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Abstract

When we look at the world—or a graphical depiction of the world—we perceive surface materials (e.g. a ceramic black and
white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g.
clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and
partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to
understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual
representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of
previous experimental and modelling work on layered representation, however, a unified computational model of key
perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and
surface appearance—based on a boarder theoretical framework called gamut relativity—that is consistent with these
demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation
and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching
performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model
thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface
materials, illumination and atmospheric media, which can be exploited in computer graphics applications.
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The human visual system manifests the remarkable capacity to

identify surface materials from the complex patterns of light

reaching the eye [1,2]. This capacity is exploited in the computer

graphics industry to create convincing renderings of surface

materials based on physical models of ‘light transport’ [3–5]. The

problem of understanding how the visual system represents surface

materials (e.g. ceramic tiles or human skin), and related visual

properties of illumination (e.g. shadows, shading and highlights)

and atmospheric media (e.g. clouds, fog and smoke), is thus of

immense practical importance in the field of computer graphics.

Models of physical light transport attempt to capture the

immensely complicated ways in which physical surfaces and

atmospheric media reflect, refract, scatter and transmit light [3–5].

The net result is that the light patterns reaching the eye from a

rendered image consist of a mixture of physically modelled causes.

Light ‘reflected’ from a rendered transparent surface using a

standard a-blending model, for example, is combined with light

‘transmitted’ through the surface from the background [6]. Thus,

even simple diffuse shading and/or blending models produce

images that the human visual system parses into layered

perceptual representations, one seen through another, as illustrat-

ed by the striking perceptual effects shown in Fig. 1. How the

human visual system parses such images into separate material,

illumination and atmospheric layers remains a challenging

problem in both human vision science and computer vision

science.

In this article, we study the ‘mid-level’ computations that give

rise to perceptual layering and related surface appearance

properties, such as lightness and transparency, in images generated

using simple diffuse shading and a-blending models [1,6–34]. Such

mid-level computations evolved to process light associated with

real physical sources, but in this article we will consider the more

circumscribed issue of how the visual system represents surface

materials, illumination and atmospheric media associated with

graphically rendered physical sources. In this respect, the focus of

this article will be the analysis of rendered images that elicit

decomposition into surface and shadow/atmospheric layers

(perceptual layering), rather than real physical scenes, which are

known to sometimes elicit different perceptual interpretations

when compared to rendered images [35–37]. We will also leave for

future work the complex issue of how to model surface appearance

in images that are difficult to interpret in terms of globally

consistent perceptual layers, such as images containing certain

types of gradients [37–39].

The perceptual effects shown in Fig. 1 are known as the

Adelson checkerboard effect (Fig. 1A) [1] and the Anderson-
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Winawer effect (Fig. 1B) [12,13], respectively. In both effects,

figure regions having the same point-to-point luminance distribu-

tion are perceived as having very different lightness due to

variations in the surrounding ‘ground’ regions, which induce the

impression of surfaces seen through different types of ‘overlays’. In

the Adelson checkerboard effect (Fig. 1A), grayish background

checks are seen through a shadow cast over part of the display,

whereas in the Anderson-Winawer effect (Fig. 1B), blackish or

whitish chess pieces are seen through a cloud bank or wall of

smoke that varies in its transparency at different points.

The demonstrations shown in Fig. 1 raise a number of

important modelling challenges. First and foremost, a computa-

tional model is needed to explain how the human visual system

represents different sources of physical variation—such as surfaces,

illumination and atmospheric media—in terms of layered percep-

tual representations. Although much experimental and modelling

work has been done on the topic of layered representations, and

their relevance to surface material perception, a unified compu-

tational model of key perceptual layering effects is still lacking

[1,6–18,26–34,39]. Second, the model must address the difficulty

that variations in illumination intensity, such as shadows and

shading, are associated with multiplicative changes in registered

luminance, whereas variations in the transmittance of physical

surfaces and atmospheric media are associated with additive

changes in luminance [8,12,13,24,39]. Third, the model needs to

incorporate an understanding of the manner in which the visual

system represents the transparency of rendered physical surfaces

and atmospheric media [6,9–13,15–18,29,32]. Fourth, the prob-

lem of separating an image region into perceptual layers is closely

related to the problem of determining which surface regions

appear in plain view and which appear through the transparent

overlay, and thus requires an analysis in terms of figure-ground

relationships [12,13,40].

Demonstrations of the sort illustrated in Fig. 1 also indirectly

highlight the importance of considering stimulus- and task-driven

constraints on surface appearance [37,39,41–50]. This is because

stimulus- and task-driven constraints play a critical role in

determining whether the visual system computes one or more

perceptual layers [12,13]. In this article, we link stimulus- and task-

driven constraints on the computation of perceptual layers to key

perceptual matching data on the role of stimulus- and task-driven

constraints on brightness (luminance) and lightness (reflectance)

perception, respectively [25,30,41–51]. Of particular importance

is the problem of teasing apart the complex relationship between

the computational processes underlying different aspects of

brightness and lightness perception. It is well known, for example,

that human subjects adopt different strategies to perform matching

tasks (e.g. brightness and lightness) under different stimulus

conditions [41–45,48,49].

The following section of the article briefly reviews several key

theoretical concepts underlying our model. The ‘‘Model’’ section

then provides the detailed descriptions of empirical studies,

mathematical equations, and computational specifications that

are needed to explain perceptual data concerning the demon-

strations shown in Fig. 1. The ‘‘Results’’ section provides

conceptual analyses and computer simulations of the model

under various stimulus- and task-driven constraints, demonstrat-

ing the model’s capacity to quantitatively predict perceptual data.

The ‘‘Discussion’’ section briefly explores some broader implica-

tions of the theoretical framework on which the current model is

based.

The model we present is based on a recently introduced

theoretical framework known as gamut relativity [52]. The

interested reader can find detailed background information in

several recent publications [52–57].

Blackness and whiteness are orthogonal dimensions
Our model explains how the visual system represents surfaces

independently of variations in either illumination intensity (e.g.

shadows; Fig. 1A) or atmospheric transmittance (e.g. clouds;

Fig. 1B) in terms of computations performed in a blackness-
whiteness coordinate system (Fig. 2). Roughly speaking, the

whiteness coordinate value (y) increases with both increasing

luminance and positive contrast magnitude, whereas the black-

ness coordinate value (w) increases with decreasing luminance and

increasing negative contrast magnitude. Blackness and whiteness

are conceptualised as orthogonal dimensions of a two-dimen-

sional (2-D) perceptual space [52–54] that can be ‘sliced’ in

different ways, depending on stimulus conditions and task

constraints.

