

STRUCTURAL CHEMISTRY

A ladder coordination polymer based on Ca^{2+} and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid): crystal structure and solution-state NMR study

Nutalapati Venkatramaiah, ${ }^{\text {a }}$ Ricardo F. Mendes, ${ }^{\text {b }}$ Artur M. S. Silva, ${ }^{\text {a }}$ João P. C. Toméc,a and Filipe A. Almeida Paz ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal, ${ }^{\text {b }}$ Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal, and ${ }^{\text {c }}$ Centro de Química Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. *Correspondence e-mail: filipe.paz@ua.pt

The preparation of coordination polymers (CPs) based on either transition metal centres or rare-earth cations has grown considerably in recent decades. The different coordination chemistry of these metals allied to the use of a large variety of organic linkers has led to an amazing structural diversity. Most of these compounds are based on carboxylic acids or nitrogen-containing ligands. More recently, a wide range of molecules containing phosphonic acid groups have been reported. For the particular case of Ca^{2+}-based CPs, some interesting functional materials have been reported. A novel one-dimensional Ca^{2+}-based coordination polymer with a new organic linker, namely poly[[diaqua[$\mu_{4}{ }^{-}$ (4,5-dicyano-1,2-phenylene) bis(phosphonato) $]\left[\mu_{3}\right.$-(4,5-dicyano-1,2-phenylene)bis(phosphonato)]dicalcium(II)] tetrahydrate], $\left\{\left[\mathrm{Ca}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has been prepared at ambient temperature. The crystal structure features one-dimensional ladder-like ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ polymers $\left[\mathrm{H}_{2} \mathrm{cpp}\right.$ is (4,5-dicyano-1,2-phenylene)bis(phosphonate)], which are created by two distinct coordination modes of the anionic $\mathrm{H}_{2} \mathrm{Cpp}^{2-}$ cyanophosphonate organic linkers: while one molecule is only bound to Ca^{2+} cations via the phosphonate groups, the other establishes an extra single connection via a cyano group. Ladders close pack with water molecules through an extensive network of strong and highly directional $\mathrm{O} \quad \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \quad \mathrm{H} \cdots \mathrm{N}$ hydrogen bonds; the observed donor acceptor distances range from 2.499 (5) to 3.004 (6) \AA and the interaction angles were found in the range 135178°. One water molecule was found to be disordered over three distinct crystallographic positions. A detailed solution-state NMR study of the organic linker is also provided.

1. Introduction

In recent decades, the preparation of coordination polymers (CPs) based on either transition metal centres or rare-earth cations has grown considerably. The different coordination chemistry of these metals allied to the use of a large variety of organic linkers has led to the amazing structural diversity encountered in the literature, with some of the materials also exhibiting applications ranging from gas sorption (Zhai et al., 2016) to catalysis (Mendes et al., 2015) and photoluminescence (Yang et al., 2016). Most of these compounds are based on carboxylic acids or nitrogen-containing ligands. More recently a wide range of molecules containing phosphonic acid groups have been reported. Mixing O - and N -donor atoms in the same ligand is less frequent in the design of novel CPs, as revealed by a search in the Cambridge Structural Database (CSD; Allen, 2002; Groom et al., 2016). Moreover, restricting the search to the use of s-block elements yields a much smaller subset of structures.

For the particular case of Ca^{2+}-based CPs , most of the known reports are based solely on a structural description of the obtained networks (Stock \& Bein, 2004; Demadis et al., 2009). There are, however, some interesting publications on functional materials. Bishop and co-workers (Bishop et al., 2003) studied the effect of a $\mathrm{Ca}^{2+} \mathrm{CP}$ in cement hydration inhibition. This polymer acted as a retardant in the setting time of liquid cement, a feature of great importance in the oil industry. In the field of fuel-cell research, Liang and coworkers (Liang et al., 2013) prepared a layered $\mathrm{Ca}^{2+} \mathrm{CP}$ which shows promising results as a proton conductor. While the material itself has no outstanding proton conduction, this property is greatly increased when incorporated into a polyvinylpyrrolidone (PVP) membrane.

(1)

We report herein the preparation of a new ladder-type CP based on Ca^{2+} cations and anions of (4,5-dicyano-1,2-phenylene)bis(phosphonic acid) ($\mathrm{H}_{4} \mathrm{cpp}$), a novel organic ligand for which we also report the synthetic and structural details (obtained by solution-state NMR). The preparation and structural characterization of this molecule were found to be far from trivial and a detailed NMR study is given. The polymeric material, i.e. $\left\{\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (1), was assembled under atmospheric conditions by a simple and sustainable slowevaporation method. To the best of our knowledge, this constitutes only the second reported Ca^{2+}-based CP based on a cyanophosphonate or an aminophosphonate linker, with the first being that of Schmidt et al. (2011).

2. Synthesis and crystallization

Chemicals were purchased from commercial sources and used without any further purification steps. Tetraethyl (4,5-dicyano-1,2-phenylene)bis(phosphonate) was prepared according to the published procedure of Venkatramaiah et al. (2015).

2.1. Synthesis of (4,5-dicyano-1,2-phenylene)bis(phosphonic

 acid) ($\mathrm{H}_{4} \mathrm{cpp}$)Tetraethyl (4,5-dicyano-1,2-phenylene)bis(phosphonate) ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$) was placed in a 25 ml round-bottomed flask and $6 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml}$; Analytical Reagent Grade, Fisher Chemical, 27%) was added. The reaction mixture was kept under uniform stirring at 363 K for 6 h , and was then cooled to

Table 1
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Ca}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	760.40
Crystal system, space group	Monoclinic, $P 21_{1} / c$
Temperature (K)	180
$a, b, c(\AA)$	$\begin{aligned} & 16.4384 \text { (11), } 25.2929(18), \\ & 6.9599(5) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	91.493 (3)
$V\left(\AA^{3}\right)$	2892.8 (4)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{1}\right)$	0.70
Crystal size (mm)	$0.10 \times 0.06 \times 0.01$
Data collection	
Diffractometer	Bruker D8 QUEST
Absorption correction	Multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}, T_{\text {max }}$	0.665, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	27705, 5266, 4050
$R_{\text {int }}$	0.065
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{1}\right)$	0.602
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.051, 0.133, 1.12
No. of reflections	5266
No. of parameters	437
No. of restraints	17
H -atom treatment	$\begin{aligned} & \mathrm{H} \text { atoms treated by a mixture of } \\ & \text { independent and constrained } \\ & \text { refinement } \\ & w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0456 P)^{2}+\right. \\ & 10.5068] \\ & \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{3}\right)$	1.11, 0.46

$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \mathrm{A}^{3}\right)$
1.11, 0.46

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and DIAMOND (Brandenburg, 1999).
ambient temperature and the solvent removed under reduced pressure. The obtained viscous oil was precipitated by addition of acetone. The white precipitate was filtered off and dried under vacuum to give (4,5-dicyano-1,2-phenylene)bis(phosphonic acid).

2.2. Synthesis of $\left\{\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{Cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (1)

$\mathrm{H}_{4} \mathrm{cpp}(29 \mathrm{mg}, 0.1 \mathrm{~m} M$) was dissolved in methanol (4 ml) and calcium hydroxide ($1 \mathrm{ml}, 22.2 \mathrm{mg}, 0.3 \mathrm{~m} M$; Sigma Aldrich, puriss p.a. $\geq 96 \%$) was added slowly. The resulting mixture was stirred at ambient temperature for 10 min until a uniform mixture was obtained. The resulting solution was allowed to evaporate slowly at ambient temperature. White crystals of (1) were obtained after one week, harvested manually, filtered, washed with water and finally dried at ambient temperature.

2.3. Structural characterization of $\mathrm{H}_{4} \mathbf{c p p}$ (see the Supporting information for the spectra)

In DMSO- $d_{6},{ }^{1} \mathrm{H}$ NMR (300.13 MHz): $\delta 8.05(d d, J=9.0$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.13\left(t, J=50.6 \mathrm{~Hz}, \mathrm{NH}_{4}^{+}\right), 4.51(\mathrm{br} \mathrm{s}, \mathrm{POH}$ and $\mathrm{H}_{2} \mathrm{O}$). ${ }^{31} \mathrm{P}$ NMR (121.49 MHz): $\delta 9.779 .38(\mathrm{~m}, 2 \mathrm{P}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz): $\delta 144.8\left[d d,{ }^{1} J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=161.5 \mathrm{~Hz}\right.$,
$\left.{ }^{2} J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=9.8 \mathrm{~Hz}, 2 \mathrm{C}, \quad \mathrm{CPO}_{3} \mathrm{H}_{2}\right], 136.2\left[t, J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=\right.$ $\left.11.3 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{3,6}\right], 116.1(2 \mathrm{C}, \mathrm{C} \equiv \mathrm{N}), 115.5\left[t, J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=\right.$ $\left.5.3 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{1,2}\right]$.

