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Abstract

Directed random graph models frequently are used successfully in modeling the population dynamics of networks of
cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology
is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that
are physiologically different. This suggests that complex network models whose subnetworks have distinct topological
structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the
balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise
standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced
by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose
inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters
of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly
active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to
each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local
inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the
abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and
simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the
dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it
is important to identify neurons that share physiological properties and location, but differ in their connectivity.
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Introduction

Rapid experimental progress in mapping the functional and

structural connections between brain regions (also called the

‘connectome’ [1–3]) is delivering critical new understanding about

how information processing in the brain is influenced by complex

network connectivity [4]. Analysis of connectome data [5–7] is

increasingly reliant on theoretical insights from the field of network

science [8,9], in which networks are represented by mathematical

graph models. The unification of functional neuroanatomy and

network science has led to the discovery of significant correlations

between abnormal connectivity patterns and several disorders,

including epilepsy [10] and schizophrenia [11].

Almost all existing connectome data, however, are at the

macroscale of links between brain regions—‘regional connec-

tomes’—whereas fundamental advances in understanding micro-

scale neuronal computation and structure-function relationships

will require ‘dense’ (comprehensive) mapping of synaptic connec-

tivity between all individual neurons in a region [2], i.e. ‘neuronal

connectomes’ [12]. At present, mapping neuronal connectomes is

not feasible experimentally at large enough scales [3,13] for typical

network science approaches to be fully applicable to real data

because, in order to avoid finite-size effects, theoretical network

science analysis typically requires large scale networks with many

thousands of nodes [14]. Despite reports of small and partial

neuronal connectomes [15,16], the only organism whose entire

synaptic network has been mapped remains that of the 302 neuron

C. elegans hermaphrodite worm [6], although a partial connectome

of 170 neurons in the C. elegans male has now been published [17].

Despite the absence of guiding experimental data, existing

network science methods have begun to be applied fruitfully in

simulations of hypothesised complex structure within the synaptic

connectivity between neocortical or hippocampal neurons [10,18–

27]. These simulations produce predictions about the influence of

complex network connectivity on spiking patterns, and have begun
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to cast light on two fundamentally important scientific questions

that cannot be answered by current experimental technology:

N What complex structure is embedded in the synaptic networks

of small cortical regions?

N How does complex structure in these cortical networks

influence neuronal dynamics, both for individual neurons,

and collectively in the network?

Fully answering the first question will have to await the

maturation of experimental techniques for densely mapping

neuronal connectomes [2,3,13]. Methods appropriate for quanti-

fying complex structure need not wait for this, however, and can

be developed in conjunction with simulations [28]. Moreover,

simulation results that make predictions regarding the second

question can help inform experimental approaches that combine

neuronal connectome mapping with functional analysis, such as

reported by [16].

It has mostly been overlooked, however, that the ‘real-world’

complex networks for which existing network science metrics were

developed [8,9] are in several ways dissimilar to networks of

neurons and chemical synapses (see Methods). Possibly for this

reason, the theoretical network science literature has not yet

reported derivation of general principles applicable to understand-

ing how complex synaptic connectivity might affect so-called

‘balanced’ cortical excitation and inhibition (see Methods).

Therefore, the first aim of this paper is to emphasise the need

for network models of cortical connectivity (whether hypothesised

or based on future neuronal connectome data), and any associated

mathematical analysis, to take into account the specific set of

properties of neuronal networks described in Methods, such as

different classes of nodes and directed edges. A consequence of

these properties is that many standard metrics from network

science such as overall degree distribution, clustering coefficient

and average path length [29] have limited utility if applied to the

network in its entirety, unless broken down to describe particular

subnetworks. For example, in a network with two neuron classes—

excitatory (E) and inhibitory (I)—three subgraphs can be readily

identified: (i) the subgraph of E neurons and E?E synapses; (ii) the

subgraph of I neurons and I?I synapses; (iii) the bipartite

subgraph of all neurons but only the E?I and I?E synapses.

Based on the little experimental evidence available, it is likely that

each subnetwork exhibits distinct complex structure [30–33], in

addition to distinct connection densities (see Discussion).

Newly developing network science theory on the topic of

undirected multiplex topologies [34–36] may be particularly

relevant to this topic. Such networks consist of different classes

of edges, and it can be interesting to consider separately the

topology of each subnetwork that can be formed from all nodes

plus edges of just one type. This concept alone, however, is not

sufficient for capturing the points raised above. First, there has not,

to our knowledge, been any theory developed for directed

multiplex networks. Second, a generalisation of the multiplex

network concept would be required, where there are multiple node

classes as well as multiple edge classes, and only one kind of

directed edge can connect nodes of a given class.

The second aim of this paper is to demonstrate the impact on

balanced excitation and inhibition of introducing complex

clustered network connectivity, and different structural classes of

neurons, into simulations of an existing model [23,37] of cortical

activity. This model has realistic neuronal and synaptic dynamics,

and exhibits balanced population activity, including so-called

‘sparsely synchronised population oscillations’ [38,39]. We found

that introducing highly clustered network topology, and neurons

that can be divided into classes based on their structural

connectivity (specifically, their motif participation distributions),

can cause bistable population dynamics arising from stochastic

bistability in firing rates in one of the classes. This bistability is

induced in neurons that receive strong local excitation but only

weak non-local inhibition. Neurons in this class exhibit large

differences in the distributions of certain two and three synapse

network motifs [40] in which they participate, compared with

those in other classes, and with a random network. Thus, the

global motif distribution of the network is not as good an indicator

of dynamics as the distribution of motifs in which individual nodes

participate.

Methods

The sparsely synchronised population oscillations model is a

special case of a broader class of cortical network models, in which

so-called balance of excitation and inhibition occurs [41]. It has

frequently been observed that in order for simulated cortical

networks to reproduce experimental observations, the total

excitation and inhibition that each neuron receives via spikes

from its neighbours needs to be balanced, so that the net resultant

synaptic currents lead to membrane potentials that are close to,

but below, threshold, and approximately constant over time, apart

from small fluctuations that give rise to occasional spikes. A large

number of theoretical studies have investigated balanced excita-

tion and inhibition [42–51], including recent extensions to the

notion of ‘detailed balance’ [52].

We studied the influence of complex network topology and

classes of structurally distinct neurons in the context of a ‘balance’

model useful for understanding a particular kind of oscillatory

signal recorded from cortical region V1. When awake animals are

shown moving images, this region exhibits in-vivo local field

potentials (LFP) with narrowband oscillations centred in the

gamma band (i.e. about 40 Hz) [53]. Empirical data also show

that individual neurons in the region are not synchronised, and fire

irregularly at an average rate much lower than 40 spikes per

second. These findings have been explained mathematically in

terms of an effect called ‘sparsely synchronized oscillations,’ which

is due to interactions between excitatory positive feedback and

inhibitory negative feedback—see [39,54] for reviews. Simulations

also readily exhibit the effect [23,37,38,55–57]. Recently we

reported briefly [23] that complex structural connectivity can give

rise to loss of population oscillations in the specific model of [37],

but did not observe bistable dynamics like those reported in the

current paper.

Many existing models and simulations of balanced excitation

and inhibition, and sparsely synchronised population oscillations,

use realistic neuronal membrane and synaptic parameters based

on experimental knowledge. The biological realism of the network

connectivity model is not yet as well developed, however, and

either random or all-to-all networks are typical model choices,

since there are few experimental data as to which network

topologies actually exist in cortex. This has recently begun to

change, and there have now been a number of reports of the

influence of ‘non-random’ complex network connectivity on

balanced excitation and inhibition in simulations of large networks

[19,20,22–27]. Before that, there had also been several studies into

the impact of topology on hyperexcitability [10,18]. We next

describe how realistic complex network topologies with multiple

node and edge classes may be introduced into models of such

networks.

Bistable Dynamics in Complex Synaptic Networks
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Modelling complex networks with multiple classes of
neuron and synapse

By definition, a graph consists of a set of N nodes (also called

vertices) and K edges, which are defined as connected pairs of

nodes. The edges may be directed or undirected. A complex

network is a network with connectivity structure that is neither

entirely random, nor entirely regular, such as a small-world or

scale-free network [14]. Such complex structure has been referred

to as ‘non-random’ [58], but rather than imply that connectivity is

predictable for arbitrarily selected nodes, this emphasises only that

complex networks cannot be generated by making independent

random choices (with the same probability) about which edges

should exist.

Due to the crucially important fact that some neurons

communicate synaptically-excitatory spikes to their neighbours,

and others communicate synaptically-inhibitory spikes [59],

realistic complex cortical network models require a graph model

that includes the following minimal set of properties:

N Property 1: nodes represent individual neurons;

N Property 2: edges are directed and (usually) represent

chemical synapses;

N Property 3: there are at least two distinct node classes:

excitatory (E) & inhibitory (I);

N Property 4: there are at least four distinct directed edge

classes: E?E, E?I, I?E and I?I;

N Property 5: average connection densities may be different for

each edge class (see Discussion).