Brightness and lightness are relative concepts
When illumination is perceived as uniform across a scene or

object, luminance values corresponding to surfaces with different

physical reflectance values are mapped to points falling on a single

straight line (‘slice’) in blackness-whiteness space, termed the

standard gamut line (Fig. 2A). We associate this mapping with the

notion of ‘brightness’ perception. When illumination is perceived

as non-uniform, by contrast, luminance values corresponding to

different physical surfaces in bright illumination are mapped to

points falling on the standard gamut line, whereas luminance

values corresponding to different physical surfaces in dark

illumination are mapped to points falling on one or more

comparison gamut lines (Fig. 2B). The shifting of points from

the standard to the comparison gamut line thus compensates for

Figure 1. Two dramatic effects of perceptual layering and
surface appearance. (A) Adelson checkerboard image [1] adapted
from http://web.mit.edu/persci/people/adelson/checkershadow_
illusion.html under the Creative Commons Attribution License: Checks
labelled A and B (depicted as appearing in bright and dim illumination)
have the same point-to-point luminance but check B appears light gray
and check A dark gray. Checks B and D are seen through a ‘transparent
shadow layer’, whereas checks A and C are seen in ‘plain view’ (without
an accompanying transparent layer). Variations in illumination intensity
level produce multiplicative changes in the luminance values depicted
as being reflected from the checks in bright and dim illumination. (B)
Anderson-Winawer effect reprinted from [12]: Chess pieces in the upper
and lower rows have the same point-to-point luminance but appear
white and black, respectively. The white pieces are seen through a
blackish transparent ‘atmosphere’ whose transparency varies across
space, while the black pieces are seen through a transparent whitish
atmosphere. Variations in atmospheric transmittance levels produce
additive changes in the luminance values depicted as being reflected
from the black and white chess pieces. This article develops a model
that aims to quantitatively predict surface lightness through transpar-
ent layers, irrespective of the physical source of the transparent layer.
doi:10.1371/journal.pone.0113159.g001
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the difference in illumination levels between bright and dark.

Vertically aligned points sharing the same blackness coordinates

but falling on different gamut lines thus correspond to surfaces

with the same physical reflectance [52]. We associate this mapping

with the notion of ‘lightness’ perception.

In our model, then, it is the relationships between points lying

on the standard gamut line—or between points lying on the

standard and comparison gamut lines—that determine the

properties characterising what we know as ‘brightness’ (Fig. 2A)

and ‘lightness’ (Fig. 2B) perception, respectively. This emphasis on

relationships between points lying on gamut lines is also the origin

of the term ‘gamut relativity’.

The reflectance-to-lightness mapping is relative
This distinction between our model and alternative models has

a number of important correlates. Firstly, as blackness-whiteness

space is two-dimensional, invariance along one dimension

obviously does not imply invariance along the other dimension,

meaning that surfaces sharing the same blackness coordinates

needn’t appear identical. Secondly, blackness coordinates vary

from zero to some arbitrary upper bound, so do not themselves

represent a range of ‘lightness values’ varying from black to white.

Thirdly, different gamut lines represent different unique slices of

blackness-whiteness space, with each line bookended by different
shades of black and white. There thus exists no absolute mapping

from reflectance to gray shades in gamut relativity—in the sense of

an absolute scale of lightness values—and this proposal is

consistent with a great deal of perceptual data that cannot be

explained by classical approaches [52]. In short, our model

underlies a more subtle relative account of the reflectance-to-

lightness mapping than the classical absolute (scalar) reflectance-

to-lightness mapping [25].

Luminance and contrast sum vectorially to facilitate
figure-ground perception

The proposed illumination-shift process described above

requires the visual system to compute the local luminance

associated with each surface region [52] (and be capable of

discriminating illumination edges from reflectance edges

[22,25,46,58]). Another key idea in gamut relativity, then, is that

luminance, in addition to contrast, plays a central role in

determining surface appearance. This idea—as an anonymous

reviewer of this article states—‘‘flies against what we currently

know about vision...current wisdom is that vision is not sensitive to

luminance, only contrast.’’ Our previous modelling successes—

combined with the new analyses presented in this article—suggest

that a modest revision to this conventional wisdom may be in

order. In particular, we have previously shown how luminance

and contrast can be represented as vectors that sum in blackness-

whiteness space [54]; the proposed summation of luminance and

contrast is consistent with recently reported cortical physiological

data [59,60]. Here we show how this vector summation can

facilitate perceptual layering and figure-ground perception by

operating asymmetrically on figure and ground image regions (see

Results).

Luminance is also important for ambient illumination
perception

The sensitivity to luminance in our model also overcomes a key

limitation of approaches based solely on contrast [58,61]; namely,

how is it that we readily perceive variations in ambient (global)

illumination? Psychophysical experiments showing that humans

can distinguish light levels in Ganzfeld stimuli (i.e. containing no

contrast) testify to the sensitivity of the visual system to global

luminance [62,63]. Many classical and recent physiological studies

[64–75] have, furthermore, revealed that both local and global

luminance signals are present at early levels of both the cat and

Figure 2. The representation of brightness and lightness in gamut relativity. (A) Surface regions represented under the assumption of a
single illumination level and a planar arrangement of surfaces, such as co-ordinates sH~½wH ,yH � and sL~½wL,yL�, fall on a negatively sloped ‘gamut’
line in blackness-whiteness space, where H[f1,2,3:::,5g and L[f1,2,3:::,5g denote the columns of relatively higher and lower luminance squares
depicted in the insets, respectively. (B) Surface regions represented under the assumption of two different illumination intensity levels and a
corrugated arrangement of surfaces, such as co-ordinates sH~½wH ,yH � and cL~½w’L,yL�, fall on two different gamut lines (termed standard and
comparison, respectively). The inset figures in (A) and (B) perceptually illustrate how identical sets of luminance values can be parsed according to the
assumptions of uniform or variable illumination levels, respectively. In (A), pictorial image cues indicate that the bright and dark columns of squares
(sets H and L) lie in the same depth plane, favoring the assumption of uniform illumination over all squares [25,89,90]. Horizontal pairs of squares are
thus mapped to different blackness co-ordinates, wH=wL. As blackness co-ordinates constitute the computational correlate of diffuse reflectance in
gamut relativity, squares in sets H and L appear to have different diffuse reflectance. In (B), the same sets of luminance values shown in the two
columns in (A) are now pictorially depicted to lie in different depth planes (the repetition of rows here enhances this depiction), favoring the
assumption of variable illumination [8,25,85,89,90]. Horizontal pairs of squares in this arrangement are mapped to the same blackness co-ordinates,
wH~w’L, and thus appear to have the same diffuse reflectance. The horizontal vector depicts the shift of points from standard to comparison gamuts,
which compensates for the presumptive illumination difference between sets H and L. Figure modified with permission from [56].
doi:10.1371/journal.pone.0113159.g002
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primate visual systems—although luminance signals are typically

weaker than contrast signals, as documented in the classical early

physiological studies of [76,77]—and recent studies have empha-

sised the functional importance of these signals in shaping the ON

and OFF responses of visual cortical neurons [59,60,70,73,74,78–

82]. Our model emphasises and interprets the available evidence

concerning physiological luminance and contrast coding in terms

of the relative contributions of these signals to surface appearance;

see [52,54] for further discussion.

Gamut relativity is versatile and generalises effectively
A significant conceptual advantage of the gamut relativity

framework is its ability to account for a wide range of perceptual

phenomena in a parsimonious manner [6,8–

13,22,23,25,29,32,83]. In addition to specifying brightness and

lightness, for example, gamut relativity can also be used to specify

the transparency level of a partially transmissive foreground

surface or medium. The key idea is that the transparency level of

the foreground layer is given by the distance between the standard

and comparison gamut lines [55]. The equations of gamut

relativity quantitatively explain some puzzling aspects of key

demonstrations in classical studies of transparency perception [55],

such as the observation that whitish transparent layers appear

more opaque than blackish layers with the same physical

transmittance [11,32]. This observation has proven difficult to

explain in terms of classical transparency models [6]. Gamut

relativity has also been extended to the domain of specularly

reflecting surfaces to provide a unified account of layered

perceptual representation in lightness and gloss perception [56].

