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Resumo 
 

 

Este trabalho expõe um estudo teórico e experimental das propriedades 
anisotrópicas magnetoelétricas (ME) em diferentes compósitos contendo 
monocristais piezoelétricos (PE), maioritariamente sem chumbo na sua 
composição, com vista a diversas aplicações multifuncionais. Uma descrição 
linear do efeito ME em termos de campos elétricos, magnéticos e elásticos e 
constantes materiais é apresentada. Um modelo fenomenológico quasi-estático 
é usado para ilustrar a relação entre as constantes materiais, sua anisotropia e 
os coeficientes MEs transversais de tensão e carga. Subsequentemente, este 
modelo é empregue para estimar o máximo coeficiente ME direto de tensão 
expectável numa série de compósitos tri-camadas de 
Metglas/Piezocristal/Metglas em função da orientação do cristal PE. Demonstra-
se assim como os efeitos MEs são fortemente dependentes da orientação 
cristalina, o que suporta a possibilidade de se gerarem coeficientes MEs de 
tensão elevados em compósitos contendo monocristais PEs sem chumbo como 
o niobato de lítio (LiNbO3; LNO), tantalato de lítio (LiTaO3), ortofosfato de gálio 
(GaPO4; GPO), quartzo (SiO2), langatato (La3Ga5.5Ta0.5O14) e langasite 
(La3Ga5SiO14) através da otimização da orientação cristalina. 

Uma técnica experimental dinâmica de lock-in para a medição da 
impedância e efeito ME direto é exposta. O formalismo descritivo desta técnica, 
assim como um arranjo experimental desenvolvido para o efeito são 
apresentados. O esquema e características deste, assim como diferentes 
formas de reduzir o ruído e a indesejável indução mútua são exploradas. 

Um estudo comparativo do efeito ME direto em compósitos tri-camadas 
de Metglas e monocristais de LNO e PMN-PT conectados de forma simples é 
exposto. Embora o PMN-PT possua piezocoeficientes de carga muito superiores 
aos do LNO, o coeficiente ME direto de tensão demonstrou-se comparável entre 
ambos os compósitos devido a uma muito menor permitividade dielétrica do 
LNO. Cálculos teóricos indicam aínda que as propriedades MEs poderão ser 
significativamente melhoradas (até 500 V/(cm.Oe)) através da otimização do 
ângulo de corte do LNO, espessura relativa entre camadas 
ferroelétrica/ferromagnética e uma melhor colagem entre o Metglas e o LNO. 
Vantagens da utilização do material ferroelétrico LNO em compósitos MEs são 
discutidas.  

Num estudo subsequente, as propriedades dinâmicas anisotrópicas de 
impedância e MEs em compósitos tri-camadas de Metglas e monocristais PEs 
sem chumbo de LNO e GPO são exploradas. Medições foram realizadas em 
função do corte de cristal, magnitude e orientação do campo magnético de 
polarização e frequência do campo de modulação. Coeficientes MEs altamente 
intensos em certos modos de ressonância são explorados, e a sua relação com 
as propriedades materiais dos cristais e geometria dos compósitos é 
investigada. Um coeficiente ME de até 249 V/(cm.Oe) foi aqui observado num 
compósito com um cristal de LNO com corte 41ºY a 323.1 kHz. Mostramos assim 



que compósitos multicamadas contendo cristais sem chumbo de LNO e GPO 
podem exibir efeitos MEs anisotrópicos relativamente elevados. Demonstramos 
também que o controlo da orientação dos cristais PEs pode em princípio ser 
usado na obtenção de propriedades MEs anisotrópicas desejáveis para 
qualquer aplicação. Características únicas como elevada estabilidade química, 
piezoeletricidade linear e robusteza térmica abrem verdadeiras perspetivas para 
a utilização de compósitos baseados no LNO e GPO em diversas aplicações. 

Eventualmente, compósitos bi-camadas contendo lâminas PEs com 
bidomínios de LNO com corte 127ºY foram estudados tanto teoricamente como 
experimentalmente. Estas lâminas de LNO possuem uma estrutura de 
bidomínios com vetores de polarização espontânea opostos ao longo da direção 
da sua espessura (i.e. uma estrutura de macrodomínios ferroelétricos “head-to-
head” ou “tail-to-tail”) Medições de impedância, efeito ME e densidade de ruido 
magnético equivalente foram realizadas nos compósitos operando sob 
condições quasi-estáticas e de ressonância. Coeficientes MEs de até 578 
V/(cm.Oe) foram obtidos a ca. 30 kHz sob ressonâncias de dobramento usando 
cristais PEs com 0.5 mm de espessura. Medições de densidade de ruído 
magnético equivalente demosntraram valores de até 153 pT/Hz1/2 a 1 kHz (modo 
quasi-estático) e 524 fT/Hz1/2 sob condições de ressonância. É de esperar que 
uma otimização adicional das técnicas de fabrico, geometria dos compósitos e 
circuitos de detenção possa permitir reduzir estes valores até pelo menos 10 
pT/Hz1/2 e 250 fT/Hz1/2, respetivamente, e a frequência de ressonância em pelo 
menos duas ordens de grandeza. Estes sistemas poderão assim no futuro ser 
usados em sensores vetoriais de campo magnético simples e sensíveis, 
passivos e estáveis e operáveis a elevadas temperaturas.  
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Abstract 

 
This work presents a theoretical and experimental study of the 

anisotropic magnetoelectric (ME) properties of differently structured composites 
featuring piezoelectric (PE) single-crystals, mainly lead-free, for diverse 
multifunctional applications. A linear description of the ME effects in terms of 
electric, magnetic and elastic fields and material constants is offered. An 
averaging quasi-static phenomenological model is used to illustrate the relation 
between the material constants, their anisotropy and the transversal direct ME 
voltage and charge coefficients. Subsequently, the aforementioned model is 
employed in the calculation of the maximum expected direct ME voltage 
coefficient for a series of tri-layered Metglas/Piezocrystal/Metglas composites as 
a function of the PE crystal orientation. The ME effects are shown to be strongly 
dependent on the crystal orientation, which supports the possibility of inducing 
large ME voltage coefficients in composites comprising lead-free PE single 
crystals such as lithium niobate (LiNbO3; LNO), lithium tantalate LiTaO3, gallium 
phosphate (GaPO4; GPO), quartz (SiO2), langatate (La3Ga5.5Ta0.5O14) and 
langasite (La3Ga5SiO14) through the optimization of the crystal orientation.  

An experimental dynamic lock-in technique for the measurement of the 
impedance and direct ME effect is presented. The formalism describing this 
technique and an implemented custom-made setup are introduced. The scheme 
and characteristics of the latter as well as ways to reduce the noise and the 
undesirable mutual induction are explored.  

A comparative study of the direct ME effect in simply bonded tri-layered 
laminates of Metglas and LNO and PMN-PT crystals is exposed. Though PMN-
PT has much larger charge piezocoefficients than LNO, the direct 
magnetoelectric voltage coefficient is found to be comparable in both trilayers 
due to the much lower dielectric permittivity of LNO. Calculations show that the 
ME properties can be significantly improved (up to 500 V/(cm·Oe)) via an 
optimization of the cut angle of LNO, relative thickness ratio of the 
ferroelectric/ferromagnetic layers and a better bonding between Metglas and 
LNO. Advantages of using the LNO ferroelectric in ME composites are 
discussed. 

In a subsequent study, the dynamic impedance and ME anisotropic 
properties of tri-layered composites of Metglas and single-crystalline lead-free 
PE of LNO and GPO are explored. Measurements have been performed as a 
function of the crystal-cut, magnitude and orientation of the magnetic bias field 
and frequency of the modulated field. Greatly enhanced ME coefficients in 
certain resonance modes are explored, and their relation to the material 
properties of the crystals and the geometry of the composites is investigated. 
The largest ME coefficient of up to 249 V/(cm·Oe) was observed for a composite 
with a 41ºY-cut LNO crystal at 323.1 kHz. We thus show that multilayers 
comprising lead-free LNO and GPO crystals can exhibit relatively large 
anisotropic ME effects. We also demonstrate that the control of the PE crystal’s 



 

  

orientation can in principle be used to obtain almost any desired quasi-static and 
resonant anisotropic ME properties for any given application. Such unique 
features as chemical stability, linear piezoelectricity and thermal robustness 
open up a real perspective of using lead-free LNO and GPO based ME tri-layers 
in various applications. 

Eventually, bi-layered composites comprising PE bidomain plates of 
127ºY-cut LNO were studied both theoretically and experimentally. The LNO 
plates possessed an engineered bidomain structure with opposite spontaneous 
polarization vectors along the thickness direction (i.e. a “head-to-head” or “tail-
to-tail” ferroelectric macrodomain structure). Impedance, ME effect and 
equivalent magnetic noise density measurements have been performed on the 
composites operating under quasi-static and resonant conditions. ME 
coefficients of up to 578 V/(cm·Oe) were obtained at ca. 30 kHz at the bending 
resonance using 0.5 mm thick piezoelectric crystals. Equivalent magnetic noise 
density measurements yielded values down to 153 pT/Hz1/2 at 1 kHz (quasi-static 
mode) and 524 fT/Hz1/2 under resonant conditions. A further optimization of the 
fabrication techniques, laminate geometry and detection circuit is expected to 
allow reducing these values down to at least 10 pT/Hz1/2 and 250 fT/Hz1/2, 
respectively, and the resonance frequency by at least two orders of magnitude. 
Such systems may in future thus find use in simple and sensitive, passive and 
stable, low-frequency and high-temperature vector magnetic field sensors. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“In the South Seas there is a cargo cult of people. During the 

war they saw airplanes land with lots of good materials, and 

they want the same thing to happen now. So they've arranged to 

imitate things like runways, to put fires along the sides of the 

runways, to make a wooden hut for a man to sit in, with two 

wooden pieces on his head like headphones and bars of bamboo 

sticking out like antennas—he's the controller—and they wait 

for the airplanes to land.” 

–Richard Feynman 

 

“"Just to give you a general idea," he would explain to them. 

For of course some sort of general idea they must have, if they 

were to do their work intelligently–though as little of one, if they 

were to be good and happy members of society, as possible. For 

particulars, as every one knows, make for virtue and happiness; 

generalities are intellectually necessary evils.” 

–Aldous Huxley, Brave New World 

   

“When did mediocrity and banality become a good image for 

your children … I want my rockstars DEAD!” 

–Bill Hicks 

  

“And now for something completely different” 
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Chapter 1 

 

1. Introduction 

 

1.1. The magnetoelectric effect 

 

The linear magnetoelectric effect (ME), according to the original definition outlined by 

Debye in 1924–1926 [1], is described as the linear induction of a polarization, 𝑷, in a material, in 

response to an applied magnetic field, 𝑯. This corresponds to the direct ME effect also designated 

by the acronym MEH. In the same way, the converse ME effect (MEE) is defined as the induction of 

a magnetization, 𝑴, in a material as a result of an applied electric field, 𝑬. These two relations can 

be expressed to the first order in the following form (in SI units) [2-5]: 

 

 𝑃𝑖  =  𝛼𝑖𝑗𝐻𝑗 , (1.1) 

 𝜇0𝑀𝑖  =  𝛼𝑗𝑖𝐸𝑗 , (1.2) 

 

where 𝜶 indicates the linear ME susceptibility tensor (rank-2 tensor with units of s/m), and 𝜇0 is the 

magnetic permeability of empty space. We note that the summation of the repeated index variables 

(𝑖 and 𝑗) over all of their integer values in tridimensional space is implicit in the above equations 

following the Einstein notation. Symbols in bold, on the other hand, represent vector or tensor fields.  

The ME effect has given rise to a lot of interest in the scientific community over the past two 

decades being driven by the possibility of new and promising multifunctional device paradigms and 

also by the demand for a greater understanding of the fundamental physics associated with solid 

materials. This interest is evidenced by the large number of review articles and books related to 

developments in the field of the ME effect published in recent times [4-41]. Figure 1.1 further shows 

the manifest increase in the number of scientific papers related to the ME effect published along the 

last decade (2006-2016). 
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Figure 1.1 Publications registered under the keyword “ME effect” in the last decade according to 

the Web of Science. 

 

Theoretical physical models are highly important because they allow us to draw valuable 

conclusions and predictions about the nature of the ME effect. Since early times, an important 

inequality for the ME single-phase materials has been drawn from a thermodynamic treatment. It 

states that [42, 43]: 

 

 𝛼𝑖𝑗 < ( 𝜒 
𝑒

𝑖𝑖
 𝜒 

𝑚
𝑗𝑗
 )

1

2 , (1.3) 

 

where 𝜒 
𝑒

𝑖𝑖
  and 𝜒 

𝑚
𝑗𝑗
  are the electric and magnetic susceptibility tensor coefficients, respectively. 

The inequality (1.3) indicates the existence of a well-defined upper bound for all components of the 

𝜶 tensor. Although this limit is much higher than the experimentally measured values for all known 

ME materials [44], it still represents a severe limitation on the magnitude of the linear ME response 

in single-phase materials [45, 46]. This is due to a chemical contraindication to the simultaneous 

occurrence of a high permittivity and permeability in the same material and results in part from a 

large intrinsic difficulty in electrically polarizing magnetic ions [47]. Furthermore, by arguments 

from the group theory, it can also be shown that the static linear ME effect may only be observed in 

media that are neither symmetrical with respect to the space inversion operation (i.e., systems without 

a center of symmetry) nor with respect to the time reversal (i.e. systems with a magnetic ordering) 

[45, 46, 48]. Therefore, the ME effect is allowed only in 58 out of the 122 magnetic point groups 

[49]. A more general approach to the ME coupling may include higher-order contributions 
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(describing the so-called secondary ferroics), parameterized by tensors such as 𝛽 (ME effect induced 

by the 𝑯 field) or  𝛾 (ME effect induced by the 𝑬 field), both of rank-3, as can be seen by the general 

electromagnetic Helmholtz free energy expansion of a material [5, 50]: 

 

 𝐹(𝑬, 𝑯) =  𝐹0 − 𝑃𝑖
𝑆𝐸𝑖 − 𝑀𝑖

𝑆𝐻𝑖 −
1

2
 𝜀𝑖𝑗𝐸𝑖𝐸𝑗 −

1

2
 𝜇𝑖𝑗𝐻𝑖𝐻𝑗 − 𝛼𝑖𝑗𝐸𝑖𝐻𝑗 −

1

2
 𝛽𝑖𝑗𝑘𝐸𝑖𝐻𝑗𝐻𝑘 −

1

2
 𝛾𝑖𝑗𝑘𝐻𝑖𝐸𝑗𝐸𝑘, (1.4) 

 

where 𝑃𝑖
𝑆 and 𝑀𝑖

𝑆 are the spontaneus polarization and magnetization, respectively. However, the 

linear term 𝛼𝑖𝑗 is generally the dominant contribution to the ME effect, and thus much of the current 

research in this area is directed towards the study of this linear effect. 

Up to date, the ME effect has already been observed in several different types of materials 

[6, 8]. Two major classes of ME compounds can, however, be distinguished: single-phase ME 

materials (mostly ME multiferroics) and ME composites materials which combine both piezoelectric 

(PE) and magnetostrictive (MS) materials in some manner. These composites may also integrate non-

electric and non-magnetic compounds such as organic polymers and even multiferroic materials. 

Only the magnetoelectric composites will be explored in detail in this Thesis, with the single-phase 

ME compounds standing outside of its scope.  

 

1.2. Magnetoelectric composites 

 

The ME composite materials constitute a class of structures that incorporate both PE and MS 

compounds [5, 6, 45]. The demand for these types of materials is essentially guided by the prospect 

of being able to control their internal charge distribution through the action of an applied magnetic 

field or, alternatively, their spin distribution by an electric field, thus allowing the development of 

new forms of multifunctional devices [21]. A ME coupling of large magnitude is therefore essential 

in order for them to find use in effective practical applications. Some of their most promising 

applications include [6, 8-10, 24]: DC and AC magnetic field sensors, electric current sensors, energy 

harvesters, MEMS devices, multiple-state memories, RAM-like magnetic memories, micro-sensors 

in read-heads, transformers, gyrators, spinners, diodes, inductors, optical devices that generate spin 

waves and electrically tunable microwave devices having the potential to offer several advantages in 

relation to other technologies such as a more compact size, faster operation, better sensitivity, energy 

efficiency, thermal and chemical stability, linearity of operation, availability, simplicity and finally 

a lower commercial price. 
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For the particular case of single-phase multiferroic compounds it has been known that the 

ME coupling constitutes a very rare phenomenon, usually being only observable at very low 

temperatures (low Curie and/or Néel temperatures for the electric and magnetic ordering) [6, 8, 22]. 

Furthermore, these materials are commonly characterized by low values of the ME coupling 

coefficient (𝛼𝐸 ≈ 0.4 – 20 mV/(cm·Oe)) [14, 17], in part due to the limits imposed by inequality 

(1.3). On the other hand, composite materials generally exhibit orders of magnitude stronger ME 

responses, even at room temperature, and therefore are currently much closer to being used in 

commercial applications [6, 10]. Another major advantage of this configuration is associated with its 

extended manufacture flexibility. In fact, in order to manipulate the ME behavior of a composite, 

several parameters may be individually tuned. These include [6, 8, 10, 19]:  

(i) The properties of the constituent phases (e.g. PE and piezomagnetic coefficients, permittivity, 

permeability, elastic constants, electric resistivity, loss tangents, etc.); (ii) the volume and 

geometrical arrangement of the various phases (e.g. particulate or laminate structures, volume 

fraction between phases, layer thickness, grain size, rod diameter, etc.); (iii) the quality of the 

coupling between interfaces (e.g., structural compatibility between materials; synthesis techniques 

employed such as sintering, sol-gel method, hot-pressing, tape-casting, solid-state reaction or other 

physical/chemical deposition techniques; binding substances used such as epoxy, polymeric matrix, 

cyanoacrylate glue, etc.); (iv) the modes of operation (i.e. relative orientation between the 

applied/measured electric and magnetic fields, static or dynamic fields, charge, i.e. short-circuit, or 

voltage, i.e. open-circuit, measurements, frequency of the magnetic or electric modulation fields, 

etc.); (v) the processing techniques (e.g., pre-poling, pre-magnetizing, pre-stressing, heat treatments, 

etc.); and (vi) the use of bulk phases or nanostructures such as thin films (which can give rise to new 

exotic effects). 

To better understand the origin of the ME effect in PE/MS composite systems, we first take 

a look at the concept of physical properties resulting from the combination of distinct single-phase 

compounds. Here, it is known that composite systems may exhibit properties similar to those of their 

constituent phases but also give rise to completely new ones, absent in the parent compounds. The 

sum and scaling properties are part of the first class, while the product properties are associated with 

the former [8, 14, 51]. Thus, the ME effect in composite materials is in fact an extrinsic product 

property resulting from the interaction between PE and MS constituent phases [14, 18, 52]. As shown 

in Figure 1.2, the physical mechanism of the direct ME (MEH) effect is as follows: the MS material 

is strained (𝑺) as a result of the application of an external magnetic field (𝑯) due to the 

magnetostrictive effect. Part of this strain is then transferred to the PE phase through the stress (𝑻) 

driven elastic coupling between phases leading to the induction of a macroscopic electric polarization 

(𝑷) due to the piezoelectric effect. It is clear that the reciprocal effect may also take place (i.e. the 



 

1. Introduction 

5 

 

converse ME effect or MEE effect). In this case, an external electric field (𝑬) induces a deformation 

of the PE component elongating or contracting it. This strain is then transmitted to the MS phase 

through a mechanical coupling between components. Thus, the magnetic phase experiences a 

magnetization (𝑴) change indirectly induced by the electric field. In summary, we just saw how a 

composite material can be characterized by a new property, the ME coupling, which is manifested 

by the appearance of a polarization/magnetization in response to an externally applied 

magnetic/electric field. Roughly speaking, the direct and converse ME effects may then be written 

under the form of the products [53]: 

 

 MEH 𝑒𝑓𝑓𝑒𝑐𝑡 =
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
×  

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐
 ;              MEE 𝑒𝑓𝑓𝑒𝑐𝑡 =

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
× 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙
 ,  

 

where 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙/𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 and 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙/𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐  represent, respectively, the generation 

of PE charge (𝑑𝑖𝑗 =  𝜕𝐷𝑖/𝜕𝑇𝑗) and the MS deformation (𝑞𝑖𝑗 = 𝜕𝑆𝑗/𝜕𝐻𝑖), while 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐/

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 and 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙/𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 represent the piezomagnetic induction (𝑞𝑖𝑗 = 𝜕𝐵𝑖/𝜕𝑇𝑗) 

and the PE deformation (𝑑𝑖𝑗 = 𝜕𝑆𝑗/𝜕𝐸𝑖). With this concept of product properties in mind, the effective 

short-circuit (𝐸𝑖 = 0) ME coefficient can then be approximately expressed as [6, 15]: 

 

 𝛼𝑄𝑖𝑗 =  𝜕𝐷𝑖/𝜕𝐻𝑗 = (𝜕𝐷𝑖/𝜕𝑇𝑘)(𝜕𝑇𝑘/𝜕𝑆𝑙)(𝜕𝑆𝑙/𝜕𝐻𝑗) = 𝑘𝑐𝑑𝑖𝑘𝑠𝑘𝑙
−1𝑞𝑗𝑙 , (1.5) 

 

where 𝑘𝑐 is a coupling factor (0 ≤ |𝑘𝑐| ≤ 1) that quantifies the efficiency of the transference of strain 

between phases (i.e. the ratio between the strain transferred to the PE/MS phase and the strain 

generated in the MS/PE phase by the external field) [54]. This expression indicates that the ME 

coupling should be favored by large PE coefficients (𝑑𝑖𝑗), piezomagnetic coefficients (𝑞𝑖𝑗), the 

inverse of averaged effective elastic compliances (𝑠𝑖𝑗
−1) and coupling factors (𝑘𝑐). Consequently, the 

ME effect in composite materials is a coupling between electrical and magnetic fields mediated by 

an elastic interaction, and is therefore an extrinsic property generated from separate compounds 

which do not exhibit any ME behavior by themselves.  
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Figure 1.2 Schematic illustration of the elastically mediated ME effect in a two-phase composite 

consisting of a magnetostrictive (in red) and a piezoelectric (in green) layers. a) Direct ME effect; b) 

Converse ME effect. 

 

Since the ME interaction between different phases is a complex process, in composites the 

ME effect is effectively a dynamic effect and a large response can generally only be observed as a 

linear function of an AC field (electric or magnetic) oscillating in the presence of a given DC field 

[8, 10]. In addition to the nonlinear response with the DC field, due to the quadratic effect of 

magnetostriction, generally the ME coupling in composites also displays an hysteretic nature [14]. 

Therefore, a dynamic direct ME voltage coefficient 𝛼𝐸𝑖𝑗 =  𝜕𝐸𝑖/𝜕𝐻𝑗 , measured under open-circuit 

conditions (𝐷𝑖 = 0) is almost always used as a figure of merit for practical applications. In traction-

free composite the relation 𝛼𝑖𝑘 = −𝜀0𝜀𝑟𝑖𝑗𝛼𝐸𝑗𝑘 can be proven [15, 55, 56], where 𝛼𝑖𝑗 represents its 

effective dynamic ME susceptibility, 𝜀𝑟𝑖𝑗 the effective relative dielectric permittivity and 𝜀0 the 

permittivity of empty space. 𝛼𝐸𝑖𝑗 is typically specified in technical units of V/(cm·Oe) which can be 

converted to SI units (V/m)/(A/m) through a multiplication by a factor of 4π/10. This coefficient is 

usually obtained for a given magnetic AC modulation field (𝛿𝐻𝑖(𝑡) = 𝛿𝐻𝑖 · sin(𝜔𝑡)) with small 
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amplitude (𝛿𝐻 up to approximately 1 Oe) and a frequency (𝑓 = 𝜔/2𝜋) of up to about 1 MHz, 

superimposed on a larger (up to, say, 20 kOe) magnetic DC bias field (𝑯) [8]. The amplitude of the 

ME induced AC voltage (𝛿𝑉𝑖) measured between two electrodes in the sample should then be 

proportional to the amplitude of the AC magnetic field in any detection circuit, thus establishing an 

analogy with the linear ME susceptibility. Finally, in order to quantify the dynamic ME coefficients, 

one measures the ME voltage induced in a sample by the magnetic field and then uses the relation 

𝛼𝐸𝑖𝑗 =  𝛿𝑉𝑖/(𝑡 · 𝛿𝐻𝑗), which is valid for small enough 𝛿𝐻𝑗 [57] and where 𝑡 is the effective distance 

between electrodes generally equal to the thickness of the PE. In practice, two particular cases of this 

coefficient are commonly studied in the literature [6, 8, 10, 43]: (i) the longitudinal T-T (i.e. 

transversal magnetization and transversal polarization) ME voltage coefficient (𝛼𝐸33), and (ii) the 

transversal L-T (i.e. longitudinal magnetization and transversal polarization) ME voltage coefficient 

(𝛼𝐸31 or 𝛼𝐸32). Additionally to 𝛼𝐸, another ME coefficient can be used to describe the direct ME 

effect in composites. This is the so called charge ME coefficient (𝛼𝑄), measured under short-circuit 

conditions (𝐸𝑖 = 0), and it quantifies the amount of charge generated as a function of the applied 

magnetic field, i.e. 𝛼𝑄𝑖𝑗 =  𝜕𝐷𝑖/𝜕𝐻𝑗  ∝   −𝐶𝛼𝐸𝑖𝑗, where 𝐶 is the low-frequency capacitance of the 

composite [58-60]. This coefficient can be measured directly by an electrometer or ammeter or 

indirectly as a voltage from the output of a charge amplifier and is particularly important for 

applications in low-noise (< 5 pT/Hz1/2) and low-frequency (< 1 Hz) magnetic field sensors [59, 61, 

62]. Alternatively, a less common converse ME coefficient, 𝛼𝐵𝑖𝑗 =  𝜕𝐵𝑖/𝜕𝐸𝑗, can also be quantified 

by measuring the magnetic response of a sample when an electric field is applied to it (e.g., through 

a change in the amplitude of the magnetization induced by an applied voltage, a variation in hysteretic 

magnetization curves, a change in the magnetic anisotropy or a shift of ferromagnetic resonance 

absorption peaks) [11]. The analysis of this parameter can be important, e.g., for applications in 

inductances and electrically controlled microwave devices [9]. 

Composite materials can be manufactured with a variety of geometries and compositions. 

Here, a certain phase may take the shape of particles, fibers/rods, layers or three-dimensional arrays 

which, in the Newnham notation, can be denoted by the indices 0, 1, 2 and 3, respectively [63]. In 

this way, the notation 2-2, for example, indicates a two-phase composite consisting of alternating 

layers of different materials. As for its composition, bi-phasic composites contain a PE phase, usually 

BiFeO3 (BFO), BaTiO3 (BTO), PbTiO3 (PTO), Pb(Zr,Ti)O3 (PZT), (1–x)[PbMg1/3Nb2/3O3]–

x[PbTiO3] (PMN-PT) or (1–x)[PbZn1/3Nb2/3O3]–x[PbTiO3] (PZN-PT), and a MS phase, generally 

consisting of ferrites or magnetic alloys such as NiFe2O4 (NFO), CoFe2O4 (CFO), Fe3O4, La1–

xSrxMnO3 (LSMO), Y3Fe5O12 (YIG), TbxDy1–xFe2 (Terfenol-D), Metglas (Fe–Ni–Co–B–Si–Mo), 

Permendur (Fe–Co–V) or Galfenol (Fe–Ga) [6, 7]. Table 1.1 summarizes some of the most important 
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properties from the point of view of the ME coupling, of some of the most thoroughly investigated 

PE materials. PE ceramics, PZT in particular, have been extensively studied and shown to provide a 

strong ME coupling thanks to their relatively large PE and electromechanical coupling coefficients 

[64-66]. Other compounds commonly used as the PE phase in ME composite materials are PMN-PT 

and PZN-PT [7, 12, 66]. These materials have PE and electromechanical characteristics superior to 

those of PZT but, on the other side of the coin, are associated with lower Curie temperatures and 

lower fracture toughness, which severely limits their practical applications [7]. The polymer PVDF 

is another common material, less attractive from the point of view of the PE accumulation of charge 

(though it has a relatively large PE strain coefficient), but which has the advantages of being 

elastically soft and having a high electrical resistivity and resistance to solvents [7]. Some early 

research also has pointed out to the possibility of using single-crystalline PE materials exhibiting 

considerably better performances [12]. Nevertheless, the PE ceramics based on PZT, PMN-PT and 

PZN-PT still possess the strongest known PE properties and thus are in the prime position for future 

applications in actuators, sensors and resonators [7, 12, 64-66].  

 

Table 1.1 Main physical properties, relevant to the ME effect, of some common Z-cut piezoelectrics. 

Here, 𝑑31 and 𝑑33 represent the PE strain coefficients, 𝜀𝑟33
𝑇  is the dielectric relative permittivity, 𝑇𝐶 

the Curie temperature, 𝜌 the mass density, 𝑄 the mechanical quality factor (i.e. 2π times the energy 

stored divided by the energy dissipated per cycle for a given fundamental resonance mode expressed 

as √𝐿1/𝐶1/𝑅1, where 𝐿1, 𝐶1 and 𝑅1 are respectively the series inductance, capacitance and resistance 

of the equivalent electrical circuit of the PE vibrator [67]) and 𝑘33
𝑙  the electromechanical coupling 

factor for a longitudinal oscillation (i.e. the square-root of the ratio between delivered mechanical or 

electrical energy and total absorbed energy, in this case given by 𝑑33/√𝑠33
𝐸 𝜀33

𝑇  [67]). 

 BaTiO3 LiNbO3 GaPO4 PZT–5 PZT–4 PZN-PT PMN-PT PVDF NKN 

𝒅𝟑𝟏 (pC/N) –33 –0.85 -1.58 (𝑑14) –175 –109 –1280 ≈ 700 16.5 – 

𝒅𝟑𝟑 (pC/N) 94 6 4.37 (𝑑11) 400 300 2000–2500 2000 –33 158 

𝜺𝒓𝟑𝟑
𝑻  132 85.2 5.38 (𝜀𝑟11

𝑇 ) 1750 1350 7200 5000 10 – 

𝑻𝑪 (oC) 152 1210 900 360 320 163 80 129 415 

𝝆 (g/cm3) 6 4.63 3.57 7.7 7.6 8.2 7.8 1.78 – 

𝑸 – – – 80 500 – – 4 234 

𝒌𝟑𝟑
𝒍  0.63 0.17 0.15 (𝑘11

𝑙 ) 0.72 0.68 0.94 ≈ 0.9–0.94 0.19 0.46 

Ref. [68, 69] [70] [71, 72] [7] [7] [7, 73, 74] [7, 75] [7] [13] 
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However, lead (Pb) featured in these compounds represents a serious environmental problem, and 

therefore a great deal of current research is focused on identifying lead-free PE compounds which 

could serve as alternatives to the former [13, 76]. In recent times, many developments have been 

made in this direction with the appearance of a series of new “clean” piezoelectrics. Among these, 

ceramics based on the compound (Na,K)NbO3 (NKN) have received considerable attention for two 

main reasons [13]: (i) their PE properties stay unchanged over a wide temperature range and (ii) there 

are numerous possibilities of chemical substitution in the compounds. 

Similarly, the main properties of the most attractive MS materials are summarized in Table 

1.2. Here, one can identify the greatest advantage of ferrites with respect to metallic alloys when 

employed in particulate ME composites, viz., its high electrical resistivity. This is critical when one 

seeks to obtain MS phases capable of withstanding an electric displacement field on 0-3 particulate 

or 1-3 fiber/rod composites because, otherwise, there would be a large leakage of current through the 

compound thus nullifying the charge built-up. NiFe2O4, in particular, is the ferrite with the largest 

saturation magnetostriction (𝜆𝑠) currently known, while also possessing good mechanical properties. 

Despite its small magnetostriction in relation to alloys, NiFe2O4 is still widely used in ME composites 

and could find applications, e.g., in microwave devices [7]. However, in 2-2 laminate composites, 

layers of the MS phase tend to be interspersed by layers of the PE phase, commonly associated with 

a large electrical resistivity. In this case the leakage of current through the thickness of the composite 

is minimized, so that the MS phases are no longer required to have high resistivities. Therefore, the 

research on ME composites in the last decade has been strongly focused on composite laminates 

containing the MS alloy Terfenol-D (Tb0.3Dy0.7Fe1.92/Pb(Zr0.52Ti0.48)O3) [10, 77-81]. Among all 

known magnetic materials, Terfenol-D is still the one with the highest saturation magnetostriction 

[6]. On the other hand, this compound is very expensive and brittle, as well as exhibiting high losses 

at high frequencies (≳ 100 kHz) caused by eddy currents. As in all alloys, it also has a low electrical 

resistivity and cannot be co-sintered with ferroelectric oxides [7]. Also, its low magnetic permeability 

(𝜇𝑟 ≈ 3–10) and large saturation field require high magnetic fields (typically above 1 kOe) in order 

to maximize the ME coupling coefficients, making it unsuitable for low-field applications [6, 9]. 

Consequently, the study of other lower-cost magnetic alloys such as Permendur (Fe-Co-V), Galfenol 

(Fe-Ga) or Metglas (Fe-Ni-Co-B) is of great interest [64, 82-84]. Currently, one of the most 

promising MS alloys is Metglas, mainly because of its huge relative magnetic permeability (𝜇𝑟 > 10 

000), large piezomagnetic coefficient (𝑞33 ≈ 4.0 ppm/Oe) and reasonable saturation magnetostriction 

(𝜆𝑠 = 40 ppm) [7]. Different types of this compound consist of soft Fe-, Co- or Fe–Ni-based 

amorphous alloys, also containing small quantities of B and in some cases Si and Mo, fabricated by 

a rapid solidification process [85]. This process provides it with unique magnetic properties such as 

a very high permeability and a very low coercivity and magnetic anisotropy. Despite its smaller 
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saturation magnetostriction when compared to Terfenol-D, ME composites of Metglas can still 

display very large ME couplings. This is because, as will be shown later, the ME dynamic 

coefficients are proportional to the linear piezomagnetic constants (𝑞𝑖𝑗 = 𝜕𝑆𝑗/𝜕𝐻𝑖 = 𝜕𝜆𝑗/𝜕𝐻𝑖) and not 

to the saturation magnetostriction (𝜆𝑠). In fact, Metglas constitutes the material with the largest 

known piezomagnetic coefficient, 𝑞33 ≈ 4 ppm/Oe (in the case of the 2605SA1 alloy) [82, 86], being 

approximately twice the one observed for Terfenol-D [65]. It also has a high transversal coefficient 

of 𝑞11 + 𝑞12 ≈ 1.5 ppm/Oe [87]. Additionally, it’s very high permeability ensures a high 

concentration of magnetic flux and, therefore, a saturation of the magnetization and magnetostriction 

at very low magnetic fields of ca. 10 Oe. Consequently, its piezomagnetic and ME coefficients, when 

incorporated into a ME composite, generally attain maximum values at low magnetic fields.  

 

Table 1.2 Main physical properties, relevant to the ME effect, of some important MS materials. Here, 

𝜆𝑠 is the saturation magnetostriction, 𝑞33 the piezomagnetic coefficient, 𝜇𝑟33
𝑇  the relative magnetic 

permeability, 𝜌 the mass density, 𝜎 the electrical conductivity and 𝑇C the Curie temperature. 

 NiFe2O4 Terfenol-D Permendur Galfenol Metglas 2605 

𝝀𝒔 (ppm) 27 1400 70 200 40 

𝒒𝟑𝟑 (ppm/Oe) ≈ 0.18 ≈ 1–2 ≈1 ≈ 1.5 ≈ 4.0 

𝝁𝒓𝟑𝟑
𝑻  20 ≈ 6–10 2300 20 > 40 000 

𝑻𝐂 (oC) 535 380 940 670 395 

𝝆 (g/cm3) 5.37 7.8 8.2 7.7 7.18 

𝝈 (S/m) 1.00  10-6 1.72  106 2.38  106 1.67  106 7.69  105 

Ref. [7, 88] [7, 65, 86, 89] [90-92] [7, 93, 94] [7, 82, 86] 

 

Since its initial development and until this day, the ME laminate composites have attracted 

a particularly large interest because of their large ME coefficients, due to a good mechanical coupling 

between phases and an absence of current leakage, which have paved the way to several promising 

applications. Thus, a wide variety of laminar geometries [80, 81, 95-97], synthesis/binding 

techniques [96-98] and operation modes [77-80, 99, 100] have already been studied in detail. With 

regard to their geometry, the most frequently employed laminate composites are based on simple 

structures of only two or three rectangular or disk-shaped layers (i.e. sandwich structures) [6]. These 

structures are the most investigated primarily for their ease of manufacture and for exhibiting, in 

general, very intense ME effects with coefficients usually in the range from 0.05 to 45 V/(cm·Oe) in 

the quasi-static regime (i.e. far from any resonance conditions) [16, 18, 22, 23, 26]. Figure 1.3 sums 

up some of the recent progress made in the development of the various types of ME composites.  
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Figure 1.3 Evolution of the ME effect in terms of the amplitude of the quasi-static ME coefficient 

in various ME composites: a) in situ and sintered 3-0 particulate composites; b) 1-3 rod/matrix 

composites and c) 2-2 laminate composites. Adapted from [13]. 
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When an oscillating AC magnetic field is applied to a ME composite, its ME response 

oscillates with the fundamental frequency and higher harmonics of this field. In particular, a large 

increase in the magnitude of the ME effect is expected whenever the frequency matches one of the 

natural electrical, magnetic or mechanical modes of resonance of the structure [11, 101-103]. Both 

phases of the composite can exhibit these phenomena. These are known as electromechanical (EM) 

resonance, for the case of the PE phase, and ferromagnetic resonance (FMR), for the case of the 

magnetic phase.  

The EM resonance occurs when a characteristic mechanical eigenmode of the PE phase is 

indirectly excited by the varying magnetic field [102]. This field produces a periodic strain in the MS 

phase which is then transferred to the PE phase. A conventional mechanical resonance of the PE can 

then be observed when the elastic vibration frequency coincides with a natural frequency (or one of 

its harmonics) of the system. This frequency depends on the effective material parameters and 

geometry of the PE. Thus, a large oscillation amplitude of the standing wave in this layer will also 

give rise to a large polarization/voltage through the PE effect. Theoretical models based on equivalent 

circuits for the composites have shown that the ME coefficient at resonance is approximately 𝑄𝑚 

times larger than that observed off resonance, where 𝑄𝑚 is the effective mechanical quality factor of 

the composite [12]. It is also possible to show that the extensional length-resonance frequencies of a 

traction-free laminate composite with the shape of a long bar (i.e., with a length much larger than its 

width and thickness) can be given by 𝑓𝑙𝑛 = (2𝑛 − 1)/2ℓ√𝜌𝑠11 [104], where 𝑛 ∈ ℕ is the harmonic 

number, ℓ the length of the PE bar, 𝜌 its mass density and 𝑠11 the longitudinal elastic compliance 

along the length direction [7]. For laminate composites with lengths of about 1 cm and thicknesses 

of about 1 mm, fundamental in-plane extensional EM resonances are generally observed in the range 

of 100 – 500 kHz, while fundamental thickness extensional EM resonances are commonly found in 

the range of 2 – 8 MHz [105-107]. For the case of a PE with a more complex geometry, however, 

additional types of EM modes are expected to be found including shear and flexural modes, mainly 

in the case of symmetrical laminate composites, and bending modes, mainly in the case of 

asymmetrical laminate composites. As in the extensional case, for a traction-free long-bar shaped PE 

the 𝑛 first bending resonant modes should be observed at 𝑓𝑏𝑛 = 𝛽𝑛
2𝑡/2𝜋ℓ2√12𝜌𝑠11 (with 𝛽1 ≈ 4.730, 

𝛽2 ≈ 7.853, 𝛽3 ≈ 10.996, 𝛽4 ≈ 14.137, etc.) [104], where 𝑡 is the thickness of the PE. The fundamental 

bending modes are typically observed in the range from 40 – 80 kHz in PE plates with lengths of 

approximately 1 cm and thicknesses of about 1 mm. Under bending EMR conditions, ME voltage 

coefficients as large as 737 V/(cm·Oe) have thus already been detected at low frequencies in ME 

thin film layered composites [108] and up to 20 kV/(cm·Oe) in specially designed ME 

ferromagnetic-elastic-PE cantilever structured composites [109-112]. 
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The FMR phenomenon involves the resonant absorption of a microwave by the 

ferromagnetic component of the composite when subjected to some magnetic bias field. An electric 

field applied to the composite thus straining the ferromagnetic phase may consequently shift this 

resonant magnetic field [102, 113]. A very large ME coupling has additionally been predicted for a 

superposition of EM resonance and FMR, in which case it is called magnetoacoustic resonance 

(MAR) [102]. In general, one expects to observe EM resonance for frequencies of the order of 

100 kHz, FMR of the order of 10 GHz and antiferromagnetic resonances of the order of 100 GHz [6, 

8, 10, 23]. The latter two make the ME laminates very promising from the point of view of microwave 

devices.  

 

1.3. Thesis outline 

 

This thesis follows the work carried out mostly in the Department of Physics of the 

University of Aveiro related to the ME effect in composites ca. in chronological order. Starting with 

a detailed analysis of the existing literature we thus tried to find the most attractive compositions, 

structures and modes of operations from the point of view of practical applications. A simple quasi-

static phenomenological model was then used to predict the ME coefficient in such composites. 

Various laminate composites were prepared afterwards by bounding commercial layers of PE 

crystals and MS Metglas and an experimental apparatus was developed in order to study its ME, 

impedance and noise properties. The three studies that followed comprised the comparative 

investigation of the direct and converse ME effects in tri-layered composites with PMN-PT and LNO 

single-crystals, the anisotropic ME effect in tri-layered composites with LNO and GPO single-

crystals and the equivalent magnetic noise in bi-laminates comprising bidomain LNO crystals. The 

first study allowed us to identify LNO as a very promising alternative to PMN-PT for ME 

applications offering among other advantages a lead-free nature, a very large chemical and thermal 

stability, a linear operation and a much lower commercial price. In the second study we found 

strongly anisotropic ME effects in differently oriented crystals of LNO and GPO and showed how 

the control of this orientation could be useful e.g. in the development of desirable anisotropic 

properties for some given application. Finally, in the last part we present bilayered composites 

containing bidomain LNO plates as a strong candidate for future sensitive, passive and thermally 

stable ME-based vector magnetic field sensors operating at low frequencies in the bending resonant 

regime. 
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Chapter 2 

 

2. Phenomenological modeling of the magnetoelectric effect 

 

Abstract 

 

This chapter presents a simple quasi-static model of the anisotropic ME effect in tri-layers 

of Metglas and PE single-crystals. The properties of various common PE and MS substances are 

discussed, and arguments for the choice of the most appropriate materials are made. A linear 

description of the ME effects in terms of electric, magnetic and elastic material fields and material 

constants is presented. An averaging quasi-static method is used to illustrate the relation between the 

material constants, their anisotropy and the transversal direct ME voltage and charge coefficients.  

Subsequently, the aforementioned model is employed in the calculation of the maximum 

expected direct ME voltage coefficient for a series of tri-layered Metglas/Piezocrystal/Metglas 

composites as a function of the PE crystal orientation. The ME effects are shown to be strongly 

dependent on the crystal orientation, which supports the possibility of inducing large ME voltage 

coefficients in composites comprising lead-free PE single crystals such as LiNbO3, LiTaO3, α-

GaPO4, α-quartz, langatate and langasite through the optimization of the crystal orientation.  

 

2.1. Piezoelectricity and magnetostriction 

 

The phenomena of piezoelectricity and magnetostriction can be mathematically described by 

a model derived from thermodynamics, electrodynamics and continuum mechanics. The set of 

equations that governs the material includes the Maxwell’s equations, conservation of linear 

momentum, angular momentum, energy and mass (in the non-relativistic approximation). The 

approximate form of the phenomenological constitutive relations for each phase can be derived from 

these first principles and depends on the choice of the thermodynamic potential. Thus, starting with 

a PE system and considering isothermal and adiabatic conditions and ignoring higher-order effects, 

the system’s Gibbs free energy may be described by [67, 114-116]: 
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𝑝

𝑙 , (2.1) 

 

where the Einstein summation convention is used. Here, 𝑠 
𝑝

𝑖𝑗𝑘𝑙
𝐸  is an element of the elastic compliance 

tensor (a rank-4 tensor), 𝑑𝑘𝑖𝑗 
  the PE strain coefficient (a rank-3 tensor), 𝜀𝑘𝑙

𝑇
 
  the dielectric permittivity 

(a rank-2 tensor), 𝑇 
𝑝

𝑖𝑗
  the elastic stress (a rank-2 tensor), and 𝐸 

𝑝
𝑘 the electric field (a vector). The 

superscripts 𝐸 and 𝑇 in the material constants indicate that those are defined under the conditions of 

a constant electric field or stress, respectively. Throughout the rest of this thesis, the subscripts 𝑖, 𝑗, 

𝑘 and 𝑙 will range over the integers 1, 2 and 3, whereas the subscripts 𝑎, 𝑏, 𝑐 and 𝑑 over just 1 and 

2. The superscript 𝑝 on the constants and variables is meant to remind us that we are dealing with a 

PE medium. Through the partial differentiation of the 𝐺 potential, the linear constitutive equations 

of piezoelectricity are obtained as [67, 114-116]:  
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where 𝐷𝑘 
𝑝  is the electric displacement (a vector) and 𝑆 

𝑝
𝑖𝑗
  is the elastic strain (a rank-2 tensor). 

All of the tensor parameters for a given property of the material mentioned so far are 

mathematical objects that change with the coordinate system in a predictable way and obey certain 

symmetry relations, which considerably reduces the number of their independent components. Those 

symmetry relations have three basic sources [117]: the symmetry of the partial differential equation 

(PDE) that defines the property, the symmetry of the tensor variables which determine the property, 

and the symmetry of the material that exhibits the property (i.e., its point group). The first kind of 

symmetry limits the number of independent elements of the tensor properties which are defined by 

repeated differentiation. An example of this is the PE coefficient, where 𝑑𝑘𝑖𝑗 = 𝑑𝑘𝑖𝑗
𝐸 =

 (𝜕𝐷𝑘/𝜕𝑇𝑖𝑗)
𝐸

= −𝜕2𝐺/𝜕𝑇𝑖𝑗𝜕𝐸𝑘 = −𝜕2𝐺/𝜕𝐸𝑘𝜕𝑇𝑖𝑗 =  (𝜕𝑆𝑖𝑗/𝜕𝐸𝑘)
𝑇

=  𝑑𝑘𝑖𝑗
𝑇 , the dielectric 

permittivity 𝜀𝑘𝑙
𝑇 =  (𝜕𝐷𝑘/𝜕𝐸𝑙)𝑇 = 𝜀0𝛿𝑙𝑘 − 𝜕2𝐺/𝜕𝐸𝑙𝜕𝐸𝑘 = 𝜀0𝛿𝑘𝑙 − 𝜕2𝐺/𝜕𝐸𝑘𝜕𝐸𝑙 = (𝜕𝐷𝑙/

𝜕𝐸𝑘)𝑇 =  𝜀𝑙𝑘
𝑇 , and the compliance 𝑠𝑖𝑗𝑘𝑙

𝐸 =  (𝜕𝑆𝑖𝑗/𝜕𝑇𝑘𝑙)
𝐸

= −𝜕2𝐺/𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙 = −𝜕2𝐺/𝜕𝑇𝑘𝑙𝜕𝑇𝑖𝑗 =

 𝑠𝑘𝑙𝑖𝑗
𝐸 . The theory of linear elasticity yields 𝑆𝑖𝑗 = (1/2)(𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖), where 𝑢𝑖 are the 

displacement vectors along the 𝑥𝑖 Cartesian directions, so that 𝑆𝑖𝑗 =  𝑆𝑗𝑖, thus reducing the number 

of independent variables to six. Furthermore, the conservation of angular momentum also implies 
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that 𝑇𝑖𝑗 =  𝑇𝑗𝑖. Consequently, taking into account this symmetry of the tensor variables that determine 

the properties 𝑑𝑘𝑖𝑗 =  (𝜕𝐷𝑘/𝜕𝑇𝑖𝑗)
𝐸

 and 𝑠𝑖𝑗𝑘𝑙
𝐸 = (𝜕𝑆𝑖𝑗/𝜕𝑇𝑘𝑙)

𝐸
, one further identifies the following 

symmetry relations: 𝑑𝑘𝑖𝑗 = 𝑑𝑘𝑗𝑖 and 𝑠𝑖𝑗𝑘𝑙
𝐸 = 𝑠𝑗𝑖𝑘𝑙

𝐸 = 𝑠𝑖𝑗𝑙𝑘
𝐸 = 𝑠𝑗𝑖𝑙𝑘

𝐸 . In summary, it follows from these 

two sources of intrinsic symmetry that the dielectric permittivity has a maximum of 6 independent 

constants, whereas the dielectric coefficient and compliance have a maximum of 18 and 21, 

respectively. To simplify the manipulation of these expressions, a special notation known as Voigt’s 

notation is commonly used in literature. Here, the 𝜺 
𝑻, 𝒅  and 𝒔 

𝑬 tensors are represented as 33, 36 

and 66 matrices, where the 𝑖𝑗 subscripts are reduced to a single subscript (𝑚 or 𝑛) using the 

substitutions 𝑖𝑗 = 11 → 1, 𝑖𝑗 = 22 → 2, 𝑖𝑗 = 33 → 3, 𝑖𝑗 = 23,32 → 4, 𝑖𝑗 = 13,31 → 5, 𝑖𝑗 =

12,21 → 6. Other rules of conversion in this matrix notation, which must be taken into account, are 

[67, 118]: 𝑆𝑚 = 𝑆𝑖𝑗, when 𝑚 = 1, 2 or 3; 𝑆𝑚 = 2𝑆𝑖𝑗, when 𝑚 = 4, 5 or 6; 𝑠𝑚𝑛
𝐸 = 𝑠𝑖𝑗𝑘𝑙

𝐸 , when both 𝑚 

and 𝑛 are = 1, 2 or 3; 𝑠𝑚𝑛
𝐸 = 2𝑠𝑖𝑗𝑘𝑙

𝐸 , when 𝑚 or 𝑛 are = 4, 5 or 6; 𝑠𝑚𝑛
𝐸 = 4𝑠𝑖𝑗𝑘𝑙

𝐸 , when both 𝑚 and 𝑛 

are = 4, 5 or 6; 𝑑𝑘𝑚 = 𝑑𝑘𝑖𝑗, when 𝑚 = 1, 2 or 3; and 𝑑𝑘𝑚 = 2𝑑𝑘𝑖𝑗, when 𝑚 = 4, 5 or 6. The values 

of these coefficients are frequently presented in literature in this notation. Taking all these symmetry 

considerations into account, we see that the constitutive equations (2.2) and (2.3) can be written in 

the general matrix form [67, 114]: 

 

 [
𝑆𝑚

𝐷𝑖
] = [

𝑠 
𝑝

𝑚𝑛
𝐸 𝑑𝑚𝑗

𝑡

𝑑𝑖𝑛 𝜀𝑖𝑗
𝑇 ] [

𝑇𝑛

𝐸𝑗
] , (2.4) 

 

where the superscript 𝑡 indicates the transpose of the 𝒅 Voigt matrix. Finally, it should be noted that 

the symmetry of the material is also an important source of additional constrains on its tensor 

properties. From the physical symmetry of a system we know that there are a set of symmetry 

operations which will not change the material in any observable way, so that the material properties 

will be invariant under such operations. These operations are the ones that define the point group of 

the system. Thus, one sees that the material properties are in part governed by the point group 

symmetry of the material. More precisely, the Neumann principle states that [119] the symmetry 

elements of any physical property of a crystal must include all the symmetry elements of the point 

group of the crystal. In other words, the components of a tensor representing a property must remain 

invariant under any transformation of coordinates governed by a symmetry operation valid for the 

point group of the crystal. This also implies that a given physical property may only possess a higher 

or equal symmetry than that of the crystal. Therefore, a physical property must have a symmetry at 

least as high as one of the 32 conventional point groups or one of the 122 magnetic points groups to 
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which the crystal belongs. Taking, e.g., the PE LiNbO3 crystal corresponding to the point group 3m, 

it is possible to show that it will be associated with at most 2 independent dielectric constants (𝜀11
𝑇  

and 𝜀33
𝑇 ), 4 PE constants (𝑑31, 𝑑33, 𝑑22 and 𝑑15) and 6 compliance constants (𝑠11

𝐸 , 𝑠12
𝐸 , 𝑠13

𝐸 , 𝑠14
𝐸 , 𝑠33

𝐸  

and 𝑠44
𝐸 ) [70]. A listing of all the 32 point groups and associated tensor properties can be found, e.g., 

in [119-121]. 