After the addition of base, ${ }^{1} \mathrm{H}$ NMR (300.13 MHz): $\delta 8.52$ ($d d, 2 \mathrm{H}$), $7.34\left(b r s, \mathrm{NH}_{4}^{+}\right), 4.75\left(b r s, \mathrm{POH}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right) .{ }^{31} \mathrm{P}$ NMR (121.49 MHz): $\delta 10.009 .61$ ($m, 2 \mathrm{P}$). ${ }^{13} \mathrm{C} \quad$ NMR $(75.47 \mathrm{MHz}): \delta 168.5(2 \mathrm{C}, \quad \mathrm{C}=\mathrm{O}), 141.3\left[d d,{ }^{1} J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=\right.$ $\left.174.3 \mathrm{~Hz},{ }^{2} J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=10.6 \mathrm{~Hz}, 2 \mathrm{C}, \quad \mathrm{CPO}_{3} \mathrm{H}_{2}\right], 134.6134 .3$ ($m, 4 \mathrm{C}$), $124.6\left(s, \mathrm{CO}_{2}\right)$.

In methanol- $d_{4},{ }^{1} \mathrm{H}$ NMR (300.13 MHz): $\delta 8.27(t, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}) .{ }^{31} \mathrm{P}$ NMR (121.49 MHz): $\delta 10.93(s, 2 \mathrm{P}) .{ }^{13} \mathrm{C}$ NMR $(75.47 \mathrm{MHz}): \delta 170.2(2 \mathrm{C}, \quad \mathrm{C}=\mathrm{O}), 140.3\left[d d,{ }^{1} J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=\right.$ $\left.171.7 \mathrm{~Hz},{ }^{2} J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=10.9 \mathrm{~Hz}, 2 \mathrm{C}, \quad \mathrm{CPO}_{3} \mathrm{H}_{2}\right], 135.1[t$, $\left.J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=9.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{3,6}\right], 133.9\left[t, J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=12.1 \mathrm{~Hz}\right.$, $\left.2 \mathrm{C}, \mathrm{C}_{1,2}\right]$.

After the addition of ammonia, ${ }^{1} \mathrm{H}$ NMR (300.13 MHz): $\delta 8.38(t, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.41\left(t, J=52.5 \mathrm{~Hz}, \mathrm{NH}_{4}{ }^{+}\right) .{ }^{31} \mathrm{P}$ NMR (121.49 MHz): $\delta 10.64(s, 2 \mathrm{P}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz): $\delta 170.4(2 \mathrm{C}, \quad \mathrm{C}=\mathrm{O}), 141.1\left[d d,{ }^{1} J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=180.4 \mathrm{~Hz}\right.$, $\left.{ }^{2} J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=10.6 \mathrm{~Hz}, 2 \mathrm{C}, \quad \mathrm{CPO}_{3} \mathrm{H}_{2}\right], 134.9\left[t, J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=\right.$ $\left.4.9 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{3,6}\right], 133.7\left[t, J\left({ }^{13} \mathrm{C}{ }^{31} \mathrm{P}\right)=11.3 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{1,2}\right]$.

2.4. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table $1 . \mathrm{H}$ atoms bound to C or O atoms were placed at idealized positions, with C $\mathrm{H}=0.95 \AA$ (aromatic) or $\mathrm{O} \mathrm{H}=0.84 \AA$ (hydroxy), and included in the final structural model in a riding-motion approximation, with the isotropic displacement parameters fixed at $1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{O})$ of the attached atom. H atoms associated with water molecules $\mathrm{O} 1 W$ to $\mathrm{O} 5 W$ were located directly from difference Fourier maps and were included in the final structural model, with the $\mathrm{O} \quad \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.95 (1) and 1.55 (1) A , respectively, in order to ensure a chemically reasonable environment for these groups. These H atoms were modelled with the isotropic displacement parameters fixed at $1.5 U_{\text {eq }}(\mathrm{O})$. The extra disordered water molecule was included in the final structural model distributed over three distinct crystallographic positions. Even though the H atoms associated with these partially occupied water molecules could not be located from difference Fourier maps and no attempts were made to place them in calculated positions, they have been added to the empirical formula of the compound. These moieties were included in the model by assuming a common isotropic displacement parameter.

3. Results and discussion

3.1. Synthesis and structural characterization of the organic linker: a detailed NMR study

The ${ }^{1} \mathrm{H}$ NMR spectrum of the as-prepared $\mathrm{H}_{4} \mathrm{cpp}$ (see Experimental) in DMSO- d_{6} shows a doublet of doublets at δ $8.05 \mathrm{ppm}(J=9.0$ and 8.0 Hz$)$ corresponding to the two phenyl-ring protons. We have, remarkably, observed a prominent triplet signal at $\delta 7.13 \mathrm{ppm}(J=50.6 \mathrm{~Hz})$ which we have attributed ultimately to the signals of ammonium cations

Table 2
Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$).

Ca1	O1		2.294 (3)	Ca2	O4		2.304 (3)
Ca1	O4		2.496 (3)	Ca 2	$\mathrm{O} 5^{\text {i }}$		2.306 (3)
Ca 1	O5		2.685 (3)	Ca2	O7 ${ }^{\text {i }}$		2.469 (3)
Ca1	O7		2.362 (3)	Ca2	$\mathrm{O} 9{ }^{\text {i }}$		2.660 (3)
Ca1	$\mathrm{O} 9{ }^{\text {i }}$		2.319 (3)	Ca2	O11 ${ }^{\text {i }}$		2.416 (3)
Ca1	O10		2.310 (3)	Ca 2	$\mathrm{N} \mathrm{i}^{1 i}$		2.651 (4)
Ca1	O1W		2.365 (3)	Ca 2	O2W		2.459 (4)
Ca2	O2		2.546 (3)				
O1	Ca1	O4	78.35 (11)	O4	Ca2	O7 $7^{\text {i }}$	124.54 (11)
O1	Ca1	O5	77.14 (11)	O4	Ca 2	$\mathrm{O} 9{ }^{\text {i }}$	68.47 (10)
O1	Ca1	O7	92.53 (11)	O4	Ca 2	O11 ${ }^{\text {i }}$	102.96 (11)
O1	Ca1	$\mathrm{O} 9^{\mathrm{i}}$	98.80 (11)	O4	Ca 2	$\mathrm{N}{ }^{1 i}$	87.27 (12)
O1	Ca1	O10	159.06 (12)	O4	Ca 2	O2W	77.21 (12)
O1	Ca1	O1W	90.25 (13)	O5 ${ }^{\text {i }}$	Ca2	O 2	106.02 (11)
O4	Ca1	O5	56.78 (9)	O5 ${ }^{\text {i }}$	Ca 2	O7 ${ }^{\text {i }}$	74.96 (11)
O7	Ca1	O4	126.80 (11)	O5 ${ }^{\text {i }}$	Ca 2	$09^{\text {i }}$	132.30 (11)
O7	Ca 1	O5	70.05 (10)	O5 ${ }^{\text {i }}$	Ca2	O11 ${ }^{\text {i }}$	89.23 (11)
O7	Ca 1	O1W	82.00 (12)	O5 ${ }^{\text {i }}$	Ca2	$\mathrm{N} 1^{\text {ii }}$	73.48 (12)
O9 ${ }^{\text {i }}$	Ca1	O4	71.26 (11)	O5 ${ }^{\text {i }}$	Ca2	O 2 W	88.64 (12)
$\mathrm{O} 9{ }^{\text {i }}$	Ca1	O5	127.75 (11)	$\mathrm{O}^{\text {i }}$	Ca 2	O 2	78.71 (10)
$\mathrm{O} 9{ }^{\text {i }}$	Ca1	O7	160.64 (12)	$\mathrm{O}^{\text {i }}$	Ca 2	$\mathrm{O} 9^{\mathrm{i}}$	58.29 (10)
O9 ${ }^{\text {i }}$	Ca1	O1W	82.29 (12)	$\mathrm{O}^{\text {i }}$	Ca 2	$\mathrm{N} 1^{\text {ii }}$	126.21 (12)
O10	Ca1	O4	89.32 (11)	O11 ${ }^{\text {i }}$	Ca2	O2	144.08 (11)
O10	Ca1	O5	81.95 (11)	O11 ${ }^{\text {i }}$	Ca 2	$\mathrm{O}^{\text {i }}$	74.13 (10)
O10	Ca1	O7	81.29 (10)	O11 ${ }^{\text {i }}$	Ca2	O9 ${ }^{\text {i }}$	70.54 (10)
O10	Ca1	O9 ${ }^{\text {i }}$	93.05 (11)	O11 ${ }^{\text {i }}$	Ca 2	$\mathrm{N}{ }^{1 i}$	146.04 (12)
O10	Ca 1	O1W	108.50 (13)	O11 ${ }^{\text {i }}$	Ca 2	O2W	79.17 (11)
O1W	Ca1	O4	148.95 (12)	O2W	Ca2	O2	132.19 (11)
O1W	Ca1	O5	148.50 (11)	O2W	Ca 2	$\mathrm{O}^{\text {i }}$	148.61 (11)
O2	Ca2	$\mathrm{O}^{\text {i }}$	75.34 (10)	O2W	Ca2	$\mathrm{O} 9^{\text {i }}$	126.56 (11)
O2	Ca 2	$\mathrm{N} 1{ }^{\text {ii }}$	69.80 (12)	O2W	Ca 2	$\mathrm{N} 1^{\text {ii }}$	71.58 (13)
O4	Ca 2	O2	73.89 (10)	$\mathrm{N} 1{ }^{\text {ii }}$	Ca2	$\mathrm{O} 9^{\text {i }}$	141.94 (11)
O4	Ca 2	$\mathrm{O} 5^{\text {i }}$	159.04 (12)				