This set of properties is general enough to be applicable to other

kinds of neuron-to-neuron communication besides chemical

synapses, such as the two-way gap junctions observed in both C.

elegans [6], and between cortical inhibitory neurons [60], and

autapses (self-synaptic connections) [17,61].

Since topological structure may differ in the same network

depending on which neuron classes are considered, this means

quantifying complex structure can only be meaningfully achieved

if the network is decomposed into subnetworks.

Besides the excitatory and inhibitory classes, historically other

divisions of cortical neurons into classes have been defined based

on physiology and anatomy—we suggest that these be referred to

as physiologically-defined neuron classes. It has recently

been argued that neuron-to-neuron connectivity is likely to be a

more informative basis upon which to partition neurons into

classes [2]. We refer to such classes as structurally-defined
neuron classes, and next introduce mathematical notation

suitable for describing either kind of classification.

Notation for networks with different node and edge
classes

Any network with N nodes that has no more than a single edge

in the same direction between nodes can be represented by its

N|N adjacency matrix, A [8]. For an unweighted and directed

network, as considered exclusively in this paper, the elements of

this matrix, ai,j , are binary, such that ai,j~1 when a directed edge

originates at node i and ends at node j (we denote this as i?j) and

ai,j~0 otherwise, where i~1,::,N and j~1,::,N . For such an

undirected network A=AT in general. In this paper we also

exclude all edges from a node to itself, so that ai,i~0 V i.

Networks are often characterised by their degree-distributions

[14]. Degree is defined for a single node as the number of edges in

which it participates. For a directed network, the in-degree of node

i is the number of directed edges that end at node i. We denote

this as ki,in~
XN

i~1
ai,j . The out-degree of node i is the number of

directed edges that originate at node i. We denote this as

ki,out~
XN

j~1
ai,j . The mean in-degree for the network is

�kkin~
1

N

XN

i~1
ki,in. The mean out-degree for the network is

�kkout~
1

N

XN

i~1
ki,out. We write the in-degree distribution as

fk,in(m),m~1,2,3 . . . and the out-degree distribution as

fk,out(m),m~1,2,3 . . ..
We introduce general notation applicable for an arbitrary

number, C, of node classes and E~C2 edge classes. Of these, we

define S~C as the number of edge classes whose edges start and

end in the same class of node and D~C2{C as the number of

edge classes whose edges start in one node class and ends in

another. We denote each node class with the label q and the

number of nodes in each class as Nq, so that N~
XC

q~1
Nq.

There is an in-degree distribution for each pair of node classes,

and an out-degree distribution for each pair of node classes, for a

total of F~2C2 degree distributions. We denote the in-degree to

the i–th node of type q, from nodes of type r, as ki,q/r,i~1,::,Nq.

We denote the out-degree from the i–th node of type q to nodes of

type r as ki,q?r,i~1,::,Nq. Thus, the direction of the arrow in the

subscript indicates in or out degree.

Similarly, the mean in-degree for nodes of type q from nodes of

type r is denoted as �kkq/r and the mean out degree for nodes of

type q to nodes of type r is �kkq?r

For example, if there is a distinction between only two classes of

nodes, such as excitatory and inhibitory, then C~2, E~4 and

F~8. Two of the eight degree distributions are associated with

the EE subnetwork, two with the II subnetwork, and four are

associated with the bipartite EI/IE subnetwork. When we consider

these two node classes only, we introduce class labels q~e and

q~i. Elsewhere, we consider six classes, and the labels are

introduced below.

Null hypothesis random network: Constant in-degrees
for all classes

In order to compare the effect of changes in topology, or the

influence of complex non-random features in empirical networks,

it is necessary to compare results with those from an appropriately

chosen null-hypothesis network [5]. Since we are motivated by the

question of how network activity depends on topology changes

with respect to a random network of size N, a random network is

the obvious choice for the null hypothesis network. Additionally,

we chose to impose one further constraint on our null hypothesis

random network, which is that the in-degree to a node class from

each edge class is constant for all nodes in the class. The reason for

this is as follows.

Intuitively, a neuron in a network will be more likely to produce

action potentials as the ratio of its incoming excitatory synapses to

incoming inhibitory synapses increases. This is plausibly a false

intuition. For example, complex feedback pathways and quirks of

spike timing caused by variable delays, may render it false.

Nonetheless, we ensure this ratio is not the cause of any changes in

network dynamics by forcing all neurons in all networks to have

the same in-degree from each class of neuron. For similar reasons,

the same network topology was studied in [62].

We therefore introduce (even valued) kin,ee such that ki,e/e~

kin,ee V i and (even valued) kin,ii such that ki,i/i~kin,ii V i.

Similarly, we define (even valued) kin,ei such that ki,e/i~kin,ei V i

and (even valued) kin,ie such that ki,i/e~kin,ie V i.

Bistable Dynamics in Complex Synaptic Networks
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For all networks considered in this paper, we impose the

constraint that kin is identical for all neurons, and that kin,ee~kin,ie

and kin,ei~kin,ii. Consequently, we have also that

kin,ee=kin,ei~kin,ie=kin,ii.

We label the resultant control or null-hypothesis network as Ac.

Construction of three ‘non-random’ network topologies
We aimed to create networks with constant in-degrees, such that

subnetworks of neurons were highly clustered, but there were short

paths between any pair of nodes in the network.

One way to ensure a highly clustered network is to create a

regular lattice or regular ring lattice topology. Although undirect-

ed ring lattice networks are prevalent in network science due to

their role in the seminal small-world network model of [63],

directed ring lattice networks are less frequently studied, with some

exceptions [19,23,64]. Here we consider a version of a directed

ring lattice, and its conversion to a directed small-world network,

as first introduced in [23].

Forwards-backwards excitatory and inhibitory ring

lattices. We assume NewNi, that Ne=Ni is integer, and that

kin,ee~kin,iewkin,ei~kin,ii, so that kin,ee=kin,ei~kin,ie=kin,iiw1.

Step 1: Create a forwards-backwards ring lattice directed

network for E-nodes, and store this in an Ne|Ne square matrix

Lee:

For all i~1,::,Ne, set aj,i~1 for j~i+1,i+2, . . . ,i+kin,ee=2 (j

indices are modulo Ne).

Step 2: Create a forwards-backwards ring lattice directed

network for I-nodes and store this in an Ni|Ni square matrix Lii:

For all i~1,::,Ni, set aj,i~1 for j~i+1,i+2, . . . ,i+kin,ii=2 (j

indices are modulo Ni).

Step 3: Create kin,ei edges to each E-node from I-nodes. Store

these in an Ni|Ne non-square matrix Lie. We want to resemble

the forwards-backwards ring lattice. Therefore we construct the

network such that E nodes with adjacent indices receive input

from the same I node. Since the E ring lattice is bigger than the I

ring lattice, a set of E nodes with contiguous indices can receive

connections from identical pools of I nodes:

For all i~1,::,Ne, set aj,i~1 for j~w,wz1, . . . ,wzkin,ei=2 and

j~w{1,w{2, . . . ,w{1{kin,ei=2 (j indices are modulo Ni),

where w~t i{1ð ÞNi=Nesz1.

Step 4: Create kin,ie edges to each I-node from E-nodes. Store

these in an Ne|Ni non-square matrix Lei. We want to resemble

the forwards-backwards ring lattice. Therefore we construct the

network such that I nodes with adjacent indices receive input from

the same E node. Like the forwards-backwards ring lattice, we

ensure that E nodes with adjacent indices connect to I nodes with

adjacent indices:

For all i~1,::,Ni, calculate w~(i{1)Ne=Niz1 and set aj,i~1

for j~w,wz1, . . . ,wzkin,ie=2 and j~w{1,w{2, . . . ,
w{1{kin,ie=2 (j indices are modulo Ne).

Step 5: Compose the overall lattice network’s N|N adjacency

matrix as

Al~
Lee Lei

Lie Lii

� �
ð1Þ

Note that this network is highly clustered, which can be readily

quantified using the directed clustering coefficient metric of

Fagiolo [65], as shown in [23].

Directed small-world network with structurally-defined

neuron classes. We begin with the directed ring lattice network

described above, and randomly choose some edges to be removed

and replaced by other edges. Our rewiring algorithm ensures the

in-degree of cells is unchanged, by selecting edges for rewiring, and

then only rewiring the origin node for that edge, while ensuring

the new node of origin is of the same class as the original node of

origin. Consequently, all neurons receive exactly kin,ee excitatory

synapses and kin,ei inhibitory synapses, both before and after

rewiring.

In the classical Watts-Strogatz small-world network [63],

rewiring proceeds by looping over every edge in a deterministic

ring lattice, and rewiring it such that with probability pWS , one of

its nodes is replaced by another randomly selected node.

We considered several rewiring methods, including one where

all edges are considered independently. The most interesting

results, however, were obtained for a method in which, rather than

considering all edges for rewiring, we chose nodes with probability

p2 to have the originating node for all its incoming inhibitory edges

replaced with randomly selected inhibitory nodes. We label the

chosen nodes as Class 2 nodes. Crucially, we ensured that the new

originating node for each incoming edge to the selected nodes was

not connected to the selected node in the original lattice network.