Most of the discussion mentioned above for PE materials can also be applied to 

piezomagnetic materials. The difference resides in the fact that, because magnetic fields are 

pseudovectors generated by currents and change sign under the time inversion operation, magnetic 

properties will necessarily have more complex symmetries [117]. In fact, there is a whole set of 

additional point group symmetries for the magnetic properties as a consequence of current reversal. 

Therefore, while the simplest magnetic properties, such as the magnetic permeability and 

susceptibility, have the forms that are required by the basic crystallographic point group of the 

material, more complex properties, such as the ferromagnetic moment and the MS coefficients, do 

not. Those will instead have the form required by one of the 122 magnetic point groups. Assuming 

the same conditions as in the case of the PE material, the elastic Gibbs function for the MS material 

can also be derived. From it, the linear piezomagnetic constitutive relations follows [56, 122]: 

 

 𝐵𝑘 
𝑚 = 𝜇0 𝐻𝑘 

𝑚 −
𝜕𝐺

𝜕 𝐻𝑘 
𝑚 = 𝐵0𝑘 

𝑚 (𝑯𝟎) +  𝜇𝑘𝑙
𝑇 (𝑯𝟎) 𝐻𝑙 

𝑚  + 𝑞𝑘𝑖𝑗(𝑯𝟎) 𝑇𝑖𝑗
 

 
𝑚  ; (2.5) 

 𝑆𝑖𝑗
 

 
𝑚 = −

𝜕𝐺

𝜕 𝑇𝑖𝑗
 

 
𝑚 = 𝑆0𝑖𝑗

 
 

𝑚 (𝑯𝟎) +  𝑠𝑖𝑗𝑘𝑙
𝐸

 
𝑚 𝑇𝑘𝑙

 
 

𝑚 + 𝑞𝑘𝑖𝑗(𝑯𝟎) 𝐻𝑘 
𝑚  , (2.6) 

 

where 𝐵𝑘 
𝑚  is the magnetic induction (a vector) and 𝐻𝑘 

𝑚  the magnetic field strength (a vector). Also, 

𝐵0𝑘 
𝑚 (𝑯𝟎) = 𝐵𝑘 

𝑚 (𝑯𝟎) − 𝜇𝑘𝑙
𝑇 (𝑯𝟎) 𝐻0𝑙 

𝑚  and 𝑆0𝑖𝑗
 

 
𝑚 (𝑯𝟎) = 𝜆𝑖𝑗(𝑯𝟎) − 𝑞𝑘𝑖𝑗(𝑯𝟎) 𝐻0𝑘 

𝑚  where 

𝜇𝑘𝑙
𝑇 (𝑯𝟎) is the magnetic permittivity (a rank-2 tensor), 𝑞𝑘𝑖𝑗(𝑯𝟎) the piezomagnetic coefficient (a 

rank-3 tensor), 𝐵𝑘 
𝑚 (𝑯𝟎) the magnetic induction and 𝜆𝑖𝑗(𝑯𝟎) the magnetostriction all obtained at a 

bias 𝑯𝟎 magnetic field. The superscript 𝑚 indicates the MS nature of the material to which equations 

(2.5) and (2.6) apply. It should be noted that, when obtaining these equations, the pseudo-

piezomagnetic approximation was taken. This is because magnetostriction is approximately a 

quadratic effect ( 𝑆𝑖𝑗
 

 
𝑚 = 𝑏𝑖𝑗𝑘𝑙𝑀𝑘𝑀𝑙 , where 𝒃 is the 66 magnetoelastic tensor), whereas 

piezomagnetism is a linear effect ( 𝑆𝑖𝑗
 

 
𝑚 = 𝑞𝑘𝑖𝑗𝐻𝑘). However, for small variations of the applied 𝑯 

field close to a bias field 𝑯𝟎, the slope 𝜕𝑆𝑖𝑗
𝑚/𝜕𝐻𝑘(𝑯) of the magnetostriction curve is approximately 

constant in a small interval around 𝑯𝟎. Therefore the Taylor expansion of the magnetostriction curve 
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around 𝑯𝟎 may be truncated to first order as follows: 𝑆𝑖𝑗
 

 
𝑚 (𝑻 = 0, 𝑯) = 𝜆𝑖𝑗(𝑯) = 𝜆𝑖𝑗(𝑯𝟎) +

𝜕𝜆𝑖𝑗/𝜕𝐻𝑘(𝑯𝟎). (𝐻𝑘 − 𝐻𝑘0) + (1/2)𝜕2𝜆𝑖𝑗/𝜕𝐻𝑘𝜕𝐻𝑙(𝑯𝟎). (𝐻𝑘 − 𝐻𝑘0)(𝐻𝑙 − 𝐻𝑙0) +  … ≈

 𝜆𝑖𝑗(𝑯𝟎) + 𝜕𝜆𝑖𝑗/𝜕𝐻𝑘(𝑯𝟎). (𝐻𝑘 − 𝐻𝑘0), and thus the magnetostriction can be approximated in this 

region as a piezomagnetic effect with 𝑞𝑘𝑖𝑗(𝑯𝟎) = 𝜕𝜆𝑖𝑗/𝜕𝐻𝑘(𝑯𝟎) [43, 123]. In practical applications, 

the magnetostriction is often used in this linear piezomagnetic regime with small applied AC 

magnetic fields. Similarly, a pseudo-paramagnetic approximation, where 𝜇𝑘𝑙
𝑇 (𝑯𝟎) = 𝜕𝐵𝑘/𝜕𝐻𝑙(𝑯𝟎), 

is also assumed for the ferromagnetic material. Having taken this into consideration, one can 

therefore assume the validity of equations (2.5) and (2.6). Before advancing any further, we note that 

the assumption that the material coefficients in the constitutive equations are constants dependent 

only on the spatial coordinates and magnetic fields produces a much idealized model. In a more 

accurate description these coefficients should be complex functions of space, material fields, 

frequency, time and temperature, thus taking into account the non-linearities, dispersion, losses, 

current state (e.g. remanent polarization/magnetization of the PE/MS phase, aging effects, etc.) and 

temperature dependence of the material’s properties. A listing of all the linear dielectric, PE and 

elastic constants of the different piezoelectrics, measured under standard ambient conditions, can 

generally be easily found in the literature. 

 

2.2. Averaging quasi-static method  

 

In this Section we are going to estimate the maximum expected magnitude of the ME voltage 

coefficient for a series of tri-layered geometries of the type Metglas/PE/Metglas, where different 

single crystals are employed as the PE phase. To do this, a standard averaging low-frequency model 

(i.e., in the quasi-static regime), based on the constitutive equations, will be used [124]. Being quasi-

static it will naturally neglect high frequency effects such as electromechanical resonances, material 

dispersion and losses as well as eddy currents generated in the conductive phases. 

The simultaneous resolution of the constitutive equations (2.2)–(2.3) and (2.5)–(2.6), taking 

into account the boundary conditions for the material interfaces, allows one to obtain the ME voltage 

coefficient of the composite depending on its composition, microstructure, operating mode, etc. 

Currently, a number of analytical and numerical techniques are known which may be employed in 

solving these equations. In general, they allow estimations in terms of mean fields and are based on 

the formalism of Green's functions [53] (multiple-scattering approach in the many-body theory) or 

on micromechanical methods [125]. More sophisticated models may include the quadratic effect of 
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magnetostriction [126] and pyroelectric or pyromagnetic phenomena [125] in the constitutive 

equations. 

In the quasi-static model, a square shaped tri-layered structure like the one shown in Figure 

2.1 a) is considered. Its constitutive elastostatic and electrostatic equations are solved assuming that 

all of the material fields are averaged constants in each layer up to the leading order. This limits the 

model to the study of purely extensional deformations thus excluding any kind of bending 

deformations which, however, are only significant for the case of asymmetrical composites such as 

bilayers. As we see, this composite is designed to operate in its L–T mode, i.e., with a magnetic field 

(𝛿𝐻𝑗(𝑡)) applied along its longitudinal length direction (L) and with the voltage (𝛿𝑉3(𝑡)) measured 

across its transversal thickness direction (T). This L-T mode is generally associated with larger ME 

coefficients than the transversally magnetized and transversally poled (T-T) mode mainly because of 

the absence of the demagnetization effect (for thin enough layers) and also because the piezomagnetic 

coefficients tend to be larger for parallel magnetic and strain fields (𝑞𝑖𝑖), so that the in-plane strain 

component, which is transmitted to the PE phase, will be larger.  

 

 

Figure 2.1 a) Representation of a tri-layered ME composite operating in the transversal L–T mode 

(i.e. longitudinal or in-plane magnetization, 𝑴, of the MS layers and transversal or out-of-plane 

polarization, 𝑷, of the PE layer). b) Euler angles scheme used in the rotation of the crystallographic 

frame of a single crystal to the laminate frame of figure a). 

 

To set the boundary conditions, we start by assuming that there is no external traction applied 

to the system (i.e. 𝑡𝑖 = 𝑛𝑖𝑇𝑖𝑗 = 0 on the surfaces of the material, where 𝑛𝑖 is the unit surface normal). 

Thus, the average tractions on the top and bottom surfaces of the system ( 𝑇 
𝑚

3𝑖), as well as the average 

tractions on the lateral surfaces ( 𝑇 
𝑝

𝑎𝑏 𝜈 
𝑝 + 𝑇 

𝑚
𝑎𝑏 𝜈 

𝑚 ), are null. These two relations are expressed as 

[56, 122]: 
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 𝑇 
𝑚

3𝑖 = 𝑇 
𝑝

3𝑖 = 0 ; (2.7) 

 𝑇 
𝑝

𝑎𝑏 𝜈 
𝑝 + 𝑇 

𝑚
𝑎𝑏 𝜈 

𝑚 = 0 , (2.8) 

 

where 𝜈 
𝑝  and 𝜈 

𝑚  are the volume fractions of the PE and MS phases, respectively. Taking into account 

that all layers have a square shaped surface with the same area, these fractions can be given by 𝜈 
𝑝 =

𝑡 
𝑝 /( 𝑡 

𝑝 + 2 𝑡 
𝑚 ) and 𝜈 

𝑚 = 2 𝑡 
𝑚 /( 𝑡 

𝑝 + 2 𝑡 
𝑚 ), where 𝑡 

𝑝  is the thickness of the PE crystal and 𝑡 
𝑚  is the 

thickness of each one of the two magnetic layers. The continuity conditions at the interfaces between 

layers guarantees that 𝑇 
𝑚

3𝑖 = 𝑇 
𝑝

3𝑖. Furthermore, a parameter known as the coupling coefficient, 

𝑘𝑐 = ( 𝑆𝑎𝑏
 

 
𝑝 − 𝑆0 𝑎𝑏

 
 

𝑝 )/( 𝑆𝑎𝑏
 

 
𝑚 − 𝑆0 𝑎𝑏

 
 

𝑝 ), is introduced [55]. This parameter describes the coupling 

quality at the interface between the PE and MS materials. In the expression of 𝑘𝑐, 𝑆0 𝑎𝑏
 

 
𝑝  indicates 

the component of the strain tensor in the PE phase that appears when the friction between layers is 

null (i.e. 𝑇 
𝑝

𝑎𝑏
 = 0, so that 𝑆0 𝑎𝑏

 
 

𝑝 =  𝑑 
 

𝑘𝑎𝑏 𝐸 
𝑝

𝑘 by equation (2.3)), and 𝑆𝑎𝑏
 

 
𝑝  and 𝑆𝑎𝑏

 
 

𝑚  are the strains 

in the PE and MS phases, respectively. The coupling parameter consequently defines the ratio 

between the induced strains in the PE and MS layers. For an ideal interface we then have 𝑘𝑐 = 1, 

whereas for an interface without any friction between layers (i.e. without mechanical coupling 

between them) we have 𝑘𝑐 = 0. The boundary conditions for the strain components on the lateral 

surfaces of the composite are therefore [72]: 

 

 𝑆 
𝑝

𝑎𝑏 =  𝑘𝑐 𝑆 
𝑚

𝑎𝑏 + (1 − 𝑘𝑐) 𝑆𝑎0
 

 
𝑝  . (2.9) 

 

It is further assumed that the interface is perfectly electromechanically bound. Consequently, 

the in-plane electric and magnetic fields will be continuous along the composite, the change in the 

normal displacement fields across the interfaces will be equal to the surface charge density (𝜎) and 

the normal magnetic induction will be continuous [56, 122]: 

 

 𝐸 
𝑝

1 = 𝐸 
𝑚

1,   𝐸 
𝑝

2 = 𝐸 
𝑚

2,   𝐷 
𝑝

3 − 𝐷 
𝑚

3 = 𝜎 ; (2.10) 

 𝐻 
𝑝

1 = 𝐻 
𝑚

1,   𝐻 
𝑝

2 = 𝐻 
𝑚

2,   𝐵 
𝑝

3 = 𝐵 
𝑚

3 . (2.11) 

 

We now seek to find the expression for the direct ME voltage coefficient given by 𝛼𝐸𝑖𝑗 =

𝜕 𝐸 
𝑝

𝑖/𝜕 𝐻 
𝑚

𝑗, or the electric field induced in the PE when the MS layers are subjected to an external 
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magnetic field. By substitution of the constitutive equations (2.3) and (2.6) into equation (2.9) we 

get:  

 

 𝑠 
𝑝

𝑎𝑏𝑘𝑙
𝐸 𝑇 

𝑝
𝑘𝑙
 + 𝑘𝑐𝑑𝑘𝑚

 𝐸 
𝑝

𝑘 =  𝑘𝑐 𝑠𝑎𝑏𝑘𝑙
𝐸

 
𝑚 𝑇𝑘𝑙

 
 

𝑚 + 𝑘𝑐( 𝑆0𝑎𝑏
 

 
𝑚 (𝑯𝟎) + 𝑞𝑘𝑎𝑏(𝑯𝟎) 𝐻𝑘 

𝑚 ) . (2.12) 

 

Now adding the stress boundary conditions (2.7) and (2.8) to this expression and converting 

its parameters to the Voigt notation yields:  

 

 𝑠𝑚𝑛 𝑇 
𝑝

𝑛
 + 𝑘𝑐𝑑𝑘𝑚

 𝐸 
𝑝

𝑘 =  𝑘𝑐( 𝑆0𝑚
 

 
𝑚 (𝑯𝟎) + 𝑞𝑘𝑚(𝑯𝟎) 𝐻𝑘 

𝑚 ) , for 𝑚, 𝑛 = 1, 2, 6, (2.13) 

 

where 𝑠𝑚𝑛 = 𝑠 
𝑝

𝑚𝑛
𝐸 + 𝑘𝑐𝑓 𝑠𝑚𝑛

𝐸
 

𝑚  is an effective compliance and 𝑓 is the ratio between the volume 

fractions of the PE and MS phases ( 𝜈 
𝑝 / 𝜈 

𝑚 ). The rank-three square 𝑠𝑚𝑛 matrix in this expression can 

thus be inverted in order to write the PE stress 𝑇 
𝑝

𝑛
  explicitly as a function of the electric and magnetic 

fields. Subsequently, substituting this stress in the PE constitutive equation (2.2) and taking into 

account the elastic boundary conditions (2.7) one arrives at (in Voigt’s notation): 

 

 𝐷𝑘 
𝑝 = (𝜀𝑘𝑙

𝑇 − 𝑘𝑐𝑑𝑘𝑚
 𝑠𝑚𝑛

−1 𝑑𝑙𝑛
 ) 𝐸𝑙 

𝑝  + 𝑘𝑐𝑑𝑘𝑚
 𝑠𝑚𝑛

−1 ( 𝑆0𝑛
 

 
𝑚 (𝑯𝟎) + 𝑞𝑗𝑛(𝑯𝟎) 𝐻𝑗 

𝑚 ) , (2.14) 

 

where 𝑠𝑚𝑛
−1  is the inverse of the 𝑠𝑚𝑛 effective compliance matrix. Taking now into account that the 

magnetic layers consist of the electrically conductive Metglas alloy, the electric and displacement 

fields ( 𝐷 
𝑚

𝑖 = 𝜀0 𝐸 
𝑚

𝑖) in this layer should be approximately null and its top and bottom surfaces 

equipotential. Therefore one has [56, 122]:  

 

 𝐸 
𝑚

1 = 𝐸 
𝑚

2 =  𝐷 
𝑚

3 = 0 . (2.15) 

 

By a substitution of the above relations in equation (2.10) the following additional conditions 

are obtained: 

 

 𝐸 
𝑝

1 = 𝐸 
𝑝

2 =  0 ; 𝐷 
𝑝

3 = 𝜎 . (2.16) 
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Replacing this conditions in equation (2.14) one can finally write the 𝐷3 
𝑝  component of the 

dielectric displacement as a function of the 𝐸 
𝑝

3 electric field and the magnetic fields in the MS layer: 

 

 𝐷3 
𝑝 = (𝜀33

𝑇 − 𝑘𝑐𝑑3𝑚
 𝑠𝑚𝑛

−1 𝑑3𝑛
 ) 𝐸3 

𝑝  + 𝑘𝑐𝑑3𝑚
 𝑠𝑚𝑛

−1 ( 𝑆0𝑛
 

 
𝑚 (𝑯𝟎) + 𝑞𝑗𝑛(𝑯𝟎) 𝐻𝑗 

𝑚 ) . (2.17) 

 

Supposing a magnetic field 𝐻𝑘 
𝑚  is applied to the composite along one of the three possible 

directions 𝑘 = 1, 2 or 3, one can therefore rearrange the expression above in order to obtain the 

variable 𝐸3 
𝑝  explicitly as a linear function of this field as well as the 𝐷3 

𝑝  field. Starting by 

considering an open circuit situation (𝐼 = ∫ 𝐷̇ 
𝑝

3
  

𝐴𝑟𝑒𝑎
𝑑𝐴 = 0, where 𝐼 is the current in the Z direction), 

in which 𝐷 
𝑝

3 equals an initial constant surface charge 𝜎, as shown in equation (1.16), which is 

assumed to be null ( 𝐷 
𝑝

3 = 0), and differentiating 𝐸3 
𝑝  with respect to 𝐻𝑘 

𝑚 , one finally arrives at the 

desired direct ME voltage coefficient. From this it follows that for 𝑯 → 𝑯𝟎 the general ME voltage 

coefficient can be written as a function of this field by the compact expression: 

 

 𝛼𝐸3𝑘(𝑯) =
𝜕 𝐸3 

𝑝

𝜕 𝐻𝑘 
𝑚 (𝑯) =

−𝑘𝑐𝑑3𝑚𝑠𝑚𝑛
−1 𝑞𝑘𝑛(𝑯)

𝜀 
 

33
𝑇 −𝑘𝑐𝑑3𝑚𝑠𝑚𝑛

−1 𝑑3𝑛
 . (2.18) 

 

In the special case of a uniaxial PE (such as PZT ceramic with ∞𝑚 symmetry) which has 

only 2, 3 and 5 independent dielectric, PE and elastic constants, respectively, and a MS material, 

such as Metglas, with a normal orientation (∞𝑚 symmetry), this yields the result [19, 56]: 

 

 𝛼𝐸3𝑘(𝑯) =
𝜕 𝐸3 

𝑝

𝜕 𝐻𝑘 
𝑚 (𝑯) =

−𝑘𝑐𝑑31(𝑞𝑘1(𝑯)+𝑞𝑘2(𝑯))

𝜀 
 

33
𝑇 [( 𝑠 

𝑝
11
𝐸 + 𝑠12

𝐸 ) 
𝑝 +𝑘𝑐𝑓( 𝑠 

𝑚
11
𝐸 + 𝑠12

𝐸 ) 
𝑚 ]−2𝑘𝑐𝑑31

2  , (2.19) 

 

which shows the tendency of the direct ME effect to be larger in composites containing PE phases 

with a large transverse piezocoefficient (𝑑31), small out-of-plane dielectric permittivity (𝜀33
𝑇 ) and 

small longitudinal and transverse compliance or flexibility ( 𝑠 
𝑝

11
𝐸 + 𝑠12

𝐸
 

𝑝 ). Additionally, the MS phase 

should have large longitudinal and transverse piezomagnetic coefficients (𝑞𝑘1(𝑯) + 𝑞𝑘2(𝑯)) and 

small compliances ( 𝑠 
𝑚

11
𝐸 + 𝑠12

𝐸
 

𝑚 ). The curves of this ME coefficient as a function of the external 

magnetic field are known to follow those of the piezomagnetic coefficients [123]. The ME coefficient 
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is thus proportional to the first derivative of the magnetostriction curve, increasing with the 𝐻 field 

up to a given point, where the derivative of the magnetostriction is maximum, and decreasing 

progressively to zero afterwards, as the straining of the magnetic phase eventually saturates. 

Consequently, the piezomagnetic coefficients presented in literature often correspond to their 

maximum values for a given magnetic field, and the ME coefficients estimated by solving equation 

(2.18) will then be associated with the maximal expected coefficients for this field. Expression (2.19) 

additionally shows that, in order to maximize the ME effect, it is extremely important to obtain a 

good mechanical coupling between phases (i.e. a large 𝑘𝑐), thus guarantying an efficient transference 

of strain between them. Also, the thickness ratio between the PE and the MS layers should be as 

small as possible (i.e. small 𝑓), thus maximizing the in-plane normal tensile/compressive stress 𝑇 
𝑝

𝑛
  

applied to the PE phase by the MS phase in the direction of the applied magnetic field, as seen by 

equation (2.13), while at the same time nullifying the compressive/tensile stress 𝑇 
𝑚

𝑛
  felt by the MS 

phase, as seen by equation (2.8). However, since the voltage measured in any real detection circuit 

associated with some input noise is proportional to the thickness of the PE layer, the maximal signal-

to-noise ratio should be observed for a finite PE thickness. On the other hand, minimizing 𝑓 by 

infinitely increasing the thickness of the MS layers would lead to unpractically large samples, so that 

some compromise has to be achieved for any given application. 

The model shown in this part also permits the estimation of the quasi-static charge ME 

coefficient through a simple change in the electrical boundary conditions. For this case we consider 

a short-circuited composite (𝑉 = − ∫ 𝐸 
𝑝

3
  

𝑡 
𝑝 𝑑𝑍 = 0, where 𝑉 is the voltage developed across the PE) 

in such a way that we have 𝐸 
𝑝

3 = 0 instead of 𝐷 
𝑝

3 = 0 in (2.16). Subsequently equation (2.17) is 

differentiated in relation to 𝐻𝑘 
𝑚 , thus yielding: 

 

 𝛼𝑄3𝑘(𝑯) =
𝜕 𝐷3 

𝑝

𝜕 𝐻𝑘 
𝑚 (𝑯) = 𝑘𝑐𝑑3𝑚𝑠𝑚𝑛

−1 𝑞𝑘𝑛(𝑯) . (2.20) 

 

Comparing the general equations (2.18) and (2.20), one sees that both the charge and voltage 

coefficients can be directly related by the expression 𝛼𝑄3𝑘(𝑯) = −(𝜀33
𝑇 − 𝑘𝑐𝑑3𝑚𝑠𝑚𝑛

−1 𝑑3𝑛)𝛼𝐸3𝑘(𝑯), 

where 𝐶 = (𝜀33
𝑇 − 𝑘𝑐𝑑3𝑚𝑠𝑚𝑛

−1 𝑑3𝑛)𝐴/ 𝑡 
𝑝  represents the low frequency capacitance of the composite 

as it will be shown later. This capacitance tends to decrease with increasing 𝑘𝑐 (i.e. better coupling 

between layers) and decreasing 𝑓 (i.e. thicker MS layers in relation to the PE ones). For the case of 

uniaxial PE and MS materials, expression (2.20) is simplified to:  

 



 

2. Modeling of the magnetoelectric effect 

24 

 

 𝛼𝑄3𝑘(𝑯) =
𝜕 𝐷3 

𝑝

𝜕 𝐻𝑘 
𝑚 (𝑯) =

𝑘𝑐𝑑31(𝑞𝑘1(𝑯)+𝑞𝑘2(𝑯))

( 𝑠 
𝑝

11
𝐸 + 𝑠12

𝐸 ) 
𝑝 +𝑘𝑐𝑓( 𝑠 

𝑚
11
𝐸 + 𝑠12

𝐸 ) 
𝑚  , (2.21) 

 

which shows that, when compared to the 𝛼𝐸3𝑘 coefficient in equation (2.19), the charge coefficient 

is generally associated with a change of sign and no longer depends on the dielectric permittivity 𝜀33
𝑇  

of the PE. Apart from this, all of the observations made before remain valid. 

As mentioned before, up to this point the demagnetization effects on the MS layers have 

been neglected. For the special case of uniformly magnetized ellipsoids (with magnetization 𝑀𝑗) 

subjected to an uniform external magnetic field 𝐻𝑘
′ , the uniform field developed inside the material 

𝐻𝑘 can be given by 𝐻𝑘 = 𝐻𝑘
′ − 𝑁𝑘𝑗𝑀𝑗, where 𝑁𝑘𝑗 is a demagnetization factor which depends on the 

shape of the ellipsoid [127]. In the case of an infinite plane with a normal pointing in the Z direction 

this demagnetization factor is given by 𝑁33 = 1 and 𝑁𝑘𝑗 = 0 otherwise [127]. Therefore, for thin 

enough MS layers the demagnetization fields can be neglected for 𝐻𝑘
′  applied in the X or Y directions 

(i.e. 𝐻𝑘
′ = 𝐻𝑘). However, in the case of thick MS phases, such that 𝑁𝑎𝑎 ≠ 0, or of the ME 

longitudinal geometry where 𝐻3 ≠ 0, this effect can become quite substantial. The ME coefficients 

given by equations (2.18-2.21) can be corrected to take this effect into account. To do this, one starts 

by writing the external magnetic field 𝐻𝑘
′  as a function of the internal magnetic field 𝐻𝑘. Taking the 

demagnetization equation for some 𝑁𝑘𝑗 and making the substitution 𝑀 
𝑚

𝑗
 = 𝐵 

𝑚
𝑗
 /𝜇0 − 𝐻 

𝑚
𝑗
 , one 

obtains 𝐻 
𝑚

𝑘
′  as a function of 𝐻 

𝑚
𝑗
  and the magnetic induction 𝐵 

𝑚
𝑗
  given by equation (2.5). 

Subsequently, through a series of substitutions involving equations (2.7), (2.8) and (2.13) one arrives 

at the final result:  

 

 𝐻 
𝑚

𝑘
′ = 𝐻0𝑘

̅̅ ̅̅ ̅(𝑯𝟎) + 𝜇𝑘𝑙̅̅ ̅̅ (𝑯𝟎) 𝐻 
𝑚

𝑙
 + 𝛼𝑄𝑘3̅̅ ̅̅ ̅̅ (𝑯𝟎) 𝐸 

𝑝
3
  , (2.22) 

 

where 𝐻0𝑘
̅̅ ̅̅ ̅(𝑯𝟎) = (𝑁𝑘𝑗/𝜇0)( 𝐵 

𝑚
0𝑗
 (𝑯𝟎) − 𝑘𝑐𝑓𝑞𝑗𝑚(𝑯𝟎)𝑠𝑚𝑛

−1 𝑆0𝑛
 

 
𝑚 (𝑯𝟎)), 𝛼𝑄𝑘3̅̅ ̅̅ ̅̅ (𝑯𝟎) = (𝑁𝑘𝑗/

𝜇0)𝑘𝑐𝑓𝑞𝑗𝑚(𝑯)𝑠𝑚𝑛
−1 𝑑3𝑛, 𝜇𝑘𝑙̅̅ ̅̅ (𝑯𝟎) = 𝛿𝑘𝑙 − 𝑁𝑘𝑙 + 𝜇𝑘𝑙(𝑯𝟎) − 𝑘𝑐𝑓𝑞𝑘𝑚(𝑯𝟎)𝑠𝑚𝑛

−1 𝑞𝑙𝑛(𝑯𝟎).and 𝐸 
𝑝

3
  is 

related to 𝐻𝑗 
𝑚  and 𝐷 

𝑝
3
  through equation (2.17). The corrected ME voltage coefficients written as a 

function of the known external magnetic fields 𝑯′ → 𝑯𝟎
′  can therefore be given as 𝛼𝐸3𝑘

′ (𝑯′) =

𝜕 𝐸3 
𝑝 /𝜕 𝐻 

𝑚
𝑘
′ (𝑯′) = 𝜕 𝐸3 

𝑝 /𝜕 𝐻 
𝑚

𝑗
 (𝑯(𝑯′)). 𝜕 𝐻 

𝑚
𝑗
 /𝜕 𝐻 

𝑚
𝑘
′ (𝑯′), which reduces to: 

 

 𝛼𝐸3𝑘
′ (𝑯′) = 𝛼𝐸3𝑗(𝑯(𝑯′)) [𝜇𝑗𝑙̅̅ ̅̅ −1(𝑯(𝑯′))[𝛿𝑙𝑘 − 𝛼𝑄𝑙3̅̅ ̅̅ ̅̅ (𝑯(𝑯′))𝛼𝐸3𝑘(𝑯(𝑯′))]] , (2.23) 
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where 𝜇𝑗𝑙̅̅ ̅̅ −1(𝑯(𝑯′)) is the inverse of the 𝜇𝑘𝑙̅̅ ̅̅ (𝑯𝟎) function, 𝛼𝐸3𝑗(𝑯(𝑯′)) is given by equation (2.18) 

and 𝑯(𝑯′) is determined by solving the implicit expression (2.22). In summary, this shows that the 

maximum ME effects of composites subjected to demagnetization effects tend to be smaller and to 

appear at higher applied magnetic fields [6]. 

The aforementioned ME coefficients were defined for ideal open-circuit or short-circuit 

conditions. However, in experiment the ME composites are operated under non-ideal conditions, in 

which case the parameters of the external measuring circuits have to be taken into account. Therefore 

it is useful to model the composites as equivalent electrical circuits. In this regard, assuming 

harmonic fields of the type 𝐻 
𝑚

𝑘
 = 𝐻 

𝑚
0𝑘
 + 𝛿𝐻𝑘𝑒𝑗𝜔𝑡, where 𝐻 

𝑚
0𝑘
  is a bias field, 𝛿𝐻𝑘 a complex 

amplitude, 𝑗 the imaginary unit, 𝜔 the angular frequency and 𝑡 the time, and differentiating equation 

(2.17) with respect to time and integrating it over the volume of the composite (i.e. 

∫ ∫ 𝐷̇ 
𝑝

3
  

𝐴𝑟𝑒𝑎
𝑑𝐴𝑑𝑍

 

𝑡 
𝑝 ), one can derive the relation: 

 

 𝛿𝑉3 = (−𝛼𝐸3𝑘(𝑯𝟎) 𝑡 
𝑝 )𝛿𝐻𝑘 − (1/𝑗𝜔𝐶)𝛿𝐼3 , (2.24) 

 

where 𝛿𝑉3 = − ∫ 𝛿 𝐸 
𝑝

3
  

𝑡 
𝑝 𝑑𝑍 is the AC voltage measured between the top and bottom of the composite 

and 𝛿𝐼3 = 𝑗𝜔 ∫ 𝛿 𝐷 
𝑝

3
  

𝐴𝑟𝑒𝑎
𝑑𝐴 is the AC current flowing through it in the Z direction. This expression 

thus shows that the composite can be modeled as a Thévenin equivalent circuit consisting of an 

equivalent voltage source of 𝛿𝑉3 = (−𝛼𝐸3𝑘(𝑯𝟎) 𝑡 
𝑝 )𝛿𝐻𝑘 connected in series with an equivalent 

impedance given by 𝑍 = 1/𝑗𝜔𝐶 which represents a capacitor with capacitance 𝐶 = (𝜀33
𝑇 −

𝑘𝑐𝑑3𝑚𝑠𝑚𝑛
−1 𝑑3𝑛)𝐴/ 𝑡 

𝑝 . Equivalently, the composite can also be modeled as a Norton equivalent circuit 

composed of a current source of 𝛿𝐼3 = (𝑗𝜔𝛼𝑄3𝑘(𝑯𝟎)𝐴)𝛿𝐻𝑘 connected in parallel with the same 

impedance. More precisely, by taking into account the important effects of dielectric dispersion 

(𝜀33
𝑇 (𝜔)), dielectric losses (𝜀33

𝑇′′
(𝜔)) and conductivity (𝜎) of the PE through the introduction of the 

complex dielectric coefficient 𝜀33
𝑇 (𝜔) = 𝜀33

𝑇′ (𝜔) − 𝑗𝜀33
𝑇′′

(𝜔) + 𝜎/𝑗𝜔 =  𝜀33
𝑇′

(𝜔) − 𝑗𝜀33
𝑇′

(𝜔)tan(𝛿), 

where 𝜔𝜀33
𝑇′

(𝜔)tan(𝛿) is the so called dissipation factor, the equivalent impedance of the composite 

can be given by 𝑍 = 1/(1/𝑅′ + 𝑗𝜔𝐶′) which corresponds to a capacitor with 𝐶′ = (𝜀33
𝑇′

(𝜔) −

𝑘𝑐𝑑3𝑚𝑠𝑚𝑛
−1 𝑑3𝑛)𝐴/ 𝑡 

𝑝  connected in parallel with a resistor with 𝑅′ = 𝑡 
𝑝 /𝐴𝜔𝜀33

𝑇′
(𝜔)tan(𝛿). In 

conclusion, when measuring for example the ME voltage coefficient, the finite input impedance of 

the measuring circuit should always be taken into account. Assuming e.g. an input impedance of 
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𝑍𝑖𝑛 = 1/(1/𝑅𝑖𝑛 + 𝑗𝜔𝐶𝑖𝑛) as in the case of a lock-in amplifier, the measured voltage in such a device 

as a function of the magnetic fields will be given by 𝛿𝑉𝑖𝑛 = (𝑍𝑖𝑛/(𝑍 + 𝑍𝑖𝑛))𝛿𝑉3. Thus, the circuit 

will generally behave as a high-pass filter with a small input amplitude |𝛿𝑉𝑖𝑛| = (𝑅𝑖𝑛/(𝑅′ +

𝑅𝑖𝑛))|𝛿𝑉3| being measured at zero frequency (because 𝑅′ usually takes a much larger value than 𝑅𝑖𝑛 

in a lock-in amplifier) and a larger input amplitude |𝛿𝑉𝑖𝑛| = (𝐶′/(𝐶′ + 𝐶𝑖𝑛))|𝛿𝑉3| measured at high 

frequencies (because 𝐶𝑖𝑛 is normally much smaller than 𝐶′). An important application of this circuit 

model is in the development of sensitive low-noise magnetic field sensors based on the ME effect 

[60, 62].  

ME composites comprising PE single crystals have been the subject of a few recent studies 

including PMN-PT [61, 128-130], PZN-PT [131], barium titanate (BaTiO3) [132], lithium niobate 

(LiNbO3) [128, 133], gallium phosphate (GaPO4) [134], quartz (SiO2) [135], aluminum nitride (AlN) 

[108], zinc oxide (ZnO) [136], langatate (La3Ga5.5Ta0.5O14, LGT) [137, 138] and langasite 

(La3Ga5.5SiO14, LGS) [138]. These have promised further enhancement of the ME coupling. Since 

single crystals are highly anisotropic, their electric and elastic properties sensitively depend on their 

crystallographic orientation. Therefore, the optimization of the orientation could lead to greatly 

enhanced ME coefficients in composites. To study this dependency of the ME coupling on the crystal 

orientation, we have to subject the material tensors to a passive transformation of coordinates. 

Equations (2.1)–(2.24) contain the material coefficients and fields defined in the laminate XYZ frame 

of Figure 2.1 a). However, the material properties are usually described in the crystallographic xyz 

frame (or [100]×[010]×[001]), and that is why we have to transform them to the laminate frame 

before applying the equations. To do so, the rotation matrix 𝑎𝑖𝑗 is introduced, where the Euler angles 

Z1X2Z3 scheme (see Figure 2.1 b)) is employed [139]: 

 

𝒂 = [

cos(𝛾) cos(𝛼) − cos(𝛽) sin(𝛼) sin (𝛾) cos(𝛾) sin(𝛼) + cos(𝛽) cos(𝛼) sin (𝛾) sin (𝛾) sin(𝛽)

−sin(𝛾) cos(𝛼) − cos(𝛽) sin(𝛼) cos (𝛾) − sin(𝛾) sin(𝛼) + cos(𝛽) cos(𝛼) cos (𝛾) cos(𝛾) sin(𝛽)

sin (𝛽) sin(𝛼) −sin (𝛽) cos(𝛼) cos(𝛽)
] (2.25) 

 

This matrix describes a sequence of three direct elemental rotations, the first around the Z 

axis by an angle 𝛼, the second around the X axis by an angle 𝛽, and the third again around the Z axis 

by an angle 𝛾. In this case, after applying the rotation matrix to the crystal, the angles 𝛼 and 𝛽 will 

identify the vector normal to the plane of the laminate, and the angle 𝛾 will determine the orientation 

of the side faces of the laminate in this plane (and consequently the direction of the applied in-plane 

magnetic fields). Upon changing the frame of reference, the material parameters follow the specific 

tensor transformation rules which also define the second-, third- and fourth-rank tensors [119]: 
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 𝜀𝑖𝑗 =  𝑎𝑖𝑚𝑎𝑗𝑛𝜀𝑚𝑛
′  ;   𝑑𝑖𝑗𝑘 =  𝑎𝑖𝑚𝑎𝑗𝑛𝑎𝑘𝑜𝑑𝑚𝑛𝑜

′  ;   𝑠𝑖𝑗𝑘𝑙 =  𝑎𝑖𝑚𝑎𝑗𝑛𝑎𝑘𝑜𝑎𝑙𝑝𝑠𝑚𝑛𝑜𝑝
′  , (2.26) 

 

where the constants with an apostrophe denote the material properties in the initial crystallographic 

frame, and those without the properties in the new frame of reference described by the transformation 

𝒂. 

 

2.3. Estimation of the quasi-static transversal ME voltage coefficients in 

magnetostrictive/piezocrystalline/magnetostrictive tri-layers 

 

We are now in possession of all the tools we need in order to estimate the transversal ME 

response (𝛼𝐸3𝑖, with 𝑖 = 1 or 2) in a series of tri-layered composites containing two layers of Metglas 

bonded to a PE single crystal of some sort. To do so, we create a fine grid of Euler angles in steps of 

1o and subsequently analyze the calculations for these angles. The composites we investigated had 

the shape of a square plate like the one shown in Figure 2.1 a), where we considered 10  10 mm2 

sheets of Metglas with 29 μm of thickness bonded to opposite sides of a 10  10 mm2 PE crystal with 

a thickness of 0.5 mm. A perfect coupling between interfaces was assumed (𝑘𝑐 = 1). In a traction-

free Metglas layer a maximum 𝑞11 value of ca. 4 ppm/Oe and 𝑞12 of ca. –1.7 ppm/Oe are attained at 

a bias field of ca. 10 Oe [140-143]. These were therefore taken as our piezomagnetic coefficients. 

All of the dielectric, piezoelectric, piezomagnetic (for Metglas [140-143]) and elastic material 

parameters needed for these calculations where obtained from the literature and are presented in the 

Appendix. The lead-free piezoelectrics studied here thus have included: LiNbO3 [70, 144], α-GaPO4 

[71, 72], α-quartz [145, 146], langatate [147, 148], langasite [149, 150], AlN [151, 152], LiTaO3 

[153-155] and BaTiO3 [68, 69], and also the lead-based ones, viz., PZT-2 [156], PMN-33%PT ([111] 

poled) [157], PMN-30%PT ([011] poled) [75], PMN-33%PT ([001] poled) [158], PZN-9%PT ([011] 

poled) [159] and PZN-8%PT ([001] poled) [160].  

The results obtained by solving equation (2.18) are summarized in Table 2.1 which shows 

the maximum expected direct ME coefficients for each composite and respective optimal 

crystallographic orientations of the PE phase. From these estimations we confirmed the possibility 

of generating large quasi-static ME effects in ME composites comprising lead-free PE single crystals. 

Here, coefficients as large as 35.6 V/(cm·Oe) are expected. These ME effects are particularly 

attractive for the tri-layers comprising LiNbO3, GaPO4, quartz, PMN–33%PT ([111] poled) and 
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PZN–9%PT ([011] poled) originating from a particularly good combination of relatively large PE 

coefficients and low dielectric constants. Also, because the maximum expected ME effects are of the 

same order of magnitude in both lead-based and lead-free PEs, such exclusive features as chemical 

stability, linear piezoelectricity and high Curie temperature (in the range of 570–1475ºC) open up a 

real perspective to use these lead-free PE-based magnetoelectric tri-layers in practical applications. 

The selection of crystals with an appropriate cut is a very important step in the development 

of ME composites. The engineering of these cuts should in principle allow one to develop materials 

with specific anisotropic properties desired for each type of practical application. Large ME effects 

are particularly important in applications requiring enhanced efficiencies and sensitivities. Figure 2.2 

thus shows the maximum absolute transversal ME coefficients (in the range of all spanned 𝛾 angles) 

estimated as a function of the 𝛼 and 𝛽 angles for all considered tri-layers. From these figures we 

notice the great sensitivity of the ME effect to the orientation of the piezocrystal. The shape of the 

figures depends on the point group symmetry of the PE mainly through the term |𝑔31 − 𝑔32| which 

indicates the difference between PE voltage coefficients (𝑔𝑖𝑗 = −𝜕𝐸𝑖/𝜕𝑇𝑗 = 𝜀𝑖𝑘
−1𝑑𝑘𝑗) for stresses 

directed along both lateral surfaces of the crystal, since the elastic term varies much less with the 

orientation of the crystal. 

We note at this point that, alongside the dispersion and losses of the material’s properties not 

taken into account, a much more important limitation of the model is the fact that the piezomagnetic 

coefficients of Metglas are also strongly dependent on the bias magnetic fields and stress tensors. A 

more complex model for the soft MS phase shows for example that the large compressive pre-stress 

produced by the PE substrate in the MS sheets tends to decrease the maximum value of 𝑞𝑘𝑛 and at 

the same time increase the bias field at which it is attained [161]. Therefore, the maximum ME 

coefficients predicted in this part should be somewhat overestimated. Nonetheless, the relation 

between ME coefficients obtained for the composites with different PE crystals still remains valid. 

Furthermore, we point out that the thickness ratio between the MS and PE layers in the composites 

was not optimized for a maximum ME response. Thicker MS layers are expected to produce a larger 

effective strain on the PE crystal and thus increase the amplitude of the ME effect by up to one order 

of magnitude. In this calculations, 29 μm thick layers of Metglas were used because, in practice, 

some peculiarities associated with the fabrication of these alloys (i.e. a melt spinning rapid 

solidification process) restricts their thickness to just a few of tens of μm. Also, commercial PE 

crystals are generally found with thicknesses no smaller than 0.2 mm. 

In the next paragraphs we are going to discuss the results of the calculations in greater detail. 

Starting with the case of the LiNbO3 crystal, which belongs to the trigonal 3m symmetry point group, 

we see that the estimated ME coefficient could be as large as 27.24 V/(cm·Oe) for a crystal with a 
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(ZXl) 39o-cut (𝛼 = 0o, 𝛽 = 39o and 𝛾 = 90o), commercially commonly referred to as 129ºY-cut, and 

five other cuts equivalent by symmetry. We also see that this effect stays within 90% of its maximum 

value for cut deviations, in relation to its optimal orientation, of approximately ∆𝛼 = ±20o and ∆𝛽 = 

±10o. LiTaO3 has the same symmetry as LiNbO3, but we calculated in this case an expected 

coefficient of 11.40 V/(cm·Oe), being about 3 times smaller than that in the former material. This is 

mainly because of its characteristically smaller PE coefficients (especially its 𝑑15 and 𝑑22 

components), as well as comparable dielectric constants. The maximum effect should be observed in 

a (ZXl) 45o-cut crystal (𝛼 = 0o, 𝛽 = 45o and 𝛾 = 90o) and also other five equivalent cuts. This 

coefficient decreases by less than 10% for cut deviations of about ∆𝛼 = ±25o and ∆𝛽 = ±10o. BaTiO3 

single crystals belong to the tetragonal 4mm point group and have much larger PE and dielectric 

coefficients than LiNbO3. The largest expected ME coefficient here is just of 10.74 V/(cm·Oe) and 

is only observed in the Z-cut crystal, decaying very rapidly as we move away from this optimal 

orientation. AlN piezocrystals exhibit a hexagonal 6mm symmetry and relatively small dielectric and 

PE coefficients. The maximum coefficient for a composite containing this phase was calculated as 

13.06 V/(cm·Oe) for the (ZXl) 60o-cut (0o ≤ 𝛼 < 360o , 𝛽 = 60o and 𝛾 = 90o) and (ZXl) 120o-cut 

crystals. As in BaTiO3, this effect is axially symmetric and stays within 90% of its maximum value 

for cut deviations of approximately ∆𝛽 = ±10o. 
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Table 2.1 Estimation of the maximum expected transversal direct ME voltage coefficients for a series of 10  10 mm2 ME tri-layered composites 

consisting of two 29 μm thick layers of Metglas and one central 0.5 mm thick PE crystal of some kind. The optimal crystallographic orientations and 

corresponding crystal cuts according to the IEEE standard [67] are also presented. Here, the optimal orientations are given as a set of Euler angles (𝛼, 𝛽 

and 𝛾 in deg.), where the first column indicates the possible combinations of angles (equivalent by symmetry) corresponding to the same absolute 

maximum positive ME effect, whereas the second column gives the combination of angles for the same absolute maximum but negative ME effect (i.e., 

with an inversion in the sign of the ME coupling coefficient). The frame of reference in each case corresponds to the crystallographic frame except in 

PZT, PMN-PT and PZN-PT, where it corresponds to their respective poled multidomain frames with the Z axis directed along their poling directions. 

PE crystal LiNbO3 α–GaPO4 α–Quartz Langatate (LGT) Langasite (LGS) AlN LiTaO3 BaTiO3 

Maximum |𝜶𝑬𝟑𝒂| 

(V/(cm·Oe)) 
27.24 35.62 23.77 16.68 16.59 13.06 11.40 10.74 

Z-cut crystal 

𝜶𝑬𝟑𝒂 (V/(cm·Oe)) 
1.23 0 0 0 0 8.16 2.89 10.74 

Optimal orientation 

𝛼 

0 
120 

240 

60 
180 

300 
𝛼 

90 
210 

330 

30 
150 

270 
𝛼 

90 
210 

330 

30 
150 

270 
𝛼 

30 
150 

270 

90 
210 

330 
𝛼 

30 
150 

270 

90 
210 

330 
𝛼 

0 – 

360 

0 – 

360 
𝛼 

0 
120 

240 

60 
180 

300 
𝛼 

0 – 

360 

0 – 

360 

𝛽 39 141 𝛽 90 90 𝛽 90 90 𝛽 90 90 𝛽 90 90 𝛽 120 60 𝛽 45 135 𝛽 0 180 

𝛾 90 90 𝛾 12 168 𝛾 169 11 𝛾 156 24 𝛾 160 20 𝛾 90 90 𝛾 90 90 𝛾 
0 – 

360 

0 – 

360 

Crystal cut (ZXl) 39o (XYt) 12o (XYt) 11o (XYt) 24o (XYt) 20o (ZXl) 60o (ZXl) 45o Z 

PE crystal PZT–2 
PMN–33%PT ([111] 

poled) 
PMN–30%PT ([011] 

poled) 
PMN–33%PT ([001] 

poled) 
PZN–9%PT 
([011] poled) 

PZN–8%PT 
([001] poled) 

  

Maximum |𝜶𝑬𝟑𝒂| 

(V/(cm·Oe)) 
7.47 27.11 12.50 10.80 23.04 8.30  

Z-cut crystal 

|𝜶𝑬𝟑𝒂| (V/(cm·Oe)) 
5.41 5.78 12.50 6.29 23.04 7.66 

 Optimal orientation 

𝛼 
0 – 

360 

0 – 

360 
𝛼 

0 
120 

240 

60 
180 

300 
𝛼 

0 – 

360 

0 – 

360 
𝛼 

45 

135 

225 
315 

45 

135 

225 
315 

𝛼 
0 – 

360 

0 – 

360 
𝛼 

45 

135 

225 
315 

45 

135 

225 
315 

𝛽 37 143 𝛽 42 138 𝛽 0 180 𝛽 116 64 𝛽 0 180 𝛽 38 142 

𝛾 90 90 𝛾 90 90 𝛾 
90– 
𝛼 

90– 
𝛼 

𝛾 90 90 𝛾 
90– 
𝛼 

90– 
𝛼 

𝛾 0 0 

Crystal cut (ZXl) 37o (ZXl) 42o Z (ZXtl) 45o/64o Z (ZXtl) 45o/38o 
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m) 

 
n) 

 

Figure 2.2 Contour plots (left panels) and |αE3i| representation surfaces (right panels) depicting the 

maximum estimated absolute values of the transversal ME voltage coefficient αE3i (across 

0 < γ < 180o) as a function of the crystal-cut orientation (𝛼 and 𝛽 angles) for the tri-layered ME 

composites of Metglas/PE/Metglas, where the PE phase is a single crystal of: a) LiNbO3; b) LiTaO3; 

c) BaTiO3; d) AlN; e) α-quartz; f) α-GaPO4; g) langatate; h) langasite; i) PZT-2; j) PMN-33%PT 

([111] poled); k) PMN-30%PT ([011] poled); l) PMN-33%PT ([001] poled); m) PZN-9%PT ([011] 

poled) and n) PZN-8%PT ([001] poled). 