Symmetry codes: (i) $x, y, z \quad 1$; (ii) $x, \quad y+\frac{3}{2}, z \quad \frac{1}{2}$.
(Fig. S1 in the Supporting information). We believe that during the hydrolysis process under acidic conditions, which is detailed in the Experimental section, a portion of the cyano groups were decomposed and stabilized as ammonium cations. Indeed, integration of the ${ }^{1} \mathrm{H}$ NMR spectrum reveals the presence of $\mathrm{NH}_{4}{ }^{+}$cations at about a 1:1 ratio in the final product. To date, we have been unable to crystallize this com pound in order observe unequivocally this structural feature. To validate this assumption, we have instead carried out two different sets of detailed NMR experiments in DMSO- d_{6} and methanol- d_{4} which are detailed in Cases 1 and 2 below.

The ${ }^{13} \mathrm{C}$ NMR studies show a peak at $\delta 116.1 \mathrm{ppm}$ corresponding to the resonance of the two cyano groups, and a doublet of doublets at $\delta 114.8 \mathrm{ppm}$, with J of 161.6 and 9.8 Hz , correlated to the resonance of the C atoms belonging to the phosphonic acid groups. The spectrum shows two triplets at δ 136.2 and 115.5 ppm corresponding to the $\mathrm{C}_{3,6}$ and $\mathrm{C}_{1,2}$ carbons of the aromatic ring, respectively (Fig. S3 in the Supporting information).

The ${ }^{31} \mathrm{P}$ NMR spectrum shows only one signal as a multiplet between 9.38 and 9.77 ppm (Fig. S2 in the Supporting information).
3.1.1. Case 1: NMR studies before and after the addition of a base to the NMR tube (in DMSO- \boldsymbol{d}_{6}). We assumed that adding an excess of base, in this case solid $\mathrm{K}_{2} \mathrm{CO}_{3}$, to the NMR tube containing $\mathrm{H}_{4} \mathrm{cpp}$ in DMSO- d_{6} would neutralize, if not all

Figure 1
Schematic representation of the asymmetric unit of $\left\{\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (1), showing all non H atoms as displacement ellipsoids drawn at the 50% probability level and H atoms as small spheres with an arbitrary radius. The coordination spheres of the crystallographically independent metallic centres are completed by generating the remaining O and N atoms through symmetry. For selected bond lengths (in \AA) and angles (in ${ }^{\circ}$), see Table 2. [Symmetry codes: (i) $x, y, z \quad$ 1; (ii) $x, \quad y+\frac{3}{2}$, $\begin{array}{ll}z & \frac{1}{2} \text {.] }\end{array}$
then at least in part, the ammonium cations. The ${ }^{1} \mathrm{H}$ NMR spectrum clearly shows that the triplet signal disappears. However, a new broad signal still appears in the same region, at $\delta 7.34 \mathrm{ppm}$ (Fig. S4 in the Supporting information). This signal may be related to the pendant ammonium cations. At $\delta 4.75 \mathrm{ppm}$, we have a second broad signal correlated to the $\mathrm{H}_{2} \mathrm{O}$ and the OH groups of phosphonic acid. Interestingly,

Figure 2
A one dimensional ladder like ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ chain running parallel to the c axis of the unit cell. The figure emphasizes the presence of inorganic chains of Ca^{2+} cations disposed parallel to the [001] direction [Ca Ca distance of 3.9334 (12) \AA] connected by organic residues. Crystallization water molecules have been removed for the sake of clarity.
the ${ }^{13} \mathrm{C}$ NMR spectrum shows the appearance of new signal at $\delta 168.5 \mathrm{ppm}$ corresponding to carbonyl groups ($\mathrm{C}=\mathrm{O}$), along with the disappearance of the cyano signal at $\delta 124.6 \mathrm{ppm}$ (Fig. S6 in the Supporting information). This fact seems to indicate that the addition of a base to $\mathrm{H}_{4} \mathrm{cpp}$ ultimately converts in situ the cyano groups into carboxylic acid groups, forming CO_{2} from carbonate.
3.1.2. Case 2: NMR studies before and after the addition of ammonia in methanol- d_{4}. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{H}_{4} \mathrm{cpp}$ in methanol- d_{4} shows a pseudo-triplet signal at $\delta 8.27 \mathrm{ppm}$ corresponding to the phenyl-ring protons (Fig. S7 in the Supporting information). We have not observed any significant signals related to the ammonium cation. The ${ }^{13} \mathrm{C}$ NMR spectrum shows a signal at $\delta 170.2 \mathrm{ppm}$, which must correspond to carbonyl groups ($\mathrm{C}=\mathrm{O}$), along with the other signals (Fig. S10 in the Supporting information). This study reveals that, in methanol- d_{4}, H_{4} cpp undergoes an in situ conversion to a carboxylic acid derivative, similar to that described above, because no OCD_{3} group signals, typical of an esterification, are present in the aliphatic region.

A few drops of a methanolic ammonia solution (ca 7 M) were added to the NMR tube and the ${ }^{1} \mathrm{H}$ NMR spectrum was collected again. The results show the appearance of the corresponding triplet signal of the ammonium cation at $\delta 7.41$ $\mathrm{ppm}(J=52.5 \mathrm{~Hz})$ alongside the phenyl protons at $\delta 8.38$ (Fig. S10 in the Supporting information).

Based on the aforementioned experimental data, we have confirmed that triplet signals at $\delta 7.13 \mathrm{ppm}$ in DMSO- d_{6} indeed correspond to ammonium cations. These seem to exist in the final product, probably stabilizing the organic linker as an ammonium salt.

3.2. Structural description of the one-dimensional ladder coordination polymer

$\left\{\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (1) (see Scheme), crystallizes in the monoclinic space group $P 2_{1} / c$. The asymmetric unit is composed of two metal centres (Ca 1 and Ca 2), two $\mathrm{H}_{2} \mathrm{cpp}^{2-}$ residues (denoted Residues 1 and 2; Fig. 1) and four water molecules of crystallization.

Remarkably, the two metal centres do not exhibit the same coordination environment. Ca1 is heptacoordinated to one water molecule and six hydrogenophosphonate moieties, i.e. $\left\{\mathrm{CaO}_{7}\right\}$, with the overall coordination geometry resembling a distorted pentagonal bipyramid. The Ca O bond lengths are in the range 2.294 (3) 2.685 (3) \AA (see Table 2). Atom Ca2 is octacoordinated to one water molecule, six hydrogenophosphonate residues and one cyano group, i.e. $\left\{\mathrm{CaNO}_{7}\right\}$, and the coordination environment may be described as a highly distorted square antiprism. For this metal atom, the Ca (N, O) bond lengths are in the range 2.304 (3) 2.660 (3) \AA. We note that the distances for both coordination environments are well within the expected ranges, as revealed by a search in the CSD (median value of $2.38 \AA$ for a wide range of 2.08 2.85 Å).

The two crystallographically independent $\mathrm{H}_{2} \mathrm{cpp}^{2-}$ ligands (Residues 1 and 2; Fig. 1) act as linkers connecting three Ca^{2+}

Table 3
Hydrogen bond geometry ($\AA,{ }^{\circ}$).