We found different and less interesting outcomes when it was

possible for original edges to be selected for re-inclusion. We then

randomly chose nodes from those not chosen to become Class 2

nodes, with probability p3, to have all their incoming edges

rewired at the originating end. We label the chosen nodes as Class

3 nodes. Nodes that were not chosen in either case are labelled as

Class 1 nodes.

The resulting rewired network, which we label as Ar, can be

expressed in terms of the following decomposition. We begin by

introducing ‘mask’ matrices, M2 and M3 whose columns are equal

to unity for all Class 2 and Class 3 nodes respectively, and zero

otherwise. These mask matrices are constructed such that each

row is identical and given by length N random vectors, V2 and V3,

that each contain N independent outcomes from binary random

variables that are unity with probabilities p2 and p3 respectively.

The entries that are unity are the indices of nodes that are selected

for rewiring.

The resulting adjacency matrix for the rewired network can be

expressed as

Ar~Al{Al0(M2zM3)zAc,20M2zAc,30M3, ð2Þ

where 0 indicates Hadamard (element wise) multiplication. The

matrix Ac,3 is a directed random graph of the same nature as our

null-hypothesis network, Ac, that is, it is random and constrained

only by the fact that all in and out-degrees from and to each node

type (e and i) are constant, since there are no other constraints on

from where Class 3 nodes receive their randomly selected inputs.

The matrix Ac,2, however, is additionally constrained such that its

elements must be zero when corresponding elements of Al are

unity. Note that the first two terms on the left hand side of Eqn. (2)

describe connections to Class 1 nodes, the third term describes

connections to Class 2 nodes and the final term describes

connections to Class 3 nodes. By the definition of the classes, no

similar general statement can be made about connections from

nodes of different classes.

Because both excitatory neurons and inhibitory neurons can be

rewired in either way, our rewiring process creates C~6
structurally-defined neuron classes. These 6 classes, the

labels we give them, and the mean number of nodes in each class,

are summarized in Table 1. With this many classes, there are

E~36 edge classes. Our algorithm ensures that the mean in-

degree to a node in class q from nodes in class r is exactly 0:2 times

the number of nodes in class r. Similarly, the mean out-degree

Bistable Dynamics in Complex Synaptic Networks
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from a node in class r to nodes in class q is exactly 0:2 times the

number of nodes in class r.

Embedded modular excitatory neworks. The final net-

work we studied was a version of the network described by [27], in

which subnetworks or modules of highly clustered excitatory

neurons are present. Two versions of such networks are described

by [27], but we studied only the homogeneous version, in which all

excitatory neurons belong to exactly one non-overlapping module.

The network is characterised by several parameters: the number of

neurons in each excitatory module, nc, the probability of an edge

within a module existing, pa, the probability of an edge that begins

in one module and ends in another existing, pb, the probability

that an edge involving an inhibitory neurons exists, pc, and the

overall mean fraction of E?E connections, pd . The number of

excitatory neuron clusters is Ne=nc. The E?E connectivity within

a module is controlled by the ratio R~pa=pb, subject to the

requirement that panczpb(Ne{nc)~pd. This enables pa and pb

to be derived for arbitrary R such that paƒ1. We label the

adjacency matrix of resulting networks of this category as AM.

Neuron and synapse models and parameters
For the dynamics of neuronal membrane potentials and

synaptic currents, and synaptic communication between neurons,

we used the same model described in [23,37], except that we

modified it in one particular way that improves its biophysical

realism, as well as ensuring more stable dynamics. Specifically, we

replaced the current synapse model of [23,37] with a conductance

synapse model (see, e.g. [55] for the differences, and discussion in

the context of balanced cortical activity).

In our model, the state of each node is given by the membrane

potential, Vk(t), of each neuron, k~1,2, . . . ,N:

tm,k
dVk(t)

dt
~{Vk(t)zIexc,k(t)zIext,k(t)zIinh,k(t): ð3Þ

At t~t�, if Vk(t�)wVthreshold, then Vk(t)?VresetVt[½t�,t�z
trefractory,k�, and neuron k communicates a spike on all its outward

edges. The variables Iexc,k(t), Iext,k(t), and Iinh,k(t) represent

membrane currents resulting from input into nodes, either from

other nodes (exc,inh), or from external to the network (ext).

Communication between nodes via chemical synapses is by

spike propagation (a directed process). The external input is

comprised of spikes that arrive at each neuron according to

independent Poisson random variables with mean v0 spikes per

ms, representing input from many neurons in the thalamus. This is

a slight modification of the way that external spikes are generated

in [23,37]. Here we did not make the Poisson rate, v0, a noisy rate,

but simply generated spikes independently for each neuron

according to a constant Poisson rate.

Spikes are ‘sent’ from node k to all its neighbours in the network

when VkwVthreshold, and when they arrive at a node, after a delay,

tL, they begin to elicit a synaptic current of type a where

a[fexc,inh,extg. The synaptic current in node k due to input

spikes arriving at times tj~t1,t2, . . . ,tm is

Ia,k(t)~
ga,k(Vk,reversal{Vk(t))

ta,d,k{ta,r,k
|

Xm

j~1

u(t{tj{tL) e

{(t{tj{tL)

ta,d,k {e

{(t{tj{tL)

ta,r,k

 !
,

ð4Þ

where u(:) is the Heaviside unit step function. This model of

synaptic response is known as the difference of exponentials

model, and is characterised by distinct rise times, tr and decay

times, td , and in general we use different values depending on the

synapse class, as in [23,37,38].

Note that unlike in [23,37], the current is dependent on the

membrane potential, and the exponential rise and fall times

characterise the change in conductance as a function of time,

rather than of current.

The parameter values we used are listed in Tables 2 and 3, and

are the same as those used in [23,37], except for the synaptic

efficacies, which we modified to be applicable to the conductance

model, and the reversal potentials, which were not used in those

papers.

Local field potential model
As proposed in [37], we model the LFP of the network as

proportional to the sum of the absolute values of incoming

currents to excitatory neurons,

LFP(t)~
XNe

k~1

DIext,k(t)DzDIexc,k(t)DzDIinh,k(t)D: ð5Þ

Note that here since we have conductance synapses, each current,

Table 1. List of structurally-defined neuron classes in rewired
ring lattice, and size of each class for the example of
Ne~4000, Ni~1000, p2~0:075, p3~0:1.

Class label, q Mean node count

E1 NE1~3300

E2 NE2~300

E3 NE3~370

I1 NI1~832:5

I2 NI2~75

I3 NI3~92:5

We define Class 1 neurons as the union of classes E1 and I1 (E and I neurons
with no synapses rewired), Class 2 neurons as the union of classes E2 and I2 (E
and I neurons with all incoming inhibitory synapses rewired at originating end)
and Class 3 neurons as the union of classes E3 and I3 (E and I neurons with all
incoming excitatory and inhibitory synapses rewired at originating end).
doi:10.1371/journal.pone.0088254.t001

Table 2. List of parameter values for neurons in the model.

Nodal Parameters Node type Notation Value

Membrane time constant E tm,k 20 ms

I tm,k 10 ms

Reversal potential E Vk,reversal 70 mV

I Vk,reversal 0 mV

Refractory time E trefractory,k 2 ms

I trefractory,k 1 ms

Threshold potential E and I Vthreshold 18 mV

Reset potential E and I Vreset 11 mV

All parameter values are taken from [37], except for the reversal potentials.
Neurons in the model are indexed such that k~1, . . . Ne when a~E or a~Ext

and k~Nez1, . . . N when a~I .
doi:10.1371/journal.pone.0088254.t002
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and therefore the LFP, depends on each neuron’s membrane

potential, unlike the current synapse model of [37].

Balance analysis
We devised two different tests for balanced excitation and

inhibition. We refer to networks classified as being unbalanced as

being in an ‘upstate’ (due to higher than average firing in some

neurons in this state), and otherwise refer to the network as being

in a ‘downstate’. The first test quantified balance for the overall

network. The second enabled individual neurons to be classified as

being in one of three states.

Method 1: overall network. In order to generate large

sample-sizes efficiently, simulated LFP data obtained using Eqn.

(5) were used, thus avoiding the need to store large amounts of

data from individual neurons. We used a two-pass algorithm

applied to simulated LFP data. First, the simulation data were

smoothed with a 100-ms duration uniform-kernel window. A

baseline window was determined as the window whose mean was

the smallest out of all 100-ms windows. Preliminary upstates were

identified as those successive samples where the 100-ms window

mean was greater than 3 baseline-window standard deviations

above the baseline-window mean. Finally, the second pass

employed a 5-ms duration uniform-kernel window based on the

geometric mean (as the sample LFP distributions were highly

positively skewed). The beginnings and endings of the remaining

preliminary upstates were adjusted using the same criterion but

comparing the baseline mean to the geometric means of the 5-ms

windows. Finally, we computed the geometric mean LFPs and the

durations of the final set of upstates and downstates.