 

The α-quartz and α-GaPO4 PE crystals are another class of lead-free piezoelectrics which, 

like LiNbO3, exhibit relatively large ratios between PE and dielectric constants. They both belong to 

the trigonal 32 point group. The most noticeable differences between them are related to the PE 

coefficients, which are approximately twice as large for the case of GaPO4, as well as the dielectric 

coefficients which are about 20% larger in GaPO4 as compared to quartz. Even though they have 

some of the smallest piezoconstants among the piezocrystals studied in this chapter, their dielectric 

permittivities are also comparatively small, which therefore gives rise to large PE/dielectric ratios 

and consequently opens the possibility for large ME responses in the composites. Indeed, following 

the model described above we calculated maximum ME coefficients of 35.62 and 23.77 V/(cm·Oe) 
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for the GaPO4 and quartz crystals, respectively. These values are quite high and may be observed in 

(XYt) 12o-cut (𝛼 = 90o, 𝛽 = 90o and 𝛾 = 12o) crystals of GaPO4 and in (XYt) 11o-cut (𝛼 = 90o, 𝛽 = 90o 

and 𝛾 = 11o) crystals of quartz, as well as in other five cut directions equivalent by symmetry. We 

also note that these cuts are quite near the X-cut direction. In this case, the ME coefficient decreases 

by less than 10% for cut deviations from the maximum direction of about ∆𝛼 = ±10o and ∆𝛽 = ±25o.  

Langatate and langasite are other two piezoelectrics belonging to the trigonal 32 point group. 

They are characterized by PE coefficients comparable to the ones of GaPO4, but also exhibit 

considerably larger dielectric coefficients. Their maximum expected ME coefficients where 

calculated as 16.68 V/(cm·Oe) for an (XYt) 24o-cut crystal (𝛼 = 90o, 𝛽 = 90o and 𝛾 = 24o), in the case 

of langatate, and 16.59 V/(cm·Oe) for an (XYt) 20o-cut crystal (𝛼 = 90o, 𝛽 = 90o and 𝛾 = 20o), in the 

case of langasite. Furthermore, the maximum ME effect is more sensitive to the cut angle in these 

two crystals. We observe that the effect stays within 90% of its maximum value for cut deviations of 

just about ∆𝛼 = ±10o and ∆𝛽 = ±10o.  

In the class of the lead-based piezoelectrics we start by looking at the PZT-2 uniaxial ceramic 

having an ∞mm symmetry. As we know, its PE and dielectric properties are quite distinguished. 

Still, the maximum direct ME coefficient of just about 7.47 V/(cm·Oe) was calculated for the (ZXl) 

37o-cut direction (0o ≤ 𝛼 < 360o, 𝛽 = 37o and 𝛾 = 90o) and another equivalent direction. Even though 

this compound constitutes one of the piezoelectrics most commonly employed in practice, we note 

that its maximum expected ME response is the smallest among all piezo-crystals studied in this 

chapter. This fact underlines the importance of the dielectric properties of the materials employed in 

ME composites. Thus, we see that compounds with merely large PE coefficients do not necessarily 

yield large direct ME effects. We also observe that for this PZT-2 ceramic the maximum ME 

coefficient changes little for cut angles in the range 0o ≤ 𝛽 < 60o and 120o ≤ 𝛽 < 180o. Therefore, 

common commercially available Z-cut ceramics still could exhibit a maximum 5.41 V/(cm·Oe) ME 

response.  

PMN-PT crystals are a family of lead-based macrosymmetric multidomain engineered 

piezoelectrics [162]. Here we studied the ME effect in composites featuring the following 

compositions: [111] poled PMN-33%PT, [011] poled PMN-30%PT and [001] poled PMN-33%PT. 

The first compound has a trigonal 3m symmetry, while the second and third have an orthorhombic 

mm2 and tetragonal 4mm macrosymmetry, respectively. From a general point of view, the [011] 

poled crystal exhibits the largest dielectric coefficients, followed by the [001] poled and the [111] 

poled ones. The largest piezocoefficients in each crystal are 𝑑15 = 4100 pC/N, 𝑑15 = 3262 pC/N and 

𝑑33 = 2820 pC/N in the [111], [011] and [001] poled compounds, respectively. In the calculations 

we identified a relatively large maximum direct ME coefficient of 27.11 V/(cm·Oe) in the [111] 
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poled and (ZXl) 42º-cut PMN-PT crystal (𝛼 = 0º, 𝛽 = 42º and 𝛾 = 90º), and five other equivalent 

directions, although this is just of 5.78 V/(cm·Oe) in the Z-cut crystal. The maximum coefficient 

decays by more than 10% of its highest value for angle deviations larger than ∆𝛼 = ±10º and ∆𝛽 = 

±10º from the optimal orientation. In the [011] poled crystal, the largest expected value is of 

12.50 V/(cm·Oe), and it is observed in the Z-cut crystal. This coefficient changes only slightly for 

∆𝛽 = ±10º. In the [001] poled PMN-PT crystal the maximum is of 10.80 V/(cm·Oe) and should be 

attained in the crystal with a (ZXtl) 45º/64º complex cut (𝛼 = 45º, 𝛽 = 64º and 𝛾 = 90º), and seven 

other directions. The most common Z-cut could exhibit a ME response of up to 6.29 V/(cm·Oe). By 

symmetry considerations, an almost maximized ME effect could, nonetheless, be observed in the 

range of 60º ≤ 𝛽 < 70º and 110º ≤ 𝛽 < 120º, for any 𝛼 angle.  

Finally, we also studied PZN-PT piezocrystals with engineered domain structures. Those 

where the [011] poled PZN-9%PT, with an orthorhombic mm2 macrosymmetry, and the [001] poled 

PZN-8%PT, with a tetragonal 4mm macrosymmetry. The first crystal has a large difference between 

transversal PE coefficients |𝑑31 − 𝑑32| = 2181 pC/N, which therefore explains its large calculated 

maximum direct ME coefficient of 23.04 V/(cm·Oe) in the Z-cut crystal. As in the [011] poled PMN-

PT, this coefficient changes only slightly for 𝛽 = ±10º. In the [001] poled PZN-8%PT, the maximum 

effect was estimated as 8.30 V/(cm·Oe) for the (ZXtl) 45º/38º-cut (𝛼 = 45º, 𝛽 = 38º and 𝛾 = 0º), and 

seven other directions. In the Z-cut crystal, this decays just to 7.66 V/(cm·Oe). Mainly, the maximum 

coefficient decreases by less than 10% of its largest value for cut deviations of approximately ∆𝛼 = 

±10º and ∆𝛽 = ±10º.  

In summary, using an averaging model based on the constitutive equations, we have 

predicted the possibility of producing large ME responses in tri-layered composites employing 

suitably cut PE crystals. Especially strong ME effects are expected for single crystals of LiNbO3, α-

GaPO4, α-quartz, [111] poled PMN-33%PT and [011] poled PZN-9%PT. Even so, in practice the 

use of the first three in ME composites still remains largely unexplored.  

 

2.4.  Conclusions 

 

A theoretical model of the anisotropic quasi-static direct ME effect in tri-layered composites 

of Metglas and PE single crystals has been used in the quantitative estimation of the ME coupling as 

a function of the crystallographic orientation (i.e. PE cut plane). First, a description of the PE and 

linear MS (in the pseudo-piezomagnetic approximation) effects in terms of electric, magnetic and 

elastic material fields and constants has been given. An averaging quasi-static method was 
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subsequently used together with specific boundary conditions in order to derivate the relation 

between the material constants and the transversal (T-L) direct ME voltage (αE3a) and charge 

coefficients (αQ3a). The method consisted of the solution of the elastostatic and electrostatic equations 

taking into account the linear constitutive relations of the two phases. The properties of some 

common PE and MS materials (the latter with emphasis on the Metglas alloy exhibiting giant 

magnetostriction) have been discussed, and their influence on the ME coupling has been explored. It 

has been demonstrated that large ME voltage coefficients tend to be favored by large transversal 

piezoelectric coefficients, transversal and longitudinal piezomagnetic coefficients and coupling 

constants as well as small out-of-plane dielectric and compliance constants and the volume ratio 

between the PE and MS phases. On the other hand, it has also been shown that the ME charge 

coefficients do not depend on the dielectric constants of the PEs and thus tend to be much larger in 

lead-based crystals with very large piezoelectric constants such as PMN-PT and PZN-PT. The effects 

of the demagnetization fields on the attenuation of the ME coefficients were briefly explored. A 

description of the ME composites as equivalent Thévenin/Norton circuits composed of a 

magnetically driven voltage/current source in series/parallel with a characteristic impedance of the 

composite has also been exposed. 

After that, we used the quasi-static model for the calculation of the maximum expected direct 

transversal ME voltage coefficients in a series of tri-layered composites of the type 

Metglas/Piezocrystal/Metglas, as a function of the PE crystal orientation. The PE single crystals 

studied in this chapter included lead-free lithium niobate, α-galium phosphate, α-quartz, langatate, 

langasite, aluminum nitride, lithium tantalate and barium titanate, as well as the lead-based PZT-2, 

PMN-33%PT ([111] poled), PMN-30%PT ([011] poled), PMN-33%PT ([001] poled), PZN-9%PT 

([011] poled) and PZN-8%PT ([001] poled). The estimations revealed a strong dependence of the 

ME effects with the crystal orientation. They also supported the possibility of generating large quasi-

static ME voltage coefficients in composites comprising lead-free PE single-crystals through the 

optimization of the crystal orientation. These ME effects were found to be particularly attractive for 

the case of lithium niobate, α-galium phosphate, quartz, [111]-poled PMN-33%PT and [011]-poled 

PZN-9%PT. The enhanced effects were found to be originated from a particularly good combination 

of relatively large PE coefficients and low dielectric constants. We thus have revealed that the choice 

of crystals with an appropriate cut is a vital step in the development of ME composites valuable for 

practical applications.
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Chapter 3 

 

3. Experimental techniques for the measurement of the ME 

effect 

 

Abstract 

 

This chapter describes an experimental technique, developed experimental setup and 

respective study of the dynamic direct magnetoelectric (ME) effect measured in Metglas/piezocrystal 

laminates. Various techniques used in the measurement of the ME effect are explored, with special 

emphasis on the dynamic lock-in technique employed in our experiments. In this technique the 

sample is subjected to two magnetic fields, a DC bias and an AC modulation field. The AC voltage 

generated across the sample is subsequently measured in a lock-in amplifier. This measurements can 

then be performed as a function of the magnetic bias field or the frequency of the modulation field. 

The formalism describing this technique is presented, and we show how the different order ME 

coefficients can be extracted from the measurements of the voltages synchronized with the 

fundamental and harmonic frequencies of the magnetic exciting signal. Subsequently we present a 

custom-made setup used by us to measure the dynamic ME effect. Its scheme and characteristics as 

well as ways to reduce the noise and the undesirable induced electromotive force are explored.  

 

3.1. Introduction 

 

In the experimental quantification of the direct ME effect a dynamic direct ME voltage 

coefficient 𝛼𝐸𝑖𝑗 =  𝜕𝐸𝑖/𝜕𝐻𝑗  (where 𝐸𝑖 is the component of the electric field in the 𝑖 direction and 

𝐻𝑗 is the component of the magnetic field in the 𝑗 direction) is generally used as a figure of merit 

under open-circuit conditions (i.e. with a displacement field 𝐷𝑖 = 0). Also, a large enhancement in 

the magnitude of the ME effect is expected whenever the frequency of an applied modulation 

magnetic field with amplitude (𝛿𝐻) matches one of the natural electrical, magnetic or mechanical 

modes of resonance of the composite [11, 101-103]. For the case of the PE phase this is known as 

electromechanical (EM) resonance and it occurs whenever a characteristic elastic eigenmode of the 
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PE phase is indirectly excited by the time varying magnetic field [102]. Thus, a large oscillation 

amplitude of the standing wave in this phase gives rise to a large polarization/voltage through the PE 

effect. The frequency of these important EM resonances then depends on the effective material 

parameters and geometry of the PEs. 

From the point of view of the constituent phases, large transversal direct voltage ME effects 

(𝛼𝐸3𝑎, where 𝑎 and 𝑏 are the direction indexes equal to 1 or 2) tend to be favored by MS phases with 

large longitudinal pseudo-piezomagnetic coefficients (𝑞𝑎𝑏 = 𝜕𝜆𝑏/𝜕𝐻𝑎, where 𝜆𝑏 is the 𝐻 dependent 

MS strain) and PE phases with a large ratio between transversal piezoelectric (𝑑3𝑎) and longitudinal 

dielectric constants (𝜀33), as well as an efficient stress transfer between layers [6, 8]. A very 

promising class of MS materials are the Metglas® (Ni-Fe-Mo-B, Fe-Si-B, Co-Fe-Si-Ni-B, etc.) 

amorphous alloys. As for the PE phase, ferroelectric ceramics of PZT (Pb(Zr,Ti)O3) have been 

extensively studied and tend to provide a strong ME coupling due to their relatively large 

piezoelectric and electromechanical (EM) coupling coefficients [64-66]. Nonetheless, the use of 

highly anisotropic single-crystalline ferroelectrics, poled and cut along desirable crystallographic 

directions, constitutes an alternative way to achieve large but also anisotropic ME effects [108, 135]. 

The current research on ME composites has therefore been remarkably focused on lead-based 

compounds such as PMN-PT or PZN-PT [6, 9, 163, 164]. Nevertheless, some lead-free PE single-

crystals have been recently explored and shown to potentially yield a comparably large direct ME 

effect in composites. 

In the present chapter, we report the development of a dynamic lock-in setup and subsequent 

simple study of the anisotropic direct ME properties of bulk tri-layered structures of 

Metglas/LiNbO3/Metglas, Metglas/GaPO4/Metglas and Metglas/PMN-PT/Metglas using different 

cuts of the crystalline PEs and under quasi-static and EM resonance conditions. 

 

3.2. Magnetoelectric measurement techniques 

 

In general, the experimental measurement of the direct ME effect has proven to be a simpler 

and more accurate method for the quantification of the ME effect when compared to the measurement 

of the converse ME effect. The advantages of the first technique include the relative easiness of 

producing large magnetic fields used to excite the samples and the fact that magnetic fields can 

generate higher energy densities than electric fields [48]. Also, the possibility of destructive dielectric 

breakdown, which could be caused by excessively high voltages applied during the measurement of 

the reverse effect, is avoided. The direct voltage and charge ME effects, quantified by the respective 
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coefficients 𝛼𝐸𝑖𝑗 =  𝜕𝐸𝑖/𝜕𝐻𝑗 and 𝛼𝑄𝑖𝑗 =  𝜕𝐷𝑖/𝜕𝐻𝑗, with indexes 𝑖 and 𝑗 equal to 1, 2 or 3, can be 

experimentally measured via three fundamental methods [15, 48]: 

 

(i) The static method, where the sample is subjected to a uniform magnetic bias field (𝐻), and the 

voltage (𝑉 = 𝐸𝑖 · 𝑡, where 𝑡 is the thickness of the PE phase) or charge (𝑄 = 𝐷𝑖 · 𝐴, where 𝐴 is the 

area of the electrodes placed on the PE) developed across its electrodes is measured with an 

electrometer in voltage (high-input-impedance) or charge (low-input-impedance) mode, 

respectively. In the charge mode, the input of the electrometer is a virtual ground, and therefore the 

measurement of charge instead of voltage should be less affected by the problem of leakage currents 

flowing through the sample due to an eventually small PE conductivity. By applying different 

magnetic fields, the induced ME voltage can therefore be quantified as a function of H;  

 

(ii) The quasi-static method, where a voltage or charge generated across the sample’s electrodes is 

measured using an electrometer as a function of time simultaneously with a slow variation of the 

applied DC magnetic field (with a rate of ca. 0.05 – 0.5 T/min). Here, the magnetic field is generally 

increased from zero up to a maximum value, stabilized at this value and subsequently decreased back 

to zero. A baseline can be subsequently used to correct for an eventual time drift of the voltage / 

charge due, e.g., to the pyroelectric effect;  

 

(iii) The dynamic method, where a modulation magnetic field with frequency f and a small amplitude 

𝛿𝐻 is superimposed on a comparatively large magnetic DC bias field 𝐻. Using a lock-in amplifier, 

the AC ME voltage generated across the sample or the current flowing through it is then measured 

as a function of H or f. This dynamic method presents a series of advantages in comparison to the 

static and quasi-static methods [57, 165]. The first one is a very efficient reduction of the electronic 

noise thanks to the phase-sensitive detection of the lock-in amplifier. Here, signals with a frequency 

distinct from the frequency of a reference signal are rejected and filtered by the unit. This method 

also allows one to eliminate the problem of charge accumulation, observed for certain ceramics, 

where the charge generated during polarization of the sample accumulates at its grain boundaries. 

These charges can move towards the electrodes during the measurements, thus disturbing the 

experimental results. The relatively high speed of measurement in this method thus allows a 

minimization of the accumulation of charge. Another advantage is that the ME response may be 

studied in different modes of operation, e.g., with different values of the magnetic bias field or at 

different time scales by changing the frequency of the modulation field. However, some negative 
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aspects and special cautions should also be noted. These include [9, 18, 57, 59]: the leakage of charge 

under periodic conditions, which may occur through the Ohmic resistance of the samples at low 

frequencies of the AC field, or through the capacitance formed between the two surfaces at higher 

frequencies. Some undesirable mutual inductance will also exist between the source of the magnetic 

field and the system composed of the sample and cables connected to its electrodes. A frequency-

proportional voltage will therefore always be induced across the electrodes by the applied time-

changing magnetic field due to the effect of electromagnetic Faraday induction. Furthermore, we 

may also have the induction of eddy currents in the system, thus decreasing the effective modulated 

magnetic field felt by the sample. For high enough frequencies, these effects might even be more 

significant than the voltage generated by the ME effect in the samples. Some external sources of 

synchronized noise can also be especially harmful to this technique, including, e.g., the thermal noise, 

introduced by pyroelectric currents, and, more importantly, external vibrational or acoustic noises 

(microphony) which can be coupled to the sample via the piezoelectric effect. 

 

In addition to the aforementioned techniques that can be used to measure the direct ME 

effect, several others have also been tested [15]. Some of those include: (i) active modes of analysis, 

where a test current is passed through the sample, and subsequently dielectric and polarization 

measurements are performed in various applied magnetic fields [9]; (ii) techniques using a pulsed 

magnetic field, which are ideal for the study of EM resonance phenomena [106], and (iii) ME 

measurements based on the PE effect making use of a microwave microscope or a magnetic 

cantilever [11].  

 

3.2.1 Dynamic magnetoelectric technique 

 

From this point onwards we will mainly focus on the dynamic lock-in technique since this is 

the method in which we are most experienced. Thus we begin by presenting a formalism describing 

this technique and consequently show how the different order ME coefficients can be extracted from 

the measurements of the voltages synchronized with the fundamental and harmonic frequencies of 

the magnetic exciting signal. Assuming that the non-linear ME voltage (𝑉 = 𝐸 · 𝑡) induced across a 

ME composite as a function of an applied magnetic field (𝐻) can be expanded in a Taylor series 

centered at a bias field 𝐻0, it follows that [57]: 
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  𝑉(𝐻) =  ∑ 𝛼𝑛(𝐻 − 𝐻0)𝑛∞
𝑛=0 , with 𝛼𝑛 =

1

𝑛!

𝜕𝑛𝑉

𝜕𝐻𝑛 (𝐻0)  . (3.1) 

 

When a bias and a modulated AC magnetic field with frequency 𝑓 = 𝜔/2𝜋, given by 𝐻 =

 𝐻0 + 𝛿𝐻𝑐𝑜𝑠(𝜔𝑡), where 𝑡 stands for time, are applied to this composite, the output voltage thus 

becomes: 

 

 𝑉 =  ∑ 𝛼𝑛 · 𝛿𝐻𝑛cos (𝜔𝑡)𝑛∞
𝑛=0   . (3.2) 

 

Next, taking into account that: 

 

 cos (𝜔𝑡)𝑛 = {

1

2𝑛−1
∑ (𝑛

𝑗
) cos((𝑛 − 2𝑗)𝜔𝑡) , if 𝑛 ⊂ ℕ is odd

𝑛−1

2

𝑗=0

1

2𝑛 (𝑛
𝑛

2

) + 
1

2𝑛−1
∑ (𝑛

𝑗
) cos((𝑛 − 2𝑗)𝜔𝑡) , if 𝑛 ⊂ ℕ is even

𝑛

2
−1

𝑗=0

  , (3.3) 

 

where (𝑛
𝑗
) are the binomial coefficients and substituting this expression in equation (3.2), one gets: 

 

 𝑉 =  ∑
1

22𝑙 (2𝑙
𝑙

) ·∞
𝑙=0 𝛼2𝑙 · 𝛿𝐻2𝑙 + ∑

1

2𝑛−1 ·∞
𝑛=1 𝛼𝑛 · 𝛿𝐻𝑛 ∑ (𝑛

𝑗
) cos((𝑛 − 2𝑗)𝜔𝑡)

⌊
𝑛−1

2
⌋

𝑗=0
  , (3.4) 

 

where ⌊… ⌋ indicates the nearest lower integer. Introducing the new variable 𝑘 = 𝑛 − 2𝑗 and changing 

the order of summation allows us to collect the cosine terms in the last part of the equation: 

 

 𝑉 =  ∑
1

22𝑙 (2𝑙
𝑙

)∞
𝑙=0 · 𝛼2𝑙 · 𝛿𝐻2𝑙 + ∑ [∑

1

2𝑘+2𝑗−1
∞
𝑗=0 (𝑘+2𝑗

𝑗
) · 𝛼𝑘+2𝑗 · 𝛿𝐻𝑘+2𝑗]∞

𝑘=1 cos(𝑘𝜔𝑡) , (3.5) 

 

which shows that this voltage will be a combination of sinusoidal functions of time with frequencies 

equal to the frequency of the applied modulation field and its harmonics. The amplitudes associated 

with each of these harmonic signals will therefore be given by the parameter in brackets: 
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 𝛿𝑘𝑉 =  ∑
1

2𝑘+2𝑗−1
∞
𝑗=0 (𝑘+2𝑗

𝑗
) · 𝛼𝑘+2𝑗 · 𝛿𝐻𝑘+2𝑗  . (3.6) 

 

For example, the amplitudes of the fundamental signal and its first two harmonics are then: 

 

 𝛿1𝑉 =  𝛼1𝛿𝐻 + 
3

4
𝛼3𝛿𝐻3 +

10

16
𝛼5𝛿𝐻5 + ⋯ ;  

 𝛿2𝑉 =  
1

2
𝛼2𝛿𝐻2 + 

1

2
𝛼4𝛿𝐻4 +

15

32
𝛼6𝛿𝐻6 + ⋯ ; (3.7) 

 𝛿3𝑉 =  
1

4
𝛼3𝛿𝐻3 +

5

16
𝛼5𝛿𝐻5 +

21

64
𝛼7𝛿𝐻7 + ⋯ .  

 

Assuming that the partial derivatives in expansion (3.1) decrease fast enough and 𝛿𝐻 is 

sufficiently small, so that ∑
1

22𝑗
∞
𝑗=1 (𝑘+2𝑗

𝑗
) ·

𝛼𝑘+2𝑗

𝛼𝑘
· 𝛿𝐻2𝑗 ≪ 1 for all 𝑘 ∈ ℕ, then all higher-order 

terms in the expansion (3.6) may be neglected, and one can arrive at the commonly made 

approximation: 

 

 𝛼 
𝑘

𝐸 =
1

𝑡
·

𝜕𝑘𝑉

𝜕𝐻𝑘 ≃ 2𝑘−1𝑘!
𝛿𝑘𝑉

𝑡·𝛿𝐻𝑘  , (3.8) 

 

where 𝛼 
𝑘

𝐸 is the 𝑘-th order 𝐻0 dependent voltage ME coefficient and 𝑡 is the effective thickness of 

the PE phase. This expression shows that the amplitude of the 𝑘-th harmonic of the voltage (𝛿𝑘𝑉) as 

measured in the lock-in should be approximately proportional to the 𝑘-th power of the amplitude of 

the applied modulation field (𝛿𝐻𝑘) and to the 𝑘-th derivative of the 𝑉 vs. 𝐻 curve at some bias 𝐻0 

field. Therefore we see that in the first order this ratio will be related to the direct voltage ME 

coefficient through: 𝛼𝐸 = 𝛿1𝑉/(𝑡 · 𝛿𝐻). 

More generally, to take into account the dispersion in the response of the ME coefficients 𝛼𝑛 

in expansion (3.1) we assume that the output voltage in (3.4) can be described by the convolution 

relation: 

 

 𝑉(𝑡) =  𝑉0 + ∑ ∫ 𝛿𝑘𝑉(𝑡 − 𝑡′) · cos(𝑘2𝜋𝑓𝑡′)
𝑡

−∞
∞
𝑘=1 𝑑𝑡′ , (3.9) 
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where 𝑡 and 𝑡′ represent the time. Making use of the convolution theorem, the Fourier transform of 

the above expression will then be: 

 

 𝑉′(𝑓′) =  𝑉0𝛿(𝑓′) + ∑ 𝛿𝑘𝑉′(𝑓′) ·
1

2
[𝛿(𝑓′ − 𝑘𝑓) + 𝛿(𝑓′ + 𝑘𝑓)]∞

𝑘=1   , (3.10) 

 

where 𝑉′(𝑓′) and 𝛿𝑘𝑉′(𝑓′) represent the Fourier transforms of 𝑉(𝑡) and 𝛿𝑘𝑉(𝑡), respectively, 𝑓′ 

the frequency of the output voltage signal, 𝑓 the frequency of the modulated 𝐻 field and 𝛿(𝑥) the 

Dirac delta function. Therefore, all complex coefficients 𝛿𝑘𝑉′(𝑓′) in the expansion are now 

described as functions of the frequency 𝑓′. As before, this expression shows that the amplitude of 

the output voltage signal measured in a lock-in amplifier should only be nonzero at integer multiple 

frequencies of 𝑓. As an example, supposing that all the factors 𝛿𝑘𝑉′(𝑓′) in this expression, which 

depend on the complex ME coefficients 𝛼 
𝑛

𝐸
′ (𝑓′) = 𝛼𝑛

′ (𝑓′) · 𝑛!/𝑡 corresponding to the Fourier 

transforms of the ME coefficients 𝛼 
𝑛

𝐸 in expression (3.6), given by: 

 

 𝛿𝑘𝑉′(𝑓′, 𝐻0) =  ∑
1

2𝑘+2𝑗−1𝑗!(𝑘+𝑗)!
∞
𝑗=0 · 𝑡 · 𝛼 

𝑘+2𝑗
𝐸
′ (𝑓′, 𝐻0) · 𝛿𝐻𝑘+2𝑗 , (3.11) 

 

are associated with a ME resonance peak at an arbitrary frequency 𝑓′ = 𝑓𝑅. Then, in the ME 

measurements (with some constant applied bias 𝐻0) this peak will be observed at 𝑓 = 𝑓𝑅 in the 

fundamental frequency mode having an amplitude given by |𝛿1𝑉′(𝑓𝑅)| = √𝛿1𝑉′(𝑓𝑅)∗ · 𝛿1𝑉′(𝑓𝑅). 

Furthermore, for the 1st and 2nd harmonic frequency detection with 𝑓′ = 2𝑓 and 𝑓′ = 3𝑓, this peak 

should appear at lower frequencies, 𝑓 = 𝑓𝑅/2 and 𝑓 = 𝑓𝑅/3, with amplitudes |𝛿2𝑉′(𝑓𝑅)| and 

|𝛿3𝑉′(𝑓𝑅)|, respectively. This last general expression thus allows us to relate the output voltage 

measured in any detection circuit with the magnetic bias and modulated fields, frequency and 

characteristic ME voltage coefficient of a particular composite. 

 

3.3. Experimental dynamic magnetoelectric measurement setup 

 

As implied in the previous section, the basic blocks needed to perform dynamic 

measurements of the direct ME effect are a magnetic field source (usually one or two 

electromagnets), capable of producing constant and AC magnetic fields which are applied to the 
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sample, and a lock-in amplifier, whose purpose is to measure the AC voltage generated on the sample 

through the ME effect. Since commercial systems are still unavailable at this point, as an example 

Figure 3.1 shows schematically an experimental setup built by our group in order to measure the 

dynamic direct and converse ME effects [128]. Here, the samples are placed in the center of a plastic 

box containing a Helmholtz coil capable of generating AC magnetic fields with amplitudes 𝛿𝐻 of up 

to 100 Oe as well as constant bias fields 𝐻 of up to the same value. A DC bias field, in the range of 

0 – 15 kOe, can also be produced by an external electromagnet (Bruker® ESP 300E) collinear with 

the Helmholtz coil and directed along the X direction. This bias field is stabilized by a Hall-sensor-

based regulating feedback loop. The Helmholtz coil can be driven by a power amplifier (AE 

Techron®, model 7224) with a gain between 1 and 20  and low output impedance (28 mOhm in 

Series with 1 μH). The current flowing through the coil is stabilized by a current control loop or by 

taking into account the complex impedance of the whole circuit. The amplitude and frequency of the 

AC current are set either by an external function generator (SRS®, model DS345) or by the internal 

generator of the lock-in amplifier (Zurich Instruments®, model HF2LI). The AC current passing 

through the Helmholtz coil can be continuously measured directly by a multimeter (Agilent®, model 

34401A) or has voltage drop across the 50 Ω input of the lock-in. The second method has the 

advantage of allowing the determination of not only the amplitude but also the phase of this current. 

The measured current is then used to calculate the previously calibrated magnetic AC field amplitude 

𝛿𝐻. This current can be measured with the multimeter directly, using its ammeter mode, up to a 

frequency of only ca. 10 kHz due to accuracy limitations of the device, and indirectly, using its 

voltmeter mode, for frequencies larger than 10 kHz by making use of the known complex impedance 

of the Helmholtz coil or a known reference resistor. Using an AC field of 𝛿𝐻 = 0.1 Oe the power-

amplifier was found to operate stably up to a frequency of about 600 kHz. A gaussmeter (DSP®, 

model 475) is used to measure the exact value of the bias field produced by the external 

electromagnet. The amplitude and phase of the transverse voltage 𝛿𝑉 induced across the sample by 

the applied in-plane AC magnetic field 𝛿𝐻 is measured with the lock-in. Higher harmonics of the 

ME signal can also be measured simultaneously in this way by using multiple independent 

demodulators. The measuring system as a whole can be synchronized by a TTL output signal from 

the function generator or alternatively by the internal oscillator of the lock-in, depending on the 

source of the AC signal. The entire setup is autonomously driven by a home-made data acquisition 

software based on LABview®. The direct ME measurements are consequently presented as the direct 

ME coefficient given by equation 𝛼𝐸 =  𝜕𝐸/𝜕𝐻 =  𝛿𝑉/(𝑡 · 𝛿𝐻) as a function of the magnetic bias 

field H, with an applied constant-frequency modulation field, or as a function of the frequency f of 

the AC field, with an applied constant bias field. We also point out that, since most lock-in amplifiers 

have an input impedance of just about between 1 and 10 MΩ, the use of a high input impedance 
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voltage pre-amplifier is usually required in this system, at least at low frequencies (ca. <10 kHz), in 

order to achieve the open-circuit condition specified by the definition of the ME voltage coefficient 

(𝛼𝐸). Otherwise, the circuit parameters of the sample and measuring device should be taken into 

account in the calculation of 𝛼𝐸. 

 

 

Figure 3.1 Schematic representation of the experimental setup used to perform the ME 

measurements. Red and blue arrows are associated with the measurements of the direct and converse 

ME effects, respectively. Here, the lock-in amplifier can by itself take up the role of the detection 

circuit, function generator and ammeter. Furthermore, the gaussmeter and amplifier may be dropped 

in some cases. 

 

Although not optimized for this purpose, we note that this system may also be used to 

measure the converse ME effect. This measurements are performed by applying an AC voltage 

(𝛿𝑉𝑚𝑜𝑑), produced by a function generator, to the sample and using the Helmholtz coil (although too 

far away) to pick up the small induced voltage due to the magnetic flux produced by the sample. The 

amplitude and phase of the voltage induced on the coil (𝛿𝑉𝑖𝑛𝑑) as a function of either the driving 

frequency, at a constant DC magnetic bias field, or of the swept magnetic field, at a constant 

excitation frequency, are then detected by the lock-in. The resulting ME effect can then be 

represented as a ratio between the AC voltage detected on the Helmoltz coil and the voltage applied 
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to the sample (𝛿𝑉𝑖𝑛𝑑/𝛿𝑉𝑚𝑜𝑑) or as the traditionally used converse ME coefficient 𝛼𝐵 =  𝜕𝐵/𝜕𝐸, in 

units of G·cm/kV, after properly calibrating the pickup coil. The accessible frequency range for this 

type of measurements goes from several Hz up to several tens of MHz. 

Figure 3.2 displays a picture of the complete developed setup with its components labeled. 

A plastic box is used to house the sample and contains the Helmholtz coil which produces the AC 

magnetic field. It consists of a 60  55  68 mm3 container built with non-conductive and non-

ferromagnetic materials (mostly PVC and Teflon) in order to avoid losses at large frequencies due to 

eddy currents and a concentration of the field lines away from the center of the coil. The two 

modulation coils are fixed on opposed interior side walls. This box can then be connected to a 

goniometer and used in sync with a helium flow or a nitrogen flow cryostat, thus allowing 

measurements from cryogenic temperatures up to about 600 K. The Helmholtz coil scheme was 

adopted for the modulation because of its simplicity and high uniformity of the generated field in the 

center of the coils with variations of less than 1% of its central value inside a central cube with a side 

length of about ½ the radius of the coil. Both coils were electrically connected in parallel between 

themselves and into the output of the power amplifier. This type of connection minimizes the 

equivalent inductance of the coil circuit and thus allows one to produce higher currents with the same 

voltage for higher frequencies of operation. In order to magnetically calibrate the Helmholtz coil, we 

calculated and experimentally measured the magnetic field generated in the center of the coil using 

a gaussmeter, as a linear function of the DC driven current, as measured by the ammeter, having 

obtained a relation of 𝐻 ≈ 32 ∙ 𝐼. In order to generate a constant AC field over a wide range of 

frequencies, the complex impedance of the circuit of the Helmholtz coil should be known. This 

impedance was measured with the help of the lock-in amplifier having obtained a resistance of ca. 𝑅 

= 0.9 Ω and an inductance of 𝐿 = 0.47 mH. With this information we are thus able to calculate the 

amplitude of the voltage signal (𝛿𝑣) that has to be applied to the coil at any given frequency (𝑓) in 

order to generate a desired current amplitude (𝛿𝑖 ∝  𝛿𝐻) through the simple relation: 𝛿𝑣/𝛿𝑖 =

√𝑅2 + (2𝜋𝑓𝐿)2. All of the aforementioned steps were integrated into the measurement program 

written in LabVIEW. We note that, beside the AC field, the Helmholtz coil may also simultaneously 

be used to produce a bias field of up to 100 Oe, thus allowing direct ME measurements to be 

performed independently without any external electromagnet. 
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Figure 3.2 Photo of the setup used in the ME measurements. The labeled components are: 

1) electromagnet (from the Bruker® ESP 300E spectrometer); 2) box containing the Helmholtz coil; 

3) sample support and goniometer; 4) PC; 5) lock-in amplifier (Zurich Instruments®, model HF2LI); 

6) function generator (SRS®, model DS345); 7) multimeter (Agilent®, model 34401A); 8) power 

amplifier (AE Techron®, model 7224) and 9) gaussmeter (DSP®, model 475). 

 

An important component in this kind of systems is the electrical contact and support for the 

samples. This support must be able to fix the samples in place while taking into account that a large 

enough stress applied by the support may negatively affect the sensitive ME effects under resonant 

conditions. The support must also ensure a good electrical contact to the sample’s top and bottom 

electrode surfaces. The ME voltage signal produced between the electrodes must then be carried by 

a cable to the input of the lock-in. A very short low-noise coaxial cable or twisted pair cable are ideal 
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in this case. These cables can also be enclosed by a conductive shield thus functioning as triaxial 

cables where the external conductor provides an electromagnetic shielding of the inner conductors 

mainly from the AC magnetic field. The voltage difference between the inner conductors of the signal 

cable can subsequently by measured by the lock-in amplifier operating in differential mode.  

There are several issues that should be taken into account in the measurements of the 

dynamic direct ME effect. One of the most important is the generation of an electromotive force in 

the cables connected to the sample induced by the time changing AC magnetic flux due to the effect 

of Faraday induction [9]. This magnetically generated signal, having the same frequency as the 

modulation field, will thus be detected by the lock-in and can easily pass as a ME signal. From the 

Faraday law of induction we known that the amplitude of the induced signal is proportional to the 

amplitude of the modulation field (𝛿𝐵), the area of the “loop” formed by the electrodes and the 

frequency of the field. It should also be shifted by 90º with respect to the modulated field. Since the 

phase of an eventual ME signal obtained in the lock-in is generally measured relatively to the phase 

of the voltage applied to the power amplifier that drives the coil, this fact can be used to our advantage 

in order to obtain the phase of this ME signal relatively to the modulated field. The expression of the 

induced electromotive force shows that this effect in principle can be minimized by using relatively 

small frequencies of operation and reducing the area normal to the magnetic field of the electric 

wires. The effective area between wires can be minimized by using coaxial cables or especially 

twisted pairs of thin wires with a large number of loops per unit of length and by carefully orienting 

these wires in relation to the applied time-varying magnetic field. Even so, test measurements using 

a non-ME reference sample with dimensions of approximately 10×10×0.5 mm3 in our support in the 

frequency range of up to 600 kHz have shown linear output voltages with slopes of up to ca. 

873 mV/(Oe·MHz) (see Figure 3.3 a)). This value of the induced voltage was obtained for the case 

of the single-mode detection of the lock-in. On the other hand, in the differential detection mode of 

the lock-in with the signal being measured between the inner conductors in a triaxial cable, the 

induced voltage was found to be 467 mV/(Oe·MHz). Finally, the use of the lock-in in the differential 

detection mode together with a grounded outer thick conductive shield was shown to reduce the 

Faraday induced voltage in the support by up to ten times down to ca. 81 mV/(Oe·MHz). This is the 

case because of the ability of the conductive outer tube to effectively shield the interior signal-

carrying conductors from the external modulated field. Nonetheless, in most laminate and particulate 

bulk ME composites this effect is not an issue at low frequencies (up to ca. 1 kHz) because they 

usually yield ME responses of the order of some tens or hundreds of mV/(cm·Oe) [6-8, 12, 17]. 

However, for the case of single-phase multiferroics and thin-film composites this induction can 

become noteworthy because of the weak nature of the ME coupling. Indeed, in the first case 

maximum direct ME coefficients of the order of only some mV/(cm·Oe) [16, 17] tend to be observed, 
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while in the second even smaller signals of the order of tens or hundreds of μV/Oe [9, 16] can be 

detected due to the small thickness of the thin films (even though the direct coefficients can still be 

comparable to the ones observed in bulk composites). Also, the eventual generation of eddy currents 

in the wires may also take an important part in this last case [166]. For samples associated with a 

weak ME effect a simple method can be used to correct the data from the induction effects. Here, a 

preceding reference measurement is carried out with a non-ME reference sample with about the same 

dimensions as the ME sample (e.g. a tri-layered composite of Metglas and Teflon) and using the 

same parameters as in the subsequent ME measurement. The complex in-phase (X) and out-of-phase 

(Y) components of the induced signal can posteriorly be subtracted from the second ME 

measurement. An example of this procedure is illustrated in Figure 3.3 b).However, for the case of 

samples with a large conductivity or magnetic permeability, the mutual inductance between the 

Helmholtz coil and sample support may depend significantly on this parameters because of the 

concentration of magnetic field lines close to the wires. Thus a better method might employ two 

measurements using the same sample, a first one with the sample oriented in some direction and a 

second with the sample rotated by 180º around the central axis of the Helmholtz coil. In this last case 

the voltage produced by the ME effect is expected to be shifted by 180º while the voltage due to the 

induced effect should stay the same. Subsequently, the results of these two measurements can be 

subtracted. 
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Figure 3.3 a) Test dynamic ME measurements performed in a reference non-ME sample while 

operating the lock-in in its single or differential mode with a grounded or not grounded exterior 

conductive shield. The observed voltages increase linearly with the frequency of the modulated field 

(𝛿𝐻 = 0.1 Oe) and are induced between the electrodes by the Faraday effect. b) Small transversal 

direct ME effect (𝛼𝐸31) measured in a bi-layered composite of Metglas/Z-cut LiNbO3 (1 mm thick) 

with 𝑓 = 10 kHz and 𝛿𝐻 = 1 Oe. The originally measured signal 𝛿𝑉/𝑡. 𝛿𝐻 represents the amplitude 
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of the voltage due to the ME effect superimposed on that generated by the Faraday induction (EMF), 

of about 0.81 mV/(cm·Oe), which is independent of the bias field. The second curve shows the 

corrected ME effect obtained by subtracting this second known component. 

 

In addition to the electromagnetic induction and intrinsic noise sources such as Johnson, shot 

and 1/f noise, various other extrinsic sources of synchronous noise may negatively influence the 

results of the experiment. They can be originated, e.g., by capacitive, inductive or resistive coupling 

between components of the system. The use of balanced lines between instruments can offer some 

considerable common mode rejection of such noise sources. The capacitive coupling can be reduced 

by the use of short cables connected to the samples and by placing such cables far away from eventual 

sources of stray electric fields (e.g., power amplifiers). Coaxial or twisted cables can be used to 

minimize the inductive coupling. A grounded electromagnetic shield (i.e. Faraday cage) with high 

conductivity and permeability may also be used to enclose the system containing the sample, 

Helmholtz coil and lock-in in order to shield it from stray external DC and time changing electric 

and magnetic fields. Ground loops can also give rise to a synchronous voltage and are avoided by 

grounding all of the instruments to the same physical point. Microphonic noise can be minimized by 

properly fixing the cables and sample support. In our case we also noted the existence of a 50 Hz 

harmonic noise from the power line, and so measurements at multiple frequencies of 50 Hz were 

avoided at least up to about 800 Hz, after which this effect is no longer noticeable. The value of the 

spectral noise density at 1 kHz was estimated as 31 μVrms/Oe·√Hz, and therefore, in order to obtain 

a single-to-noise ratio of 100 at 1 kHz with a bandwidth of 1 Hz, a signal of only about 0.44 mV/Oe 

should be required. 

In order to demonstrate the capabilities of this system and the applicability of equations (3.6) 

and (3.8), we present an example of a direct ME measurement performed on a tri-layered composite. 

In this case, two sheets of the magnetostrictive alloy Metglas were bonded with epoxy to both 

surfaces of square shaped piezoelectric single crystals of LiNbO3. Y- and 41ºY-cut crystals were 

employed here. Using the setup described above, we first measured the direct ME response of the Y-

cut sample as a function of the in-plane magnetic bias field using a modulation field with an 

amplitude of 1 Oe and a frequency of 1 kHz. The fundamental-frequency voltage signal (𝛼𝑀𝐸1= 

𝛿𝑉/𝑡 · 𝛿𝐻), as well as its 1st (𝛼𝑀𝐸2 = 𝛿2𝑉/𝑡 · 𝛿𝐻2) and 2nd (𝛼𝑀𝐸3 = 𝛿3𝑉/𝑡 · 𝛿𝐻3) harmonics, for 𝑘 

= 2 and 𝑘 = 3, respectively, as in equation (3.8), were measured simultaneously relative to the applied 

modulated field. These correspond to the component of the generated voltage in phase with the 

applied modulated field (i.e. the real part of 𝛿𝑘𝑉′(𝑓′, 𝐻0) as in equation (3.11)). Figure 3.4 shows 

the results obtained in this way. The uppermost graph depicts the real part (i.e. in-phase with the 
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modulated field) of the direct ME coefficient (𝛼𝐸31) in units of mV/(cm·Oe) as a function of the bias 

field. Here we can see that a coefficient as large as 946 mV/(cm·Oe) was generated for a field of just 

about 24 Oe. In general, the shape of the ME curves tend to follow the first derivative of a typical 

magnetostrictive curve for the Metglas alloy (i.e. 𝛼𝑀𝐸1 ≃ 𝛼𝐸 = (1/𝑡) · 𝜕𝑉/𝜕𝐻 ∝ 𝑞 = 𝜕𝜆/𝜕𝐻) since 

the corresponding piezoelectric curve of the PE crystal is highly linear in this range of coupled 

strains. The second graph, on the other hand, depicts the measured 1st harmonic (at 2 kHz) of the ME 

output signal in units of mV/(cm·Oe2). In particular, this signal is shown to be relatively large even 

for a null bias field. The superimposed red line in this graph represents 1/4 times the numerical field 

derivative of the fundamental response in the above graph. This derivative perfectly fits the measured 

data as predicted by equation (3.8), where we have: 𝛼𝑀𝐸2 = 𝛿2𝑉/𝑡 · 𝛿𝐻2 ≃ (1/(4 · 𝑡)) ·

𝜕2𝑉/𝜕𝐻2 ≃ (1/4) · 𝜕(𝛿𝑉/𝑡 · 𝛿𝐻)/𝜕𝐻 = (1/4) · 𝜕𝛼𝑀𝐸1/𝜕𝐻. The third graph shows the measured 

2nd harmonic (at 3 kHz) of the ME response in units of mV/(cm·Oe3) as a function of the bias field. 

Superimposed on this response is a line which represents 1/6 times the numerical derivative of the 

1st harmonic response. Yet again we see that this derivative fits well the measured signal as predicted 

by equation (3.8): 𝛼𝑀𝐸3 = 𝛿3𝑉/𝑡 · 𝛿𝐻3 ≃ (1/(24 · 𝑡)) · 𝜕3𝑉/𝜕𝐻3 ≃  (1/6) · 𝜕(𝛿2𝑉/𝑡. 𝛿𝐻2)/

𝜕𝐻 = (1/6) · 𝜕𝛼𝑀𝐸2/𝜕𝐻. In conclusion, in this measurement we have proven experimentally the 

validity of equation (3.8). In practice these ME curves are generally closely related to the non-linear 

magnetostrictive curves of the MS phase as shown by: 𝛼𝑀𝐸𝑘 ≃ (1/2𝑘−1𝑘!) · 𝛼 
𝑘

𝐸 ∝ 𝑞 
𝑘 = 𝜕𝑘𝜆/𝜕𝐻𝑘, 

where 𝑞 
𝑘  are the 𝑘-th order piezomagnetic coefficients. 
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Figure 3.4 Direct ME effect measurements of a Metglas/Y-cut LiNbO3/Metglas sample as a function 

of the bias field at 1 kHz and with 𝛿𝐻 = 1 Oe. The uppermost graph shows the ME response detected 

at its fundamental frequency (𝛼𝑀𝐸1) equal to the frequency of the applied modulated field. The 

second and third graphs show the 1st (𝛼𝑀𝐸2) and 2nd (𝛼𝑀𝐸3) harmonic response functions, 

respectively. Superimposed on them are lines representing the numerical derivatives of the previous 

lower-order harmonic responses. 

 

The aforementioned setup also allows the measurement of the ME response as a function of 

the frequency of the modulated field (𝑓) for a fixed bias field. Figure 3.5 shows an example of this 

measurement for the case of a Metglas/41oY-cut LiNbO3/Metglas composite. This measurement was 

made in the T-L mode (in-plane magnetic field and out-of-plane voltage detection), using a bias field 

of 25 Oe and a modulated field with an amplitude of 0.1 Oe. The fundamental response (𝛼𝑀𝐸1) as 

well as its 1st (𝛼𝑀𝐸2) and 2nd (𝛼𝑀𝐸3) harmonics were recorded. In the fundamental mode we note the 

existence of a single in-plane contour EM resonance mode at a frequency of ca. 𝑓𝑅 = 323.1 kHz. At 

this frequency, a coefficient as large as 250 V/(cm·Oe) has therefore been measured. As predicted 

by equation (3.10), we also see that this same resonance mode is also excited by modulated fields 

with frequencies of 161.5 kHz (≃ 𝑓𝑅/2) and 107.7 kHz (≃ 𝑓𝑅/3) in the 1st and 2nd harmonic 

measurements, respectively, through the non-linear MS effect (i.e. 𝛼𝑀𝐸𝑘 ∝ 𝑞 
𝑘 = 𝜕𝑘𝜆/𝜕𝐻𝑘). The 

amplitudes of these peaks are of approximately 37.1 V/(cm·Oe2) and 4.7 V/(cm·Oe3), respectively. 

Furthermore, we can also observe the existence of another resonance peak at 323.1 kHz in the 2nd 
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harmonic detection. This resonance peak should correspond obviously to the first harmonic mode of 

the fundamental contour mode observed at 323.1 kHz, since it is observed at an odd integer multiple 

of this frequency, and therefore should be strongly excited by a modulated field frequency of 

969.3 kHz. This frequency is larger than the maximum modulated field frequency of 600 kHz which 

can be attained with the equipment due to technical limitations. Thus, we note that higher-harmonic 

detection can be useful, e.g., in the study of resonance modes of vibration at frequencies larger than 

the ones which can be achieved in a given Helmholtz coil. The resonance peak observed at 442.3 kHz 

and 294.7 kHz in the 1st and 2nd harmonic detection, respectively, corresponds to another contour 

mode of resonance which in the fundamental frequency detection should be observed at ca. 

884.4 kHz. In summary, three distinct contour modes of EM resonance of the composite were 

identified using the aforementioned technique as seen in the 2nd harmonic detection. We finally note 

that these non-linear resonant ME effects may be found to be very useful in future e.g. for the 

development of highly sensitive and low-power wideband AC magnetic field sensors [92, 148].  
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Figure 3.5 Direct ME effect measurements of a Metglas/41oY-cut LiNbO3/Metglas sample as a 

function of the modulated field frequency with 𝛿𝐻 = 0.1 Oe and 𝐻 = 25 Oe. Here, the fundamental 

frequency detection (𝛼𝑀𝐸1) is plotted in the top graph, whereas the 1st (𝛼𝑀𝐸2) and 2nd (𝛼𝑀𝐸3) 

harmonic detections are plotted next. The single peak observed in the fundamental mode corresponds 

to an electromechanical resonance of the composite.
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Chapter 4 

 

4. Comparative study of the direct and converse 

magnetoelectric effects in tri-layered composites of Metglas 

with LiNbO3 and PMN-PT single crystals 

 

Abstract 

 

In this chapter we present a comparative study of the direct magnetoelectric (ME) effect in 

simply bonded Metglas-piezocrystal tri-laminates. Electromechanical and magnetoelectric properties 

of Metglas/LiNbO3/Metglas trilayers were studied in the frequency range from 1 kHz to 0.4 MHz. A 

trilayer of Metglas/PMN-PT/Metglas prepared in the same way was used as a reference for 

comparison. Though PMN-PT has much larger charge piezocoefficients than LiNbO3 (LNO), the 

direct magnetoelectric voltage coefficient is found to be comparable in both trilayers due to the much 

lower dielectric permittivity of LNO. A magnitude of the direct magnetoelectric effect in the LNO 

trilayers is about 0.4 V/(cm·Oe) in the quasi-static regime and of about 90 V/(cm·Oe) at the 

electromechanical resonance. Calculations show that the magnetoelectric properties can be 

significantly improved (up to 500 V/cm·Oe) via controlling the cut angle of LNO, relative thickness 

ratio of the ferroelectric/ferromagnetic layers and bonding between Metglas and LNO. Advantages 

of using LiNbO3 ferroelectric in magnetoelectric composites are discussed. 

 

4.1. Introduction 

 

As we noted in the introduction, since the estimated magnitude of the direct ME effect is 

approximately proportional to the product of the magnetostrictive and piezoelectric properties of the 

MS and PE phases, carefully engineered composites can in principle exhibit a remarkable ME 

coupling, orders of magnitude larger than the ones observed in single-phase multiferroics [6, 8]. The 

same behavior is expected in the case of the converse ME effect. While the former can find 

applications in the electric detection of magnetic fields [167-169], the latter could be useful in the 

electrical control of magnetism [25, 170].  