Existing gamut relativity models need to be combined
The model presented in this article represents a unification of

several previously published gamut relativity models that have

dealt separately with aspects of brightness/lightness perception

[52,54], lightness/transparency perception [55] and lightness/

gloss perception [56], respectively. The latter two studies

incorporated only luminance signals in the implemented models

(e.g. the model depicted in Fig. 2). Here we show how these

previous models can be combined—in a way that incorporates

both luminance and contrast—in order to predict data on surface

lightness perception through generically defined transparent

overlays, whether they be associated with cast shadows, surface

shading, atmospheric media or transmissive physical filters. The

model goes beyond previous work by (a) qualitatively explaining

some striking effects of perceptual transparency, figure-ground

separation and lightness perception, (b) quantitatively accounting

for the role of stimulus- and task-driven constraints on brightness/

lightness matching performance, and (c) unifying two prominent

theoretical frameworks for understanding surface appearance (see

Discussion). The model thus provides the first quantitative account

of perceptual data on the role of stimulus- and task-driven factors

in brightness and lightness perception, in terms of a general theory

of perceptual layering and surface appearance [25,30,41–52].

Materials and Methods

Perceptual data to be modelled
To motivate the computational modelling, consider the Adelson

checkerboard effect (Fig. 1A), which is itself the product of two

subtle image manipulations. Firstly, checks A and B—which have

the same luminance but whose gray shades appear quite

different—are seen against surrounding checks that themselves

differ in luminance: check A is seen against checks of higher

luminance (labeled check C), while check B is seen against checks

of lower luminance (labeled check D). This contextual difference

induces the perceptual effect known as simultaneous contrast [25],

whereby a target seen against a background of relatively higher

luminance will appear relatively blacker than a target seen against

a background of relatively lower luminance. Secondly, check A is

seen in relatively bright illumination while check B is seen in

relatively dim illumination, with an identifiable shadow separating

image regions in relatively bright and dim illumination. This

contextual difference induces the perceptual effect known as

discounting the illuminant, whereby check B (and check D) in dim

illumination is perceptually shifted in gray shade in order to

compensate for the perceived illumination difference. This shift

ensures that check B appears similar in gray shade to check C in

bright illumination and that check D in dim illumination appears

similar in gray shade to check A in bright illumination. This

perceptual outcome is commonly termed lightness constancy [25].

The computational processes underlying simultaneous contrast

and discounting the illuminant appear to combine to produce the

dramatic perceptual difference that characterises Adelson’s check-

erboard display.

[58] sought to characterise the magnitude of perceptual shifts in

variants of the Adelson checkerboard display [46] and a related

display introduced by [22] among other displays. These authors

had subjects adjust the luminance of a matching region, viewed

against a black-and-white background, in order to make ‘bright-

ness’ and ‘lightness’ matches to targets viewed within different

versions of the checkerboard and simultaneous contrast displays.

Two different stimulus conditions were examined. In the ‘‘Paint’’

conditions, all targets were viewed in the context of surfaces

depicted as lying under uniform illumination (without a shadow

overlay) but against surfaces appearing to have different reflec-

tance (‘paint jobs’). In the ‘‘Illumination’’ conditions, the targets

were viewed under different depicted illumination levels (with a

shadow overlay), seen against surfaces appearing to have the same

or similar reflectance. Subjects adjusted the luminance of the

matching region such that reference and matching regions either

appeared to reflect the same ‘‘light intensity’’ (brightness match) or

appeared ‘‘as if cut from the same paper’’ (lightness match). These

task instructions had little or no influence in the ‘‘Paint’’

conditions, but had a dramatic influence in the ‘‘Illumination’’

conditions. The magnitude of the perceptual shift in the Adelson

checkerboard display, for example, was much greater in the

lightness matching task than in the brightness matching task. A key

goal of the present study is to develop a model that quantitatively

predicts how stimulus- and task-driven constraints control the

computational processes that contribute to ‘brightness’ and

‘lightness’ matching behaviour [58].

The Anderson-Winawer effect (Fig. 1B)—in which physically

identical textured surfaces are seen as either uniform black or

white surfaces—depending on the surrounding context, has been

theoretically analysed [12,13] as a perceptual decomposition, or

‘scission’ [6,9–11,32], into transparent foreground and opaque

background layers. The computational process underlying this

decomposition is sensitive to the spatial relationship between the

target and background stimuli. Rotating the background textures

by 90 degrees with respect to the target region, for example,

eliminates the effect. According to [12,13], the visual system uses

the fact that figural contrast polarity (black-to-white or white-to-

black) is preserved around the entire perimeter of the target region

to trigger the perceptual decomposition into surface layers. These

authors proposed that, once decomposition is triggered, the visual

system uses the surface region that appears in ‘plain view’—that is,

appearing without the intervening transparent medium—to

A Unified Account of Perceptual Layering and Surface Appearance
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compute the gray shade of the farther surface layer that is

contained within the perimeter of the target region.

[12,13] provided lightness matching data to support this

proposal and showed that the contribution of perceptual

decomposition to the effect was far greater than the contribution

attributable to simultaneous contrast. Another key goal of the

present study is to demonstrate how the same model used to

quantitatively predict the contributions of the computational

processes underlying the Adelson checkerboard effect and

brightness/lightness matching behaviour can also quantitatively

predict the perceptual data on the decomposition and simulta-

neous contrast effects that contribute to the Anderson-Winawer

effect.

Model overview
Two broad classes of computational processes work together to

compute surface gray shades in the model: (A) vector summation

of luminance and contrast, and (B) vector decompositions

implementing the illuminant- and transmittance-shift processes

to produce layered representations in different parts of the image.

General simulation methods
All software implementing the equations and algorithms defined

below was written in MATLAB Version 8.0.0 (R2012b). Stimulus

luminance values used in the computer simulations were taken

from the published values given in [12,13] and [58].

Inputs to the model
In order to apply the model to arbitrary images, it would be

necessary to solve the image segmentation problem, which

generally involves parsing the retinal image into regions differing

in either reflectance, illumination or transmittance [8–

13,22,23,25,29,32,83]. A segmentation process is required in our

model in order to (A) define an image region and its contrast with

respect to immediately surrounding regions, and (B) divide the

image into different regions upon which vector decomposition

processes are differentially applied depending on stimulus- and

task-driven constraints.

Fig. 3 illustrates how a standard segmentation algorithm from

the computer vision literature [84] captures the intuition of a

suitable segmentation to compute regional luminance and contrast

in our analysis. The algorithm segments the Adelson checkerboard

image and a simplified version of the Anderson-Winawer display

into labelled regions in which mean pixel or luminance values are

calculated. The segmented regions are thus characterised by

differences in mean luminance, and each individual region is

immediately surrounded by one or more regions containing a

different mean luminance value.

In the present article, we adopt the following simplifying

heuristic to extract predictions from the model. We assume that

each check in the Adelson checkerboard image and each target

region in the Anderson-Winawer display has been segmented into

labelled regions whose mean luminance (more precisely, mean log

luminance) we explicitly calculate based on stimulus specifications

reported in relevant publications. This allows us to compute the

luminance and contrast terms in the model equations, as described

in detail below.

The segmentation algorithm can also sometimes produce region

labels corresponding to different illumination and transmittance

levels (e.g. the border between moons and surrounds in Fig. 3E)—

particularly when the regional borders have high contrast—but

such regional segmentations are often not computed (e.g. the

shadow border in Fig. 3A). We thus explicitly set the values of the

free parameters controlling the illuminant- and transmittance-shift

processes in a manner consistent with the stimulus-driven

constraints (e.g. assuming the same or different illumination levels

in different segmented regions), in addition to task-driven

constraints (e.g. brightness or lightness matching tasks). In this

way, we are able to extract predictions from the model without

having to explicitly segment the image into regions differing in

illumination or transmittance levels. We are currently developing a

version of the model that will incorporate a sophisticated user-

guided segmentation process to define regions differing in

illumination and transmittance levels in a more general way.

