed from 

post uplift surface erosion and dissolution, leading to conduit flow becoming the 

dominant flow regime.  
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These studies demonstrate that the setting in which the aquifer exists will often 

determine the type of karst landscape, eogenetic versus telogenetic, which, in turn, will 

usually describe the flow regime: diffuse flow versus conduit flow. These same flow 

regimes are also observed in the epikarst (Petrella et al. 2007; Trček 2007; Williams 

2008; Jacob et al. 2009); considering that the epikarst is more closely linked with surface 

process, and thus higher rates of dissolution, examinations of epikarst discharge can shed 

some light on just how different and unique are eogenetic and telogenetic karst, 

especially with respect to hydraulic conductivity. By analyzing the hydrological factors 

influencing subsurface geomorphology, an understanding of the timeline and key factors 

for formation of a particular cave or aquifer system can be gained. This is achieved 

through established methods, such as dye tracing, water sampling, and spatial and 

temporal analysis of specific input and output locations; however, since passages may be 

impassable for a variety of reasons, determining flow characteristics of an aquifer can be 

complicated and time consuming (White 2007).  

Investigations into the role of the epikarst, where dissolution is suggested to be 

the most aggressive due to an open-system relationship with the surface, thus leading to a 

mixture of conduit and diffuse flow regimes, is still not thoroughly understood. The 

majority of investigations have shed some light on the abundant complexities of these 

systems and the roles they play with respect to aquifer processes, but, to date, only 

generalizations can be made about the influences that epikarst processes have on karst 

systems. Often, location-specific research is necessary to delineate effectively the 

epikarst’s role in karst landscape development.  
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2.2 Epikarst Theory  

The epikarst is defined as highly weathered rock immediately underlying the soil 

or present at the surface (Zhongcheng and Daoxian 1999; Aquilina et al. 2004; 

Bakalowicz 2004; Klimchouk 2004; Groves et al. 2005; Jiang et al. 2007; Palmer 2007a; 

Petrella et al. 2007; Trček 2007; White 2007; Williams 2008; Jacob et al. 2009; Liu et al. 

2010; Yang et al. 2012; Peyraube et al. 2014; Milanolo and Gabrovšek 2015; Zhang et al. 

2016). In the 1970s and 1980s, it was discovered that the uppermost layers of the karst 

system played an important role in overall karst development, prompting deeper 

investigations into the epikarst over the following decades (Williams 1983; Zhongcheng 

and Daoxian 1999; Bakalowicz 2004; Klimchouk 2004; Cheng et al. 2005). According to 

Klimchouk (2004), the term epikarst originated from the revelation that the upper part of 

karst systems acted as a recharge zone for the entire system (Figure 2.2). This zone is 

highly governed by the permeability and porosity of the bedrock, the type of recharge, 

and the presence of structural deformation. The employment of hydrochemical and 

isotopic analyses support the suggestion that these defining and governing characteristics 

are the dominant drivers in epikarst processes (Zhongcheng and Daoxian 1999; 

Bakalowicz 2004; Klimchouk 2004; Groves et al. 2005; Jiang et al. 2007; Petrella et al. 

2007; Trček 2007; White 2007; Williams 2008; Jacob et al. 2009; Liu et al. 2010; Yang 

et al. 2012; Peyraube et al. 2014; Milanolo and Gabrovšek 2015; Zhang et al. 2016).  

Since the epikarst serves as a complex linkage with the surface and the deeply seated 

saturated zone, and is sensitive to surface environmental changes, it could potentially 

serve as a conduit for the percolation of polluted fluids as well as the transference of 

meteoric water to the aquifer (Cheng et al. 2005; Williams 2008). Bakalowicz (2004)  
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describes the epikarst as a shallow part of karst regions subjected to climate changes, 

vegetation interferences, such as tree roots generating cracks and enlarging rock joints, 

and serving as a permeable “gasket” to the underlying aquifer. 

Figure 2.2 Hydrologic features of epikarst zones, indicating the complexities involved 

with water infiltration and storage  

Source: Klimchouk (2004). 

 

The epikarst is comprised of two sections, the immediate skin (or soil layer) and 

the transmission zone, which acts as connective tissue between the surface and the first 

emergence of the vadose zone. Some studies have suggested that the vadose zone should 

be included in the definition of an epikarst; however, geochemical reactions can be much 

different in the vadose zone compared to the current definition of the epikarst, and it is 

the geochemical evolution that delineates the epikarst from the rest of the karst system. In 

fact, it is suggested that the epikarst is primarily characterized by its hydraulic 
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capabilities in relation to dissolution kinetics (Clemens et al. 1999; Bakalowicz 2004; 

Klimchouk 2004; Groves et al. 2005; Jiang et al. 2007). 

 The epikarst can vary in thickness, depending on the particular region of karst 

being investigated and, as a consequence, its characteristics will follow suit. Williams 

(2008) suggested that the typical epikarst is between three and ten meters in depth and 

exhibits contrasting porosity and permeability. For example, permeability can be much 

greater near the surface of the epikarst, where the majority of fractures and faults have 

been found. As a result, water infiltration may be greater in these areas. Porosity, on the 

other hand, may be higher near the base of the epikarst where water is stored, forming 

conduits and allowing for increased hydraulic conductivity (Palmer 2007a). Additionally, 

if faults or fractures vertically transect part, or the entirety, of the epikarst, this can 

provide a means for epikarst water to flush immediately through the system with minimal 

to no storage time, generating high flow rates (Palmer 2007a; Williams 2008); however, 

this particular characteristic may not be representative of the entirety of the epikarst. 

Where water storage in the epikarst occurs, it is more likely to be found near the 

base of the epikarst. In some respects, if the storage amount is great enough, it can be 

thought of as an epikarst aquifer and serves as an aquitard to the vadose and phreatic 

zones below (Clemens et al. 1999; Cheng et al. 2005; Groves et al. 2005; Aquilina et al. 

2004; Jiang et al. 2007; Petrella et al. 2007; Trček 2007; Williams 2008; Jacob et al. 

2009). As mentioned before, water storage in the epikarst is variable; therefore, it is also 

highly influenced by seasonal changes and storm surges. Klimchouk (2004) found that 

water within the epikarst could have various residence times, which are independent of 

water stored in the deep-seated aquifer. In essence, it takes significant amounts of 
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recharge to push significant amounts of water through the system, reflected in high rates 

of discharge. Due to the nature of water mixing within the solution-filled conduits, often 

water that initially infiltrates the system is not directly observed as being the same water 

that exits the system during the same storm event. In other words, freshly infiltrated water 

often tends to replace older storage water (Palmer 2007a), instead of being immediately 

discharged. In this respect, water storage in the epikarst allows time for limestone 

dissolution and potential CO2 outgassing should that water enter the vadose zone, even in 

the form of drip water that slowly percolates to the saturated zone. 

Williams (2008) emphasized the importance of ensuring that the epikarst and its 

functions are accurately identified as it may not always contain an active aquifer, 

suggesting alternative storage properties are at work, or that storage only occurs at a 

minimal level (Williams 2008); however, the presence of a perched aquifer in the epikarst 

may exist when there is a well-defined network of fractures and faults that intersect, or 

run perpendicular to bedding planes, thereby directly affecting water flow velocities and 

direction (Williams 1983). Dissolution along these joints and fractures can actually 

increase porosity and, thus, permeability as the rock undergoes temporal diagenesis. This 

increase in permeability will cause a shift from lateral flow to a more vertical flow 

direction; however, Williams (1983) noted that, with increasing depth, overburden 

pressure will actually cause the aperture of these vertical shafts to reduce, forming a 

cone-like shape near the base and creating a perched aquifer as water pools at these 

narrow constrictions. Flow velocity will tend to reduce to a simple percolation as it 

moves into the vadose zone. Consequently, water-flow direction may also shift to more 

lateral flow as the water seeks a less restrictive route. Most often, epikarst derived 
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waterfalls are simply a single main vertical shaft to which the water has migrated due to a 

reduction of flow-direction options. If the water cannot find its way toward these main 

shafts, it will remain stored within that perched aquifer until there is sufficient hydraulic 

head, often derived from storm events, to push it through the system (Williams 1983; 

Williams 2008).  

Worthington (2007) suggested that contrasting characteristics exist governing 

mediums in which water will most likely be stored and/or transported. For example, in 

older rocks, conduits only serve as a transportation network for groundwater flow, while 

the majority of stored water occurs within the matrix, usually accompanied with long 

residence times. This seems to support the theory that telogenetic karst systems, and 

telogenetic epikarst specifically, are governed by a unique combination of matrix and 

conduit style storage and flow parameters. Fractures serve as the connecting medium 

between matrices and conduits, with low storage and moderate residence times. He also 

suggested that it is possible to use environmental tracers to delineate the mediums in 

which storage and residence times occur. For example, the author found that rapid flow 

from injection points (sinking streams) to discharge points (springs) is an indication of 

the presence of an extensive network of deep conduits with minimal storage and 

residence times. On the other hand, samples from shallow depth conduits indicated long 

residence times. Worthington (2007) also noted that the use of multiple environmental 

and injection based tracers yielded conflicting residence times, possibly hinting toward 

single, double, and triple porosity governing water flow and storage. He classified these 

varying porosities as a function of conduit numbers and sizes within the aquifer. 

Furthermore, it is possible these numbers will vary depending on the depth at which the 
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sample is collected. Epikarst permeability decreases with depth, according to Williams 

(1983; 2008), but porosity increases with dissolution (Palmer 2007a; Worthington 2007); 

therefore, storage, residence times, and flow rates will vary accordingly.  

Williams (2008) suggested that dissolution propensity, which leads to this 

increase in permeability along joints and fractures and bedding planes, is higher near the 

surface, due to the abundant availability of atmospheric and soil derived CO2; thus, 

hydro-geochemical processes and changes to the karst system are more aggressive in the 

epikarst. This may not always be the case, as Chemseddine et al. (2015) claimed that 

deep waters in the saturated zone are more active when rich with CO2. This saturation at 

deep levels, however, may be a function of minimal epikarst thickness and/or storage, 

high porosity, and the piezometric position of the water table being close to the surface. 

In these cases, it may be that CO2-rich derived waters are immediately entering the 

saturated zone, suggesting that no or very minimal storage in the epikarst exists. 

Additionally, these phenomena may be local, in that this particular characteristic does not 

necessarily represent the entirety of epikarst functions everywhere.  

Attempting to resolve epikarst storage rates can be a difficult pursuit. Often, the 

most common method is to calculate the difference between recharge and discharge rates 

at epikarst springs; however, these values may not always be an accurate representation 

of hydraulic conductivity, should the output exceed the input rate. To compensate for 

such occurrences, additional dye tracing, geochemical, and isotopic data can be collected 

at several points within a karst system to determine epikarst storage rates. Stable isotopes 

can be used as tracers, especially when their values are examined with respect to the 

fluctuation within different mediums as water moves from surface to subsurface.  
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Perrin et al. (2003) examined storage in a karst aquifer in the north of Switzerland 

to determine the extent and type of storage. The authors compared stable isotopic data of 

oxygen in spring discharge and underground river water samples to model the amount 

and type of storage occurring in the epikarst. The authors found that in diffuse flow 

environments, the epikarst exhibited the most dynamic storage properties, and that water 

transferred to the saturated zone was immediately transported via a conduit network to 

surface springs. They also identified two different types of water flow within the epikarst: 

base flow and quick flow, which are dependent on storm surges and subsequent recharge 

rates (Perrin et al. 2003).  

 The aforementioned studies highlight the importance of determining recharge and 

discharge properties to infer water storage capabilities, flow dynamics, and subsequent 

dissolution kinetics within the epikarst. It has been discovered that storage and flow, 

though dependent on seasonal variations and storm surges, are mostly constrained by the 

specifics of the locality of the karst system, such as lithology, geology, and latitude. 

Hydrogeochemical data, such as pH, water temperature, specific conductivity, total 

dissolved solids, alkalinity, and certain stable isotopes such as oxygen and carbon, can 

provide proxy measurements for water transference through karst systems. Since 

dissolution kinetics are most aggressive in the epikarst, and hydro-geochemical 

parameters greatly reflect the extent of those kinetics, then hydro-geochemical 

investigations are essential to delineating epikarst processes.  
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2.3 Carbon Processes in Karst 

2.3.1 CO2 Dissolution Kinetics 

 Due to the ever-increasing concerns regarding excess atmospheric CO2 affecting 

the environment, multiple studies have suggested that karst systems can serve as carbon 

sinks (Li et al. 2008a; Cuezva et al. 2011; Gorka et al. 2011; Shin et al. 2011; White 

2013; McClanahan et al. 2016; Jiang 2013; Zhang et al. 2015; Zeng et al. 2016). These 

studies attempt to delineate carbon fluctuations within karst systems to better understand 

carbon sequestration from the atmosphere. Additionally, as mentioned before, carbon is a 

primary constituent in karst-dissolution kinetics and can serve as a practical tracer for 

carbon flux. Therefore, by examining carbon isotope values with respect to carbon 

sourcing, carbon fluctuations from surface to discharge point can be resolved. Further, 

since the epikarst plays such a vital role in dissolution processes within karst systems, it 

is within this zone that special attention to carbon processes is paid.  

Karst dissolution processes are heavily dependent on the presence of dissolved 

carbon dioxide in infiltrated waters. This CO2 is responsible for increasing the aggressive 

nature of infiltrating waters, which, in turn, increases the rate by which carbonate bedrock 

may be dissolved, and thus the rate at which water is either stored or discharged from the 

system. Atmospheric CO2 is considered in equilibrium with precipitation and is usually 

expressed as parts per million. According to the National Oceanic and Atmospheric 

Administration (NOAA 2016), the rate of CO2 in the atmosphere, as of March 2017, was 

roughly 409 parts per million, while the average global carbon dioxide level in soil is 

significantly higher, at around 1,500 Pg (Hursh et al. 2017).  
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Most karst systems are considered open, wherein a continuous supply of CO2 

from the surface dissolved within infiltrating meteoric waters contributes to ongoing 

dissolution kinetics, even at great depths within the karst system. Several studies indicate 

that epikarst heterogeneity, as well as the subsurface elevation of the saturated zone, can 

greatly influence the point at which dissolution tends to cease (Hess and White 1992; 

Baldini et al. 2006; Blecha and Faimon 2014a; Blecha and Faimon 2014b). Dissolution 

kinetics lead to calcite and magnesium dominance in karst waters; therefore, karst water 

is often considered to be in one of three states: under-saturated, or aggressive; saturated, 

or chemically equilibrated; or supersaturated, at which point it is likely to precipitate the 

dissolved minerals it carries. These values can be delineated mathematically and 

expressed numerically, with any water value less than zero considered aggressive; any 

water value at zero at equilibrium, and any water value greater than zero considered 

supersaturated. In this sense, dissolution rates are considered a derivative of the saturation 

index of water with respect to CaCO3 (Palmer 2007a).  

In open systems, increased vegetation growth on the surface can contribute to a 

rise in CO2 concentrations within the topsoil. This is primarily due to plant root 

respiration and subsequent microbial activity converting organic matter into carbon 

dioxide. Likewise, with increases in agriculturally based vegetation, soil CO2 

concentrations can increase in response to the presence of agriculture. When those crops 

are harvested, however, depletion in soil CO2 concentrations can occur, due to a severe 

reduction in root respiration. Further, when natural vegetation shifts into the dormant 

state during the winter months, an even greater depletion in soil CO2 can be observed; 

thus, water containing reduced concentrations is transferred to the epikarst. Additionally, 
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these seasonal fluctuations in CO2 concentrations resulting from a change in vegetation 

cover can have an impact on δ13C values, where depletion occurs resulting from 

fractionation as plants utilize 12C. During the inert months, 13C enrichment occurs 

because less 12C is utilized. Peyraube et al. (2014) suggests that equilibrium partial 

pressure of CO2 can be used to account for the amount of dissolved CO2 in the system, 

which, consequently, infers the extent of potential dissolution. To calculate the partial 

pressures of CO2 (pCO2), the following equation (2.2) from Drever (1997) is used: 

PCO2
=

K1KCO2

10−pH[HCO3
1]

         (Eq. 2.2) 

where K1 is the temperature dependent dissociation constant of H2CO3 and KCO2 is the 

solubility product of CO2 gas in water (Drever 1997; Lawhon 2014).  

Studies on epikarst-dissolved CO2 concentrations, as well as the direct influence 

from soils and in-cave air CO2 concentrations, have been conducted worldwide (Zaihua 

et al. 1997; Baldini et al. 2006; Shen et al. 2013; Faimon et al. 2012a; Faimon et al. 

2012b; Yang et al. 2012; Peyraube et al. 2013; Blecha and Faimon 2014a; Blecha and 

Faimon 2014b). Baldini et al. (2006) examined potential sources of CO2 as it percolates 

through the epikarst using drip water from two caves in Ireland. The authors found that, 

in conjunction with soil CO2, seasonal fluctuations play a major role in total CO2 

concentrations and variability. Peyraube et al. (2013) developed a methodology for 

examining the concentrations of carbon and pCO2 in cave air after it infiltrates the 

epikarst. They discovered that seasonal fluctuations are a key agent in pCO2 content. 

Faimon et al. (2012a; 2012b) examined cave drip water for CO2 concentrations in a cave 

in the Czech Republic. The authors found that their data correlated with previous 

investigations of the same nature conducted in other parts of the world, which claim soil 
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CO2 rates and seasonal fluctuations are key agents in CO2 and HCO3 concentrations in 

the epikarst and, subsequently, in the vadose and phreatic zone (Zeng et al. 2016). Zaihua 

et al. (1997), Vesper and White (2004), Yang et al. (2012), and Blecha and Faimon 

(2014a; 2014b) all had similar findings in their investigations; however, those 

investigations examined the extent of dissolution resulting from influxes of CO2 content. 

In fact, Peyraube et al. (2014) found that unsaturated zone CO2 baseline measurements 

are extremely high and, thus, have a direct consequence on the CO2-saturation index 

factors for calcium and magnesium. This discovery further supports the suggestion that 

high concentrations of CO2 in the epikarst are directly responsible for increased rates of 

dissolution during certain times.  

Investigations conducted in Kentucky and Tennessee examined CO2 influences on 

karst environments with the intent of determining the extent that CO2 concentration has 

on dissolution kinetics (Hess and White 1992; Vesper and White 2004; Vanderhoff 2011; 

Hatcher 2013; Lawhon 2014; Salley and Groves 2016). For example, Hatcher (2013) 

investigated sources of CO2 controlling carbonate chemistry at Logsdon River at 

Mammoth Cave. Three sites were chosen for that study: one feeding from the epikarst, 

one with direct interaction from the vadose zone, and another from a spring. Hatcher 

(2013) discovered that the vadose zone and spring exhibited minimal CO2 concentrations 

with respect to the samples taken directly from the epikarst. This suggests that epikarstic 

storage of CO2 is greater than in any other part of the karst system, furthering the 

hypothesis that CO2 saturation is greatest where proximity or connection through 

permeability to soils is highest.  
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Vesper and White (2004) examined CO2 from springs in a cave system near the 

Kentucky/Tennessee border during storm events and found that changes in CO2 were a 

direct result of flushing from the system associated with conduit-dominated karst 

experiencing a pulse of water for the duration of the storm. The results suggest that CO2 

levels in the karst system are higher during base flow, which allows the system time to 

“compile” CO2 from various sources (Vesper and White 2004). One of the earliest studies 

is by Hess and White (1992), who examined the hydrogeochemistry of several springs in 

the Mammoth Cave region over one year during 1972. The authors suggested that 

fluctuations in soil CO2 values, primarily due to seasonal changes, have the greatest 

effect on the karst system. More localized and recent investigations of hydrogeochemical 

influences were conducted in Bowling Green (Lawhon 2014) and Smith’s Grove, 

Kentucky (Vanderhoff 2011), to ascertain the extent of storage and flow propensity, 

especially with respect to storm events and contaminant transport. Both of these 

investigations used CO2 concentrations as a proxy with respect to the nature of the 

aquifers and their ability to transfer water from surface to spring. Although these 

investigations did not directly ascertain sourcing of CO2 and direct effects of CO2 storage 

and utilization, the work did reflect similar findings.  

Dissolved CO2 concentrations in meteoric water are directly linked to bedrock 

dissolution due to CO2’s ability to reduce pH to an acidic state (Zhongcheng and Daoxian 

1999; Bakalowicz 2004; Palmer 2007a; Petrella et al. 2007; Trček 2007; White 2007; 

Jacob et al. 2009; Liu et al. 2010; Yang et al. 2012; Peyraube et al. 2014; Milanolo and 

Gabrovšek 2015; Zhang et al. 2016). The extent of dissolution from CO2 contributions 

can be measured numerically by calculating the extent of water saturation, which is 
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referred to as the saturation index (SI) with respect to calcium and/or magnesium. In 

terrestrial meteoric water, the saturation index of a particular mineral (Ca2+ or Mg2+) is 

calculated by first determining the ion activity product (IAP). For example, the ion 

activity product for calcite is: 

(Ca2+)(CO3
2−) = KCalcite                            (Eq. 2.3) 

where (Ca2+) equals the calcium ion activity, (CO3
2-) equals the carbonate ion activity, 

and Kcalcite is the equilibrium constant for the reaction (a temperature dependent value). 

Multiplying their values renders the IAP. If the IAP is less than K, then the solution is 

considered under-saturated. If this is the case, dissolution of that particular mineral will 

continue until the concentration of ions in solution supersaturates the solution. If the IAP 

is greater than K, than the solution is considered oversaturated and dissolution of that 

particular ion will cease and, in some cases, cause precipitation of that mineral (Palmer 

2007a; Chemseddine et al. 2015). To determine the extent of solution saturation with 

respect to a particular mineral, in this case calcite, the saturation index can be calculated 

using the following formula from Palmer (2007a): 

SIC = IAP/K                                    (Eq. 2.4) 

The extent of dissolution is a product of CO2 concentrations in infiltrated waters. 

The CO2 is often derived from multiple sources, including atmospheric CO2, soil derived 

CO2, and carbonate water-rock interactions. Determining the source of CO2 can delineate 

which source is contributing the greatest amount of CO2 to the overall system, which, in 

turn, can help better explain dissolution kinetics in epikarst systems, as well as the role 

that anthropogenic forces play in natural systems.  
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2.3.2 δ13CDIC Isotope Sourcing and Flux 

One of the primary ways in which CO2 sources can be delineated is by examining 

the isotope signatures of δ13C in water. As carbon fluctuates through the system, carbon 

isotope values will tend to become enriched or depleted, depending on environmental 

conditions and seasonal shifts. One of the greatest factors influencing the depletion or 

enrichment of 13C is soil-derived microbial activity (Telmer and Veizer 1999; White 

2013; Zhang et al. 2015). 