 

4. Direct and converse magnetoelectric effects in LiNbO3 and PMN-PT 

56 

 

For laminated composites operating in the L-T mode, necessary requirements for a large 

voltage ME effect (𝛼𝐸3𝑎) include a PE phase with large transversal PE coefficients (𝑑3𝑎), small 

thickness dielectric permittivity (𝜀33
𝑇 ) and small longitudinal and transversal compliance (𝑠𝑎𝑏

𝐸 ). 

Although Pb(Zr,Ti)O3 (PZT) ceramics do not satisfy these requirements from a general point of view, 

the fabrication of PZT-based ME composites is still commonplace [100, 171]. The use of single-

crystalline PEs, poled and cut along desirable crystallographic directions, is another possible 

approach to achieve large ME effects [108, 128, 135]. Among the commercially available single 

crystals, lead magnesium niobate - lead titanate (PMN-PT) [172] and lead zinc niobate - lead niobate 

(PZN-PT) exhibit the largest known piezocoefficients and are thus frequently employed in laminate 

ME structures [80, 81, 130, 163, 164, 169]. Nonetheless, both of them are characterized by some 

notorious drawbacks which include their low Curie and depolarization temperatures (ca. 100ºC), 

large chemical and electrical instabilities, non-linear hysteretic behavior, uneasy growth of high-

quality crystals and consequently a very high price.  

Due to these factors, other single crystalline piezoelectrics are being tested at present [13, 

108, 128, 135-137]. Those have included so far lead-free crystals such as barium titanate (BaTiO3) 

[132], lithium niobate (LiNbO3) [128, 133], gallium phosphate (GaPO4) [134], quartz (SiO2) [135], 

aluminum nitride (AlN) [108], zinc oxide (ZnO) [136], langatate (La3Ga5.5Ta0.5O14, LGT) [137, 138] 

and langasite (La3Ga5.5SiO14, LGS) [138]. LiNbO3 (LNO), a uniaxial PE with a very high Curie 

temperature (~1210ºC), in particular could be proven to be a very promising choice. Although the 

PE coefficients of LNO are up to three orders of magnitude smaller than those of PMN-PT and PZN-

PT, its dielectric coefficients also are, and therefore a comparable ME voltage coefficient can be 

anticipated in composites featuring this compound. Even in the weakly PE quartz [135], the induced 

ME coefficient has been found to be very large (ca. 175 V/(Oe·cm)) under EM resonance conditions. 

Optimization of the LNO-based structures is therefore believed to yield comparable or even larger 

ME coefficients. Among other attractive features of LNO, one can highlight its relatively low price, 

high chemical, thermal and mechanical stability, availability of large crystals of high quality and its 

lead-free nature [128]. Its multifunctionality could also bring new opportunities for devices based on 

a coupling between optical, magnetic and electric properties. LNO and a closely related PE LiTaO3 

have already been widely used in surface and bulk acoustic wave devices, optical modulators, 

waveguides, filters, transducers, acoustic microscopes, etc. [173-177]. Experimentally, magnetically 

tunable surface wave devices were already tested in doped LNO [178, 179]. However, as a PE layer 

in ME laminate structures, LNO has been considered only in a few studies [122, 133, 180]. A 

theoretical estimation of the ME effect in a structure of Terfenol/LNO/Terfenol was made in [122] 

and an experimental study, in [133]. A very significant tunability of the magnetic properties of a 

polycrystalline nickel film deposited over a LNO single crystal has also been shown [180]. 
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4.2. Experimental details 

 

Several tri-layered ME composites of the 2-2 connectivity type were fabricated by bonding 

thin foils of the amorphous Metglas (Ni-Fe-Mo-B) MS alloy to opposite sides of square shaped 

10  10  0.5 mm3 PE single crystals of LNO and PMN-31%PT poled in the [011] direction. 

Commercially available 29 μm thick sheets of 2826MB type Metglas® (Hitachi Metals Europe 

GmbH) were cemented to opposite surfaces of LNO single-crystals (Roditi International Corporation 

Ltd.) and PMN-PT (H.C. Materials Corp.) using a commercial cyanoacrylate-based glue. Both PE 

crystals were poled by the suppliers after growth. In this study we used Y-cut and 41ºY-cut crystals 

of LNO. The LNO crystal has a trigonal symmetry (belonging to the point group 3m), and its 

polarization vector lies along the c-axis. The corresponding anisotropic PE, dielectric and elastic 

constants of the substrates can be calculated by rotating the crystallographic frame of the system, for 

which the coefficients can be obtained from the literature [70], with respect to their respective 

laminate frames [122]. The in-plane PE coefficients of the Y-cut LNO substrate were therefore 

calculated as 𝑑31 = –20.8 pC/N and 𝑑32 = 0, while an out-of-plane dielectric constant of 𝜀𝑟33
𝑇 = 85.2 

was obtained. On the other hand, the 41ºY-cut crystal has PE constants 𝑑31 = – 16.3 pC/N and 𝑑32 

= –17.5 pC/N and a relative permeability of 𝜀𝑟33
𝑇 = 60.9. The PMN-PT crystals used were poled along 

their thickness direction (i.e. along [011]), so that a mm2 multidomain symmetry was engineered 

[162, 172] with effective in-plane extensional PE constants d31 ≈ –1750 pC/N and d32 ≈ 564 pC/N 

and relative dielectric out-of-plane constant of 𝜀𝑟33
𝑇  ≈ 4600 [162, 172].  

In order to study the EM and ME properties of the samples, impedance spectroscopy, as well 

as direct and converse ME effect measurements were carried out. The impedance measurements were 

performed in the frequency range of 100 Hz – 10 MHz. In this case a simple I-V circuit was used 

with a reference resistor connected in series with the piezocrystal, with gold electrodes deposited on 

each surface, and the frequency of a constant voltage signal generated by and internal source of the 

lock-in was swept. The amplitudes and phases of the voltage developed across the reference resistor 

were then detected by the lock-in amplifier, and, using a simple equivalent circuit model, the active 

and reactive parts of the sample impedance were subsequently obtained. The whole measuring 

procedure was controlled by a home-made LabVIEW® based program. This technique was used 

mainly in order to determine the quasi-static dielectric constant of the tri-layers and observe their 

characteristic EM resonances.  
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4.3. Results and discussion 

 

The results of the impedance measurements are shown in Figure 4.1 in the form of the 

absolute admittance, |𝑌|, as a function of the frequency. Here we can distinguish a series of 

characteristic EM resonance and anti-resonance peaks. The sound velocity for longitudinal waves in 

LiNbO3 propagating along the principal axes is (𝑣𝑠 = 1/√𝑠11
𝐸 𝜌): for the Z direction, 7.271105 cm/s; 

for the Y direction, 6.549105 cm/s; and for the X direction, 6.580105 cm/s [70, 181, 182]. Applying 

these values to the case of a 10  10  0.5 mm3 Y-cut LNO crystal, we see that the thickness 

extensional mode should roughly appear at ca. 6.58 MHz. The closest observed peak is centered at a 

slightly lower frequency of 6.34 MHz. The calculated length extensional resonances along the X and 

Z directions (327.5 kHz and 363.5 kHz, respectively) can be associated with the peaks observed at 

281 kHz, 314 kHz and 355 kHz. The remaining peak centered at 3.65 MHz should be attributed to a 

shear thickness mode. This mode could be mediated by the relatively large 𝑑34 coefficient (– 69.2 

pC/N). In the case of the 41ºY-cut LNO crystal, the thickness shear mode is much less intense 

because of a much smaller 𝑑34 = 3.83 pC/N [181, 182]. Also, in this case the two largest peaks 

observed at 323.9 kHz and 6.71 MHz must correspond to contour and thickness modes of vibration, 

respectively. 

In order to exactly identify the in-plane contour acoustic vibrational modes of the LNO 

crystals observed in the impedance measurements, we implemented a simple model capable of 

predicting the dynamic electrical behavior of the crystals. More precisely, we numerically solved the 

thickness-averaged linear elastic and quasi-electrostatic equations of the crystals using a two-

dimensional finite element-method (FEM). In the two-dimensional approximation [183, 184], where 

the thickness of the crystal is assumed to be much smaller than its length, we end up with a system 

of partial differential equations (PDEs) that can be solved numerically after prescribing the elastic 

displacements or stresses and electric potentials or electric displacements on the boundary surfaces 

of the media (i.e. the boundary conditions). Setting the appropriate material constants for each 

orientation of the crystal and assuming a grounded bottom electrode and a harmonic homogenous 

potential on the upper electrode (𝛿𝑉3𝑒𝑗𝜔𝑡), as well as a null electric displacement field normal to the 

side surfaces and a null traction over all boundaries, the admittance at each frequency was calculated. 

To do this, the current flowing through a transverse section of the crystal was obtained by integrating 

the time derivative of the harmonic displacement field over this surface (i.e. 𝛿𝐼3 = 𝑗𝜔 ∫ 𝛿𝐷3
 

𝐴𝑟𝑒𝑎
𝑑𝐴).  

The results of these simulations for the Y-cut and 41ºY-cut crystals are plotted in 

Figure 4.1 a) along with the experimental data. Here we observe a good agreement between the 
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simulated and experimental results and can perfectly identify a correspondence between the 

resonance and anti-resonance peaks in each type of Y-cut crystal. Therefore, we confirm the 

existence of three contour modes of resonance in the Y-cut crystal, situated at approximately 278, 

314 and 358 kHz, and a single mode for the 41oY-cut crystals at ca. 324 kHz. By setting the frequency 

of the applied voltage in the model to a value corresponding to some characteristic resonance mode 

and plotting the amplitude of the spatial distribution of the in-plane displacement fields, we can 

analyze and identify the contour resonance modes associated with each peak. The modes thus found 

are labeled and represented in Figure 4.1 a) which shows the absolute value of the displacements 

along the plane of the PE in a color scale (from blue for a null displacement to pink for large 

displacements) and the directions of these displacements as red arrows. Thus, the three resonance 

modes observed in the Y-cut crystal correspond to the three contour acoustic modes labeled as: 1), 

2) and 3). All of those are non-trivial modes because of the relatively complex geometry of the 

system. The  mode 1) is comparable to an extensional mode of type I, as labeled by the IRE standard 

[121], just like the  mode 3). In summary, the mode 1) is characterized by oscillatory displacements 

mainly along the central region of each face, while the central and vertex regions stay almost still. In 

mode 2) there is a periodic bending of the vertexes to the sides. The 3) mode is associated with a 

periodic displacement of the vertex regions of the plane along the radial direction. Since the 1) and 

3) modes are associated with larger displacements over larger areas, they naturally produce larger 

variations of the current flowing through the crystals and consequently larger resonant peaks. The 

single large resonant mode observed in the 41ºY-cut crystal labeled 4), on the other hand,  

corresponds to a symmetric contour mode of the type III [121] where the crystal periodically expands 

and contracts almost isotopically in both in-plane directions and is generated due to the almost in-

plane isotropic nature of the material constants in this case.  

For the case of the PMN-PT based tri-layer, two low-frequency modes (67 kHz and 111 kHz) 

and one high-frequency mode (4.87 MHz) are observed, as shown in Figure 4.1 b). According to 

[185],the sound velocity for the longitudinal mode propagating along the Z direction is 

4.727105 cm/s, which yields for a thickness extensional resonance a frequency of about 4.73 MHz 

that is close to the experimentally observed value. Using the same model as in the aforementioned 

case, we identified the contour resonance modes responsible for the two observed low-frequency 

peaks. Those are labeled 5) and 6) and are shown in Figure 4.1 b). The first of these modes therefore 

corresponds to a simple extensional mode, while the second exhibits a behavior similar to the one 

observed in the mode 2). When compared to the electrically excited contour resonant modes of the 

LNO crystals, the resonant admittance peaks measured in the PMN-PT crystal are shown to be one 

order of magnitude larger, which should be a result of a much stronger PE effect in this crystal. 
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Figure 4.1 On the left: experimental and simulated impedance spectra of a) LNO and b) [011]-poled 

PMN-PT PE single crystals depicting its various characteristic EM resonance (|𝑌| → ∞) and anti-

resonance (|𝑌| → 0) modes. On the right: spatial distribution of the in-plane relative displacement 

fields associated with each type of observed contour EM resonance mode labeled as 1) ‒ 6). Here, 

more purple regions correspond to larger relative displacement amplitudes while more cyan regions 

are associated with small displacements. The superimposed small red arrows depict the direction of 

such displacements. 

 

Measurements of the direct ME effect were carried out at room temperature and at a 

frequency of 5 kHz in the quasi-static regime, i.e. far enough from any observed EM resonances. The 

modulation amplitude of the AC field was fixed at 𝛿𝐻 = 1 Oe, while the transversal ME voltage 

coefficients 𝛼𝐸31 and 𝛼𝐸32 (given by equation 3.8 for 𝑘 = 1) were measured in two orthogonal in-

plane orientations. Thus, 𝛼𝐸31 was measured with the bias field 𝐻 oriented along the X direction in 



 

4. Direct and converse magnetoelectric effects in LiNbO3 and PMN-PT 

61 

 

the laminate frame, while 𝛼𝐸32 was measured with 𝐻 oriented along the Y direction. Figure 4.2 

shows the experimental results obtained. In the general case we start by noting that the soft magnetic 

properties of the Metglas alloy are responsible for the appearance of the maximum ME effect in 

magnetic fields as low as 25 Oe. The region where the ME effect is not null corresponds to the field 

range where the magnetization vector of the MS phase increases by the rotation of magnetic domains 

and by domain wall motion. The saturation of the ferromagnetic foil occurs at 𝐻 ≈ 50 Oe, after which 

any further increase of the external bias field does not lead to any substantial increase of the strain in 

the thin foil (i.e. the magnetostriction attains its saturation value 𝜆𝑆), and consequently the ME effect 

vanishes. Furthermore, as it was expected, we see that the samples demonstrate an anisotropy of their 

in-plane ME properties due to the anisotropy of the PE properties. The sample containing the Y-cut 

LNO crystal exhibits a difference between 𝛼𝐸31 and 𝛼𝐸32 of more than an order of magnitude. The 

respective measured values were 𝛼𝐸31 = 0.46 V/(cm·Oe) and 𝛼𝐸32 = 0.024 V/(cm·Oe). In this crystal 

we have 𝑑31 = – 20.8 pC/N and 𝑑32 = 0 and, consequently, the small observed 𝛼𝐸32 coefficient is 

exclusively generated by the transversal Poisson stress of the magnetostriction acting on the 𝑑31 

component. In the latter case, the magnitude of the ME induced voltage was comparable to the 

parasitic electromagnetic induction voltage, so that the corresponding correction has been applied. 

On the other hand, in the 41ºY-cut LNO crystal sample an almost isotropic in-plane behavior has 

been observed with 𝛼𝐸31 ≈ 𝛼𝐸32 ≈ 0.42 V/(cm·Oe), which is due to almost equivalent values of the 

𝑑31 and 𝑑32 piezocoefficients (– 16.3 pC/N and – 17.5 pC/N, respectively). For the case of the PMN-

PT composite, the 𝑑31 piezoconstant is twice as large as 𝑑32 and has a different sign. As a result, the 

maximum of 𝛼𝐸31 corresponds to 1.15 V/(cmOe), while the maximal amplitude of 𝛼𝐸32 equals 

– 0.41 V/(cm·Oe). Following the procedure described in [122] and using the Metglas and PMN-PT 

material parameters measured by the suppliers and by independent sources [162, 172], we calculated 

the maximum expected quasi-static values of 𝛼𝐸31 and 𝛼𝐸32 for our specific sample to be 𝛼𝐸31 = 

23.2 V/(cm·Oe) and 𝛼𝐸32 = – 7.2 V/(cm·Oe). These values are more than one order of magnitude 

larger than the experimental ones. This may be mainly due to a weak coupling between interfaces, 

where the intermediate glue layers absorb part of the tensile stress being transferred from the MS to 

the PE phase, and a non-optimized PE/MS thickness ratio between phases, where composites with 

much thicker MS phases are expected to generate considerably larger effects due to a minimal 

compressive stress produced by the thin PE substrate on the MS phases [56]. Nevertheless, as both 

of these factors should result in an identical reduction of the ME effect in the PMN-PT and LNO 

based composites, further discussion shall be more focused on the relation between the measured 

coefficients rather their absolute values.  

A very important point can be drawn from the quasi-static direct ME measurements. The 

maximum amplitudes of the observed ME voltage coefficients for the LNO tri-layers are only about 
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three times lower than those for the PMN-PT composite. The maximal ME voltage coefficient for 

the PMN-PT tri-layer is 1.16 V/(cm·Oe), while for the LNO tri-layers employing Y-cut and 41ºY-

cut crystals it is 0.47 V/(cm·Oe) and 0.42 V/(cm·Oe), respectively. Comparable magnitudes are 

mainly explained by the fact that the dielectric constant of PMN-PT is more than 60 times larger than 

that of LNO. Consequently, the same amount of charge generated by piezoelectricity gives rise to a 

60 times lower voltage in PMN-PT. Therefore, the huge piezoelectric coefficients of PMN-PT are 

effectively nullified by its also huge dielectric coefficients in terms of the open-circuit ME effect. 
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Figure 4.2 Direct voltage ME effects measured in the tri-layered composites of Metglas/PE/Metglas 

with PE single-crystals of a) 41ºY-cut LNO; b) Y-cut LNO and c) [011]-poled PMN-PT (with 𝑓 = 

5 kHz and 𝛿𝐻 = 1 Oe). 
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As we have seen, the magnitude of the direct ME voltage coefficient can be comparable in 

LNO- and PMN-PT-based composites because this response is approximately proportional to the 

ratio between the PE coefficients and dielectric constants. However, this concurrent influence on the 

composite’s performance is no longer favorable for the case of the converse ME effect because this 

effect is independent of the dielectric constants (αB = ∂B/∂E = (∂B/∂T)(∂T/∂S)(∂S/∂E) = qs-1d) [124, 

186-188]. Thus, in this regime, the huge difference in piezoelectric coefficients between PMN-PT 

and LNO becomes crucial, and the PMN-PT composites should exhibit much stronger converse ME 

responses. To show this, we performed converse ME measurements on the three composites. 

Figure 4.3 shows the converse magnetoelectric response represented as the ratio between the 

electromotive force induced on the sensing Helmholtz coil, 𝛿𝑉𝑖𝑛𝑑, and the voltage applied to the tri-

layered composite, 𝛿𝑉𝑚𝑜𝑑 = 10 V. This effect is associated with a change in the effective 

permeability of Metglas when under a stress, which is transferred from the PE substrate. As expected, 

the dependences of the converse ME effect as a function of the external magnetic bias field are shown 

to be qualitatively similar to those observed in the direct ME effect measurements, diverging between 

the different composites only in terms of amplitude. In fact, the composite with the 41ºY-cut LNO 

exhibits a two orders of magnitude lower response than the one with PMN-PT. Beyond any doubt, 

the large difference between PE coefficients becomes crucial in this mode. In conclusion, even 

though the direct ME voltage response is comparable in both composites, the benefits of using PMN-

PT crystal for the converse ME effect as well as the direct short-circuit ME charge response in such 

laminate structures remains indisputable. 
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Figure 4.3 Converse ME effects measured (given by the ratio between the voltage induced in the 

sensing coil, 𝛿𝑉𝑖𝑛𝑑, and the voltage applied to the composites, 𝛿𝑉mod = 10 V) in the tri-layered 

composites of Metglas/PE/Metglas with PE single-crystals of a) 41ºY-cut LNO; b) Y-cut LNO and 

c) [011]-poled PMN-PT. 

 

Returning to the direct ME effect measurements, the benefits of PMN-PT already do not look 

so convincing. The three times greater ME voltage coefficient hardly seems to justify an order of 

magnitude higher price and lower Curie temperature of the PMN-PT crystal. When measured as a 

function of the AC magnetic field frequency, 𝑓, the EM resonance modes observed in the impedance 

measurements can also be detected in the direct ME effect. These measurements were performed in 

the range of 1 kHz – 600 kHz (with a fixed bias field 𝐻 = 25 – 30 Oe and an AC field amplitude 𝛿𝐻 

= 0.5 Oe). The results depicted in Figure 4.4 show the characteristic large increase in the direct 

response of the composites under such resonance conditions (more precisely the impedance anti-

resonance conditions). Surprisingly, the system with the 41ºY-cut LNO crystal yielded the largest 

effect of ca. 88 V/(cm·Oe) at the largely symmetric resonant mode 4) shown in Figure 4.1 , while in 
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the PMN-PT system the maximum was only of 66 V/(cm·Oe). We also note that the EM resonance 

is situated in a very suitable frequency range. From the point of view of possible sensor applications, 

a full implementation could be done using standard low-cost electronic components. 
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Figure 4.4 Direct transversal ME effects (𝛼𝐸31) measured in the tri-layered Metglas/PE/Metglas 

composites as a function of the modulated field frequency f with 𝐻 = 25 Oe and 𝛿𝐻 = 0.5 Oe. 

 

4.4. Conclusions 

 

In summary, in this part we introduced a comparative study between the direct and converse 

ME effects in tri-layered composites of the type Metglas/PE/Metglas based on single crystals of 

LiNbO3 (LNO) and [011]-poled PMN-PT bonded with a cyanoacrylate glue. Due to the simplified 

preparation method, the amplitude of the observed ME effect was rather modest. In the quasi-static 

regime, although the highly piezoelectric PMN-PT-based composite has exhibited an orders of 

magnitude stronger converse ME effect, the measurements of the direct ME effect have shown 

comparable magnitudes for both types of systems, mainly due to comparable ratios between 

piezoelectric and dielectric coefficients of both crystals. The converse ME effects, on the other hand, 

were shown to be much stronger in the sample with the PMN-PT crystal since, according to the 

theory, this effect depends only on the piezoelectric constants which are much larger in this case. We 
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also presented the results of the direct ME measurements in the resonant regime. Here we found an 

even larger ME effect peak in the composite with the 41ºY-cut LNO than in the one with PMN-PT. 

The largest direct ME voltage coefficient of about 88 V/(cm·Oe) has been obtained for the 41ºY-cut 

LNO composite, while this was only of 66 V/(cm·Oe).for the PMN-PT-based structure Therefore, in 

this study we identified crystalline LNO as a valuable alternative to lead-based PEs in ME 

applications with the potential to form its own field of ME-based low-cost high-temperature 

magnetic-field sensors.
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Chapter 5 

 

5. Anisotropic magnetoelectric effect in tri-layered composites 

of Metglas with LiNbO3 and GaPO4 single crystals 

 

Abstract 

 

This chapter describes an experimental study of the dynamic impedance and magnetoelectric 

anisotropic properties in tri-layered composites of Metglas and single-crystalline lead-free 

piezoelectrics. We have prepared a variety of different magnetoelectric laminates by bonding 

magnetostrictive Metglas foils onto single-crystalline substrates of LiNbO3 and GaPO4. The 

measurements have been performed as a function of the crystal cut, magnitude and orientation of the 

magnetic bias field and the frequency of the modulation field. Greatly enhanced ME coefficients in 

certain resonance modes are explored and their relations to the material properties of the crystals and 

the geometry of the composites are investigated. The largest ME coefficient of up to 249 V/(cm·Oe) 

was observed for a composite with a 41ºY-cut LNO crystal at 323.1 kHz. In summary, we show that 

crystalline lead-free LNO and GPO can exhibit relatively large anisotropic ME effects in multilayers. 

We also demonstrate that control of the PE crystal’s orientation can be successfully used in order to 

obtain almost any desired quasi-static and resonant anisotropic ME properties for some given 

application. Such unique features as chemical stability, linear piezoelectricity, thermal robustness 

open up a real perspective to use lead-free LiNbO3 and α-GaPO4 based ME tri-layers, e.g., as vector 

magnetic field sensors working in a wide range of temperatures. 

 

5.1. Introduction 

 

In the previous section we showed how the use of highly anisotropic single crystalline LNO 

in ME tri-layered composites can yield very remarkable quasi-static and resonant ME effects. 

Besides LNO, a noteworthy piezocrystal for ME applications is gallium orthophosphate (GaPO4, 

GPO) a commercially available piezoelectric crystal with a trigonal structure (point group 32) and 

excellent high-temperature properties [71]. As a crystal homotypic to quartz, it possesses many 
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properties similar to the latter. Characteristic of this material are its larger piezoelectric coefficients 

when compared to quartz (ca. 1.2 times larger 𝑒11 and 2.5 times larger 𝑒14) [71]. Other desirable 

properties of the compound are its high thermal stability, with its piezoelectric coefficients and most 

of its properties barely changing up to a cristobalite transition at 933ºC, large ratio between PE and 

dielectric constants (𝑑3𝑎/𝜀33), the absence of ferroelectricity and pyroelectricity, a higher EM 

coupling as compared to quartz, and a high purity of the as-grown crystals [71, 72]. In the present 

part, we report a study of the anisotropic direct ME properties of enhanced bulk tri-layered 

composites of Metglas/LNO/Metglas and Metglas/GPO/Metglas, making use of differently oriented 

crystalline PEs and under quasi-static and EM resonance conditions [134]. The maximum expected 

quasi-static ME coefficients in each case were numerically estimated as a function of the crystal 

orientation and compared with the experimental results. The physical origin of the in-plane 

directional ME response was therefore uncovered. 

 

5.2. Theoretical calculations 

 

In order to numerically investigate the nature of the anisotropic ME coupling in tri-layered 

composites of amorphous Metglas and piezocrystals of LNO and GPO, the maximum direct 

transversal ME voltage coefficients, 𝛼𝐸3𝑎 = 𝜕𝐸3/𝜕𝐻𝑎, were numerically estimated for a series of 

such structures. A standard averaging linear quasi-static micromechanical method based on coupled 

constitutive equations for each layer was used for this purpose [56, 122]. Here, a square shaped 10  

10 mm2 ME tri-layered structure composed of two 29 μm thick foils of Metglas and one central 0.5 

mm thick piezoelectric crystal, operating in the L-T mode, like the one shown in Figure 2.1, was 

considered. Its constitutive elastostatic, electrostatic and magnetostatic equations were then solved 

assuming averaged homogeneous tensor fields in each perfectly elastically coupled layer (kC = 1) and 

under unclamped and open circuit boundary conditions. The required linear anisotropic electric, 

magnetic and elastic material constants were obtained from the literature (Metglas [140-142], LNO 

[70], and α-GPO [71, 72]).  

Since the material properties of single crystals are highly anisotropic, the optimization of the 

piezocrystal orientation (crystal-cut) can in principle lead to significantly enhanced ME coefficients 

in composites. To investigate the dependence of the maximum ME coupling coefficient with the 

crystal orientation, the material tensors were transformed from the crystalline frame to the frame of 

the laminate using the classic Euler angles Z1X2Z3 corresponding to a sequence of three rotations each 

denoted by the angles α, β and γ [122, 139, 162]. The results obtained in this way are shown in Figure 
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5.1 as representation surfaces of |𝛼𝐸3𝑎| maximized in the range of all γ angles between 0º and 180º 

and as a function of the α and β angles for the composites containing LNO and GPO. A very large 

variation of the magnitude of the transversal ME effect with the orientation of the piezocrystal, whose 

symmetry coincides with the symmetry of the corresponding crystal’s point group, can be observed. 

As strong ME effects are particularly important in applications requiring high efficiencies and 

sensitivities, we conclude that the selection of a crystal with an appropriate cut is a very important 

step in the development of ME sensors. For the case of the LNO crystal, we see that the calculated 

ME coefficient could potentially be as large as 27.24 V/(cm·Oe) for a crystal with a (ZXl) 39º-cut (α 

= 0º, β = 39º and γ = 90º) and five other cuts equivalent by symmetry. In commercially available 

crystals this orientation is commonly denoted as 129ºY-cut. An even larger maximum coefficient of 

35.62 V/(cm·Oe) was predicted for the GPO crystal with a (XYt) 12º-cut (α = 90º, β = 90º and γ = 

12º) and five other equivalent orientations. This cut is very close to the commonly available X-cut 

crystals (α = 90º, β = 90º and γ = 0º).  

 

 

Figure 5.1 Representation surfaces depicting the maximum estimated absolute values of the 

transversal ME voltage coefficient |𝛼𝐸3𝑎| (across 0 < 𝛾 < 180o) as a function of the crystal 

orientation (normal to the plane of the laminate associated with the rotation angles α and β for the 

tri-layered ME composites of Metglas/Piezocrystal/Metglas, with piezocrystals of: a) LiNbO3; and 

b) α-GaPO4. 

 

For comparison we also used the model described above in order to calculate the transversal 

ME coefficients for the particular case of the piezocrystals employed in the experimental part. Those 

consisted of Y-cut (α = 0º, β = ‒90º and γ = 0º) and 41ºY-cut (𝛼 = 0º, 𝛽 = ‒49º and 𝛾 = 0º) LNO as 

well as X-cut (α = 90º, β = 90º and γ = 0º) GPO. The results thus obtained indicate, for the 41ºY-cut 
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crystal, maximum values of 𝛼𝐸31 and 𝛼𝐸32 in-phase and with approximately the same magnitude 

(𝛼𝐸31 = 11.2 V/(cm·Oe) and 𝛼𝐸32 = 11.9 V/(cm·Oe)), which is due to almost equivalent 𝑑31 and 𝑑32 

PE coefficients (‒16.5 pC/N and ‒17.5 pC/N, respectively). In the composite containing the Y-cut 

crystal, on the other hand, there should be a very large anisotropy in its transversal ME effect (𝛼𝐸31 

= 11.6 V/(cm·Oe) and 𝛼𝐸32 = -1.3 V/(cm·Oe)). This is the case because the transversal piezoelectric 

coefficients are very different: 𝑑31 = ‒20.8 pC/N and 𝑑32 = 0. Consequently, the small 𝛼𝐸32 

coefficient is generated only by the traction component perpendicular to the magnetic field, which 

originates from the Poisson effect, acting on the 𝑑31 PE component. In the system with X-cut GPO 

a behavior similar to the aforementioned one was also predicted (𝛼𝐸31 = 34.0 V/(cm·Oe) and 𝛼𝐸32 

= -3.8 V/(cm·Oe)), since the PE constants are similarly given by 𝑑31 = ‒4.37 pC/N and 𝑑32 = 0. 

 

5.3. Experimental details 

 

To experimentally investigate the direct ME effect we prepared tri-layered structure 

containing two 29 μm layers of 2826MB Metglas (Hitachi Metals Europe GmbH) bonded on both 

faces of 10  10  0.5 mm3 square-shaped commercial PE single crystals of congruent LNO and 

GPO (Roditi International Corporation Ltd.) cut along desirable crystallographic directions. These 

consisted of substrates of Y-cut, 41ºY-cut LNO and X-cut GPO bounded to Metglas using a 

commercial epoxy resin which was cured for 24 h. This type of adhesive is commonly used in the 

preparation of ME layered composites [6-12, 14, 16, 20] and is well known for its good mechanical, 

thermal and chemical properties. Their anisotropic ME and EM properties were subsequently 

studied. 

 

5.4. Results and discussion 

 

Using the setup described in chapter 3, we measured the direct ME effect in the quasi-static 

regime in each of the three composites. The tri-layered structures were subjected to a fixed AC 

magnetic field with amplitude 𝛿𝐻 = 1 Oe and a frequency of 1 kHz. The magnetic bias field 𝐻 was 

then applied in the X and Y directions in relation to the samples and swept in such a way so as to 

measure the hysteretic in-plane 𝛼𝐸31 and 𝛼𝐸32 ME coefficients (i.e., with the field increasing from 

zero up to its maximum value followed by a decrease down to a minimum value and an increase back 

to zero). The results of these measurements are plotted in Figure 5.2. As in the previous comparative 
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study, we see that the maxima of the ME effects are attained at magnetic fields as low as 25 Oe, 

which is due to the soft magnetic properties of Metglas. We also note an almost complete absence of 

a hysteretic response, which confirms the linear nature of the piezoelectric properties of both LNO 

and GPO. An imperative observation is that, as expected, all of the samples exhibit a significant 

anisotropy of their in-plane ME properties (𝛼𝐸31 ≠ 𝛼𝐸32). Such noticeable differences are mostly 

related to the anisotropic nature of the material constants of the piezocrystals, mainly their 

piezoelectric 𝑑3𝑎 coefficients. In the case of the tri-layered composite with the 41ºY-cut LNO crystal, 

maximum effects of 𝛼𝐸31 = 0.83 V/(cm·Oe) and 𝛼𝐸32 = 0.92 V/(cm·Oe) were obtained. This 

response corresponds to an almost in-plane isotropic ME behavior with 𝛼𝐸32 ≈ 𝛼𝐸31 in agreement 

with the predictions made in the preliminary calculations. This behavior contrasts with the structure 

containing the Y-cut LNO crystal which exhibits a difference between maximum absolute values of 

𝛼𝐸31 and 𝛼𝐸32 by almost an order of magnitude. This is the case because the 𝑑32 PE coefficient 

happens to be null in this orientation. The obtained values here were 𝛼𝐸31 = 0.95 V/(cm·Oe) and 

𝛼𝐸32 = ‒0.10 V/(cm·Oe). We also note that both maximum coefficients have a different sign. The 

positive value defines an in-phase dependence between the applied AC magnetic field and the 

induced AC voltage and the negative value indicates an out-of-phase relation between these fields. 

Finally, we see that the sample with the X-cut GPO piezocrystal equivalently yields an almost 

anisotropic unipolar response with maximum ME coefficients of 𝛼𝐸31 = 0.24 V/(cm·Oe) and 𝛼𝐸32 = 

‒0.03 V/(cm·Oe), as was already predicted by our calculations.  
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Figure 5.2 Direct quasi-static transversal ME effect measurements (|𝛼𝐸31| and |𝛼𝐸32|) of the tri-

layered composites of Metglas and a) 41ºY-cut LNO, b) Y-cut LNO, or c) X-cut GPO, with 𝑓 = 1 

kHz and 𝛿𝐻 = 1 Oe. The insets depict the phase (in degrees) corresponding to each ME coefficient. 

 

Considering again the preliminary calculations, we conclude that all of the experimental 

results are in a good qualitative agreement with the theoretically estimated effects. However, in 

quantitative terms, the obtained coefficients were still one order of magnitude smaller than the 
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maximum calculated ones. The main reasons for this should be attributed to a far from optimal 

thickness ratio between the PE and MS phases and elastic coupling between phases. Additionally, 

because the magnetostrictive response of the MS alloy is highly non-linear, its pseudo-piezomagnetic 

𝑞𝑘𝑖 coefficients change abruptly with the bias field and stress tensor. In fact, a more sophisticated 

model for the MS phase [161] shows that the large compressive pre-stress produced by the thick PE 

in the direction of the applied bias field tends to decrease the maximum value of 𝑞𝑘𝑖 and increase the 

bias field at which it is attained. Also, our calculations predicted a three times larger effect in the 

system with GPO in relation to the one with Y-cut LNO. Since all samples were prepared in the same 

manner, this seems to be in disagreement with the experiment. A likely explanation is the existence 

of a large discrepancy between piezoelectric and dielectric coefficients of GPO as the ones found in 

the literature due to variations in the growth and poling techniques [71, 72, 189]. It may also be 

related to limitations of the model which, e.g., does not take into account possible stress relaxation 

occurring along the thickness of the piezoelectric layer nor the properties of the interfaces between 

the piezoelectric crystals and the layers of epoxy with a finite thickness. 

To investigate the dynamic properties of the composites we again started by performing 

impedance measurements of the PE crystals alone. Figure 5.3 shows the results thus obtained in the 

form of a) the absolute impedance |𝑍|.as a function of the frequency and b) the corresponding 

Nyquist plots of the impedance (-𝑍′′ vs 𝑍′, where 𝑍′ is the real and 𝑍′′ the imaginary parts of 𝑍, 

respectively). These figures clearly illustrate a multitude of EM resonances (where |𝑍| attains a 

minimum value) and anti-resonances (where |𝑍| attains a maximum value) in the frequency range 

between 150 kHz and 390 kHz. The amplitude and frequency of the anti-resonance modes is 

particularly interesting because, as we shall see later, these modes are strongly linked with the 

resonant peaks observed in the dynamic ME measurements. Of notice is the fact that the X-cut GPO 

crystal was shown to produce four different resonant modes which are nonetheless much weaker than 

those found in the LNO substrates and appear at smaller frequencies, due to ca. 3 times larger 

compliance coefficients in the former [70-72]. Another important observation is that the difference 

between the anti-resonant and resonant frequencies of the 41ºY-cut LNO is much larger than in the 

other crystals which indicate an enhanced effective EM coupling factor (𝑘𝑒𝑓𝑓) and consequently a 

more efficient conversion of energy [67]. The Nyquist plots show us how the real and imaginary 

parts of the impedance of the PEs change with the frequency close to a certain resonance mode. Thus 

we see that, as the frequency increases, the imaginary part of 𝑍 starts to increase up to a maximum 

value where the resonance frequency is ca. attained. After this, the imaginary part starts to drop to 

zero while the real part of 𝑍 starts to increase from a very low positive value up to a maximum close 

to the anti-resonance frequency. After this frequency, the real part returns to its initial positive value 

while the imaginary part decreases down to a negative minimum and subsequently returns to its 
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initial value. Each of these resonance modes therefore form a closed loop in the Nyquist plot. More 

intense resonances in general thus give rise to wider loops and larger resonance peaks.  
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Figure 5.3 Impedance spectra of the 41ºY-cut LNO, Y-cut LNO and X-cut GPO single-crystals 

showing its characteristic EM resonance (|𝑍| → 0) and anti-resonance (|𝑍| → ∞) modes labeled as 

1) – 8) and depicted as: a) the absolute value of the impedance |𝑍| vs 𝑓 and; b) Nyquist plots of the 

impedance (-𝑍′′ vs 𝑍′). In the last case, the arrows indicate the direction of the increasing frequency 

and the inset shows in detail the small loops associated with the weak resonance modes of the Y-cut 

LNO and X-cut GPO crystals. 
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To identify each acoustic resonant mode we again implemented in Matlab® a two-dimensional finite 

element-method in order to simulate the results [183, 184]. These calculations clearly proved that the 

resonant peaks observed correspond to different types of in-plane contour resonance modes. The 

obtained modes are thus labeled in Figure 5.3 as 1) – 8) and depicted in Figure 5.4 c). To summarize 

this part, the frequency and |𝑍| amplitude associated with each anti-resonant mode is listed next: 1) 

𝑓 = 284.0 kHz; |𝑍| = 246 kOhm; 2) 𝑓 = 315.8 kHz; |𝑍| = 51 kOhm; 3) 𝑓 = 358.6 kHz; |𝑍| = 205 

kOhm; 4) 𝑓 = 336.1 kHz; |𝑍| = 1.25 MOhm; 5) 𝑓 = 184.8 kHz; |𝑍| = 80 kOhm; 6) 𝑓 = 199.3 kHz; 

|𝑍| = 90 kOhm; 7) 𝑓 = 218.4 kHz; |𝑍| = 69 kOhm; 8) 𝑓 = 257.5 kHz; |𝑍| = 63 kOhm. 

The dynamic ME effects (𝛼𝐸31 and 𝛼𝐸32 components) were subsequently measured for the 

three composites as a function of the frequency of the AC magnetic field. The measurements were 

performed in the range from 1 kHz–600 kHz, with a fixed bias field of H = 25 Oe and a modulation 

field amplitude of δH = 0.1 Oe. The obtained results are depicted in Figure 5.4 a) and b). Here, we 

can again identify the existence of multiple high-amplitude peaks in the ME response of the samples. 

By taking into account the sound velocity for the propagation of longitudinal waves in these crystals, 

of the order of 6.5x105 cm/s [70], and their dimensions we conclude that the observed peaks in the 

kHz range can be attributed to different types of in-plane contour acoustic modes.  

With a bias field applied in the X direction (𝛼𝐸31 mode), for the case of the composite with 

the 41ºY-cut LNO crystal a single and very intense ME peak of up to 249.0 V/(cm·Oe) was observed 

at a frequency of 323.1 kHz. For the sample with the Y-cut LNO crystal, on the other hand, three 

different smaller peaks were observed in this range. This clearly illustrates how the anisotropic nature 

of the material constants takes an important part in the determination of which kinds of EM resonance 

modes may or may not be excited under certain conditions. Consequently we conclude that the 

anisotropic nature of the PE crystals is even more noticeable in the resonant regime in relation to the 

quasi-static. In the structure with the Y-cut LNO crystal, the largest peak occurs at approximately 

344.3 kHz and takes the value of 132.9 V/(cm·Oe). The other two peaks appear at 270.1 kHz and 

302.3 kHz and reach heights of 101.1 V/(cm·Oe) and 26.8 V/(cm·Oe), respectively. In the GPO 

sample we observed four different resonance modes associated with comparatively smaller ME 

coefficients. The largest resonant effect here is of 23.2 V/(cm·Oe), occurring at 199.7 kHz. The other 

three peaks take values of 12.0 V/(cm·Oe), 5.0 V/(cm·Oe) and 13.0 V/(cm·Oe) and are excited at 

frequencies of 184.3 kHz, 220.5 kHz and 257.9 kHz, respectively. Furthermore we note that all of 

the aforementioned peaks are associated with a characteristic sudden decrease in phase by ca. 180º 

as it can been seen in the inset of Figure 5.4 a). In this case the ME resonance peaks are all followed 

by a change of phase from 0º down to -180º and therefore the imaginary part of the ME coefficients 

yield peaks with negative values in resonance. A comparison with the impedance of the crystals in 
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Figure 5.3 demonstrates that the same number of resonant modes can be identified in both 

experiments and that the frequencies and amplitudes of the resonant ME effects in the composites 

are closely related to the frequencies and amplitudes of the anti-resonant EM modes in the PEs. Thus 

we conclude that they must correspond ca.to the same type of resonance modes. This is the case 

because, as the impedance of the PE crystals is maximized in the anti-resonant mode, its capacitance 

and thus longitudinal effective dielectric constant (𝜀) is consequently minimized which results in a 

large enhancement of the direct voltage ME effect (i.e. increase in the 𝑑/𝜀 ratio) [190]. 

Having obtained a good agreement between the simulated and experimental values of the 

anti-resonance frequencies, with relative errors inferior to 4%, the spatial distribution of the relative 

displacement fields for each mode can then be plotted as shown in Figure 5.4 c). Thus, we see that 

the three resonance modes observed in the Y-cut LNO crystal correspond to the three contour 

acoustic modes (where the in-plane components of the displacement fields do not change 

significantly in the Z direction and the out-of-plane displacement 𝑢3 is null) dubbed as 1), 2) and 3). 

We can identify mode 1) as an extensional mode closely related to type I, as labeled by the IRE 

standard [121]. In the 41ºY-cut LNO crystal, the observed single resonance 4) corresponds to an 

extensional mode of type III which is a very symmetric almost isotropic mode. This seems to suggest 

that remarkably strong resonance modes can be excited in PE crystals, whose geometric symmetry 

coincides in some way with the symmetry of its anisotropic material constants. This is the case for 

the 41ºY-cut square-shaped crystal, which is associated with almost equal in-plane 𝑑31 and 𝑑32 PE 

coefficients as well as 𝑐11
𝐸  and 𝑐22

𝐸
 elastic stiffness constants. By comparison with the properties of 

some bulk tri-layered composites found in the literature with equivalent structures but employing 

different compounds, we conclude that the 249 V/(cm·Oe) coefficient observed in the 41ºY-cut LNO 

sample is one of the largest ever found in ME 2-2 bulk tri-layered structures, being even larger than 

the 175 V/(cm·Oe) value measured in a Permendur/Quartz/Permendur system [135]. It is also 

remarkably larger than those found in lead-based PMN-PT (70 V/(cm·Oe)) and PZT (110 

V/(cm·Oe)) composites with Permendur [137]. In the X-cut GPO piezocrystal, the first two modes 

at 184.3 kHz and 199.7 kHz and the fourth one at 257.9 kHz were identified as different kinds of 

contour shear modes. The first two modes, 5) and 6), and the 8) respectively resemble variations of 

the modes 1) and 3) in the Y-cut crystal with the addition of an in-plane shear component. The third 

smallest mode at 220.5 kHz, labeled 7), is characterized by an oscillatory displacement of the 

vertexes of the crystal in a way similar to mode 2) in the Y-cut LNO piezocrystal. 

When a bias field of H = 25 Oe was applied in the Y direction instead of X (𝛼𝐸32 mode) we 

obtained the results indicated in Figure 5.4 b). The observed peaks are in general associated with a 

drop in amplitude in relation to 𝛼𝐸31 which proves that the ME effects under resonance conditions 
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are also strongly affected by the direction of the applied bias field. The most noticeable change here 

is the large decrease in amplitude or even disappearance of some of the resonant modes observed in 

the previous measurement. This is the case of the modes labelled as 5), 7) and 1). In order to explain 

this we note that these modes are mainly characterized by large elastic displacements in the X 

direction of the crystals as shown in Figure 5.4 c). Since the Metglas layer tends to expand mainly in 

the direction of the applied bias field we thus conclude that a magnetic field applied in the Y direction 

will induce only a small straining of this layer in the X direction. This will thus constrain the capacity 

of the thin Metglas foil to excite the corresponding EM modes of the PE phases. Additionally we 

note that the modes labelled as 3), 6) and 8), which are characterized by large displacements in the 

Y direction tend to be less affected by the change in the direction of the applied bias. Nevertheless 

the reason for the decrease observed in the amplitude of the mode 4) is not very clear. Furthermore 

we see that the phase of all of the ME signals still drops by ca. 180º during resonance but now we 

notice that outside of resonance conditions the phase of the ME effects for the GPO and Y-cut LNO 

samples is reversed just like in the quasi-static case. Therefore the imaginary part of the ME 

coefficients have peaks with positive values in resonance. This kind of behavior has also been 

recently observed e.g. in [191].  
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Figure 5.4 a) 𝛼𝐸31 and b) 𝛼𝐸32 direct dynamic ME effect measured in tri-layered composites 

consisting of Metglas and LNO and GPO as a function of the modulation frequency with H = 25 Oe 

and δH = 0.1 Oe. The various resonant peaks seen here are labeled 1)‒8). The insets in each graph 

shows the variation of the phase of the ME voltage coefficients (in degrees) as a function of the 

frequency. c) Spatial distribution of the in-plane relative displacement field and deformation 

associated with each type of contour EM resonance mode. Here, redder regions correspond to larger 

relative displacement amplitudes. The deformation of the crystals are largely exaggerated for the 

sake of clarity. 
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From a theoretical point of view, considering only the linear elastic properties of the PE 

crystals and solving their eigenvalue equations of motion under traction-free boundary conditions, 

several resonance modes in addition to the ones observed in the measurements can be predicted. We 

therefore conclude that the pattern and natural frequency of these normal modes are mainly 

determined by the elastic coefficients of the crystals as well as their mass density and geometry. The 

excitation or not of some of these modes in the ME measurements, under specific mechanical and 

electrical boundary conditions, is then driven by the PE effect and thus depends on its anisotropic 

coefficients. While strong ME effects were observed for the extensional EM resonance modes in the 

samples with LNO, much weaker effects were seen for the asymmetrical shear modes in the one with 

GPO. These shear modes arise primarily because of non-null stiffness coefficients 𝑐16
𝐸  in the X-cut 

crystal which couple in-plane normal and shear type stresses and strains. Having seen this, we note 

that extensional normal modes, similar to the ones identified in the LNO crystals, as well as more 

symmetrical shear modes can also be solutions of the equations of motion in crystals of GPO e.g. 

with a Z- or Y-cut, since here we have 𝑐16
𝐸  = 𝑐26

𝐸  = 0. Nevertheless, the form of its corresponding PE 

tensors in principle doesn’t permit the ME excitation of the extensional modes in L-T tri-layered 

composites, since in these cases we have both null 𝑑31 and 𝑑32 components. In conclusion, we see 

that even though a large ME effect may be predicted for a given anisotropic composite under quasi-

static conditions, under resonant conditions the picture changes radically. Thus, in this case, a more 

sophisticated investigation must be carried out taking into account further parameters such as the 

relation between the crystal orientation and the geometry of the composite. 

In summary, in this experimental part we investigated the relation between the cut orientation 

of the piezocrystals and respective in-plane anisotropic ME response of the corresponding tri-layered 

composites. By precisely selecting this cut direction, systems with different relations between 

perpendicular 𝛼𝐸31 and 𝛼𝐸32 ME coefficients could be designed, thus finding applications in specific 

orientation-sensitive devices. A composite with a Y-cut LNO crystal, for example, was shown to 

operate closely to the anisotropic unipolar regime (𝛼𝐸31 > 0 and 𝛼𝐸32 = 0), and one with a 41ºY-cut 

LNO crystal closely to the in-plane isotropic regime (𝛼𝐸31 = 𝛼𝐸32). Figure 5.5 a) further illustrates 

the results of calculated quasi-static 𝛼𝐸31 and 𝛼𝐸32 coefficients as a function of the LNO crystal cut 

angle in the YZ plane in relation to the Y axis, i.e. the 𝜃 angle in the standard notation (YXl) 𝜃 or 𝜃 = 

90º + 𝛽 in the Euler angles scheme. According to the calculations, the anisotropic unipolar regime 

and the in-plane isotropic regime should be observed for LNO crystals with cut angles of 2ºY and 

45ºY, respectively. From this point of view, other cuts could also be interesting, such as the 162.1ºY-

cut LNO, corresponding to an anisotropic bipolar regime (𝛼𝐸31 = ‒𝛼𝐸32), and the 129ºY-cut LNO, 

corresponding to the maximum expected ME voltage coefficient as seen in Figure 5.5 a). Also, Figure 

5.5 b) depicts the calculated ME voltage coefficients as a function of the relative thickness ratio 
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between the PE and MS phases using the same formalism. This calculation was made for some of 

the most interesting LNO crystal cuts. From this we see that a decrease in the thickness of the PE 

layer results in more stress being transferred to it from the MS and, consequently, in an increase of 

the ME effect. However, since the detected voltage is proportional to the PE layer thickness, the 

thinner the layer is, the lower the output signal will be. Therefore, taking into account that any 

measuring circuit has its own input noise, the maximal signal-to-noise ratio should be observed for 

a finite ferroelectric film thickness.  
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Figure 5.5 a) Calculated in-plane quasi-static ME voltage coefficients as a function of the 𝜃 

piezocrystal cut angle (measured from the Y axis). b) ME coefficients for different crystal cuts as a 

function of the PE/MS relative thickness ratio ( 𝑡 
𝑝 / 𝑡 

𝑚 ). 
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5.5. Conclusions 

 

In conclusion, we have conducted a numerical analysis and an experimental study of the ME 

and EM anisotropic properties of tri-layered composites of Metglas/Piezoelectric/Metglas using 

differently oriented piezoelectric single crystals of LiNbO3 and GaPO4. The samples consisted of Y- 

and 41ºY-cut LNO and X-cut GPO substrates bound to Metglas foils using epoxy.  