D H \cdots A	$D \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	D	H $\cdots A$
O1W W H1 $X \ldots \mathrm{O} 3^{\text {iii }}$	0.95	1.76	2.693 (4)	169	
O1W H1 $Y \cdots \mathrm{~N} 4^{\text {iv }}$	0.95	2.06	3.004 (6)	178	
O2W H2X..O5 ${ }^{\text {i }}$	0.95	1.79	2.725 (5)	167	
$\mathrm{O} 2 W \mathrm{H} 2 Y \cdots \mathrm{O} 2^{\text {v }}$	0.95	2.16	2.988 (5)	146	
O3W H3X..O11	0.95	1.76	2.696 (4)	171	
O3W H3Y...O10 ${ }^{\text {vi }}$	0.95	1.77	2.691 (4)	166	
O4W H4X..O. $1^{\text {i }}$	0.95	1.82	2.747 (5)	167	
O4W H4Y...O8 ${ }^{\text {iii }}$	0.95	2.04	2.785 (5)	135	
O5W H5X..O3 $W^{\text {vii }}$	0.95	1.79	2.729 (5)	171	
O5W H5Y...N3 ${ }^{\text {viii }}$	0.95	1.93	2.860 (6)	166	
O2 H2 . $\mathrm{O} 4 W$	0.95	1.56	2.499 (5)	171	
O6 H6..O5W	0.84	1.79	2.600 (5)	162	
O8 H8 . OO3 ${ }^{\text {iii }}$	0.84	1.69	2.513 (4)	165	
O12 H12 . O3 $W^{\text {vii }}$	0.84	1.76	2.596 (5)	171	
$\begin{aligned} & \text { Symmetry codes: (i) } x, y, z \quad 1 \text {; (iii) } x, \quad y+1, \quad z+1 ; \text { (iv) } x, \quad y+\frac{1}{2}, z \\ & \quad \frac{1}{2} ; ~(v) \\ & x+1, \quad y+1, \quad z+1 ; \text { (vi) } x, y, z+1 ; \text { (vii) } x+1, \quad y+1, \quad z+2 ; \text { (viii) } x+1, \\ & y+\frac{1}{2}, \quad z+\frac{3}{2} . \end{aligned}$					

metallic centres. The connecting modes are, nevertheless, strikingly distinct. While Residue 1 is bound to two Ca^{2+} centres via the phosphonate groups and to a third metal atom using the pendant cyano group $\mathrm{C} 7 \equiv \mathrm{~N} 1$, Residue 2 only establishes connections via phosphonate groups, leaving both cyano groups unimpeded for hydrogen-bonding interactions (see Table 3). Intermetallic bridges promote the formation of a compact one-dimensional zigzag ribbon of Ca^{2+} centres running parallel to the [001] direction of the unit cell (Fig. 2),
which are characterized by two distinct intermetallic distances: $\mathrm{Ca} 1 \cdots \mathrm{Ca} 2=3.9753$ (12) \AA and $\mathrm{Ca} 1^{\mathrm{i}} \cdots \mathrm{Ca} 2=3.9334$ (12) \AA [symmetry code: (i) $x, y, z+1$].

The aforementioned single connection via the cyano group constitutes the ultimate structural feature differentiating the two anionic $\mathrm{H}_{2} \mathrm{cpp}^{2-}$ ligands. While Residue 1 is bound to one metal centre via a Ca N distance of 2.651 (4) \AA (from the CSD: mean value for Ca N of $2.55 \AA$, with a total range of $2.213 .21 \AA$), Residue 2 has both cyano groups uncoordinated. This bridge is at the genesis of a ladder-like ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}-\right.$ $\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] chain running parallel to the [001] direction of the unit cell, as depicted in Fig. 2.

3.3. Supramolecular features

The crystal structure of compound (1) is based mostly on how the individual ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ ladders close pack and interact. The various water molecules fill the voids. In the $b c$ plane of the unit cell, ladders interdigitate $v i a$ the Residue 2 organic linkers, which have both cyano groups uncoordinated. These groups are engaged in strong and highly directional O $\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions with water molecules (both coordinated and of crystallization): $D \cdots A$ (donor acceptor) distances $=2.860$ (6) 3.004 (6) \AA and $D \quad \mathrm{H} \cdots A$ interaction angles $=166178^{\circ}$. The immediate effect is the formation of supramolecular undulated layers located in the $b c$ plane (Fig. 3, top), which alternate along the [100] direction of the unit cell. It is worthy of note that the individual

Figure 3

Schematic representation of the parallel packing of individual ladder like ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ chains, viewed along the (top) [100] and (bottom) [001] directions of the unit cell. Individual ladders are represented in different colours for clarity.
${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ ladders are distributed in a typical brick-wall-like fashion in the $a b$ plane of the unit cell, as depicted in Fig. 3 (top).

The overall structural cohesion is significantly boosted by the presence of various additional $\mathrm{O} \quad \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \quad \mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions. Water molecules and hydroxy groups promote a network of strong connections, with $D \cdots A$ distances ranging from as low as 2.499 (5) to 2.988 (5) \AA; the corresponding $D \quad \mathrm{H} \cdots A$ interaction angles are found in the 135171° range (Table 3). These contacts lead to a network of connections between all groups, as depicted in Fig. 4.

4. Conclusions

We have reported the synthesis and detailed structural characterization of the novel organic linker (4,5-dicyano-1,2-
phenylene)bis(phosphonic acid) $\left(\mathrm{H}_{4} \mathrm{cpp}\right)$ and its use in the self-assembly of a one-dimensional ladder-like ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ chain isolated in the crystalline compound $\left\{\left[\mathrm{Ca}_{2}{ }^{-}\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. To the best of our knowledge, the compound is a rare example of a Ca^{2+}-based CP based on a cyanophosphonate or an aminophosphonate linker. We are currently exploring in our laboratories the use of this organic linker to prepare other polymeric structures using other s block cations.

Acknowledgements

Funding sources and bodies: Fundação para a Ciência e a Tecnologia (FCT, Portugal), the European Union, QREN, FEDER through Programa Operacional Factores de Competitividade (COMPETE), CICECO Aveiro Institute of Mate-

Figure 4
The crystal packing of $\left\{\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (1), viewed in perspective along the [001] direction of the unit cell. The magnification focuses on the strong and directional $\mathrm{O} \quad \mathrm{H} \quad \mathrm{O}$ and $\mathrm{O} \quad \mathrm{H} \quad \mathrm{N}$ hydrogen bonding interactions (orange dashed lines) connecting together water molecules and adjacent ${ }_{\infty}^{1}\left[\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{cpp}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ chains (via the uncoordinated hydroxy and cyano groups). For geometrical details of the represented hydrogen bonding interactions, see Table 3. Symmetry transformations used to generate equivalent atoms have been omitted for clarity.
rials (reference FCT UID/CTM/50011/2013), QOPNA (reference FCT UID/QUI/00062/2013) and CQE (reference FCT UID/QUI/0100/2013) research units, financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement.
Projects and individual grants: We wish to thank FCT for funding the R\&D project FCOMP-01-0124-FEDER-041282 (reference FCT EXPL/CTM-NAN/0013/2013), and also CICECO for specific funding towards the purchase of the single-crystal diffractometer. FCT is gratefully acknowledged for postdoctoral research grant No. SFRH/BPD/79000/2011 (to NV) and PhD research grant No. SFRH/BD/84231/2012 (to RFM).

References

Allen, F. H. (2002). Acta Cryst. B58, 380388.
Bishop, M., Bott, S. G. \& Barron, A. R. (2003). Chem. Mater. 15, 30743088.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2012). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Demadis, K. D., Barouda, E., Stavgianoudaki, N. \& Zhao, H. (2009). Cryst. Growth Des. 9, 12501253.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171179.
Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., Liu, C., Sun, F. \& Zhu, G. (2013). J. Chem. Sci. 4, 983992.

Mendes, R. F., Silva, P., Antunes, M. M., Valente, A. A. \& Paz, F. A. A. (2015). Chem. Commun. 51, 1080710810.

Schmidt, C., Feyand, M., Rothkirch, A. \& Stock, N. (2011). J. Solid State Chem. 188, 4449.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 38.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 38.
Stock, N. \& Bein, T. (2004). Angew. Chem. Int. Ed. 43, 749752.
Venkatramaiah, N., Pereira, P. M. R., Paz, F. A. A., Ribeiro, C. A. F., Fernandes, R. \& Tomé, J. P. C. (2015). Chem. Commun. 51, 15550 15553.

Yang, X. L., Hou, G. H., Guan, R. F., Shao, R. \& Xie, M. H. (2016). Adv. Funct. Mater. 26, 393398.
Zhai, Q. G., Bu, X., Mao, C., Zhao, X. \& Feng, P. (2016). J. Am. Chem. Soc. 138, 25242527.

supporting information

A ladder coordination polymer based on Ca^{2+} and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid): crystal structure and solution-state NMR study

Nutalapati Venkatramaiah, Ricardo F. Mendes, Artur M. S. Silva, João P. C. Tomé and Filipe A. Almeida Paz

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Poly[[diaqua $\left[\mu_{4}\right.$-(4,5-dicyano-1,2-phenylene)bis(phosphonato)][μ_{3}-(4,5-dicyano-1,2phenylene)bis(phosphonato)]dicalcium(II)] tetrahydrate]

Crystal data

$\left[\mathrm{Ca}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=760.40$
Monoclinic, $P 2_{1} / c$
$a=16.4384$ (11) \AA
$b=25.2929$ (18) \AA
$c=6.9599(5) \AA$
$\beta=91.493$ (3) ${ }^{\circ}$
$V=2892.8(4) \AA^{3}$
$Z=4$