Method 2: individual neurons. For the purposes of

identifying the mechanisms responsible for transitions from

downstates to upstates and upstates to downstates, we also devised

a method for classifying each neuron at any point in time during a

simulation as either being either in a neuron ‘high’, ‘neutral’ or ‘low’

state. As shown in Results, for the rewired ring lattice network a

network upstate generally coincides with many neurons in all three

states, while the network downstate coincides with the majority of

neurons being in the neutral state. A neuron was classified as being

in the low state when its membrane potential was significantly

lower than the mean membrane potential in a random network. A

neuron was defined as being in the high state when it fired

significantly more frequently in a recent interval than in a random

network. A neutral state was the case of neither the high or low

state. Based on observations from a random network, we used a

threshold of Vm~9 mV to determine the low state, and a

threshold of 1 spike in the last 15 ms to determine the high state.

Complex network metrics: participatory motifs
The number of reciprocal connections for each node (i.e. when

a neuron is synaptically connected in both directions with another

neuron) is determined by calculating diag(A2), where the diag(:)
operator extracts the N|1 vector of diagonal entries from a

square matrix of size N.

Counts of the number of particular types of three-edge motifs in

which each node participates can be found by calculating

diag(A1A2A3), where A1, A2 and A3 are three tailored

subnetworks of A.

For example, for feedforward convergent motifs that end in

node k and involve an excitatory edge, Ej?Ek, an excitatory edge

Ej?Im and an inhibitory edge, Im?Ek, we have

A1A2A3~
(Aee)T 0

0 0

" #
0 Aei

0 0

� �
0 0

Aie 0

� �
, ð6Þ

where (:)T is the matrix transpose and the submatrices Aee, Aei

and Aie are submatrices describing subnetworks of the overall

adjacency matrix.

For cyclic motifs that start in node k and involve an excitatory

edge, Ek?Ej , an excitatory edge Ej?Im and an inhibitory edge,

Im?Ek, we have Aee in the first term rather than (Aee)T.

Results

Each neuron’s activity was simulated in a network of N~5000
neurons (Ne~4000 excitatory, Ni~1000 inhibitory) for durations

typically of 5.1 seconds (see figure captions for exceptions), with a

simulation step size of Dt~0:05 ms, and an external Poisson spike

rate of v0~3:0 spikes per millisecond. The input spikes were

generated independently for each neuron. Both the spike-train

realisations, and network realisations were generated multiple

times, to ensure that results were robust to stochastic changes in

both topology and external drive. Since all variables were

initialised to zero, the first 100 ms were discarded for most

figures, in order to avoid biasing results with transient effects.

Four network topologies were compared, each with fixed in-

degree (kin~1000 for all neurons; kin,ee~kin,ie~800 and

kin,ei~kin,ii~200):

1. random, with fixed in-degree;

2. deterministic forwards-backwards ring-lattice;

3. rewired forwards-backwards ring-lattice with p2~0:075 and

p3~0:1, except where otherwise indicated (see Methods and

Table 1).

4. embedded modular excitatory networks with pc~pd~0:2,

R~5, and nc~400, which leads to pa~0:7147 and

pb~0:1429 (see Methods).

Table 3. List of parameters for synapses in the model.

Edge (Synaptic) Parameters Edge type Notation Value

Onset latency All tL 2 ms

Synaptic rise time Ext & E to E ta,r,k 0.4 ms

I to E ta,r,k 0.25 ms

Ext & E to I ta,r,k 0.2 ms

I to I ta,d,k 0.25 ms

Synaptic decay time Ext & E to E ta,d,k 2 ms

I to E ta,d,k 5 ms

Ext & E to I ta,d,k 1 ms

I to I ta,d,k 5 ms

Synaptic efficacy E to E ga,k 0.028

E to I ga,k 0.011

I to E ga,k 0.113

I to I ga,k 0.180

Ext to E ga,k 0.008

Ext to I ga,k 0.014

All parameter values taken from [37], except for the synaptic efficacies, which
were modified to be applicable to the conductance synapse model. Neurons in
the model are indexed such that k~1, . . . Ne when a~E or a~Ext and
k~Nez1, . . . N when a~I .
doi:10.1371/journal.pone.0088254.t003
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For the embedded modular excitatory networks, we found it

necessary for two reasons to choose different parameters than in

[27], where R~2:5, pc~0:5, pd~0:2, Ne~4000 (as studied here)

and nc~80 excitatory neurons in each module, so that there were

50 modules. First, we chose pc to be smaller than in [27], in order

for consistency with the other networks we studied. Second, we

found that both larger modules (and therefore fewer of them), and

higher E?E connectivity within those modules, were necessary to

induce network behaviour significantly different from the null-

hypothesis random network.

Testing for balanced excitation and inhibition
Balanced excitation and inhibition is often quantified in

theoretical work in terms of the variance of the membrane

potential over time in each neuron in a network. We observed that

some network topologies gave rise to non-stationary membrane

potentials, however, and therefore decided that it would be more

revealing to study how the spike rates for each neuron varied over

time and with respect to topology.

Figure 1 shows histograms of the total number of spikes for each

neuron in a single simulation run of five seconds, for single

realisations of each of the four network topologies, with the N
random input spike trains required as input to each neuron in the

model repeated in each topology. In the random and lattice

networks, the mean and maximum spike rates are consistent with

previous simulations of the overall model [37], and with

experimental observations of balanced networks. In particular,

the mean spike rate (approximately 1 spike per second for E

neurons and approximately 4 spikes per second for I neurons) is

significantly less than the gamma frequency oscillations at over

40 Hz for both kinds of neurons, previously observed in both these

networks [23].

However, a raster plot of all spikes in the deterministic ring

lattice (Figure 2) show a spatial correlation structure, with partial

wave propagation and local clusters of higher activity. This is

despite the fact that by design, every neuron projects equally

forwards and backwards around the E and I ring lattices, and the

overall average spike rates are similar to the random network.

There is no such structure for the random network (See Figure S1).

Consequently, it is debatable whether the deterministic ring lattice

should be labelled as a balanced network.

Nonetheless, in contrast to the random network and the ring

lattice, both the randomly rewired lattice, and the network with

embedded modular excitatory subnetworks show spike count

histograms highly inconsistent with balanced excitation and

inhibition, since although some neurons do have firing rates

similar to those in the random network, there are neurons that

have much higher firing rates, despite their identical intrinsic

dynamics and in-degrees. The imbalance is more readily apparent

in Figure 3, which show a raster plots for all neurons in the rewired

ring lattice, from a simulation of duration 5.1 seconds (see also

Figure S2 for raster plots of data from the embedded modular

excitatory network). This figure shows that there are epochs of

time when different subsets of neurons fire at much higher rates

than usual. We term these epochs ‘upstates’ and contrast them

with epochs when no particular subset of neurons is firing at a

higher than average rate for any sustained period, which we term

‘downstates’. More detailed analysis of this network bistability and

its origin follows.

The randomly rewired ring-lattice can robustly exhibit
unbalanced bistable dynamics

For the case of p2~0:075 and p3~0:1, it was found that

bistable states are generated robustly for different realisations of

the rewired lattice network and different realisations of input spike

trains to neurons in the same network realisation. Figures S3, S4,

S5, S6, S7 show plots of the population local field potential (LFP)

for the model proposed by [37] (see Methods). The model LFP

data are shown for five independent runs, for the same single

realisation of the randomly rewired lattice network in comparison

with data for five independent runs for the same single realisation

of the deterministic ring lattice network. We plotted these data

instead of spike rates, as we have found them to be an accurate

predictor of changes in firing rate. It is clear that the ring lattice

network never goes into the highly active state, but the LFP in the

rewired network transiently switches back and forth between

upstates and downstates.

In order to quantify variations in the duration of upstates and

downstates, and the central tendencies of the LFP during those

states, we simulated 500 seconds of neuron activity for a single

realisation of the rewired ring lattice. During this period, we

detected 411 switches from downstates to upstates, and vice versa.

We calculated the duration of each state event, and the geometric

mean LFP during each state event (see Methods). Figure 4 shows

histograms of the durations of each event, and the geometric mean

LFPs of each event.

These data clearly show that the bistable network activity

robustly switches between downstates and upstates. The mean

duration of the downstates was 0.60 seconds, and the mean

duration of the upstates was 0.62 seconds.

Clearly, although there is some dependence on network

topology in terms of variance of the population activity, jumps

between two clearly demarcated states occur in every plot shown

in the Figures S3, S4, S5, S6, S7, and thus we conclude that the

bistable behaviour is robust in the sense that it continues

indefinitely over time, and for different realisations of the network

and/or stochastic external spike inputs.

Different topological classes induce network bistability
In order to determine how random changes to connectivity

in the ring lattice affected the total number of spikes in neurons

in the rewired lattice network, we examined the spike rates for

neurons in each of the structurally-defined neuron classes

(defined in Methods). Figure 5 shows spike count histograms

obtained from the data for the randomly rewired ring lattice

shown in Figure 1(C), broken down by class. These data show

that the main origin of neurons that fire at much higher rates

than those in the random network or deterministic ring

lattice network are Classes E2 and I2, i.e. those that have

had only their incoming inhibitory connections rewired at the

origin.