The quasi-static ME measurements have shown a strongly anisotropic response with 

transversal ME voltage coefficients being dependent on the direction of the applied in-plane magnetic 

bias field as well as the orientation of the crystal (crystal cut). This is related to the piezoelectric, 

dielectric and elastic properties of single crystals being extremely anisotropic. As confirmed by some 

theoretical calculations, this ME behavior was qualitatively correctly predicted by a simple 

constitutive model, in which the material tensor properties of the piezocrystals were transformed 

according to their physical orientation. Therefore, we saw that the tri-layered composite with the 

41ºY-cut LNO crystal exhibited an almost isotropic in-plane ME response, with 𝛼𝐸31 ≈ 𝛼𝐸32, 

whereas the systems with the Y-cut LNO and X-cut GPO substrates demonstrated an approximately 

in-plane unipolar effect (𝛼𝐸31 > 0 and 𝛼𝐸32 ≈ 0) with the polar axis directed along the X direction. 

Also, the largest measured ME coefficient here was of 0.95 V/(cm·Oe) for the Y-cut LNO sample in 

a field of 25 Oe. In the GPO composite, a coupling of up to 0.24 V/(cm·Oe) was obtained. 

In the resonant regime, several in-plane contour EM resonant peaks were observed in the 

ME spectrum. Here we saw how strongly the anisotropic nature of the PE crystals influences the 

excitation of certain contour acoustic resonance modes. So, e.g., three distinct resonance modes were 

observed in the system featuring the Y-cut LNO crystal, whereas a single one was observed in the 

composite with the 41ºY-cut LNO one. A very intense single peak exhibiting a ME coefficient of up 

to 249 V/(cm·Oe) was detected in the sample with the 41ºY-cut LNO crystal. In order to predict, 

which kinds of modes could be excited under given conditions and to identify such modes by 

comparison with simulated results, we employed impedance measurements, thus clarifying the 

relation between the anisotropic constants and the excitation of such peaks. The aforementioned large 

symmetric peak was therefore shown to be related to the in-plane isotropic properties of the crystal, 

so that a very symmetric and high-amplitude resonance mode was generated. In the GPO sample, 

four weak contour asymmetrical shear modes of resonance were identified, with the largest having a 

response of up to 23.2 V/(cm·Oe) and appearing at a frequency of 199.7 kHz.  

In conclusion, we were able to experimentally identify relatively large anisotropic ME effects 

in composites based on PE single-crystals which were in good agreement with the theory. In 
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principle, such ME responses can be further enhanced through the optimization of the volume ratio 

and the coupling between layers. Finally we showed how the control of the crystal orientation can be 

used to greatly enhance the anisotropic ME effects in composites. The selection of the crystal 

orientation should therefore allow one to engineer almost any desired anisotropic properties for some 

given application.
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Chapter 6 

 

6. Equivalent magnetic noise in bi-laminates comprising 

bidomain LiNbO3 crystals for application as magnetic vector 

sensors 

 

Abstract 

 

In this chapter, the anisotropic direct magnetoelectric (ME) properties of bi-layered 

composites comprising magnetostrictive Metglas foils and single-crystalline piezoelectric bidomain 

plates of 127ºY-cut LiNbO3 (LNO) are studied both theoretically and experimentally. The LNO 

plates possessed an engineered bidomain structure with opposite spontaneous polarization vectors 

along the thickness direction (i.e. a “head-to-head” or “tail-to-tail” ferroelectric macrodomain 

structure). Impedance, ME effect and equivalent magnetic noise density measurements have been 

performed on the composites operating under quasi-static and resonant conditions. The investigated 

systems also included single-domain and simple bonded bimorph crystals for comparison. Whereas 

the anisotropic quasi-static ME effect was found to be only two times stronger in the bidomain 

samples than in their bimorph and unidomain counterparts, in the bending resonance mode the effect 

in the bidomain structures was up to one order of magnitude stronger: ME coefficients of up to 

578 V/(cm·Oe) were obtained at ca. 30 kHz at the bending resonance using 0.5 mm thick 

piezoelectric crystals. Equivalent magnetic noise density measurements yielded values down to 

153 pT/Hz1/2 at 1 kHz (quasi-static mode) and 524 fT/Hz1/2 under resonant conditions. A further 

optimization of the fabrication techniques, laminate geometry and detection circuit is expected to 

allow reducing these values down to at least 10 pT/Hz1/2 and 250 fT/Hz1/2, respectively, and the 

resonance frequency by at least two orders of magnitude. Such systems may thus find use in simple 

and sensitive, passive and stable, low-frequency and high-temperature vector magnetic field sensors. 

applications.  
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6.1. Introduction 

 

Sensitive low-frequency magnetic field variation sensors have recently been largely sought 

after for applications ranging from biomagnetic to magnetic anomaly detectors [59, 192]. The 

usefulness of magnetic sensors is determined not only by their output gain but also by their equivalent 

magnetic noise, both of which are crucial to achieve a high sensitivity and responsivity [59]. Thanks 

to their large magnetic-to-electric conversion factors, laminate ME composites have been singled out 

as natural contenders for these applications [59, 192, 193]. Comparatively to other magnetic sensors, 

a compact size and passive operation at room temperature are additional features that these systems 

have to offer. 

The ME effect is defined as a coupling between electric and magnetic fields in material 

systems in such a way that an electric polarization (𝑃) might be induced by an applied magnetic field 

(𝐻), in which case it is denoted the direct effect, or a magnetization (𝑀) induced by an applied electric 

field (𝐸), denoted the converse effect [8]. Intense efforts have been devoted to the study of the ME 

effect in systems ranging from the single-phase to the multi-phase and from the bulk to the nano-

sized, driven by many promising new applications in multifunctional devices [6, 8, 9, 11, 36]. Up to 

date, by far the largest ME effects have been obtained in the composite systems where such a 

phenomenon results from an elastic coupling between mechanically bonded piezoelectric (PE) and 

magnetostrictive (MS) phases [6, 8]. In this group the most commonly studied structures have been 

the simple 2-2 type laminates [6, 9, 36]. As the figure of merit, the direct ME voltage coefficient 

𝛼E𝑖𝑗 =  𝛿𝑉𝑖/(𝛿𝐻𝑗 · 𝑡𝑝) measured under open circuit conditions has been generally employed. Here, 

𝛿𝑉𝑖 and 𝛿𝐻𝑗 are the dynamic output voltage and input magnetic field amplitudes in the 𝑖 and 𝑗 

directions, respectively, and 𝑡𝑝 is the thickness of the PE phase [6, 9, 36]. As for the operation mode, 

longitudinally magnetized and transversely polarized (L-T) laminates have been shown to exhibit the 

largest effects due to small demagnetization fields and a large transfer of stress [6, 7]. ME responses 

of the order of tens of V/(cm·Oe) have already been observed under quasi-static conditions [61, 194]. 

Even stronger effects of the order of a few kV/(cm·Oe) have also been obtained under 

electromechanical resonance (EMR) conditions of the PE plates when the amplitude of the vibrations 

is largely enhanced [62, 109, 110].  

From a practical point of view, the sensitivity of a ME sensor to a minute magnetic field is 

determined by its conversion factor and by its intrinsic and extrinsic noise floor. The former kind of 

noise is mainly composed by the Johnson noise and the 1/𝑓 noise in the composite and by the 

detection circuit and is determined by material properties such as conductivity and dielectric losses 
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and the physical structure of the composite [59]. The extrinsic noise, on the other hand, is dominated 

by the thermal noise, introduced by pyroelectric currents due to small fluctuations of the temperature, 

and the vibrational noise, introduced by the PE effect due to stray vibrations in the environment [193, 

195]. Various strategies have been proposed to mitigate these effects through the optimization of the 

laminate design and detection circuitry [59, 193]. Currently, the lowest equivalent magnetic noise 

density values for ME sensors reported in the literature are of the order of a few pT/Hz1/2 for 

frequencies of operation as low as 1 Hz [61, 196-198] and of the order of some tens of fT/Hz1/2 under 

EMR conditions in the kHz range [58, 192, 199]. The frequency of operation has also been made as 

small as 10 mHz [200]. These values are very respectable when compared to the ones of other well-

known magnetic sensors including giant magnetoresistance, flux-gate and superconducting quantum 

interference based devices which have noise floors of the order of 105 fT/Hz1/2, 103 fT/Hz1/2 and 

10 fT/Hz1/2, respectively, for frequencies between 1 Hz and 1 kHz [192, 198, 201]. 

 

 

Figure 6.1 a) Representation of the various types of bi-layered bending L-T composites studied in 

this work and the frame of reference. b) Operation principle of a ME bimorph under a bending 

deformation produced by an applied magnetic field. c) Optical micrograph of the “head-to-head” 

bidomain structure in a selectively etched lap of a 127ºY-cut single crystal of LNO obtained by the 

DA technique. 

 

Unlike the most commonly employed symmetric tri-layered structures, bi-layered bimorph 

or unimoph configurations with asymmetrical structures are able to produce bending resonant modes 
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at low frequencies [202]. The bimorphs, having oppositely poled layers (see Figure 6.1 a)), tend to 

generate larger ME effects under a flexural strain as illustrated in Figure 6.1 b) [203]. Furthermore, 

by rejecting deformations confined to the extensional mode, such structures also have an intrinsic 

ability to partially cancel both extrinsic vibrational and thermal noises [192, 193]. In practice, PE 

bimorphs are usually obtained by gluing or sintering together oppositely poled lead-based PE plates 

such as PZT or PMN-PT characterized by large PE and dielectric constants [202]. However, along 

with the mechanical losses associated with the bonded interfaces and their disruption after repeated 

straining, these structures are known to suffer from several intrinsic drawbacks which include low 

Curie temperatures (ca. 100ºC), large creep and ageing effects, hysteretic behavior and high 

commercial price. Nevertheless, since the ME voltage effect is known to be approximately 

proportional to the ratio between the PE and dielectric constants, lead-free single-crystalline 

ferroelectrics, poled and cut along desirable crystallographic directions, have already been shown to 

exhibit comparable ME effects in composites along with a much more stable performance [135, 137]. 

Recently we have shown that large ME effects could be obtained in composites containing LiNbO3 

(LNO) single crystals [128, 134]. LNO is an uniaxial trigonal ferroelectric (point group 3m) with a 

very linear PE behavior and a high Curie temperature of ca. 1210ºC [70]. In the single-crystal form, 

it also exhibits particularly small dielectric losses and multiple fundamental anisotropic EMR modes 

[191] with high quality factors [59]. In addition, single-crystalline LiNbO3 and LiTaO3 bidomains 

with strong linear bending deformations have recently been developed for applications in precision 

electromechanical actuators [204]. These bidomains consist of plates having two engineered 

ferroelectric macrodomains with inverted spontaneous polarization vectors along the thickness 

direction like in the case of a bimorph. This has been achieved using a stationary external heating 

(SEH) and, more recently, a diffusion annealing (DA) technique. The main advantage of these 

structures is a more efficient PE and elastic coupling between inverted domains than in the case of a 

bonded or sintered bimorph due to the absence of an intermediate viscous glue or diffusion interface 

between macrocrystals.  

In present work we propose the use of bidomain LNO single crystals produced by SEH and 

DA in bi-layered ME composites for applications in vector magnetic field and current sensors, and 

we study the ME properties of the respective laminate structures. As the MS phase we chose a Fe–

Ni-based amorphous Metglas alloy with very large relative magnetic permeability (𝜇𝑟 > 104) and 

piezomagnetic coefficients and a low saturation field [82, 86]. ME sensors are generally used in 

conjunction with voltage or charge amplifier schemes [58, 60, 62]. We note that the use of LNO 

crystals, in principle, will only be attractive in the former case because the latter is strongly favored 

by PEs with larger PE coefficients, irrespective of their dielectric constants (i.e. larger short-circuit 

charge ME coefficients in composites), such as PZT or PMN-PT [60, 197, 205]. We believe that such 
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LNO-based ME bimorphs potentially offer a sensitive, passive, low-frequency and high-temperature 

operation.  

 

6.2. Theoretical calculations 

 

In order to predict and better understand the behavior of bi-layered composites, as depicted 

in Figure 6.1 a), we used a low-frequency model based on the linear theory of piezoelectricity, 

magnetostriction and elastodynamics of thin plates [67, 124, 141, 206-212]. The composites were 

assumed to vibrate freely and to be formed by flat plates of PE and MS phases connected by means 

of epoxy and electroded on their top and bottom faces. The plates are also assumed to be perfectly 

bonded without any sliding interfaces, cracks or imperfections (i.e. the displacement fields are 

continuous across interfaces). Figure 6.1 a) shows the laminate frame of reference used in the 

calculations. The dimensions of the composites are length (𝑙) × width (𝑤) × thickness (𝑡), such that 

𝑙 = 𝑤 and 𝑙 ≫ 𝑡. Here, 𝑑 represents the position of the neutral plane where the z axis is centered, 𝑡𝑝− 

and 𝑡𝑝+ are the thickness of the bottom and top domains of the PE plate, respectively, 𝑡𝑝0 the 

thickness of the non-PE polydomain region between the domains, 𝑡𝑒 the thickness of the epoxy layer, 

and 𝑡𝑚 that of the MS phase. The total thickness of the structure is then 𝑡 = 𝑡𝑚 + 𝑡𝑝, where 𝑡𝑝 =

𝑡𝑝− + 𝑡𝑝0 + 𝑡𝑝+ + 𝑡𝑒 is the thickness of the PE plus epoxy layer. Starting from thermodynamic 

considerations, the constitutive equations for the PE phase, using the Einstein summation convention 

(with 𝑖, 𝑗, 𝑘 and 𝑙 ranging over the integers 1, 2 and 3), are given by [67, 208]:  

 

 𝑆𝑖𝑗 =  𝑠𝑖𝑗𝑘𝑙
𝐸 𝑇𝑘𝑙 + 𝑑𝑘𝑖𝑗𝐸𝑘 ; (6.1) 

 𝐷𝑖 = 𝑑𝑖𝑘𝑙𝑇𝑘𝑙 + 𝜀𝑖𝑘
𝑇 𝐸𝑘 , (6.2) 

 

where the upper case letters represent the material fields, with 𝑆𝑖𝑗 being the elastic strain tensor given 

by 𝑆𝑖𝑗 = (1/2) · (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), where 𝑢𝑖 is the displacement vector, 𝑇𝑘𝑙 is the elastic stress tensor, 𝐷𝑖 

the electric displacement vector and 𝐸𝑘 is the electric field vector equal to 𝐸𝑘 = −𝜙,𝑘, with 𝜙 being 

the electric potential. The lower case letters represent the material constant tensors, with 𝑠𝑖𝑗𝑘𝑙
𝐸  being 

the elastic compliance (given in units of 10–12 m2/N), 𝑑𝑘𝑖𝑗 the PE strain coefficient (given in units of 

pC/N), and 𝜀𝑖𝑘
𝑇  the dielectric permittivity (given in terms of relative permeability 𝜀𝑖𝑘

𝑇 /𝜀0). The values 

of the material constants for LNO where obtained from the literature [70]. Equations (6.1, 6.2) apply 
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to a PE poled in the z direction. For the case of the polarization pointing in a reverse direction, the 

constants are transformed by an inversion matrix, thus leading merely to a change of sign of the PE 

coefficients 𝑑𝑘𝑖𝑗 → −𝑑𝑘𝑖𝑗. In the non-PE polydomain layer the elastic and dielectric constants are 

assumed to be preserved, while the PE coefficients are null. For the isotropic epoxy layer, without 

taking into account the effect of viscosity, we consider the constants: 𝜀33
𝑇 /𝜀0 ≈ 2.5…6.0, 𝑑𝑘𝑖𝑗 = 0, 

𝑠11
𝐸  ≈ (274…310)×10–12 m2/N, 𝑠12

𝐸  ≈ (–72…–131)×10–12 m2/N and 𝜌 = 1.164 g/cm3 [213]. 

The constitutive equations for the MS phase may equivalently be given by [124, 141, 209-

212]: 

 

 𝑆𝑖𝑗 =  𝑠𝑖𝑗𝑘𝑙
𝐻 𝑇𝑘𝑙 + 𝑞𝑘𝑖𝑗𝐻𝑘 ; (6.3) 

 𝐵𝑖 = 𝑞𝑖𝑘𝑙𝑇𝑘𝑙 + 𝜇𝑖𝑘
𝑇 𝐻𝑘 , (6.4) 

 

where 𝐻𝑘 is the magnetic field strength, 𝐵𝑖 is the magnetic induction, 𝑞𝑘𝑖𝑗 is the piezomagnetic 

coefficient (given in units of ppm/Oe), and 𝜇𝑖𝑘
𝑇  is the magnetic permeability. In this equations we 

assumed a linear pseudo-piezomagnetic approximation parametrized by a bias field (𝐻0) dependent 

constant 𝑞𝑘𝑖𝑗, which is only valid for small variations of the magnetic field 𝐻𝑘 around this bias field 

value. In a traction-free Metglas layer the slope of the magnetostriction curve has a maximum of ca. 

4 ppm/Oe for a bias field of ca. 10 Oe, which was therefore taken as our 𝑞11 coefficient [86]. The 

remaining constants of this isotropic alloy are 𝑞12 = – 1.7 ppm/Oe, 𝑠11
𝐻  = 10×10–12 m2/N, 𝑠12

𝐻  = 

– 3.3×10–12 m2/N, and 𝜌 = 7.9 g/cm3 [86, 142, 214]. For simplicity we assume here that the highly 

conductive MS plate is in electrostatic and magnetostatic equilibrium, so that the electric 𝐸𝑖 and 

displacement 𝐷𝑖 fields are null and the magnetic field strength 𝐻𝑖 is constant inside it. Thus, the MS 

plate functions as the top equipotential electrode of the system. The thickness of the plate is also 

assumed to be small enough, so that the demagnetization effect may be disregarded for magnetic 

fields 𝐻𝑎 applied in the in-plane 𝑎 direction. 

In sufficiently thin plates under null stress loads it is suitable to assume the conditions 𝑇31 = 

𝑇32 = 𝑇33 = 0 everywhere [67, 206-208]. For fully electroded top and bottom equipotential surfaces, 

appropriate electrical conditions are 𝐸1 = 𝐸2 = 0 [67, 208]. Taking this into account, the constitutive 

equations for PE plates can therefore be written, using Voigt’s notation [208], in a more convenient 

form: 
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 𝑇𝑚 =  𝑐𝑚𝑛
𝐷̅̅ ̅̅ ̅𝑆𝑛 − ℎ3𝑚

̅̅ ̅̅ ̅𝐷3 ; (6.5) 

 𝐸3 = −ℎ3𝑛
̅̅ ̅̅ ̅𝑆𝑛 + 𝛽33

𝑆̅̅ ̅̅ 𝐷3 , (6.6) 

 

where 𝑚 and 𝑛 range over the integers 1, 2 and 6, and 𝑐𝑚𝑛
𝐷̅̅ ̅̅ ̅ = (𝑠𝑚𝑛

𝐸 −
𝑑3𝑚𝑑3𝑛

𝜀33
𝑇 )

−1
 with the superscript 

−1 indicating the inverse of the rank-3 matrix, ℎ3𝑚
̅̅ ̅̅ ̅ = 𝑐𝑚𝑛

𝐷̅̅ ̅̅ ̅ 𝑑3𝑛

𝜀33
𝑇  and 𝛽33

𝑆̅̅ ̅̅ =
1

𝜀33
𝑇 (1 + ℎ3𝑚

̅̅ ̅̅ ̅𝑑3𝑚). For the 

MS plates from equation (6.3) one has: 

 

 𝑇𝑚 =  𝑐𝑚𝑛
𝐻̅̅ ̅̅ ̅𝑆𝑛 − 𝑞𝑎𝑚̅̅ ̅̅ ̅𝐻𝑎 , (6.7) 

 

where 𝑐𝑚𝑛
𝐻̅̅ ̅̅ ̅ = (𝑠𝑚𝑛

𝐻 )−1 and 𝑞𝑎𝑚̅̅ ̅̅ ̅ = 𝑐𝑚𝑛
𝐻̅̅ ̅̅ ̅𝑞𝑎𝑛. 

According to the Kirchhoff-Love theory for thin flat plates, for small non-shear deformations 

the displacement fields may be in the first approximation written as linear continuous functions of 

the z coordinate in the form [206, 207]: 

 

 𝑢𝑎 = 𝑢𝑎
0 − 𝑧𝑤,𝑎

0  ; (6.8) 

 𝑢3 = 𝑤0 , (6.9) 

 

where the indexes 𝑎 and 𝑏 range over the in-plane 1 and 2 directions. Also, 𝑢𝑎
0 and 𝑤0 are fields 

which depend only on the in-plane coordinates x and y. Consequently, the only non-zero strains are 

the in-plane components 𝑆𝑎𝑏 = 𝑆𝑎𝑏
0 𝑒𝑥𝑡 − 𝑧𝑆𝑎𝑏

0 𝑓𝑙𝑒𝑥
= (1/2)(𝑢𝑎,𝑏

0 + 𝑢𝑏,𝑎
0 ) − 𝑧𝑤,𝑎𝑏

0 , where 𝑆𝑎𝑏
0 𝑒𝑥𝑡and 

𝑆𝑎𝑏
0 𝑓𝑙𝑒𝑥

represent the extensional and flexural strains, respectively. From the balance laws, the 

dynamical equations of motion for plates then follow [206, 207]: 

 

 𝑁𝑎𝑏,𝑏 = 𝐽1𝑢̈𝑎
0 − 𝐽2𝑤̈,𝑎

0  ; (6.10) 

 𝑀𝑎𝑏,𝑎𝑏 = 𝐽1𝑤̈0 + 𝐽2𝑢̈𝑎,𝑎
0 − 𝐽3𝑤̈,𝑎𝑎

0  , (6.11) 
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where 𝑁𝑎𝑏 = ∫ 𝑇𝑎𝑏
𝑡−𝑑

−𝑑
𝑑𝑧 is the resultant force, 𝑀𝑎𝑏 = ∫ 𝑧𝑇𝑎𝑏𝑑𝑧

𝑡−𝑑

−𝑑
 is the resultant moment in any 

vertical section of the plate, and 𝐽𝑖 = ∫ 𝑧𝑖−1𝜌𝑑𝑧
𝑡−𝑑

−𝑑
=  〈𝑧𝑖−1𝜌〉𝑡 are the averaged densities across the 

thickness of the composite. In order for the solutions of equations (6.10, 6.11) to be unique, boundary 

conditions must be imposed on the side surfaces of the plate. For the case of a traction-free composite 

these are [206, 207]: 

 

 𝑛𝑎𝑁𝑎𝑏 = 0 ; (6.12) 

 𝑛𝑎𝑀𝑎𝑏 = 0 ; (6.13) 

 𝑛𝑎𝑀𝑎𝑏,𝑏 = 0 , (6.14) 

 

where 𝑛𝛼 are unitary vectors normal to the side surfaces. The position of the neutral plane 𝑑 is 

generally equated using the equilibrium conditions for the resultant force and resultant moment, 

𝑁𝑚 = 0 and 𝑀𝑚 = 0, respectively, when the plate is in zero applied 𝐷3 and 𝐻𝑎 fields and the 

solutions 𝑆𝑛
0 𝑒𝑥𝑡 and 𝑆𝑛

0 𝑓𝑙𝑒𝑥
 are non-trivial [209, 215]. To simplify equations (6.10, 6.11), we use a 

harmonic approximation, where all the fields are assumed to have a harmonic time dependence of 

the type 𝑢𝑎 = 𝑢𝑎𝑒𝑗𝜔𝑡, where the phasor amplitude 𝑢𝑎 may take complex values. The time derivatives 

𝑢̈𝑎 thus transform into −𝜔2𝑢𝑎𝑒𝑗𝜔𝑡. 

The constant voltage amplitude developed between the bottom and top electrodes of the 

system, assuming that 𝐷3 does not depend on z and thus is continuous across the PE and epoxy layers, 

may then be written, taking into account the constitutive equation (6.6) and the displacement fields 

(6.8) and (6.9), as: 

 

 𝑉3 = ∫ 𝐸3𝑑𝑧
𝑡𝑝−𝑑

−𝑑
=  −〈ℎ3𝑛

̅̅ ̅̅ ̅〉𝑝𝑡𝑝𝑆𝑛
0 𝑒𝑥𝑡 + 〈𝑧ℎ3𝑛

̅̅ ̅̅ ̅〉𝑝𝑡𝑝𝑆𝑛
0 𝑓𝑙𝑒𝑥

+ 〈𝛽33
𝑆̅̅ ̅̅ 〉𝑝𝑡𝑝𝐷3 , (6.15) 

 

where the symbol 〈 〉𝑝 indicates an averaging across the thickness of the non-conductive layers 

(−𝑑 < 𝑧 < 𝑡𝑝 − 𝑑) and 〈 〉𝑚 - an averaging across the conductive MS layers (𝑡𝑝 − 𝑑 < 𝑧 < 𝑡𝑚 +

𝑡𝑝 − 𝑑). Solving this equation together with (6.10, 6.11) and taking into account the fields (6.5-6.9) 

allows one to obtain the spatial displacements / strains and 𝐷3 written as a linear function of the 𝑉3 

and 𝐻𝛼 constants. The current flowing through the composite in the z direction is then 𝐼3 =

𝑗𝜔 ∫ ∫ 𝐷3𝑑𝑥
𝑙

0
𝑑𝑦

𝑤

0
, thus giving a linear relationship between the three important constants 𝑉3, 𝐼3 and 
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𝐻𝑎. Noting that the electrical impedance of the system in the absence of a magnetic field (𝐻𝑎 = 0) is 

given by 𝑍 = 𝑉3/𝐼3 and the ME voltage coefficient under open-circuit conditions (𝐼3 = 0) is 𝛼E3𝑎 =

𝑉3/(𝐻𝑎 · 𝑡𝑝), this relationship may then be cast into the form 𝑉3 = 𝑍𝐼3 + (𝛼E3𝑎𝑡𝑝)𝐻𝑎, which 

completely describes the macroscopic electric and magnetic behavior of the composite.  

Since our LNO single crystals are highly anisotropic, their PE properties are strongly 

dependent on their crystallographic orientation (i.e. cut angle). Therefore, the optimization of this 

orientation as well as of other geometrical parameters may lead to greatly enhanced ME coefficients 

in composites. In order to estimate the maximum expected magnitude of the ME voltage coefficient 

for a series of bi-layered plates of Metglas / LNO, an averaging quasi-static model (i.e. at frequencies 

well below any EMR mode) is used. To the first order, all material fields (𝑇𝑚, 𝑆𝑛, 𝐸3, 𝐷3 and 𝐻𝑎) 

are replaced by homogeneous surface-averaged fields in each layer, so that the dependences of the 

in-plane x and y coordinates are eliminated. We also neglect the infinitesimal radial frequency 𝜔2 

terms. Consequently, equations (6.10, 6.11, 6.14) are immediately satisfied. The open-circuit 

condition is also simplified to 𝐼3 = 𝐷3 = 0. What is left is to solve equations (6.12, 6.13) which, in 

Voigt’s notation, transform into 𝑁𝑚 = 0 and 𝑀𝑚 = 0. In this case, the resulting ME coefficient and 

impedance don’t depend on the position of the neutral plane 𝑑 and thus it is convenient to replace 

this term with 𝑡𝑝/2 in the equations via a change of coordinates together with 𝑆𝑛
0 𝑒𝑥𝑡 being replaced 

by 𝑆𝑛
0 𝑒𝑥𝑡 ′ = 𝑆𝑛

0 𝑒𝑥𝑡 − (𝑡𝑝/2 − 𝑑)𝑆𝑛
0 𝑓𝑙𝑒𝑥

. Substituting the stresses given by (6.5) and (6.7) in 

equations (6.12, 6.13), one then obtains the strain components 𝑆𝑛
0 𝑓𝑙𝑒𝑥

 and 𝑆𝑛
0 𝑒𝑥𝑡 ′ written as linear 

functions of the magnetic field which are subsequently replaced in (6.15) to give the ME coefficient. 

Finally, we note that the material properties in the crystallographic frame of the PE crystal were 

transformed into the laminate frame of Figure 6.1 a) using a rotation matrix of the type Z1X2Z3 

described by the Euler angles 𝛼, 𝛽 and 𝛾  

The results of the maximum transversal ME coefficient (|𝛼𝐸3𝑎|) for a composite with a “tail-

to-tail” bidomain crystal with 𝑡𝑝− = 𝑡𝑝+ = 𝑡𝑝/2 = 0.25 mm, a Metglas layer with 𝑡𝑚= 29 μm, and 

without non-PE phases (𝑡𝑝0 = 𝑡𝑒 = 0), calculated as a function of the crystal orientation, are depicted 

in Figure 6.2 a). 
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Figure 6.2 a) Representation surface of the maximum estimated absolute transversal ME voltage 

coefficient |𝛼E3a| (across 0 < 𝛾 < 180º) as a function of the LNO crystal orientation (𝛼 and 𝛽 angles) 

for a Metglas/bimorph LNO composite. b) Calculated in-plane ME coefficients for composites with 

unimorph or bimorph LNO crystals as a function of its Y-cut angle 𝜃. c) Estimated ME 𝛼E32 

coefficients in systems with 127ºY-cut unimorph and bimorph LNO crystals as a function of the PE 

thickness ratio 𝑡𝑝/𝑡. The insets show the bending and extensional strains in the y direction. 

 

This shows that the ME effect is strongly dependent on the crystal orientation and is 

maximized for a 129oY-cut crystal (𝛼 = 0º, 𝛽 = 39º and 𝛾 = 90º) and five other cuts equivalent by 

symmetry. Figure 6.2 b) displays the same results for 𝛼E31 and 𝛼E32 in the case of bidomain and 

single-domain (with 𝑡𝑝− = 0 and 𝑡𝑝+ = 𝑡𝑝 = 0.5 mm) crystals as a function of the 𝜃 = 90 + 𝛽 cut 

angle around the x axis in relation to the plane parallel to the y direction. We see that both ME 

coefficients are maximized for crystals with approximately 127oY-cut angle and are, as expected, 

nearly twice as large in the composite with the bidomain crystal in comparison to the one with the 

unidomain crystal due to the dominance of the bending strain for this particular PE thickness ratio 

(𝑡𝑝/𝑡). The material constants for this important cut are: 𝜀33
𝑇 /𝜀0 = 49.16, 𝑑31 = 11.84 pC/N, 𝑑32 = 

– 26.70 pC/N, 𝑠11
𝐸  = 5.83×10–12 m2/N, 𝑠22

𝐸  = 6.92×10–12 m2/N, 𝑠12
𝐸  = – 1.74×10–12 m2/N, and 𝜌 = 

4.647 g/cm3 [70]. In addition, we note the existence of several other cuts which may also exhibit 

interesting relationships between the in-plane 𝛼E31 and 𝛼E32 coefficients for various vector-sensitive 

practical applications.  
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Figure 6.2 c) shows the variation in 𝛼E32, for the same bidomain and single-domain systems 

and a 127ºY-cut crystal, as a function of the thickness ratio of the PE phase 𝑡𝑝/𝑡. The insets of the 

figure display the y directed bending strain (−𝑆2
0 𝑓𝑙𝑒𝑥

) and extensional strain in the midplane of the 

PE plates (𝑆2
0 𝑒𝑥𝑡 ′) for an applied 𝐻2 field of 1 Oe. In the bidomain we observe an initial increase in 

𝛼E32 with increasing 𝑡𝑚 due to an increase in the bending strain produced by a thicker Metglas layer 

under the action of the in-plane magnetic field. However, as the thickness of the MS phase 

approaches that of the PE, the former starts bending less due to a decrease in the constraint produced 

by the latter which was originally responsible for the bending. Finally, when 𝑡𝑝/𝑡 is close to 0, the 

stress produced by the PE on the MS phase is negligible, and, therefore, the latter is strained in a 

purely extensional manner, as in the case of a free MS layer under an in-plane magnetic field. Since 

the voltage developed across the two domains is inverted in the bidomain, this case is associated with 

a null ME effect whereas a maximum effect is obtained in the single-domain composite. For a certain 

𝑡𝑝/𝑡, the thickness ratio of the top PE macrodomain, where the displacement is larger, that maximizes 

the amplitude of the output voltage in equations (6.15) can be shown to be given by 𝑡𝑝+/𝑡𝑝 = 1/2 −

ℎ3𝑛
̅̅ ̅̅ ̅𝑆𝑛

0 𝑒𝑥𝑡 ′/ℎ3𝑛
̅̅ ̅̅ ̅𝑆𝑛

0 𝑓𝑙𝑒𝑥
𝑡𝑝. In this case this optimal thickness ratio takes values between 0.61 and 0.65 

for 𝑡𝑝/𝑡 between 1 and 0.4. In conclusion, we see that the ME effect in the bidomain composite can 

be maximized at 95 V/(cm·Oe) for a 𝑡𝑝/𝑡 ratio of approximately 0.6, which corresponds to ca. 12 

layers of the commercially available 29 μm thick Metglas foil. [139].  

Along with the quasi-static case, the study of the ME composites operating under resonance 

conditions may also provide a useful insight into its behavior. Since, in general, exact analytical 

solutions to the bi-dimensional equations of motion (6.10, 6.11) are hard to find, we solved them for 

the special case of traction-free long bars with 𝑙 ≫ 𝑤 ≫ 𝑡 with the length direction and magnetic 

field directed along the x axis. In this case, it is pertinent for 𝑇𝑖𝑗 to vanish everywhere except for 𝑇11 

in this direction. Accordingly, the constitutive equations (6.5-6.7), equations of motion (6.10, 6.11) 

and boundary conditions (6.12-6.14) are reduced to a unidimensional problem (with 𝑚 = 𝑛 = 𝑎 = 

𝑏 = 1) [208, 216]. In the case of pure extensional vibrations, we set 𝑢1 = 𝑢1
0 in (6.8). Thus, equation 

(6.10) was solved together with (6.12) and constitutive equations (6.5,6.7) and (6.15) in order to 

obtain the frequency dependent complex admittance and ME coefficient: 

 

 𝑌 = 𝑗𝜔
𝑤𝑙

𝑡𝑝〈𝛽33
𝑆̅̅ ̅̅ ̅〉𝑝

(1 + 𝑡𝑝
〈ℎ31̅̅ ̅̅ ̅〉𝑝

2

〈𝛽33
𝑆̅̅ ̅̅ ̅〉𝑝

1

𝑡〈𝐶11〉𝑘
𝑙

2
cot(𝑘

𝑙

2
)
) ; (6.16) 

 𝛼E31 =  −
𝑡𝑚〈𝑞11̅̅ ̅̅ ̅〉𝑚〈ℎ31̅̅ ̅̅ ̅〉𝑝

𝑡𝑝

〈ℎ31̅̅ ̅̅ ̅̅ 〉𝑝
2

〈𝛽33
𝑆̅̅ ̅̅ ̅̅

〉𝑝
 +𝑡〈𝐶11〉𝑘

𝑙

2
cot(𝑘

𝑙

2
)

 , (6.17) 
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where 𝑘 = 𝜔√〈𝜌〉/〈𝐶11〉 is the wave number, and 〈𝐶11〉 =  (〈𝑐11
𝐷̅̅ ̅̅ 〉𝑝 − 〈ℎ31

̅̅ ̅̅̅〉𝑝
2/〈𝛽33

𝑆̅̅ ̅̅ 〉𝑝)(𝑡𝑝/𝑡) +

〈𝑐11
𝐻̅̅ ̅̅ 〉𝑚(𝑡𝑚/𝑡) is an effective extensional stiffness. These two expressions are valid for the case of a 

loss-free resonator. Mechanical energy losses may be taken into account through the use of complex 

elastic constants or a complex frequency 𝜔 = 𝜔′ − 𝑗𝜔′′ = 𝜔′(1 − 𝑗(1/𝑄)), where 𝑄 is the 

mechanical quality factor [124, 210, 211, 215]. Dielectric losses (𝜀33
𝑇′′

) and a non-zero conductivity 

(𝜎) of the PE plate can also be introduced through the complex dielectric constant 𝜀33
𝑇 = 𝜀33

𝑇′
−

𝑗(𝜀33
𝑇′′

+ 𝜎/𝜔) =  𝜀33
𝑇′

(1 − 𝑗tan(𝛿)), where tan(𝛿) is the loss tangent [190, 217]. For 𝑄 = ∞ and 

tan(𝛿) = 0, the resonance frequencies are defined as the frequencies at which 𝑌 asymptotically 

approaches ∞ ± 𝑗∞ and 𝛼E31 tends towards (−𝑡𝑚〈𝑞11̅̅ ̅̅ 〉𝑚〈𝛽33
𝑆̅̅ ̅̅ 〉𝑝/𝑡𝑝〈ℎ31

̅̅ ̅̅̅〉𝑝)(1 + 𝑗0) [67, 141]. These 

frequencies are given by: 

 

 𝑓𝑟𝑛 =
2𝑛−1

2𝑙
√

〈𝐶11〉

〈𝜌〉
 ,  𝑛 ∈ ℕ . (6.18) 

 

Likewise the antiresonance frequencies are defined as subsequent frequencies, obtained by 

setting the denominator of 𝛼E31 in equation (6.17) equal to zero, at which the impedance 𝑍 tends 

toward ∞ ± 𝑗∞ and 𝛼E31 has a critical point tending toward −〈𝑞11̅̅ ̅̅ 〉𝑚〈ℎ31
̅̅ ̅̅̅〉𝑝(±∞ − 𝑗∞) [67, 141]. 

At this point the amplitude of the voltage ME effect is thus largely enhanced due to a maximization 

of the volume averaged strain amplitude across the PE. Equations (6.16, 6.17) show that in the case 

of a PE bimorph with equally sized domains, since 〈ℎ31
̅̅ ̅̅̅〉𝑝 = 0, pure extensional deformations yield 

no resonant modes in 𝑌 and a zero ME effect. In the unimorph, because the amplitude of 〈ℎ31
̅̅ ̅̅̅〉𝑝 is 

maximized, the resonance frequency in (6.18) is minimized, and the amplitude of the resonant effect 

is maximized. 

As in the previous case, we may also assume pure bending vibrations with 𝑢1 = –z𝑤1
0 in 

(6.8). Hence, equation (6.11) may be solved together with (6.13,6.14) and constitutive equations 

(6.5,6.7) and (6.15) in order to yield the admittance and ME coefficient (disregarding the term 𝐽3𝑤̈,𝑎𝑎
0  

in (6.11) which is valid for a small enough wave number 𝑘 ≪ √2(𝐽1/𝐽3)): 

 

 𝑌 = 𝑗𝜔
𝑤𝑙

𝑡𝑝〈𝛽33
𝑆̅̅ ̅̅ ̅〉𝑝

(1 + 𝑡𝑝
〈𝑧ℎ31̅̅ ̅̅ ̅〉𝑝

2

〈𝛽33
𝑆̅̅ ̅̅ ̅〉𝑝

1
1

2
𝑡3〈𝐷11〉𝑘

𝑙

2
(cot(𝑘

𝑙

2
)+coth(𝑘

𝑙

2
))

) ; (6.19) 
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 𝛼E31 =  −
𝑡𝑚〈𝑧𝑞11̅̅ ̅̅ ̅〉𝑚〈𝑧ℎ31

̅̅ ̅̅ ̅〉𝑝

𝑡𝑝

〈𝑧ℎ31̅̅ ̅̅ ̅̅ 〉𝑝
2

〈𝛽33
𝑆̅̅ ̅̅ ̅̅

〉𝑝
 +

1

2
𝑡3〈𝐷11〉𝑘

𝑙

2
(cot(𝑘

𝑙

2
)+coth(𝑘

𝑙

2
))

 , (6.20) 

 

where 𝑘 = √𝜔(〈𝜌〉/(𝑡2〈𝐷11〉))
1/4

 is the wave number, and 〈𝐷11〉 =  (〈𝑧2𝑐11
𝐷̅̅ ̅̅ 〉𝑝 − 〈𝑧ℎ31

̅̅ ̅̅̅〉𝑝
2/

〈𝛽33
𝑆̅̅ ̅̅ 〉𝑝)(𝑡𝑝/𝑡3) + 〈𝑧2𝑐11

𝐻̅̅ ̅̅ 〉𝑚(𝑡𝑚/𝑡3) is an effective flexural stiffness (approximately thickness-

independent). The position of the neutral plane is obtained by setting 𝑁11 = 0, with 𝐷3 = 𝐻1 = 0, 

thus giving the expression 𝑑 = ∑ 𝑐11̅̅ ̅̅ 
𝑖 (𝑡𝑖

2 + 2𝑡𝑖 ∑ 𝑡𝑗
𝑖−1
𝑗=0 )/ ∑ 2𝑁

𝑖=1 𝑐11̅̅ ̅̅ 
𝑖 𝑡𝑖

𝑁
𝑖=1 , where 𝑐11̅̅ ̅̅ 

𝑖  and 𝑡𝑖 are the 

effective stiffness and thickness of the 𝑖-th material layer, respectively, and 𝑁 is the total number of 

layers. When 𝑄 → ∞, under resonance conditions 𝑌 tends toward ∞ ± 𝑗∞ and 𝛼E31 toward 

(−𝑡𝑚〈𝑧𝑞11̅̅ ̅̅ 〉𝑚〈𝛽33
𝑆̅̅ ̅̅ 〉𝑝/𝑡𝑝〈𝑧ℎ31

̅̅ ̅̅̅〉𝑝)(1 + 𝑗0). These resonance frequencies can be shown to be given 

by: 

 

 𝑓𝑟𝑛 =
2𝜒𝑛

 2𝑡

𝜋𝑙2 √
〈𝐷11〉

〈𝜌〉
,   𝑛 ∈ ℕ , (6.21) 

 

where the first 𝑛-th 𝜒𝑛 constants are ≈ 2.365, 5.498, 8.639, etc. This expression shows that the 

bending resonance frequency will be nearly proportional to the thickness of the bar and inversely 

proportional to the square of its length. Additionally, these resonances are followed by antiresonance 

modes, obtained by setting the denominator of 𝛼E31 in equation (6.20) equal to zero, where 𝑍 

approaches ∞ ± 𝑗∞, and 𝛼E31 has a critical point tending toward −〈𝑧𝑞11̅̅ ̅̅ 〉𝑚〈𝑧ℎ31
̅̅ ̅̅̅〉𝑝(±∞ − 𝑗∞). 

Equations (6.19, 6.20) show that in the case of a unimorph with a large PE volume ratio (i.e. with 

𝑡𝑝/𝑡 ≈ 1 and thus 𝑑 ≈ 𝑡𝑝/2), since 〈𝑧ℎ31
̅̅ ̅̅̅〉𝑝 = ℎ31

̅̅ ̅̅̅(𝑡𝑝
2 − 2𝑑𝑡𝑝)  ≈  0, pure bending deformations 

yield only weak resonant modes in 𝑌 and 𝛼E31. Furthermore, the resonance frequency in (6.21) is 

minimized and the amplitude of the resonant effects are maximized for a PE bimorph with equally 

sized domains since |〈𝑧ℎ31
̅̅ ̅̅̅〉𝑝| has a local maximum at 𝑡𝑝+/𝑡𝑝 = 1 − 𝑑/𝑡𝑝  ≈  1/2. Another 

important observation is that the bending resonance frequency may in principle be significantly 

decreased by using thinner and longer bars as well as a large volume ratio of the Metglas phase 

because of its comparatively larger density and compliance constants. Equation (6.20) further shows 

how the ME effect tends to decrease with an increasing thickness ratio of the non-PE phases. For 

small frequencies, the ME coefficient drops with the thickness ratio of the non-PE polydomain region 

between PE domains ca. as 1 − (𝑡𝑝0/𝑡𝑝)2 while the frequency of resonance increases slightly. It also 
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tends to drop very rapidly with the thickness ratio of the epoxy phase 𝑡𝑒/𝑡 while the frequency of 

resonance decreases. 

In order to investigate the intrinsic noise characteristics of the aforementioned composite 

from a theoretical point of view, we consider the equivalent circuit presented in Figure 6.3 a). As 

described in equation (6.15), the ME laminate can be modelled by its Thévenin equivalent circuit as 

a magnetically induced voltage source with 𝛿𝑉3 = (𝛼E3𝑎𝑡𝑝)𝛿𝐻𝑎 in series with its equivalent 

complex impedance 𝑍 [188, 209]. Due to the high-resistance capacitor-like nature of the composite, 

we may assume that in the frequency range of interest (102…106 Hz) the noise is dominated by the 

thermal Jonhson noise with a current noise spectral density of 𝑖𝑍 = √4𝑘𝑏𝑇𝑌′ [218, 219]. The 

Nyquist noise theorem then ascertains that the resultant spectral density of the voltage noise (in units 

of V/Hz1/2) in the open-circuited output of the ME composite can be given by [219]: 

 

 𝑒𝑍 = |𝑍|𝑖𝑍 = √4𝑘𝑏𝑇𝑍′ , (6.22) 

 

where 𝑘𝑏 is the Boltzman constant, 𝑇 is the temperature, and 𝑍′ and 𝑍′′ represent the real and 

imaginary parts of the impedance, respectively.  

Sufficiently far away from any EMR frequency we can assume the impedance of the 

composite to be formed by a capacitor 𝐶𝑝, with the capacitance 𝐶𝑝 = 𝐶(1 − 𝑗tan(𝛿)), in parallel 

with a resistor 𝑅𝑝, with the resistance 𝑅𝑝 = 𝑅, thus taking into account the dielectric loss (tan(𝛿)) 

and DC leakage resistance (𝑅). Substituting these parameters in equation (6.22) shows that this 

circuit behaves as a low-pass filter with a cut-off frequency of 1/2𝜋𝑅𝐶√1 + tan(𝛿)2 and the output 

RMS voltage noise ranging between √4𝑘𝑏𝑇𝑅 at very low and √4𝑘𝑏𝑇tan(𝛿)/(𝐶 tan(𝛿)2 + 𝐶) at 

very high frequencies. Thus, in order to minimize the noise level, one should use laminates with a 

large capacitance, small loss tangent and large resistance. To include the effects of a single EMR 

mode, it is common to add an equivalent series RCL circuit composed of a motional resistance (𝑅𝑚), 

capacitance (𝐶𝑚) and inductance (𝐿𝑚) in parallel with the previous RC circuit [67, 188, 209]. With 

this, the total noise spectral density of the composite given by (6.22) will additionally have a local 

maximum at the antiresonance frequency (𝑓𝑎 = 1/2𝜋√𝐿𝑚(𝐶𝑚𝐶/(𝐶𝑚 + 𝐶))) and a local minimum 

close to the resonance frequency (𝑓𝑟 = 1/2𝜋√𝐿𝑚𝐶𝑚), the latter being significant only for very small 

values of 𝑅 and large values of tan(𝛿). 
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To take the effects of the detection circuit into account, we assume it to be formed by a 

generic differential amplifier with a certain gain 𝐺 associated with a given input impedance (𝑍𝑎1 and 

𝑍𝑎2) between each input and the earth and a given current (𝑖𝑎) and voltage (𝑒𝑎) input noise spectral 

densities, as in the equivalent circuit shown in Figure 6.3 a). In this case, the total intrinsic noise 

spectral density at the output of the detection circuit, with 𝛿𝐻𝑎 = 0, is given by the expression: 

 

 𝑣𝑛 = |𝐺|√(4𝑘𝑏𝑇𝑍𝑒𝑞
′ )

2
+ (|𝑍𝑒𝑞|𝑖𝑎)

2
+ 𝑒𝑎

2 , (6.23)  

 

where 𝑍𝑒𝑞 is the equivalent impedance of the circuit equal to 𝑍||(𝑍𝑎1 + 𝑍𝑎2). The equivalent 

magnetic noise spectral density (given in units of T/Hz1/2), generated in this circuit in the absence of 

a magnetic field, may then be calculated through 𝑣𝑛/(𝑡𝑝|𝛼E3𝑎|). This parameter evaluates the 

minimum AC magnetic field detectable by the sensor and is maximized in structures with a small 

noise density and a large ME voltage output.  

Assuming an ideal detection circuit (i.e. with 𝐺 = 1, 𝑍𝑎1 = 𝑍𝑎2 = ∞, 𝑖𝑎 = 0 and 𝑒𝑎 = 0), we 

can estimate the intrinsic equivalent magnetic noise of a thin bar ME composite using equation (6.22) 

together with (6.19, 6.20). In this case, for low frequencies, well below any EMR, and for typical 

values of the material parameters, the equivalent magnetic noise density is approximately given by: 

 

 
𝑒𝑍

𝑡𝑝|𝛼E31|
≈ √

4𝑘𝑏𝑇

𝑡𝑤𝑙
(

𝑠11
𝐻

𝑞11
)

2
𝜀33

𝑇′

𝑑31
 2

1

𝑓
(

1

𝑄
+ tan(𝛿) (

𝑠11
𝐸 𝜀33

𝑇′

𝑠11
𝐸 𝜀33

𝑇′
−𝑑31

 2
)) ∙ f (

𝑡𝑝

𝑡
,

𝑡𝑝+

𝑡𝑝
,

𝑑31
 2

𝑠11
𝐸 𝜀33

𝑇′ ,
𝑠11

𝐻

𝑠11
𝐸 ) , (6.24) 

 

where f( ) is a dimensionless rational function of the thickness ratios between phases and its electrical 

and elastic constants. This suggests that, in principle, the detection limit of the system can be 

minimized through the control of its geometry and material parameters by the use of composites with 

a large volume (𝑡𝑤𝑙) and PEs with large PE coefficients and small dielectric constants (∝  𝜀33
𝑇′

/𝑑31
 2 ), 

as well as MS materials with large piezomagnetic and small compliance coefficients. The loss factors 

(1/𝑄 and tan(𝛿)) are responsible for the non-zero real part of the admittance in (6.19), and 

consequently the intrinsic thermal noise, and should also be small. This theoretical limit can be shown 

to be minimized when using a volume fraction of the PE LNO phase of ca. 0.65. Under resonant 

conditions, at a resonance frequency 𝑓𝑟𝑛 given by (6.21), the composite behaves somewhat 

differently, with its equivalent noise density being approximately: 
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𝑒𝑍

𝑡𝑝|𝛼E31|
≈ √

4𝑘𝑏𝑇

𝑡𝑤𝑙
(

𝑠11
𝐻

𝑞11
)

2

〈𝐷11〉
𝜒𝑛

 2

𝑓𝑟𝑛

1

𝑄′ ∙ g (
𝑡𝑝

𝑡
,

𝑡𝑝+

𝑡𝑝
,

𝑑31
 2

𝑠11
𝐸 𝜀33

𝑇′ ,
𝑠11

𝐻

𝑠11
𝐸 , 𝜒𝑛

 2) , (6.25) 

 

where g( ) is a different dimensionless function of the thickness ratios between phases and its 

electrical and elastic constants, and 1/𝑄′ = 1/𝑄 + tan(𝛿) ∙ h( ) is a loss factor with h( ) being 

another function of the thickness ratios and material constants. For the case of our composites, this 

function takes values of ca. 0.2 and thus 𝑄′ ≈ 𝑄 and the dielectric losses take a smaller role on the 

determination of the total energy losses. This expression also differs from the quasi-static case in that 

the electrical material properties of the PE now have a much smaller influence on the noise and it 

tends to decrease with increasing resonance frequency given by (2𝑡/𝜋𝑙2)√〈𝐷11〉/〈𝜌〉. The noise 

density can furthermore be shown to be minimized for a smaller volume fraction of the PE phase of 

ca. 0.45. Of note is the fact that this equation, together with equation (6.21), shows that, for a fixed 

volume ratio between the phases and starting with a reference geometry with length 𝑙0, width 𝑤0 and 

thickness 𝑡0, geometrically seen the only way to further decrease both the resonance frequency and 

equivalent magnetic noise is to change the dimensions in such a way that (𝑡/𝑡0)1/2 < (𝑙/𝑙0) < 

(𝑡/𝑡0)2(𝑤/𝑤0), mostly by increasing the volume of the composite, while keeping in mind that one 

should still have 𝑙 ≫ 𝑤 ≫ 𝑡 in order to preserve the validity of the model.  