Figure 2.3 Diagram expressing the global carbon cycle, and the exchanges that occur.  

Source: USDOE (2008) 
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This variance is primarily due to the type of plant vegetation (C3 vs C4) that has a 

direct bearing on the fractionation of carbon isotopes (12C vs 13C) being used by the 

vegetation (Drever 1997; Li et al. 2008a; Hoefs 2010; Lambert and Aharon 2010; Gorka 

et al. 2011; Shin et al. 2011; Florea 2013; White 2013; McClanahan et al. 2016).  

Carbon isotopic ratios are expressed as δ13C values and ascribe to the stable 

isotope theory as outlined by Drever (1997), Allen (2004), Palmer (2007a), and Hoefs 

(2010). Some elements on the periodic table include their isotopes, which are usually 

categorized by the number of protons and neutrons within their nucleus. All forms of 

stable isotopes exist within nature, but it is the ratio of each of these isotopes that is 

calculated when analyzing a sample. This process of selective abundance of one isotope 

relative to another, is called fractionation, and often occurs when there is a physical 

change of state. During plant root respiration, carbon undergoes fractionation processes, 

which shifts the ratio of heavy versus light isotopes, expressed by the δ symbol, and be 

calculated via the following equation from Drever (1997):  

δ13C =
( C13 / C)12

sample−( C13 / C)12
standard

( C13 / C)12
standard

x 1000 ‰           (Eq. 2.5) 

where δ13C represents relative difference in parts per thousand (referred to as per mil, ‰) 

between the ratio in the sample and the ratio in the standard. These values are reported as 

a reference to marine calcite (a belemnite from the Pee Dee Formation in South Carolina) 

and expressed as PDB (Drever 1997; Allen 2004; Palmer 2007a; Hoefs 2010).  

As mentioned before, there are six commonly identified sources of δ13C in 

terrestrial waters which can be delineated through carbon isotope investigations and 

contribute to overall carbon processes within karst systems: 1) dissolution of CO2 in soil; 

2) carbonate rock weathering; 3) the amount of CO2 rich meteoric water infiltrating the 
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system; 4) exchange of bicarbonate and atmospheric CO2; 5) photosynthesis and 

respiration of aquatic plants; and 6) silicate rock weathering (Li et al. 2008a; Li et al. 

2008b; Li et al. 2010; Liu et al. 2007; Liu et al. 2010; Jiang 2013; Zhang et al. 2015).  

In the case of one and three, the most influential parameters on δ13C values, the 

concentration of dissolved CO2 in soil is often a product of the season in which it is 

measured, the type of surface vegetation, and the amount and type of topsoil (permeable 

soils will be more likely to transmit fluid containing dissolved gases such as CO2, while, 

at the same time, soils high in microbial activity have higher concentrations of CO2 

which provide for increased CO2 transmission). In the case of two, carbonate rock 

weathering is highly governed by the rate in which solutionally aggressive water enters, 

and is stored, in the system versus how often and how much water is immediately 

discharged. Increased storage rates increase residence times and, thus, the ability for 

dissolution to occur and remain ongoing until saturation is achieved. Four, five, and six 

are often parameters heavily examined in riverine systems, which, while potentially 

contributing to overall karst processes, are outside of the scope of this study and usually 

indicative of minimal influences on carbon fluctuations compared to sources one and 

three (Hess and White 1992; Drever 1997; Baldini et al. 2006; Li et al. 2008a; Hoefs 

2010; Lambert and Aharon 2010; Gorka et al. 2011; Shin et al. 2011; Florea 2013; White 

2013; Blecha and Faimon 2014a; Blecha and Faimon 2014b; McClanahan et al. 2016).  

Since carbon isotopes (δ13C) are often used as tracers for both sourcing of carbon 

in karst systems as well as assisting in delineation of the major hydrogeochemical players 

influencing a specific karst system, understanding the relationship of CO2 and various 

vegetation uptakes of CO2 can help delineate the impact that microbial activity within the 
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soil has on CO2 sourcing and, thus, 13C enrichment and/or depletion. For example, higher 

CO2 concentrations provide for an increased uptake of 12C by plant roots, causing soil 

waters transferred to the epikarst to become depleted with respect to 13C due to 

fractionation. The ratio of 12C/13C is often expressed with a negative value, which 

decreases as 13C depletion increases (Drever 1997; Amundson et al. 1998; Li et al. 2008a; 

Hoefs 2010; Lambert and Aharon 2010; Gorka et al. 2011; Shin et al. 2011; Florea 2013; 

Jiang 2013; White 2013; McClanahan et al. 2016). The uptake of CO2 by plant vegetation 

is highly reliant on the pathway by which the plant chooses to metabolize the CO2. For 

example, vegetation species characterized by C3 pathways and associated photosynthesis 

are less efficient at metabolizing CO2, and, therefore, are often observed with more 

enriched 13C values (closer to zero) as opposed to plants with C4 pathways, which are 

known to metabolize CO2 more efficiently and produce more depleted carbon isotopic 

values with respect to 13C (further from zero).  

In addition to using δ13C to trace the route which the water has taken to enter the 

system and its fluctuation through the system (Jiang 2013), δ13C can be useful in 

understanding the role of the global carbon cycle in specific systems. Epikarst water often 

is heavily laden with dissolved CO2, which is influenced by seasonal changes and storm 

events, thus δ13C values are often reflective of these same principles (Hunkeler and 

Mudry 2007; Knierim et al. 2015). Doctor et al. (2008) observed significant changes in 

δ13C values at a spring discharge during seasonal changes from snowmelt in early spring 

to summer rainfall. Their observations indicated changes related to both outgassing in the 

unsaturated zone as well as recharge flushing the system of shallow water saturated with 

CO2 from topsoil during high vegetation growth periods. Drever (1997) and Hoefs (2010) 
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suggested that carbon fractionation factors reach equilibrium within seconds, making 

experimental determination rather challenging; thus, delineating sources of δ13C in 

conjunction with derived values of total dissolved inorganic carbon (DIC) can provide 

insight into how carbon is used by the system, as well as which source of carbon has the 

most influence. 

Dissolved inorganic carbon (DIC) is considered a primary product of carbonate 

dissolution. This value is representative of several different carbon-based species 

including H2CO3, CO2, HCO3
-, or CO3

2- (Li et al. 2008a) found in karst waters, which are 

fractionation factors of the dissolved carbon species; therefore, if the isotopic value of the 

carbon (δ13CDIC) in the soils and the limestone is known, then the equilibrium isotopic 

species of DIC currently dominating the system can be calculated (Zhang et al. 1995; 

Zhongcheng and Daoxian 1999; Drever 1997; Palmer 2007a; Li et al. 2008a; Li et al. 

2008b; Hoefs 2010; Lambert and Aharon 2010; Liu et al. 2010; Gorka et al. 2011; Shin et 

al. 2011; Schulte et al. 2011; Faimon et al. 2012a; Faimon et al. 2012b; Singh et al. 2012; 

Florea 2013; White, 2013; Peyraube et al. 2013; Peyraube et al. 2014; Pu et al. 2014a; Pu 

et al. 2014b; McClanahan et al. 2016; Zhang et al. 2016). 

According to Emblanch et al. (2003), δ13CDIC can be used as a tracer to determine 

the extent of water mixing with respect to carbon sequestration within both the saturated 

and unsaturated zones of a karst system. The authors suggested that soil influences will 

be a primary adjuster to DIC content, since this relates to whether the DIC is being 

measured from an open or closed system (Emblanch et al. 2003). The authors further 

explained that exposure to soil compositions in open systems can heavily influence DIC 

totals, as opposed to systems that have a limited amount of soil derived carbon. In the 
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case of epikarst environments, it is important to remember that direct influences from soil 

derived carbon is common considering the type of infiltration and diffusion occurring 

near the surface. 

Despite what seems to be an extensive understanding of CO2 fluctuations and 

subsequent carbon isotope variations in the epikarst, Gorka et al. (2011) and Faimon et al. 

(2012a; 2012b) suggested that scientific understanding of epikarstic sources of CO2 and 

changes with respect to δ13CDIC is still in its relative infancy. The quantitative 

understanding of these processes increases with advances in monitoring technology. Liu 

et al. (2007) suggested that better developed, high-resolution sampling studies can 

potentially yield greater insight into the carbon uptake in epikarst systems. Zhang et al. 

(2015) and Zeng et al. (2016) discovered that carbonate weathering and surface runoff 

(river discharge versus subterranean sources) in karst catchments in China play vital roles 

in carbon source flux. Further, Zeng et al. (2016) proposed that soil type, lithology, and 

vegetation also play key roles in carbon fluxes. Due to the drastic need for quantitative 

understanding of the effects of anthropogenic CO2 emissions on the environment, 

recognizing the role karst landscapes play with respect to potential carbon sequestration 

and utilization is imperative.  

Ongoing examinations in the southcentral Kentucky region have been constrained 

to individual caves, inadvertently overlooking the importance of understanding regional 

CO2 uptake and, thus, storage and flow properties, which may be at work within multiple 

cave systems. This research aims to fill a gap in the literature, with a comparative 

assessment of epikarst hydrogeochemical influences on dissolution and storage and flow 

dynamics, by examining the extent of carbon fluctuations with respect to CO2 and δ13C 
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variability through a nine-month, high-resolution study. It is hoped that this study will 

further support the findings of previous investigations that suggest CO2 is one of the most 

vital ingredients in epikarst dissolution kinetics, and that δ13C values can shed light on the 

sourcing of this CO2. 
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Chapter 3: Study Area 

Kentucky is comprised of a well-developed karst landscape that underlies most of 

the state. In southcentral Kentucky, the karst area is known as the Western Pennyroyal 

Karst region and is divided into two parts, the Mammoth Cave Plateau and the 

Pennyroyal Sinkhole Plain, which are separated by the Dripping Springs Escarpment 

(Figure 3.1). The region is home to one of the longest mapped cave systems in the world, 

Mammoth Cave, with a total surveyed length of 629.25 km and counting. 

 

Figure 3.1 Karst distribution in Kentucky.  

Source: Adapted from Paylor and Currens (2002). 

 

Cesin and Crawford (2005) and Lawhon (2014) described the region as being one 

of the best examples of a complex karst environment in the northeastern United States. 

The dominant carbonate rocks include flat-lying, Mississippian-aged Girkin, Ste. 

Genevieve, and St. Louis limestones (Cesin and Crawford 2005; Palmer 2007a; Lawhon 

2014). A distinct, but thin, layer of Lost River Chert lies within the upper portion of the 

St. Louis limestone and the lower portion of the Ste. Genevieve limestone. It is within 
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these lower bed layers (the St. Louis and the Ste. Genevieve) where the primary study 

sites are located. Due to weathering and erosion processes, these limestones are covered 

by thin, permeable clay soils in the sinkhole plain, while partially concealed beneath soils 

and a sandstone cap within the Mammoth Cave Plateau.  

Southcentral Kentucky exhibits the characteristics of a broad, low-relief sinkhole 

plain and it is within this area that the primary study sites are situated (Figure 3.2). The 

limestones in this area have undergone a long period of temporal diagenesis, trans-

forming the bed layers to telogenetic karst overlain by thin, clay rich soils. The sinkhole 

plain lies atop a well-defined aquifer, recharged via autogenic recharge through numerous 

sinkholes and sinking streams, as well as infiltration through fractures and matrix flow 

(Palmer 2007a; Cesin and Crawford 2005; Lawhon 2014). Both study locations (Crumps 

Cave and Lost River Cave and Valley) selected for this research are located within this 

sinkhole plain and, as such, share similar geology, hydrology, and soil type. Additionally, 

both systems eventually drain to the Barren River, with one draining from the north 

(Crumps Cave) and the other from the south (Lost River Cave and Valley). The primary 

differences between locations include surface land use (agricultural at Crumps Cave and 

urbanization at Lost River Cave and Valley) and epikarst thickness (Crumps Cave 

epikarst is roughly nine meters thicker than Lost River Cave and Valley). The study 

locations are approximately 22 km apart. 

 

3.1 Crumps Cave at Smith’s Grove, KY 

Crumps Cave offers a unique study location suited to investigate epikarst 

charcateristics. The cave is situated beneath agricultural lands, away from the 

interference derived from large urban centers. Crumps Cave is located in Smith’s Grove, 
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in northwestern Warren County, Kentucky. The cave was purchased by Western 

Kentucky University in 2008 through a grant from the Kentucky Heritage Land 

Conservation Fund. The cave is managed as a focal point for research and education 

covering a wide range of environmental conditions. Research at the cave has been 

conducted through high-resolution monitoring, geochemical sampling, and analysis 

(Groves and Meiman 2001; Vanderhoff 2011; Groves et al. 2013). 

Figure 3.2 GIS rendering of the study area in Warren County, Kentucky, with study area 

locations (Smith’s Grove/Crumps Cave and Bowling Green/Lost River Valley) identified 

by blue and red dots, respectively  

Source: Created by the author. 

 

The cave sits within the extensive sinkhole plain of the Pennyroyal Plateau as part 

of the Mississipian Plateaus Section of the Interior Low Plateaus Physiographic Province 



36 
 

(Groves et al. 2005; Vanderhoff 2011; Groves et al. 2013). Land use in this region of the 

sinkhole plain is a mixture of agricultural and urban developments, with several 

population centers of varying sizes scattered throughout Warren County.  

Temperatures range between 31 °C in the summer and 7 °C in the winter, 

classifying this region as humid subtropical in nature. Precipitation rates in this location 

average around 1,294 millimeters annually, with about 56% of this precipitation 

occurring between the months of April and October (Vanderhoff 2011). The recharge 

area for Crumps Cave lies within the Graham Springs groundwater basin, roughly 316 

km2, and discharges into the Barren River ~17 km to the southwest (Ray and Blair 2005; 

Vanderhoff 2011). Annual baseflow at Graham Springs (Wilkins Bluehole) from this 

catchment is 0.56 m3/s. Previous work at Crumps Cave by Groves et al. (2005) suggested 

continuous flow through most epikarst springs in the cave, indicating extensive storage, 

while nearly immediate responses during storm events indicate the existance of a highly 

fractured and well developed epikarst conduit network. The cave sits under moderately 

permeable, well-dispersed soils that overlie the bedrock surrounding the sinkhole, and 

there is about 18 meters of limestone from the soil surface to the cave ceiling (Groves et 

al. 2005; Vanderhoff 2011; Groves et al. 2013). Access to Crumps Cave is obtained 

through a partially collapsed sinkhole. The entrance consists of a large, nearly horizontal 

passage 12 meters tall and 18 meters wide (Vanderhoff 2011; Groves et al. 2013). 

Crumps Cave is comprised of upper Mississipian-aged St. Louis limestone with a local 

dip of about 1-2° to the north. The Lost River Chert, an interbedded layer of silicified 

limestone, lies between the surface and the cave ceiling.   
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Crumps Cave contains two waterfalls along a relatively straight stretch of 

accessible cavern. Each of these waterfalls serves as an epikarst drain, which provides the 

opportunity to evaluate local hydrology and hydrochemistry. The first waterfall, located 

roughly 30 meters from the entrance and designated as Waterfall One (WF1), has an 

average drop of about four meters from the cave ceiling to the floor. WF1 drains from the 

epikarst and disappears into the cave floor as it passes through the vadose zone and joins 

the water table 40 meters below (Vanderhoff 2011; Groves et al. 2013). As part of the 

current investigation, a water catchment tarp, 189-litre barrel and two EXO II data 

loggers, combined with two HOBO pressure transducers and one HOBO temperature 

gauge, were installed near the waterfall to take measurements related to cave chemistry, 

waterfall discharge, and internal atmopsheric conditions. The second waterfall, located 

152 meters from the entrance, and designated Sed Falls (SF), is roughly six meters tall 

from ceiling to cave floor and drains into the water table some 25 meters below. This 

waterfall is primarily used for isotopic sampling, though plans for a more detailed water 

sampling station in the form of a 189-litre barrel and datalogger setup are in discussion.  

On the surface, an Onset HOBO weather station exists to provide high-resolution 

temperature (°C), relative humidity (% RH), precipitation amount (mm), and barometric 

pressure data (mB). A four-litre rain gauge to trap precipitation is located next to the 

weather station. Two water table wells, one shallow (~15 m) and one deep (~50 m), 

provide continuous 10-minute measurements on current local and regional aquifer levels. 

Three soil lysimeters and one CO2 soil gas collector exist in the topsoil at various depths 

to analyze soil saturation and carbon dioxide concentrations.  
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3.2 Lost River Cave and Valley in Bowling Green 

Lost River Cave and Valley (LRCV) represents the primary drainage system for 

the Lost River Basin. The final discharge point, the Lost River Rise, represents roughly 

152 km2 (Ray and Blair 2005) of urban and agricultural landscape runoff (Crawford 

1984a; Crawford 1984b; Crawford 1989; Crawford 2003; Crawford 2005; Brewer and 

Crawford 2005; Cesin and Crawford 2005; Palmer 2007a; Nedvidek 2014). The Lost 

River basin is part of the Pennyroyal Sinkhole Plain and is comprised of Mississippian–

aged St. Louis and Ste. Genevieve limestones. Soils in the area cover 70% of the basin 

and are permeable silt and clay type soils (Lawhon 2014). Bowling Green, Kentucky, is 

built completely over the Lost River Cave system. Remediation efforts in the 1970s and 

1980s to clean the cave environment after years of its use as a dump led to extensive 

studies to understand the hydrology and spatial extent of the drainage basin (Lawhon 

2014); however, because the catchment incorporates runoff from both agricultural and 

urban activities, the possibility of having high major ionic concentrations is greater in this 

watershed than at the Smith’s Grove Crumps Cave location.  

One of the primary investigators to delineate the extent of the Lost River drainage 

basin was Crawford (1984a; 1984b; 1989; 2003; 2005) with others (Crawford et al.1999; 

Brewer and Crawford 2005; Cesin and Crawford 2005), who conducted a wide range of 

dye tracing examinations to delineate the subsurface flow paths in relation to sinkhole 

flooding and contaminant transport. Crawford (2005) also conducted electro-resistivity 

and microgravity investigations in conjunction with cave mapping to determine the 

overall length and extent of the Lost River. With these results, Crawford (1984a; 1989; 

1999; 2003; 2005) generated reports for the City of Bowling Green to create new 
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stormwater treatment policies, protection from storm runoff pollutants (Crawford 1984a; 

Crawford 1984b), and characteristics of the effect of urban development over an unstable 

sinkhole plain (Crawford 1984a; Crawford 2005; Brewer and Crawford 2005).  

The headwaters of the Lost River originate about 19 km south of the Bowling 

Green city limits, near the town of Woodburn, where several surface streams sink into the 

Ste. Genevieve limestone (Crawford 1984a; Crawford 1984b; Crawford 1989; Crawford 

2005). The streams then converge, along with regional recharge, into a single river 

system trending northward toward Bowling Green (Nedvidek 2014). As the stream enters 

Bowling Green, it reemerges at the surface four times at multiple blue holes within the 

Lost River Valley, a collapsed cave passage roughly 2.41 km long, before it disappears 

into Lost River Cave. The stream continues northward through the subsurface strata until 

it finally resurges at Lost River Rise in Lampkin Park. Annual average discharge at the 

Lost River Rise is calculated to be roughly 0.35 m3/s, ranking it at number eight on the 

list of twenty largest springs in Kentucky (Ray and Blair 2005).  

High discharge volumes, combined with a large catchment basin and increased 

incidences of cave flooding at the mouth of the Lost River Cave, suggest that the karst 

beneath Lost River has an extensive subsurface conduit flow network that is highly 

responsive to flood events. In fact, Lawhon (2014) discovered that the discharge at Lost 

River Blue Hole #4 would respond to rain events that occurred kilometers outside the 

Bowling Green city limits. These studies suggest that there may be extensive storage 

occurring that prevents water build up within the system, and that high levels of 

discharge are an indication of subsurface water replenishment through piston push style 

responses during large volume recharge events. This piston push response could also be 
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an indicator of extensive conduit development. After the river discharges at Lost River 

Rise, it continues as a surface stream before joining Jennings Creek, where it eventually 

discharges into the Barren River (Crawford 1984a, Crawford 1984b; Crawford 1989; 

Crawford 2003; Crawford 2005; Brewer and Crawford 2005; Cesin and Crawford 2005; 

Lawhon 2014; Nedvidek 2014).  

Within the Bowling Green city limits, Lost River emerges on the surface at four 

blue holes. Each of these features are located within the valley, which is a remnant of 

subsequent cave collapse that now make up the valley. Adjacent to these blue holes is an 

epikarst spring, though its origins are unknown. The spring may be a tributary to the 

primary flow of Lost River, and thus may be incorporated within the overall Lost River 

groundwater basin; however, this suggestion has not been supported in the literature. The 

spring is located along the northeastern flank of the valley near the head. Flow from the 

spring is constant. The water emerges from the bedrock, pours over breakdown toward 

the base of valley, and then flows as a surface stream through the valley for about 111 

meters before joining with Blue Hole #1. Subsequently, Blue Holes #2-4 are located 

periodically within a 0.80 km long length of the valley. At Blue Hole #4, the Lost River 

emerges on the surface and flows for roughly 30.48 meters before draining into Lost 

River Cave.  Roughly 61 meters from the entrance of Lost River Cave is a three-meter-

tall epikarst-fed waterfall that drains directly to the water table. It is one of the known 

epikarst waterfalls to exist within Lost River Cave, and is accessible year-round as part of 

an in-cave boat tour, which functions as a tourist site for Bowling Green visitors and 

locals. Western Kentucky University owns the land, which is managed by the Friends of 

Lost River, a non-profit organization dedicated to karst preservation and education. 
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Chapter 4: Methods 

This study employed a wide variety of field, laboratory, and data processing and 

analysis tools and methods. Field methods included automated data logging (YSI 2013), 

metrological based recharge measurements, velocity and bucket based discharge 

measurements, water sample collection for stable isotopes (Hess and White 1992; Wilde 

et al. 2015) and cation/anions (Huang et al. 2015), and the collection of grab samples for 

supplementary hydrogeochemical parameter analysis (Hunkeler and Mudry 2007). 

Laboratory analysis included Cavity Ring-Down Mass Spectrometry for carbon isotope 

ratio analysis (Godoy et al. 2012; Gebbinck et al. 2014), ion chromatography (IC) 

analysis for major anion concentrations, inductively coupled plasma emission 

spectroscopy (ICP-OES) for major cation concentrations, and manual titrations for 

bicarbonate alkalinity. Data analyses were conducted using SigmaPlot and IsoSource 

software, with Excel spreadsheets used to conduct simple calculations and for data 

organization. SigmaPlot software was used to generate complicated data analyses and 

graphical representation of all data. IsoSource software was used to determine carbon 

isotope sourcing. 