Data collection

Bruker D8 QUEST
diffractometer
Radiation source: Sealed tube
Multi-layer X-ray mirror monochromator
Detector resolution: 10.4167 pixels mm^{-1}
ω / φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.665, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.133$
$S=1.12$
5266 reflections
$F(000)=1552$
$D_{\mathrm{x}}=1.746 \mathrm{Mg} \mathrm{m}^{3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9894 reflections
$\theta=2.5-27.5^{\circ}$
$\mu=0.70 \mathrm{~mm}^{1}$
$T=180 \mathrm{~K}$
Needle, colourless
$0.10 \times 0.06 \times 0.01 \mathrm{~mm}$

27705 measured reflections
5266 independent reflections
4050 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-19 \rightarrow 19$
$k=-30 \rightarrow 30$
$l=-8 \rightarrow 6$

437 parameters
17 restraints
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0456 P)^{2}+10.5068 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=1.11 \mathrm{e} \AA^{3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e}^{3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cal	0.21357 (5)	0.48752 (4)	0.48298 (12)	0.0121 (2)	
O1W	0.1289 (2)	0.41194 (14)	0.4757 (5)	0.0283 (9)	
H1X	0.083 (2)	0.4128 (18)	0.556 (7)	0.042*	
H1Y	0.149 (3)	0.3768 (8)	0.467 (8)	0.042*	
Ca2	0.26293 (5)	0.55449 (4)	-0.01741 (12)	0.0129 (2)	
O2W	0.3849 (2)	0.60987 (14)	0.0272 (5)	0.0251 (8)	
H2X	0.416 (3)	0.605 (2)	-0.084 (4)	0.038*	
H2Y	0.414 (3)	0.597 (2)	0.137 (4)	0.038*	
P1	0.07803 (7)	0.57959 (5)	0.28875 (17)	0.0137 (3)	
P2	0.27497 (7)	0.60345 (5)	0.47447 (16)	0.0123 (3)	
P3	0.19620 (7)	0.44154 (5)	0.98306 (16)	0.0127 (3)	
P4	0.38005 (7)	0.44944 (5)	0.76973 (16)	0.0133 (3)	
O1	0.10166 (18)	0.54102 (12)	0.4433 (4)	0.0163 (7)	
O2	0.11751 (18)	0.56490 (13)	0.0942 (4)	0.0159 (7)	
H2	0.081 (2)	0.560 (2)	-0.012 (5)	0.024*	
O3	-0.01218 (18)	0.58811 (13)	0.2597 (4)	0.0177 (7)	
O4	0.27202 (18)	0.56479 (12)	0.3114 (4)	0.0156 (7)	
O5	0.26030 (19)	0.57702 (13)	0.6615 (4)	0.0183 (7)	
O6	0.35591 (19)	0.63571 (13)	0.4760 (5)	0.0236 (8)	
H6	0.3892	0.6223	0.5558	0.035*	
O7	0.19488 (18)	0.47961 (12)	0.8170 (4)	0.0137 (7)	
O8	0.11072 (19)	0.41838 (13)	1.0214 (4)	0.0185 (7)	
H8	0.0848	0.4147	0.9166	0.028*	
O9	0.23133 (18)	0.46456 (12)	1.1642 (4)	0.0153 (7)	
O10	0.34371 (18)	0.46164 (13)	0.5742 (4)	0.0161 (7)	
O11	0.36883 (18)	0.49098 (12)	0.9206 (4)	0.0150 (7)	
O12	0.47252 (18)	0.43474 (13)	0.7524 (5)	0.0195 (7)	
H12	0.4995	0.4622	0.7312	0.029*	
N1	0.2182 (3)	0.84492 (17)	0.4633 (6)	0.0232 (9)	
N2	-0.0175 (4)	0.8114 (2)	0.3213 (10)	0.0628 (18)	
N3	0.4199 (3)	0.2033 (2)	0.8105 (8)	0.0445 (13)	
N4	0.1946 (4)	0.1987 (2)	0.9551 (8)	0.0480 (14)	
C1	0.1198 (3)	0.64455 (18)	0.3556 (6)	0.0145 (9)	
C2	0.1994 (3)	0.65507 (18)	0.4251 (6)	0.0141 (9)	
C3	0.2237 (3)	0.70717 (18)	0.4555 (6)	0.0174 (10)	
H3	0.2778	0.7144	0.4992	0.021*	

C4	$0.1697(3)$	$0.74911(19)$	$0.4227(6)$	$0.0199(10)$
C5	$0.0894(3)$	$0.73801(19)$	$0.3647(7)$	$0.0209(11)$
C6	$0.0661(3)$	$0.68640(19)$	$0.3304(7)$	$0.0192(10)$
H6A	0.0118	0.6793	0.2884	0.023^{*}
C7	$0.1968(3)$	$0.8027(2)$	$0.4459(7)$	$0.0243(11)$
C8	$0.0308(4)$	$0.7803(2)$	$0.3392(8)$	$0.0324(13)$
C9	$0.3783(3)$	$0.34030(19)$	$0.8153(7)$	$0.0198(10)$
H9	0.4320	0.3420	0.7684	0.024^{*}
C10	$0.2573(3)$	$0.38361(18)$	$0.9209(6)$	$0.0132(9)$
C11	$0.3358(3)$	$0.38678(18)$	$0.8459(6)$	$0.0156(10)$
C12	$0.3442(3)$	$0.2914(2)$	$0.8519(7)$	$0.0225(11)$
C13	$0.2651(3)$	$0.28838(19)$	$0.9180(7)$	$0.0221(11)$
C14	$0.2224(3)$	$0.33432(19)$	$0.9546(7)$	$0.0191(10)$
H14	0.1690	0.3323	1.0030	0.023^{*}
C15	$0.3892(3)$	$0.2431(2)$	$0.8245(8)$	$0.0297(12)$
C16	$0.2254(3)$	$0.2379(2)$	$0.9432(8)$	$0.0275(12)$
O3W	$0.43889(19)$	$0.48070(14)$	$1.2731(5)$	$0.0200(7)$
H3X	$0.411(2)$	$0.481(2)$	$1.152(3)$	0.030^{*}
H3Y	$0.401(2)$	$0.479(2)$	$1.373(4)$	0.030^{*}
O4W	$0.0320(3)$	$0.5554(3)$	$-0.2061(6)$	$0.073(2)$
H4X	$0.051(4)$	$0.546(4)$	$-0.328(5)$	0.109^{*}
H4Y	$-0.0246(12)$	$0.562(4)$	$-0.213(10)$	0.109^{*}
O5W	$0.4773(2)$	$0.61236(15)$	$0.7077(5)$	$0.0267(8)$
H5X	$0.502(3)$	$0.5783(8)$	$0.711(9)$	0.040^{*}
H5Y	$0.519(2)$	$0.6385(12)$	$0.706(8)$	0.040^{*}
O6W	$0.4021(8)$	$0.7237(5)$	$0.106(2)$	$0.055(2)^{*}$
O7W	$0.4377(11)$	$0.7206(7)$	$0.296(3)$	$0.055(2)^{*}$
O8W	$0.3948(8)$	$0.7254(5)$	$-0.046(2)$	$0.055(2)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca1	$0.0123(4)$	$0.0148(5)$	$0.0091(4)$	$0.0004(4)$	$0.0009(3)$	$0.0008(4)$
O1W	$0.034(2)$	$0.022(2)$	$0.030(2)$	$-0.0097(16)$	$0.0191(16)$	$-0.0055(16)$
Ca2	$0.0161(5)$	$0.0137(5)$	$0.0090(4)$	$0.0008(4)$	$0.0002(3)$	$-0.0001(4)$
O2W	$0.0251(19)$	$0.028(2)$	$0.0225(18)$	$-0.0025(16)$	$-0.0002(15)$	$0.0023(16)$
P1	$0.0114(6)$	$0.0153(6)$	$0.0143(6)$	$0.0002(5)$	$0.0008(4)$	$-0.0004(5)$
P2	$0.0145(6)$	$0.0125(6)$	$0.0098(5)$	$-0.0017(5)$	$-0.0009(4)$	$0.0003(5)$
P3	$0.0131(6)$	$0.0150(6)$	$0.0100(5)$	$-0.0017(5)$	$0.0015(4)$	$0.0006(5)$
P4	$0.0120(6)$	$0.0153(6)$	$0.0127(5)$	$0.0006(5)$	$0.0007(4)$	$0.0003(5)$
O1	$0.0146(16)$	$0.0156(17)$	$0.0188(16)$	$0.0004(13)$	$0.0005(13)$	$0.0027(13)$
O2	$0.0138(16)$	$0.0210(18)$	$0.0129(15)$	$-0.0006(13)$	$-0.0001(12)$	$-0.0028(13)$
O3	$0.0132(16)$	$0.0242(19)$	$0.0158(16)$	$0.0008(14)$	$0.0002(13)$	$-0.0004(14)$
O4	$0.0192(17)$	$0.0173(17)$	$0.0103(15)$	$0.0012(13)$	$0.0013(13)$	$-0.0008(13)$
O5	$0.0252(18)$	$0.0179(18)$	$0.0120(15)$	$0.0010(14)$	$0.0013(13)$	$0.0018(13)$
O6	$0.0158(17)$	$0.0222(19)$	$0.032(2)$	$-0.0029(14)$	$-0.0074(15)$	$0.0064(16)$
O7	$0.0141(16)$	$0.0139(17)$	$0.0132(15)$	$0.0000(12)$	$0.0018(12)$	$0.0000(13)$
O8	$0.0144(16)$	$0.0270(19)$	$0.0141(16)$	$-0.0046(14)$	$0.0009(13)$	$0.0006(15)$