The relations between various important coefficients at room temperature calculated for a 

composite thin bar (with 𝑙 = 10 mm and 𝑤 = 1 mm) of Metglas (with 𝑡𝑚= 29 μm) and a 127ºY-cut 

LNO bidomain crystal (with 𝑡𝑝= 0.5 mm and 𝑡𝑝− = 𝑡𝑝+ = 𝑡𝑝/2), and introducing typical values of 

tan(𝛿) = 0.7% and 𝑄 = 300, are depicted in Figure 6.3 b). The absolute impedance (|𝑍|) is shown to 

initially decrease with the frequency as 1/𝑓 while the thermal noise density (𝑒𝑍) and equivalent 

magnetic noise density (EMND) decrease with 1/√𝑓. The absolute impedance curve evidences the 

presence of bending EM resonance and antiresonance modes at frequencies of 30.04 and 31.88 kHz, 

respectively. The absolute impedance, thermal noise and absolute ME coefficient (|𝛼E32|) attain a 

local maximum of 9.7 MΩ, 400 nV/Hz1/2 and 1.6 kV/(cm·Oe), respectively, at the antiresonance 

frequency. Also, the equivalent magnetic noise evidences a wide minimum, as small as 438 fT/Hz1/2, 

between these two frequencies at 30.20 kHz. This frequency range is thus very interesting from the 

point of view of magnetic sensors. After this minimum, we see that the magnetic noise level increases 

with 𝑓 up to a maximum at 53 kHz, where the ME voltage is minimized and subsequently continues 

decreasing. Optimizing the volume ratio between phases can also be shown to further decrease the 

magnetic noise down to 57 pT/Hz1/2 at 1 Hz and 73 fT/Hz1/2 at resonance. For very low operation 
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frequency it is also useful to note that, just by decreasing the thickness of the LNO crystal to 0.1 mm 

and increasing the length and width of the composite to 50 mm and 5 mm, respectively, one may 

theoretically decrease the resonance frequency by two orders of magnitude down to 263 Hz while 

maintaining a respectable magnetic noise floor of 481 fT/Hz1/2. 
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Figure 6.3 a) Equivalent circuit of a ME composite and the detection circuit used in the noise 

analysis. b) Calculated frequency dependence of the absolute impedance (|𝑍|), intrinsic thermal noise 

density (𝑒𝑍), absolute ME coefficient (|𝛼E32|) and equivalent magnetic noise density (EMND) of a 

thin-bar composite (with 𝑙 = 10 mm and 𝑤 = 1 mm) of Metglas (29 μm thick) and a 127ºY-cut 

symmetric bidomain LNO crystal (0.5 mm thick). 
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6.3. Experimental details 

 

A bulk ferroelectric bidomain structure has been formed in commercial (ELAN Company 

Ltd.) single-crystalline 10×10×0.5 mm3 plates of congruent 127ºY-cut LNO by SEH and DA 

methods in the absence of any external electric fields [204]. The structures comprised two equally 

sized macrodomains with opposite spontaneous polarization vectors and a narrow non-piezoelectric 

boundary polydomain area in the middle plane. These two methods are recognized for their ability 

to form macroscopic bidomain structures in plates with large areas (up to 10 cm2) within relatively 

small time intervals of less than 3 h and to precisely control the position of the interface between 

domains through the tuning of specific experimental parameters. In greater detail, the SEH method 

is based on the creation of a dual-sign temperature gradient distribution throughout the plate 

thickness, achieved through stationary external light heating in an inert atmosphere of pure nitrogen, 

required for the controlled formation of two single domains with opposite “head-to-head” 

polarization vectors [204]. This is based on the fact that projections of the spontaneous polarization 

vectors will tend to align in the direction opposed to that of the volume temperature gradient 

following cooling of the sample through its Curie temperature (Tc ≈ 1210ºC) from the paraelectric to 

the ferroelectric state [220]. Further experimental details of this method can be found in Ref. [204]. 

The transition interdomain region produced by this technique in LNO crystals can be visualized by 

optical microscopy using a technique of selective etching of polished angle laps and by piezoresponse 

force microscopy having identified irregular shapes with a width between crests of up to 260 μm 

[221, 222]. The average deformation of this rough region is ca. null under an applied electric field 

and thus it can be seen as non-PE. In the second, more recently developed technique of DA, 

appropriate conditions for a directed in- and out-diffusion of Li2O during high-temperature annealing 

of the substrates in air near their Curie temperature were created in order to form “tail-to-tail” and 

“head-to-head” bidomain structures. In this case, one of the domains is gradually reversed from the 

surface to the bulk in a built-in electric field due to an inhomogeneous distribution of ionized 

impurities and / or defects that appear during the diffusion process in the single-domain LNO or LTO 

[203, 223]. Figure 6.1 c) shows an optical micrograph of the “head-to-head” bidomain structure 

obtained in an etched 0.5 mm thick 127ºY-cut LNO crystal produced by DA. The interdomain region 

here appears to be smoother than in the case of the bidomains fabricated by SEH having a width of 

only ca. 45 μm. 

In order to fabricate the bilayered ME composites, up to 5 layers of commercial 29 μm thick 

flexible foils of the 2826MB type (Fe0.4–0.5Ni0.4–0.5Mo0.05–0.1B0.01–0.05) amorphous Metglas® alloy 

(Hitachi Metals Europe GmbH) with an area of 10×10 mm2 were bonded to the top face of single-
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domain and bidomain 127ºY-cut LNO crystal plates using an epoxy resin. The structures were 

subsequently cured at room temperature for 24 h under an applied vertical compressive stress. For 

comparison, an asymmetric bimorph composite was also obtained by gluing together two oppositely 

polarized (in a “head-to-head” fashion) 0.25 mm thick 127ºY-cut LNO crystals with epoxy, where 

one of the crystals was rotated by 180º about its x axis (i.e. the [100] crystal direction). To investigate 

the PE and EM parameters of the crystals, impedance measurements were carried out using a simple 

I-V circuit in conjunction with a lock-in amplifier (Zurich Instruments®, HF2LI). In order to identify 

the nature of the EMR modes in the PE plates with a good accuracy, numerical simulations of the 

impedance spectra were performed by solving equations (6.10-6.15) using a finite element method. 

To study the ME and noise properties of the composites, measurements of the direct ME effect were 

performed under quasi-static (@ 1 kHz) and EMR conditions. A dynamic lock-in technique using a 

home-made setup described elsewhere [128, 224] was employed. Essentially, the samples were 

placed in the centre of a collinear Helmholtz coil and an electromagnet responsible for the generation 

of a small amplitude AC (𝛿𝐻𝑎) and a DC bias (𝐻) magnetic fields, respectively. The amplitude and 

phase of the voltage (𝛿𝑉3) induced across the samples were subsequently measured with the help of 

the lock-in amplifier, and the ME coefficients were calculated through 𝛼E3𝑎 = 𝛿𝑉3/(𝑡𝑝 · 𝛿𝐻𝑎). In 

order to minimize the effect of the electromotive force appearing in the input due to the Faraday 

induction in the cables, a shielded balanced line with differential detection was used. The remaining 

parasitic signal with an amplitude of about 81 mV/(Oe·MHz) and 90º out-of-phase with the applied 

AC field, as measured with a non-ME reference sample, was subtracted from the final results. In the 

noise measurements, the samples and coils responsible for the generation of the DC field were placed 

inside a home-made Metglas-coated container designed to shield its interior from stray magnetic and 

electromagnetic fields and external vibrations. The RMS voltage induced between the electrodes of 

the samples was then measured by the lock-in without an applied AC magnetic field.  

 

6.4. Results and discussion 

 

The results of the impedance measurements performed on the 127ºY-cut LNO crystals with 

a single ferroelectric domain (unidomain), two “head-to-head” domains produced by SEH (bidomain 

H-H SEH), two “head-to-head” or “tail-to-tail” domains produced by DA (bidomain H-H DA and 

bidomain H-H DA, respectively) and two LNO crystals glued with epoxy in a “head-to-head” fashion 

(bimorph H-H) are show in Figure 6.4 a). Some of the most important parameters obtained in this 

part are summarized in Table 6.1. The values of capacitance (𝐶 and dielectric loss tangent tan(𝛿)) 
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of the crystals were determined from the low frequency (𝑓 < 1 kHz) part of the spectrum. We note 

that the obtained capacitance values generally are close to the value predicted by 𝐶 = 𝜀33
𝑇 𝑤𝑙/𝑡𝑝 = 

87 pF. The only exception is the capacitance of 56 pF obtained for the bimorph H-H sample, which 

is strongly influenced by the intermediate epoxy layer. In fact, using the expression 𝐶 = 

𝑤𝑙/(𝑡𝑝/𝜀33
𝑇  + 𝑡𝑒/ 𝜀 

𝑒
33
𝑇 ), where 𝑡𝑒 is the thickness and 𝜀 

𝑒
33
𝑇  the dielectric permittivity of the epoxy 

layer ( 𝜀 
𝑒

33
𝑇 /𝜀0 ≈ 2.5…6.0), allows one to estimate the first as 𝑡𝑒 ≈ 14…34 μm. The tan(δ) parameters 

are about 0.75% in both unidomain and bidomain samples produced by DA and twice as much in the 

bimorph H-H and bidomain H-H SEH ones, thus demonstrating higher dielectric losses possibly due 

to a thicker interdomain region of epoxy in the former and a larger conductivity in the latter due to a 

big amount of intrinsic defects introduced by the SEH technique. Therefore, we conclude that the 

bidomain crystals produced by DA seem to exhibit more desirable properties in the quasi-static 

regime.  

At higher frequencies we observe, as expected, multiple excited EMR modes in the 

impedance spectra which differ for the single and bidomain crystals. The latter yields various low-

frequency (24…31 kHz) peaks which should be associated with bending-type resonance modes and 

are absent in the former. The unidomain crystal, on the other hand, exhibits multiple higher-

frequency (250…340 kHz) resonances which should be associated with in-plane extensional contour 

modes of vibration and are mostly absent in the bidoman crystals. To attest this, we compare the 

resonance frequencies measured experimentally with those calculated with equations (6.18) and 

(6.21) for long thin bars. Substituting the material constants and geometrical parameters in equation 

(6.21) yields 〈𝐷11〉 = 1.30×1010 and 〈𝐷22〉 = 1.16×1010, and thus frequencies of 31.45 kHz and 

29.74 kHz for the fundamental pure bending resonances of the bidomains in the x and y directions, 

respectively. These values are close to the experimental ones, especially those obtained in the 

bidomain T-T DA crystal. Deviations between the resonance frequencies of different samples are in 

part due to small variations in their geometry and thickness ratios between phases. Also, higher 

overtones of these modes are observed at ca. 5.4, 13.3, … times the fundamental frequency as 

predicted by equation (6.21). As for the extensional modes in the unidomain crystal, equation (6.18) 

gives 〈𝐶11〉 = 1.72×1011, 〈𝐶22〉 = 1.44×1011 and thus fundamental frequencies of 303.75 kHz and 

278.75 kHz for resonances in the x and y directions, respectively, and higher harmonics at odd 

multiples of these frequencies, which is in agreement with the observations.  
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Figure 6.4 a) Impedance spectra (|𝑍| vs 𝑓) of the unidomain, bimorph and bidomain 127ºY-cut LNO 

crystals. Some of the observed bending and contour EMR modes are labeled as Bin and Ci, 

respectively. b) Nyquist plot (𝑍’’ vs 𝑍’) for the crystals operating in the range of the fundamental By1 

bending mode of antiresonance (23…33 kHz). c) Spatial deformation of the crystals associated with 

some of the EMR modes in the impedance measurements as simulated by the final element method. 

On the color scale, the red and blue regions correspond to large and small displacement amplitudes 

(|𝑢|), respectively. Note that the displacements shown are largely exaggerated for the sake of clarity. 
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The resonance modes identified using a finite element method appear labelled in Figure 

6.4 a), and some of them are plotted in Figure 6.4 c). We see that in the bidomain crystals the 

fundamental bending modes are characterized by a saddle-like deformation, which occurs because 

the in-plane PE coefficients (𝑑31 and 𝑑32) have different signs. These bending modes appear in pairs, 

By1 being closely related to the pure bending mode in the y direction and Bx1 with the one in the x 

direction. The amplitudes of the |𝑍| peaks are larger in the former because |𝑑32| > |𝑑31|. The smaller 

peaks By2, Bx2, etc. correspond to higher harmonics of the fundamental modes in the y and x 

directions, respectively.  

 

Table 6.1 Summary of some of the most important experimental impedance properties of the LNO 

crystals and ME properties of the bilayered composites. Here, 𝐶 and tan(𝛿) are the parallel 

capacitance and loss tangent measured at low frequency (< 1 kHz), respectively, 𝑓𝑟 and 𝑓𝑎 are the 

resonance and antiresonance frequencies of the fundamental EMR bending mode (By1), |𝑍| is the 

peak impedance amplitude in antiresonance, 𝑘𝑒𝑓𝑓 is an effective electromechanical coupling factor 

(𝑘𝑒𝑓𝑓
2 = (𝑓𝑎

2 − 𝑓𝑟
2)/𝑓𝑎

2), 𝑄 is the mechanical quality factor, 𝛼E31 and 𝛼E32 are the quasi-static ME 

coefficients, 𝑓𝑎
𝑀𝐸 is the resonance frequency of the ME effect for the fundamental bending mode, 

and |𝛼E32(𝑓𝑎
𝑀𝐸)| is the amplitude of the ME response under such conditions. 

Sample Unidomain 
Bimorph 

H-H 

Bidomain 

H.H SEH 

Bidomain 

H-H DA 

Bidomain 

T-T DA 

𝑪, pF 80.8 56.0 84.1 74.4 76.1 

𝐭𝐚𝐧(𝜹), % 0.73 1.48 1.49 0.80 0.70 

𝒇𝒓, kHz – 23.87 26.57 27.96 28.96 

𝒇𝒂, kHz – 24.65 27.35 29.22 30.40 

|𝒁|, MΩ – 4.19 1.41 6.24 14.71 

𝒌𝒆𝒇𝒇 – 0.250 0.237 0.290 0.305 

𝑸 – 445 365 849 2263 

𝜶𝐄𝟑𝟏, 

V/(cm·Oe) 
–0.50 0.29 0.30 0.30 –0.41 

𝜶𝐄𝟑𝟐, 

V/(cm·Oe) 
0.81 –1.06 –0.74 –0.95 1.88 

𝒇𝒂
𝑴𝑬, kHz 31.20 25.55 28.20 30.35 30.82 

|𝜶𝐄𝟑𝟐(𝒇𝒂
𝑴𝑬)|, 

V/(cm·Oe) 
82.8 242.0 131.5 233.2 462.7 
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Figure 6.4 b) shows the Nyquist plots of the active (𝑍′) and reactive (𝑍′′) parts of the 

impedance near the antiresonance frequency of the fundamental By1 mode measured in the studied 

bidomain crystals. Comparing the amplitudes of the 𝑍′ peaks and the 𝑄 factors associated with this 

mode (see Table 6.1) shows that the larger values are obtained in the T-T DA crystal followed by H-

H DA, bimorph and H-H SEH. The unidomain PE is shown to exhibit no bending resonance modes 

yielding instead three strong fundamental contour modes at frequencies of the order of 300 kHz 

labelled Cy, Cxy, and Cx. From their displacement profile shown in Figure 6.4 c) we conclude that Cy 

and Cx are roughly similar to pure extensional modes in the y and x directions, respectively, and Cxy 

is a combination of the two. A much weaker version of these modes also seems to be present in the 

bidomain H-H SEH crystal, which is probably due to some small difference in volume between both 

domains. Smaller overtones of the fundamental contour modes are also observed in the unidomain 

sample at approximately odd multiples of their frequencies. Finally, we note in this crystal the 

presence of a wide EMR peak at a much higher frequency of ca. 7 MHz. This should correspond to 

the standard thickness extensional mode predicted to occur at around this frequency [67, 203, 208]. 

In the single-domain crystal, thickness modes are expected at odd multiples of this fundamental 

frequency, while in a bidomain crystal such modes should only be observed at twice these frequencies 

[203, 208]. Thus, we conclude that the weak thickness modes observed at ca. 7 MHz in the bidomain 

and not in the bimorph crystals must be an indication of the roughness or off-centered position of the 

interdomain boundary.  
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Figure 6.5 Quasi-static in-plane direct ME coefficients a) |𝛼E31| and b) |𝛼E32| measured as a 

function of the magnetic bias field in the bi-layered composites with single-domain and bidomain 

127ºY-cut LNO crystals (with 𝑓 = 1 kHz and 𝛿𝐻 = 1 Oe). The phase of the ME coefficient with 

respect to the AC magnetic field is shown in the inset. 

 

In conclusion, the impedance measurements of the crystals have suggested that the bidomain 

crystals produced by DA, especially the T-T ones, seem to offer a better PE performance under quasi-

static and bending resonance conditions in comparison to the bidomain H-H SEH, bimorph and 

unidomain crystals.  

After measuring the impedance of the crystals, the bilayered ME composites have been 

prepared and the ME measurements performed. Figure 6.5 shows the results for the quasi-static (with 

𝑓 = 1 kHz and 𝛿𝐻 = 1 Oe) ME coefficients (|𝛼E3𝑎| and phase) measured as a function of an applied 

bias field in the x (𝛼E31) and y (𝛼E32) directions. We start the analysis by noting that the observed 

ME curves follow the typical piezomagnetic 𝑞 =  𝜕𝑆/𝜕𝐻 curves of Metglas which are maximized at 

ca. 16 Oe and go to zero as the magnetization saturates [82, 87, 92]. We also see that the 𝛼E31 

coefficients differ from the 𝛼E32 ones, which is a consequence of the anisotropy of the PE crystals. 

In general, the maximum 𝛼E32 values are about three times larger than the 𝛼E31 ones and have 

different signs because 𝑑32 ≈ – 3𝑑31. This is qualitatively in agreement with the values predicted in 

the above calculations. The sign of the coefficients also agrees with that of the unidomain and T-T 

bidomain samples having an opposite sign as compared to the H-H ones. The large quantitative 
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difference between the calculated and experimental values can be explained by a far-from-prefect 

mechanical coupling between the MS and PE phases due to the rough intermediate viscous epoxy 

layer, a deviation from the assumption of perfectly defined ferroelectric domains with a centered 

boundary and the fact that the 𝑞 coefficients of Metglas are in reality strongly non-linear and decrease 

under a compressive pre-stress from the PE phase in the direction of the applied bias field [56, 161, 

225, 226]. Generally we see that the maximum |𝛼E32| coefficients are larger in the bidomain samples 

as compared to the unidomain ones. In particular |𝛼E32| is ca. twice as large in the T-T DA sample, 

just as predicted by the calculations. This provides a signature of performance of the T-T sample 

which should thus be near to the case of the ideal bimorph.  

The results of the dynamic ME measurements performed as a function of the frequency of 

the AC field (with 𝛿𝐻 = 0.1 Oe and 𝑓 up to 600 kHz) and in a bias field of 16 Oe in the y direction 

are plotted in Figure 6.6. We see that the 𝛼E32 coefficients yield notable peaks in amplitude 

corresponding to the EMR of the PE crystals which are closely related to the peaks observed in the 

impedance measurements. At resonance the ME coefficients are enhanced approximately by the 

factor 𝑄 in relation to their quasi-static counterparts [188, 209]. Because these measurements were 

made under open-circuit conditions, the peaks in the ME effect should correspond to the 

antiresonance frequencies of the samples, where the impedance and averaged strains (i.e. overall 

deformation) are maximized [190, 191, 217]. As predicted, we see that the lower-frequency bending 

EMR modes are strong in the bidomain samples and almost absent, although very sharp, in the 

unidomain ones. The reverse is verified in relation to the higher-frequency contour modes. Unlike in 

the impedance measurements though, only a single fundamental bending mode is excited. This must 

correspond to a combination of the in-plane modes labelled By1 and Bx1, although much closer to the 

former, because the bias and AC fields were applied and the Metglas layers was deformed mostly in 

the y direction (i.e. |〈ℎ32
̅̅ ̅̅̅〉𝑝〈𝑞22̅̅ ̅̅ 〉𝑚| > |〈ℎ31

̅̅ ̅̅̅〉𝑝〈𝑞21̅̅ ̅̅ 〉𝑚|). The ME coefficient in the unidomain sample 

associated with the Cy contour mode is larger than the Cx one, also partially due to the same reason. 

The presence of weak contour resonant ME effects in the bidomain samples must be due to a small 

effective off-centering of the interface between domains (i.e. 𝑡𝑝+ ≠ 𝑡𝑝−), thus resulting in a non-zero 

averaged coefficient 〈ℎ31
̅̅ ̅̅̅〉𝑝 in equation (6.17).  
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Figure 6.6 Resonant direct ME coefficients (𝛼E32) measured as a function of the frequency of the 

AC magnetic field in the bi-layered composites with single-domain and bidomain 127ºY-cut LNO 

crystals (with 𝐻 = 16 Oe and 𝛿𝐻 = 0.1 Oe). a) Results of |𝛼E32| in the range of the fundamental 

bending and contour EMR modes and b) Nyquist plot (𝛼E32′′ vs 𝛼E32′) in the range of up to 600 kHz. 

 

Figure 6.6 b) shows the Nyquist plot of the ME coefficients separated into the real (𝛼E32′) 

and imaginary (𝛼E32′′) parts. As predicted by the theory, we see that close to the antiresonance 
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frequency these coefficients are approximately proportional to 𝑗𝜔𝑍, where 𝑍 is the complex 

impedance of the samples which nearly corresponds to the impedance of the crystals plotted in Figure 

6.4 b) [191, 209]. Furthermore, the sign of the maximum imaginary part of 𝛼E32 is associated with 

the sign of −〈ℎ31
̅̅ ̅̅̅〉𝑝, for the contour modes, and −〈𝑧ℎ31

̅̅ ̅̅̅〉𝑝, for the bending modes, as shown in 

equations (6.17, 6.20). These effective extensional and flexural PE coefficients have different signs 

for one and the same sample when 0 ≤ 𝑡𝑝+/𝑡 ≤ 0.5, thus resulting in ME contour and bending peaks 

with different signs. As in the case of the quasi-static effects, we see that a large bending resonant 

coefficient of up to 463 V/(cm·Oe) was obtained in the bidomain T-T DA sample at 30.8 kHz 

followed by 242 V/(cm·Oe) in the bimorph H-H, 233 V/(cm·Oe) in the bidomain H-H DA, 

131 V/(cm·Oe) in the bidomain H-H SEH, and only 83 V/(cm·Oe) in the unidomain sample. The 

ME effects under contour resonance conditions in the single-domain sample are also shown to be of 

the same magnitude as the ME effects under the bending resonant condition in the bidomain samples.  

It is worth to note the fact that the bending ME effect was found to be nearly twice as large 

in the bidomain T-T DA sample in contrast to the bimorph one obtained by simply bonding two 

oppositely poled PE plates, both under quasi-static and resonance conditions. This proves the 

superiority of the DA technique in the fabrication of the bidomain structure in LNO crystals with a 

relatively smooth and thin transition region between domains, thus maximizing the elastic coupling 

between them. The DA technique could therefore be more useful, e.g., in the fabrication of ME-

based magnetic field sensors or actuators operating at low frequencies in the bending regime. Also, 

though from a theoretical point of view one would expect the ME response to be equivalent in H-H 

and T-T ideal bimorphs, with the exception of a change in sign, in practice we identified a much 

larger effect in the T-T sample produced by DA. This should be related to a difference in the 

ferroelectric microstructure of the crystals which originates as a consequence of the different DA 

processing conditions. The identification of the exact physical mechanisms responsible for the 

observed effect is outside the scope of this work and requires further investigation. In the group of 

the composites with two ferroelectric domains, the bimorph produced by SEH yielded smaller effects 

which are related to the highly irregular interdomain region. Thus, some improvements still have to 

be made in this technique.  

Having found the best low-frequency ME properties in the composite containing the 127ºY-

cut bidomain T-T crystal produced by DA, we performed noise measurements in this sample. These 

were made using the same setup as in the ME measurements while shielding the system from external 

stray magnetic fields. Figure 6.7 a) shows the results of these measurements in the form of the noise 

spectral density as a function of the frequency (in the 10…100 kHz range) in an optimal applied bias 

field of 16 Oe in the y direction.  
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Figure 6.7 a) Noise spectral density measured as a function of the frequency in the systems composed 

of the bi-layered composite with a bidomain T-T 127ºY-cut LNO crystal produced by DA and 

detection circuits consisting of simply the lock-in amplifier (LI) or AD8541 pre-amplifier plus lock-

in (with an applied magnetic bias 𝐻 = 16 Oe and AC fields 𝛿𝐻 = 0 and 𝛿𝐻 = 540 pT). Superimposed 

are the theoretical noise components originated in the sample and detection circuits calculated using 

an equivalent circuit model. b) Experimental and calculated equivalent magnetic noise spectral 

density of the samples and detection circuit (LI and AD8541). 
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First of all, we note that the top line with a constant slope in Figure 6.7 a) represents the 

noise density floor measured at the input of the lock-in amplifier (LI) in the absence of the ME 

composite (i.e. with 𝑍 → ∞). This curve is consistent with the theoretical one calculated using 

expression (6.23), associated with the equivalent detection circuit shown in Figure 6.3 a), and using 

the LI parameters 𝐺 = 1, 𝑍𝑎1= 𝑍𝑎2 = 1 MΩ||20 pF, 𝑒𝑎 = 1 nV/Hz1/2 and 𝑖𝑎 = 10 pA/Hz1/2.  

The noise density measured for the complete system composed of the sample and lock-in is 

also represented. As predicted in Section 2, we see that the noise drops in this range approximately 

as 1/𝑓 and has a local minimum and maximum corresponding to the EM resonance and 

antiresonance of the impedance of the laminate, respectively. This result is shown to be well fitted 

with the noise calculated using equation (6.23) and the following equivalent parameters for the ME 

composite: 𝑅 = 1 GΩ, 𝐶 = 60 pF, 𝐿𝑚 = 5.0 H, 𝐶𝑚 = 5.55 pF, 𝑅𝑚 = (1/𝑄). √𝐿𝑚/𝐶𝑚, 𝑄 = 300 and 

tan(𝛿) = 0.7%. Therefore, the dominant noise contribution should be attributed to the Johnson noise. 

As predicted by equation (6.23), the small decrease in the noise density observed between this case 

and the preceding one should be due to a decrease in the equivalent impedance of the circuit, 𝑍𝑒𝑞= 

𝑍||(𝑍𝑎1 + 𝑍𝑎2).  

The maximum peak noise under antiresonance conditions at 𝑓𝑎 = 30.8 kHz is related to the 

peak in the real part of the impedance of the composite. The pronounced local minimum close to the 

resonance frequency at 𝑓𝑟 = 30.2 kHz, on the other hand, mostly appears as a consequence of the 

relatively large input current noise density 𝑖𝑎 of the lock-in. This current noise flows through the 

equivalent impedance of the circuit contributing to the total noise with a voltage |𝑍𝑒𝑞|𝑖𝑎, which is 

particularly small at resonance, where |𝑍| is minimized, thus giving rise to the local minimum. In 

quantitative terms, this spectrum demonstrates a noise density of 11.3 μV/Hz1/2 for a low frequency 

of 1 kHz, 23.8 nV/Hz1/2 at EM resonance, and 4.3 μV/Hz1/2 at EM antiresonance of the sample. These 

values are quite large, thus reflecting the strong effect introduced by the circuit of the lock-in 

amplifier.  

To prove this, we plotted in Figure 6.7 a) the calculated component of the voltage noise due 

solely to the ME composite as obtained by equation (6.22). This curve shows a noise level up to three 

orders of magnitude lower than that measured off resonance. It also exhibits a single peak 

corresponding to the antiresonance peak of the impedance. The values obtained in this case are 

9.8 nV/Hz1/2 at 1 kHz, 7.2 nV/Hz1/2 at EM resonance, and 95.9 nV/Hz1/2 at EM antiresonance. Even 

so, when applying a field of just 𝛿𝐻 = 540 pT to the system composed of the ME composite and 

lock-in, we see that this field is easily detected with a good signal-to-noise ratio for frequencies above 

ca. 10 kHz.  
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We note at this point that some commercial operational amplifiers offer input current noises 

lower than 0.1 fA/Hz1/2 and input voltage noises lower than 1 nV/Hz1/2 [227]. In order to decrease 

the noise of the detection circuit we experimented with a readily available CMOS AD8541 

operational amplifier with a low reported input bias current of 4 pA and small input current noise 

density (< 0.1 pA/Hz1/2). The amplifier was connected in the non-inverting buffer amplifier 

configuration, biased with a 10 MΩ resistor between inputs, and the ouput voltage was measured 

with the lock-in amplifier operating in its 50 Ω input mode. The obtained result is plotted in Figure 

6.7 a) and depicts a significant reduction of the noise level of the system. This is consistent with the 

values calculated using the circuit model together with the circuit parameters 𝐺 = 1, 𝑍𝑎 = 10 MΩ, 

𝑒𝑎 = 65 nV/Hz1/2 and 𝑖𝑎 = 0.1 pA/Hz1/2. Off resonance the noise level thus dropped by almost two 

orders of magnitude being limited by the relatively large input voltage noise of the operational 

amplifier (𝑒𝑎) for frequencies above ca. 10 kHz. At antiresonance we observe a single small peak in 

the noise which can be attributed to the peak in the impedance of the composite. In conclusion, using 

this improved detection circuit we obtained a noise spectral density of just 151 nV/Hz1/2 for a low 

frequency of 1 kHz, 67 nV/Hz1/2 at EM resonance, and 152 nV/Hz1/2 at EM antiresonance of the 

sample. Comparing the measurements performed with the low input voltage and current noise 

detection circuits, of note is the fact that the minimum equivalent magnetic noise of the system 

operating at EMR conditions is only weakly affected by the noise characteristics of these detection 

circuits. 

Using the expression 𝛿𝐻𝑚𝑖𝑛/√∆𝑓 = 𝑣𝑛. √𝑆𝑁𝑅/|𝛼E32|. 𝑡𝑝, where ∆𝑓 is the detection 

bandwidth and 𝑆𝑁𝑅 is the signal-to-noise ratio, allows us estimating the minimum AC magnetic field 

detectable by this system. With 𝑆𝑁𝑅 = 1 we calculated the spectral density of the equivalent 

magnetic noise for our sample using the data obtained for the noise density and ME effect. The result 

is presented in Figure 6.7 b). We see that in the simple system composed of the laminate sample and 

lock-in amplifier the equivalent magnetic noise initially decreases with increasing frequency, from a 

value of 11.4 nT/Hz1/2 at 1 kHz, attaining then a sharp minimum at the resonance frequency of the 

impedance when the noise density is minimized, although the ME response is not at its maximum. 

At this point the noise is shown to be as small as 1.4 pT/Hz1/2. However, the ME coefficient here is 

only of 33 V/(cm·Oe). Operating the composite at antiresonance leads to a large output of 

463 V/(cm·Oe), although in this case the magnetic noise increases up to 17.7 pT/Hz1/2. Yet again we 

observe a good correspondence between the experimental results and the ones calculated with the 

help of the equivalent circuit of Figure 6.3 a).  

Thus, we conclude that the input noise of the lock-in is the main contributor to the total noise. 

Separating the magnetic noise into its components introduced by the sample and the lock-in, with the 
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help of the equivalent circuit, shows us that, in principle, using an ideal detection circuit, this noise 

may be suppressed down to 9.8 pT/Hz1/2 at 1 kHz and to 397 fT/Hz1/2 in a broad minimum around 

the EMR frequency (see Figure 6.7 b)). It is important to note that these values are comparable to 

those obtained in PZT and PMN-PT based magnetic sensors [58, 61, 192, 196, 197, 199]. Using the 

low input current noise detection circuit based on the AD8541 operational amplifier allowed us to 

obtain equivalent magnetic noise density values much closer to the latter. Thus, a noise level down 

to 153 pT/Hz1/2 was measured at a low frequency of 1 kHz and as small as 524 fT/Hz1/2 was obtained 

at the antiresonance frequency of the sample where the ME voltage output is maximized.  

At this point we note that the system studied by us could possibly be used to measure not 

only AC but also small DC magnetic field variations. To do this, one could apply an AC magnetic 

field with a given amplitude and frequency to the laminate and subsequently measure the ME 

response as a function of the 𝐻 bias field, as we did in the quasi-static ME measurements. Thus, 

using, e.g., the bidomain T-T DA sample, associated with the quasi-static ME response shown in 

Figure 6.5 b) (with 𝑓 = 1 kHz and 𝛿𝐻 = 1 Oe), biased in its linear region of operation with 𝐻 = 4 Oe 

and corresponding ME effect slope of 𝜕|𝛼E32|/𝜕𝐻 = 155 mV/(cm·Oe2), would permit the detection 

of a minimum field variation per square root of bandwidth of 𝐻𝑚𝑖𝑛/√∆𝑓 = 𝑣𝑛 · √𝑆𝑁𝑅 ·

√2/ ((𝜕|𝛼E32|/𝜕𝐻) · 𝛿𝐻 · 𝑡𝑝) = 2.6 nT/Hz1/2 (for 𝑆𝑁𝑅 = 1). An up to three orders of magnitude 

lower value may be expected for the same composite operating at resonance, due to a ca. 10 times 

smaller voltage noise density and 100 times larger ME effect, or even lower through the optimization 

of the composite and detection circuit. 

From a theoretical point of view, equations (6.19-6.21) show that the optimization of the PE 

thickness ratio from the current value of 𝑡𝑝/𝑡 ≈ 0.95 to ca. 0.6, maintaining a constant thickness, 

should allow one to reduce the equivalent magnetic noise of the laminate by ca. one order of 

magnitude and the resonance frequency down to ca. 25 kHz. Thus, in order to enhance the ME effect 

and reduce the noise density of the bidomain T-T composite, we stacked up to 4 additional layers of 

Metglas on top of the original structure. The results of the quasi-static and resonant ME 

measurements, performed using simply the lock-in as the detection circuit, are depicted in Figure 6.8. 

In the quasi-static regime we observe a decrease in the maximum |𝛼E32| values accompanied by an 

increase in |𝛼E31|, as the number 𝑁 of layers is increased. On the other hand, the bias field required 

to maximize the ME coefficient also increases with 𝑁. From the theoretical calculations made above 

and represented in Figure 6.2 c), one would expect both coefficients to increase with 𝑁 up to about 

12 due to the enhanced bending strain, and to get closer together, since in this case the anisotropy of 

the crystal contributes less to the properties of the composite as a whole. The decrease in |𝛼E32| and 

increase in the bias field might be explained by the demagnetization effect which reduces the 
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effective 𝐻 field inside the MS phase and increases with the thickness of this layer [225]. Another 

factor is the larger pre-stress produced by the intermediate epoxy layers [161].  
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Figure 6.8 Direct ME coefficients (|𝛼E3a|) measured in the bi-layered composite with bidomain T-

T 127ºY-cut LNO crystals produced by DA and 𝑁 = 1–5 layers of Metglas. a) Quasi-static effect as 

a function of the applied bias field (with 𝑓 = 1 kHz and 𝛿𝐻 = 1 Oe); b) Dynamic effect under 

fundamental bending resonance conditions and in an optimal bias field (𝐻 = 16, 28, 39, 52, 65 Oe 

for N = 1, 2, 3, 4, and 5, respectively, and 𝛿𝐻 = 0.1 Oe). 
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Figure 6.8 b) shows the 𝛼E32 ME coefficients measured close to the fundamental bending 

resonance in optimal bias fields as obtained in the quasi-static measurements. Here we see that the 

resonance frequency tends to increase by about 1 kHz with the number 𝑁 of Metglas layers. As 

predicted by equation (6.21), this is due to the increase in the thickness of the composite, even though 

the sound velocity 1/√𝜌𝑠22 is smaller in Metglas. Also we note an increase in |𝛼E32| by about 25% 

of up to 578 V/(cm·Oe) for 2–3 layers of Metglas. Increasing further the number of layers results in 

a rapid reduction of the ME coefficient and the 𝑄 factor. This behavior can be explained by a balance 

between different phenomena [228]. On the one hand, the increase of the volume ratio of the MS 

phase up to ca. 0.4 tends to increase the bending deformation and consequently enhance the ME 

effect, as predicted by the calculations. On the other hand, the demagnetization effect decreases the 

effective magnetic field inside the MS layer, and the larger volume of intermediate layers of viscous 

epoxy increases the shear lag and elastic losses, both of which tend to reduce the ME effect [225, 

226]. 
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Figure 6.9 a) Noise spectral density and b) Equivalent magnetic noise spectral density measured in 

the range of the fundamental bending EMR in the bi-layered composite with bidomain T-T 127ºY-

cut LNO crystals produced by DA and 𝑁 = 1–5 layers of Metglas. The black asterisks indicate the 

equivalent noise at ME resonance (i.e. at the frequency of the impedance antiresonance). 

 

Figure 6.9 shows the results of the noise measurements performed in the system composed 

of the laminate and lock-in detection circuit in the range of the fundamental bending mode of 

resonance and in optimal bias fields. Generally, the peaks in the noise density tend to get less 

pronounced with an increasing number of Metglas layers, being maximal in a simple bidomain 

crystal without any layer of Metglas, thus showing that the measured noise is not of magnetic origin. 

This behavior follows the decrease of the amplitude of the resonance and antiresonance peaks of the 

impedance, as predicted by equation (6.19), due to the reduction of the relative volume of the PE 

phase, as well as the decrease of the 𝑄 factor. More simply, one can say that the peak noise spectral 

density continuously decreases with the number of added MS layers because the larger volume of 

the MS phase produces a larger stress on the PE crystal, thus preventing it from vibrating (resulting 

in smaller 𝑌’ and 𝑍’ peaks) under the action of noise sources other than magnetic. The equivalent 

magnetic noise spectral density of the samples is depicted in Figure 6.9 b). This shows that the noise 

can be as small as 1.4 pT/Hz1/2 at 30.2 kHz in the composite with a single Metglas layer. However, 

the ME coefficient here is also relatively small, ca. 33 V/(cm·Oe). Increasing further the number of 

MS layers seems to augment this noise because, as we have seen before, the presence of this 

minimum at the impedance resonance frequency is mainly a consequence of the noise introduced by 
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the detection circuit through the term |𝑍𝑒𝑞|𝑖𝑎. At antiresonance, on the other hand, the ME coefficient 

is maximized up to 567 V/(cm·Oe) and the magnetic noise minimized down to 8.1 pT/Hz1/2 in the 

sample with an optimal number of 3 Metglas layers (@ 32.6 kHz). By fitting this result with the one 

calculated using the equivalent circuit model, we can derive the following equivalent parameters for 

the ME composite: 𝑅 = 1 GΩ, 𝐶 = 60 pF, 𝐿𝑚 = 7.11 H, 𝐶𝑚 = 3.44 pF, 𝑅𝑚 = (1/𝑄)√𝐿𝑚/𝐶𝑚, 𝑄 = 300 

and tan(𝛿) = 0.7%. This circuit shows us that in principle the noise density due solely to the ME 

composite, operating at antiresonance, could potentially be as small as 74 nV/Hz1/2 and the 

corresponding equivalent magnetic noise as low as 247 fT/Hz1/2. A detection circuit with a larger 

input impedance (𝑍𝑎1 + 𝑍𝑎2) and smaller input noise (𝑖𝑎 and 𝑒𝑎) is thus expected to allow reducing 

the values of the experimental magnetic noise by a very large margin. 

In future studies it is crucial to make further attempts to reduce the equivalent magnetic noise 

and the operation frequency of the bidomain composites by various methods [59]. The enhancement 

of the signal-to-noise ratio should start with the development of a suitable low-noise detection circuit 

[58, 60]. Its most desirable properties are a large input impedance (𝑍𝑎) and small input current (𝑖𝑎) 

and voltage (𝑒𝑎) noise densities. As mentioned above, some commercially available operational 

amplifiers already offer input current noises lower than 0.1 fA/Hz1/2 and input voltage noises lower 

than 1 nV/Hz1/2 [227]. These parameters could in theory offer us a more than one order of magnitude 

smaller magnetic noise level for the off-resonance conditions. Other desirable characteristics of the 

circuit are a large common mode rejection ratio and a small input bias current. On the part of the 

samples, some improvements must still be made in the bidomain fabrication techniques in order to 

achieve a thinner and smoother interface between the macrodomains. The thickness ratio between 

the PE and MS phases must also be optimized by increasing the relative volume of the latter, as well 

as the bonding between the phases by reducing the thickness of the epoxy layer or through the use 

of an alternative bonding method (e.g. co-firing, thick film printing). In order to decrease the 

equivalent magnetic noise density, one can simply increase the size of the laminates and the quality 

factor (i.e. reduce the dielectric, PE and elastic friction losses). Other possibilities include using an 

asymmetric bias field together with a symmetric structure [195] or an asymmetric structure with two 

different MS materials on the top and bottom faces having a magnetostriction with opposite signs, 

such as Metglas and nickel [202]. To further decrease the fundamental frequency of the bending 

resonance, where the equivalent magnetic noise is minimized, a hypothesis would be the fabrication 

of composites with a smaller thickness and larger area and a larger relative volume of the MS phase. 

In this regard, e.g., a long bar of the Metglas / 127ºY-cut LNO laminate with dimensions of 

50 ×5 ×0.1 mm3 could in theory easily have a resonance frequency lower than 300 Hz. Other 

methods that can be used to tune the resonance frequency comprise variating the applied magnetic 

bias field [229] or electric bias field [230, 231], adding a certain surface mass to the laminate [228] 
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or a third long elastic component with a large 𝑄 factor [109]. Alternatively, the bidomain composites 

could also find use for higher-frequency applications allowing in this case a reduction in the size of 

the devices, while maintaining the same frequency of operation. Some other interesting alternatives 

to the realization of the magnetic sensors could explore the non-linear MS behavior of Metglas, in 

order to realize high-sensitivity wide-band frequency-selective sensors [92, 148], or the ME effect 

originated from a magnetic-torque interaction in cantilever bimorph structures by putting a 

permanent magnet at the tip [232]. A different operation mode based on measuring the shift in the 

bending resonance frequency with the applied bias field could also be employed [233]. 

 

6.5. Conclusions 

 

We have conducted a study of the applicability of ME bilayered composites containing 

10 × 10 × 0.5 mm3 PE plates of LNO possessing a ferroelectric bidomain structure, formed in single-

domain crystals through the use of stationary external heating (SEH) or diffusion annealing (DA) 

techniques, for applications in low-frequency vector magnetic field and current sensors. Such ME 

sensors in principle may offer a large sensitivity to minute magnetic fields, an entirely passive 

operation at room temperature and well above it, and can be made small size, robust, cheap and 

simple to operate.  

Theoretical calculations established the relations between geometric and material parameters 

of the Metglas / LNO composites and their frequency-dependent ME, impedance and noise 

properties. The ME effect has been found to be maximized in a LNO crystal with an approximately 

127ºY-cut and a thickness ratio of the PE phase of ca. 0.6. The model also predicted the existence of 

EM resonant bending modes and the possibility to generate a magnetic noise floor down to the 

pT/Hz1/2 range at 1 Hz and sub-pT/Hz1/2 range at resonance conditions. For a LNO crystal with 

dimensions of 50 × 5 ×0.1 mm these resonance modes are expected to appear at frequencies as low 

as just a few hundred Hz. 

From the impedance and ME measurements, the PE properties of the 127ºY-cut LNO crystals 

have been found to be slightly improved in a bidomain H-H structure produced by the SEH technique 

in comparison to a unimorph structure and a bimorph one produced by bonding two crystals together. 

They were also found to be almost twice as large in a bidomain T-T structure fabricated by a newly 

developed DA method. These results have proven the existence of a more efficient PE and elastic 

coupling between both ferroelectric macrodomains in these bidomain crystals. Other advantages of 

the bidomain plates in comparison to sintered or glued ones include lower elastic losses associated 
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with the viscous glue or diffusion interface between macrocrystals, the easiness to obtain the 

bidomain structure over large plate areas, the existence of a continuous single-crystalline 

arrangement across the entire thickness, a high resistance to the creep effect, a high-temperature 

stability, the absence of the necessity to preliminary prepare the surfaces to be joined and the large 

simplicity of the employed techniques. A ME effect as large as 1.9 V/(cm·Oe) has been observed in 

such a crystal glued together with a single 29 𝜇m thick layer of Metglas foil under quasi-static 

conditions. At higher operation frequencies, multiple distinct ME peaks were identified at 

frequencies of the order of 30 kHz and of the order of 300 kHz corresponding to EM bending and 

contour resonance modes of the PE crystals, respectively. The former were found to be very strong 

in the bidomain and bimorph samples, while the latter were pronounced only in the single-domain 

ones. A ME effect as large as 578 V/(cm·Oe) has been observed in a T-T bidomain crystal, produced 

by DA and bonded together with two layers of Metglas, under bending resonant conditions at ca. 

31 kHz.  

Noise measurements yielded an equivalent magnetic noise spectral density floor of 

153 pT/Hz1/2 at 1 kHz (quasi-static regime) and down to 524 fT/Hz1/2 under resonance conditions in 

the T-T bidomain sample produced by DA with a single layer of Metglas. A comparison of these 

values with the ones obtained using an equivalent circuit model has shown that the total noise spectral 

density observed was dominated by the thermal Johnson noise in the sample and detection circuit. 

The detection circuit, composed of the input of a lock-in amplifier or an operational amplifier, was 

also found to make a large contribution to the total noise of the circuit when operating outside the 

resonance conditions. Some improvements in the detection circuit are expected to allow decreasing 

the values of the magnetic noise floor down to at least 9.8 pT/Hz1/2 at 1 kHz and 397 fT/Hz1/2 at 

resonance, values which are comparable to the ones already obtained in some PZT and PMN-PT 

based ME sensors [58, 61, 192, 196, 197, 199]. In this case, the advantages of using LNO are, 

however, undisputable, seeing that they implicate a non-hysteretic PE response, much higher thermal 

and chemical stability, larger resistance to creep and ageing effects, a lead-free nature, an easy high-

quality crystal growth process, well established properties and applications and a much lower 

commercial price.  

Altogether in this part we have thus shown that lead-free bidomain LNO crystals could be 

useful, e.g., in the fabrication of thermally stable ME-based vector magnetic field sensors operating 

at low frequencies in the bending mode regime.
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Chapter 7 

 

7. Conclusion 

 

In summary, this work aimed at the theoretical and experimental study of the anisotropic ME 

properties of differently structured composites based on single crystalline piezoelectrics, mainly 

lead-free LiNbO3, directed towards multiple future applications.  

In the first part a theoretical model of the anisotropic quasi-static direct ME effect in tri-

layered composites of Metglas and PE single crystals was used in the quantitative estimation of the 

ME coupling as a function of the crystallographic orientation (i.e. PE cut plane). Initially, a 

description of the PE and linear MS effects in terms of electric, magnetic and elastic material fields 

and constants was given. An averaging quasi-static method was subsequently used together with 

specific boundary conditions in order to derivate the relation between the material constants and the 

transversal (T-L) direct ME voltage (𝛼𝐸3𝑎) and charge coefficients (𝛼𝑄3𝑎). The method consisted of 

the solution of the elastostatic and electrostatic equations taking into account the linear constitutive 

relations of the two phases. The properties of some common PE and MS materials (the latter with 

emphasis on the Metglas alloy exhibiting giant magnetostriction) have been discussed, and their 

influence on the ME coupling has been explored. It has been demonstrated that large ME voltage 

coefficients tend to be favored by large transversal piezoelectric coefficients, transversal and 

longitudinal piezomagnetic coefficients and coupling constants as well as small out-of-plane 

dielectric and compliance constants and the volume ratio between the PE and MS phases. On the 

other hand, it has also been shown that the ME charge coefficients do not depend on the dielectric 

constants of the PEs and thus tend to be much larger in lead-based crystals with very large 

piezoelectric constants such as PMN-PT and PZN-PT. The effects of the demagnetization fields on 

the attenuation of the ME coefficients were briefly explored. A description of the ME composites as 

equivalent Thévenin/Norton circuits composed of a magnetically driven voltage/current source in 

series/parallel with a characteristic impedance of the composite has also been exposed. 

After that, we used the phenomenological quasi-static model in the calculation of the 

maximum expected direct transversal ME voltage coefficients in a series of tri-layered composites 

of the type Metglas/Piezocrystal/Metglas, as a function of the PE crystal orientation. The PE single 

crystals studied in this chapter included lead-free lithium niobate, α-galium phosphate, α-quartz, 

langatate, langasite, aluminum nitride, lithium tantalate and barium titanate, as well as the lead-based 
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PZT-2, PMN-33%PT ([111] poled), PMN-30%PT ([011] poled), PMN-33%PT ([001] poled), PZN-

9%PT ([011] poled) and PZN-8%PT ([001] poled). The estimations revealed a strong dependence of 

the ME effects on the crystal orientation. They also supported the possibility of generating large 

quasi-static ME voltage coefficients in composites comprising lead-free PE single-crystals through 

the optimization of the crystal orientation. These ME effects were found to be particularly attractive 

for the case of lithium niobate, α-galium phosphate, quartz, [111]-poled PMN-33%PT and [011]-

poled PZN-9%PT. The enhanced effects were found to be originated from a particularly good 

combination of relatively large PE coefficients and low dielectric constants. We thus have revealed 

that the choice of crystals with an appropriate cut is a vital step in the development of ME composites 

valuable for practical applications. 

In the second part we introduced a comparative study between the direct and converse ME 

effects in tri-layered composites of the type Metglas/PE/Metglas based on single crystals of LiNbO3 

(LNO) and [011]-poled PMN-PT bonded with a cyanoacrylate glue. Due to the simplified 

preparation method, the amplitude of the observed ME effect was rather modest. In the quasi-static 

regime, although the highly piezoelectric PMN-PT-based composite exhibited an orders of 

magnitude stronger converse ME effect, the measurements of the direct ME effect have shown 

comparable magnitudes for both types of systems, mainly due to comparable ratios between 

piezoelectric and dielectric coefficients of both crystals. The converse ME effects, on the other hand, 

were shown to be much stronger in the sample with the PMN-PT crystal since, according to the 

theory, this effect depends only on the piezoelectric constants which are much larger in this case. We 

also presented the results of the direct ME measurements in the resonant regime. Here we found an 

even larger ME effect peak in the composite with the 41ºY-cut LNO than in the one with PMN-PT. 

The largest direct ME voltage coefficient of about 88 V/(cm·Oe) has been obtained for the 41ºY-cut 

LNO composite, while this was only of 66 V/(cm·Oe).for the PMN-PT-based structure Therefore, in 

this study we identified crystalline LNO as a valuable alternative to lead-based PEs in ME 

applications with the potential to form its own field of ME-based low-cost high-temperature 

magnetic-field sensors. 