4.1 Site Selection and Instrument Installation 

        Two locations containing two sample sites each were chosen at both Crumps Cave 

(WF1 and SF) and at Lost River Cave and Valley (LRWF and LRS) based on relatively 

unrestricted access to epikarst derived water and the ability to install (or use existing) 

scientific equipment.  
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At Crumps Cave Waterfall One (WF1), the sampling site coincides with a site 

being used for current hydrogeochemical investigations; thus, existing scientific 

instruments already on location were utilized for this research, including HOBO 

pressure/temperature and relative humidity transducers and YSI EXO II high-resolution 

hydrogeochemical data loggers. At Sed Falls (SF), a four-litre bucket was used to 

determine discharge at the falls by calculating the number of minutes and seconds it took 

for the bucket to fill to four litres. Figure 4.1 is a plan view of Crumps Cave, with the 

designated waterfalls marked as red dots.  

 

Figure 4.1 Location of the study sites at Crumps Cave. The locations of Waterfall One 

(WF1) and Sed Falls (SF) are indicated by red dots.  

Source: Modified from Vanderhoff (2011). 
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Figure 4.2 Lost River Cave and Valley and the surrounding city of Bowling Green. The 

locations of LRS and LRWF are identified by red and blue markers, respectively (with 

the extent of the LRCV identified by the mass of trees in the center of the image). The 

study sites are roughly 0.8 km apart.  

Source: created by the author. 

 

 Lost River Cave sampling sites were divided geographically (Figure 4.2). Lost 

River Spring is located at the head of the valley, while Lost River Waterfall is located 

roughly 18 meters inside the mouth of the cave. Both sites are roughly 0.80 km apart, 

separated by natural vegetation within a collapsed karst valley. Lost River Spring is 

identified as a shallow epikarst spring at the origin of the valley and designated as LRS. 

The spring consists of a 2.13-meter waterfall that drains into a narrow and shallow 

surface stream, which flows for about 111 meters until it empties into Blue Hole #1. 

Close to the base of the falls is a wooden bridge constructed by the management of Lost 

River Cave and Valley. Placement of a HOBO pressure transducer and a YSI 600 Series 
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high-resolution data-logging sonde was adjacent to the bridge and housed in 3.81-cm 

diameter, 0.60-meter-long PVC stilling wells with fitted caps and secured with key locks 

to avoid theft and/or vandalism. Small holes were drilled in the pipes at random spots 

along their lengths to allow for water flow. A plastic screen was placed at the bottom of 

the pipe to ensure that the logger and transducer placement inside the well did not vary. 

Lost River Waterfall is located about 18 meters within the cave at an epikarst-

derived flowstone and is designated as LRWF. Access to the base of the flowstone is 

through a narrow passage adjacent to the river and access to the waterfall portion of the 

flowstone is up a set of manmade stairs carved into the limestone to a platform 

overlooking the river. The falls is on the interior side of the flowstone, roughly three 

meters above the river and about two meters above the base of the flowstone. A plastic 

36-liter rectangular shaped tub and four-liter bucket were placed directly beneath the 

point where the water emerges from the bedrock. The bin and bucket were used to 

channel water flow to calculate discharge and collect water samples. A YSI 600 series 

data-logging sonde was placed in a pool formed by a rimstone dam near the base of the 

flowstone and programmed for high-resolution (10-minute interval) data collection. The 

logger was secured to a nearby boulder with thick metal airline cable to prevent theft or 

loss during flood events.  

 

4.2 Field Data and Sample Collection 

Beginning on May 24, 2016, weekly water sample collection occurred at each 

site. A complete suite of water samples was collected in various-sized containers ranging 

from 125 mL Nalgene bottles to 10 mL glass vials. Alkalinity samples were collected in 

125 mL Nalgene bottles; cation samples were collected in 60 mL Nalgene bottles 
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containing seven drops of nitric acid for preservation; anion samples were collected in 60 

mL Nalgene bottles; and carbon isotope samples were collected in 10 mL glass vials. All 

water samples were filtered from 500 mL Nalgene bottles filled directly from the source 

site, using a 0.45µm filter paper and 60 mL syringe. Distribution into all bottles ensured 

zero headspace, and screw caps were covered with multiple layers of parafilm wax to 

prevent outgassing and further fractionation. All water samples were collected following 

guidelines in the USGS National Field Manual for the Collection of Water-Quality Data 

(Wilde et al. 2015). All samples were refrigerated at 4 °C, until they could be delivered to 

the proper facility for analysis (Hess and White 1992; Wilde et al. 2015). 

In addition to water sampling, a YSI 556 Handheld Multiparameter Instrument 

was used to perform grab sample analysis of standard geochemical parameters to support 

logger results at all four sites. The handheld is equipped with probes designed to obtain 

data regarding pH (±0.2 units), specific conductivity (±0.001 mS∙cm-1), temperature 

(±0.15o C), dissolved oxygen (±1% saturation or ±0.1mg∙L-1), and turbidity (±0.3 NTU) 

(YSI 2013). Grab samples were obtained at all four sites each week, except for during 

times of high water, causing a lack of site access.   

At WF1, high-resolution (10-minute) interval EXO II data logging collected 

hydrogeochemical parameters, while one HOBO pressure transducer collected pressure 

and temperature readings from inside the barrel. Additional HOBO barometric pressure 

and relative humidity sensors were placed several meters away from the falls to 

determine cave air conditions. Each of these sondes collected 10-minute resolution data 

throughout the course of the study, except when briefly pulled for maintenance. 
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Beginning on August 21, 2016, an automated high-resolution YSI 600 Series data 

logging sonde and a HOBO pressure/temperature transducer were installed at LRS. A 

second automated high-resolution YSI 600 Series data logger was installed in a rimstone 

dam pool one meter below LRWF. Each 600 Series sonde was programmed to record 

geochemical parameters (pH, SpC, and water temperature) every ten minutes. Each 600 

Series sondes is equipped with a probe for pH (±0.2 units), specific conductivity (±0.001 

mS∙cm-1), and temperature (±0.15 ºC) (YSI 2013). The HOBO pressure transducer was 

programmed for high-resolution 10-minute sampling of water temperature and pressure.  

Volumetric discharge measurements were taken to gauge the amount of water 

discharging from LRS using a wading rod and flow meter. The bucket and stopwatch 

method was used to determine discharge at SF using a four-liter bucket (Michaud and 

Wierenga 2005). The same bucket and stopwatch method was employed at LRWF, only 

with the addition of a 36-liter tub to channelize flow in order to ensure full collection of 

water. The amount of water being discharged at LRS, LRWF, and SF was measured once 

a week and whenever flow conditions changed.  

Meteorological data, including precipitation rates (mm/10 mins), relative 

humidity (RH %), surface temperature (°C), barometric pressure (mB), and soil moisture 

and temperature at three (10cm, 30cm, and 50cm) depths, were obtained from weather 

monitoring stations located within 0.80 kilometers of Crumps Cave and Lost River Cave 

and Valley.  Soil temperature and moisture data at Lost River Cave and Valley were 

obtained from the Kentucky Mesonet FARM monitoring station, and represented 

conditions at three depths (8cm, 20cm, and 40cm). 
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4.3 Sample Analysis 

Stable isotope concentrations of dissolved inorganic carbon (δ13CDIC) were 

determined using a Cavity Ring-Down Mass Spectrometer as outlined in Godoy et al. 

(2012) and Gebbinck et al. (2014) at the University of Utah’s Stable Isotope Ratio 

Facility for Environmental Research (SIRFER) laboratory for each week samples were 

collected at each site. Isotope ratios were calculated using the standard isotope ratio based 

on the Vienna standard calculation for that element (Drever 1997; Allen 2004; Palmer 

2007a; Hoefs 2010). Carbon isotopes ratios were reported using the standard δ notation 

with a precision of ±0.3%. Results are referenced to the VPDB standard.  

Anion concentrations of fluoride (F); chloride (Cl-); bromide (Br); nitrate (NO3
2−); 

nitrite (NO2
−); phosphate (PO4); sulfate (SO4

2−) were determined using Ion 

Chromatography (IC) analysis conducted at WKU’s Advanced Materials Institute (AMI) 

following EPA Method 9056 on a Dionex ICS-1500, and after Jackson (2000). Cation 

concentrations of potassium (K+), sodium (Na+), magnesium (Mg2+), and calcium (Ca2+) 

were determined using inductively coupled plasma emission spectroscopy (ICP-OES) 

and were performed at AMI following EPA Method 200.8 using a Thermo Scientific 

ICAP 6500 ICP-OES (Stefansson et al. 2007). These instruments provide concentrations 

in parts per million (ppm) (equivalent to mg/L).  

Manual titration of bicarbonate (HCO3
−) alkalinity was conducted at the Center for 

Human GeoEnvironmental Studies (CHNGES) laboratory at Western Kentucky 

University (WKU). Samples were poured into 120 mL glass beakers and manually 

titrated to a pH of ~4.5 using 0.205 N H2SO4 from May 24, 2016, to December 7, 2016. 

A second 500 mL glass jar of 0.027 N H2SO4 was mixed at the HydroAnalytical 
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Laboratory at Bowling Green on December 7, 2016, and used to titrate samples manually 

to a pH of ~4.5 from December 13, 2016, to March 14, 2017. The pH and temperature 

were measured using the YSI 556 handheld probe. The total volume (mL) of H2SO4 used 

to reduce the pH of a 50-mL sample to ~4.5 was recorded and used to calculate the total 

carbonate alkalinity concentration in mg/L based on the methods outlined in Neal (2001).  

 

4.4 Data Manipulation and Processing 

All processed data were organized in SigmaPlot spreadsheet software for 

convenient record keeping. Mastersheets were created for each site and included a 

column for every measured parameter as well as those calculated as a function of other 

measured parameters.  

4.4.1 Hydrogeochemical Data Processing 

Recorded high-resolution data from the EXO II, YSI 600 Series hydro-

geochemical loggers and HOBO pressure transducers were compiled into Sigma Plot 

spreadsheet software for each week that data were collected. Calibration offsets for high-

resolution SpC and pH at WF1, LRS, and LRWF were corrected per the USGS method 1-

D3 (Wagner et al. 2006). Cation and anion concentrations in ppm, titrated alkalinity 

concentrations in mg/L, water temperature values and pH values for all sites, were 

inserted into a designated Excel spreadsheet to determine charge balances and calculate 

bicarbonate concentrations in mg/L. Charge balances ranged between ±10-20% for all 

sites, indicating raw data were good. Weekly HCO3 concentrations, SpC, pH, Ca2+, Mg2+ 

and water temperature values for all sites were then transferred into SigmaPlot to 

calculate activity coefficients, including H2CO3, CO3, CO2, saturation index (SI) with 

respect to CaCO3, and dissolved inorganic carbon (DIC), for each week at each site that 
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data were available. The equations used to execute these calculations included modified 

versions of the following: partial pressure of CO2 as outlined in Drever (1997) and 

expressed in Eq. 2.2, the Palmer equation to determine saturation index (Palmer 2007a) 

and expressed in Eq. 2.4; and dissolved inorganic concentrations (DIC) as outlined in 

White (1988) and expressed in Eq. 4.3. Concentrations of the partial pressure of CO2 

were calculated by normalizing calculated PCO2 to atmospheric contributions, allowing to 

express the final calculated values in the results and discussion as concentrations of CO2 

in volumetric parts per million (ppmv). 

Further, dissolution rates of limestone at varying timescales were calculated using 

the equations found in White (1988) and Palmer (1991) and expressed as: 

𝑅 = 𝑘1[𝐻+] + 𝑘2[𝐻2𝐶𝑂3] +  𝑘3[𝐻2𝑂] −  𝑘4[𝐶𝑎2+][𝐻𝐶𝑂3
−]           (Eq. 4.1) 

where R is the rate of the dissolved calcite and expressed as millimoles per centimeter 

square per second, k1-3 are temperature dependent forward rate constants that describe the 

rate that calcite is dissolving, and k4 is the backwards rate constant dependent on 

temperature and dissolution rates that describes the potential for precipitation of 

dissolved calcite from solution. The rate of wall retreat in karst conduits can be calculated 

using the equation from Palmer (1991) and expressed as: 

𝑆 =  
31.56 𝑘 (1−𝑆𝐼𝐶𝑎𝑙𝑐𝑖𝑡𝑒)𝑛 

𝑃𝑟
        (Eq. 4.2) 

where S is the rate of conduit wall retreat in cm/year, k is the temperature dependent rate 

constant, SICalcite is the saturation index of the mineral calcite (a ratio of the concentration 

of calcite in solution to the saturation concentration of calcite in solution), n is the 

reaction order of the dissolution reaction, and Pr is the density of the rock (2.7 g/cm3).  
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Dissolved inorganic carbon (DIC) concentrations in mg/L were derived from the 

following formula from White (1988): 

DIC =  HCO3 + CO3 + H2CO3                   (Eq. 4.3) 

Mass flux of dissolved species, including DIC, at WF1 and LRS, were computed 

by multiplying the concentration of the species of DIC by the discharge. Once a 

continuous record of DIC fluctuations was generated, a mass flux of DIC in mg/9 months 

for the study period was calculated by summing the total DIC concentrations. Likewise, 

once high-resolution data were generated for dissolved calcite, an estimated volume of 

rock dissolved at WF1 and LRS was determined by summation of the dissolution rate in 

mg/L over the entirety of the study period.  

Regression analyses were conducted on high-resolution SpC and weekly 

Ca2+/Mg2+ and HCO3 for WF1, LRS, and LRWF to determine statistical robustness, as 

well as their associated R2 values. As an additional statistical check, weekly resolution 

hydrogeochemical samples for SpC and pH were plotted against high-resolution logger 

data for the same date and time. No statistical difference was observed between both data 

sets, indicating that field equipment was operating within specific parameters. Regression 

equations from high resolution SpC, pH, and water temperature and weekly collected 

Ca2+/Mg2+ and HCO3 concentrations were inserted into SigmaPlot to calculate high 

resolution Ca2+/Mg2+ and HCO3 concentrations, and DIC activity coefficients of CO2, 

Saturation indices, and DIC concentrations at WF1, LRS, and LRWF for the dates of 

May 24, 2016, to March 13, 2017, for WF1, and August 18, 2016, to March 13, 2017, for 

LRS and LRWF. Due to a logger malfunction at LRS, data are missing for a period of 

three weeks (December 28, 2016, to January 11, 2017) at that site. The R2 values 
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representing the relationship between high-resolution measured variables and weekly 

resolution ion constituents for WF1 and LRWF proved to be relatively robust, and thus 

using the slope equation derived from regression analysis to extrapolate certain high 

resolution was a simplified method to characterize shorter changes. This particular 

method to extrapolate data is commonly used in other studies (Groves and Meiman 2001; 

Groves et al. 2005; Liu et al. 2007; Groves et al. 2013; Pu et al. 2014a), but it is important 

to note that it is not without some limitation of error, especially when R2 values aren’t as 

strong as hoped for, as was the case at LRS. At that particular site, extrapolation 

measures could potentially yield results subject to additional calculation error as 

described in Osterhoudt (2014). To ensure robustness of the extrapolated data, despite the 

low R2 value, weekly resolution data for LRS were compared with LRS high-resolution 

data collected at the same date and times. No significant statistical difference exists. 

 

4.4.2 Carbon Isotope Sourcing 

Raw collected weekly carbon isotope data were organized in Excel spreadsheets 

by site and date. A mixing model was run to determine exact source contributions 

(atmosphere/soil/carbonates/etc.) over the entire course of the study and seasonally. 

IsoSource software (v1.3) created by Don Phillips at the U.S. Environmental Protection 

Agency was employed for this study (Phillips and Jillian 2003). Data for each week were 

analyzed independently. The model was run with a 1.0% increment and mass balance 

tolerance of 0.5% (Phillips and Jillian 2003). Data parameters covered one isotope system 

with three possible isotopic end members (atmosphere, soil water, and carbonate 

bedrock). Values for the mixture were input based on collected weekly waterfall samples. 

The atmosphere value was assumed constant at -7‰ and based on established literature 
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(Clark and Fritz 1997; Shin et al. 2011; Zhang et al. 2015). Soil water values for Crumps 

Cave (WF1 and SF) were obtained by analyzing soil water collected from three soil 

lysimeters installed at varying depths (10cm, 30cm, and 50cm) to characterize soil CO2 

inputs to the cave. The three lysimeters are located directly above WF1 and varied each 

week they were available. During weeks that soil samples were not available at Crumps 

Cave (WF1 and SF), a calculated value of -16‰ was obtained by averaging values for 

soil carbon isotopes generated by Clark and Fritz (1997) for C3 vegetation (-23‰) and C4 

vegetation (-9‰). Likewise, a soil sample value of -16‰ was used to process all 

collected samples from Lost River Cave and Valley (LRS and LRWF) (Clark and Fritz 

1997; Shin et al. 2011; Zhang et al. 2015). Carbonate bedrock values were derived from 

powdered bedrock obtained from solid samples collected at each location (Crumps Cave 

and Lost River Cave). 

 

4.4.3 LRS Hydrograph Generation  

Atmospheric pressure data collected from the LR HOBO weather station were 

combined with the LRS HOBO pressure transducer data to determine high-resolution 

water level in feet at the spring. Water level data were then transferred to a separate Excel 

spreadsheet, which contained an embedded formula determined by regression analysis to 

generate a rating curve. Units for water level were converted from feet to meters during 

the rating curve generation phase of data processing. Average values calculated from 

collected data from velocity Q discharge measurements conducted at LRS were compiled 

in Excel spreadsheet software to generate a rating curve (Figure 4.3). Regression analysis 

was conducted to determine an R2 value of 0.89 (p<0.001), which indicates a strong 

statistical significance between the parameters. 
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Figure 4.3 Rating curve for Lost River Spring (LRS) discharge. The Rating curve was 

generated from measured state height (in) and calculated discharge (L/s).  

Source: Created by the author. 

 

The slope equation generated from the regression analysis, in conjunction with the 

high-resolution water level data, was used to calculate high-resolution 10-minute 

discharge at LRS, in L/s, from August 18, 2016, to March 13, 2017. Final calculated 

discharge data were then transferred into the SigmaPlot mastersheet for LRS and plotted 

graphically over time. 
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Chapter 5: Results  

The hydrogeochemistry and carbon flux of four epikarst-derived waterfalls within 

the Pennyroyal Sinkhole Plain in southcentral Kentucky was examined from May 24, 

2016, to March 13, 2017, to determine the impact of seasonal and storm event variability. 

A multi-parameter approach was employed to collect 10-minute resolution data for pH, 

SpC, water temperature, and meteorological changes, including precipitation, surface 

temperature, and influences on soil moisture and temperature. Weekly sampling for 

cations, anions, alkalinity, and carbon isotopes served to complete the study and address 

carbon sourcing and fluctuations. These data show variations at each of the four sampling 

sites (WF1, SF, LRS, and LRWF) with respect to the geochemistry and carbon 

fluctuations, which can be attributed to epikarst development and surface input, while 

carbon sourcing at each site seemed to show similar fluctuation responses. This suggested 

that contributions from land use, vegetation cover, and soil microbial activity are present 

and geochemical responses to these factors are relatively similar in a regional sense, yet 

exhibit site specific differences.  

 

5.1 Epikarst Hydrogeochemistry 

            5.1.1 Site Geochemistry Results 

 High-resolution hydrogeochemical basic statistical results for WF1, LRS, and 

LRWF, and weekly resolution hydrogeochemical basic statistical results are presented in 

Table 5.1. Study period precipitation at Crumps Cave (WF1 and SF) was 994.8 mm. 

Crumps Cave-WF1 pH values range from 6.64 to 8.39, with an average of 7.43 (Table 

5.1) during the study period. Specific conductivity values range from 144 µs/cm 

(January) to 438 µs/cm (July), with an average of 305 µs/cm. Water temperature for WF1 
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range from 5.78 ºC in December to 15.5 ºC the following day in December. The average 

water temperature at WF1 was 11.5 ºC. Discharge at WF1 is variable, but responds to 

high precipitation events (Table 5.1). Baseflow at WF1 was recorded at 0.013 L/s during 

the fall, while peak flow in discharge occurred in July and was recorded at 11.5 L/s. 

Average discharge at WF1 was calculated to be 0.07 L/s. Concentrations of CO2 at 

Crumps Cave-WF1 range from 0.67 ppmv during the winter and early spring to 147 

ppmv during the month of September, with an average of 43.9 ppmv. SIc at WF1 shows 

seasonal influences, with a minimal saturation index of –1.05 during the month of 

September and a maximum saturation index of 0.33 during the month of November. The 

average saturation index at WF1 was –0.31. DIC at WF1 showed similar seasonal 

fluctuations, with high concentrations during the summer and low concentrations during 

the winter. Minimum DIC in January was calculated at 127 mg/L while maximum DIC 

was calculated at 1,455 mg/L during September, with an average value of 734 mg/L 

(Table 5.1). DIC fluctuations varied during the study period, with a peak maximum 

loading of 536 mg/L/s during the month of July and a minimum loading of 0.2110 mg/L/s 

during the month of March. 

 Crumps Cave-SF (Table 5.1) collected geochemical and discharge data were at a 

weekly resolution, and were plotted in conjunction with high-resolution precipitation and 

surface temperature. Values for pH range between 6.12 and 7.81, with an average of 6.95. 

Specific conductivity values range from 175 µs/cm (January) to 580 µs/cm (September), 

with an average of 368 µs/cm. Water temperature for SF ranged from 8.52 ºC in 

December to 17.5 ºC in July. The average water temperature at SF was 13.7 ºC. 
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Table 5.1. Summary statistics of major hydrogeochemical and δ13CDIC parameters, at all sites. 
 