In order to clarify the source of the imbalance, Figure 6

shows a raster plot where spikes from neurons in each class are

shown in different colours. This figure shows that clusters of

nearby Class E2 and I2 neurons transiently (on a time scale on

the order of a second) fire at high rates, before eventually

turning quiescent again. We can state that these neurons are

‘nearby’ each other, because the original network was a ring

lattice in which neurons having adjacent indexes determines

that those neurons are connected. The cluster of highly active

excitatory neurons corresponds to the same position in the

original ring lattice as that of the highly active inhibitory

neurons.

The observation that Class E2 and I2 neurons are those that are

most active during network upstates is confirmed by Figure 7,

which shows that at p2~0:075 and p3~0:1 (as considered in all

above results), the fraction of E2 and I2 neurons in the neuron
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high state is, on average much higher than that of Class E1 and

Class I1 neurons.

In Discussion, we describe a mechanism for transitions between

network upstates and downstates. This mechanism is supported by

data shown in Figure 8, which shows that transitions from network

upstates to downstates (as quantified by the number of Class E2

neurons in the neuron high state) is preceded by an increase in the

number of Class E1 and I1 neurons in the neuron high state.

Topologically-induced inbalance increases sigmoidally
for p2[½0:05,0:15�

In order to determine the influence of the rewiring parameters

in the rewired ring lattice, we varied p2 with p3 fixed, and vice-versa.

Figure 7 shows the time-averaged fraction of neurons in Classes

E1, I1, E2 and I2 in the neuron high and low states, from 10

realisations of each network for increasing rewiring probabilities.

The data shows that increasing p2 with p3~0:1 leads to a

sigmoidal increase in the fraction of Class 2 neurons that are in the

high state. As the fraction of Class 2 neurons saturates for p^0:1,

the number of Class 1 neurons in the low state also increases

significantly above the benchmark case of no rewiring.

Figure 7 also shows that increasing p3 leads to a decrease in the

overall number of Class 2 neurons in the neuron high state.

Topologically-induced bistability in Class 2 induces
imbalanced input spike-rates in Class 3

It is also noticeable in Figs. 5 and 6 that some Class E3 neurons

also fire at high rates over the same time periods as the localised

cluster of highly active Class E2 and I2 neurons. Given that these

do not occur in clusters, we hypothesised and confirmed that these

cells by chance received a relatively low proportion of their

incoming inhibition from the cluster of high firing Class I2 cells.

Given that we restrict our attention to network upstates, here we

do not classify neurons as being in high, low or neutral states as

done above. Instead, based on average spike rates in the random

network, a neuron was defined as ‘highly active’ if it had more than 4

spikes per second for E neurons and more than 30 spikes per

second for I neurons, within an upstate. Note that the maximum

possible firing rate is determined by the refractory period, i.e. the

maximum rate is 500 spikes per second for E neurons and 1000

spikes per second for I neurons.

Figure 9 shows histograms of the number of incoming synapses

to highly-active and non-highly-active Class E3 neurons, from

highly active Class E2 and I2 neurons. The histograms were

created from the data shown in Figure 3 between 0.5 and

1.5 seconds.

In Figure 9 we introduced the label functional in-degree to describe

in-degrees from neurons that are functionally highly active.

Figure 1. Spike counts in a 5s simulation indicate loss of balance for two complex network topologies. Each subfigure shows the
frequency of neuron spike counts over the 5s simulation for four distinct network topologies. Data for excitatory neurons are shown in the left
column and data for inhibitory neurons in the right column. The first row shows data for the random network, the second row the lattice network, the
third row the rewired lattice network with p2~0:075 and p3~0:1, and the fourth row the network with embedded modular excitatory subnetworks.
The rewired lattice and modular networks each have numerous neurons that spike much more frequently than those in the random or lattice
networks, and also produce many more spikes in total.
doi:10.1371/journal.pone.0088254.g001
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The data in Figure 9 indicate that the number of incoming

synapses from highly active Class E2 neurons has little correlation

with whether Class E3 neurons are highly active. In contrast, the

number of incoming synapses from Class I2 neurons are rarely

greater than 5 for highly active Class E3 neurons, but likely to be

larger than 5 for non-highly-active Class E3 neurons. This suggests

that when Class E3 neurons become active during the time that

clusters of Class E2 and I2 neurons are active, this is caused by the

Class E3 neurons receiving many excitatory spikes from highly

active Class E2 neurons, but insufficient numbers of inhibitory

spikes from highly active Class I2 neurons, instead receiving most

inhibitory synapses from the less active Classes I1 and E3.

Identifying our structurally-defined neuron classes based
on network science metrics

It is of interest to consider how the structurally-defined neuron

classes we constructed in our rewired ring lattice network might be

identified based on connectivity data alone, i.e. based on statistical

features of the adjacency matrix, A. Similar methods will become

applicable to real neuronal connectivity data when sufficient

connectome data are acquired. Obviously many other ways of

classifying neurons according to structure are possible, such as

whether or not they participate in modules.

As was expected based on knowledge of construction of the

network, one simple method for identifying structurally-defined

classes is to combine information about whether a neuron is

excitatory or inhibitory with a count of the number of reciprocally

connected neuron pairs in which each neuron participates.

Figure 10 shows histograms of such data, and a clear separation

between three groups of excitatory neurons and three groups of

inhibitory neurons can be seen. Upon checking against informa-

tion from the network construction, each separate group aligns

perfectly with which neurons were chosen for which kind of

rewiring.

Predicting loss of balance based on network science
metrics

In the previous section we demonstrated that specific structur-

ally-defined neuron classes in our rewired ring lattice network

could be readily identified solely from an adjacency matrix, A. It

is, however, a much more difficult proposition to predict, based on

the adjacency matrix, (i) loss of globally-balanced excitation and

inhibition, due to bistable population rates; and (ii) that different

structurally-defined neuron classes that might be identified should

exhibit different bistable spiking modes. Nonetheless, in this

section we aim to provide some insight into what the topological

Figure 2. Raster plots of simulated spikes for the deterministic ring lattice exhibit spatial correlations. This figure shows each spike
from a single 5.1s simulation with the deterministic ring lattice network. Data for excitatory neurons are shown in A and data for inhibitory neurons in
B. Shown underneath each raster plot is a bar plot of the total number of spikes in each simulation time step (0.05 ms). Shown to the right of each
raster plot are bar plots of the total number of spikes in each neuron over the entire 5.1 seconds. Although the overall spike rates suggest balanced
activity, the spatial correlation apparent in the raster plots are not observed in a random network (see Figure S1). These spatial correlations may help
initiate upstates in the network consisting of a rewired ring-lattice (see Figure 3).
doi:10.1371/journal.pone.0088254.g002
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features of the rewired ring lattice might contribute to this

problem.

Above, we also provided evidence that Class E2 and I2 neurons

provide the largest contribution to high firing rates during

upstates. In the construction of the rewired ring lattice, however,

all excitatory neurons, regardless of whether or not they were

chosen for rewiring, receive and send on average 0:2|NE2~60
excitatory inputs from/to Class E2. Conversely all excitatory

neurons receive and send on average 0:2Ne{60~740 excitatory

inputs from/to either Class E1 or Class E3 neurons. Consequently,

the number of synaptic connections from one class to another class

cannot be the cause of loss of balance and introduction of

bistability. We therefore sought to find some other statistical

metric that may be a predictor of loss of balance.

One possible avenue to this end is to count the number of

positive and negative feedback connections in which each neuron

participates. By feedback we mean directed paths on a graph that

start and end on the same node. Positive feedback paths are those

with an even number of inhibitory edges (including none) and

negative feedback paths are those with an odd number of

inhibitory edges [66].

Positive and negative feedback reciprocal connections do

not alone predict loss of balance. The simplest kind of

feedback path is that involving a reciprocally connected pair of

nodes (see Figure 10). We therefore examined whether Class E2

neurons exhibit differences in the number of positive and negative

reciprocal paths in which they participated. As shown in Figure 11,

Class E2 neurons participate in approximately as many positive

feedback reciprocal connections as Class E1 neurons. They also

participate in many fewer negative feedback reciprocal paths,

however, and indeed, in fewer such paths than do E neurons in a

random network, or than do Class E3 neurons.

These data suggest that the ratio of positive to negative

reciprocal connections may be a predictor of loss of globally

balanced excitation and inhibition. When we tested this hypoth-

esis, however, by creating a network that was random other than

for artificially introducing higher than random ratios of positive to

negative reciprocal connections for some E neurons, we did not

observe that those cells had significantly increased firing rates (data

not shown). This was the case even when the ratio was made as

large as possible within the constraints imposed by not changing

in-degrees. Consequently, reciprocal connectivity on its own

cannot be a predictor of loss of balance in our model, and it is

necessary to consider motifs consisting of at least three nodes or

three edges.