O9	$0.0160(16)$	$0.0183(17)$	$0.0118(15)$	$-0.0017(13)$	$0.0016(12)$	$-0.0006(13)$
O10	$0.0144(16)$	$0.0226(18)$	$0.0115(15)$	$0.0009(13)$	$0.0028(12)$	$0.0010(13)$
O11	$0.0119(15)$	$0.0172(17)$	$0.0158(16)$	$0.0006(13)$	$0.0005(12)$	$-0.0012(13)$
O12	$0.0135(16)$	$0.0217(19)$	$0.0235(18)$	$0.0022(13)$	$0.0013(14)$	$-0.0011(15)$
N1	$0.031(2)$	$0.018(2)$	$0.021(2)$	$-0.0016(19)$	$0.0066(18)$	$-0.0019(18)$
N2	$0.053(4)$	$0.043(4)$	$0.092(5)$	$0.023(3)$	$-0.013(3)$	$-0.016(3)$
N3	$0.048(3)$	$0.023(3)$	$0.062(4)$	$0.013(2)$	$-0.002(3)$	$-0.005(3)$
N4	$0.061(4)$	$0.030(3)$	$0.053(3)$	$-0.012(3)$	$-0.007(3)$	$0.005(3)$
C1	$0.019(2)$	$0.014(2)$	$0.010(2)$	$-0.0018(19)$	$0.0021(18)$	$-0.0012(18)$
C2	$0.019(2)$	$0.018(2)$	$0.006(2)$	$-0.0012(19)$	$0.0037(17)$	$0.0014(18)$
C3	$0.024(3)$	$0.017(2)$	$0.012(2)$	$-0.004(2)$	$0.0039(19)$	$0.0016(19)$
C4	$0.034(3)$	$0.014(2)$	$0.012(2)$	$-0.002(2)$	$0.004(2)$	$-0.0014(19)$
C5	$0.026(3)$	$0.021(3)$	$0.016(2)$	$0.008(2)$	$0.003(2)$	$0.001(2)$
C6	$0.019(2)$	$0.021(3)$	$0.017(2)$	$0.001(2)$	$-0.0007(19)$	$0.001(2)$
C7	$0.035(3)$	$0.024(3)$	$0.014(2)$	$0.004(2)$	$0.006(2)$	$-0.001(2)$
C8	$0.038(3)$	$0.021(3)$	$0.038(3)$	$0.009(3)$	$-0.004(3)$	$-0.005(2)$
C9	$0.023(3)$	$0.020(3)$	$0.016(2)$	$0.003(2)$	$-0.0018(19)$	$0.000(2)$
C10	$0.019(2)$	$0.012(2)$	$0.008(2)$	$0.0015(18)$	$-0.0020(17)$	$0.0001(17)$
C11	$0.016(2)$	$0.018(3)$	$0.013(2)$	$0.0002(19)$	$-0.0016(18)$	$-0.0023(19)$
C12	$0.029(3)$	$0.018(3)$	$0.020(2)$	$0.006(2)$	$-0.001(2)$	$0.001(2)$
C13	$0.030(3)$	$0.017(3)$	$0.020(2)$	$-0.002(2)$	$-0.003(2)$	$0.003(2)$
C14	$0.022(3)$	$0.018(3)$	$0.017(2)$	$-0.003(2)$	$0.0001(19)$	$-0.001(2)$
C15	$0.036(3)$	$0.022(3)$	$0.030(3)$	$0.002(2)$	$-0.005(2)$	$-0.002(2)$
C16	$0.032(3)$	$0.021(3)$	$0.029(3)$	$-0.003(2)$	$-0.005(2)$	$0.001(2)$
O3W	$0.0147(17)$	$0.030(2)$	$0.0157(16)$	$0.0005(14)$	$0.0019(13)$	$0.0027(15)$
O4W	$0.024(2)$	$0.173(6)$	$0.021(2)$	$0.030(3)$	$-0.0032(17)$	$-0.023(3)$
O5W	$0.0198(19)$	$0.025(2)$	$0.035(2)$	$-0.0024(15)$	$-0.0017(16)$	$0.0026(17)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ca1-O1	2.294 (3)	O6-H6	0.8400
Ca1-O4	2.496 (3)	O7- $\mathrm{Ca}^{\text {2i }}$	2.470 (3)
Ca1-O5	2.685 (3)	O8-H8	0.8400
Ca1-07	2.362 (3)	$\mathrm{O} 9-\mathrm{Ca} 1^{\text {ii }}$	2.319 (3)
$\mathrm{Ca} 1-\mathrm{O} 9^{\text {i }}$	2.319 (3)	O9- $\mathrm{Ca}_{2}{ }^{\text {ii }}$	2.660 (3)
Ca1-O10	2.310 (3)	$\mathrm{O} 11-\mathrm{Ca} 2{ }^{\text {ii }}$	2.416 (3)
Cal-O1W	2.365 (3)	O12-H12	0.8400
$\mathrm{Ca} 1-\mathrm{Ca} 2{ }^{\text {ii }}$	3.9334 (12)	N1-C7	1.130 (6)
$\mathrm{Ca} 1-\mathrm{Ca} 2$	3.9753 (12)	N1-Ca2 ${ }^{\text {iv }}$	2.651 (4)
O1W-H1X	0.947 (10)	N2-C8	1.122 (7)
O1W-H1Y	0.949 (10)	N3-C15	1.130 (7)
$\mathrm{Ca} 2-\mathrm{O} 2$	2.546 (3)	N4-C16	1.117 (7)
Ca2-O4	2.304 (3)	C1-C6	1.386 (7)
$\mathrm{Ca} 2-\mathrm{O} 5^{\text {i }}$	2.306 (3)	C1-C2	1.409 (6)
$\mathrm{Ca} 2-\mathrm{O} 7^{\text {i }}$	2.469 (3)	C2-C3	1.392 (6)
$\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$	2.660 (3)	C3-C4	1.399 (7)
$\mathrm{Ca} 2-\mathrm{O} 11^{\text {i }}$	2.416 (3)	C3-H3	0.9500
$\mathrm{Ca} 2-\mathrm{N} 1^{\text {iii }}$	2.651 (4)	C4-C5	1.398 (7)

$\mathrm{Ca} 2-\mathrm{O} 2 \mathrm{~W}$	2.459 (4)
O2W-H2X	0.948 (10)
O2W-H2Y	0.946 (10)
P1-O1	1.496 (3)
P1-O3	1.507 (3)
P1-O2	1.562 (3)
P1-C1	1.836 (5)
P2-O5	1.489 (3)
P2-O4	1.498 (3)
P2-O6	1.561 (3)
P2-C2	1.828 (5)
P3-O9	1.492 (3)
P3-O7	1.504 (3)
P3-O8	1.552 (3)
P3-C10	1.834 (5)
$\mathrm{P} 3-\mathrm{Ca} 2{ }^{\text {ii }}$	3.0603 (15)
$\mathrm{P} 4-\mathrm{O} 11$	1.500 (3)
$\mathrm{P} 4-\mathrm{O} 10$	1.504 (3)
$\mathrm{P} 4-\mathrm{O} 12$	1.573 (3)
P4-C11	1.828 (5)
$\mathrm{O} 2-\mathrm{H} 2$	0.947 (10)
$\mathrm{O} 5-\mathrm{Ca} 2{ }^{\text {ii }}$	2.306 (3)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 4$	78.35 (11)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 5$	77.14 (11)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 7$	92.53 (11)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 9^{\text {i }}$	98.80 (11)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 10$	159.06 (12)
$\mathrm{O} 1-\mathrm{Ca1-O1W}$	90.25 (13)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 5$	56.78 (9)
O7-Ca1-O4	126.80 (11)
O7- $\mathrm{Ca} 1-\mathrm{O} 5$	70.05 (10)
O7-Cal-O1W	82.00 (12)
O 9 - $\mathrm{Ca} 1-\mathrm{O} 4$	71.26 (11)
O9 ${ }^{\text {i }}$ - $\mathrm{Ca} 1-\mathrm{O} 5$	127.75 (11)
O9 ${ }^{\text {i- }} \mathrm{Ca} 1-\mathrm{O} 7$	160.64 (12)
O9 - $\mathrm{Ca}-\mathrm{O} 1 \mathrm{~W}$	82.29 (12)
O10-Ca1-O4	89.32 (11)
O10-Ca1-O5	81.95 (11)
O10-Ca1-O7	81.29 (10)
$\mathrm{O} 10-\mathrm{Ca}-\mathrm{O} 9^{\text {i }}$	93.05 (11)
O10-Ca1-O1W	108.50 (13)
O1W-Ca1-O4	148.95 (12)
O1W-Ca1-O5	148.50 (11)
$\mathrm{Ca1}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{X}$	116 (3)
$\mathrm{Ca1}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{Y}$	124 (3)
H1X-O1W-H1Y	109.7 (16)
$\mathrm{O} 2-\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$	75.34 (10)