Site  
Water  SpC pH Ca2+ Mg2+ HCO3 CO2 SICALCITE DIC δ13CDIC Discharge  

 

Temp 
(°C) 

(µs/cm)  (mg/L) (mg/L) (mg/L) (ppmv)  (mg/L) (‰) (L/s) 

 

Min 5.78 144 6.64 19.6 4.0 41.3 0.67 -1.05 127 -14.8 0.013 

CRUMPS-
WF1** 

Max 15.5 438 8.39 67.5 12.9 312 147 0.33 1,455 -3.00 11.5 

 

Avg 11.5 305 7.43 45.8 8.8 189 43.9 -0.31 734 -9.49 0.07 

 

Min 8.52 175 6.12 25.3 3.8 72.0 2.96 -1.28 227 -15.9 0.06 

CRUMPS-
SF* 

Max 17.5 580 7.81 90.9 15.8 385 604 0.27 3,204 -3.73 0.46 

 

Avg 13.7 368 6.95 54.2 9.2 217 117 -0.61 1,051 -9.60 0.16 

 

Min 10.3 180 6.88 25.4 5.1 74.4 0.98 -0.91 15.0 -13.7 0.01 

LRCV-
LRS** 

Max 22.9 473 8.65 111 21.0 562 82.61 1.11 78.0 -1.60 3.84 

 

Avg 17.0 359 7.82 55.0 10.6 242 9.53 0.43 49.0 -11.4 0.06 

 

Min 11.4 237 3.95 34.7 6.8 127 0.21 -3.70 30.9 -14.5 0.009 

LRCV-
LRWF** 

Max 17.9 673 9.53 106 19.9 529 63,162 2.32 13,209 -4.20 0.93 

 

Avg 15.5 505 7.52 78.4 14.9 375 1,077 0.40 298 -11.4 0.39 

 
           *Weekly resolution  

**High Resolution 

Source: Created by the author.
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Discharge at SF was calculated every week and ranged from 0.06 L/s in baseflow 

conditions during November to peak flow conditions recorded at 0.46 L/s during August. 

Average discharge at SF was calculated to be 0.16 L/s. At Crumps Cave-SF, CO2  

concentrations ranged from 2.96 ppmv during February to 604 ppmv during the month of 

October, with an average of 117 ppmv. SIc at SF shows seasonal influences, but with less 

degree of variability than at WF1. Minimal saturation occurred during the month of May 

at –1.28 and a maximum saturation of 0.27 during the month of November. The average 

saturation index at SF was –0.61. DIC at SF showed similar responses, with a minimum 

value of 227 mg/L during February and a maximum value of 3,204 mg/L during October, 

with an average value of 1,051 mg/L (Table 5.1). 

Study period precipitation at LRCV was 1019.6 mm. Lost River Cave and Valley-

LRS pH values range from 6.88 to 8.65, with an average of 7.82 (Table 5.1). Specific 

conductivity values range from 180 µs/cm (August) to 473 µs/cm (December), with an 

average of 359 µs/cm. Water temperatures for LRS ranged from 10.3 ºC in December to 

22.9 ºC in September. The average water temperature at LRS was 17.0 ºC. Discharge at 

LRS ranges from 0.01 L/s in baseflow conditions during the fall to peak flow conditions 

recorded at 3.84 L/s in December. Average discharge at LRS was calculated to be 0.06 

L/s. CO2 concentrations at LRS range from 0.98 ppmv during August and 82.61 ppmv 

during the month of December, with an average of 9.53 ppmv. SIc values at LRS 

fluctuated, with minimal saturation occurring during the month of August at –0.91 and a 

maximum saturation of 1.11 during the month of November. The average saturation 

index at LRS was 0.43. DIC at LRS show similar responses, with a minimum value of 15 

mg/L during August and a maximum value of 78 mg/L during December, with an 
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average value of 49 mg/L (Table 5.1). DIC fluctuations showed study period variability, 

with a maximum loading peak of 208 mg/L/s during the storm event in December, a 

minimum loading of 0.0 mg/L/s, and an overall study period average of 2.75 mg/L/s. 

 Lost River Cave and Valley-LRWF pH values range between 3.95 and 9.53, with 

an average of 7.52 (Table 5.1). Specific conductivity values range from 237 µs/cm 

(December) to 673 µs/cm (October), with an average of 505 µs/cm. Water temperatures 

for LRWF range from 11.4 ºC in November to 17.9 ºC in the same month. The average 

water temperature at LRWF is 15.5 ºC. Discharge at LRWF was calculated weekly and 

ranged from 0.009 L/s in baseflow conditions during November, to peak flow conditions 

recorded at 0.93 L/s in January. Average discharge at LRWF was calculated to be 0.39 

L/s. The CO2 concentrations range from 0.21 ppmv during the fall to 63,162 ppmv during 

the month of January, with an average of 1,077 ppmv. SIc at LRWF fluctuated, with 

minimal saturation occurring during the month of January at –3.70 and a maximum 

saturation of 2.32 during the month of November. The average saturation index at LRWF 

was 0.40. DIC at LRWF show similar responses, with a minimum value of 30.9 mg/L 

during December and a maximum value of 13,209 mg/L during January, with an average 

value of 298 mg/L (Table 5.1). 

 

             5.1.2 δ13CDIC Isotopes Time Series Analysis 

A time series analysis of δ13CDIC isotope data for Crumps Cave and LRCV is 

displayed in Figures 5.1 and 5.2 for all samples when they were available. Missing data at 

LRWF are the result of the site being inaccessible during high water periods. Missing 

data at WF1, SF, and LRS are the result of broken bottles during transport to the SIRFER 

lab. The δ13CDIC values exhibit clear seasonal trends with depletion during the summer 



59 
 

months and enrichment during the winter months. Values at WF1, SF, and LRWF are 

close to zero at the onset of the study. Depletion in δ13CDIC values occurred shortly after 

the study began, dropping from –11.9‰ to –14.5‰, respectively, between sites on June 

7, 2016. 

 

Figure 5.1 δ13CDIC Time Series Site Comparisons for CRUMPS-WF1 and SF. Note the 

summertime depletion followed by sudden enrichment at the fall transition at both sites. 

Source: Created by the author. 

 

 



60 
 

Figure 5.2 δ13CDIC Time Series Site Comparisons for LRCV-LRS and LRWF. Note the 

summertime depletion followed by sudden slight enrichment at the fall transition at both 

sites, and the general trend toward increased depletion over the remaining study period. 

Source: Created by the author.. 

 

Values remained in this depleted range at all sites until the end of July, when 

δ13CDIC values enriched by –13‰ at all sites, respectively. A distinct, minor depletion of 

~ –8‰ in δ13CDIC values is visible around mid-August (JD 225) at all sites, which 

corresponds with the beginning of the fall transition. At that point, δ13CDIC values at all 

sites remained within a range of –9‰ to –13‰ until late November (JD 328), when WF1 
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and SF δ13CDIC values enriched to –3‰ and –5‰, respectively, and remained in that 

range for the rest of the study period. LRS and LRWF remained relatively depleted 

within the range of –10‰ to –12‰ for the rest of the study period. 

 

             5.1.3 Mixing Model Study Period and Seasonal Results 

The data for each sample collection date that samples were available were 

inserted into IsoSource software program designed to determine isotope sourcing of 

individual elemental compositions. Data for the mixtures and soil water at Crumps Cave 

varied each week. When at least two of the three soil lysimeters at Crumps Cave 

produced a sample, the values were averaged. When soil water sample values were not 

available, mixtures were processed using an assumed constant value of –16‰, drawn 

from the literature using the averaged values of both C3 (–23‰) and C4 (–9‰) vegetation 

contributions to soil (Clark and Fritz 1997). Values for the bedrock obtained from 

samples collected at Crumps Cave and Lost River Cave and Valley were 3.9‰ and 

3.6‰, respectively, and averaged to 3.8 ±0.2‰. The value for the atmosphere were 

assumed constant from the literature and entered as –7‰ VPDB (Zhang et al. 1995; 

Clark and Fritz 1997; McClanahan et al. 2016). 

Time series analysis of the model results are presented in Figures 5.3 to 5.6, 

which show noticeable seasonal dependence in carbon sourcing at Crumps Cave, but not 

as much at LRCV. Due to the fact that the model reported all possible contribution 

sources and frequencies, mean contributions from each source, along with their possible 

ranges and standard deviations, were recorded and are presented in Appendices 1 to 4.  



62 
 

Figure 5.3 Mean Contributions of Carbon Sourcing at CRUMPS-WF1. Note the seasonal 

shift in carbon sourcing, from soil dominance during the summer months to atmospheric 

dominance during the winter months. Conversely, bedrock contributions are reduced at 

the start of the study, but increase during the winter months.  

Source: Created by the author. 

 

Mean contributions by percentage from each source are presented in Figures 5.3 

to 5.6, which represent a study period time series analyses of carbon sourcing at WF1, 

SF, LRS, and LRWF, respectively. The majority of carbon samples were derived from 

the soil during the summer months at Crumps Cave and LRCV sites, while carbon was 

primarily derived from the atmosphere during the wintertime at Crumps Cave. Soil 
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contributions dominated throughout the year at LRCV. Seasonal variability at Crumps 

Cave sites would seem to coincide with both a reduction in photosynthesis during the 

winter, as well as a minimal amount of fractionation effects after the water had entered 

the epikarst. 

Figure 5.4 Mean Contributions of Carbon Sourcing at CRUMPS-SF. Note the similar 

responses to WF1 in seasonal shifts of sourcing. Likewise, water-rock interaction seems 

to increase over the progression of the study period  

Source: Created by the author. 

 

For seasonal results, median contributions and their standard deviations and 

possible ranges of each source were computed from the mean contributions to prevent 

any degradation in data reporting (Phillips and Jillian 2003) and are presented in Tables 
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5.2 to 5.5. Contributions to DIC at Crumps Cave WF1 and SF indicate clear seasonal 

transitions as dominating carbon sources shift from soil to atmospheric origins over the 

course of the study. The mixing model suggests that at WF1 the soil mean value is 51.3% 

±20.9% over the course of the study period, with a range of 17.1% to 92.2%. 

Atmospheric mean contributions are 31.6% ±13.4%, with a minimum of 5.8% and a 

maximum of 49%. Bedrock mean contributions are 14.1% ±9.5% with a range of 2% to 

51.2% (Figure 5.3).  

 

Seasonally, the values shift, with soil median contributing 75.6% ±21.6% in the 

summer, most likely from soil microbial activity and root respiration, and atmospheric 

median contributing 47.4% ±2.2% in the winter when minimal vegetation cover exists 

(Table 5.2). At SF, soil mean values contribute similar concentrations of carbon as 

observed at WF1, with 51.1% ±24.9% from soil, with a minimum of 9.4% and a 

maximum of 97%. Atmospheric mean values contribute 33.2% ±14.6, with a range of 

Table 5.2 Seasonal trends of mixing model results for WF1. 

  

Crumps Cave-WF1 DIC Contributions by Source (%) 

  

Atmosphere Soil Bedrock 

  

Value Median Std Value Median Std Value Median Std 

Spring 

Median 35.4 12.8 56.6 13.8 9.9 4.4 

Min 24.5 
 

37.8 
 

5.2 
 Max 47.2 

 
65.6 

 
16.0 

 

Summer 

Median 17.2 10.9 75.6 21.6 7.2 12.8 

Min 5.8 
 

17.1 
 

2.0 
 Max 38.7 

 
92.2 

 
51.2 

 

Fall 

Median 30.5 9.1 58.1 12.6 12.6 3.8 

Min 10.6 
 

34.8 
 

3.5 
 Max 47.1 

 
85.9 

 
19.0 

 

Winter 

Median 47.4 2.2 28.7 4.1 23.5 5.3 

Min 42.6 
 

23.1 
 

15.5 
 Max 49.0 

 
38.1 

 
34.3 

 Source: Created by the author. 
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2.1% to 49%. Bedrock mean contributions are 15.1% ±11.7, with a range of 0.9% to 

41.9% (Figure 5.4). Seasonally, soil median contributions accounted for roughly 66.4% 

±27.1% during the summer, while atmospheric median contributions accounted for 

46.6% ±4.9% during the winter (Table 5.3). 

 

At LRCV-LRS and LRWF, seasonal shifts in carbon sourcing were not as 

apparent. Soil contributions seem to dominate throughout the entire study. At LRS, study 

period median soil contributions accounted for roughly 68.2% ±14.6%, with a range of 

13.6% to 81%. Atmospheric contributions accounted for 22% ±7.03%, with a minimum 

of 13.3% and a maximum of 43.1%. Bedrock contributions accounted for 9.8% ±10.0%, 

with a range of 5.7 to 61.2% (Figure 5.5). Seasonally, soil median contributions account 

for 72.2% ±14.8% in the summer and 68% ±7.19% in the winter. LRWF displayed 

similar soil dominance during the entire study period (Figure 5.6). Study period soil 

Table 5.3 Seasonal trends of mixing model results for SF. 

  

Crumps Cave-SF DIC Contributions by Source (%) 

  

Atmosphere Soil Bedrock 

  

Value Median Std Value Median Std Value Median Std 

Spring 

Median 41.0 8.7 45.7 16.3 15.5 10.5 

Min 24.5 
 

23.7 
 

9.9 
 Max 47.0 

 
65.5 

 
35.3 

 

Summer 

Median 11.6 13.7 66.4 27.1 4.9 6.5 

Min 2.1 
 

9.4 
 

0.9 
 Max 33.2 

 
97.0 

 
16.1 

 

Fall 

Median 28.2 10.0 57.7 18.5 13.2 9.1 

Min 17.2 
 

25.2 
 

6.3 
 Max 47.5 

 
75.3 

 
33.2 

 

Winter 

Median 46.6 4.9 25.1 3.2 28.4 7.6 

Min 35.0 
 

22.2 
 

19.8 
 Max 49.0 

 
31.6 

 
41.9 

 Source: Created by the author. 
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contributions accounted for 65.1% ±15.3, with a range of 20.1% to 87.2%. Median 

atmospheric contributions accounted for 24.2% ±9.52%, with a minimum of 9% and a 

maximum median contribution of 44.3%. Bedrock contributions are 10.7% ± 6.69, with a 

range of 3.8% to 42.6% (Figure 5.6). Seasonally, soil contributions dominated the system 

throughout the entire study period, with median values of 59.7% ±10.6% during the 

winter and 78.5% ±19.9% during the summer (Table 5.5).  

 

Figure 5.5 Mean Contributions of Carbon Sourcing at LRCV-LRS. Note that soil 

sourcing seems relatively uniform throughout the study.  

Source: Created by the author. 
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Figure 5.6 Mean Contributions of Carbon Sourcing at LRCV-LRWF. Note the similar 

responses to those observed at LRS, however, soil influences are increased at this site, 

especially during the summer months.  

Source: Created by the author. 
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Table 5.5 Seasonal trends of mixing model results for LRWF. 

  

LRCV-LRWF DIC Contributions by Source (%) 

  

Atmosphere Soil Bedrock 

  

Value Median Std Value Median Std Value Median Std 

Spring 

Median 20.2 11.2 70.9 16.3 8.9 5.1 

Min 12.1 
 

50.4 
 

5.3 
 Max 34.3 

 
82.6 

 
15.3 

 

Summer 

Median 15.0 9.9 78.5 19.9 6.5 11.0 

Min 9.0 
 

20.1 
 

3.8 
 Max 37.3 

 
87.2 

 
42.6 

 

Fall 

Median 24.2 9.6 65.1 14.0 10.7 4.4 

Min 16.6 
 

35.9 
 

7.3 
 Max 44.3 

 
76.1 

 
19.8 

 

Winter 

Median 27.9 7.3 59.7 10.6 12.4 3.3 

Min 19.0 
 

43.9 
 

8.4 
 Max 38.8 

 
72.6 

 
17.3 

 Source: Created by the author. 
     

Table 5.4 Seasonal trends of mixing model results for LRS. 

  

LRCV-LRS DIC Contributions by Source (%) 

  

Atmosphere Soil Bedrock 

  

Value Median Std Value Median Std Value Median Std 

Spring 

Median 23.5 7.9 43.95 32.41 27.5 26.6 

Min 17 
 

13.6 
 

7.5 
 Max 35.6 

 
75.5 

 
61.2 

 

Summer 

Median 19.3 10.2 72.2 14.86 8.5 4.63 

Min 13.3 
 

37.6 
 

5.7 
 Max 43.1 

 
81 

 
19.3 

 

Fall 

Median 23.8 4.76 65.7 6.93 10.5 2.17 

Min 15.3 
 

57.6 
 

6.7 
 Max 29.3 

 
78 

 
13.1 

 

Winter 

Median 22.2 4.95 68 7.19 9.8 2.25 

Min 18.8 
 

53.8 
 

8.3 
 Max 32 

 
72.9 

 
14.3 

 Source: Created by the author. 
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Chapter 6: Discussion 

6.1 Epikarst Hydrogeochemistry 

            6.1.1 Site Geochemistry Discussion 

The data presented from this investigation suggest that open system conditions are 

present at both study locations (Williams 1983; White 1988; Palmer 1991; Clemens et al. 

1999; Emblanch et al. 2003; Klimchouk 2004; Cheng et al. 2005; Palmer 2007a; Jiang et 

al. 2007; Williams 2008; Faimon et al. 2012a). Higher precipitation rates and warm 

surface temperatures during the summer months facilitate the interaction of CO2 with the 

carbonate system by providing for surface conditions to encourage vegetation growth and 

CO2 production in the soil at Crumps Cave sites, but less pronounced at Lost River Cave 

and Valley sites due to an urban landscape potentially interfering with CO2 diffusion. 

High precipitation events transport accumulated soil CO2 into the epikarst. During the 

dry, relatively warm months, CO2 diffusion also occurs, but at a slower rate, because 

precipitation events are lacking. In this case, while diffusion to the epikarst does occur, 

CO2 concentrations appear to accumulate in the soil at increased concentrations. During 

the colder, wet winter months, new soil CO2 production seems to decrease, along with 

vegetation growth, while the remaining soil CO2, which has not diffused to the epikarst 

during the warm, drought season, is then dissolved in rainwater and carried to the 

bedrock below. Fluctuations in SpC and pH values throughout the study are 

representative of dissolution and/or precipitation, and seem to coincide with surface 

patterns. Likewise, CO2 concentrations, SIc, and DIC fluctuations also support surface 

influences and, thus, open system conditions.  
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To delineate the extent of surface influences on epikarst responses, this study 

focused on two levels of scrutiny: a multi-month time series analysis, which reflects the 

seasonal changes occurring at each site (Figures 6.1 to 6.10), and two specific storm 

events to characterize epikarst changes at extremely high-resolution at three different 

intervals: baseflow conditions prior to the storm, storm responses at the site, and a return 

to baseflow conditions (Figures 6.11 to 6.14). Both storm events (one in the summer and 

one in the winter), spanned roughly three days and focus on the conditions at WF1 and 

LRS to represent changes observed at each location as a regional comparison of site 

responses. Due to the extremely large dataset, the most notable points within each time 

series at every site are presented in the hydrogeochemical discussions. 

 

Precipitation 

Precipitation values at Crumps Cave (Figures 6.1 and 6.2) and LRCV (Figures 6.3 

and 6.4) indicate wet and dry seasons. Distinctly higher precipitation rates and 

frequencies occur during the summer months, followed by reduced precipitation events 

during the fall, with increased precipitation events during the winter months and spring 

transition. Summer precipitation frequencies and rates appear to be contributing to 

epikarst water temperature, SpC, and pH conditions, reflecting distinct dilution effects as 

precipitation filters through the topsoil and enters the epikarst (Figures 6.1 to 6.4). Study 

period precipitation rates at Crumps Cave are higher than at LRCV (65% at Crumps Cave 

versus 34% at LRCV); however, recorded precipitation at Crumps Cave and LRCV is 

assumed the same for each study site within each location. Thus, the overall precipitation 

rates at Crumps Cave are considered the same for WF1 and SF; likewise, the overall 

precipitation rates at LRCV are assumed the same for LRS and LRWF. 
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Figure 6.1 Time series of hydrogeochemical changes at Crumps Cave-WF1. Note the 

distinct seasonal changes in all respects, including the inverse relationship between SpC 

and pH during the summer and fall months. Water temperature trends closely with 

surface temperature, while discharge seems to respond rather quickly to precipitation 

inputs.  

Source: Created by the author. 
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Surface and Water Temperature 

Surface and epikarst water temperature patterns at Crumps Cave (WF1 and SF) 

indicate clear seasonal, diurnal, and storm event responses, with an overall study period 

trend of warmer temperatures in the summer and colder temperatures in the winter. 

Diurnal inflections of warmer temperatures during the daytime and cooler temperatures 

during the night are also present, with sudden increases to precipitation, followed almost 

immediately by gradual decreases (Figures 6.1 and 6.2). During the summer months, 

minimal diurnal surface temperature fluctuations are observed. During the winter, diurnal 

surface temperature fluctuations are more pronounced and seem to coincide with heavy 

precipitation events. Water temperature behaves in a similar fashion, with a general 

seasonal trending from high temperatures to low temperatures, more pronounced 

influences from surface conditions during the winter months, and immediate responses to 

infiltrating precipitation, especially during high precipitation events (Figures 6.1 and 6.2).  

At the LRCV (LRS and LRWF), surface temperatures indicate distinct seasonal 

responses, as evident by overall higher temperatures during the summer months, which 

trend to lower temperatures during the winter months (Figures 6.3 and 6.4). As with 

observations in surface temperatures made at Crumps Cave, winter variability in surface 

temperatures at LRCV is pronounced, diurnal fluctuations are distinct throughout the 

year, and responses to storm events indicate a decrease in surface temperatures 

immediately following the onset of rainfall. Water temperatures at LRS and LRWF seem 

to mirror surface temperature, both seasonally and during precipitation events, indicating 

an overall decrease in temperatures as summer transitions to winter, and immediate 

decreases in temperature following the onset of rainfall (Figure 6.3 and 6.4); however, 
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some very distinct differences in temperature responses from both storm events and 

seasonal variability occur at both sites. It is possible that these temperature differences 

are also contributing to CO2 fluctuations, as increased water temperatures are less capable 

of holding dissolved CO2, while decreased water temperatures are more capable of 

holding higher concentrations of CO2, and thus, can contribute to ongoing dissolution. 

While water temperatures at LRS (Figure 6.3) trend seasonally (highs in the 

summer to lows in the winter) and responses to storm events are clearly present 

(temperature dilutions at the onset of precipitation), the most pronounced effect is the 

diurnal fluctuation in water temperature. These fluctuations are representative of 

responses to water temperature, which is in relative equilibrium with surface temperature, 

thus mirroring surface temperature behavior of day and night fluctuations. Increased 

water temperature variability resulting from diurnal fluctuations in riverine systems have 

been observed in hydrogeochemical studies conducted by Hess and White (1992), 

Osterhoudt (2014), Pu et al. (2014a), McClanahan et al. (2016), and Salley (2016). At the 

LRWF (Figure 6.4), these diurnal fluctuations are less pronounced, possibly due to the 

water reaching equilibrium with cave temperature; thus, LRWF water temperature is 

more heavily influenced by precipitation events and overall seasonal trending versus 

daily cycles of day and night temperatures as observed at LRS.  
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Figure 6.2 Time series of hydrogeochemical changes at Crumps Cave-SF, over the course 

of the study. Note the seasonal responses similar to those observed at WF1.  

Source: Created by the author. 
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Similar responses are observed at Crumps Cave and LRCV with respect to 

seasonal, diurnal, and precipitation event temperature fluctuations and are common in  

epikarst studies. Cheng et al. (2005); Jiang et al. (2007); Liu et al. (2010) and Pu et al. 