Figure 3. Raster plots for the rewired ring-lattice network show loss of balance due to ‘upstates’ and ‘downstates’. This figure shows
each spike from a single 5.1s simulation for the rewired ring-lattice network with p2~0:075 and p3~0:1. Data for excitatory neurons are shown in A
and data for inhibitory neurons in B. Shown underneath each raster plot is a bar plot of the total number of spikes in each simulation time step
(0.05 ms). Shown to the right of each raster plot are bar plots of the total number of spikes in each neuron over the entire 5.1 seconds. This data
shows that the high spiking in some neurons apparent in Figure 1 is not homogeneous over time, but results from epochs of much higher than
average firing.
doi:10.1371/journal.pone.0088254.g003
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Figure 4. Bistable switching between downstates and upstates occurs robustly in the rewired ring-lattice network. This figure shows
histograms of the lengths and geometric means of upstates and downstates in the rewired ring-lattice network, with p2~0:075 and p3~0:1, from a
simulation of overall duration 500 seconds. A total of 411 switches from down to up and up to down were detected during this time. Plots in the left
column show histograms of the durations of the up and downstates, while those in the right column show histograms of the mean LFP during each
up and downstate. Given that the longest up and downstates are less than 4.5 seconds, the network clearly robustly switches between up and
downstates over a long time period. The mean duration of the downstates was 0.60 seconds, and the mean duration of the upstates was
0.62 seconds, and thus the mean frequency of the bistable state is of the order of one hertz.
doi:10.1371/journal.pone.0088254.g004

Figure 5. Class 2 neurons dominate firing in the upstates of the rewired ring-lattice network. This figure shows the frequency of spike
counts for different structurally-defined neuron classes in the rewired ring lattice, with p2~0:075 and p3~0:1. Data for excitatory neurons are shown
in the left column and data for inhibitory neurons in the right column. The first row shows data for neurons that were not rewired (Class 1); the
second row shows data for neurons rewired only in terms of their incoming inhibition (Class 2); the third row shows data for neurons that had both
incoming excitation and inhibition rewired (Class 3). The simulation for each network lasted for 5.1s, but the first 100 ms were discarded. Clearly it is
the Class 2 neurons that produce the most spikes, but some Class 3 neurons also fire much more frequently than any Class 1 neurons.
doi:10.1371/journal.pone.0088254.g005
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Three-edge inhibition-inducing motifs occur less

frequently for Class E2 nodes. There are three types of

motifs that consist of two edges and three nodes in which a

particular node can participate (those that converge on the node,

those that diverge from the node, and those in which the node is a

relay) [21]. When differences between E and I nodes are

considered, if the reference node is excitatory, then there are

three kinds of convergent and three kinds of divergent motifs, and

there are four kinds of relay motifs. When E and I reference nodes

are considered, there are 20 such motifs in total [67]. There are

many more kinds of motifs that consist of three nodes and three

edges in addition to both E and I nodes. It is difficult to identify

which, if any, of all these motifs are the best predictor that Class

E2 neurons might be a cause of loss of balance. In order to

demonstrate that Class E2 neurons do differ statistically from other

E neurons in motifs that could play a role, however, we have

examined data for two kinds of motifs consisting of three edges and

three nodes, where the reference node is an E node.

The aim was to to identify neurons that are more likely to

become hyperexcitable, due to participating in fewer inhibition-

inducing motifs than other neurons. Both of the mentioned motifs

are likely to lead to the reference node becoming less excited. The

first is the case where the reference node participates as the

convergent node from an E node and an I node, where the E node

also connects to the I node (we label this motif as Ek/I/E?Ek,

where Ek is the reference node). In this case, when the E node fires

it excites the reference node, but can then also indirectly inhibit it,

if the I node also fires as a consequence. This motif has been

Figure 6. Different structurally-defined neuron classes in the rewired ring-lattice network exhibit different spatial correlations. This
figure shows each spike from a single 5.1s simulation with the rewired ring-lattice network, with p2~0:075 and p3~0:1, where data for excitatory
neurons are shown in A and data for inhibitory neurons in B. Red dots are spikes in neurons that were not rewired (Class 1); black dots are spikes in
neurons that had incoming inhibition only rewired (Class 2); blue dots are spikes in neurons that had all incoming synapses rewired (Class 3). The plus
marks in the yellow area to the left of the spike data indicate the indices of all Class 2 neurons (black) and all Class 3 neurons (blue). It is clear that
during upstates the Class 2 neurons that participate are likely to be spatially close together with respect to the ring-lattice topology. However, Class 3
neurons that participate appear to do so as isolated individual cells.
doi:10.1371/journal.pone.0088254.g006
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studied specifically in [62,68] (where it referred to as a feed-

forward inhibition (FFI) motif) in terms of correlations between

activity in the I node and the reference node. The second is a

negative feedback cycle where the reference node connects to an E

node, which connects to an I node, which connects back to the

reference node (we label this motif as Ek?E?I?Ek, where Ek is

the reference node). When the reference node fires, it excites the E

node, which in turn may excite the I node if it fires. Then if the I

node fires, it inhibits the reference node.

Data for both of these motifs are shown in Figure 11. These

data show that Class E2 neurons participate in many fewer

inhibition-inducing motifs of both kinds than do either Class E1

and E3 neurons, or than do E neurons in a random network.

Crucially, both E1 and E2 neurons participate in about the same

number of positive feedback cycles involving three nodes, a much

larger number than for E neurons in the random network

(Figure 11(E)).

Discussion

Complex networks can sustain both balanced and
unbalanced cortical activity

We have shown that simulations of a population of cortical

neurons connected by a complex network topology can exhibit

collective dynamics that have not been observed for a simpler

version of the same model nor for a random network. Specifically,

a randomly rewired ring lattice network with p2~0:075 and

p3~0:1 exhibits unbalanced dynamics (Figs. 1 and 3) and also

robustly, but stochastically, switches between a high firing state,

and a low firing state (Figs. 4 and 7). The average dwell time in

each state is of the order of 0.5 seconds, and thus the average

frequency of the bistable dynamics is about one hertz. This is

despite the complex network maintaining some important

properties of a random network, namely recurrent connections

and overall unchanged mean in and out degrees.

Figure 7. Bistable network activity is observed for p2[½0:05,0:15�, approximately, and is mainly due to high-state Class 2 neurons.
Each data point shows the the time-averaged fraction of neurons in each class that was classified as being in the neuron high state (A and B), or
neuron low state (C and D) for 10 different realisations of the rewired ring lattice network, as the rewiring probabilities were changed. Solid lines
show means from the 10 realisations. Subfigure A shows that increasing p2 from zero leads to a sigmoidal increase in likelihood for Class 2 neurons
being in the high state, with saturation at about 25% at p~0:14. Subfigures B and D show that increasing p3, with p2~0:075, leads to decreasing
numbers of Class 2 neurons in the high and low states. Subfigure C shows the fraction of Class 1 and Class 2 neurons in the low state increases as p2

increases with p3~0:1, consistent with the explanation in the text regarding high state Class I2 neurons depressing nearby Class 1 neurons with their
strong inhibition.
doi:10.1371/journal.pone.0088254.g007

Bistable Dynamics in Complex Synaptic Networks

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e88254



We note, based on Figure 7, that choosing p2~0:075 ensures

the rewired network is in a region where bistability is most

pronounced—small p2 leads to fewer upstates, while larger p2 can

lead to the network transitioning to the upstate and never leaving

it. There is, however, a small range of p2 (approximately

p2[½0:05,0:15�) over which transitions in both directions occur

robustly for sufficiently long simulation durations. We also note

that the effect of increasing p3 from zero decreases the total

number of Class 2 neurons in the neuron high state, and that our

data for the selected value of 0:1 is very similar to the case of

p3~0.

We further demonstrated (see Figure 9 on differences in

‘functional in-degree counts’) that it may also be necessary to

consider the influence of transient functional network topology

induced by bistable population dynamics, such as cortical up and

downstates (see below), on firing patterns in neurons that are not

part of the functional network (i.e. those Class 1 and 3 neurons not

participating in network upstates).

Actual in-vivo recordings reveal that excitation and inhibition is

often (but not always) balanced, and firing rates in individual

neurons are usually low and irregular [41]. These properties have

been observed in numerous simulations based on random

networks. When we previously briefly reported (as part of a

broader study that focussed on gamma frequency oscillations)

simulation results using similar networks [23], however, we studied

a variety of complex network variations not described in the

current paper and many of those did not lead to results very

different from the deterministic ring lattice or random network, i.e.

balance was maintained in most of the variations. We did report,

however, that for a single variation similar to that used here, some

neurons in the network would begin to fire at much higher average

spike rates than those in the random network. The initial aim of

the work reported in the current paper was to understand what

specific kinds of random rewiring did cause such loss of balanced

dynamics.

Our results in the current paper and in [23] together provide

evidence that simulations are unlikely to be capable of accurately

predicting network structure in real neurobiology. They also

suggest, however, that any deviations from the balanced state in-

vivo could plausibly be due, at least partially, to complex network

connectivity features such as the combination of high clustering

with inhomogenous motif participation, as in the specific

structurally-defined classes we used. Until connectomics methods

mature sufficiently to map individual neuron connectivity in large

enough cortical regions it will not be possible to test this

proposition.

The mechanism of robust unbalanced bistable dynamics:
non-local inhibition received by a local cluster of active
excitatory neurons

As shown in Results (see Figures 5, 6, 7 and 8), subnetworks of

Class E2 excitatory neurons in our model (i.e. neurons whose

incoming inhibition is rewired at the originating end, but their

excitatory input is not rewired) fire at high rates during the

network upstate. Our explanation for why Class 2 neurons can

become highly active is as follows (note that we ignore Class 3

neurons in this discussion, as removing them entirely from the

network has negligible impact on bistability).