In another study we conducted a numerical analysis and an experimental study of the ME 

and EM anisotropic properties of tri-layered composites of Metglas/Piezoelectric/Metglas using 

differently oriented piezoelectric single crystals of LiNbO3 and GaPO4. The samples consisted of Y- 

and 41ºY-cut LNO and X-cut GPO substrates bound to Metglas foils using epoxy. The quasi-static 

ME measurements have shown a strongly anisotropic response with the transversal ME voltage 

coefficients being dependent on the direction of the applied in-plane magnetic bias field as well as 

the orientation of the crystal (crystal cut). This is related to the piezoelectric, dielectric and elastic 

properties of single crystals which are extremely anisotropic. As confirmed by some theoretical 
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calculations, this ME behavior was qualitatively correctly predicted by a simple constitutive model, 

in which the material tensor properties of the piezocrystals were transformed according to their 

physical orientation. Therefore, we saw that the tri-layered composite with the 41ºY-cut LNO crystal 

exhibited an almost isotropic in-plane ME response, with 𝛼𝐸31 ≈ 𝛼𝐸32, whereas the systems with the 

Y-cut LNO and X-cut GPO substrates demonstrated an approximately in-plane unipolar effect (𝛼𝐸31 

> 0 and 𝛼𝐸32 ≈ 0) with the polar axis directed along the X direction. Also, the largest measured ME 

coefficient here was of 0.95 V/(cm·Oe) for the Y-cut LNO sample in a field of 25 Oe. In the GPO 

composite, a coupling of up to 0.24 V/(cm·Oe) was obtained. 

In the resonant regime, several in-plane contour EM resonant peaks were observed in the 

ME spectrum. Here we saw how strongly the anisotropic nature of the PE crystals influences the 

excitation of certain contour acoustic resonance modes. So, e.g., three distinct resonance modes were 

observed in the system featuring the Y-cut LNO crystal, whereas a single one was observed in the 

composite with the 41ºY-cut LNO one. A very intense single peak exhibiting a ME coefficient of up 

to 249 V/(cm·Oe) was detected in the sample with the 41ºY-cut LNO crystal. In order to predict, 

which kinds of modes could be excited under given conditions and to identify such modes by 

comparison with simulated results, we employed impedance measurements, thus clarifying the 

relation between the anisotropic constants and the excitation of such peaks. The aforementioned large 

symmetric peak was therefore shown to be related to the in-plane isotropic properties of the crystal, 

so that a very symmetric and high-amplitude resonance mode was generated. In the GPO sample, 

four weak contour asymmetrical shear modes of resonance were identified, with the largest having a 

response of up to 23.2 V/(cm·Oe) and appearing at a frequency of 199.7 kHz.  

In conclusion, in this part we were able to experimentally identify relatively large anisotropic 

ME effects in composites based on PE single-crystals which were in good agreement with the theory. 

In principle, such ME responses can be further enhanced through the optimization of the volume 

ratio and the coupling between layers. Finally we showed how the control of the crystal orientation 

can be used to greatly enhance the anisotropic ME effects in composites. The selection of the crystal 

orientation should therefore allow one to engineer almost any desired anisotropic properties for any 

given application. 

Lastly, we conducted a study of the applicability of ME bilayered composites containing 

10 × 10 × 0.5 mm3 PE plates of LNO possessing a ferroelectric bidomain structure, formed in single-

domain crystals through the use of stationary external heating (SEH) or diffusion annealing (DA) 

techniques, for applications in low-frequency vector magnetic field and current sensors. Theoretical 

calculations established the relations between geometric and material parameters of the 

Metglas/LNO composites and their frequency-dependent ME, impedance and noise properties. The 
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ME effect has been found to be maximized in a LNO crystal with an approximately 127ºY-cut and a 

thickness ratio of the PE phase of ca. 0.6. The model also predicted the existence of EM resonant 

bending modes and the possibility to generate a magnetic noise floor down to the pT/Hz1/2 range at 

1 Hz and sub-pT/Hz1/2 range at resonance conditions. For a LNO crystal with dimensions of 

50 × 5 ×0.1 mm these resonance modes are expected to appear at frequencies as low as just a few 

hundred Hz. 

From the impedance and ME measurements, the PE properties of the 127ºY-cut LNO crystals 

have been found to be slightly improved in a bidomain H-H structure produced by the SEH technique 

in comparison to a unimorph structure and a bimorph one produced by bonding two crystals together. 

They were also found to be almost twice as large in a bidomain T-T structure fabricated by a newly 

developed DA method. These results have proven the existence of a more efficient PE and elastic 

coupling between both ferroelectric macrodomains in these bidomain crystals. Other advantages of 

the bidomain plates in comparison to sintered or glued ones include lower elastic losses associated 

with the viscous glue or diffusion interface between macrocrystals, the relative ease to obtain the 

bidomain structure over large plate areas, the existence of a continuous single-crystalline 

arrangement across the entire thickness, a high resistance to the creep effect, a high-temperature 

stability, the absence of the necessity to preliminary prepare the surfaces to be joined and the large 

simplicity of the employed techniques. A ME effect as large as 1.9 V/(cm·Oe) has been observed in 

such a crystal glued together with a single 29 𝜇m thick layer of Metglas foil under quasi-static 

conditions. At higher operation frequencies, multiple distinct ME peaks were identified at 

frequencies of the order of 30 kHz and of the order of 300 kHz corresponding to EM bending and 

contour resonance modes of the PE crystals, respectively. The former were found to be very strong 

in the bidomain and bimorph samples, while the latter were pronounced only in the single-domain 

ones. A ME effect as large as 578 V/(cm·Oe) has been observed in a T-T bidomain crystal, produced 

by DA and bonded together with two layers of Metglas, under bending resonant conditions at ca. 

31 kHz.  

Noise measurements yielded an equivalent magnetic noise spectral density floor of 

153 pT/Hz1/2 at 1 kHz (quasi-static regime) and down to 524 fT/Hz1/2 under resonance conditions in 

the T-T bidomain sample produced by DA with a single layer of Metglas. A comparison of these 

values with the ones obtained using an equivalent circuit model has shown that the total noise spectral 

density observed was dominated by the thermal Johnson noise in the sample and detection circuit. 

The detection circuit, composed of the input of a lock-in amplifier or an operational amplifier, was 

also found to make a large contribution to the total noise of the circuit when operating outside the 

resonance conditions. Some improvements in the detection circuit are expected to allow decreasing 

the values of the magnetic noise floor down to at least 9.8 pT/Hz1/2 at 1 kHz and 397 fT/Hz1/2 at 
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resonance which are comparable to the ones already obtained in some PZT and PMN-PT based ME 

sensors [58, 61, 192, 196, 197, 199]. In this case, the advantages of using LNO are, however, 

undisputable, seeing that they include a non-hysteretic PE response, much higher thermal and 

chemical stability, larger resistance to creep and ageing effects, lead-free nature, easy high-quality 

crystal growth process, well established properties and applications and a much lower commercial 

price.  

All in all, in this thesis we have shown that lead-free unidomain and bidomain LNO single-

crystals could be useful, e.g., in the fabrication of thermally stable ME-based vector magnetic field 

sensors operating at low frequencies in the bending or extensional resonant regimes. According to 

the theory, the ME effect in our laminates may still be improve by more than one order of magnitude 

through various means. Therefore, future studies shall include the optimization of the thickness ratio 

between PE and MS layers, e.g. by stacking multiple layers of Metglas, and the improvement of the 

bounding method, e.g. through the use of wafer bonding techniques, electron or laser beam welding, 

sputtering or pulsed laser deposition of Metglas. In order to decrease the magnetic noise we shall 

improve the bidomain formation methods and employ very low input noise pre-amplifiers such as 

the ADA4530-1 component. To further decrease the resonant frequency, long bars of 

50 × 5 ×0.2 mm with bidomain LNO will be produced. To this end the non-linear magnetostrictive 

properties of Metglas may also be explored in greater detail. The ME effect experimental setup shall 

also be improved in order to better allow the measurement of single-phase and thin-film ME systems. 

Thus, two new independent DC and AC Helmholtz coils will be developed with a wider magnetic 

field uniformity and connected through balanced lines in order to achieve lower input noise and 

inductive coupling. We conclude by noting that ultimately there is still a lot of room for future 

improvements and the range of possibilities for this kind of ME systems thus seems to be immensely 

vast. 
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A.1. Tables of material constants 

 

Listing of the linear material constants: relative dielectric constant 𝜀𝑖𝑗
𝑇 , piezoelectric coefficient 𝑑𝑖𝑗 

(pC/N), piezomagnetic coefficient 𝑞𝑖𝑗 (ppm/Oe) and elastic compliance 𝑠𝑖𝑗
𝐸  (10-12 m2/N) for the 

studied compounds. 

 

Metglas 2826 MB  

Symmetry: Isotropic  

ρ = 7.9 g/cm3 

Parameter q11 q12 s11
E s12

E s44
E 

Value 4 -1.7 10 -3.3 26.6 

Ref. 
[82, 86, 

141, 142] 
[142] [140-143] [143, 214] 

Note 
For Metglas 2605 

SA1 

Y=100GPa 

from the supplier 

(s11 =1/Y, for an 

isotropic media) 

ν = 0.33 from the 

supplier 

(s12 =-ν /Y, for an 

isotropic media) 

s44 =2(1+ν) /Y, for an 

isotropic media 

 

LiNbO3  

Point group: 3m 

ρ = 4.647 g/cm3 

Parameter ε11
T ε33

T d15 d22 d31 d33 

Value 85.2 28.7 69.2 20.8 -0.85 6 

Ref. [70] 

 

Parameter s11
E s12

E s13
E s14

E s33
E s44

E 

Value 5.831  -1.150 -1.452 -1.000 5.026 17.10 

Ref. [70] 

 

PMN-30%PT ([011] poled)  

Point group: mm2 

ρ = 8.150 g/cm3 

Parameter ε11
T ε22

T ε33
T d31 d32 d33 d15 d24 

Value 8783 5233 6966 813 -2116 1916 3262 289 

Ref. [75] 
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Parameter s11
E s22

E s33
E s12

E s13
E s23

E s44
E s55

E s66
E 

Value 23.3 97.5 72.8 -33.4 9.26 -69.0 13.7 151.1 20.2 

Ref. [75] 

 

α-GaPO4 

Point group: 32  

ρ = 3.571 g/cm3 

Parameter ε11
T ε33

T d11 d14 

Value 5.38 5.82 4.37 -1.58 

Ref. [71, 189] [71, 72] 

 

Parameter  s11
E s12

E s13
E s14

E s33
E s44

E 

Value 18.055 -4.371 -3.753 2.697 11.674 26.731 

Ref. [71, 72] 

 

α-Quartz 

Point group: 32 

ρ = 2.6485 g/cm3 

Parameter ε11
T ε33

T d11 d14 

Value 4.507 4.628 2.331 0.776 

Ref. [145, 146] [143, 145, 146] 

 

Parameter  s11
E s12

E s13
E s14

E s33
E s44

E 

Value 12.779 -1.807 -1.238 -4.525 9.733 19.983 

Ref. [145, 146] 

 

Langatate (La3Ga5.5Ta0.5SiO14, LGT) 

Point group: 32  

ρ = 6.130 g/cm3 

Parameter ε11
T ε33

T d11 d14 

Value 19.62 80.44 -5.736 6.343 

Ref. [147] 

 

Parameter  s11
E s12

E s13
E s14

E s33
E s44

E 

Value 9.043 -4.559 -1.747 -3.684 5.148 21.607 

Ref. [147] 
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Langasite (La3Ga5SiO14, LGS) 

Point group: 32  

ρ = 5.754 g/cm3 

Parameter ε11
T ε33

T d11 d14 

Value 18.9 51.2 -5.94 4.99 

Ref. [149, 150] 

 

Parameter  s11
E s12

E s13
E s14

E s33
E s44

E 

Value 8.75 -4.34 -1.61 -3.43 5.26 19.2 

Ref. [149, 150] 

 

AlN 

Point group: 6mm  

ρ = 3.260 g/cm3 

Parameter ε11
T ε33

T d15 d31 d33 

Value 9.09 10.44 -2.60 -1.96 4.48 

Ref. [151, 152] 

 

Parameter  s11
E s12

E s13
E s33

E s44
E 

Value 2.903 -0.843 -0.537 2.860 8.137 

Ref. [151, 152] 

 

LiTaO3  

Point group: 3m 

ρ = 7.465 g/cm3 

Parameter ε11
T ε33

T d15 d22 d31 d33 

Value 53.53 43.37 26.4 7.5 -3.0 5.7 

Ref. [153-155] 

 

Parameter s11
E s12

E s13
E s14

E s33
E s44

E 

Value 4.930 -0.519 -1.280 0.588 4.317 10.46 

Ref. [153-155] 
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BaTiO3  

Point group: 4mm 

ρ = 6.020 g/cm3 

Parameter ε11
T ε33

T d15 d31 d33 

Value 4366 132 560.7 -33.72 93.95 

Ref. [68, 69] 

 

Parameter s11
E s12

E s13
E s33

E s44
E s66

E 

Value 7.38 -1.39 -4.41 13.1 16.4 7.46 

Ref. [68, 69] 

 

PMN-33%PT ([111] poled)  

Point group: 3m 

ρ = 8.060 g/cm3 

Parameter ε11
T ε33

T d15 d22 d31 d33 

Value 3950 640 4100 1340 -90 190 

Ref. [157] 

 

Parameter s11
E s12

E s13
E s14

E s33
E s44

E 

Value 62.16 -53.85 -5.58 -166.24 13.34 510.98 

Ref. [157] 

 

PMN-33%PT ([001] poled) 

Point group: 4mm 

ρ = 8.060 g/cm3 

Parameter ε11
T ε33

T d15 d31 d33 

Value 1600 8200 146 -1330 2820 

Ref. [158] 

 

Parameter s11
E s12

E s13
E s33

E s44
E s66

E 

Value 69.0 -11.1 -55.7 119.6 14.5 15.2 

Ref. [158] 
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PZN-8%PT ([001] poled)  

Point group: 4mm 

ρ = 8.315 g/cm3 

Parameter ε11
T ε33

T d15 d31 d33 

Value 2900 7700 159 -1455 2890 

Ref. [160] 

 

Parameter s11
E s12

E s13
E s33

E s44
E s66

E 

Value 87.0 -13.1 -70.0 141 15.8 15.4 

Ref. [160] 

 

PZN-9%PT ([011] poled)  

Point group: mm2 

ρ = 8.316 g/cm3 

Parameter ε11
T ε22

T ε33
T d31 d32 d33 d15 d24 

Value 8740 2075 3202 476.0 -1705 1237 2012 118.7 

Ref. [159] 

 

Parameter s11
E s22

E s33
E s12

E s13
E s23

E s44
E s55

E s66
E 

Value 73.07 125.6 67.49 -63.98 4.256 -68.04 15.12 299.3 16.54 

Ref. [159] 

 

PZT-2 

Point group: ∞mm  

ρ = 7.600 g/cm3 

Parameter ε11
T ε33

T d15 d31 d33 

Value 990 450 440 -60.2 152 

Ref. [156] 

 

Parameter  s11
E s12

E s13
E s33

E s44
E 

Value 11.6 -3.33 -4.97 14.8 45.0 

Ref. [156] 
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Figure A.1.1 Elasto-piezo-dielectric matrix form for various crystal classes. Adapted from [121]. 
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A.2. Developed components of the ME measurement setup 

 

 

Figure A.2.2 Technical drawing of the developed box containing the Helmholtz Coil in isometric 

projection. 
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Figure A.2.3 Technical drawing of the developed box containing the Helmholtz Coil in multiview 

orthographic projection. 

 

 

Figure A.2.4 One of the sample supports developed during the investigation consisting of a top and 

bottom electrical contacts passing through a grounded brass tube thus acting as an electromagnetic 

shield. 
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A.3. LabVIEW based programs used for data acquisition and processing 

 

 

Figure A.3.1 Impedance (Z) measurements as a function of the frequency (f). Controlled equipment: 

lock-in amplifier (Zurich Instruments®, model HF2LI); current pre-amplifier.(Zurich Instruments®, 

model TA); function generator (SRS®, model DS345). 
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Figure A.3.2 ME effect (aE) measurements as a function of the bias field (H). Controlled equipment: 

lock-in amplifier; function generator; power amplifier (AE Techron®, model 7224); multimeter 

(Agilent®, model 34401A). 
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Figure A.3.3 ME effect (aE) measurements as a function of the bias field (H). Controlled equipment: 

lock-in amplifier; function generator; power amplifier; multimeter; external electromagnet (Bruker® 

ESP 300E); gaussmeter (DSP®, model 475). 
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Figure A.3.4 ME effect (aE) measurements as a function of the frequency of the modulated magnetic 

field (f). Controlled equipment: lock-in amplifier; function generator; power amplifier; multimeter. 
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A.4. Matlab based programs used in theoretical calculations 

 

Code A.4.1. Transformation of the piezoelectric (d and e), dielectric (εT and εS) and elastic (sE and 

cE) material constants from the crystalline frame into the laminate frame of reference associated with 

the Euler angles Alfa, Beta and Gamma. 

%LiNbO3 

  

  

%density (kg/m3) 

P=4647; 

  

%dielectric coefficients (F/m) 

e0=8.854187817E-12; 

e11T=85.2*e0; 

e33T=28.7*e0; 

e22T=e11T; 

eT=[e11T 0 0;0 e22T 0;0 0 e33T]; 

  

%piezoelectric coefficients (C/N) 

  

d15=69.2E-12; 

d22=20.8E-12; 

d31=-0.85E-12; 

d33=6E-12; 

d11=0;d12=0;d13=0;d14=0;d23=0;d25=0;d26=0;d34=0;d35=0;d36=0; 

d16=-2*d22; 

d21=-d22; 

d24=d15; 

d32=d31; 

D=[d11 d12 d13 d14 d15 d16;d21 d22 d23 d24 d25 d26; d31 d32 d33 d34 d35 d36]; 

  

%compliance coefficients (m^2/N) 

s11E=5.831E-12; 

s12E=-1.15E-12; 

s13E=-1.452E-12; 

s14E=-1E-12; 

s33E=5.026E-12; 

s44E=17.1E-12; 

s15E=0;s16E=0;s25E=0;s26E=0;s34E=0;s35E=0;s36E=0;s43E=0;s45E=0;s46E=0;s51E=0;s52E=0;s53E=0;s54E=0;s61E=0;s62E=0;s63E=0;s64

E=0; 

s21E=s12E; 

s22E=s11E; 

s23E=s13E; 

s24E=-s14E; 

s31E=s13E; 

s32E=s13E; 

s41E=s14E; 

s42E=-s14E; 

s55E=s44E; 

s56E=2*s14E; 

s65E=2*s14E; 

s66E=2*(s11E-s12E); 

sE=[s11E s12E s13E s14E s15E s16E;s21E s22E s23E s24E s25E s26E;s31E s32E s33E s34E s35E s36E;s41E s42E s43E s44E s45E 

s46E;s51E s52E s53E s54E s55E s56E;s61E s62E s63E s64E s65E s66E]; 

 

A=[-sE zeros(6,3);-D eye(3)]; 

B=[-eye(6) D';zeros(3,6) eT]; 

C=inv(A)*B; 

 

E=C(7:9,1:6) 

cE=C(1:6,1:6) 

eS=C(7:9,7:9) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Euler angles (deg) 

Alfa=0; 

Gamma=0; 

Sigma=0; 

  

alfa=Alfa*(pi/180); 

gamma=Gamma*(pi/180); 

sigma=Sigma*(pi/180); 

  

%Transformation matrix 

  

a(1,1)=cos(sigma)*cos(alfa)-cos(gamma)*sin(alfa)*sin(sigma); 

a(1,2)=cos(sigma)*sin(alfa)+cos(gamma)*cos(alfa)*sin(sigma); 

a(1,3)=sin(sigma)*sin(gamma); 

a(2,1)=-sin(sigma)*cos(alfa)-cos(gamma)*sin(alfa)*cos(sigma); 

a(2,2)=-sin(sigma)*sin(alfa)+cos(gamma)*cos(alfa)*cos(sigma); 

a(2,3)=cos(sigma)*sin(gamma); 

a(3,1)=sin(gamma)*sin(alfa); 

a(3,2)=-sin(gamma)*cos(alfa); 

a(3,3)=cos(gamma); 
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%D/E to 3D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            if k==j 

                D1(i,j,k)=D(i,j); 

                E1(i,j,k)=E(i,j); 

            else 

                D1(i,j,k)=D(i,9-j-k)/2; 

                E1(i,j,k)=E(i,9-j-k); 

            end 

        end 

    end 

end 

  

%sE/cE to 3D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                if i==j&k==l 

                    sE1(i,j,k,l)=sE(i,k); 

                    cE1(i,j,k,l)=cE(i,k); 

                else if i==j&k~=l 

                        sE1(i,j,k,l)=sE(i,9-k-l)/2; 

                        cE1(i,j,k,l)=cE(i,9-k-l); 

                    else if i~=j&k==l 

                            sE1(i,j,k,l)=sE(9-i-j,k)/2; 

                            cE1(i,j,k,l)=cE(9-i-j,k); 

                        else if i~=j&k~=l 

                                sE1(i,j,k,l)=sE(9-i-j,9-k-l)/4; 

                                cE1(i,j,k,l)=cE(9-i-j,9-k-l); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

%Rotate eT/eS 

  

eT1Y(1:3,1:3)=0; 

eS1Y(1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for m=1:3 

            for n=1:3 

                eT1Y(i,j)=eT1Y(i,j)+a(i,m)*a(j,n)*eT(m,n); 

                eS1Y(i,j)=eS1Y(i,j)+a(i,m)*a(j,n)*eS(m,n); 

            end 

        end 

    end 

end 

  

%Rotate D/E 

  

D1Y(1:3,1:3,1:3)=0; 

E1Y(1:3,1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for k=1:3 

            for m=1:3 

                for n=1:3 

                    for o=1:3 

                        D1Y(i,j,k)=D1Y(i,j,k)+a(i,m)*a(j,n)*a(k,o)*D1(m,n,o); 

                        E1Y(i,j,k)=E1Y(i,j,k)+a(i,m)*a(j,n)*a(k,o)*E1(m,n,o); 

                    end 

                end 

            end 

        end 

    end 

end 

  

%Rotate sE/cE 

  

sE1Y(1:3,1:3,1:3,1:3)=0; 

cE1Y(1:3,1:3,1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                for m=1:3 

                    for n=1:3 

                        for o=1:3 

                            for p=1:3 

                                sE1Y(i,j,k,l)=sE1Y(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,p)*sE1(m,n,o,p); 

                                cE1Y(i,j,k,l)=cE1Y(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,p)*cE1(m,n,o,p); 

                            end 

                        end 

                    end 

                end 

            end 
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        end 

    end 

end 

  

%D/E to 2D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            if j==k 

                DY(i,j)=D1Y(i,j,k); 

                EY(i,j)=E1Y(i,j,k); 

            else 

                DY(i,9-j-k)=2*D1Y(i,j,k); 

                EY(i,9-j-k)=E1Y(i,j,k); 

            end 

        end 

    end 

end 

  

%sE/cE to 2D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                if i==j&k==l 

                    sEY(i,k)=sE1Y(i,j,k,l); 

                    cEY(i,k)=cE1Y(i,j,k,l); 

                else if i==j&k~=l 

                        sEY(i,9-k-l)=2*sE1Y(i,j,k,l); 

                        cEY(i,9-k-l)=cE1Y(i,j,k,l); 

                    else if i~=j&k==l 

                            sEY(9-i-j,k)=2*sE1Y(i,j,k,l); 

                            cEY(9-i-j,k)=cE1Y(i,j,k,l); 

                        else if i~=j&k~=l 

                                sEY(9-i-j,9-k-l)=4*sE1Y(i,j,k,l); 

                                cEY(9-i-j,9-k-l)=cE1Y(i,j,k,l); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

 

 

Code A.4.2. Calculation of the maximum transversal extensional quasi-static ME coefficients (αE31 and αE32) 

for a series of tri-layered plates of Metglas/piezoelectric/Metglas as a function of the crystalline orientation of 

the piezoelectric and geometry of the composite. 

clearvars -except P eS eT D E cE sE 

close all 

  

%Parameters: 

  

%Coupling parameter 

  

Kc=1;%0.00011; 

  

  

%Metglas 

  

%geometry (m) 

tt=29E-6; 

  

%piezomagnetic coefficient (1/Oe) 

  

q11=4E-6; 

q12=-1.7E-6; 

q16=0E-6; 

q=[q11 q12 q12 0 0 q16;q12 q11 q12 0 0 q16;q12 q12 q11 0 0 q16]; 

  

%compliance coefficients (m^2/N) 

s11H=10E-12; 

s12H=-3.3E-12; 

s44H=2*13.3E-12; 

sH=[s11H s12H s12H 0 0 0;s12H s11H s12H 0 0 0;s12H s12H s11H 0 0 0;0 0 0 s44H 0 0;0 0 0 0 s44H 0;0 0 0 0 0 s44H]; 

  

%geometry (m) 

t=0.5E-3; 

l=10E-3; 

  

f=(t/(2*tt)); 

v=(t/(t+2*tt)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%D/E to 3D 

  

for i=1:3 
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    for j=1:3 

        for k=1:3 

            if k==j 

                D1(i,j,k)=D(i,j); 

                E1(i,j,k)=E(i,j); 

            else 

                D1(i,j,k)=D(i,9-j-k)/2; 

                E1(i,j,k)=E(i,9-j-k); 

            end 

        end 

    end 

end 

  

%sE/cE to 3D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                if i==j&&k==l 

                    sE1(i,j,k,l)=sE(i,k); 

                    cE1(i,j,k,l)=cE(i,k); 

                else if i==j&&k~=l 

                        sE1(i,j,k,l)=sE(i,9-k-l)/2; 

                        cE1(i,j,k,l)=cE(i,9-k-l); 

                    else if i~=j&&k==l 

                            sE1(i,j,k,l)=sE(9-i-j,k)/2; 

                            cE1(i,j,k,l)=cE(9-i-j,k); 

                        else if i~=j&&k~=l 

                                sE1(i,j,k,l)=sE(9-i-j,9-k-l)/4; 

                                cE1(i,j,k,l)=cE(9-i-j,9-k-l); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

cpu=cputime; 

%Euler angles 

Al=0; 

Be=0; 

Sig=0; 

  

Alfa=0; 

Beta=0; 

Gamma=0; 

  

for Alfa=0:1:180 

    Al=Al+1; 

    Be=0; 

    for Beta=0:1:180 

        Be=Be+1; 

        Sig=0; 

        for Gamma=0:1:180 

            Sig=Sig+1; 

  

alfa=Alfa*(pi/180); 

beta=Beta*(pi/180); 

gamma=Gamma*(pi/180); 

  

%Transformation matrix 

  

a(1,1)=cos(gamma)*cos(alfa)-cos(beta)*sin(alfa)*sin(gamma); 

a(1,2)=cos(gamma)*sin(alfa)+cos(beta)*cos(alfa)*sin(gamma); 

a(1,3)=sin(gamma)*sin(beta); 

a(2,1)=-sin(gamma)*cos(alfa)-cos(beta)*sin(alfa)*cos(gamma); 

a(2,2)=-sin(gamma)*sin(alfa)+cos(beta)*cos(alfa)*cos(gamma); 

a(2,3)=cos(gamma)*sin(beta); 

a(3,1)=sin(beta)*sin(alfa); 

a(3,2)=-sin(beta)*cos(alfa); 

a(3,3)=cos(beta); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Rotated eT/eS 

  

eT1Y(1:3,1:3)=0; 

eS1Y(1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for m=1:3 

            for n=1:3 

                eT1Y(i,j)=eT1Y(i,j)+a(i,m)*a(j,n)*eT(m,n); 

                eS1Y(i,j)=eS1Y(i,j)+a(i,m)*a(j,n)*eS(m,n); 

            end 

        end 

    end 

end 

  

%Rotated D/E 

  

D1Y(1:3,1:3,1:3)=0; 
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E1Y(1:3,1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for k=1:3 

            for m=1:3 

                for n=1:3 

                    for o=1:3 

                        D1Y(i,j,k)=D1Y(i,j,k)+a(i,m)*a(j,n)*a(k,o)*D1(m,n,o); 

                        E1Y(i,j,k)=E1Y(i,j,k)+a(i,m)*a(j,n)*a(k,o)*E1(m,n,o); 

                    end 

                end 

            end 

        end 

    end 

end 

  

%Rotated sE/cE 

  

sE1Y(1:3,1:3,1:3,1:3)=0; 

cE1Y(1:3,1:3,1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                for m=1:3 

                    for n=1:3 

                        for o=1:3 

                            for p=1:3 

                                sE1Y(i,j,k,l)=sE1Y(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,p)*sE1(m,n,o,p); 

                                cE1Y(i,j,k,l)=cE1Y(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,p)*cE1(m,n,o,p); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

%D/E to 2D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            if j==k 

                DY(i,j)=D1Y(i,j,k); 

                EY(i,j)=E1Y(i,j,k); 

            else 

                DY(i,9-j-k)=2*D1Y(i,j,k); 

                EY(i,9-j-k)=E1Y(i,j,k); 

            end 

        end 

    end 

end 

  

%sE/cE to 2D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                if i==j&&k==l 

                    sEY(i,k)=sE1Y(i,j,k,l); 

                    cEY(i,k)=cE1Y(i,j,k,l); 

                else if i==j&k~=l 

                        sEY(i,9-k-l)=2*sE1Y(i,j,k,l); 

                        cEY(i,9-k-l)=cE1Y(i,j,k,l); 

                    else if i~=j&k==l 

                            sEY(9-i-j,k)=2*sE1Y(i,j,k,l); 

                            cEY(9-i-j,k)=cE1Y(i,j,k,l); 

                        else if i~=j&k~=l 

                                sEY(9-i-j,9-k-l)=4*sE1Y(i,j,k,l); 

                                cEY(9-i-j,9-k-l)=cE1Y(i,j,k,l); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

AY=[sEY(1,1)+f*Kc*sH(1,1) sEY(1,2)+f*Kc*sH(1,2) sEY(1,6)+f*Kc*sH(1,6) 0 0 DY(3,1)*Kc;sEY(2,1)+f*Kc*sH(2,1) 

sEY(2,2)+f*Kc*sH(2,2) sEY(2,6)+f*Kc*sH(2,6) 0 0 DY(3,2)*Kc;sEY(6,1)+f*Kc*sH(6,1) sEY(6,2)+f*Kc*sH(6,2) 

sEY(6,6)+f*Kc*sH(6,6) 0 0 DY(3,6)*Kc;DY(1,1) DY(1,2) DY(1,6) -1 0 eT1Y(1,3);DY(2,1) DY(2,2) DY(2,6) 0 -1 eT1Y(2,3);DY(3,1) 

DY(3,2) DY(3,6) 0 0 eT1Y(3,3)]; 

 

%Transversal ME coefficients 

 

MY=AY\[q(1,1)*Kc q(1,2)*Kc q(1,6)*Kc 0 0 0]'; 

 

alfaE31A=(MY(6)/100) 

 

MY2=AY\[q(2,1)*Kc q(2,2)*Kc q(2,6)*Kc 0 0 0]'; 
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alfaE32A=(MY2(6)/100) 

 

alfaE31(Al,Be,Sig)=alfaE31A; 

alfaE32(Al,Be,Sig)=alfaE32A; 

 

        end 

    end 

    Alfa 

end 

 

Code A.4.3. Representation of the maximum transversal ME coefficients (αE31 and αE32) as a function of the 

crystalline orientation of the piezoelectric and geometry of the composite. 

for k=1:181 

    if k<=91 

        alfaE32(:,:,k)=alfaE31(:,:,k+90); 

    else 

        alfaE32(:,:,k)=alfaE31(:,:,k-90); 

    end 

end 

alfaE3132=alfaE31-alfaE32; 

for i=1:181 

    for j=1:181 

        [alfaE31max(i,j),Imax(i,j)]=max(alfaE31(i,j,:)); 

        [alfaE31min(i,j),Imin(i,j)]=min(alfaE31(i,j,:)); 

        [alfaE31absmax(i,j),Iabsmax(i,j)]=max(abs(alfaE31(i,j,:))); 

        [alfaE3132absmin(i,j),Iabsmin(i,j)]=min(abs(alfaE3132(i,j,:))); 

        alfaE3132absmax(i,j)=abs(alfaE31(i,j,Iabsmin(i,j)))./(alfaE3132absmin(i,j)+0.1); 

    end 

end 

[X,Y]=meshgrid(0:180); 

 

figure 

contourf(X,Y,alfaE31absmax,100,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)','FontSize',12) 

ylabel('\alpha (deg)','FontSize',12) 

title('PZN-8%PT ([001] poled)  Maximum  |\alphaE| (V/cm-Oe)') 

grid on 

figure 

subplot(2,2,1) 

contourf(X,Y,alfaE31max,100,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)') 

ylabel('\alpha (deg)') 

title('Maximum  \alphaE (V/cm-Oe)') 

subplot(2,2,2) 

contourf(X,Y,alfaE31min,100,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)') 

ylabel('\alpha (deg)') 

title('Minimum  \alphaE (V/cm-Oe)') 

subplot(2,2,3) 

contourf(X,Y,alfaE31(1:181,1:181,1),100,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)') 

ylabel('\alpha (deg)') 

title(' \alphaE31 (V/cm-Oe)') 

subplot(2,2,4) 

contourf(X,Y,alfaE32(1:181,1:181,1),100,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)') 

ylabel('\alpha (deg)') 

title('  \alphaE32 (V/cm-Oe)') 

  

figure 

contourf(X,Y,alfaE3132absmin,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)','FontSize',12) 

ylabel('\alpha (deg)','FontSize',12) 

title('  \alphaE31-\alphaE32 (V/cm-Oe)') 

contourf(X,Y,alfaE3132absmax,'linecolor','none') 

shading flat 

colorbar 

xlabel('\beta (deg)','FontSize',12) 

ylabel('\alpha (deg)','FontSize',12) 

title('  \alphaE31 (V/cm-Oe)') 

  

Alfa=alfaE31absmax; 

figure 

XX1=sin(X*(pi/180)).*sin(Y*(pi/180)).*Alfa; 

YY1=-sin(X*(pi/180)).*cos(Y*(pi/180)).*Alfa; 

ZZ1=cos(X*(pi/180)).*Alfa; 

n=5; 

XX=XX1(1:n:end,1:n:end); 

YY=YY1(1:n:end,1:n:end); 

ZZ=ZZ1(1:n:end,1:n:end); 
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surf(XX,YY,ZZ,sqrt(XX.^2+YY.^2+ZZ.^2)) 

colormap jet 

hold on 

surf(-XX,YY,ZZ,sqrt(XX.^2+YY.^2+ZZ.^2)) 

colormap jet 

% shading interp 

xlabel('X') 

ylabel('Y') 

zlabel('Z') 

title('Maximum  |\alphaE| (V/cm-Oe)') 

colorbar 

Arw=max(max(Alfa))*1.2; 

quiver3([-Arw 0 0],[0 -Arw 0],[0 0 -Arw],[1 0 0],[0 1 0],[0 0 1],2,'k') 

axis equal 

view([135,30]) 

camlight headlight 

  

[Max,a]=max(alfaE31); 

[Max,b]=max(Max); 

[Max,s]=max(Max); 

Max 

s=s-1 

b=b(1,1,s+1)-1 

a=a(1,b+1,s+1)-1 

[Min,a]=min(alfaE31); 

[Min,b]=min(Min); 

[Min,s]=min(Min); 

Min 

s=s-1 

b=b(1,1,s+1)-1 

a=a(1,b+1,s+1)-1 

 

Code A.4.4. Calculation of the maximum transversal extensional and flexural quasi-static ME coefficients 

(αE31 and αE32) for a series of bi-layered plates of Metglas/piezoelectric, containing a unidomain or bidomain 

piezoelectric crystal, as a function of its crystalline orientation and geometry of the composite. 

clearvars -except P eS eT D E cE sE 

close all 

clc 

  

Bidomain=1; 

  

%Parameters: 

  

%geometry (m) 

tp=0.5E-3; 

xbid=0.5;    %up polarization fraction 

l=10E-3; 

  

%Coupling parameter 

  

Kc=1;%0.00011; 

  

%Metglas 

Pm=7900; 

  

%geometry (m) 

tm1=29E-6; 

  

%piezomagnetic coefficient (1/Oe) 

  

q11=4E-6; 

q12=-1.7E-6; 

q16=0E-6; 

q=[q11 q12 q12 0 0 q16;q12 q11 q12 0 0 q16;q12 q12 q11 0 0 q16]; 

  

%compliance coefficients (m^2/N) 

s11H=10E-12; 

s12H=-3.3E-12; 

s44H=2*13.3E-12; 

sH=[s11H s12H s12H 0 0 0;s12H s11H s12H 0 0 0;s12H s12H s11H 0 0 0;0 0 0 s44H 0 0;0 0 0 0 s44H 0;0 0 0 0 0 s44H]; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%D/E to 3D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            if k==j 

                D1(i,j,k)=D(i,j); 

                E1(i,j,k)=E(i,j); 

            else 

                D1(i,j,k)=D(i,9-j-k)/2; 

                E1(i,j,k)=E(i,9-j-k); 

            end 

        end 

    end 

end 
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%sE/cE to 3D 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                if i==j&&k==l 

                    sE1(i,j,k,l)=sE(i,k); 

                    cE1(i,j,k,l)=cE(i,k); 

                else if i==j&&k~=l 

                        sE1(i,j,k,l)=sE(i,9-k-l)/2; 

                        cE1(i,j,k,l)=cE(i,9-k-l); 

                    else if i~=j&&k==l 

                            sE1(i,j,k,l)=sE(9-i-j,k)/2; 

                            cE1(i,j,k,l)=cE(9-i-j,k); 

                        else if i~=j&&k~=l 

                                sE1(i,j,k,l)=sE(9-i-j,9-k-l)/4; 

                                cE1(i,j,k,l)=cE(9-i-j,9-k-l); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

cpu=cputime; 

 

%Euler angles 

Al=1; 

Be=0; 

Sig=1; 

  

Alfa=0; 

Beta=0; 

Gamma=0; 

  

for Alfa=0:1:180 

    Al=Al+1; 

    Be=0; 

    for Beta=0:1:180 

        Be=Be+1; 

        Sig=0; 

        for Gamma=0:1:180 

            Sig=Sig+1; 

             

            alfa=Alfa*(pi/180); 

            beta=Beta*(pi/180); 

            gamma=Gamma*(pi/180); 

             

            %Transformation matrix 

             

            a(1,1)=cos(gamma)*cos(alfa)-cos(beta)*sin(alfa)*sin(gamma); 

            a(1,2)=cos(gamma)*sin(alfa)+cos(beta)*cos(alfa)*sin(gamma); 

            a(1,3)=sin(gamma)*sin(beta); 

            a(2,1)=-sin(gamma)*cos(alfa)-cos(beta)*sin(alfa)*cos(gamma); 

            a(2,2)=-sin(gamma)*sin(alfa)+cos(beta)*cos(alfa)*cos(gamma); 

            a(2,3)=cos(gamma)*sin(beta); 

            a(3,1)=sin(beta)*sin(alfa); 

            a(3,2)=-sin(beta)*cos(alfa); 

            a(3,3)=cos(beta); 

             

            %Top layer material coefficients 

             

            if Bidomain==1 

                abot=[1 0 0;0 -1 0;0 0 -1]*a; 

            else 

                abot=a; 

            end 

             

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             

            %Rotated eT/eS 

             

            eT1Y(1:3,1:3)=0; 

            eS1Y(1:3,1:3)=0; 

            eT1Ybot(1:3,1:3)=0; 

            eS1Ybot(1:3,1:3)=0; 

            for i=1:3 

                for j=1:3 

                    for m=1:3 

                        for n=1:3 

                            eT1Y(i,j)=eT1Y(i,j)+a(i,m)*a(j,n)*eT(m,n); 

                            eS1Y(i,j)=eS1Y(i,j)+a(i,m)*a(j,n)*eS(m,n); 

                            eT1Ybot(i,j)=eT1Ybot(i,j)+abot(i,m)*abot(j,n)*eT(m,n); 

                            eS1Ybot(i,j)=eS1Ybot(i,j)+abot(i,m)*abot(j,n)*eS(m,n); 

                        end 

                    end 

                end 

            end 

             

             

            %Rotated D/E 
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            D1Y(1:3,1:3,1:3)=0; 

            E1Y(1:3,1:3,1:3)=0; 

            D1Ybot(1:3,1:3,1:3)=0; 

            E1Ybot(1:3,1:3,1:3)=0; 

            for i=1:3 

                for j=1:3 

                    for k=1:3 

                        for m=1:3 

                            for n=1:3 

                                for o=1:3 

                                    D1Y(i,j,k)=D1Y(i,j,k)+a(i,m)*a(j,n)*a(k,o)*D1(m,n,o); 

                                    E1Y(i,j,k)=E1Y(i,j,k)+a(i,m)*a(j,n)*a(k,o)*E1(m,n,o); 

                                    D1Ybot(i,j,k)=D1Ybot(i,j,k)+abot(i,m)*abot(j,n)*abot(k,o)*D1(m,n,o); 

                                    E1Ybot(i,j,k)=E1Ybot(i,j,k)+abot(i,m)*abot(j,n)*abot(k,o)*E1(m,n,o); 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

             

            %Rotated sE/cE 

             

            sE1Y(1:3,1:3,1:3,1:3)=0; 

            cE1Y(1:3,1:3,1:3,1:3)=0; 

            sE1Ybot(1:3,1:3,1:3,1:3)=0; 

            cE1Ybot(1:3,1:3,1:3,1:3)=0; 

            for i=1:3 

                for j=1:3 

                    for k=1:3 

                        for l=1:3 

                            for m=1:3 

                                for n=1:3 

                                    for o=1:3 

                                        for p=1:3 

                                            sE1Y(i,j,k,l)=sE1Y(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,p)*sE1(m,n,o,p); 

                                            cE1Y(i,j,k,l)=cE1Y(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,p)*cE1(m,n,o,p); 

                                            

sE1Ybot(i,j,k,l)=sE1Ybot(i,j,k,l)+abot(i,m)*abot(j,n)*abot(k,o)*abot(l,p)*sE1(m,n,o,p); 

                                            

cE1Ybot(i,j,k,l)=cE1Ybot(i,j,k,l)+abot(i,m)*abot(j,n)*abot(k,o)*abot(l,p)*cE1(m,n,o,p); 

                                        end 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

             

            %D/E to 2D 

             

            for i=1:3 

                for j=1:3 

                    for k=1:3 

                        if j==k 

                            DY(i,j)=D1Y(i,j,k); 

                            EY(i,j)=E1Y(i,j,k); 

                            DYbot(i,j)=D1Ybot(i,j,k); 

                            EYbot(i,j)=E1Ybot(i,j,k); 

                        else 

                            DY(i,9-j-k)=2*D1Y(i,j,k); 

                            EY(i,9-j-k)=E1Y(i,j,k); 

                            DYbot(i,9-j-k)=2*D1Ybot(i,j,k); 

                            EYbot(i,9-j-k)=E1Ybot(i,j,k); 

                        end 

                    end 

                end 

            end 

             

            %sE/cE to 2D 

             

            for i=1:3 

                for j=1:3 

                    for k=1:3 

                        for l=1:3 

                            if i==j&&k==l 

                                sEY(i,k)=sE1Y(i,j,k,l); 

                                cEY(i,k)=cE1Y(i,j,k,l); 

                                sEYbot(i,k)=sE1Ybot(i,j,k,l); 

                                cEYbot(i,k)=cE1Ybot(i,j,k,l); 

                            else if i==j&k~=l 

                                    sEY(i,9-k-l)=2*sE1Y(i,j,k,l); 

                                    cEY(i,9-k-l)=cE1Y(i,j,k,l); 

                                    sEYbot(i,9-k-l)=2*sE1Ybot(i,j,k,l); 

                                    cEYbot(i,9-k-l)=cE1Ybot(i,j,k,l); 

                                else if i~=j&k==l 

                                        sEY(9-i-j,k)=2*sE1Y(i,j,k,l); 

                                        cEY(9-i-j,k)=cE1Y(i,j,k,l); 

                                        sEYbot(9-i-j,k)=2*sE1Ybot(i,j,k,l); 

                                        cEYbot(9-i-j,k)=cE1Ybot(i,j,k,l); 

                                    else if i~=j&k~=l 

                                            sEY(9-i-j,9-k-l)=4*sE1Y(i,j,k,l); 

                                            cEY(9-i-j,9-k-l)=cE1Y(i,j,k,l); 

                                            sEYbot(9-i-j,9-k-l)=4*sE1Ybot(i,j,k,l); 

                                            cEYbot(9-i-j,9-k-l)=cE1Ybot(i,j,k,l); 

                                        end 

                                    end 
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                                end 

                            end 

                        end 

                    end 

                end 

            end 

             

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            inveT1Y=zeros(3); 

             

            % inveT1Y=inv(eT1Y);                        %D1, D2 = 0 

            inveT1Y(3,3)=1/eT1Y(3,3);                   %E1, E2 = 0 

             

            DY1=DY(:,[1 2 6]); 

            DYbot1=DYbot(:,[1 2 6]); 

            sEY1=sEY([1 2 6],[1 2 6]); 

             

             

            sEYbot1=sEYbot([1 2 6],[1 2 6]); 

             

            sEff=sEY1-DY1'*(inveT1Y*DY1); 

             

            sEffbot=sEYbot1-DYbot1'*(inveT1Y*DYbot1); 

             

            sEffinv=inv(sEff); 

            sEffbotinv=inv(sEffbot); 

             

            dEff=-(inveT1Y*DY1)*sEffinv; 

            dEffbot=-(inveT1Y*DYbot1)*sEffbotinv; 

             

            sHinv=inv(sH([1 2 6],[1 2 6])); 

            sqinv=sHinv*(q(1,[1 2 6])'); 

            sqinvaE32=sHinv*(q(2,[1 2 6])'); 

             

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             

            tm=tm1; 

             

             

            vp=tp/(tp+tm); 

             

            A=zeros(6); 

            A11=(tm)*sHinv + (-(-tp*xbid))*sEffinv + (-tp*xbid - (-tp))*sEffbotinv; 

            A12=((tm^2)/2)*sHinv + (-((-tp*xbid)^2)/2)*sEffinv + (((-tp*xbid)^2)/2 - ((-tp)^2)/2)*sEffbotinv; 

            A21=A12; 

            A22=((tm^3)/3)*sHinv + (-((-tp*xbid)^3)/3)*sEffinv + (((-tp*xbid)^3)/3 - ((-tp)^3)/3)*sEffbotinv; 

            A=[A11 A12;A21 A22]; 

             

            B=zeros(6,1); 

            B1=(tm)*sqinv; 

            B2=((tm^2)/2)*sqinv; 

            B31=[B1;B2]; 

             

             

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             

            C1=(-(-tp*xbid1))*dEff(3,:) + (-tp*xbid1 - (-tp))*dEffbot(3,:); 

            C2=(-((-tp*xbid1)^2)/2)*dEff(3,:) + (((-tp*xbid1)^2)/2 - ((-tp)^2)/2)*dEffbot(3,:); 

            C=[C1 C2]; 

             

            aE31=(C*(A\B31))/(100*tp); 

             

            B1=(tm)*sqinvaE32; 

            B2=((tm^2)/2)*sqinvaE32; 

            B32=[B1;B2]; 

             

            aE32=(C*(A\B32))/(100*tp); 

             

            aE31extensional=([C1 0 0 0]*(A\B31))/(100*tp); 

            aE32extensional=([C1 0 0 0]*(A\B32))/(100*tp); 

            aE31flexural=([0 0 0 C2]*(A\B31))/(100*tp); 

            aE32flexural=([0 0 0 C2]*(A\B32))/(100*tp); 

             

            alfaE31(Al,Be,Sig)=aE31; 

            alfaE32(Al,Be,Sig)=aE32; 

            alfaE31ext(Al,Be,Sig)=aE31extensional; 

            alfaE32ext(Al,Be,Sig)=aE32extensional; 

            alfaE31flex(Al,Be,Sig)=aE31flexural; 

            alfaE32flex(Al,Be,Sig)=aE32flexural; 

             

        end 

    end 

    Alfa 

end 
 

Code A.4.5. Calculation of the maximum analytical transversal dynamic flexural ME coefficients (αE31 and 

αE32), electrical impedance (Z) and intrinsic thermal spectral noise density (en) for a series of bi-layered long 

bars of Metglas/piezoelectric, containing a unidomain or bidomain piezoelectric crystal, as a function of the 

frequency of the applied modulated magnetic field, crystalline orientation of the piezoelectric, geometry of the 
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composite and loss factors due to internal friction and intermediate layers of epoxy or a non-piezoelectric 

dielectric. 

clearvars -except P eS1Y eT1Y DY EY cEY sEY 

close all 

clc 

  

Bidomain=1; 

  

Kb=1.287158974E-10;    % sqrt(4*kb*T),  T=300K 

e0=8.8541878176E-12; %F/m 

  

i=0; 

for x=linspace(0.01,0.99,101) 

    i=i+1; 

    xl(i)=x; 

     

    %Parameters: 

     

    %geometry (m) 

     

    l=10E-3; 

    w=1E-3; 

     

    %Metglas 

    Pm=7900; 

     

    %piezomagnetic coefficient (1/Oe) 

     

    q11=4E-6; 

    q12=-1.7E-6; 

    q16=0E-6; 

    q=[q11 q12 q12 0 0 q16;q12 q11 q12 0 0 q16;q12 q12 q11 0 0 q16]; 

     

    %compliance coefficients (m^2/N) 

    s11H=10E-12; 

    s12H=-3.3E-12; 

    s44H=2*13.3E-12; 

    sH=[s11H s12H s12H 0 0 0;s12H s11H s12H 0 0 0;s12H s12H s11H 0 0 0;0 0 0 s44H 0 0;0 0 0 0 s44H 0;0 0 0 0 0 s44H]; 

     

     

    %Epoxy 

     

    PE=1164; 

     

    %compliance coefficients (m^2/N) 

    s11E=292E-12; 

    s12E=-101.5E-12; 

    s44E=2*(s11E-s12E); 

    sE=[s11E s12E s12E 0 0 0;s12E s11E s12E 0 0 0;s12E s12E s11E 0 0 0;0 0 0 s44E 0 0;0 0 0 0 s44E 0;0 0 0 0 0 s44E]; 

     

    %dielectric coefficients 

    eTE=(4.25)*e0*eye(3); 

     

    %Effective parameters 

     

    % cD11=1/(sEY(1,1)-DY(3,1)*DY(3,1)/eT1Y(3,3)); 

    % h31=cD11*DY(3,1)/eT1Y(3,3); 

    % b331=(1/eT1Y(3,3))*(1+h31*DY(3,1)); 

     

    tgloss=0.007; 

    eT1Yloss=(eT1Y(3,3)*(1-1i*tgloss)); 

    cD22=(1)/(sEY(2,2)-DY(3,2)*DY(3,2)/(eT1Yloss)); 

    h32=cD22*DY(3,2)/(eT1Yloss); 

    b332=(1/(eT1Yloss))*(1+h32*DY(3,2)); 

     

    cH22=1/(sH(2,2)); 

    qH22=cH22*q(2,2); 

     

    cD22E=(1)/(sE(2,2)); 

    h32E=0; 

    b332E=(1/(eTE(3,3)*(1-1i*tgloss))); 

     

     

    %geometry (m) 

     

    tpm=((0.5E-3)+(29E-6)); 

     

    te=0;%1000E-6; 

    X=(0.5E-3)/tpm; 

    Xnp=0; 

    % X=0.6 

    tp=X*tpm; 

    xbid=0.5;    %up polarization fraction 

    if Bidomain == 0 

        xbid=1; 

    end 

     

    t1=(1-xbid)*(1-Xnp)*tp; 

    t2=Xnp*tp; 

    t3=xbid*(1-Xnp)*tp; 

    t4=te; 

    t5=(1-X)*tpm; 

     

    tp=tp+te; 
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    tm=t5; 

    ti=[t1 t2 t3 t4 t5]; 

    t=sum(ti); 

     

    c22t=[cD22 cD22 cD22 cD22E cH22]; 

    h32t=[-h32 0 h32 0 0]; 

    b33t=[b332 b332 b332 b332E 0]; 

    q22t=[0 0 0 0 qH22]; 

     

    tc=cumsum(ti); 

    tc=[0 tc]; 

     

    d221=0; 

    d222=0; 

    for I=1:length(ti) 

        d222=d222+2*c22t(I)*ti(I); 

        d221=d221+c22t(I)*((ti(I)^2)+2*ti(I)*tc(I)); 

    end 

    d22=d221/d222; 

    % 1-(d22/tp) 

    % 1-0.5*(t/tp) 

     

    B332=0; 

    H32=0; 

    D22p=0; 

    for I=1:4 

        B332=B332+b33t(I)*(ti(I)/tp); 

        H32=H32+h32t(I)*(((tc(I+1)-d22)^2)-((tc(I)-d22)^2))/(2*tp); 

        D22p=D22p+c22t(I)*(((tc(I+1)-d22)^3)-((tc(I)-d22)^3))/(3*tp); 

    end 

    Q22=q22t(5)*(((tc(5+1)-d22)^2)-((tc(5)-d22)^2))/(2*tm); 

    D22m=c22t(5)*(((tc(5+1)-d22)^3)-((tc(5)-d22)^3))/(3*tm); 

    D22=(D22p-((H32^2)/B332))*(tp/(t^3))+(D22m)*(tm/(t^3)); 

    Pmed=(P*(t1+t2+t3)+PE*t4+Pm*t5)/t; 

     

    Q=300; 

    f=linspace(0.001,100E3,100000); 

    W=2*pi*f; 

    W=W.*(1-1i*(1/Q)); 

    K=((Pmed/(D22*(t^2)))^(1/4))*sqrt(W)*(l/2); 

     

    fk=K.*(cot(K)+coth(K)); 

    Y=((1i*W*w*l)./(tp*B332)).*(1+(2*tp*(H32^2)./(B332*t*(D22*(t^2))*fk))); 

    aE32=-(tm*Q22*H32)./(((tp*((H32^2)./B332))+t*(D22*(t^2))*0.5*fk)); 

    fr=real((2*(2.365^2)/(pi*(l^2)))*sqrt((D22*(t^2))/Pmed)) 

    Nmin(i)=min((1E-4)*Kb*sqrt(real(1./Y))./(abs(aE32).*tp)); 

     

    W=2*pi*0.00001*(1-1i*(1/Q)); 

    K=((Pmed/(D22*(t^2)))^(1/4))*sqrt(W)*(l/2); 

    fk=K.*(cot(K)+coth(K)); 

    Ylowf(i)=((1i*W*w*l)./(tp*B332)).*(1+(2*tp*(H32^2)./(B332*t*(D22*(t^2))*fk))); 

    aE32lowf(i)=-(tm*Q22*H32)./((tp*((H32^2)./B332))+t*(D22*(t^2))*0.5*fk); 

    Noilowf(i)=(1E-4)*Kb*sqrt(real(1./Ylowf(i)))./(abs(aE32lowf(i)).*tp); 

    aElowf(i)=abs(aE32lowf(i)*tp); 

     

    W=2*pi*fr*(1-1i*(1/Q)); 

    K=((Pmed/(D22*(t^2)))^(1/4))*sqrt(W)*(l/2); 

    fk=K.*(cot(K)+coth(K)); 

    Yres(i)=((1i*W*w*l)./(tp*B332)).*(1+(2*tp*(H32^2)./(B332*t*(D22*(t^2))*fk))); 

    aE32res(i)=-(tm*Q22*H32)./((tp*((H32^2)./B332))+t*(D22*(t^2))*0.5*fk); 

    Noires(i)=(1E-4)*Kb*sqrt(real(1./Yres(i)))./(abs(aE32res(i)).*tp); 

    aEres(i)=abs(aE32res(i)*tp); 

     

    Fr(i)=fr; 

     

    semilogy(f,(1E12)*(1E-4)*Kb*sqrt(real(1./Y))./(abs(aE32).*tp),f,(1E-

6)*abs(1./Y),f,abs(aE32)/100,f,(1E9)*Kb*sqrt(real(1./Y))) 

    hold on 

end 

  

figure 

plot((xl).^(1),Noilowf,'.-') 

polyfit(log(xl),log(real(Noilowf)),1) 

figure 

plot((xl).^(1),Noires,'.-') 

polyfit(log(xl),log(Noires),1) 

figure 

plot((xl).^(1),Nmin,'.-') 

polyfit(log(xl),log(Nmin),1) 

 

Code A.4.6. Numerical calculation of the dynamic electrical impedance (Z) and displacement fields (ui) in a 

series of unidomain or bidomain piezoelectric crystal plates as a function of the frequency of the applied 

voltage, crystalline orientation of the piezoelectric, geometry of the plate and damping factors, using a finite 

element method (FEM) realized with the help of Matlab’s (version R2014b) partial differential equation and 

parallel computing toolboxes. 

clearvars -except P E1Y EY cE1Y cEY eS1Y 

close all hidden 
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clc 

  

% Parameters 

  

Parallel=0;             % Parallel computing - 1 true; 0 false. 