(2014b) all found the same trends in karst regions in China. Likewise, investigations into 

eogenetic karst systems in Florida by Gulley et al. (2015) found that surface temperature 

and water temperature tend to mirror one another on all three scales. The studies suggest 

that temperature fluctuations, both seasonally and diurnally, are a result of normal surface 

influences on water temperature in open karst systems. Additionally, diurnal patterns are 

a consequence of absorbed solar radiation influencing the water, which eventually drains 

at the base of the epikarst. Lastly, during the summer months, solar output tends to heat 

precipitation, driving the subsurface water temperature upward upon initial infiltration as 

new water is mixed with older, more equilibrated water (Cheng et al. 2005; Liu et al. 

2010; Yang et al. 2012; Pu et al. 2014a; Pu et al. 2014b; Gulley et al. 2015).  

 

Specific Conductivity (SpC) 

SpC values are an indicator of the number of free ions in water, usually caused by 

dissolution (White 1988; Palmer 1991; Hess and White 1992; Drever 1997; Palmer 

2007a). With higher values, the increased concentrations of free ions are assumed to 

occupy the water. Since dissolution of limestone usually results in a combination of Ca2+ 

and Mg2+, (and less commonly K+ and Na+) and HCO3, then active dissolution, especially 

during the summer months, is occurring at all sites, as evident by seasonal oscillations, 

with higher values during the summer months and lower values during the winter months.  
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Figure 6.3 Time series of hydrogeochemical changes at LRCV-LRS. Note the seasonal 

trends in surface and water temperature; however, the SpC and pH exhibit little variation 

during the study period. A data gap for geochemical values is a result of mechanical 

failure of the logger.  

Source: Created by the author. 
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Most pronounced are the near immediate decreases in values following the onset 

of precipitation events (Figures 6.1 to 6.4), which occur concurrently at all four sites with 

seasonal trends (higher overall values in the summer and lower overall values in the 

winter) (Cheng et al. 2005; Yang et al. 2012) (Figure 6.1 and Figure 6.2). Precipitation 

responses create a near immediate decrease in values resulting from infiltrating water 

with a low SpC, causing dilution effects resulting from the fast flush of fresh and storage 

water through the system. Despite the difference in resolution at WF1 and SF, these 

trends in both seasonal and storm event responses are very similar, suggesting that both 

waterfalls are influenced by similar epikarst conduit networks, as was discovered by 

studies conducted by Groves et al. (2005), Vanderhoff (2011), and Groves et al. (2013). 

At the LRCV (LRS and LRWF), SpC values also show seasonal trends; however, 

that trend is the least pronounced at LRS (Figure 6.3). This could be the result of surface 

influences, such as exposure to the atmosphere, reducing the available CO2 for 

dissolution reactions via degassing, causing precipitation of calcite and reduction of 

dissolved ions (McClanahan et al. 2016; Osterhoudt 2014); however, SpC values still 

show dilution responses to precipitation events, suggesting that SpC values in the spring 

are severely affected by infiltrating rainwater.   

The accounted difference in SpC values between locations (Figures 6.1 and 6.4) 

could be a result of increased residence times at LRCV providing for additional water-

rock interaction, as suggested by Liu et al. (2010), which would cause higher SpC and pH 

values, a higher saturation index, and lower CO2 values. At Crumps Cave, higher 

volumes of discharge and near immediate responses to storm events in SpC values 

indicate that shorter residence times are occurring in conjunction with rapid infiltration of 
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rainwater during certain events. Likewise, concentrations of Ca2+ and Mg2+, and HCO3 

are greater at the LRCV sites versus the Crumps Cave sites, suggesting more dissolution 

is occurring at the LRCV sites, which supports the increased SpC values recorded at LRS 

and LRWF (Table 5.1; Figures 6.3 and 6.4). 

 

pH 

Values of pH are highly contingent on the concentrations of dissolved CO2 in 

infiltrating waters (Palmer 2007a; Liu et al. 2010; Yang et al. 2012). Higher 

concentrations of CO2 can drive pH toward more acidic values, causing an increase in the 

aggressiveness of water and, thus, an increase in the extent and rate of dissolution. Over 

time, prolonged water-rock interaction will buffer pH as CO2 concentrations reduce. 

Concurrently, increased concentrations of dissolved CaCO3 may eventually increase pH 

values as well. Fresh infiltrations of lower pH rainfall (~ 5.5), as suggested by White 

(1988), Williams (1988), Palmer (1991), and  Palmer (2007a), can serve to flush CO2 

from the soil into the system and drive the pH lower (Liu et al. 2007; Li et al. 2008a; Li et 

al. 2008b; Yang et al. 2012; Pu et al. 2014a; Pu et al. 2014b). 

The pH values at WF1 and SF (Figures 6.1 and 6.2) trend similarly to one 

another, indicating that differences in hydrogeochemical parameters are minimal between 

sites with respect to pH. Seasonal trends, where values are lower in the summer and 

higher in the winter, with a distinct increase around the beginning of the winter season, is 

indicative of ongoing surface influences. Surface influences impacting pH, especially 

during the winter months, can derive from several processes: a reduction in precipitation 

and surface temperature causing of the reduction in root respiration from vegetation and  
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Figure 6.4 Time series of hydrogeochemical changes at LRCV-LRWF. Note the seasonal 

trends in all respects are more visible at this site, especially response to storm events 

Source: Created by the author. 
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microbial activity in the soil, thus significantly dropping or cutting off the supply of CO2 

for utilization. This reduction in available CO2 in epikarst waters will cause the pH to 

increase, while the SpC decreases, creating an inverse relationship, such as the one 

observed during the winter (Figures 6.1 and 6.2). Groves et al. (2005) and Vanderhoff 

(2011) discovered through investigations of contaminant transport during storm events at 

Crumps Cave that certain thresholds of precipitation exist in which CO2 is more easily 

transported through the soil and into the epikarst as a dissolved constituent in rainwater. 

Similar responses were observed during this study, which suggest that, while diffuse 

infiltration occurs regardless of precipitation, increased precipitation allows for increased 

transport of dissolved CO2, such as the case observed during the summer and fall months 

(Figures 6.1 and 6.2).  

The near immediate response in infiltrating water flushing through the system is 

reflected in all parameters, as well as in increased volumes of discharge observed at both 

sites in response to large precipitation events. This direct transference of surface flow to 

both waterfalls is an indication that the epikarst, while heavily influenced geochemically 

by surface variables, is developed to a point that contributes to a reduction in extended 

residence times and efficient water transference to the aquifer. Similar behaviors are 

observed in epikarst discharges and CO2 responses related to pH in karst springs studied 

extensively in China and elsewhere (Williams 1983; White 1988; Palmer 1991; Hess and 

White 1992; Cheng et al. 2005; Groves et al. 2005; Palmer 2007a; Li et al. 2008a; Li et 

al. 2008b; Vanderhoff 2011; Liu et al. 2010; Pu et al. 2014a; Pu et al. 2014b; Knierim et 

al. 2015; Gulley et al. 2012; Gulley et al. 2015), where pH is heavily dependent on 

available CO2 from the surface driving dissolution kinetics.  
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 The pH values at the LRCV (LRS and LRWF) show minimal seasonal trends, 

such as distinct decreases during the summer months and increases during the winter 

months (Figures 6.3 and 6.4). Both sites indicate responses to storm events, suggesting 

that precipitation containing dissolved CO2 may be a driving factor for pH, especially at 

the LRWF (Figure 6.4). Additionally, despite a seeming lack of seasonal responses in pH 

and SpC values, LRS (Figure 6.3) responds to influences from storm events as well. 

Distinct reductions in pH values in response to increased precipitation are observed 

throughout the study period during each rain event. These immediate decreases in 

epikarst pH values are a result of infiltrating rainwater driving down the pH (Figure 6.3). 

 At the LRCV LRWF, seasonally, pH values trend in reverse to what is observed 

at Crumps Cave (Figure 6.1 and 6.3). Values begin around 7.7 and steadily increase 

throughout the summer and into the winter transition, where a shift occurs, as increased 

precipitation seems to carry excess CO2 into the system, causing a gradual decline in pH 

and an increase in dissolution. Reduced surface precipitation during the dry season may 

slow CO2 diffusion, thus concentrations build in the soil zone. Stored epikarst water is 

then free to utilize all available CO2 until the water becomes supersaturated, causing 

calcite precipitation. In January, a severe drop in pH seems to coincide with a large 

precipitation event. In this case, increased concentrations of CO2 appear to infiltrate the 

system from the soil zone, driving the pH to extremely low levels. The excess CO2 may 

derive from both soil CO2 and decay of organic material (see Hatcher 2013), which found 

excess CO2 flushing through the epikarst at Logsdon River near Mammoth Cave, which 

severely reduced the pH.  
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Figure 6.5 Surface and Soil Changes at Crumps Cave-WF1. Note the seasonal trends in 

all variables.  

Source: Created by the author. 
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Figure 6.6 Surface and Soil Changes at LRCV-LRS. Note the seasonal trends in all 

variables except CO2 and pH, which are muted, due to an anomalous reading in late 

December, 2016.  

Source: Created by the author. 
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 It is possible that, at the LRWF, certain precipitation thresholds need to be met 

before diffusion of CO2 in high concentrations can move swiftly to the epikarst and 

transfer directly to the waterfall with minimal water-rock interaction. Responses in 

discharge during large storm events seem to support the suggestion that a certain 

threshold exists; however, when a threshold is not met, despite the continual flow of 

water at LRWF, extremely low baseflow suggests that during dry periods extensive 

water-rock interaction occurs. Increased SpC and Ca2+, Mg2+, and HCO3 concentrations, 

as well as increased saturation index further support that concurrent ongoing dissolution 

and precipitation is occurring at LRWF (Table 5.1 and Figure 6.4). 

 

Soil Temperature and Moisture Conditions 

According to Yang et al. (2012), soil CO2 originates from root respiration and 

microbial decomposition and is a function of temperature and antecedent moisture. The 

higher the temperature, the more root respiration and microbial activity observed, while, 

conversely, drier, colder soils tend to produce less CO2 (Li et al. 2008a; Li et al. 2008b; 

Liu et al. 2010; Yang et al. 2012). On diurnal scales, CO2 concentrations also fluctuate, 

due to the day/night switch, as root respiration for most C3 and C4 plants (except for a 

few row crop types) tends to slow during the night, with microbial activity in the soils 

following suit (Clark and Fritz 1997). During the winter season, these diurnal fluctuations 

are less pronounced, as most vegetation is dormant and, thus, microbial soil activity 

slows or ceases depending on temperature (Yang et al. 2012). Excess soil CO2 is likely to 

dissolve in antecedent moisture, which then slowly percolates into the epikarst. Likewise, 

excess CO2 will also dissolve and transfer to the epikarst during increased precipitation; 

however, if precipitation amounts supersede pre-existing antecedent moisture conditions, 
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it is possible that some soil CO2 may be exposed to the atmosphere and degas before it is 

diffused to the epikarst. If antecedent moisture thresholds are not exceeded during 

precipitation events, the infiltrating precipitation may transfer large concentrations of 

dissolved CO2 to the epikarst more quickly than under normal, relatively dry conditions.  

Soil conditions at Crumps Cave (Figures 6.5) indicate seasonal trends, with 

increased temperatures during the summer months and decreased soil temperatures 

during the winter months. Additionally, diurnal fluctuations are present, indicative of 

solar radiation heating during the day and a reduction in solar radiation during the night. 

At Crumps Cave (WF1 and SF), soil moisture conditions show significant increases 

during large precipitation events, suggesting, especially during the summer months, that 

antecedent moisture levels are consistently higher, possibly due to a lag time between 

infiltration to the epikarst and the next storm event (Figure 6.5). A general decrease in 

moisture conditions is visible during the fall drought, followed by an increase in 

antecedent moisture during the winter storms (Figures 6.5). These distinct seasonal and 

precipitation driven changes in temperature and soil moisture conditions are more likely 

to produce CO2 during the spring-summer and into the fall months during the growing 

period, while being less likely to produce soil CO2 during the late fall and winter months 

due to vegetation loss and a reduction in soil microbial activity. More extreme 

fluctuations in surface temperatures during the winter months are met with multiple 

instances of fluctuations in both soil moisture and temperature, which suggest that soil 

microbial activity may be switching on and off, thus producing, even in small increments, 

higher concentrations of CO2.  
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Figure 6.7 DIC coefficient changes at Crumps Cave-WF1. Note the seasonal responses in 

all respects, especially in DIC concentrations of CO2, as well as a seasonal trend in 

saturation index, indicating a strong relationship between each variable.  

Source: Created by the author. 
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Similar soil responses in both temperature and moisture conditions, indicative of 

vegetation and microbial activity and, thus, correlative fluctuations in soil CO2 

concentrations, are observed in studies in China and elsewhere (Amundson et al. 1998; 

Clemens et al. 1999; Bakalowicz 2004; Klimchouk 2004). The nearby Kentucky Mesonet 

FARM Station recorded soil conditions for the LRCV, and the data were assumed to be 

similar enough to apply to both study sites (LRS and LRWF) (Figure 6.6). Soil 

temperature at the LRCV responds seasonally, with increased temperatures during the 

summer months and decreased temperatures during the winter months (Figure 6.6). As 

with observations made in soil temperature at Crumps Cave, LRCV soil temperature 

indicates increased fluctuations on diurnal scales to winter surface temperatures. Soil 

moisture conditions at the LRCV indicate more muted responses to seasonal changes, 

especially the shallower readings, but distinct responses to precipitation events, especially 

in the winter months (Figure 6.6). The difference in soil temperature and moisture 

conditions between locations could be due to data collection resolution. Crumps Cave 

collected data at ten-minute intervals while the FARM Station for LRCV collected data 

every 30 minutes. Additionally, soil extent is heavily impacted by the presence of large 

expanses of impermeable surfaces at LRCV, thus influencing the soil’s ability to respond 

to seasonal changes (USDA 2017).  

 

Carbon Dioxide (CO2)  

Carbon dioxide in groundwater is a major geochemical driving factor in 

dissolution kinetics (Williams 1983; White 1988; Palmer 1991; Drever 1997; Clemens et 

al. 1998; Veni et al. 2001; Palmer 2007a; Li et al. 2008a; Yang et al. 2012; Gulley et al. 

2015). As waters move from areas of low CO2 concentrations to high CO2 
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concentrations, pH levels decrease and dissolution occurs after the water becomes acidic. 

This CO2 gradient is often spatially delineated (Gulley et al. 2012; Gulley et al. 2015) and 

is identified to be heterogeneous in nature throughout the landscape. Likewise, an 

investigation into the formation of phreatic caves in eogenetic karst by Gulley et al. 

(2012), suggested that CO2 in a gaseous state may be responsible for increased cave 

formation as opposed to the mixing of fresh and saltwater resulting from sea level rise, 

which had been the assumed driver regarding eogenetic cave formation. Their study 

found that the heterogenic distribution of CO2 is spatially dominant, in that cave 

formation is a direct result of CO2-driven dissolution in a spatial context. In telogenetic 

karst, dissolution is primarily a result of fluid dynamics and water-rock interaction, in 

that water percolating through the matrix and along fractures and bedding planes tends to 

form void spaces (Williams 1983; White 1988; Palmer 1991; Veni et al. 2001; Palmer 

2007a). Further, CO2 exchange with the atmosphere and the epikarst is heavily contingent 

on the presence of antecedent moisture in the topsoil and the surrounding temperature 

(Cuezva et al. 2011). 

The diffusion of CO2 at WF1 seems to occur in several ways. Firstly, as observed 

in epikarst studies in other regions of the world, CO2 concentrations seem to vary 

seasonally, with highs during the summer and lows during the winter (Liu et al. 2007; Li 

et al. 2008a; Li et al. 2008b; Cuezva et al. 2011; Liu et al. 2010; Peyraube et al. 2012; 

Yang et al. 2012; Peyraube et al. 2014; Pu et al. 2014b; Gulley et al. 2015), while storm 

events result in high precipitation, which transports soil CO2 into the epikarst. Initially, 

dilution effects are visible, followed by a relative lag before concentrations begin to rise.  
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Figure 6.8 DIC coefficient changes at Crumps Cave-SF. Note that similar trends in all 

variables to those observed at WF1 exist. 

Source: Created by the author. 
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Likewise, peak CO2 concentrations during the months of September and October 

are most likely due to the onset of the dry season combined with the maturation state of 

surface vegetation, providing for the accumulation of increased soil CO2 concentrations. 

At the onset of the late fall-early winter, when crops are harvested and natural vegetation 

begins to wither, CO2 concentrations started to decrease to reach their lowest value (near 

zero) and remained at that level for the rest of the study (Figure 6.7 and 6.8). Despite the 

variability in precipitation, soil moisture, and soil temperature near the end of the winter 

months and transitioning into the spring, little response is observed in CO2 concen-

trations. Minimal microbial activity and reduced root respiration may be the cause of 

minimal CO2 concentrations in the epikarst, as no increases in CO2 concentrations were 

observed in groundwater discharged from the spring. As a result of drastic diurnal surface 

temperature fluctuations ranging above 20 ºC on some days during the winter, it is likely 

that microbial activity may have shifted between dormant and non-dormant phases in 

response. This shifting between phases generated higher concentrations of CO2 in the 

soil. Studies regarding vegetation growth and microbial contributions to soil respiration 

and CO2 production with respect to temperature and moisture fluctuations were 

conducted by Zogg et al. (1995), Davidson et al. (1998), and Fierer et al (2003). Zogg et 

al. (1995) found that fluctuations in soil temperatures can alter microbial communities in 

the soil, thus dominant communities at higher temperatures can increase their ability to 

metabolize nutrients more so than at lower temperatures. 

Davidson et al. (1998) found that soil CO2 fluctuations are a result of variations in 

soil temperature and moisture, especially over seasonal and diurnal scales. Fierer et al. 

(2003) discovered that concentrations of CO2 from nutrient digestion by microbial 
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communities occurs at greater rates in the deeper substrate, influenced by a heightened 

sensitivity to soil temperature and moisture changes versus the surface layer, which 

appears less responsive. Despite these conditions, which should yield increased CO2 

concentrations at the springs, WF1 and SF have low CO2 concentrations, which suggests 

that any soil derived CO2 from the fluctuations in temperature was immediately utilized 

in bedrock dissolution, as evident by minimal changes to pH at the spring, fluctuations of 

SpC, and slight increases in DIC.   

 Trends of CO2 at SF mirror that of WF1 (Figure 6.8), suggesting that similar 

influences in the epikarst are governing processes at both waterfalls. Seasonal responses 

can be delineated, despite the weekly resolution; however, diurnal and storm event 

variability at SF is not as easily identified and, in certain respects, impossible to 

determine based on lower resolution. Seasonal trends indicate increases during the 

growing season and decreases during the winter season. Additionally, SF exhibits overall 

higher concentrations of CO2 relative to WF1. This difference in concentrations could be 

due to the difference in resolution between sites. Likewise, the dominant processes at 

each site, while similar, may be operating at different levels and intervals between sites.  

Minimal seasonal variability is observed in CO2 concentrations at LRCV-LRS, 

but increases in concentrations seem to coincide with storm events, suggesting that high 

precipitation events breach the threshold required to facilitate the rapid movement of 

dissolved CO2 (which had not degassed to the atmosphere) from the soil to the epikarst 

(Figure 6.9). The lack of seasonal influence may be explained by land use in the region 

adjacent to LRS. Vegetation and soil cover at LRS exist in pockets, due to residential and 

commercial infrastructure and, thus, CO2 that normally contributes to seasonal increases 
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and decreases may be reduced to those pockets where vegetation exists and where CO2 

production in the soil is still occurring. Likewise, any CO2 that would normally degas to 

the atmosphere during the winter months under low antecedent moisture conditions could 

potentially be trapped by the presence of extensive impermeable surfaces, preventing that 

exchange with the atmosphere (Cuezva et al. 2011). Additionally, since CO2 values are 

calculated from SpC and pH, which also indicate muted seasonal trends, it is likely that 

CO2 measurements do the same. Lastly, discharge at LRS seems highly dependent on 

increased precipitation rates at high frequencies. Thus, certain volumes of water in the 

system must be met before any increase in discharge occurs, which suggests that longer 

residence times are occurring at the site. Longer residence times would result in the 

following conditions: reduction in CO2 due to the ongoing water-rock interaction driving 

dissolution; an increase in pH due to a reduction in CO2 used in dissolution, and an 

increase in SpC with high concentrations of calcium, magnesium, and bicarbonate, due to 

an increase in dissolution. These conditions have been observed and described in 

situations with similar soil and shallow epikarst springs in residential regions in other 

parts of the world (Cheng et al. 2005; Liu et al. 2007; Li et al. 2008a; Li et al. 2008b; 

Cuezva et al. 2011; Liu et al. 2010; Peyraube et al. 2012; Yang et al. 2012; Peyraube et 

al. 2014; Pu et al. 2014a; Pu et al. 2014b).  

The aforementioned conditions at LRS (Figure 6.9) could be considered baseline 

conditions for this particular site; however, during high precipitation events, the 

conditions shift. The CO2 spikes at the end of August, in October, December, and again 

in January, all coinciding with high precipitation, which may flush whatever soil CO2  
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Figure 6.9 DIC coefficient changes at LRCV-LRS. Note the muted responses in DIC 

components, resulting from a spike in values during the month of January.  

Source: Created by the author. 
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exists in the epikarst and transfer it to the groundwater, causing spikes in CO2 readings at 

the spring. A similar situation was observed at Maolon Spring in China, where rainfall 

served to dissolve soil CO2 and transfer it to the epikarst (Liu et al. 2007) during high 

precipitation events. Likewise, in a different study conducted by Liu et al. (2010), similar 

behaviors in epikarst springs in China were recorded, driven by piston push effects, 

which drained the soil of CO2 concentrations, transferring it to the epikarst, where it was 

reflected at the spring and correlated with lower values of pH. Groundwater CO2 

concentrations at LRWF are likely influenced from sources governed by an impermeable 

urban landscape as well, as suggested by minimal seasonal influences on overall CO2 

concentrations (Figure 6.10). Conversely, in areas where soil exists beneath these 

impermeable surfaces near LRWF, soil microbial activity may be contributing to total 

CO2 concentrations on an ongoing basis as opposed to seasonally. 