In our analysis of the Adelson checkerboard (Fig. 4) and the

related paint/transparency/shadow display of [58], we shall

employ the following notation in order to define contrast in the

equations below: A target check in relatively bright illumination

will be labelled T for ‘target’ and surrounding checks of lower or

higher luminance than the target will be labelled L for ‘lower’ or

H for ‘higher’, respectively. The inputs to the model will then be

luminance values labelled either ‘T, ‘L or ‘H. With reference to

Fig. 1A, we explicitly define ‘A, ‘B, ‘C and ‘D as the luminance

values of checks A, B, C and D, respectively. Thus, when ‘T~‘A,

then ‘H~‘C and ‘L~‘A (ensuring that the ratio ‘T=‘L is unity

and hence the log of this ratio is zero). Analogous specifications are

applied to checks B, C and D in Fig. 1A. When the surround of

target T has components that are both lower and higher in

luminance than ‘T (e.g. a gray target seen against a black-and-

white checkerboard, such as the test displays in [12,13] and [58])

then the ratios of ‘T=‘L and ‘H=‘T will both be positive.

In our analysis of the Anderson-Winawer display (Fig. 1B),

individual pixels within regions T, L and H are indexed T, L and

H, giving luminance values ‘T, ‘L and ‘H, respectively. We then

define ‘T, ‘L or ‘H as the geometric mean luminance value of each

region (e.g. ‘T~PTt~1 ‘
1
T
t ), where T denotes the number of pixels

in region T. This choice is justified by the fact that these displays

are characterised by luminance gradients, meaning that some

method of averaging is required to compute contrast. Our choice

of the geometric mean luminance is consistent with the

logarithmic transformation applied in our model. In the case of

the Adelson checkerboard (Fig. 1A), it is the case that ‘t~‘T,

‘l~‘L and ‘h~‘H. For greatest generality, we write the model

equations in terms of these individually indexed luminance values.

In general, therefore, we write the luminance of pixel t in region T

as

‘t~‘TVt~1,2, . . . ,T , ð1Þ

where for reasons explained below, we label pixel indices in a

sequential manner such that ‘1ƒ‘2ƒ . . . ƒ‘T .

Outputs of the model
We now describe the computational model itself, which specifies

the algorithmic mapping of image luminance values specified at

the pixel level into vector-valued surface representations char-

acterised by ‘blackness’ (w) and ‘whiteness’ (y) coordinates. In

particular, the model maps scalar-valued image representations

into vector-valued surface representations. A vector decomposition

process produces surface representations that are used to predict

human behavioural performance under various stimulus- and task-

driven constraints. The output of the model is the vector-valued

surface representation, given for each pixel t by the equation

A Unified Account of Perceptual Layering and Surface Appearance
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Figure 3. Two examples of image segmentations used to guide the computation of region luminance and contrast. (A) Adelson
checkerboard image [1], modified with permission under the Creative Commons Attribution License. (B) Segmentation computed with a standard
computer vision algorithm [84] (parameters: b~120, stop~10{4). (C) The algorithm returns region labels for each image region. (D) Region labels
enable the calculation of mean pixel or luminance values within each segmented region. (E-H) Same as above, except applied to a simple version of

doi:10.1371/journal.pone.0113159.g003

Figure 4. Adelson checkerboard display parsed in the brightness and lightness modes. The model explains the key perceptual properties
implied by the Adelson checkerboard display shown in Fig. 1A. Surface gray shades are specified in a perceptual blackness-whiteness space given by
the coordinates (w,y). The free parameter f[½0,1� controls the balance between so-called brightness (f~0) and lightness (f~1) ‘modes’ that
represent the respective assumptions of spatially uniform or variable illumination. (A) Brightness mode: According to the model, the summation of
luminance and contrast vectors ensures that check B in the Adelson checkerboard display has higher whiteness than check A (yBwyA with respect
to aB and aA) and check A has higher blackness than check B (wAwwB with respect to aA and aB), consistent with various data on the simultaneous
contrast effect [54]. (B) Lightness mode: According to the model, an illuminant-shift process combines with the vector summation underlying
simultaneous contrast to produce the Adelson checkerboard effect, i.e. aB = lB + cB{s~l’BzcB, where s is a ‘shadow vector’ with non-zero blackness
and zero whiteness components that introduces the comparison luminance gamut, f ’. The illuminant-shift process transforms the blackness
coordinates of checks B and D in relatively dim illumination towards the blackness axis, e.g. wB is smaller in lightness mode than it is in the brightness
mode example illustrated in subfigure (A). Checks with the same reflectance thus share the same blackness coordinates (wB~wC), and checks with
different reflectance but the same luminance have very different blackness coordinates (wA&wB with respect to aA and aB). Due to the asymmetrical
scaling of blackness coordinates relative to whiteness coordinates, blackness plays the dominant role in determining the surface gray shade [54]. The
model thus explains both the independence of surface gray shades with respect to variable illumination intensity levels and the large magnitude of
the Adelson checkerboard effect relative to simultaneous contrast alone. Adelson checkerboard image adapted from http://web.mit.edu/persci/
people/adelson/checkershadow_illusion.html under the Creative Commons Attribution License.
doi:10.1371/journal.pone.0113159.g004
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at~ wt,ytð Þ~ltzct{ szutð Þ, ð2Þ

where the vector components are defined below.

Note that, although model outputs can be displayed as image

pairs (i.e. corresponding to w and y coordinates), we find that

displaying outputs in blackness-whiteness coordinate space (e.g.

Fig. 4) at selected pixels t provides greater insight into the model

computations. We therefore eschew the common practice of

displaying model outputs as images, while still acknowledging that

such representations can be useful in certain contexts.

Model equations
The various vectors comprising Eqn. (2) are defined as follows.

N A luminance vector is given by

N

lt~ am log10

kw

‘t

,(1{a)n log10

‘t

ky

� �
, ð3Þ

w h e r e ‘t i s d e f i n e d a b o v e , kw~ max (�‘‘,�kkw) a n d

ky~ min (‘,�kky) are ‘anchoring’ parameters, �‘‘ is the highest

luminance value in the entire display, �kkw~100 and �kky~1 are

constants, and a~0:87, m~0:88 and n~1:81 are estimated

constants based on psychophysical data [54]. We term the

blackness and whiteness components of the luminance vector

luminance blackness and luminance whiteness, respectively.

N The anchoring scheme defined above implies that scenes with

luminance values below �kkw will contain no white surfaces, but

scenes with luminance values above this threshold will contain

one white surface corresponding to the highest luminance

value in the scene. We have found that this rule—coupled with

our choice of value for �kkw and �kky—is suitable to model the

perception of diffusely reflecting surfaces rendered on low

dynamic range displays viewed under typical daylight

adaptation conditions. See [56] and [52] for discussions of

more complex anchoring rules in the context of brightness,

lightness and gloss perception.

N A contrast vector is given by

N

ct~ abT log10

‘H

‘T
,(1{a)(1{bT) log10

‘T

‘L

� �
, ð4Þ

where bT represents the proportion of the surrounding region

with luminance higher than the target, as in the equation

bT~H=(HzL). In practice, we set bT by hand in a manner

consistent with this equation. We refer to the blackness and

whiteness components of the vector specified in Eqn. (4) as

contrast blackness and contrast whiteness, respectively. Note

that the individual scalar components defining the contrast and

luminance vectors above are summed to give the values of wt

and yt defined in Eqn. (2).