C4-C7	1.434 (7)
C5-C6	1.379 (7)
C5-C8	1.449 (7)
C6-H6A	0.9500
C9-C12	1.384 (7)
C9-C11	1.388 (7)
C9-H9	0.9500
C10-C14	1.395 (6)
C10-C11	1.406 (6)
C12-C13	1.392 (7)
C12-C15	1.445 (7)
C13-C14	1.385 (7)
C13-C16	1.448 (7)
C14-H14	0.9500
O3W-H3X	0.946 (10)
O3W-H3Y	0.945 (10)
O4W-H4X	0.946 (10)
O4W-H4Y	0.945 (10)
O5W-H5X	0.949 (10)
O5W-H5Y	0.949 (10)
O6W-O8W	1.061 (16)
O6W-07W	1.44 (2)

$\mathrm{O} 9 — \mathrm{P} 3-\mathrm{Ca} 22^{\mathrm{ii}}$	$60.36(13)$
$\mathrm{O} 7 — \mathrm{P} 3-\mathrm{Ca} 2^{\mathrm{ii}}$	$53.09(12)$

53.09 (12)
132.75 (14)
123.16 (15)
115.88 (18)
110.84 (18)
109.95 (18)
110.31 (19)
106.76 (19)
102.1 (2)
95.65 (12)
140.23 (13)
95.34 (15)
131.58 (18)
134.73 (17)

116 (3)
110 (3)
145.71 (19)
98.86 (15)
111.77 (13)
163.6 (2)
91.42 (15)
103.77 (12)
109.5
144.20 (18)

$\mathrm{O} 2-\mathrm{Ca} 2-\mathrm{N} 1{ }^{\text {iii }}$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{O} 2$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{O} 5^{\text {i }}$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{O}^{\text {i }}$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{O} 11^{\mathrm{i}}$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{N} 1^{\text {iii }}$
$\mathrm{O} 4-\mathrm{Ca} 2-\mathrm{O} 2 \mathrm{~W}$
$\mathrm{O} 5-\mathrm{Ca} 2-\mathrm{O} 2$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ca} 2-\mathrm{O} 7^{\mathrm{i}}$
$\mathrm{O} 5-\mathrm{Ca} 2-\mathrm{O} 9^{\mathrm{i}}$
O5i- $\mathrm{Ca} 2-\mathrm{O} 11^{\mathrm{i}}$
$\mathrm{O} 5^{\text {i }}-\mathrm{Ca} 2-\mathrm{N} 1^{\text {iii }}$
$\mathrm{O} 5-\mathrm{Ca} 2-\mathrm{O} 2 \mathrm{~W}$
$\mathrm{O} 7-\mathrm{Ca} 2-\mathrm{O} 2$
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$
$\mathrm{O} 7^{\text {i }}-\mathrm{Ca} 2-\mathrm{N} 1^{\text {iii }}$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca} 2-\mathrm{O} 2$
$\mathrm{O} 11-\mathrm{Ca} 2-\mathrm{O}^{\mathrm{i}}$
O11- $\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$
$\mathrm{O} 11{ }^{\text {i }}-\mathrm{Ca} 2-\mathrm{N} 1^{\text {iii }}$
O11--Ca2-O2W
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Ca} 2-\mathrm{O} 2$
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Ca} 2-\mathrm{O}^{\text {i }}$
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Ca} 2-\mathrm{N} 1^{\text {iii }}$
$\mathrm{N} \mathrm{C}^{\text {iiii }}-\mathrm{Ca} 2-\mathrm{O} 9^{\text {i }}$
Ca2-O2W-H2X
$\mathrm{Ca} 2-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{Y}$
$\mathrm{H} 2 \mathrm{X}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{Y}$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$
O1-P1-C1
O3-P1-C1
O2-P1-C1
O3-P1-Ca1
O2-P1-Ca1
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Ca} 1$
O5-P2-04
O5-P2-06
O4-P2-O6
O5-P2-C2
O4-P2-C2
O6-P2-C2
O5-P2-Ca1
O4-P2-Ca1
O6-P2-Ca1

69.80 (12)
73.89 (10)
159.04 (12)
124.54 (11)
68.47 (10)
102.96 (11)
87.27 (12)
77.21 (12)
106.02 (11)
74.96 (11)
132.30 (11)
89.23 (11)
73.48 (12)
88.64 (12)
78.71 (10)
58.29 (10)
126.21 (12)
144.08 (11)
74.13 (10)
70.54 (10)
146.04 (12)
79.17 (11)
132.19 (11)
148.61 (11)
126.56 (11)
71.58 (13)
141.94 (11)

106 (3)
107 (3)
109.9 (16)
115.22 (18)
111.24 (18)
110.33 (17)
108.25 (19)
105.4 (2)
105.74 (19)
140.12 (14)
84.33 (12)
105.64 (15)
111.50 (18)
112.72 (19)
110.94 (19)
111.11 (19)
108.38 (19)
101.7 (2)
59.91 (13)
52.64 (12)
140.52 (14)

$\mathrm{P} 3-\mathrm{O} 7-\mathrm{Ca} 2{ }^{\text {ii }}$	97.78 (15)
$\mathrm{Ca} 1-\mathrm{O} 7-\mathrm{Ca} 2^{\mathrm{ii}}$	108.99 (12)
P3-O8-H8	109.5
P3-O9-Ca1 ${ }^{\text {ii }}$	148.31 (19)
P3-O9-Ca2 ${ }^{\text {ii }}$	90.47 (14)
$\mathrm{Ca} 1{ }^{\text {iii }}-\mathrm{O} 9-\mathrm{Ca}^{\text {ii }}$	105.75 (12)
P4-O10-Ca1	130.54 (17)
$\mathrm{P} 4-\mathrm{O} 11-\mathrm{Ca} 2{ }^{\text {ii }}$	133.87 (17)
P4-O12-H12	109.5
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Ca} 2{ }^{\text {iv }}$	176.2 (4)
C6-C1-C2	118.8 (4)
C6-C1-P1	114.8 (3)
C2-C1-P1	126.4 (4)
C3-C2-C1	119.4 (4)
C3-C2-P2	117.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$	123.4 (4)
C2-C3-C4	121.0 (4)
C2-C3-H3	119.5
C4-C3-H3	119.5
C5-C4-C3	119.1 (4)
C5-C4-C7	120.7 (5)
C3-C4-C7	120.2 (5)
C6-C5-C4	119.7 (4)
C6-C5-C8	119.8 (5)
C4-C5-C8	120.5 (5)
C5-C6-C1	121.9 (4)
C5-C6-H6A	119.1
C1-C6-H6A	119.1
N1-C7-C4	179.7 (6)
N2-C8-C5	176.7 (7)
C12-C9-C11	121.3 (5)
C12-C9-H9	119.4
C11-C9-H9	119.4
C14-C10-C11	119.9 (4)
C14-C10-P3	116.4 (3)
C11-C10-P3	123.7 (3)
C9-C11-C10	118.7 (4)
C9-C11-P4	118.9 (4)
C10-C11-P4	122.2 (3)
C9-C12-C13	119.8 (5)
C9-C12-C15	121.3 (5)
C13-C12-C15	118.9 (5)
C14-C13-C12	119.7 (5)
C14-C13-C16	119.1 (5)
C12-C13-C16	121.1 (5)
C13-C14-C10	120.4 (5)
C13-C14-H14	119.8
C10-C14-H14	119.8