 

Saturation Index (SIc) 

Calculated values of SIc are proportional to pH values and are also a 

representation of the saturation of the water with respect to calcite (Hess and White 

19923; Drever 1997; Palmer 1991; Palmer 2007a; Yang et al. 2012). In saturated waters, 

the value is usually zero, while under-saturated water is expressed as a negative number, 

and supersaturated water is expressed as a positive number. Seasonally, during the 

summer months, as CO2 concentrations increase in groundwater, so does dissolution, and, 

thus, the saturation index should increase; however, because the concentration of CO2 is 

often so high, the aggressiveness of the water reduces more slowly, thus, the saturation 

index will remain below zero, especially if there is minimal water-rock interaction. If the 

source of CO2 is either terminated or reduced, then the remaining CO2 in the system will 
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have a chance to react, thus causing the saturation index to rise. This is often what is 

observed as the summer months transition into the winter, as described from studies in 

Algeria (Chemseddine et al. 2015) and China (Cheng et al. 2005; Li et al. 2007a; Li et al 

2007b; Liu et al. 2007; Yang et al. 2012; Knierim et al. 2015).  

At Crumps Cave WF1, the saturation index of calcite mirrors that of pH values, as 

a representation of the aggressiveness of water with respect to dissolution kinetics (Figure 

6.7); thus, during the summer months, SIc values follow seasonal variability interspersed 

with dilution effects from high precipitation events. The same under-saturated values in 

the summer months, as well as close-to-saturation values in the winter months, were also 

observed in studies elsewhere (Hess and White 1992; Liu et al. 2007; Yang et al. 2012). 

During those studies, storm events resulting in severe dilution effects were observed, and 

the saturation index decreased abruptly before recovering, as a result of high infiltration 

of precipitation in conjunction with excess dissolved CO2 (Vesper and White 2004; 

Cheng et al. 2005; Liu et al. 2007; Li et al. 2008a; Li et al. 2008b).  

The seasonal variability, in conjunction with dilution effects during storm events 

at Crumps Cave, is a product of both conduit flow and possible direct input from surface 

infiltration, in conjunction with increased CO2 during the summer and reduced CO2 

during the winter. During the winter transition, the saturation index breaches the zero 

mark for a short time, indicating that the water was supersaturated. This spike in values is 

due to the extended dry season extending water-rock interaction during minimal 

precipitation events, which reduced the number of system flushes and increased the 

residence time in the system. As the winter storm season set in, the saturation index 
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dropped below zero as storage water became diluted, system flush frequencies increased, 

and water-rock interaction decreased, lowering the SIc values. 

At Crumps Cave SF, the saturation index mirrors that of the saturation index at 

WF1; however, values do not show as much seasonal trending nor as much storm event 

influence (Figure 6.8). These differences could be a result of the lower resolution at SF. 

Although minimal variability is observed during the summer months, significant 

variability is observed in the winter months. This variability could be driven by dilution, 

(low SIc concentrated, infiltrating precipitation, which serves to reduce storage water 

concentrations), from storm events causing initial reductions in SIc concentrations. Once 

this freshly diluted water exists the system, higher concentrated water with respect to SIc 

is reflected in the data (Yang et al. 2012). Likewise, as saturation index values move 

closer to zero during the winter months after storm events, dilution effects on epikarst 

water can become more apparent, and thus, appear to have a greater impact on values. 

At the LRCV-LRS, the saturation index fluctuates between under-saturated and 

supersaturated throughout the course of the study, with the majority of the nine months 

spent in a saturated or supersaturated state (Figure 6.9). During the storm event in 

December 2016, seasonal variability is also masked; however, overall index values show 

the water is consistently oversaturated. This response could be a result of extended 

residence times allowing for prolonged water-rock interaction. Exact CO2 concentration 

fluctuations are difficult to ascertain, but the observable responses and trends seem to 

support the suggestion that supersaturation is a result of the utilization of available CO2 in 

the system and, thus, explains the high values of pH in conjunction with the high values 

of SIc. Similar behaviors were observed at Nongla Spring in China, where the water was  
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Figure 6.10 DIC coefficient changes at LRCV-LRWF. Note the muted responses in DIC 

components, resulting from a spike in values during the month of January, possibly a 

result of multiple storm events generating a high volume of discharge and associated DIC 

responses. Conversely, saturation indices seem to display seasonal trends.  

Source: Created by the author.  
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consistently saturated or supersaturated, while CO2 concentrations were consistently low. 

The authors suggested this relationship was a result of the soil CO2 effect, where CO2 

concentrations are reduced, due to a lag time in surface and soil temperature equilibrium 

(Liu et al. 2007; Yang et al. 2012). Likewise, an examination into the behaviors of an 

aquifer in Algeria suggested that calcite precipitation is a result of increased soil CO2 

derived from open system conditions (Chemseddine et al. 2015). 

At the LRCV-LRWF, values are the inverse of typical karst water behavior seen 

at Crumps, suggesting that minimal dissolved CO2 exists in the system. This is most 

likely due to available CO2 concentrations being used during dissolution until the water 

was supersaturated (Figure 6.10). At the winter transition, pH values begin to decrease, 

possibly in conjunction with a surge of CO2 carried into the epikarst during the winter 

storms, allowing for dissolution and, thus, driving the saturation index below zero. The 

process could be a result of two consecutive influences: 1) the dilution effect of excess 

precipitation infiltrating the system, carrying with it soil derived CO2; and 2) that same 

excess CO2 in the system reduced the pH and drove further dissolution, thereby causing 

the saturation of the water to eventually increase as dissolution continues to saturate the 

water with calcite and CO2 is used in the reaction.  

Palmer (2007a) suggested that this process is ongoing, as dissolution kinetics are 

a cyclical process that do not proceed to completion, due to open system conditions 

providing a continuous supply of CO2. On the other hand, even if a finite supply of CO2 

existed, dissolution kinetics will reduce or slow depending on the saturation level of the 

water, which can only contain a certain concentration of calcite. Should levels of 

saturation reach supersaturated, dissolution will temporarily cease until more water or 
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CO2 is added to the system, serving to dilute concentrations and allow dissolved CO2 to 

react with the surrounding bedrock again (Palmer 2007a). Pu et al. (2014a) suggested a 

similar explanation for processes observed in a karst aquifer in China. In that study, 

dissolved CO2 in precipitation caused the saturation index to fluctuate between 

supersaturated before the precipitation, to under-saturated after the precipitation as an 

influx of fresh water containing highly concentrated CO2 provided for an increase in 

dissolution kinetics. Li et al. (2008a) further supported these observations in a different 

study, where a severe decrease in pH resulted from infiltrating excess CO2. That 

investigation suggested precipitation not only contained excess dissolved CO2 from 

microbial activity, but from atmospheric CO2 as well. Since microbial activity is 

temperature dependent, and the winter months at both Crumps Cave and LRCV had odd 

temperature fluctuations, a significant increase in microbial activity could have 

contributed to the severe decrease in pH, thus showing a similar decline in SIc as well 

(Telmer and Veizer 1999; Peyraube et al. 2014; Milanolo and Gabrovšek 2015; Zhang et 

al. 2015; Zhao et al. 2015).  

 

Dissolved Inorganic Carbon (DIC)  

 Dissolved inorganic carbon is expressed as a concentration, assigned to natural 

waters, either surface or subsurface, and designed to identify the reaction constituents 

and/or products within a given system (either CO2 or dissolved CaCO3, respectively) 

(White 1988; Clark and Fritz 1997; Drever 1997; Palmer 2007a). Several studies have 

explored the concentrations of DIC in surface and karst spring water (Emblanch et al. 

2003; Liu et al. 2010; Shin et al. 2011; Charlier et al. 2012; Faimon et al. 2012a; Faimon 

et al. 2012b; Yang et al. 2012; Knierim et al. 2013; Osterhoudt 2014; McClanahan 2016; 
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Salley 2016; Zhang et al. 2016) to determine the seasonal and storm event fluctuations. 

Their results are mixed, with some karst landscapes showing the possibility of serving as 

a carbon sink, while other studies show no real link to excess atmospheric CO2 and karst 

landscape absorption (Liu et al. 2010). Since DIC is an important reaction product in 

karst dissolution processes and, thus, karst landscape development, understanding the 

relationship of DIC with seasonal and storm event variability, as well as the fluctuation of 

carbon in relation to discharge, can aid in understanding the extent of dissolution at 

Crumps Cave and LRCV. 

 At Crumps Cave WF1, DIC concentrations show distinct seasonal variability 

(Figure 6.7). Generally, values increase during the summer months and decrease during 

the winter months to coincide with dissolution reactions, with the overall trend mirroring 

that of CO2 concentrations. This suggests that DIC values are heavily influenced by CO2 

concentrations in groundwater (Emblanch et al. 2003; Shin et al. 2011; White 2013; 

Knierim et al. 2015; Zhang et al. 2016) and can exhibit both seasonal and diel cycle 

variability, as discovered by Gammons et al. (2011) and de Montety et al. (2011).  Here, 

accelerated photosynthetic uptake served to deplete CO2-DIC concentrations during the 

day, while an increase in CO2-DIC concentrations occurred during the night from plant 

respiration, indicating a reduction in 12C uptake. DIC concentrations at Crumps Cave 

show responses to high precipitation events as well, with severe depletion as a result of 

possible dilution effects. High-resolution DIC fluctuations were calculated against total 

discharge and reflect variability both seasonally and volumetrically, due to high 

precipitation events. The volume of DIC discharged from the system over the course of 
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the study period is presented in Table 6.1, along with the respective range of discharged 

DIC during that time.  

 At Crumps Cave SF, seasonal variability in DIC concentrations is visible, with 

highs in the summer and lows in the winter; however, due to weekly resolution, 

influences from precipitation events are not as clearly defined (Figure 6.8). Overall, 

concentrations of DIC are higher at SF than at WF1, and mirror higher concentrations of 

CO2 observed at SF. The difference in concentrations could be a result of a difference in 

resolution, as SF weekly resolution did not capture subtle changes to the system, 

especially during high precipitation events, which can directly influence DIC 

concentrations (Liu et al. 2010; Yang et al. 2012).   

 DIC concentrations at LRCV-LRS show minimal seasonal variability, possibly a 

result of overall low concentrations of CO2 (Figure 6.9); however, numerous high 

precipitation events flushed the system of concentrated SIc, but added increased 

concentrations of CO2 and DIC. Similar peaks indicating piston effects were observed 

during the onset of a storm event in China by Pu et al. (2014a; 2014b). They attributed 

the increase in the values to highly concentrated storage water flushing from the system, 

which had accumulated during a prior dry season. A similar pattern of precipitation and 

epikarst responses is at work at the LRS (Li et al. 2008b; Li et al. 2010).  

Overall DIC concentrations at LRCV-LRWF are also fairly masked in Figure 6.10 

by a spike in concentration during two separate events associated with both a reduction in 

pH and SIc, as well as an increase in CO2. This spike in concentrations, as noted by the 

maximum value of 13,502 mg/L in Table 5.1 and illustrated in Figure 6.10, is due to an 

intense flush of CO2 through the epikarst, caused by the aforementioned dual, high-
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volume precipitation events. Although seasonal variability is relatively absent from the 

data, concentrations of DIC show steep increases, due to increases in precipitation events 

causing a surge of fresh water to flush storage water with highly concentrated DIC 

through the system, before being replaced by water lower in DIC concentrations (Li et al. 

2008b; Li et al. 2010). SpC and pH values show decreases during these precipitation 

events, while CO2 concentrations show increases, suggesting that dissolution may have 

occurred prior to the storm, leading to an increase in DIC as illustrated in Figure 6.10.  

 

6.1.2 Storm Event Hydrogeochemical Variability at WF1 and LRS 

Data for two separate storm events (August and November, 2016), are presented 

in Figures 6.11 to 6.15, and illustrate changes in surface parameters associated with 

geochemical responses. Data for Crumps Cave WF1 and LRCV-LRS are presented, as 

they both contain high-resolution data in all respects, as well as a presumed accurate 

geochemical depiction of their respective karst landscapes. Both events span a  

period of three days, and the data presented are intended to characterize baseflow to 

baseflow conditions, the changes within that timeframe, and highlight the importance of 

geochemical relationships to surface influences in the epikarst. 

 

STE 1: August 20-August 23, 2016 (JD233-236)  

The first event chosen for deeper scrutiny occurred on August 20, 2016, and 

lasted until August 23, 2016. Precipitation rates at Crumps Cave were slightly less than 

precipitation rates at the LRCV, due to the fact that precipitation at the LRCV occurred in 

two parts, as opposed to a single rainfall event recorded at Crumps Cave during the study 

(Figures 6.11 and 6.12).  
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The surface temperature at Crumps Cave WF1 (Figure 6.11) showed distinct 

diurnal fluctuations over the course of the storm event, with a ~5 ºC temperature decrease 

immediately following the onset of the rainfall (Liu et al. 2007). A short lag time 

occurred between the onset of the precipitation event and a sudden increase in water 

temperature, suggesting that conduit flow dominates at WF1, facilitating the transference 

of warm precipitation to the epikarst (Vanderhoff 2011; Groves et al. 2013). 

Additionally, while surface temperature exhibited distinct diurnal fluctuations, water 

temperature did not, suggesting that, during this particular storm, precipitation seems to 

drive hydrogeochemical responses more so than surface temperature.  

Water temperature gradually decreased over the course of the storm event, further 

suggesting there is a lag time for warmer, infiltrating precipitation to reach equilibrium 

with cooler, epikarst storage water. The SpC (Figure 6.11) also demonstrates a short lag 

time between infiltrating precipitation and response in the epikarst, with a strong dilution 

effect caused by the infiltrating precipitation, further supporting both direct conduit flow 

and a piston effect, where storage water is sufficiently discharged from the system and 

replaced with new precipitation (Li et al. 2008a; Li et al. 2008b). The pH values (Figure 

6.11) respond minimally to precipitation moving through the system, suggesting that 

infiltrating precipitation and karst water pH values were at or near equilibrium at the 

onset of the storm, and, thus, minimally affected. Further, CO2 values decrease quite 

steeply, shortly after the onset of precipitation, suggesting that fresh, infiltrating water 

served to flush concentrated water from the system, before replacing it with diluted water 

(Pu et al. 2014a; Pu et al. 2014b). 
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Figure 6.11 Crumps Cave-WF1 Storm Event JD233-236. Note the near immediate 

response to both discharge and geochemical values, suggesting direct conduit flow occurs 

from surface to discharge point.  

Source: Created by the author. 
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 Discharge at WF1 increased shortly after the onset of precipitation. This increase 

in discharge is due to the well-developed epikarst facilitating transference of water from 

the surface to the waterfall (Groves et al. 2005; Vanderhoff 2011; Groves et al. 2015). 

Short lag times (~25-45 minutes) are observed between the onset of the precipitation, the 

hydrogeochemical responses, and the return to normalized conditions, which suggest that 

surface influences have a direct impact on epikarst process. These same behaviors were 

observed at Crumps Cave in a previous study on contaminant transport through the 

epikarst (Vanderhoff 2011). In that investigation, the author suggested conduit-dominated 

flow as the primary facilitator of surface water transference to the aquifer and, thus, near 

immediate responses in recorded hydrogeochemical parameters (Cheng et al. 2005; Liu et 

al. 2007; Li et al. 2008a; Li et al. 2008b; Liu et al. 2010; Yang et al. 2012; Pu et al. 

2014a; Pu et al. 2014b; Yang et al. 2012; Gulley et al. 2015). 

 At the LRS (Figure 6.12), precipitation occurred in two phases, with the first 

event of short duration but high intensity, while the second phase included longer 

duration rainfall with larger volume and intensity. This had minimal impact on surface 

temperatures, which displayed diurnal responses following a small decrease after the 

onset of the second phase of precipitation. As with responses at WF1, diurnal fluctuations 

are not present in the water temperature, which exhibits distinct responses to infiltrating 

precipitation, suggesting that, at both sites during intense storm events, surface 

temperature has minimal impact on hydrogeochemical changes. Geochemical responses 

to the first phase of precipitation are less pronounced than responses to the second phase 

of precipitation, indicating a longer lag time between the onset of precipitation and the 

responses in hydrogeochemical changes (Figure 6.12). 
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Figure 6.12 LRCV-LRS Storm Event JD233-236. Note the slightly delayed response to 

both discharge and geochemical values, suggesting a lag time exists from surface to 

discharge point.  

Source: Created by the author. 
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 All parameters respond to the second phase of precipitation, and to rather large 

degrees, indicating subsequent timing of both precipitation events prevent sufficient 

recovery period between them, compounding the responses following the second 

precipitation phase. Water temperature increased slightly, followed by a gradual 

decrease, which eventually reduced water temperature levels to several degrees cooler 

than pre-storm levels (Cheng et al. 2005; Liu et al. 2007; Li et al. 2008a; Li et al. 2008b; 

Liu et al. 2010; Yang et al. 2012; Pu et al. 2014a; Yang et al. 2012; Gulley et al. 2015). 

SpC responded in two phases, potentially due to the two-phase precipitation, which 

indicates that a lag time exists from the onset of precipitation to the point at which the 

logger registers the infiltration of the fresh, less ion-rich water (Figure 6.12). The pH 

values also decrease quite severely from infiltrating precipitation containing high 

concentrations of dissolved CO2 (Figure 6.12) (Cheng et al. 2005; Liu et al. 2010; Yang 

et al. 2012; Pu et al. 2014b). The pH values never fully recover, possibly due to a 

substantial influx of CO2. CO2 concentrations increase significantly shortly following the 

onset of precipitation, suggesting that either storage water with high concentrations of 

CO2 was flushed from the system, or that precipitation infiltrating the system contained 

large concentrations of dissolved CO2, from the topsoil (Liu et al. 2007; Liu et al. 2010; 

Pu et al. 2014b). Discharge volumes demonstrated distinct lag times between the onset of 

precipitation and the peak of discharge by about 12 hours, indicating that certain 

thresholds of water volumes within the epikarst must be met before significant discharge 

is registered at the spring (Figure 6.12). From the study period geochemical data, 

specifically the calcium, magnesium, bicarbonate, CO2, and SIc data (Table 5.1), it would 

appear that extensive storage is occurring at the LRS, while sufficient storage is occurring 
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even during drought conditions, at Crumps Cave to facilitate ongoing discharge at all 

sites. At Crumps Cave, that storage is potentially governed by the presence of the chert 

layer acting as a leaky perched aquifer. This perched aquifer is recharged during high 

precipitation events, which also flushes increased concentrations of soil-derived CO2 

through the system during the growing season, thus increasing the propensity for 

dissolution from highly aggressive water, despite the fast transference. Similar behavior 

was observed in storm event monitoring by Vesper and White (2004) during an 

investigation into a Tennessee cave system. Likewise, large volumes of high rainfall 

intensity over very short periods of time are required to flush the system at both locations.  

At the LRCV, precipitation may not transfer to the epikarst as quickly, due to 

impermeable surface layers derived from urbanization, combined with a general lack of 

topsoil facilitating downward diffusion. In fact, flooding problems are a large concern for 

Bowling Green residents, where the landscape has been modified to an extent that most 

water is directed into the aquifer through injection wells instead of through the epikarst 

(Crawford 1984a; Crawford 1984b; Crawford 1989; Crawford 2003; Crawford 2005; 

Brewer and Crawford 2005; Cesin and Crawford 2005). Thus, precipitation diffusion into 

the epikarst at the LRCV is more heterogeneous, and is influenced by a combination of 

reduced soil extent and increased surrounding impermeable surfaces. As a consequence, 

CO2 diffuses to the epikarst at a slower rate, allowing for study period concentrations of 

soil CO2 to remain higher, relative to those concentrations observed at Crumps Cave, 

where a more natural, less-anthropogenically influenced setting exists.  
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STE 2: November 28-December 1, 2016 (JD 333-336) 

 The second storm event occurred at the onset of the winter season, after a several-

months-long drought with very minimal rainfall in the region. Precipitation for this event  

occurred in two distinctly separate phases, roughly a day and a half apart, at both Crumps 

Cave and the LRCV. Surface temperatures at Crumps Cave indicate less diurnal 

variability and increased responses to surface changes as a consequence of the storm 

(Figure 6.13).  

 Slightly higher temperatures resulted from the first rain event, suggesting that 

precipitation was warmer than surrounding air and, thus, took a short time to equilibrate. 

Water temperature also increased due to infiltrating precipitation, with a short lag time 

between the onset of each precipitation phase (Figure 6.13). This behavior is indicative of 

high volume precipitation driving hydrogeochemical changes during storm events, while 

surface temperature variability drives seasonal hydrogeochemical responses.  

SpC values decrease in response to the onset of the first rain phase, suggesting 

that large volumes of precipitation flushed the system and that any storage water 

accumulated during the drought was minimal, as evident by the lack of an increase in 

SpC preceding the dilution effect. SpC values gradually increase following the first 

precipitation phase, suggesting that values began to return to pre-storm levels, before 

decreasing in response to the second phase of precipitation; however, this time the 

decrease is not as significant, possibly due to the fact that the SpC did not reached pre-

storm concentrations before the onset of the precipitation (Figure 6.13) (Li et al. 2008a). 
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Figure 6.13 Crumps Cave-WF1 Storm Event JD333-336. Note the increase in CO2 and 

decrease in pH, opposite of the responses during the summer storm.  

Source: Created by the author. 
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The pH values gradually decrease at the onset of the first precipitation phase, and 

continue to decrease throughout the course of the storm event, suggesting that high  

precipitation contained excess dissolved CO2 from the topsoil. During the August storm, 

excess antecedent moisture and degassing may have served to reduce the available CO2 

in the soil; however, due to drought conditions, CO2 buildup in the soil may have 

occurred prior to this storm, providing an ample supply to diffuse to the epikarst as a 

dissolved constituent within the precipitation (Figure 6.13) (Pu et al. 2014a; Pu et al. 

2014b). Likewise, CO2 concentrations increased significantly over the course of the storm 

event, with the shift occurring around the onset of the first precipitation phase, and 

continuing to increase as the storm progressed. This suggests that, while conduit flow 

likely dominates at Crumps Cave, a high concentration of CO2 from the topsoil was still 

present, which was then transported by the infiltrating precipitation (Figure 6.13). 

Discharge peaked twice, with very short lag times between the onset of precipitation and 

peak volume. The first precipitation phase resulted in significant increase in discharge, 

which gradually decreased following the end of the first precipitation phase. Discharge 

eventually returned to baseflow before the onset of the second precipitation phase, 

indicating that water transference at Crumps Cave is conduit dominated, as evidenced by 

the near immediate response to increased precipitation flushing the system (Figure 6.13). 

 At the LRCV-LRS (Figure 6.14) precipitation occurred in two separate phases, 

with the first phase delivering increased precipitation rates versus the second phase. 

Surface temperature increased as a result of the onset of the first precipitation event, with 

a significant increase in between rain phases. Shortly following the end of the second 

precipitation phase, surface temperature began to reduce, indicating that warmer air in 
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conjunction with the storm may have equilibrated with pre-storm colder air (Figure 6.14). 