N An illuminant-shift vector (s) specifies the magnitude of

‘illuminant-discounting’ in a manner that depends on the

ratio of the highest-luminance regions designated as appearing

in relatively bright illumination (labelled ĤH) and dim

illumination (labelled �HH), respectively. The illuminant-shift

vector is expressed as

N

s~f am log10

‘ĤH

‘ �HH

,0

� �
, ð5Þ

where f[½0,1� is a free parameter representing various

stimulus- and task-driven constraints [52], as discussed below.

In the perceptual demonstrations of surface and shadow

perception analysed in this article (Fig. 1A, Fig. 5B), the

illuminant-shift vector is applied asymmetrically; namely, only

to those target regions in dim illumination (e.g. checks A, C in

Fig. 1A), not bright illumination (e.g. checks B, D in Fig. 1A).

The illuminant-shift process constitutes a mathematical

decomposition of the vector it~ltzct into surface at and

shadow s component vectors, such that it~atzs.

N A transmittance-shift vector (ut) specifies the magnitude of

‘transmittance-discounting’ relative to pixels designated as

appearing in ‘plain view’

N

ut~g am(1{bT) log10

‘t~T
‘t

�
,

(1{a)nbT log10

‘t

‘t~1

�
,

ð6Þ

where ‘t~1 and ‘t~T equal the lowest and highest luminance

values within the target region, respectively, and g[½0,1� is a

free parameter representing figural-continuity (i.e. spatial

continuity of contours across figure and ground regions) and

contrast-polarity (i.e. continuity of border polarity between

figure and ground regions) constraints that are known to

characterise scission into transparent layers [6,8–13,85]. Note

that bT~0 and bT~1 when the surround has higher and

lower geometric mean luminance than the target region in the

Anderson-Winawer display (Fig. 1B), respectively. By Eqn. (6),

then, whiteness coordinates are shifted when the target is a

decrement and blackness coordinates are shifted when the

target is an increment, which is what is required to discount

the physical transmittance shift in a manner consistent with

figural contrast polarity (see Results). The transmittance-shift

process defined above is proposed to underlie the separation of

figural regions into figure and ground layers in a manner

consistent with the figural-continuity and contrast-polarity

constraints reported in extant perceptual studies [12,13,40].

Indeed, the transmittance-shift process with g~1 constitutes a

mathematical decomposition of the vector it~ltzct into

figure ft and ground gt component vectors, such that

it~ftzgtzio, where io is the origin of the vector decompo-

sition.

Model parameters and properties
We now highlight some key conceptual properties of the model,

some of which have previously been detailed in recent publications

[52,54–57]:

N We assume in what follows that ‘t[½ky,kw�. This assumption

implies that the blackness and whiteness components of the

luminance vector in Eqn. (3) are always non-negative.

Likewise, the blackness and whiteness components of the

contrast vector in Eqn. (4) are by the definitions of ‘H and ‘L

also always non-negative. These constraints thereby ensure

that the blackness and whiteness components of the sum of
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luminance and contrast vectors are always non-negative. This

is why all points shown in Fig. 4A, for example, are restricted

to the upper right quadrant of blackness-whiteness space.

N Assume f~0 in Eqn. (5) and g~0 in Eqn. (6). Now consider

an image with uniform luminance, ‘T~‘H~‘L (i.e. a

Ganzfeld [62]). All pixel indices t in the image will have zero

contrast values in both the blackness and whiteness coordi-

nates. The blackness coordinate is then zero when ‘t~kw and

the whiteness coordinate is zero when ‘t~ky. We write the

corresponding whiteness and blackness coordinates to these

two cases as y0 and w0. The standard luminance gamut is then

defined as all points on a negatively sloped straight line in

blackness-whiteness space defined between these two axis

intercepts, (0,y0) and (w0,0). This can be expressed as the

equation

N

f : ~y~{
y0

w0

wzy0: ð7Þ

All luminance vectors, lt, are constrained to fall on the

standard luminance gamut line, f ; that is, letting (wt,yt)~lt

satisfies Eqn. (7). The black dotted lines in Fig. 4A,B, for

example, represent the standard luminance gamut.

N In the case of a simple image with a single uniform target

region on a uniform background region p, the blackness-

whiteness coordinates corresponding to a pixel t within the

target region will not fall on the standard luminance gamut,

due to the contrast terms in the blackness-whiteness equations.

As can be seen from Eqn. (2), the deviation from the standard

luminance gamut is given by the contrast vector, ct. In the case

of a contrast increment, the term ct will have a non-zero

whiteness co-ordinate and a zero blackness co-ordinate. This

contrast whiteness component is added to the luminance

vector to define a standard increment gamut. In the case of a

contrast decrement, the term cT will have a non-zero blackness

co-ordinate and a zero whiteness co-ordinate. This contrast

blackness component is added to the luminance vector to

define a standard decrement gamut. For images containing

both contrast increments and decrements (e.g. a checkerboard

pattern), both contrast components will be non-negative. The

contrast vector will then add both blackness and whiteness

components to the luminance vector, defining a standard
mixed gamut. In fact, in general it is possible to define families

of gamut lines, both standard and comparison, each depending

Figure 5. Model predictions of brightness and lightness matching data relating to the Blakeslee-McCourt paint/transparency/
shadow display. (A) The model correctly predicts the influence of task instructions on perceptual matches made with surfaces seen under depicted
uniform or variable illumination. The luminance of the target is shown by the dashed line, and predictions of luminance of the test target in each
condition shown by the level of each bar. (B) Model luminance predictions shown in (A) were generated from minimal Euclidean distances between
points representing the reference gray shades (black points, obtained from Eqn. (2) with f~1 and g~0) and gamut lines representing the test display
(red points on gray dotted line). The test display was assumed to have background luminance values equal to kw and ky, and thus all grey shades in
the test display fall on mixed gamut lines, since both blackness and whiteness coordinates have non-zero contrast components. (C) Data and
depiction of stimuli reprinted from [58]. In total, there are 12 different test conditions: 6 of these are brightness tasks and 6 are lightness tasks. In (B),
black dots indicate the blackness-whiteness coordinates, aT, for 8 of these 12 conditions. As the model predictions for the ShadowL and ShadowR
conditions are equally applicable to the experimental TransL and TransR (transparency) conditions, we omit the 4 transparency conditions. There are
only 3 unique coordinates, since the same blackness-whiteness coordinates at approximately (w~0:8, y~0:3) are obtained for all L conditions, and
the same coordinates at approximately (0:4,0:4) are obtained for both PaintR conditions and ShadowR (labelled ShadR above) in the brightness task.
The final black dot at approximately (0:1,0:4) occurs uniquely for ShadowR in the lightness matching task. The red arrow indicates the minimal
perceptual match between reference and test coordinates for both PaintR conditions and ShadowR in the brightness matching task.
doi:10.1371/journal.pone.0113159.g005
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on stimulus- and task-related factors (see [52,55,56] for further

details). One could, for example, draw separate comparison

increment and decrement gamut lines through each individual

blue and red point shown in Fig. 4B, but we shall omit these

lines in order to maintain figural clarity.