Each Class 2 neuron receives all its recurrent excitatory inputs

from a local subnetwork of highly connected excitatory neurons.

In contrast, all its inhibitory inputs are from randomly chosen

inhibitory neurons from outside its local vicinity, and the

inhibitory neurons those inputs come from do not form such a

highly connected subnetwork. In the deterministic ring lattice, and

in the downstate of the rewired lattice, if by chance (due to the

fluctuation driven nature of the model), a larger than average

number of excitatory neurons in a local part of the ring fire within

a short space of time, this can lead to transient increased firing in

both local excitatory and inhibitory neurons, that quickly dampens

down in Class 1 excitatory neurons due to feedback inhibition.

Such an event, however, has a different impact on Class 2

neurons, giving rise to the upstate in the following sequence, which

is consistent with data shown in Figures 6 and 7:

N Step 1: If enough Class E2 neurons in the local vicinity of a

fluctuation-driven rise in excitation are recruited to spike

(perhaps due to spatially correlated firing, as shown for the

unrewired ring lattice in Figure 2), then positive feedback

mechanisms keep them firing, since these neurons do not

receive any local inhibition.

N Step 2: The onset of the neuron high state in these Class E2

neurons triggers the neuron high state in local I2 neurons,

which are also not inhibited due to receiving no local

inhibition.

N Step 3: These high firing local I2 neurons quench all spiking

activity in local E1 and I1 neurons, putting them into the

neuron low state, and also in non-local E2 and I2 neurons, and

therefore the only avenue for inhibition to come back to the

high state neurons is from nonlocal I1 neurons, and the rate of

this inhibition is typically too slow to dampen spiking.

Note that non-local E1 and I1 neurons are hardly affected by

the transition to the network upstate, and continue to fire at rates

Figure 8. Transitions from upstates to downstates occur
following higher than average excitation of E1 and I1 neurons.
In the text, the transition from network upstates to network downstates
is explained in terms of higher than average non-local inhibition to high
state neurons leading to termination of the network upstate. This figure
shows simulation data from the rewired ring lattice (with p2~0:075 and
p3~0:0). Within a single simulation of duration 250 seconds, 139 up-to-
down transition events with at least 75 ms between network upstates
were detected. The average number of high state neurons of each kind
were calculated for 75 ms before and 20 ms after the transition, and are
shown on the figure after normalising by the maximum average
number within the time window. The data shows that termination of
the upstate (indicated by a rapid drop in the number of E2 neurons in
the neuron high state) is preceded by an increase in the number of E1
and I1 neurons in the neuron high state, as described in the text.
doi:10.1371/journal.pone.0088254.g008
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comparable to the lattice network, and the downstate in the

rewired network. Note also that we verified the assertions in Steps

2 and 3 by analysing the mean conductances of all classes of

neuron. During an upstate, the mentioned local E1 and I1

neurons, and non-local E2 and I2 neurons all enter a state where

they have a much higher than average inhibitory conductance, so

that they are very unlikely to fire. This entry to the neuron low

state can be seen in Figure 6, where there are few, if any, spikes for

Figure 9. Network upstates create a temporary functional network in which some Class 3 neurons receive an imbalance of
excitation and inhibition. This figure shows the ‘functional in-degree’ from different neuron classes to active neurons, from simulations of the
rewired ring lattice (with p2~0:075 and p3~0:1). The shown data are from the highly active period between 0.5 and 1.5 seconds shown in Figures 3
and 6. Each subfigure shows the frequency with which both active and inactive Class E3 excitatory neurons (i.e. those that had all incoming synapses
rewired), have different numbers of incoming synapses from active Class E2 (subfigure A) and Class I2 neurons (subfigure B; those neurons that had
incoming inhibition only rewired). In contrast, in the network downstate, the entire network is included in a functional network, and all neurons have
identical numbers of excitatory incoming connections (800) and inhibitory incoming connections (200).
doi:10.1371/journal.pone.0088254.g009
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E1 and I1 neurons in the location of network upstates, and

similarly in E2 and I2 neurons outside the location of upstates. It is

also consistent with Figure 7, which shows an increase in the

number of neurons in the neuron low state as the number of high

state neurons increases.

We now consider the transitions from the network upstate to the

network downstate. Our simulation data (Figure 8) suggest that

most such transitions are preceded by a transient (driven by

fluctuations in external input) increase in excitatory spiking by

Class E1 neurons that are not local to the highly active Class 2

neurons. This indicates the following mechanism:

N Step 1: During an upstate, some E1 and I1 neurons that are

nonlocal to the high state neurons begin to fire transiently.

N Step 2: The firing of these non-local I1 neurons can send

higher than average non-local inhibition to both the high state

E2 and I2 neurons. The transient firing in non-local E1

neurons does not significantly affect the E2 and I2 neurons,

since it was only the incoming inhibitory connections that were

rewired in Class 2 neurons to originate from non-local regions.

N Step 3: If this additional inhibition is sufficiently large, it

reduces the membrane potential of high state Class E2

excitatory neurons, thus shutting down the network upstate.

Following the transition from a network upstate to a downstate,

the network is in the same state as the lattice network. Hence, the

same conditions exist that gave rise to the first upstate.

Overall, in our model it is the interaction between clustering,

and non-local inhibition that gives rise to bistable population

dynamics. As shown in Figure 2, clustering alone is insufficient to

give rise to bistability. The fact that the rewired network was

initially a ring lattice results in the possibility that the upstate can

be triggered at many different locations around the ring, albeit

biased by where Class 2 nodes are most densely located. This

suggests a general principle that might be replicated in modular or

other kinds of spatially clustered networks involving both long and

short range connections.

Our findings on bistable population activity arising from

topological network changes are superficially similar to those

reported in [27], where similar bistable dynamics were observed in

a network akin to the fourth network topology (embedded

modular) that we studied. We did not, however, observe robust

bistable dynamics for the embedded modular network. As shown

in a typical example in Figure S2, after some transient initial

bistability, activity in the modular network switches to a sustained

highly active state, and does not switch back to the low firing state.

A possible explanation for the lack of robust sustained bistability

in the embedded modular network in our study may be that we

used several different modelling assumptions in comparison with

the models of [27]. First, the neurons in their model were activated

by a constant supratheshold voltage ‘bias’, which is equivalent to a

constant injected current. These were chosen randomly for each

neuron, resulting in a heterogenous population of neurons, where

there is a range of firing rates in the absence of recurrent feedback.

In contrast, individual neurons of each type in our model are

identical, and each has an identical firing rate in response to noisy

external drive in the absence of recurrent feedback. Second, their

model considers a modular network only for excitatory neurons,

with a clustering coefficient close to that of a random network, and

all other connectivity is random, whereas ours considers very high

clustering of both excitatory and inhibitory neurons. Third, and

most crucially, we introduce structurally-defined neuron classes

into our network model such that different classes co-exist in a

local cluster, and these do not exist in [27].

Figure 10. Structurally-defined neuron classes can be identified mathematically from the adjacency matrix. This figure shows
histograms of the number of reciprocal connections in which each neuron participates, for the N~5000 rewired ring lattice (with p2~0:075 and
p3~0:1) used to obtain the data shown in Figures 1, 3 and 6. There is an obvious classification of these data into three kinds of structurally-defined
neuron classes for both excitatory and inhibitory neurons. Indeed, the classification corresponds exactly to the Class 1, Class 2 and Class 3 neurons
created during the rewiring procedure.
doi:10.1371/journal.pone.0088254.g010
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Figure 11. Different structurally-defined neurons participate in different numbers of two and three edge motifs. This figure shows (for
the rewired ring lattice with p2~0:075 and p3~0:1) histograms of the number of positive (A) and negative (B) feedback reciprocal connections for
excitatory neurons; two types of negative feedback node-referenced three-synapse motif count histograms for excitatory neurons (C) and (D); and
the all-excitation positive feedback motif count distribution for excitatory neurons (E). This data illustrates that although Class E2 neurons participate
in as many positive feedback connections as E1 neurons, Class E2 excitatory neurons also participate in significantly fewer inhibition-inducing
connections than Classes E1 and E3, and than E neurons in the random network. The notation Ek?E?Ek indicates that the motif is one where a
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A likely reason why we did not observe bistability in the

embedded modular network, and only loss of balanced excitation

and inhibition, is that after the transition to the upstate within a

module, all excitatory cells in the module participate in the

upstate. Although this excitation is spread to all inhibitory

neurons, the extent of excitation in a module is too great for

inhibition to damp down. It is possible that if we biased our

excitatory neurons by including a random spread of membrane

potential threshold values, in order to make our neurons more like

those of [27], we would see see bistability induced only in neurons

with lower thresholds.

When comparing the results of [27] to those of our rewired

lattice network, the second and third differences between the

models give rise to bistability with different characteristics, since

we found that only our Class 2 neurons become highly active;

these neurons do not differ in their intrinsic dynamics, but only in

the distribution of the structural motifs in which they participate.