SpC response occurred shortly, following a lag time from the onset of the first 

precipitation phase. Significant decreases in SpC values at that time indicate that 

infiltrating water flushed higher concentrated water from the system, followed by a  

gradual increase to above pre-storm values, which eventually stabilized around 350 

µs/cm until registering the second precipitation phase, where another reduction in SpC 

occurred, although not as significant (Figure 6.14) (Yang et al. 2012).  

The pH gradually decreased over the course of the storm event, but did not show 

any significant responses to precipitation, suggesting that infiltrating water potentially 

contained lower concentrations of CO2, as evident by the mirrored response to pH by 

CO2 concentrations over the course the storm. The gradual decrease in pH and the 

gradual increase in CO2, except for a brief instance immediately, following the start of the 

November 29 (JD334), when a slight decrease in both pH and CO2 occur in response to 

the onset of the first precipitation phase. Discharge responded quickly to the first 

precipitation event, with the peak of discharge occurring shortly after the peak rainfall; 

however, discharge did not respond to the second precipitation phase, possibly due to the 

fact that the majority of stored water was flushed from the system in the first rain phase, 

forcing the epikarst to recharge its volumetric water supply (Yang et al. 2012). 

 Discharge volumes also remained slightly above baseflow for the duration of the 

storm indicating that large volumes of water from both storage and precipitation were 

moving through the system, which further suggests that the threshold required for 

significant discharge response was exceeded. 
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Figure 6.14 LRCV-LRS Storm Event JD333-336. Note the slightly delayed response to 

geochemical values, suggesting certain volumetric capacity needs to be reached before 

the spring responds due to drought conditions. 

Source: Created by the author. 
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             6.1.3 Influences on Epikarst δ13CDIC  

 The evolution of δ13CDIC in karst systems is influenced by external and internal 

processes, including vegetation and soil respiration and bedrock dissolution, as discussed 

and illustrated by Clark and Fritz (1997). Of these primary terrestrial sources, vegetation 

and soil respiration seem to contribute the most (Li et al. 2010), especially on seasonal 

scales. The data from this study suggest that seasonal influences from soil CO2 contribute 

to dissolution processes at Crumps Cave, especially during the growing season, while soil 

CO2 influences karst processes year-round at the LRCV. The primary difference between 

the study sites, agricultural verses urban land use, provides a unique opportunity to 

understand the sourcing and transport of δ13CDIC on a regional scale. 

The δ13CDIC values at all four sites (Figures 5.1 and 5.2) indicate that seasonal 

influences are having a great effect on the enrichment and depletion of δ13CDIC over the  

entirety of the study period; however, that enrichment and depletion seem to be occurring 

irrespective of precipitation, which in other studies is suggested to be a negligible 

influence (Telmer and Veizer 1999; Lambert and Aharon 2010).  

At Crumps Cave (WF1 and SF), seasonal variability is apparent, with values 

showing greater depletion during the summer and greater enrichment during the 

wintertime. Similar findings of δ13CDIC seasonal variability were found in other studies  

(Telmer and Veizer 1999; Li et al. 2008a; Li et al. 2008b; Lambert and Aharon 2010; Li 

et al. 2010; Zhao et al. 2015; Knierim et al. 2015; McClanahan et al. 2016), where it 

appears that soil CO2 and vegetation cover contributed the most to δ13CDIC depletion, 

especially due to fractionation effects within the topsoil from microbial activity being 

more active during the summer months than during the winter. Over the course of the fall 
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months, δ13CDIC values enrich, with substantial enrichment occurring near the fall to 

winter transition, and continuing until the end of the study. This increasing enrichment, 

especially near the end of the study period and at the onset of the spring transition, 

suggests that a certain lag time exists between vegetation root respiration and subsequent 

microbial activity, depletion of δ13CDIC values, and registry of that depleted signal by 

epikarst water (Li et al. 2010).  

At the LRCV (LRS and LRWF), seasonal influences are slightly less apparent 

than at Crumps Cave. While depletion of δ13CDIC values during the summer months 

seems to trend similarly to the isotopic signatures at Crumps Cave, they diverge greatly at 

the onset of the winter transition. The δ13CDIC values remain in a depleted state, which 

could be a result of an urban environment masking the signal response (Li et al. 2010).  

A substantial enrichment occurred at three of the four sites in the month of 

September (JD 225) following a series of high precipitation events. Crumps Cave-WF1 

and LRCV-LRWF showed higher enrichment compared to LRCV-LRS, while Crumps 

Cave-SF showed the least enrichment. Knierim et al. (2015) suggested that, based on 

similar findings in an investigation of Jack’s Cave in Arkansas, the magnitude of 

different source inputs changes seasonally. For example, surface temperature is a proxy 

for soil respiration (Clark and Fritz 1997; Knierim et al. 2015), and at lower temperatures 

soil respiration rates are lower. For temperatures at or higher than 10 ºC, more microbial 

activity is likely to occur, thus producing increased concentrations of soil CO2. Likewise, 

more microbial activity is also responsible for the ongoing fractionation of 13C relative to 

12C, causing increasingly depleted values of 13C (Clark and Fritz 1997; Knierim et al. 
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2015). The enrichment occurring at three of the four sites could be a result of a reduction 

in fractionation effects derived from a reduction in plant root respiration.  

 

Soil Respiration  

 Soil CO2 concentrations are a function of soil respiration, microbial activity, and 

mineral weathering, and concentrations are partly contingent on soil thickness – thicker 

soils equal increased concentrations of CO2 (Zhao et al. 2015). Thus, mineral weathering 

is a product of soil CO2 concentrations after diffusion to the bedrock layer via infiltrating 

precipitation and the presence of sufficient antecedent moisture, facilitates dissolution 

(Pu et al. 2014a; Pu et al. 2014b; Knierim et al. 2015). Natural vegetation in temperate 

and mid-latitude climate zones often operates using the C3 pathway, while certain 

agricultural crops, such as corn and sugarcane, utilize the C4 pathway (Clark and Fritz 

1997). As vegetation dies, microbial activity breaks down the decayed matter and 

generates CO2; thus soil CO2 is higher in concentrations than the atmosphere on average 

(Clark and Fritz 1997; Pu et al. 2014a; Pu et al. 2014b; Zhao et al. 2015).  

 

Bedrock Dissolution  

 Carbonate rocks are generally derived from marine sediments and have a δ13C 

value close to zero (Clark and Fritz 1997). Carbonate dissolution processes are heavily 

dependent on the amount of CO2 available to react with the bedrock via carbonic acid, 

which should yield a δ13CDIC value of –11.5‰ (Pu et al. 2014a; Pu et al. 2014b). 

According to Clark and Fritz (1997), if completely open conditions exist, the δ13C value 

will be controlled by the soil CO2, due to an ongoing replenishment interacting with the 

bedrock. On the other hand, if the system is closed, then a finite supply of CO2 is 
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available, and eventually the δ13C will be diluted with DIC purely from carbonate 

dissolution. Understanding the relationship values between pCO2, DIC, and δ13C can 

provide insight into the conditions of the system, be it open or closed, or a combination of 

both. Further, in open conditions, regardless of the type of vegetation (C3 or C4), final 

groundwater values of δ13CDIC will be enriched by about 7‰ from the original soil CO2. 

This enrichment is primarily due to the fact that CO2 and DIC have reached equilibrium 

at increasing values of pH. In closed systems, similar enrichments occur; however, those 

enrichments reflect a direct, linear one-to-one relationship between δ13CDIC and CO2 

dissolved during recharge (Cerling 1984; Fritz et al. 1989; Cerling et al. 1991; Clark and 

Fritz 1997; Cane and Clark 1999).  

 

δ13CDIC Sourcing at Crumps Cave (WF1 and SF) 

Results from carbon source identification using mixing model software with 

inputs from the atmosphere, soil water, and carbonate bedrock were compared to identify 

specific CO2 sources seasonally. At Crumps Cave WF1 and SF (Figure 5.3 and 5.4), 

carbon isotopic sourcing indicates soil CO2 dominates during the summer months, 

shifting to atmospheric CO2 dominating during the winter months. As vegetation cover 

reduces and microbial activity turns dormant during the winter months, the majority of 

CO2 in the system is derived from the atmosphere, simply due to the reduction in soil 

derived CO2 signals.  

The trends and seasonal shift of carbon sourcing align with isotopic trends of 

δ13C, as illustrated in Figure 5.1. Seasonal shifts from soil CO2 to atmospheric CO2 

coincides with the completion of the growing season, indicating that supplies of soil CO2 

have significantly reduced, no longer contributing as greatly to epikarst waters (Knierim 
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et al. 2015) (Figures 5.3 and 5.4). Likewise, carbonate weathering sources during the 

summer months were relatively low, suggesting that, while dissolution is occurring, an 

increased soil CO2 signal is masking all other signals (Bakalowicz 2004; Klimchouk 

2004) (Figures 5.3 And 5.4). However, atmospheric and carbonate bedrock weathering 

sources increased during the winter months, while the soil CO2 signal was much weaker. 

Atmospheric CO2 dominance versus carbonate weathering is a result of the overall 

minimal residence times and less available CO2 to react with the bedrock (Figures 5.3 

and 5.4; Figure 6.1).  

In a study conducted by Li et al. (2010), seasonally fluctuating soil CO2 suggested 

similar drivers are at work in karst landscapes in China. The authors found that this 

increase in soil CO2 drives carbonate weathering and increases dissolution, and that the 

shift in soil CO2 resulting from vegetation and microbial activity is responsible for the 

evident seasonal pattern associated with carbonate sourcing. Likewise, Zhao et al. (2015) 

found that an investigation into three catchment basins with varying soil thickness and 

land uses rendered similar seasonal shifting in carbon sources. In that investigation, the 

catchment used primarily for agricultural purposes and contained relatively thick soils; 

however, bedrock dissolution was reduced, due to the fact that the groundwater flow path 

was short and well developed, facilitating fairly easy transference to the aquifer with 

minimal water-rock interaction. In both of those investigations, the reduction of soil CO2 

contributions during the wintertime allowed for atmospheric and carbonate dissolution 

signals to become more pronounced over time.  

Similarly, an investigation into speleothem growth by Lambert and Aharon 

(2010) suggested that, in karst landscapes with relatively quick water transport through 
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the epikarst, chemical equilibrium with 13C-depleted soil CO2 may retain a higher 

atmospheric CO2 signal. This phenomenon would explain why atmospheric CO2 

dominates during the wintertime, when depleted soil CO2 signals exist, due to the 

reduction in vegetation cover and microbial activity combined with winter storms 

facilitating the movement of water through the epikarst.  

 

δ13CDIC Sourcing at LRCV (LRS and LRWF) 

Carbon sourcing at LRS and LRWF (Figures 5.5 and 5.6) is dominated by soil 

CO2 throughout the majority of the study period. Atmospheric contributions at both sites 

are heavily masked by the strong soil CO2 signal, while the bedrock weathering signal 

shows the least contributions over the course of the study period. Although residence 

times at LRS and LRWF are significantly higher throughout the study period, allowing 

for more soil CO2 equilibrium and water-rock interaction, certain high precipitation 

events serve to flush the system with fresh meteoric water, mixing end members and 

disrupting the signal (Lambert and Aharon 2010).  

The masking of all other source signals could result from the fact that the LRCV 

is located within Bowling Green, KY, a large urban environment (Figures 5.5 and 5.6). 

Seasonal contributions from agricultural practices are relatively absent, which can 

influence soil CO2 signals during the summer months. Cuezva et al. (2011) found, 

through an investigation of both wet and dry periods, that soil moisture has a direct effect 

on CO2 exchange between the atmosphere and the epikarst (Figure 6.20). They 

discovered that increased moisture in the soil facilitates transference of CO2 into the 

epikarst while preventing degassing to the atmosphere. Further, a lack of moisture during 

the dry period actually allows for more atmospheric exchange of CO2 with the epikarst. 
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This is most likely the case during the dry season and in between rain events over the 

winter months at Crumps Cave, where soil moisture is reduced or nearly absent, allowing 

for facilitation of CO2 transference to the atmosphere and a greater atmospheric CO2 

sourcing signal; however, despite similar seasonal soil conditions at the LRCV, this 

atmospheric exchange may not be occurring, due to the presence of an impermeable 

surface layer above the soil layer trapping CO2 in the soil throughout the study period.  

This impermeable surface trapping of CO2 in the soil could also be responsible for 

the dominant soil CO2 sourcing signal rendered in the IsoSource analysis. Likewise, Zhao 

et al. (2015) discovered that agricultural land use practices continue to enhance signals 

during the summer months and degrade signals during the winter months. Without this 

contribution at LRCV, soil CO2 signal attenuation is less skewed. Lastly, due to the dual 

porosity nature of the LRCV (Charlier et al. 2012), combined with more direct runoff 

injection to the aquifer and less precipitation based soil CO2 transference to the epikarst, 

CO2 signals experience a lag time in registry at the spring, as suggested by the overall 

higher soil CO2 signal throughout the course of the study period at both sites.  

Bedrock dissolution and atmospheric signals make up relatively small percentages 

at both sites over the course of the study period and especially during the summer. At 

LRWF (Figure 5.6) atmospheric contributions increase to over 40% at the onset of the 

winter season for roughly the months of November and December, before decreasing 

again in the month of February and March (Figures 5.5 and 5.6). The variability of 

surface temperatures during the month of January, combined with a relatively warm 

winter season, could result in a reactivation of soil microbial activity, despite an absence 

of vegetation growth.  
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The increase in soil CO2 values in the month of February and March could be a 

reflection of lag time between the generation of soil CO2 and its transference to the 

spring, further supporting a slow diffusion through the epikarst. Precipitation appears as a 

negligible influence on the transport of CO2, especially through the soil zone, similar to 

studies that suggest precipitation can serve to generate disequilibrium between end 

members (Lambert and Aharon 2010). Additionally, Knierim et al. (2015) found that 

during the transition between dry and wet seasons, disequilibrium is greatest between 

CO2 and DIC. The possibility of most precipitation being channeled through injection 

wells in Bowling Green means it would bypass the soil zone; thus, soil CO2 

concentrations would remain high even during the wintertime (Figures 5.5 and 5.6). 

 

             6.1.4 Conduit Dissolution and DIC Flux 

 Dissolution rates and individual conduit wall retreats were calculated (Eq. 4.1 and 

4.2) to better determine the extent of epikarst development that may be occurring at all 

four sites (Table 6.1). Likewise, mass DIC fluctuation over the study period was 

calculated (Eq. 4.3) for WF1 and LRS utilizing high-resolution discharge (Table 6.1; 

Figure 6.15). Wall retreats were calculated for each site to provide a general idea of the 

extent of conduit growth; however, the results are limited by the fact that the Palmer 

equation yields values referenced to a single conduit, not the extent of conduit 

development throughout the entire epikarst. Since identifying specific conduits that may 

or may not be growing is impossible without further geophysical investigations, 

dissolution rates, which are expressed as a volume of material removed during a specific 

time period, are more representative of the extent of epikarst development occurring at 

each site during the study period. 
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Wall retreats at Crumps Cave (WF1 and SF) indicate that conduit growth rate is 

greater at WF1, at 1,224.17 cm over the study period, and lower at SF at 1.36 cm over the 

study period. Total dissolution, or volume of calcite material removed over the study 

period, is higher at WF1 as well, with a total calculated volume of 0.18 kg/m3 over the 

study period, while much lower at SF, at 0.000396 kg/m3 of total calculated volume over 

the study period.  

At the LRCV (LRS and LRWF), wall retreat values are significantly different 

from one another, and considerably higher than at Crumps Cave, on average 841 cm over 

the study period at LRS and 105,205 cm over the study period at the LRWF. Higher 

saturation indexes at LRS and LRWF suggest that more precipitation is occurring than 

dissolution, as evident by the presence of a flowstone and rimstone dam near LRWF, and 

indicated by a negative value for the total calculated dissolution over the study period at 

both sites. Conversely, since maximum calculated values of dissolution yielded positive 

numbers, 0.00121 kg/m3 at LRS and 0.00274 kg/m3 at LRWF, respectively, at least some 

dissolution of calcite is occurring at both sites. On the other hand, Covington et al. 

(2015), found that dissolution rates are, at best, a rough estimate of conduit evolution, 

primarily due to the suggestion that mechanical weathering has a greater impact on 

material removal than chemical weathering. In that study, the PWP equation was applied 

to over 59 surface stream study sites, where more variability from surface process were 

observed, as opposed to dominant chemical weathering processes in the epikarst, which 

can be partially buffered from surface influences by depth. Covington et al. (2015) 

explained that low value variability of calcite dissolution can derive from several 

influences, with low CO2 concentrations governing increased pH values as the primary 
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influence. Since dissolved CO2 concentrations have the strongest control on dissolution 

rates, dissolution rates at each of the four study sites should increase during the growing 

season and decrease during the dormant season. 

Figure 6.15 Time Series DIC Fluctuations at WF1 and LRS. Note that peak DIC 

fluctuations at Crumps Cave seem higher relative to LRS, while a pronounced lag time at 

LRS occurs before responses are observed, suggesting storage thresholds need to be met 

before increases in DIC are recorded in conjunction with increased discharges.  

Source: Created by the author. 

 

 

Hydrogeochemical data indicate the processes at WF1 and SF are both driven by 

soil CO2 transferred to the epikarst via seasonal and storm event processes, so the 

possibility for the difference in values could be attributed to a difference in resolution. 
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WF1 values were calculated from 10-minute resolution data; therefore, they are assumed 

to be a more accurate representation of the actual dissolution and wall retreat values at 

Crumps Cave. The difference in calculated values at LRS and LRWF could possibly be 

attributed to the thickness of the epikarst with respect to the emergence of water at the 

spring. Although the epikarst thickness at the LRCV is relatively shallow compared to 

Crumps Cave, LRS emerges from the bedrock at less than five meters from the surface, 

whereas water emerging from the bedrock at the LRWF is more than10 meters from the 

surface, suggesting a longer flow path from the surface to the spring and, thus, increased 

potential for water-rock interaction and drainage basin size. Likewise, with increased 

residence times and higher SIc values at LRWF, the presence of a flowstone and rimstone 

dam at the mouth of the waterfall further supports that at least some net bedrock removal 

is occurring in the epikarst zone.  

Carbon flux, or the fluctuation of DIC concentrations with varying discharge, is a 

measurement of the extent of carbonate rock weathering with respect to CO2 being 

consumed during the dissolution process. Carbon flux can aid in delineating CO2 uptake  

in karst systems versus the amount that is discharged from the system (Knierim et al. 

2015). Values were calculated (Eq. 4.3) over the course of the study period. Figure 6.15 

presents the fluctuation of DIC at both WF1 and LRS over the course of the study period. 

From high-resolution discharge and DIC data, DIC flux calculations were completed for 

two of the four sites (WF1 and LRS).  

 Calculated mass DIC flux for the entirety of the study period for WF1 is 109,468 

mg/study period, while LRS rendered a mass DIC flux of 364,186 mg/study period. 

Although it would seem the mass DIC flux for LRS removes and transports more DIC 
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over the course of the study period, the calculated value represented above includes a 

storm event during the month of December in which the highest recorded discharge 

volume occurred at LRS. Considering LRS discharge is driven by large volume storm 

events that exceed epikarst thresholds and, thus, evacuate the system of storage water, 

this number is most likely an accurate representation of mass DIC flux over the course of 

the study. Likewise, DIC concentrations and fluctuations appear to be influenced by 

increased values of certain hydrogeochemical data, such as SpC, and lower values of pH 

and CO2 during storm events, which corroborate the suggestion that storm event 

variability drives DIC fluctuations at LRS. Further, increased residence times at LRS and 

LRWF would also contribute to increased dissolution rates and DIC fluctuations. 

 

Table 6.1. Summary Statistics of DIC flux, conduit enlargement, and dissolution 

rates. 

  

DIC Flux (mg/ 
study period) 

Wall Retreat 
(cm/study period) 

Dissolution Rate 
(kg/m3/study period) 

WF1** 

Total 109,468 1,224.17 0.18 

Min 0.21 0.00 -1.34x10-5 

Max 536 0.14 1.24x10-5 

SF* 

Total - 1.36 0.000396 

Min - 0.00 -1.19x10-5 

Max - 0.13 2.81x10-5 

LRS** 

Total 364186 481.07 -0.699 

Min 0.00 0.00 -0.00138 

Max 208 123.24 0.00121 

LRWF** 

Total - 105,205.90 -1.810 

Min - 0.00 -0.00229 

Max - 347.86 0.00274 

*Low-resolution 

   **High-resolution 

   Source: Created by the author. 
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             6.1.5 Low-Resolution δ13CDIC, CO2, SIc, DIC Site Comparisons 

 The data for low-resolution calculated CO2 and DIC versus δ13CDIC on a temporal 

basis are presented in Figures 6.16 to 6.19 for both Crumps Cave (WF1 and SF) and 

LRCV (LRS and LRWF). These data are presented to illustrate the statistical robustness 

of both the measured weekly resolution of geochemical data and the calculated high-

resolution of geochemical data reported earlier in the thesis. Data illustrating individual 

low-resolution versus time series for CO2, SIc, and DIC concentrations, and δ13CDIC 

values, at each site, are in Appendix 5. 

For Crumps Cave (WF1 and SF), both CO2 and DIC (Figures 6.16 and 6.17) 

values track with δ13CDIC values during the summertime, indicating that ongoing root 

respiration and soil CO2 production are causing a depletion in δ13CDIC values while 

driving CO2 and DIC concentrations in the epikarst (Jiang 2013). During the wintertime, 

as vegetation and microbial activity decreases, due to surface changes, the tracking of 

CO2, DIC, and δ13CDIC diverge. The δ13CDIC values become more enriched as CO2 

production and DIC concentrations severely reduce. This is indicative of the reduction in 

fractionation of the 12/13C isotope caused by root respiration and microbial activity and 

thus, a shifting in carbon sourcing from soil to atmosphere (Faimon et al. 2012a; 2012b). 
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Figure 6.16 Time series of CO2, DIC, and δ13CDIC at Crumps Cave-WF1. Note the 

tracking of variables, suggesting that soil derived CO2 is the dominant component of DIC 

at Crumps Cave during the summer. Additionally, the δ13C values shift to enriched values 

based on seasonal shifts.  