N Now consider an image within which pixels indexed by t are

identified as appearing in relatively dim illumination. In this

case, fw0 and s becomes non-zero; a new gamut line

representing surfaces appearing in the relatively dimmer

illumination level is thus defined. We introduce l’t~lt{s,

such that the blackness-whiteness coordinate of pixel t is

at~l’tzct. We then define a comparison luminance gamut as

N

f ’ : ~y~{
y’0
w’0

wzy’0, ð8Þ

which has a smaller whiteness intercept than the standard

luminance gamut (y’0vy0), indicating a relatively lower

illumination level, but lies parallel to the standard luminance

gamut, such that y0w0
{1~y’0w’0

{1
. All lum inance vectors,

l’t, are constrained to fall on the comparison luminance gamut,

t,y’t)~l’t satisfies Eqn. (8). The light gray

dotted line in Fig. 4B, for example, represents the comparison

luminance gamut when f~1. According to the equation

at~l’tzct, then, it is further possible to define increment,

decrement and mixed comparison gamuts. For detailed

discussion of the computational utility of the relationship

between standard and comparison gamuts, see [52,55,56].

N Perceptual matches performed in psychophysical experiments

generally correspond to minimal perceptual mismatches
between points specified to lie along different gamut lines

[52–54]. The minimum perceptual distance between a

reference point lying on a gamut line specified for a reference

display and the set of all points on another gamut line specified

for the test (or matching) display determines the predicted

luminance setting. It is calculated as the luminance value that

minimises the Euclidean metric,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yr{yt)

2z(wr{wt)
2

q
,

where indices r and t denote reference and test targets, subject

to the constraints imposed by the test gamut line. The

blackness-whiteness plot shown in Fig. 5B provides an example

of the manner in which the idea of minimal perceptual

mismatches can help to account for perceptual data. Previous

theoretical and experimental work also supports the idea that

subjects’ cannot generally make satisfactory brightness matches

between targets viewed against backgrounds differing in

luminance or perceived illumination level [52–54].

N The parameter f controls the balance between two perceptual

‘modes’ that each explain key properties of brightness and

lightness perception, respectively (the parameter l in [52] is

equivalent to f here). Under the assumption that luminance

variations between pixels are due entirely to reflectance

variations, blackness coordinates are primarily correlated with

local luminance (f~0; brightness mode). Under the assump-

tion that luminance variations between pixels are due entirely

to illumination variations, blackness coordinates are primarily

correlated with diffuse surface reflectance (f~1; lightness

mode). Intermediate values of f represent a ‘balance of

probability’ [86,87] between these two extreme assumptions

and thus represent linear combinations of presumptive

illumination and reflectance variations. Here we generalise

the distinction between brightness and lightness to describe the

surface perception under the assumption that f~0 and

g[½0,1�; that is, by generalising the definition to the case of

surface perception through transmissive media (e.g. Fig. 6).

N The parameter f is itself a function of both the stimulus (fs)

and task (ft), such that f~fsft, where fs,ft[½0,1�. The

assumption of uniform illumination corresponds to fs~0
(e.g. the ‘‘Paint’’ condition of [58]). The assumption of variable

illumination corresponds to fs~1 (e.g. the ‘‘Illumination’’

condition of [58]). As ft can only modify the value of f when

fsw0, this construction is consistent with psychophysical data

reported in [58] showing that task-driven constraints on

matching behaviour can only exert an influence when stimulus

conditions support the perception of variable illumination. In

the ‘‘Lightness’’ matching task of the ‘‘Illumination’’ conditions

in [58], we assume that f~fsft~1, whereas in the

‘‘Brightness’’ matching task we assume that f~fsft~0. This

construction reflects the fact that, under the assumption of

uniform illumination across a scene, luminance and surface

reflectance are correlated, whereas under the assumption of

variable illumination, luminance and reflectance are uncorre-

lated. The capacity to flexibly switch between perceptual

modes correlated with either luminance or reflectance thus

underscores a key conceptual deviation of our model from the

classical theory of surface perception as a problem of

reflectance recovery.

N Blackness-whiteness space is asymmetrically scaled, meaning

that a unit variation in physical luminance maps to a far

greater variation in blackness coordinates than whiteness

coordinates [52,54]. This proposal explains a wide range of

otherwise puzzling data concerning asymmetries in the

perception of contrast increments and decrements. The

asymmetry can be appreciated, for example, by comparing

the scales of the w- and y-axes in Fig. 4. The precise ratio of

blackness/whiteness variation depends on various factors, but

has been estimated to be no less than approximately 3 [54].

Given the setting f~1 and g~0, then under the assumption

that surfaces seen under different illumination levels contain

identically distributed sets of reflectance values, pairs of points

associated with f ’ and f that have the same blackness

coordinates (e.g. aC and aB in Fig. 4B) are perceptually more

similar to one another than pairs of points associated with f ’
and f that have different blackness coordinates (e.g. aC and aA

in Fig. 4B) [52].

Results

Surface perception under uniform and variable
illumination

We now show how our model accounts for key properties of

surface perception under uniform and variable illumination in the

Adelson checkerboard effect. We claim that the effect actually

consists of two distinct effects: simultaneous contrast and

illuminant discounting. We first briefly recapitulate our previously

published account of simultaneous contrast [54] in terms of the

Adelson checkerboard display (Fig. 4A).

Our explanation of simultaneous contrast is most easily

understood by assuming that the Adelson checkerboard display

is parsed by the visual system such that only a single illumination

level is perceived (i.e. by assuming that f~g~0). In other words,

the ‘shadow’ region is actually perceived as having relatively lower

reflectance than the ‘brightly illuminated’ region. As indicated

above, the parameter setting of f~g~0 represents the brightness

mode in gamut relativity. The luminance vector associated with
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each check (e.g. lA and lB, where subscripts are used as labels

rather than indices) are all constrained to fall on the standard

luminance gamut, as defined by Eqn. (7), which is represented by

the black dotted line in Fig. 4A. Checks with the same luminance

(i.e. checks A and B) are thus mapped to identical points on the

standard luminance gamut (lA~lB). The points aA, aB, aC and aD

in Fig. 4A represent the blackness-whiteness coordinates of checks

A, B, C and D following the addition of the contrast vector to the

luminance vector (e.g. lAzcA). The coordinates aA and aC thus

diverge, with a contrast blackness component added to lA, which is

surrounded by brighter checks (check A) and a contrast whiteness

component added to lB, which is surrounded by darker checks

(check D). Checks A and B are thus mapped to blackness-

whiteness coordinates that correspond to two different gray shades,

aB~lBzcB and aA~lAzcA.

Gamut relativity predicts that check B will be perceived as both

‘blacker’ and ‘less white’ than check A since the blackness

coordinate of check A is larger than that of check B and the

whiteness coordinate of check B is larger than that of check A.

This prediction is generically consistent with the occurrence of the

simultaneous contrast effect. As discussed in [54], moreover, this

account of simultaneous contrast is quantitatively consistent with

‘brightness matching’ data and explains the inability of subject’s to

make satisfactory brightness matches when reference and test

targets are viewed against backgrounds differing in luminance.

Our explanation of the large perceptual shift evident in the

Adelson checkerboard display assumes that the display is parsed by

the visual system into two different illumination levels (i.e. by

assuming that f~1). Fig. 4B illustrates the model account of the

appearance of the Adelson checkerboard display when the

illuminant-shift process is engaged. Given a parameter setting

that represents the lightness mode in gamut relativity (f~1), the

perceived difference in illumination level over the display is

represented in the fact that l’B and lC now fall on separate

luminance gamut lines, f ’ and f , respectively. Due to the process

of discounting the illuminant, the blackness coordinates (wB~wC,

wD~wB) of the vector pairs (aB,aC) and (aD,aB) remain invariant

to differences in the depicted illumination intensity across the

display. The perceptual shift between l’B and lB is equal in

magnitude but opposite in sign to the physical shift in blackness

induced by the illumination difference. The shift is given by the

vector, s, which specifies the magnitude of the discounting

according to Eqn. (5), under the assumption that f~1. The

shifted luminance vector coordinates are added to the contrast

vectors to give aB~lBzcB{s~l’BzcB. As the coordinates of

check A in bright illumination remain unaffected by the

discounting process, the magnitude of the difference between the

vector aB and aA is much greater than the magnitude of the

difference between the untransformed vectors in the brightness

mode, given by lBzcB and lAzcA (Fig. 4A). The Adelson

checkerboard display thus induces a far larger perceptual shift

than would be expected on the basis of the processes underlying

simultaneous contrast alone.