$\mathrm{C} 2-\mathrm{P} 2-\mathrm{Ca} 1$
$\mathrm{O} 9-\mathrm{P} 3-\mathrm{O} 7$
$\mathrm{O} 9-\mathrm{P} 3-\mathrm{O} 8$
$\mathrm{O} 7-\mathrm{P} 3-\mathrm{O} 8$
$\mathrm{O} 9-\mathrm{P} 3-\mathrm{C} 10$
$\mathrm{O} 7-\mathrm{P} 3-\mathrm{C} 10$
$\mathrm{O} 8-\mathrm{P} 3-\mathrm{C} 10$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ca} 1$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ca} 1$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ca} 1$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ca} 2$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ca} 2$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ca} 2$
$\mathrm{Ca} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ca} 2$
O5-P2-O4-Ca2
O6-P2-O4-Ca2
$\mathrm{C} 2-\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ca} 2$
$\mathrm{Ca} 1-\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ca} 2$
O5-P2-O4-Ca1
O6-P2-O4-Ca1
$\mathrm{C} 2-\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ca} 1$
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ca}^{2}{ }^{\mathrm{ii}}$
$\mathrm{O} 6-\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ca} 2^{\text {ii }}$
$\mathrm{C} 2-\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ca} 2{ }^{\text {ii }}$
$\mathrm{Ca} 1-\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ca} 2{ }^{\mathrm{ii}}$
O4-P2-O5-Ca1
O6-P2-O5-Ca1
C2-P2-O5-Ca1
O9-P3-O7-Ca1
O8-P3-O7-Ca1
C10-P3-O7-Ca1
$\mathrm{Ca} 2{ }^{\mathrm{ii}-\mathrm{P} 3-\mathrm{O} 7-\mathrm{Ca} 1}$
$\mathrm{O} 9-\mathrm{P} 3-\mathrm{O} 7-\mathrm{Ca}^{2}{ }^{\mathrm{ii}}$
O8-P3-O7-Ca2 ${ }^{\text {ii }}$
$\mathrm{C} 10-\mathrm{P} 3-\mathrm{O} 7-\mathrm{Ca} 2{ }^{\mathrm{ii}}$
O7-P3-O9-Ca ${ }^{\text {ii }}$
$\mathrm{O} 8-\mathrm{P} 3-\mathrm{O} 9-\mathrm{Ca} 1^{\mathrm{ii}}$
C10-P3-O9-Ca1 ${ }^{\text {ii }}$
$\mathrm{Ca} 2{ }^{\mathrm{ii}}-\mathrm{P} 3-\mathrm{O} 9-\mathrm{Ca} 1^{\mathrm{ii}}$
$\mathrm{O} 7-\mathrm{P} 3-\mathrm{O} 9-\mathrm{Ca} 2{ }^{\mathrm{ii}}$
$\mathrm{O} 8-\mathrm{P} 3-\mathrm{O} 9-\mathrm{Ca} 2{ }^{\text {ii }}$
C10-P3-O9-Ca2 ${ }^{\text {ii }}$
O11-P4-O10-Ca1
$\mathrm{O} 12-\mathrm{P} 4-\mathrm{O} 10-\mathrm{Ca} 1$
C11-P4-O10-Ca1
$\mathrm{O} 10-\mathrm{P} 4-\mathrm{O} 11-\mathrm{Ca} 2^{\text {ii }}$
$\mathrm{O} 12-\mathrm{P} 4-\mathrm{O} 11-\mathrm{Ca} 2^{\text {ii }}$
117.31 (15)
113.39 (18)
109.54 (18)
112.27 (18)
107.99 (19)
109.11 (18)
104.0 (2)
152.6 (2)
26.1 (3)
-89.7 (3)
-60.0 (3)
170.9 (2)
57.3 (3)
-47.3 (2)
165.4 (3)
-68.1 (4)
42.7 (4)
153.5 (4)
11.8 (2)
138.38 (16)
-110.76 (17)
147.1 (7)
21.6 (8)
-91.9 (7)
158.0 (8)
-10.87 (19)
-136.43 (16)
110.16 (18)
141.4 (3)
-93.8 (3)
21.0 (4)
138.7 (3)
2.8 (2)
127.57 (16)
-117.63 (17)
119.5 (4)
-6.8 (4)
-119.5 (4)
122.0 (4)
-2.54 (18)
-128.81 (16)
118.48 (17)
-52.1 (3)
-178.8 (2)
71.2 (3)
32.3 (3)
158.5 (2)

$$
\begin{aligned}
& \text { N3-C15-C12 } \\
& \text { N4-C16-C13 } \\
& \text { H3X-O3W-H3Y } \\
& \text { H4X-O4W-H4Y } \\
& \text { H5X-O5W-H5Y } \\
& \text { O8W-O6W-O7W }
\end{aligned}
$$

$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$	$-3.6(6)$
$\mathrm{O} 5-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 3$	$102.5(4)$
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 3$	$-134.6(3)$
$\mathrm{O} 6-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 3$	$-17.6(4)$
$\mathrm{Ca} 1-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 3$	$168.6(3)$
$\mathrm{O} 5-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 1$	$-78.7(4)$
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 1$	$44.2(4)$
$\mathrm{O} 6-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 1$	$161.1(4)$
$\mathrm{Ca} 1-\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 1$	$-12.6(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.6(6)$
$\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.5(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.1(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$-177.0(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-3.6(7)$

175.5 (4)
176.8 (5)
-4.1 (7)
1.3 (7)
$-179.0(5)$
2.5 (7)
-176.6 (4)
105.1 (4)
-131.3 (3)
-11.3 (4)
170.9 (3)
-74.0 (4)
49.7 (4)
169.7 (4)
-8.1 (4)
1.9 (7)
-173.3 (4)
-3.0 (6)
176.1 (3)
172.1 (3)
-8.9 (5)
-137.4 (4)
95.9 (4)
-19.6 (4)
124.5 (4)
47.5 (4)

$\mathrm{C} 11-\mathrm{P} 4-\mathrm{O} 11-\mathrm{Ca} 2^{\mathrm{ii}}$	$-89.1(3)$
$\mathrm{C} 1-\mathrm{P} 4-\mathrm{O} 11-\mathrm{Ca} 2^{\mathrm{ii}}$	$8.7(2)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$-135.0(3)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$-11.2(4)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$105.7(3)$
$\mathrm{Ca} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$-165.9(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$45.9(4)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$169.7(4)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$-73.4(4)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$15.0(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-3.9(6)$
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$175.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$	$177.3(3)$

$\mathrm{O} 10-\mathrm{P} 4-\mathrm{C} 11-\mathrm{C} 10$	$-79.2(4)$
$\mathrm{O} 12-\mathrm{P} 4-\mathrm{C} 11-\mathrm{C} 10$	$165.4(4)$
$\mathrm{C} 1-\mathrm{P} 4-\mathrm{C} 11-\mathrm{C} 10$	$-50.5(4)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 13$	$0.9(7)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 15$	$-178.5(5)$
$\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-2.8(7)$
$\mathrm{C} 15-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$176.7(5)$
$\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 16$	$175.1(5)$
$\mathrm{C} 15-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 16$	$-5.5(7)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 10$	$1.7(7)$
$\mathrm{C} 16-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 10$	$-176.2(4)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 14-\mathrm{C} 13$	$1.2(7)$
$\mathrm{P} 3-\mathrm{C} 10-\mathrm{C} 14-\mathrm{C} 13$	$-177.9(4)$

Symmetry codes: (i) $x, y, z-1$; (ii) $x, y, z+1$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $x,-y+3 / 2, z+1 / 2$.

Hydrogen bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{O} 1 W-\mathrm{H} 1 X \cdots \mathrm{O} 3^{v}$	0.95	1.76	2.693 (4)	169
$\mathrm{O} 1 W-\mathrm{H} 1 Y \cdots \mathrm{~N} 4{ }^{\text {vi }}$	0.95	2.06	3.004 (6)	178
$\mathrm{O} 2 W-\mathrm{H} 2 X \cdots \mathrm{O} 5 W^{\text {i }}$	0.95	1.79	2.725 (5)	167
$\mathrm{O} 2 W-\mathrm{H} 2 Y \cdots \mathrm{O} 12^{\text {vii }}$	0.95	2.16	2.988 (5)	146
$\mathrm{O} 3 W-\mathrm{H} 3 X \cdots \mathrm{O} 11$	0.95	1.76	2.696 (4)	171
$\mathrm{O} 3 W-\mathrm{H} 3 Y \cdots \mathrm{O} 10^{\text {ii }}$	0.95	1.77	2.691 (4)	166
$\mathrm{O} 4 W-\mathrm{H} 4 X \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95	1.82	2.747 (5)	167
$\mathrm{O} 4 W-\mathrm{H} 4 Y \cdots \mathrm{O} 8^{\vee}$	0.95	2.04	2.785 (5)	135
$\mathrm{O} 5 W-\mathrm{H} 5 X \cdots \mathrm{O} 3 W^{\text {viii }}$	0.95	1.79	2.729 (5)	171
$\mathrm{O} 5 W-\mathrm{H} 5 Y \cdots \mathrm{~N} 3^{\text {ix }}$	0.95	1.93	2.860 (6)	166
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4 W$	0.95	1.56	2.499 (5)	171
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 5$	0.84	1.79	2.600 (5)	162
$\mathrm{O} 8-\mathrm{H} 8 \cdots{ }^{\text {- }}$	0.84	1.69	2.513 (4)	165
$\mathrm{O} 12-\mathrm{H} 12 \cdots \mathrm{O} 3 W^{\text {viii }}$	0.84	1.76	2.596 (5)	171

Symmetry codes: (i) $x, y, z-1$; (ii) $x, y, z+1$; (v) $-x,-y+1,-z+1$; (vi) $x,-y+1 / 2, z-1 / 2$; (vii) $-x+1,-y+1,-z+1$; (viii) $-x+1,-y+1,-z+2$; (ix) $-x+1, y+1 / 2$, $-z+3 / 2$.