Source: Created by the author. 
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 At the LRCV (LRS and LRWF), values of CO2, DIC and δ13CDIC indicate clear 

seasonal trending during the summer months (Figures 6.18 and 6.19), suggesting that 

increased summertime fractionation, soil CO2 production, and increase in DIC 

concentrations are at work. However, as the summer season transitions to winter, the 

divergence of δ13CDIC observed at Crumps Cave does not occur at LRCV, indicating that 

δ13CDIC values remain in a depleted state (Figures 5.5 and 5.6). The lack of wintertime 

enrichment may actually be a result of a masked signal by the presence of extensive 

impermeable surfaces preventing identification of an alternative carbon source. Likewise, 

any soil CO2 that is diffused to the epikarst remains as a dissolved constituent in epikarst 

water, allowing for additional water-rock interaction, and the potential for precipitation 

should supersaturated water encounter an open atmosphere. Considering that LRS is 

extremely shallow, the likelihood of epikarst-derived water interacting with the surface is 

greater. Should precipitation occur in situ, affecting the isotopic signature, water reaching 

the spring could reflect an inaccurate representation of sourcing.  

This phenomenon of prior calcite precipitation (PCP) is most readily described in 

research examining the influences on speleothem growth, which, according to Sinclair et 

al. (2012), is heavily driven by multiple factors, including changes in water-rock 

residence times, hydrologic variability, temperature, and soil zone processes. The 

possibility that secondary mineralization is occurring in situ at LRS may influence the 

signal detected at the spring. This process would be reflective of dominant soil zone CO2, 

primarily because bedrock CO2 has already run through an entire cycle, from dissolution 

to precipitation to degassing, and no longer exists as a dissolved constituent.  
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Figure 6.17 Time series of CO2, DIC, and δ13CDIC at Crumps Cave-SF. Note the tracking 

between variables, suggesting that seasonal CO2 is the dominant component of DIC. 

Additionally, the δ13C values shift to enriched states based on seasonal shifts.  

Source: Created by the author. 
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Figure 6.18 Time series of CO2, DIC, and δ13CDIC at LRCV-LRS. Note the ongoing 

tracking of variables, suggesting that CO2 is the dominant component at LRCV over the 

course of the study Additionally, the δ13C values remain in a depleted state during the 

winter months, with CO2 and DIC trending closely.  

Source: Created by the author. 
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Figure 6.19 Time series of CO2, DIC, and δ13CDIC at LRCV-LRWF. Note the tracking 

between variables, suggesting that CO2 is the dominant component of DIC at the LRCV 

over the course of the study. Additionally, the δ13C values briefly shift to enriched states 

during the month of December, before showing depletion during the remainder of the 

winter.  

Source: Created by the author. 
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Secondly, increased soil CO2 is possibly trapped in the soil during the winter 

months due to excess artificial impermeable surfaces preventing atmospheric exchange 

(Cuezva et al. 2011). Likewise, the majority of high volume precipitation bypasses the 

epikarst in favor of direct injection to the aquifer through numerous injection wells 

(Crawford 1984a; Crawford 1984b; Crawford 1989).   

 

6.2 Hydrogeochemical Site Comparisons 

             6.2.1 Regional Scope 

The vertical extent of the epikarst and its associated geochemical gradient are a 

major debate in the karst literature (Williams 1983; White 1988; Clemens et al. 1999; 

Martin and Dean 2001; Vacher and Mylroie 2002; Bakalowicz 2004; Klimchouk 2004; 

White and White 2005; Florea and Vacher 2006; Petrella et al. 2007; Trček 2007; 

Williams 2008; Gulley et al. 2015; White 2015). Most telogenetic karst landscapes are 

driven by influences from the surface (i.e., precipitation, surface temperature, vegetation 

cover and root respiration, and soil microbial activity), which contribute to CO2 

production and transfusion through the epikarst and into the aquifer, especially during the 

growing season. The means of sourcing, diffusion, and exchange of CO2 from 

atmosphere, to the soil layer, to the epikarst, under different surface and hydrological 

conditions are presented in Figure 6.20. 
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Figure 6.20 Illustration of CO2 exchange in the epikarst. A) Diffusion to the epikarst 

during the growing season; B) Close-up image of the way in which soil distributes CO2 

through pore spaces during high moisture conditions; C) Diffusion of atmospheric 

dominant CO2 during the dormant season; D) Close-up of the way in which CO2 diffuses 

through soil pore space during low moisture conditions. Note that most CO2 is derived 

from a combination of atmospheric CO2, microbial activity in the soil, and root 

respiration. Some CO2 derived from atmospheric sources is primarily injected into the 

epikarst through direct recharge, while the rest infiltrates the soil layer first, mixing with 

soil CO2 concentrations. Also note that depending on the season, CO2 sourcing shifts 

between soil and atmospheric/carbonate rock dominance.  

Source: Modified from Cuezva et al. (2011). 

 

At Crumps Cave, the hydrogeochemical data indicate that a combination of 

seasonal changes and storm event variability serve to influence the cave on both long- 

and short-term scales. Seasonally, hydrogeochemical responses are influenced by the 

gradual changes in surface temperature driving vegetation growth and, thus, soil CO2 
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production, especially during the summer months. Groves et al. (2005) found storage at 

Crumps Cave exists within the epikarst, governed by the thin layer of chert, which 

potentially creates a leaky, perched aquifer. This perched aquifer could partially inhibit 

direct flow from the surface to the vadose zone, except during times of high precipitation 

when the system is discharged of storage water. The near immediate responses in all 

hydrogeochemical data at both WF1 and SF during storm events further indicate that 

ongoing storage is occurring, which is then flushed through the system during those 

storm events. Further, increased seasonal DIC fluctuations and dissolution rates, as well 

as reduced overall wall retreat, suggest that conduit development in the epikarst has 

reached a critical slow point during the winter months, as discussed in Palmer (1991; 

2007a; 2007b), where development is relatively contingent on continuous aggressive 

water-rock interaction in a dissolvable medium.  

In this respect, dissolution rates are higher during the growing season, due to 

increased water aggressiveness from an increased supply of soil CO2. Rates slow during 

the dormant season as soil CO2 sourcing shifts to atmospheric CO2 sourcing. This shift in 

CO2 sourcing serves to slowdown dissolution. Further, despite colder water being capable 

of holding more dissolved CO2, the reduction in a highly concentrated supply of CO2 

negates that capability, also providing for a reduction in dissolution kinetics. Likewise, as 

calcite saturation approaches saturated to supersaturated levels, the rate of dissolution 

slows further, even when increased water-rock interaction occurs during the dry season. 

On the other hand, during the growing season, despite high volume precipitation events 

transferring water quickly through the epikarst, thus reducing residence time, the water is 

supersaturated with soil CO2 concentrations, driving aggressive dissolution.  
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The LRCV sites exhibit different responses than Crumps Cave sites, primarily due 

to the urban environment governing soil and vegetation extent, CO2 sourcing and 

diffusion in the epikarst, and seasonal variability in hydrogeochemical data. The presence 

of a heavily paved (and rather impermeable) urban landscape on the surface, in 

conjunction with an impermeable chert layer at the water table, contributes to a unique 

development of the epikarst at both the LRS and LRWF. This unique situation is derived 

from the potential trapping of soil CO2 in the soil layer beneath the paved surface layer, 

which diffuses to the epikarst at a much slower rate overall, due to a reduction in 

infiltrating precipitation and antecedent moisture conditions.  

The hydrogeochemical data indicate that, while seasonal variability is less 

apparent, responses to storm events drive the movement of epikarst water. It is during 

these high precipitation events that soil CO2 diffusion to the epikarst increases. Further, 

the presence of the chert layer at the water table (Groves 1987), which significantly slows 

further reductions in the water table, may potentially contribute to an upward diffusion of 

CO2 at LRS, generating heterogeneous pockets of increased CO2 concentrations (which 

diffuse to areas of lower CO2 concentrations) providing for increased dissolution in a 

lateral and vertical gradient, as observed in eogenetic karst systems by Gulley et al. 

(2005). As a consequence, certain volumetric thresholds are required to be met before 

increases in discharge are observed. The epikarst at LRCV behaves similarly to that of 

eogenetic karst, as observed by Gulley et al. (2015), where heterogeneous CO2 diffusion 

causes conduits to form independent of telogenetic governed hydraulic conductivity. 

This unique combination of governing characteristics serves to increase dissolution rates 

and wall retreats, as well as DIC fluxes, over the course of the study period; however, 
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calcite saturation at both LRCV sites is continuously high, as evident by the presence of a 

growing flowstone at LRWF. This suggests that dissolution kinetics are governed by the 

extent of saturation, as well as the contribution of CO2, and that CO2 sourcing is an 

important driver of this process.    

 As mentioned earlier and shown in previous studies, the presence of a chert layer 

at both locations may be governing water storage and transference and, thus, water-rock 

interaction and residence times. A comparison of mean discharges and their respective 

ranges at the four study sites in this investigation, as well as other springs around the 

world, is presented in Table 6.2. Precipitation and recharge time series analysis for all 

four sites are presented in graphical form in Appendix 6. The majority of aquifer 

discharges at different sites around the world render slightly higher volumes in averages, 

peak flows, and baseflows, compared to epikarst discharges, suggesting that the epikarst 

can serve to store water, but volumetrically it does not equate to primary aquifer storage. 

On the other hand, although discharge in the epikarst is reduced comparatively to the 

main aquifer, CO2 flux and dissolution processes are greater in the epikarst, due to the 

open system nature of most landscapes with surface influences. These processes drive 

dissolution kinetics throughout the aquifer, with the majority of those processes occurring 

at relatively shallow depths (between 10 to 30 meters) (Bakalowicz 2004; Klimchouk 

2004). Thus, aquifer development and karst landscape evolution are highly contingent on 

the status of dissolution kinetics and CO2 fluctuations in the epikarst.  



137 
 

 

 

Table 6.2. Comparison of world epikarst and aquifer spring discharges to this investigation. 

   

Discharge (Q) 
   Spring 

  

Mean Max Flow Baseflow Reference 
 Ewers Alley (USA) 

 
0.056 L/s 

 
0.142 L/s Jackson (2012) 

 
Barton Spring (USA) 

 
1.42 m3/s 2.7 m3/s 0.28 m3/s Wong et al. (2012) 

 
Milandre Test Site (France) 

      

 
Saivu Spring 

 
200 L/s 20 L/s Perrin et al. (2003) 

 
Hubelj (SW Slovenia) 

 
24.9 m3/s 0.12 m3/s Trček (2007) 

 
Acqua dei Faggi (S Italy) * 0.04 m3/s 0.065 m3/s 0.005 m3/s Petrella et al. (2007) 

 
Fontaine de Vaucluse (SE France) 

 
70 m3/s 10 m3/s Emblanch et al. (2003)  

Beaver Spring (USA) 
  

127 L/s 30 L/s Vesper and White (2004) 

Guangxi (SW China) * 
 

156.4 L/s 149.5 L/s Zhang et al. (2016) 
 

Cent-Fonts (S of France) * 
 

12.2 m3/s 1.0 m3/s Aquilina et al. (2004) 
 

Edwards Aquifer (USA) 
   

Worthington (2003) 
 

 
Comal Springs 

 
442 (cfs) 270 (cfs) 

   

 
San Marcos Springs 

 
403 (cfs) 215 (cfs) 

   
Wilkins Bluehole (USA) 

  
0.56 m3/s Ray and Blair (2005) 

 
Lost River Rise (USA) 

  
0.35 m3/s 

   
Crumps-WF1* 0.07 L/s 11.5 L/s 0.013 L/s Current study 

  
Crumps-SF* 0.16 L/s 0.46 L/s 0.06 L/s 

   
Lost River Cave and Valley-LRS* 0.06 L/s 3.84 L/s 0.01 L/s 

   
Lost River Cave and Valley-LRWF* 0.39 L/s 0.39 L/s 0.009 L/s 

   
*epikarst spring 

Source: Created by the author. 
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Hydrogeochemical processes at Crumps Cave and at locations in China, Italy, 

and France all exhibit certain responses to surface influences driving dissolution kinetics 

governed by seasonal and storm event variability. At the LRCV, the presence of an urban 

landscape plays a vital role on the development of the epikarst with respect to carbon 

sourcing and diffusion, and dissolution kinetics and DIC fluctuations.  

 Previous karst investigations focused primarily on aquifer processes, where it is 

assumed that the influences governing the majority of karst development are the greatest, 

and thus require the most attention (Veni et al. 2001; Aquilina et al. 2004; Palmer 2007a; 

Worthington 2007; De Waele et al. 2009; Anaya et al. 2014). As a consequence, the 

epikarst is often overlooked as a large contributor to karst landscape development. Those 

investigations that do focus on the epikarst suggest that the upper layer of the karst 

system plays a vital role in geochemical influences (White 1988; Emblanch et al. 2003; 

Bakalowicz 2004; Klimchouk 2004); however, the majority of those investigations are 

limited to single cave systems under similar conditions such as land use, epikarst 

thickness, and climate. Further, only a handful of those investigations have examined 

epikarst processes in high resolution to characterize immediate changes as a way to 

delineate the primary and secondary hydrogeochemical drivers to aquifer development 

(Zhongcheng and Daoxian 1999; Bakalowicz 2004; Palmer 2007a; Petrella et al. 2007; 

Trček 2007; White 2007; Jacob et al. 2009; Liu et al. 2010; Yang et al. 2012; Peyraube et 

al. 2014; Milanolo and Gabrovšek 2015; Zhang et al. 2016). This investigation aimed to 

combine those elements (epikarst hydrogeochemical high-resolution monitoring in 

multiple karst systems under various land uses) to further delineate the influence of those 
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variables on epikarst processes and their extent of impact on aquifer evolution in 

telogenetic karst systems.  

 The results of this investigation indicate that under natural and agricultural 

settings, dissolution kinetics in the epikarst are driven by surface viability, such as 

precipitation and temperature, which govern the availability of soil CO2 and its 

subsequent diffusion to the epikarst. Seasonal changes are the most prominent driving 

factor for increased production of CO2, while high-volume storm events facilitate the 

diffusion of these large concentrations of CO2 to the epikarst where dissolution can 

actually occur. 

While concentrations of CO2 and DIC at Crumps Cave and the LRCV are 

relatively similar, the methods by which they diffuse to the epikarst are different. 

Likewise, the way the epikarst processes these constituents is also different. While a 

natural landscape may seem more conducive to karst development, in this study the data 

suggest that an urban environment can facilitate dissolution and supersaturation, 

redistributing bedrock and possibly contributing to potential karst landscape hazards, 

such as water containment storage and transport. Thus, urban landscapes, it would seem, 

have relatively important impacts on hydrogeochemical processes in karst systems. Those 

impacts can have negative effects on the human population as urban sprawl becomes 

more and more of a contributor to the way that the epikarst responds and to any 

subsequent influences on aquifer development and drinking water quality.    
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Chapter 7: Conclusions 

Understanding the hydrogeochemical relationships with storage and flow 

propensity in various karst settings is crucial to tying together certain fundamental 

concepts about the primary functionality of the epikarst with respect to deeper 

geochemical processes. Further, tracking carbon through the epikarst as a means to 

understand dissolution kinetics and the propensity for karst systems to serve as carbon 

sinks is extremely important, especially considering the growing concern over the 

accumulation of atmospheric carbon dioxide released from anthropogenic activities. 

Additionally, DIC fluctuations can illustrate how carbon is utilized by karst systems, 

further illuminating the extent to which vast deposits of terrestrial limestone may serve as 

carbon sinks (Zhang et al. 2015).  

The Pennyroyal Sinkhole Plain in southcentral Kentucky has been the focus of 

karst research for decades (Crawford 1984a; Crawford 1984b; Crawford 1989; Crawford 

2003; Crawford 2005; Brewer and Crawford 2005; Cesin and Crawford 2005; 

Vanderhoff 2011; Nedvidek 2014). Of those studies, the majority addressed cave 

development and aquifer processes at varying resolutions (Palmer 2007a; Vanderhoff 

2011; Lawhon 2014; Nedvidek 2014). Examinations into individual caves and their 

hydrogeochemical processes have left a gap in the literature, allowing for a comparative 

study with respect to multiple karst systems as a means to understand how those same 

processes operate on a regional scale.  

 This investigation examined two cave systems under different land use 

conditions, with a focus on epikarst hydrogeochemical processes and how those 

processes serve to influence dissolution rates and conduit development in the epikarst. 
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Further, tracking carbon from inception to discharge can better infer both carbon uptake 

in karst systems and a karst landscape’s role in the global carbon flux calculation. This 

investigation yielded the following findings: 

 Seasonal, diurnal, and storm event variability serve to influence 

hydrogeochemical dissolution processes through the diffusion of soil CO2. 

Surface influences, such as temperature and precipitation, contribute to CO2 

production and diffusion during the growing period; however, CO2 diffusion to 

the epikarst is variable by location, with Crumps Cave sites experiencing 

dominant seasonal diffusion, while the LRCV sites experienced dominant storm 

event diffusion once certain antecedent moisture thresholds were met. The 

dissimilarity in diffusion is due to land use differences, soil coverage, epikarst 

thicknesses, and stages of epikarst development.  

 At Crumps Cave, storm event variability drives immediate hydrogeochemical 

responses and facilitates movement of water through the epikarst, while seasonal 

variability drives long-term changes, which influence dissolution processes via 

the diffusion of CO2 as both a dissolved constituent in infiltrating, low-

precipitation events and antecedent moisture seepage. 

 At the LRCV, storm event variability is less pronounced, due to the urban 

landscape interfering with natural recharge of the epikarst. This is in direct 

contrast to the LRCV aquifer, which responds quite heavily to storm events 

(Lawhon 2014). Seasonal changes are also less apparent, but longer residence 

times and slower soil CO2 diffusion increase the rate of dissolution and 

subsequent supersaturation. 
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 Carbon uptake is heavily driven by soil CO2 in the summer months at both 

locations, while primarily driven by atmospheric CO2 at Crumps Cave and soil 

CO2 at the LRCV in the winter. This is primarily due to a difference in land use at 

both locations, with Crumps Cave influenced by seasonal agricultural use and the 

LRCV influenced by an urban setting, which aids in the reduction in the rate of 

soil CO2 diffusion to the epikarst. 

 Telogenetic epikarst thickness and its internal conduit development are highly 

contingent on the aforementioned dissolution rates. Crumps Cave epikarst appears 

to be better developed than the LRCV, as evident by the near immediate response 

to even minimal rainfall events, while LRCV sites require certain capacity 

thresholds to be met before an increase in discharge is registered. This implies 

that storage is occurring at both sites, with Crumps Cave’ capacity being greater 

and able to transport more volume in shorter time periods, while the LRCV 

experiences more matrix dominated flow. At the LRS, this matrix-dominated flow 

could be a result of an extremely thin epikarst, while epikarst thickness at the 

LRWF  is less than that of Crumps Cave, but accommodating of water 

transference at a volume greater than the LRS. 

 The differences in epikarst thickness and the presence of a rather impermeable 

chert layer at both locations govern water residence times and, thus, the extent of 

dissolution. As described by Williams (1983; 2008), Bakalowicz (2004), and 

Klimchouk (2004), epikarst dissolution kinetics reduce and eventually cease at 

depths between 10 to 30 meters, due to a shift from open system conditions to 

closed system conditions. A shift from open system conditions to relatively closed 
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system conditions may be occurring at Crumps Cave, where 18 meters of epikarst 

thickness exist between surface and epikarst drains. DIC concentrations and flux, 

and saturation indexes, are lower at Crumps Cave versus the LRCV. Epikarst 

thickness at the LRS is less than five meters and epikarst thickness at the LRWF 

is roughly 13 meters. Likewise, isotopic soil signals at both LRCV sites are 

stronger throughout the year, as well as increased dissolution rates, and greater 

DIC fluctuations. DIC fluctuation calculations are a workable approach to 

understanding how carbon sequestration and utilization in karst environments 

operates, provided that similarities between examination sites exist, such as the 

defining geology of the region. Conversely, even if land use and hydrological 

differences are present (i.e. variability in storage and flow), the DIC fluctuation 

calculations will illuminate the impact of these differences on overall carbon 

utilization, further providing for insight into global carbon uptake in karst regions.  

 

     Generally, the investigation yielded many similarities between all sites, such as 

hydrogeochemical responses driven primarily by soil CO2 seasonal influences and 

secondarily by storm events; however, certain site specific characteristics, such as land 

use cover and epikarst thickness, indicate that, indeed, the extent of epikarst development 

and its associated hydrogeochemical processes are reliant on both geology and thickness 

of the epikarst, for storage and flow variability were evident and unique to all sites 

(Williams 1983; Worthington et al. 2000; Worthington 2003; Worthington 2007; 

Bakalowicz 2004; Klimchouk 2004; Williams 2008).  

Certain limitations of this project prohibit a more accurate representation of the 

processes at work and, as such, assumptions were made, including the following:  
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 Dissolution processes and carbon flux were contingent on discharge and 

geochemical parameters. All values were calculated based on assumed sizes of 

recharge basins, however, the exact area of recharge for all sites were unknown 

for this study. Thus, it is important that future work address this issue to ensure an 

exact quantitative assessment can be drawn with respect to the impact that the size 

of the recharge basin has on each site’s DIC fluctuations and extent of storage. 

 At SF, low resolution of the collected data generated assumptions about responses 

during events that occurred between collection dates.  

 At LRS, placement of the loggers was downstream from the sample collection 

sitel; thus assumptions that the reach of the stream posed a negligible influence on 

geochemical evolution were made.  

 At LRWF, failed access to the site on certain collection dates due to inclement 

weather meant lost data, while low-resolution discharge required an assumption 

regarding volumetric responses from precipitation influences. Lastly, the time 

period for the study was short of a full year, primarily due to funding and 

investigation timeline modifications due to extraneous circumstances. Thus, only 

the onset of the spring transition was captured.  

 

This investigation serves to contribute to the scientific understanding of epikarst 

dissolution processes in mid-latitude regions, specifically southcentral Kentucky, with a 

focus on hydrogeochemical and carbon isotope evolution. Further investigations along 

similar lines could include continued high-resolution sample collection in all respects, 

with an inclusion of technological monitoring at all sites. A closer examination of the 

impact of an urban setting on carbon sourcing and transport at the LRCV, plus use of soil 
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CO2 utilization, with an emphasis on multi-year collection and monitoring, could increase 

conceptual understanding on the processes at work in karst systems related to carbon flux 

in varied land use settings around the world. Lastly, comparative analyses between 

eogenetic karst systems and telogenetic epikarst systems are severely lacking in the 

literature. The data from this investigation suggest that they exhibit similar behaviors and 

thus, closer examinations are vital to understanding both epikarst and aquifer 

development, especially in an ever-growing urban landscape. 
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Appendix 1: Crumps-WF1 Mixing Model Results  
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Appendix 2: Crumps-SF Mixing Model Results 
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Appendix 3: LRCV-LRS Mixing Model Results 
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Appendix 4: LRCV-LRWF Mixing Model Results 
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Appendix 5: Low Resolution Geochemical Time Series 
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Appendix 6: Recharge versus Discharge at Each Site 
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