This perceptual shift can be understood as a manifestation of

computational processes operating with the goal of parsing the

retinal image into distinct surface and shadow layers. This goal can

Figure 6. Anderson-Winawer display parsed in the brightness and lightness modes. (A,B) The Anderson-Winawer display with blackish
and whitish backgrounds, respectively. (C,D) Brightness mode: The empty gray circles (lt with g~0) form the standard luminance gamut line for
each pixel contained within each of the whitish or blackish squares shown in (A,B). The filled gray circles (ltzct with g~0) form the standard
increment and decrement gamut lines in (C) and (D), respectively, similar to Fig. 4A. These points, which are offset from the standard luminance
gamut due to addition of the whiteness and blackness contrast vectors, would correspond to the perceived gray shades in (A,B) if the squares where
rotated by 900 (rotation now shown here). Lightness mode: The model explains how the visual system computes separable whitish and blackish
figural surface layers (at) through blackish and whitish transparent ‘ground’ layers (tt) when g~1. The transmittance-shift process subtracts the vector
ut from each filled gray circle to compute each at (ltzct{ut with g~1). Surface layers are composed of the collection of every at , represented here
by the empty and filled black circles falling on the whiteness and blackness axes, respectively. The vertical and horizontal rows of empty and filled
black circles thus correspond to the perceptually whitish and blackish layers evident in (A,B), respectively. The labelled vector corresponds to t~2,
t~T denotes the whitest pixel within the target region, and l~1 denotes the blackest pixel in the surrounding region. Note that f~0.
doi:10.1371/journal.pone.0113159.g006
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be clarified by first rewriting the equation l ’B~lB{s in the form

lB~l ’Bzs. This equation says that the standard luminance vector

associated with check B (lB) is equal to the comparison luminance

vector (l ’B) plus the shadow vector (s). In other words, the

illuminant-shift process decomposes the standard luminance

vector into surface and shadow vectors whose sum equals the

original standard luminance vector. Due to this decomposition, s
falls on the blackness axis and l ’B has been shifted towards the

whiteness axis by the amount DsD. The decomposition thereby gives

rise to the following property: The distance between the lC and l ’B
is less than than the distance between lC and s; that is, the

inequality DlC{l ’BDvDlC{sD holds, given that f~1 and w ’Bw0. We

claim that this inequality provides the basis for the capacity of the

visual system to parse the Adelson checkerboard display into

surface and shadow ‘layers’. It ensures that points in backness-

whiteness space representing physical surfaces in dim illumination

can be unambiguously ‘assigned’ to corresponding points in bright

illumination; that is, without interference from points representing

shadows, which have been ‘displaced’ onto the blackness axis.

These model properties thus explain the emergence of layered

perceptual representations corresponding to surfaces and shadows.

To further emphasise the unique features of our model, we now

analyse how the visual system might flexibly switch between

brightness and lightness modes based on stimulus- and task-

specific constraints. In this respect, we analyse data pertaining to

the paint/transparency/shadow display used in [58]. In particular,

we attempt to predict how stimulus- and task-driven constraints

interact to determine brightness and lightness matches when the

display appears either uniformly or variably illuminated (i.e. paint

versus shadow, though the model predictions for the shadow

condition apply equally well to the transparency condition). The

model predictions are shown in Fig. 5A alongside the psycho-

physical data in Fig. 5C, and agree reasonably well with the data.

The model predicts the data well, with the main discrepancy being

that the model predicts a slightly too strong simultaneous contrast

effect with increments under uniform depicted illumination (c.f.

condition PaintR) than is observed in the data. Of particular

importance is to note that the model correctly predicts that

lightness matching instructions have a disproportionately greater

influence on contrast increments relative to decrements. This is

because the model predicts that the increment region, which

appears in dim illumination, undergoes the discounting, rather

than the decrement region, which appears in bright illumination.

Concordantly, the matching instructions have little influence in the

latter case, but a large influence in the former case (i.e. condition

ShadowR).

As discussed above, brightness and lightness matches are

understood in the model as minimal perceptual mismatches

between points lying on different gamut lines. The red test (or

match) points lying on the dotted gray gamut line in Fig. 5B, for

example, represent gray shades that minimal Euclidean distances

with respect to the black points representing the gray shades of the

target reference surfaces lying on different gamut lines (not shown).

A key prediction of gamut relativity that sets it apart from

alternative models [58] is thus that subjects cannot generally make

satisfactory brightness or lightness matches [52–54]. Indeed, the

model makes precise quantitative predictions that can be suitably

compared against perceptual data obtained under conditions

where subjects rate the perceptual similarity of their own matches

[52–54,88]. The model is also consistent with perceptual data

indicating that distinct computational processes subserve discrim-

ination of targets against their local backgrounds (f~0) and

lightness matching performance (f~1) [46].

Surface perception through atmospheric media
We now show how our model generalises to naturally account

for properties of figure-ground separation and surface appearance

through atmospheric media in terms of the Anderson-Winawer

effect. We begin by illustrating the summation of luminance and

contrast vectors in the brightness mode with g~0 (Fig. 6C,D). In

the absence of scission cues (g~0), a single figural surface layer

appears in plain view and is thus described as a surface brightness

layer, according to the definition provided above. These vectors

are given by the equation ltzct. This latter situation occurs, for

example, when the background regions of the Anderson-Winawer

display are rotated by 90 degrees with respect to the target regions.

The unfilled gray points shown in the blackness-whiteness plots of

Fig. 6C,D correspond to a selection of pixels from within the

square parts of the displays shown in Fig. 6A,B, and illustrate a

mapping of physical luminance to standard luminance gamut.

Note that these points are the same in Fig. 6C,D, since the

physical luminance of all points in the squares in Fig. 6A,B are

identical. The contrast vector ct is associated with a pure whiteness

‘boost’ for figural contrast increments and a pure blackness ‘boost’

for figural contrast decrements. These contrast components are

depicted as vertically and horizontally oriented whiteness and

blackness vectors adding to the luminance vectors in Fig. 6C,D.

For figural contrast increments (Fig. 6C), for instance, the boost

shifts points on the standard luminance gamut upwards to form

the standard increment gamut.

Given strong cues to the presence of transmissive media in an

image, we assume that g~1. The model equations then allow us to

define at~ltzct{ut to represent the underlying figural surface

layer. The parameter bT determines the orientation of the vector

ut; it is horizontal for target increments and vertical for target

decrements. We may thus define a vector orthogonal to ut and

with different length using the definition b�TT~1{bT; that is, we

define the vector tt : ~ltzct{u�tt to represent the transparent

layer ‘belonging’ to the ground region surrounding the figure

region. The transmittance-shift vectors ut and u�tt thus operate on

each ltzct to compute each at and tt. The shifts introduced by

these vectors are equal in magnitude but opposite in sign to the

physical shifts in blackness and whiteness induced by the

transmittance difference between the ground medium and the

underlying figural surface region seen in plain view (defined as

at~T in Fig. 6C). The application of these vectors implies that

either blackness or whiteness coordinates always remains constant

with respect to differences in the physical transmittance of the

ground medium. This ensures, for example, that each aT in

Fig. 6C always lies closer to at~T than does tt; that is, the

inequality Dat{at~T DvDtt{at~T D holds for any gw0.