Can complex network metrics predict transitions
between upstates and downstates?

We found that reciprocal connectivity alone cannot predict loss

of balance in the rewired ring lattice, because artificially altered

reciprocal connectivity in an otherwise random network does not

lead to loss-of-balance/bistability. In the context of the mechanis-

tic explanation above, this is not surprising. We have also shown

for this network that Class E2 and I2 neurons may fire at high

rates during upstates (see Figs. 5 and 6), and that Class E2 neurons

participate in some kinds of inhibition-inducing three-edge motifs

many fewer times than do neurons in a random network, or than

do Class E1 or E3 neurons (Figure 11). We suggest, however,

based on the reciprocal connectivity result, and the bistability

mechanism, that it is unlikely that contriving a random network

with artificially altered three-edge motif counts for some excitatory

neurons will result in loss of balance.

It is, however, likely that the rates of transitions from upstates

to/from downstates (which determine the mean dwell time of each

state) is related to the motif participation counts for Class E2 and

I2 neurons. A potentially feasible approach is to study the

correlations in spiking activity induced by our different classes just

prior to a transition. Indeed, our mechanistic explanation above

suggests studying the influence of uncorrelated negative feedback

in E2 neurons in a manner similar to work in [69]. It may well be

the case that mathematical theory regarding the relationship

between structural motifs and spike correlations introduced by

[19,62,67,68,70] can be generalised to the complex network case.

Additionally, bistable dynamics have been studied mathematically

in balanced networks similar to that studied here but without

complex network topology [71]. It is possible that this theory could

be adapted to networks with high, but inhomogeneous, clustering,

like that in our model.

We have also briefly shown that what we call functional in-

degree is a predictor of unbalanced activity in Class 3 neurons

(Figure 9). This suggests that studying functional networks that

exist only transiently may be a useful tool in predicting the

influence of topology on dynamics.

Any suitable predictor of loss of globally balanced excitation and

inhibition and bistable population activity should enable construc-

tion of a network in which features that produce loss of balance

exist, but which is otherwise random. Finding a suitable metric,

and network construction algorithm is left for future work, but we

note that an approach of this kind was studied by [68] in terms of

how increased FFI motifs embedded in a random network tended

to have a stabilising influence. Here we found that excitatory

neurons that participate in fewer FFI motifs within a complex

network are most active.

The subnetwork of excitatory neurons and their recurrent

synapses created by [27] is, by construction, a prototypical

modular network like that of [72], since every excitatory neuron

belongs to a ‘community.’ Each neuron within a distinct module

or community connects with greater probability to neurons within

that community than to those outside it. In this network there is

only one class of structurally-defined excitatory neuron, and one

class of structurally-defined inhibitory neuron, in the sense that we

use this term in this paper. It is, of course, possible to classify all

excitatory neurons in each module as belonging to a structurally-

defined class, but this classification can then not be carried out by

analysing individual neurons and their incoming and outgoing

links in isolation from the rest of the network.

We also point out that we do not have structural modularity in

our network. The standard network science definition of

modularity [73], is such that groups of neurons are assigned to a

module if the connection density between the neurons in that

module is significantly greater than the connection density

amongst edges into or out of the module. As mentioned above,

in the rewired ring lattice, the mean degree into a node of any

class, from a given class, is always 20% of the size of the given

class. A similar constraint holds for out-degree.

Could clustering and inhomogeneous motif participation
cause empirically-observed cortical ‘up and down’ states
or hyperexcitability?

It has been proposed previously that connectivity is likely to be a

useful means of classifying neurons when it comes to understand-

ing their role in information processing [2]. Given that we have

found that neuron models that are identical in terms of their

membrane and synaptic dynamics can be grouped into classes

entirely based on structural connectivity differences (and these

different classes exhibit differences in their firing characteristics)

provides strong support to this proposition.

It has further been suggested [2] that disorders in connectivity

topology (‘connectopathies’) may lead to brain disorders, such as

epilepsy. The results we report here lead us to speculate that

transient or bistable loss of E-I balance in neuronal dynamics can

lead to hyper-excitation that manifests itself as epileptic seizures.

Even though the rewired ring lattice is unlikely to exactly

resemble real neocortical structure, there is strong experimental

evidence for clustering among excitatory neurons, as discussed by

[27], and predictions of clustering based on spatial considerations

have arisen from theoretical work [74].

It has also been reported that small groups of highly active

neurons can dominate firing within neocortical networks [75]. Our

simulation results are consistent with these experimental findings,

in the sense that our Class 2 neurons are those that participate

most in the upstates, but form only a small percentage (7.5%) of

the network, and thus they form a small subnetwork of highly

active neurons. It is possible that the results of [75] could also be

explained in terms of structurally-defined neuron classes akin to

those in our model, were the necessary connectivity data available.

reference neuron (Ek) sends synaptic input to an excitatory neuron, which also sends synaptic input to the reference neuron. Notation of the form
Ek/I/E?Ek indicates that the motif is one where a reference neuron receives input from a synapse with an inhibitory neuron, which receives
input from a synapse with an excitatory neuron, which also sends synaptic input to the reference neuron.
doi:10.1371/journal.pone.0088254.g011
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Our results are also reminiscent of so called cortical up and

downstates [76], and it is possible that more complete under-

standing of their origin and function will require studies of whether

they may arise from the dynamics of specific structurally-defined

neuron classes and complex network connectivity that depends on

node and edge classes. Various theories about both origin and

function exist [77], but none, to our knowledge are based on

structurally-defined neuron classes.

Possible origins of heterogenous connectivity structure
Synaptic connectivity between neurons is known to vary over

time due to structural plasticity [78]. This could be one

mechanism by which complex structure like that discussed in this

paper might arise. Another possibility is that it is also known that

synaptic efficacies vary greatly. For example experimental findings

on the distribution of efficacies has been fitted to a power-law [51],

meaning that most efficacies are small and only a small number

are large. Given this heterogeneity in connectivity, it is plausible

that a model with equivalent dynamics to that studied here could

be devised that has random connectivity, but heterogenous

efficacy distributions, such that the larger weights are distributed

in a complex manner different from the actual connections.

Supporting Information

Figure S1 Raster plot of spikes in a single 5.1s
simulation for the random network. Data for excitatory

neurons are shown in A and data for inhibitory neurons in B.

Shown underneath the raster plots are bar plots of the total

number of spikes in each simulation time step (0.05 ms). Shown to

the right of the raster plots are bar plots of the total number of

spikes in each neuron over the entire 5.1 seconds.

(TIFF)

Figure S2 Raster plot of spikes in a single 5.1s
simulation for the embedded modular network. Data

for excitatory neurons are shown in A and data for inhibitory

neurons in B. Shown underneath the raster plots are bar plots of

the total number of spikes in each simulation time step (0.05 ms).

Shown to the right of the raster plots are bar plots of the total

number of spikes in each neuron over the entire 5.1 seconds.

(TIFF)

Figure S3 LFP for networks realisation 1. Data for the

model LFP at each time step of a simulation, for five independent

simulation runs, for the same single realisation of a network. Green

traces show data for the rewired lattice and blue traces show data

for the random network. Red data shows data for a deterministic

ring lattice—this data is the same for each plot. The same 5

realisations of input spikes to each neuron were applied in each

network type, and the data for the 5 input spike train realisations

are shown in the subfigures.

(TIFF)

Figure S4 LFP for networks realisation 2. Data for the

model LFP at each time step of a simulation, for five independent

simulation runs, for the same single realisation of a network. Green

traces show data for the rewired lattice and blue traces show data

for the random network. Red data shows data for a deterministic

ring lattice—this data is the same for each plot. The same 5

realisations of input spikes to each neuron were applied in each

network type, and the data for the 5 input spike train realisations

are shown in the subfigures.

(TIFF)

Figure S5 LFP for networks realisation 3. Data for the

model LFP at each time step of a simulation, for five independent

simulation runs, for the same single realisation of a network. Green

traces show data for the rewired lattice and blue traces show data

for the random network. Red data shows data for a deterministic

ring lattice—this data is the same for each plot. The same 5

realisations of input spikes to each neuron were applied in each

network type, and the data for the 5 input spike train realisations

are shown in the subfigures.

(TIFF)

Figure S6 LFP for networks Realisation 4. Data for the

model LFP at each time step of a simulation, for five independent

simulation runs, for the same single realisation of a network. Green

traces show data for the rewired lattice and blue traces show data

for the random network. Red data shows data for a deterministic

ring lattice—this data is the same for each plot. The same 5

realisations of input spikes to each neuron were applied in each

network type, and the data for the 5 input spike train realisations

are shown in the subfigures.

(TIFF)

Figure S7 LFP for networks realisation 5. Data for the

model LFP at each time step of a simulation, for five independent

simulation runs, for the same single realisation of a network. Green

traces show data for the rewired lattice and blue traces show data

for the random network. Red data shows data for a deterministic

ring lattice—this data is the same for each plot. The same 5

realisations of input spikes to each neuron were applied in each

network type, and the data for the 5 input spike train realisations

are shown in the subfigures.

(TIFF)
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