This invariance is proposed to underlie the ‘grouping’ of vectors

into perceptual layers characterising physically transmissive filters

and media [55]. The net effect is to discount the transmittance of

the ground medium in computing the underlying figural surface

layer. The model thereby separates the figural image region into

figure and ground layers, thereby accomplishing figure-ground

separation. As indicated in the Model section, the transmittance-

shift process with g~1 is mathematically identical to a vector

decomposition of the vector it~ltzct into figure ft~at and

ground gt~tt vectors corresponding perceptually to the figure and

ground layers within the figural region.

In the Anderson-Winawer effect, this computational process

generates the perceptual difference engendered by varying the

mean luminance of the ground region outside the figure. In the

case of the blackish ground region, vector decomposition operates

to transform points on the standard increment gamut into a

column of points lined up on the vertical constraint line provided
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by the whitest pixel of the underlying surface that appears in plain

view. In the case of the whitish ground region, vector decompo-

sition operates to transform points on the standard decrement

gamut into a row of points lined up on the horizontal constraint

line provided by the blackest pixel of the ground region that

appears in plain view. The net effect is to produce separate sets of

vectors corresponding to the ground and figural surface layers. As

discussed above, each surface vector has the property that it lies

closer to the surface vector appearing in plain view than does its

‘partner’ ground vector, allowing individual surface vectors to

group together to form Gestalt-like representations of surface gray

shades [25]. For figural contrast increments, for example, the

vertical column of vectors lying on the whiteness axis form a

whitish underlying figural surface layer by virtue of their

relationship to the whitest figural pixel in plain view.

To quantitatively assess the predictions of the model with

respect to perceptual data, we calculated predictions of ‘lightness

matches’ (g~1) for various Michelson contrast values of the target

regions in the Anderson-Winawer display (Fig. 7A,C), as reported

in [12,13]. Fig. 7B,D shows the model predictions alongside the

perceptual data in Fig. 7E,F. The model correctly predicts that

subjects’ luminance settings always lie above the line indicating the

luminance of the whitest or blackest pixels associated with figural

contrast increments and decrements, respectively. This bias is a

direct consequence of the asymmetric scaling of blackness-

whiteness space, which forms a key computational feature of

gamut relativity. In particular, the dominance of blackness with

respect to whiteness ensures that the model weights the contrast

blackness component more strongly than the contrast whiteness

component. This causes a nominal gray shade seen against a

black/white checkerboard, or black/white noise image, as used in

the test displays reported in [12,13], to appear relatively whiter

and less black than the reference region seen against more neutral

backgrounds. The model thus compensates for this bias by

selecting luminance values higher than those associated with pixels

in plain view to produce the best ‘lightness match’. Perceptual data

on the Anderson-Winawer effect thus supports many of the key

modelling postulates underlying gamut relativity. We leave to

future work the goal of determining whether the model can

accurately predict surface perception in the presence of simulta-

neous variations in both illumination and transmittance levels (i.e.

with both fw0 and gw0 [18]).

Discussion

We have presented a model that quantitatively accounts for

perceptual data relating to some of the most striking and

theoretically important effects of layered perceptual representation

and surface appearance reported in the literature. In particular,

the model reported in this paper documents four (4) key advances

with respect to previously published work. The model: (1) provides

the first unified analysis of how the visual system represents

surfaces independently of shadows and atmospheric media, as

exemplified in the Adelson checkerboard and Anderson-Winawer

effects; (2) reconciles and unifies two prominent theories of surface

lightness; (3) quantitatively predicts how stimulus- and task-driven

factors combine to control brightness/lightness matching behav-

iours reported in published perceptual experiments; (4) unifies two

previously published gamut relativity models, aimed at explaining

properties of brightness/lightness perception [52,54], lightness/

transparency perception [55] and lightness/gloss perception [56],

respectively. The model thus provides the first unified account of

the mid-level computations underlying layered perceptual repre-

sentation, which are believed to subserve the high-level compu-

tations involved in the identification of surface materials [1,2].

As indicated above, the model unifies two prominent theoretical

approaches to surface lightness, known as the ‘anchoring’ and

‘scission’ theories [8–14,22–25,29,31–34], which have previously

been applied separately to study the types of effects illustrated in

Fig. 1. Lightness anchoring theory [25] posits that the visual

system parses the scene into differentially illuminated regions, as in

gamut relativity, before mapping relative reflectance values within

each illumination level to absolute surface lightness values. This

computation is captured in the current model in terms of the

‘illuminant-shift’ process applied to the blackness dimension. This

process also generates a representation of the shadow layer.

Scission theory [8–14,31–34] posits that the visual system parses

the scene into layered representations, one seen through another,

in order to disentangle the differential effects of surface reflectance

and atmospheric media. This is accomplished by first estimating

which surface regions appear in ‘plain view’ and which surface

regions appear through atmospheric media of variable physical

transmittance [12,13]. This computation is captured in the current

model in terms of the ‘transmittance-shift’ process that is applied

either to the blackness or whiteness dimensions, depending on

figural contrast polarity. The computational outputs of the

illuminant- and transmittance-shift processes are then combined

in a single equation to compute layered representations. The

current model thus mathematically unifies the central concepts in

the lightness anchoring and scission theories.

The novel account of brightness and lightness perception

embodied in gamut relativity may partially account for the wide

range of behaviours observed when subjects perform perceptual

matching tasks. At one extreme, task instructions to perform either

brightness and lightness matches appear to have little or no

influence on perceptual matches in the absence of a visible

transparent layer. Such perceptual matches are associated with

low intra- and inter-subject variability and tend to be subjectively

relatively easy to make [58]. At the other extreme, lightness

matches made under conditions where the task is largely

underdetermined by stimulus-driven constraints—that is, in the

absence of surface regions appearing in plain view—are associated

with high intra- and inter-subject variability and tend to be

subjectively relatively difficult to make. In such conditions, subjects

may adopt a wide range of criteria to perform the matching task,

such as attempting to ‘infer’ the surface appearance of the target

under a certain illumination level [41–45,48,49]. In the middle

ground, lightness matches made under conditions where stimulus-

driven constraints are strongly present—that is, when surface

regions appearing in plain view provide strong cue to the

magnitude of the illuminant shift in shadow—are also associated

with low intra- and inter-subject variability and tend to be

subjectively relatively easy to make [58]. It is this class of lightness

match that we have focused upon in this article. We expect to

generalise our model to the more ‘inferential’ class of lightness

match by demonstrating how subjects can ‘infer’ surface appear-

ance under different gamut lines (i.e. by inferring the magnitude of

the illumination or transmittance shift). The model thereby

promises to provide a unified account of a wide range of matching

strategies employed by human subjects in various experimental

situations.

In providing a unified and general account of perceptual

layering and surface appearance, our model provides crucial

insights into the remarkable capacity of the human visual system to

identify surface materials, illumination and atmospheric media.

One potential application of this modelling framework involves the

design of computer graphics software that allows a user to create
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layered image representations by explicitly controlling perceptual

variables (e.g. lightness and transparency), rather than indirectly

specifying physical variables in models of light transport (e.g.

reflectance and transmittance). We are also developing our

modelling framework to leverage user-based image segmentation

algorithms in a manner that will allow the user to predict

brightness, lightness, transparency and gloss levels from arbitrary

images.
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