GalCol=1;               % 1 - Galerkin; 0 - Colocation method 

LinPot=1;               % Linear potential - 1 true; 0 false; 2 true + equations 

ZContInt=0;             % 0 - Z continuous integration; 1 - Top/Bot half integration; 2 - U=UtopIZtopI + UbotIZbotI 

Top/Bot half integration; 

  

Bidomain=1;             % 1 - Bidomain; 0 - Unidomain 

T3jl=1;                 % Set T3j|h1-0 / T3j|0-h2 in system of eqs - 1 true; 0 false. 

T3j0topbot=0;           % Impose T3j(0+)=T3j(0-) - 1 true; 0 false (LinPot = 0). 

Ttopboteqs=1;           % Impose Ttop Tbot - 1 true; 0 false. 

  

N = 3; 

Neq = 4*(N+1);          % Number of equations 4*(N+1) 

I1=N-1;                 % Substituted equations 

I2=N; 

  

Ttop3=zeros(3,1);       % T3j top/bot 

Tbot3=zeros(3,1); 

Vtop=0.1;                 % V.exp(iwt) top/bot 

Vbot=0; 

  

%Frequency interval 

  

Fmin=1E3; 

Fmax=500E3; 

Fstep=50; 

Freq=Fmin:Fstep:Fmax; 

  

%Damping 

  

Damp=0; 

Dampv=0;    %1E7 

Dampv2=2;   %37/2 

Dampv3=0; 

  

%Geometry 

  

Hl=0.5E-3; 

h1=Hl/2; 

h2=h1-Hl; 

  

L1=5E-3; 

L2=5E-3; 

L=(L1+L2)/2; 

  

gd=[3;4;-L1;L1;L1;-L1;L2;L2;-L2;-L2]; 

sf='R1'; 

ns=[82;49]; 

  

dl=decsg(gd,sf,ns); 

pdegplot(dl,'edgelabels','on','subdomainlabels','on') 

axis square 

axis([-L*1.1,L*1.1,-L*1.1,L*1.1]) 

  

%FEM Mesh 

  

[p,e,t]=initmesh(dl,'Hmax',L/15,'MesherVersion','R2013a'); 

% [p,e,t]=refinemesh(dl,p,e,t,'regular'); 

% [p,e,t]=refinemesh(dl,p,e,t,'regular'); 

% [p,e,t]=refinemesh(dl,p,e,t,'regular'); 

% [p,e,t]=refinemesh(dl,p,e,t,'longest'); 

p=jigglemesh(p,e,t,'opt','mean','iter',inf); 

figure 

pdemesh(p,e,t) 

axis square 

axis([-L*1.1,L*1.1,-L*1.1,L*1.1]) 

  

  

%Top layer material coefficients 

  

if Bidomain==1 

    a=[1 0 0;0 -1 0;0 0 -1]; 

else 

    a=eye(3); 

end 

  

%Rotated eS 

  

eS1Ytop(1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for m=1:3 

            for n=1:3 

                eS1Ytop(i,j)=eS1Ytop(i,j)+a(i,m)*a(j,n)*eS1Y(m,n); 

            end 

        end 

    end 

end 

  

%Rotated E 

  

E1Ytop(1:3,1:3,1:3)=0; 

for i=1:3 

    for j=1:3 
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        for k=1:3 

            for m=1:3 

                for n=1:3 

                    for o=1:3 

                        E1Ytop(i,j,k)=E1Ytop(i,j,k)+a(i,m)*a(j,n)*a(k,o)*E1Y(m,n,o); 

                    end 

                end 

            end 

        end 

    end 

end 

  

%Rotated cE 

  

cE1Ytop(1:3,1:3,1:3,1:3)=0; 

for i=1:3 

    for j=1:3 

        for k=1:3 

            for l=1:3 

                for m=1:3 

                    for n=1:3 

                        for o=1:3 

                            for q=1:3 

                                cE1Ytop(i,j,k,l)=cE1Ytop(i,j,k,l)+a(i,m)*a(j,n)*a(k,o)*a(l,q)*cE1Y(m,n,o,q); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

% Number of triangles 

nt = size(t,2); 

% Triangle point indices 

it1=t(1,:); 

it2=t(2,:); 

it3=t(3,:); 

% Find centroids of triangles 

xpts=(p(1,it1)+p(1,it2)+p(1,it3))/3; 

ypts=(p(2,it1)+p(2,it2)+p(2,it3))/3; 

% Triangle geometries: 

[Area,g1x,g1y,g2x,g2y,g3x,g3y]=pdetrg(p,t); 

  

np = size(p,2); % number of mesh points 

u0 = zeros(np,Neq); % allocate initial matrix 

u0 = u0(:); % convert to column form 

  

% Define vIvJ ... 

  

vI0=zeros(1,N+1); vI0(1)=1;                                                     % vI z=0 

vI01=zeros(1,N+1); vI01(2)=1;                                                   % vI' z=0 

for tb=1:2 

    if tb==1 

        h=h1; 

    else 

        h=h2; 

    end 

    signh=-(-1)^tb; 

    for I=0:N 

        vI(I+1,tb)=signh*(1/(I+1))*(h^(I+1)-0^(I+1));                               % <vI> t/b 

        vItb(I+1,tb)=h^I;                                                           % vI t/b 

        vI1tb(I+1,tb)=I*(h^(I-1));                                                  % vI't/b 

        if I>0 

            vI1(I+1,tb)=signh*(h^I-0^I);                                            % <vI'> t/b 

        else 

            vI1(I+1,tb)=0; 

        end 

        for J=0:N 

            if GalCol==1 

                vIvJ(I+1,J+1,tb)=signh*(1/(I+J+1))*(h^(I+J+1)-0^(I+J+1));        % <vI,vJ> t/b 

                vIvJt(I+1,J+1,tb)=signh*(h^(I+J)-0^(I+J));                       % vI.vJ t/-b 

                if I+J>0 

                    vI1vJ(I+1,J+1,tb)=signh*(I/(I+J))*(h^(I+J)-0^(I+J));             % <vI',vJ> t/b 

                    vIvJ1(I+1,J+1,tb)=signh*(J/(I+J))*(h^(I+J)-0^(I+J));             % <vI,vJ'> t/b 

                    vIvJ1t(I+1,J+1,tb)=signh*J*(h^(I+J-1)-0^(I+J-1));                % vI.vJ' t/-b 

                else 

                    vI1vJ(I+1,J+1,tb)=0; 

                    vIvJ1(I+1,J+1,tb)=0; 

                    vIvJ1t(I+1,J+1,tb)=0; 

                end 

                if I+J-1>0 

                    vI1vJ1(I+1,J+1,tb)=signh*((I*J)/(I+J-1))*(h^(I+J-1)-0^(I+J-1));  % <vI',vJ'> t/b 

                else 

                    vI1vJ1(I+1,J+1,tb)=0; 

                end 

            else 

                if J==I 

                    vIvJ(I+1,J+1,tb)=1; 

                elseif J==I+1 

                    vIvJ1(I+1,J+1,tb)=I+1; 

                    vI1vJ(I+1,J+1,tb)=-(I+1); 

                elseif J==I+2 

                    vI1vJ1(I+1,J+1,tb)=-(I+1)*(I+2); 

                else 

                    vIvJ(I+1,J+1,tb)=0; 
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                    vIvJ1(I+1,J+1,tb)=0; 

                    vI1vJ(I+1,J+1,tb)=0; 

                    vI1vJ1(I+1,J+1,tb)=0; 

                    vIvJt(I+1,J+1,tb)=0; 

                    vIvJ1t(I+1,J+1,tb)=0; 

                end 

            end 

        end 

    end 

end 

  

% Define material matrices 

  

for tb=1:2 

    for j=1:4 

        for k=1:4 

            for a=1:3 

                for b=1:3 

                    if j==4&&k==4 

                        if tb==1 

                            Mjk(j,k,a,b,tb)=-eS1Ytop(a,b); 

                        else 

                            Mjk(j,k,a,b,tb)=-eS1Y(a,b); 

                        end 

                    elseif j==4 

                        if tb==1 

                            Mjk(j,k,a,b,tb)=E1Ytop(a,k,b); 

                        else 

                            Mjk(j,k,a,b,tb)=E1Y(a,k,b); 

                        end 

                    elseif k==4 

                        if tb==1 

                            Mjk(j,k,a,b,tb)=E1Ytop(b,a,j); 

                        else 

                            Mjk(j,k,a,b,tb)=E1Y(b,a,j); 

                        end 

                    else 

                        if tb==1 

                            Mjk(j,k,a,b,tb)=cE1Ytop(a,j,k,b); 

                        else 

                            Mjk(j,k,a,b,tb)=cE1Y(a,j,k,b); 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

Tjk=Mjk; Tjk(4,:,:,:,:)=0; 

Djk=Mjk; Djk(1:3,:,:,:,:)=0; 

dTjk=eye(4,4); dTjk(4,4)=0; 

dDjk=zeros(4,4); dDjk(4,4)=1; 

  

  

% C coefficients 

  

C1=zeros(Neq,Neq,2,2,2); 

Cbc=zeros(4,Neq,2,2,2); 

CT3j0=zeros(4,Neq,2,2,2); 

for tb=1:2 

    for I=0:N 

        for J=0:N 

            for j=1:4 

                for k=1:4 

                    for a=1:2 

                        for b=1:2 

                            C1(4*I+j,4*J+k,a,b,tb) = Mjk(j,k,a,b,tb)*vIvJ(I+1,J+1,tb); 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

%A coefficients -W 

  

A11=zeros(Neq,Neq,2); 

A21=zeros(Neq,Neq,2); 

A1bc=zeros(4,Neq,2); 

A2bc=zeros(4,Neq,2); 

AT3j01=zeros(4,Neq,2); 

AT3j02=zeros(4,Neq,2); 

  

for tb=1:2 

    for I=0:N 

        for J=0:N 

            for j=1:4 

                for k=1:4 

                    A1bc(j,4*J+k,tb) = Tjk(j,k,3,3,tb)*vI1tb(J+1,tb) + dDjk(j,k)*vItb(J+1,tb); 

                    A2bc(j,4*J+k,tb) = 0; 

                    if T3jl==1 

                        signh=-(-1)^tb; 

                        A11(4*I+j,4*J+k,tb) = Mjk(j,k,3,3,tb)*vI1vJ1(I+1,J+1,tb) - Djk(j,k,3,3,tb)*vIvJ1t(I+1,J+1,tb) + 

signh*Tjk(j,k,3,3,tb)*vI0(I+1)*vI01(J+1); 

                    else 

                        A11(4*I+j,4*J+k,tb) = Mjk(j,k,3,3,tb)*vI1vJ1(I+1,J+1,tb) - Mjk(j,k,3,3,tb)*vIvJ1t(I+1,J+1,tb); 
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                    end 

                    A21(4*I+j,4*J+k,tb) = dTjk(j,k)*vIvJ(I+1,J+1,tb); 

                    if J==1 

                        AT3j01(j,4*J+k,tb) = Tjk(j,k,3,3,tb); 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

  

% f coeficients 

  

F1=zeros(Neq,2); 

Fbc=zeros(4,2); 

FT3j0=zeros(4,2); 

TDtop=[Ttop3;Vtop]; 

TDbot=[Tbot3;Vbot]; 

TDtopbot=[TDtop,TDbot]; 

Ttop31=[Ttop3;0]; 

Tbot31=[Tbot3;0]; 

Ttopbot=[Ttop31,-Tbot31]; 

for tb=1:2 

    for I=0:N 

        for j=1:4 

            Fbc(j,tb)=TDtopbot(j,tb); 

            if T3jl==1 

                signh=-(-1)^tb; 

                F1(4*I+j,tb)=signh*Ttopbot(j,tb)*vItb(I+1,tb); 

            else 

                F1(4*I+j,tb)=0; 

            end 

        end 

    end 

end 

  

  

% O coefficients 

  

O1=zeros(Neq,Neq,2,2); 

Obc=zeros(4,Neq,2,2); 

OT3j0=zeros(4,Neq,2,2); 

for tb=1:2 

    for I=0:N 

        for J=0:N 

            for j=1:4 

                for k=1:4 

                    for b=1:2 

                        Obc(j,4*J+k,b,tb) = Tjk(j,k,3,b,tb)*vItb(J+1,tb); 

                        if T3jl==1 

                            signh=-(-1)^tb; 

                            O1(4*I+j,4*J+k,b,tb) = -vIvJ1(I+1,J+1,tb)*Mjk(j,k,b,3,tb) + vI1vJ(I+1,J+1,tb)*Mjk(j,k,3,b,tb) 

- vIvJt(I+1,J+1,tb)*Djk(j,k,3,b,tb) + signh*Tjk(j,k,3,b,tb)*vI0(I+1)*vI0(J+1); 

                        else 

                            O1(4*I+j,4*J+k,b,tb) = -vIvJ1(I+1,J+1,tb)*Mjk(j,k,b,3,tb) + vI1vJ(I+1,J+1,tb)*Mjk(j,k,3,b,tb) 

- vIvJt(I+1,J+1,tb)*Mjk(j,k,3,b,tb); 

                        end 

                        if J==0 

                            OT3j0(j,4*J+k,b,tb) = Tjk(j,k,3,b,tb); 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

% Boundary conditions 

  

pg = pdeGeometryFromEdges(dl); 

Q1=zeros(Neq,Neq,2); 

Qbc=zeros(4,Neq,2); 

Q1ed=zeros(Neq,Neq,4,2); 

Qbced=zeros(4,Neq,4,2); 

QT3j0ed=zeros(4,Neq,4,2); 

  

na(1,:)=[0,1,0,-1]; 

na(2,:)=[1,0,-1,0]; 

for tb=1:2 

    for ed=1:4; 

        for I=0:N 

            for J=0:N 

                for j=1:4 

                    for k=1:4 

                        Q1(4*I+j,4*J+k,tb) = 0; 

                        for b=1:2 

                            Qbc(j,4*J+k,tb) = 0; 

                            Q1(4*I+j,4*J+k,tb) = Q1(4*I+j,4*J+k,tb) + na(b,ed)*(Mjk(j,k,b,3,tb)*vIvJ1(I+1,J+1,tb)); 

                        end 

                        Qbced(j,4*J+k,ed,tb) = Qbc(j,4*J+k,tb); 

                        Q1ed(4*I+j,4*J+k,ed,tb) = Q1(4*I+j,4*J+k,tb); 

                    end 

                end 

            end 

        end 
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    end 

end 

  

  

%Material matrices (top + bot) 

  

if ZContInt==0 

    C = C1(:,:,:,:,1) + C1(:,:,:,:,2); 

    A1 = A11(:,:,1) + A11(:,:,2); 

    A2 = A21(:,:,1) + A21(:,:,2); 

    F = F1(:,1) + F1(:,2); 

    O = O1(:,:,:,1) + O1(:,:,:,2); 

    Qed = Q1ed(:,:,:,1) + Q1ed(:,:,:,2); 

elseif ZContInt==1 

    for I=0:N 

        ind=1.5-0.5*(-1)^I; 

        C(4*I+(1:4),:,:,:) = C1(4*I+(1:4),:,:,:,ind); 

        A1(4*I+(1:4),:) = A11(4*I+(1:4),:,ind); 

        A2(4*I+(1:4),:) = A21(4*I+(1:4),:,ind); 

        F(4*I+(1:4),1) = F1(4*I+(1:4),ind); 

        O(4*I+(1:4),:,:) = O1(4*I+(1:4),:,:,ind); 

        Qed(4*I+(1:4),:,:) = Q1ed(4*I+(1:4),:,:,ind); 

    end 

else 

    C=zeros(2*Neq,2*Neq,2,2); 

    C(1:Neq,1:Neq,:,:) = C1(:,:,:,:,1); 

    C(Neq+1:2*Neq,1:4,:,:) = C1(:,1:4,:,:,2); 

    C(Neq+1:2*Neq,Neq+5:2*Neq,:,:) = C1(:,5:end,:,:,2); 

    C(:,Neq+1:Neq+4,:,:) = []; 

    A1=zeros(2*Neq,2*Neq); 

    A1(1:Neq,1:Neq) = A11(:,:,1); 

    A1(Neq+1:2*Neq,1:4) = A11(:,1:4,2); 

    A1(Neq+1:2*Neq,Neq+5:2*Neq) = A11(:,5:end,2); 

    A1(:,Neq+1:Neq+4) = []; 

    A2=zeros(2*Neq,2*Neq); 

    A2(1:Neq,1:Neq) = A21(:,:,1); 

    A2(Neq+1:2*Neq,1:4) = A21(:,1:4,2); 

    A2(Neq+1:2*Neq,Neq+5:2*Neq) = A21(:,5:end,2); 

    A2(:,Neq+1:Neq+4) = []; 

    O=zeros(2*Neq,2*Neq,2); 

    O(1:Neq,1:Neq,:) = O1(:,:,:,1); 

    O(Neq+1:2*Neq,1:4,:) = O1(:,1:4,:,2); 

    O(Neq+1:2*Neq,Neq+5:2*Neq,:) = O1(:,5:end,:,2); 

    O(:,Neq+1:Neq+4,:) = []; 

    Qed=zeros(2*Neq,2*Neq,4); 

    Qed(1:Neq,1:Neq,:) = Q1ed(:,:,:,1); 

    Qed(Neq+1:2*Neq,1:4,:) = Q1ed(:,1:4,:,2); 

    Qed(Neq+1:2*Neq,Neq+5:2*Neq,:) = Q1ed(:,5:end,:,2); 

    Qed(:,Neq+1:Neq+4,:) = []; 

    F=zeros(2*Neq,1); 

    F(1:Neq,1) = F1(:,1); 

    F(Neq+1:2*Neq,1) = F1(:,2); 

end 

  

%Substitute top/bot boundary conditions 

  

if Ttopboteqs==1 

    J=1; 

else 

    J=4; 

end 

if ZContInt~=2 

    for I=0:N 

        if I==I1 

            C(4*I+J:4*I+4,:,:,:) = Cbc(J:4,:,:,:,1); 

            A1(4*I+J:4*I+4,:) = A1bc(J:4,:,1); 

            A2(4*I+J:4*I+4,:) = A2bc(J:4,:,1); 

            F(4*I+J:4*I+4) = Fbc(J:4,1); 

            O(4*I+J:4*I+4,:,:) = Obc(J:4,:,:,1); 

            Qed(4*I+J:4*I+4,:,:) = Qbced(J:4,:,:,1); 

        elseif I==I2 

            C(4*I+J:4*I+4,:,:,:) = Cbc(J:4,:,:,:,2); 

            A1(4*I+J:4*I+4,:) = A1bc(J:4,:,2); 

            A2(4*I+J:4*I+4,:) = A2bc(J:4,:,2); 

            F(4*I+J:4*I+4) = Fbc(J:4,2); 

            O(4*I+J:4*I+4,:,:) = Obc(J:4,:,:,2); 

            Qed(4*I+J:4*I+4,:,:) = Qbced(J:4,:,:,2); 

        end 

    end 

else 

    C(Neq-4+J:Neq,1:Neq,:,:) = Cbc(J:4,:,:,:,1); 

    C(2*Neq-4+J:2*Neq,1:4,:,:) = Cbc(J:4,1:4,:,:,2); 

    C(2*Neq-4+J:2*Neq,Neq+1:2*Neq-4,:,:) = Cbc(J:4,5:end,:,:,2); 

    A1(Neq-4+J:Neq,1:Neq) = A1bc(J:4,:,1); 

    A1(2*Neq-4+J:2*Neq,1:4) = A1bc(J:4,1:4,2); 

    A1(2*Neq-4+J:2*Neq,Neq+1:2*Neq-4) = A1bc(J:4,5:end,2); 

    A2(Neq-4+J:Neq,1:Neq) = A2bc(J:4,:,1); 

    A2(2*Neq-4+J:2*Neq,1:4) = A2bc(J:4,1:4,2); 

    A2(2*Neq-4+J:2*Neq,Neq+1:2*Neq-4) = A2bc(J:4,5:end,2); 

    F(Neq-4+J:Neq,1) = Fbc(J:4,1); 

    F(2*Neq-4+J:2*Neq,1) = Fbc(J:4,2); 

    O(Neq-4+J:Neq,1:Neq,:) = Obc(J:4,:,:,1); 

    O(2*Neq-4+J:2*Neq,1:4,:) = Obc(J:4,1:4,:,2); 

    O(2*Neq-4+J:2*Neq,Neq+1:2*Neq-4,:) = Obc(J:4,5:end,:,2); 

    Qed(Neq-4+J:Neq,1:Neq,:) = Qbced(J:4,:,:,1); 

    Qed(2*Neq-4+J:2*Neq,1:4,:) = Qbced(J:4,1:4,:,2); 

    Qed(2*Neq-4+J:2*Neq,Neq+1:2*Neq-4,:) = Qbced(J:4,5:end,:,2); 
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    % -1 Line 

    C(Neq-3-4:Neq-4,:,:,:) = C(Neq-3-4:Neq-4,:,:,:) + C(2*Neq-3-4:2*Neq-4,:,:,:); 

    C(2*Neq-3-4:2*Neq-4,:,:,:) = []; 

    A1(Neq-3-4:Neq-4,:,:,:) = A1(Neq-3-4:Neq-4,:) + A1(2*Neq-3-4:2*Neq-4,:); 

    A1(2*Neq-3-4:2*Neq-4,:,:,:) = []; 

    A2(Neq-3-4:Neq-4,:,:,:) = A2(Neq-3-4:Neq-4,:) + A2(2*Neq-3-4:2*Neq-4,:); 

    A2(2*Neq-3-4:2*Neq-4,:,:,:) = []; 

    F(Neq-3-4:Neq-4,1) = F(Neq-3-4:Neq-4,1) + F(2*Neq-3-4:2*Neq-4,1); 

    F(2*Neq-3-4:2*Neq-4) = []; 

    O(Neq-3-4:Neq-4,:,:) = O(Neq-3-4:Neq-4,:,:) + O(2*Neq-3-4:2*Neq-4,:,:); 

    O(2*Neq-3-4:2*Neq-4,:,:) = []; 

    Qed(Neq-3-4:Neq-4,:,:) = Qed(Neq-3-4:Neq-4,:,:) + Qed(2*Neq-3-4:2*Neq-4,:,:); 

    Qed(2*Neq-3-4:2*Neq-4,:,:) = []; 

end 

  

% Impose T3j(0+)=T3j(0-) 

  

if T3j0topbot==1; 

    if ZContInt~=2 

        NN=0:N; 

        NN([I1+1 I2+1])=[]; 

        I=max(NN); 

        C(4*I+1:4*I+3,:,:,:) = CT3j0(1:3,:,:,:,1) - CT3j0(1:3,:,:,:,2); 

        A1(4*I+1:4*I+3,:) = AT3j01(1:3,:,1) - AT3j01(1:3,:,2); 

        A2(4*I+1:4*I+3,:) = AT3j02(1:3,:,1) - AT3j02(1:3,:,2); 

        F(4*I+1:4*I+3) = FT3j0(1:3,1) - FT3j0(1:3,2); 

        O(4*I+1:4*I+3,:,:) = OT3j0(1:3,:,:,1) - OT3j0(1:3,:,:,2); 

        Qed(4*I+1:4*I+3,:,:) = QT3j0ed(1:3,:,:,1) - QT3j0ed(1:3,:,:,2); 

    else 

        C(Neq-3-4:Neq-5,1:4,:,:) = CT3j0(1:3,1:4,:,:,1) - CT3j0(1:3,1:4,:,:,2); 

        C(Neq-3-4:Neq-5,5:Neq,:,:) = CT3j0(1:3,5:end,:,:,1); 

        C(Neq-3-4:Neq-5,Neq+1:end,:,:) = - CT3j0(1:3,5:end,:,:,2); 

        A1(Neq-3-4:Neq-5,1:4,:,:) = AT3j01(1:3,1:4,1) - AT3j01(1:3,1:4,2); 

        A1(Neq-3-4:Neq-5,5:Neq,:,:) = AT3j01(1:3,5:end,1); 

        A1(Neq-3-4:Neq-5,Neq+1:end,:,:) = - AT3j01(1:3,5:end,2); 

        A2(Neq-3-4:Neq-5,1:4,:,:) = AT3j02(1:3,1:4,1) - AT3j02(1:3,1:4,2); 

        A2(Neq-3-4:Neq-5,5:Neq,:,:) = AT3j02(1:3,5:end,1); 

        A2(Neq-3-4:Neq-5,Neq+1:end,:,:) = - AT3j02(1:3,5:end,2); 

        F(Neq-3-4:Neq-5,1) = FT3j0(1:3,1) - FT3j0(1:3,2); 

        O(Neq-3-4:Neq-5,1:4,:) = OT3j0(1:3,1:4,:,1) - OT3j0(1:3,1:4,:,2); 

        O(Neq-3-4:Neq-5,5:Neq,:) = OT3j0(1:3,5:end,:,1); 

        O(Neq-3-4:Neq-5,Neq+1:end,:) = - OT3j0(1:3,5:end,:,2); 

        Qed(Neq-3-4:Neq-5,1:4,:) = QT3j0ed(1:3,1:4,:,1) - QT3j0ed(1:3,1:4,:,2); 

        Qed(Neq-3-4:Neq-5,5:Neq,:) = QT3j0ed(1:3,5:end,:,1); 

        Qed(Neq-3-4:Neq-5,Neq+1:end,:) = - QT3j0ed(1:3,5:end,:,2); 

    end 

end 

  

% Linear potential(simplification) 

  

NJ=0; 

if LinPot==1 

    if ZContInt~=2 

        Uo = zeros(Neq,1); 

        Uo(4,1) = (Vtop+Vbot)/2; 

        Uo(8,1) = (Vtop-Vbot)/Hl; 

        Neq = 3*(N+1); 

    else 

        Uo = zeros(size(C,1),1); 

        Uo(4,1) = (Vtop+Vbot)/2; 

        Uo(8,1) = (Vtop-Vbot)/Hl; 

        Uo(Neq+4,1) = (Vtop-Vbot)/Hl; 

    end 

    F = F - A1*Uo; 

    C(4:4:end,:,:,:) = []; 

    C(:,4:4:end,:,:) = []; 

    A1(4:4:end,:) = []; 

    A1(:,4:4:end) = []; 

    A2(4:4:end,:) = []; 

    A2(:,4:4:end) = []; 

    O(4:4:end,:,:) = []; 

    O(:,4:4:end,:) = []; 

    Qed(4:4:end,:,:) = []; 

    Qed(:,4:4:end,:) = []; 

    F(4:4:end) = []; 

elseif LinPot==2 

    if ZContInt~=2 

        NI=4:4:Neq; 

        NI([I1+1,I2+1])=[]; 

        NJ=4:4:Neq; 

        NJ(1:2)=[]; 

        C(NI,:,:,:)=[]; 

        C(:,NJ,:,:)=[]; 

        A1(NI,:)=[]; 

        A1(:,NJ)=[]; 

        A2(NI,:)=[]; 

        A2(:,NJ)=[]; 

        O(NI,:,:)=[]; 

        O(:,NJ,:)=[]; 

        Qed(NI,:,:)=[]; 

        Qed(:,NJ,:)=[]; 

        F(NI)=[]; 

    else 

        C(Neq-4,:,:,:) = zeros(1,size(C,2),2,2); 

        A1(Neq-4,:) = zeros(1,size(C,2)); 

        A1(Neq-4,8) = 1; 

        A1(Neq-4,Neq+4) = -1; 

        A2(Neq-4,:) = zeros(1,size(C,2)); 
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        C(Neq-4,:,:) = zeros(1,size(C,2),2); 

        Qed(Neq-4,:,:) = zeros(1,size(C,2),4); 

        F(Neq-4)=0; 

        NI=4:4:size(C,1); 

        NI([Neq/4 Neq/4-1 Neq/2-1])=[]; 

        NJ=4:4:size(C,1); 

        NJ([1 2 Neq/4+1])=[]; 

        C(NI,:,:,:)=[]; 

        C(:,NJ,:,:)=[]; 

        A1(NI,:)=[]; 

        A1(:,NJ)=[]; 

        A2(NI,:)=[]; 

        A2(:,NJ)=[]; 

        O(NI,:,:)=[]; 

        O(:,NJ,:)=[]; 

        Qed(NI,:,:)=[]; 

        Qed(:,NJ,:)=[]; 

        F(NI)=[]; 

    end 

end 

 

% Material matrices - line form 

  

Neq=size(C,1); 

II=0; 

c=zeros((Neq^2)*4,1); 

for I=1:Neq 

    for J=1:Neq 

        for a=1:2 

            for b=1:2 

                II=II+1; 

                c(II,:) = C(J,I,b,a);      %C(j,i,l,k); 

            end 

        end 

    end 

end 

  

a1=A1(:); 

a2=A2(:); 

a2=repmat(a2,1,nt); 

  

f=F; 

  

II=0; 

o=zeros((Neq^2)*2,nt); 

for I=1:Neq 

    for J=1:Neq 

        for b=1:2 

            II=II+1; 

            o(II,:) = O(J,I,b);      %O(j,i,k); 

        end 

    end 

end 

  

for ed=1:4; 

    q = Qed(:,:,ed); 

    bc(ed) = pdeBoundaryConditions(pg.Edges(ed),'q',q); 

end 

problem = pde(Neq); 

problem.BoundaryConditions = bc; 

  

  

%Assemble coefficients/boundary FEM matrices 

  

[K,M1,F]=assema(p,t,c,a1,f); 

[Q,G,H,R]=assemb(problem,p,e); 

  

%Assemble M2 matrix 

  

m=1; 

M2=sparse(Neq*np,Neq*np); 

for l=1:Neq, 

    for k=1:Neq, 

        aod=a2(m,:).*Area/12; % Off diagonal element 

        ad=2*aod; % Diagonal element 

         

        M21=sparse(it1,it2,aod,np,np); 

        M21=M21+sparse(it2,it3,aod,np,np); 

        M21=M21+sparse(it3,it1,aod,np,np); 

        M21=M21+M21.'; 

        M21=M21+sparse(it1,it1,ad,np,np); 

        M21=M21+sparse(it2,it2,ad,np,np); 

        M21=M21+sparse(it3,it3,ad,np,np); 

         

        [ii,jj,kmm]=find(M21); 

        M2=M2+sparse(ii+(k-1)*np,jj+(l-1)*np,kmm,Neq*np,Neq*np); 

        m=m+1; 

    end 

end 

  

%Assemble O matrix 

  

Ar=((p(1,it2)-p(1,it1)).*(p(2,it3)-p(2,it1))-(p(2,it2)-p(2,it1)).*(p(1,it3)-p(1,it1)))/2; 

G1x=g1x.*sign(Ar); 

G2x=g2x.*sign(Ar); 

G3x=g3x.*sign(Ar); 

G1y=g1y.*sign(Ar); 

G2y=g2y.*sign(Ar); 
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G3y=g3y.*sign(Ar); 

  

m=1; 

O=sparse(Neq*np,Neq*np); 

for l=1:Neq, 

    for k=1:Neq, 

         

        oo1=o(m,:); 

        oo2=o(m+1,:); 

         

        o12=((oo1.*G2x+oo2.*G2y).*Area/3); 

        o21=((oo1.*G1x+oo2.*G1y).*Area/3); 

        o13=((oo1.*G3x+oo2.*G3y).*Area/3); 

        o31=o21; 

        o23=o13; 

        o32=o12; 

        o11=o21; 

        o22=o12; 

        o33=o13; 

         

        O1=sparse(it1,it2,o12,np,np); 

        O1=O1+sparse(it2,it3,o23,np,np); 

        O1=O1+sparse(it3,it1,o31,np,np); 

        O1=O1+sparse(it2,it1,o21,np,np); 

        O1=O1+sparse(it3,it2,o32,np,np); 

        O1=O1+sparse(it1,it3,o13,np,np); 

        O1=O1+sparse(it1,it1,o11,np,np); 

        O1=O1+sparse(it2,it2,o22,np,np); 

        O1=O1+sparse(it3,it3,o33,np,np); 

         

        [ii,jj,koo]=find(O1); 

        O=O+sparse(ii+(k-1)*np,jj+(l-1)*np,koo,Neq*np,Neq*np); 

        m=m+2; 

    end 

end 

  

  

% Parallel Computing 

  

NumWorkers=1; 

if Parallel==1 

    distcomp.feature( 'LocalUseMpiexec', false ) 

    pool = gcp 

    NumWorkers=pool.NumWorkers; 

     

    spmd(NumWorkers) 

        assignin('base', 'K',K); 

        assignin('base', 'M1',M1); 

        assignin('base', 'M2',M2); 

        assignin('base', 'F',F); 

        assignin('base', 'O',O); 

        assignin('base', 'Q',Q); 

        assignin('base', 'G',G); 

        assignin('base', 'H',H); 

        assignin('base', 'R',R); 

        assignin('base', 'N',N); 

        assignin('base', 'p',p); 

        assignin('base', 't',t); 

        assignin('base', 'Hl',Hl); 

        assignin('base', 'Djk',Djk); 

        assignin('base', 'vI',vI); 

        assignin('base', 'vI1',vI1); 

        assignin('base', 'Area',Area); 

        assignin('base', 'Vtop',Vtop); 

        assignin('base', 'Vbot',Vbot); 

        assignin('base', 'LinPot',LinPot); 

        assignin('base', 'ZContInt',ZContInt); 

        assignin('base','NJ',NJ); 

    end 

end 

  

Nwork=floor(length(Freq)/NumWorkers); 

Z=zeros(0,5); 

nI=0; 

hwb=waitbar(0,'waitbar','position',[375 100 270 50]); 

figure 

  

for III=1:Nwork 

    tic 

    for II=1:NumWorkers 

         

        nI=NumWorkers*(III-1)+II; 

         

        W=Freq(nI)*2*pi; 

        WW{II}v=W; 

        Wcoef{II}=(-P*(W^2)+1i*(Damp + Dampv*W + Dampv2*(W^2) + Dampv3*(W^3))); 

         

    end 

     

    % PDE problem 

     

    if Parallel==1 

        if nI==NumWorkers*Nwork; 

            spmd(NumWorkers) 

                [Z1,u]=assempde2(WW{labindex},Wcoef{labindex}); 

            end 

        else 

            spmd(NumWorkers) 
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                Z1=assempde2(WW{labindex},Wcoef{labindex}); 

            end 

        end 

    else 

        if nI==NumWorkers*Nwork; 

            [Z1[234],u[234]]=assempde2(WW{labindex},Wcoef{labindex}); 

        else 

            Z1[234]=assempde2(WW{labindex},Wcoef{labindex}); 

        end 

    end 

     

    %Results 

     

    for j=1:NumWorkers 

        Z=[Z;Z1{j}]; 

    end 

    plot(Z(:,1),Z(:,5),'.-'); 

    xlabel('f (Hz)') 

    ylabel('|Y|/f (S/Hz)') 

    drawnow 

    toc; 

    TimeRemaining=datestr((Nwork-III)*toc/(3600*24), 'DD:HH:MM:SS') 

    waitbar(III/Nwork,hwb,TimeRemaining); 

end 

close(hwb) 

  

%Countour plots 

  

if Parallel==0 

     

    Neq = 4*(N+1); 

    ztop=linspace(0,h1,50); 

    zbot=linspace(h2,0,50); 

    u=u{NumWorkers}; 

    u0x1=u(1:np,1); 

    u0y1=u((np+1):2*np,1); 

    u0z1=u((2*np+1):3*np,1); 

    o0=u((3*np+1):4*np,1); 

    utopx1=zeros(np,1); utopy1=zeros(np,1); utopz1=zeros(np,1); otop=zeros(np,1); ubotx1=zeros(np,1); uboty1=zeros(np,1); 

ubotz1=zeros(np,1); obot=zeros(np,1); 

    oztop=zeros(1,length(ztop)); 

    ozbot=zeros(1,length(zbot)); 

    if ZContInt~=2 

        utop = u; 

        ubot = u; 

    else 

        utop = u(1:Neq*np,:); 

        ubot = u([1:np*4 Neq*np+1:(2*Neq-4)*np],:); 

    end 

     

    for I=0:N 

        nCol=4*np*I; 

        utopx1 = utopx1 + utop(nCol+1:nCol+np,1)*vItb(I+1,1); 

        utopy1 = utopy1 + utop(nCol+1+np:nCol+2*np,1)*vItb(I+1,1); 

        utopz1 = utopz1 + utop(nCol+1+2*np:nCol+3*np,1)*vItb(I+1,1); 

        otop = otop + utop(nCol+1+3*np:nCol+4*np,1)*vItb(I+1,1); 

        ubotx1 = ubotx1 + ubot(nCol+1:nCol+np,1)*vItb(I+1,2); 

        uboty1 = uboty1 + ubot(nCol+1+np:nCol+2*np,1)*vItb(I+1,2); 

        ubotz1 = ubotz1 + ubot(nCol+1+2*np:nCol+3*np,1)*vItb(I+1,2); 

        obot = obot + ubot(nCol+1+3*np:nCol+4*np,1)*vItb(I+1,2); 

        oztop = oztop + ((pdeintrp(p,t,utop(nCol+1+3*np:nCol+4*np,1))*Area')/sum(Area))*(ztop.^I);                                           

% (Int(o)dA)(z) 

        ozbot = ozbot + ((pdeintrp(p,t,ubot(nCol+1+3*np:nCol+4*np,1))*Area')/sum(Area))*(zbot.^I); 

    end 

     

    p0=[u0x1;u0y1;u0z1;utopx1;utopy1;utopz1;ubotx1;uboty1;ubotz1]; 

    [p0m,p0i]=max(abs(p0)); 

    theuRef=conj(p0(p0i))/abs(p0(p0i)) 

    % theuRef=1         %u Real part 

    % theuRef=-1i       %u Imag part 

    ctb=3; 

     

    u0x=u0x1*theuRef; u0y=u0y1*theuRef; u0z=u0z1*theuRef; utopx=utopx1*theuRef; utopy=utopy1*theuRef; 

utopz=utopz1*theuRef; ubotx=ubotx1*theuRef; uboty=uboty1*theuRef; ubotz=ubotz1*theuRef; 

    p0max=max([abs(max(real(utopz))) abs(min(real(ubotz))) abs(max(real(utopx))) abs(max(real(ubotx))) abs(max(real(u0x))) 

abs(max(real(utopy))) abs(max(real(uboty))) abs(max(real(u0y)))]); 

     

    pmax=ctb*Hl/p0max; 

    y0x=p(1,:)+pmax*real(u0x)'; 

    y0y=p(2,:)+pmax*real(u0y)'; 

    y0z=pmax*real(u0z)'; 

    ytopx=p(1,:)+pmax*real(utopx)'; 

    ytopy=p(2,:)+pmax*real(utopy)'; 

    ytopz=h1+pmax*real(utopz)'; 

    ybotx=p(1,:)+pmax*real(ubotx)'; 

    yboty=p(2,:)+pmax*real(uboty)'; 

    ybotz=h2+pmax*real(ubotz)'; 

     

    figure 

    plot([zbot ztop],[ozbot oztop],[zbot ztop],(Vtop-Vbot)*([zbot ztop]/Hl)+(Vtop+Vbot)/2) 

    title('\phi vs z') 

    xlabel('z (m)') 

    ylabel('\phi (V)') 

     

    figure 

    pdeplot(p,e,t,'xydata',sqrt(real(u0x).^2+real(u0y).^2),'colormap','jet','contour','on','flowdata',[real(u0x) 

real(u0y)]) 

    axis equal 
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    axis off 

    title('ux/uy Middle') 

    figure 

    pdeplot([y0x;y0y],e,t,'xydata',sqrt(real(u0x).^2+real(u0y).^2),'colormap','jet','contour','on','flowdata',[real(u0x) 

real(u0y)]) 

    axis equal 

    axis off 

    title('ux/uy Middle') 

    figure 

    pdeplot(p,e,t,'xydata',real(u0z),'colormap','jet','contour','on') 

    axis equal 

    axis off 

    title('uz Middle') 

     

     

    figure('position',[10 50 1350 635]) 

    subplot(1,3,1) 

    pdeplot(p,e,t,'xydata',real(obot),'colormap','jet','contour','on') 

    axis equal 

    axis off 

    title('Bottom') 

    subplot(1,3,2) 

    pdeplot(p,e,t,'xydata',real(o0),'colormap','jet','contour','on') 

    axis equal 

    axis off 

    title('Middle') 

    subplot(1,3,3) 

    pdeplot(p,e,t,'xydata',real(otop),'colormap','jet','contour','on') 

    axis equal 

    axis off 

    title('Top') 

    MyBox2 = uicontrol('style','text'); 

    set(MyBox2,'String','V'); 

    set(MyBox2,'Position',[50,300,50,50]) 

    set(MyBox2,'FontSize',15) 

     

     

    cminxy=min([min(sqrt(real(ubotx).^2+real(uboty).^2)) min(sqrt(real(utopx).^2+real(utopy).^2)) 

min(sqrt(real(u0x).^2+real(u0y).^2))]); 

    cminz=min([min(real(utopz)) min(real(ubotz)) min(real(u0z))]); 

    cmaxxy=max([max(sqrt(real(ubotx).^2+real(uboty).^2)) max(sqrt(real(utopx).^2+real(utopy).^2)) 

max(sqrt(real(u0x).^2+real(u0y).^2))]); 

    cmaxz=max([max(real(utopz)) max(real(ubotz)) max(real(u0z))]); 

    cmax=max([cmaxxy-cminxy cmaxz-cminz]); 

    figure('position',[10 50 1350 635]) 

    subplot(2,3,1) 

    

pdeplot([ybotx;yboty],e,t,'xydata',sqrt(real(ubotx).^2+real(uboty).^2),'colormap','jet','contour','on','flowdata',[real(ub

otx) real(uboty)]) 

    % caxis([cminxy cminxy+cmax]) 

    axis equal 

    axis off 

    title('Bottom') 

    subplot(2,3,2) 

    pdeplot([y0x;y0y],e,t,'xydata',sqrt(real(u0x).^2+real(u0y).^2),'colormap','jet','contour','on','flowdata',[real(u0x) 

real(u0y)]) 

    % caxis([cminxy cminxy+cmax]) 

    axis equal 

    axis off 

    title('Middle') 

    subplot(2,3,3) 

    

pdeplot([ytopx;ytopy],e,t,'xydata',sqrt(real(utopx).^2+real(utopy).^2),'colormap','jet','contour','on','flowdata',[real(ut

opx) real(utopy)]) 

    % caxis([cminxy cminxy+cmax]) 

    axis equal 

    axis off 

    title('Top') 

    subplot(2,3,4) 

    pdeplot([ybotx;yboty],e,t,'xydata',real(ubotz),'colormap','jet','contour','on') 

    % caxis([cminz cminz+cmax]) 

    axis equal 

    axis off 

    subplot(2,3,5) 

    pdeplot([y0x;y0y],e,t,'xydata',real(u0z),'colormap','jet','contour','on') 

    % caxis([cminz cminz+cmax]) 

    axis equal 

    axis off 

    subplot(2,3,6) 

    pdeplot([ytopx;ytopy],e,t,'xydata',real(utopz),'colormap','jet','contour','on') 

    % caxis([cminz cminz+cmax]) 

    axis equal 

    axis off 

    MyBox = uicontrol('style','text'); 

    set(MyBox,'String','ux/uy'); 

    set(MyBox,'Position',[50,450,50,50]) 

    set(MyBox,'FontSize',15) 

    MyBox1 = uicontrol('style','text'); 

    set(MyBox1,'String','uz'); 

    set(MyBox1,'Position',[50,150,50,50]) 

    set(MyBox1,'FontSize',15) 

     

    figure 

    hold on 

    for j=1:nt 

        Xy(1,1)=ytopx(1,t(1,j)); Xy(1,2)=ytopx(1,t(2,j)); Xy(2,2)=ytopx(1,t(3,j)); Xy(2,1)=Xy(1,1); 

        Yy(1,1)=ytopy(1,t(1,j)); Yy(1,2)=ytopy(1,t(2,j)); Yy(2,2)=ytopy(1,t(3,j)); Yy(2,1)=Yy(1,1); 

        Zy(1,1)=ytopz(1,t(1,j)); Zy(1,2)=ytopz(1,t(2,j)); Zy(2,2)=ytopz(1,t(3,j)); Zy(2,1)=Zy(1,1); 
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        C1=sqrt(real(utopx(t(1,j))).^2+real(utopy(t(1,j))).^2+real(utopz(t(1,j))).^2); 

        C2=sqrt(real(utopx(t(2,j))).^2+real(utopy(t(2,j))).^2+real(utopz(t(2,j))).^2); 

        C3=sqrt(real(utopx(t(3,j))).^2+real(utopy(t(3,j))).^2+real(utopz(t(3,j))).^2); 

        surf(Xy,Yy,Zy,[C1 C2;C1 C3]) 

        Xy1(1,1)=ybotx(1,t(1,j)); Xy1(1,2)=ybotx(1,t(2,j)); Xy1(2,2)=ybotx(1,t(3,j)); Xy1(2,1)=Xy1(1,1); 

        Yy1(1,1)=yboty(1,t(1,j)); Yy1(1,2)=yboty(1,t(2,j)); Yy1(2,2)=yboty(1,t(3,j)); Yy1(2,1)=Yy1(1,1); 

        Zy1(1,1)=ybotz(1,t(1,j)); Zy1(1,2)=ybotz(1,t(2,j)); Zy1(2,2)=ybotz(1,t(3,j)); Zy1(2,1)=Zy1(1,1); 

        C1=sqrt(real(ubotx(t(1,j))).^2+real(uboty(t(1,j))).^2+real(ubotz(t(1,j))).^2); 

        C2=sqrt(real(ubotx(t(2,j))).^2+real(uboty(t(2,j))).^2+real(ubotz(t(2,j))).^2); 

        C3=sqrt(real(ubotx(t(3,j))).^2+real(uboty(t(3,j))).^2+real(ubotz(t(3,j))).^2); 

        surf(Xy1,Yy1,Zy1,[C1 C2;C1 C3]) 

    end 

    edge=0; 

    for j=1:length(e) 

        Xy(1,1)=ytopx(1,e(1,j)); Xy(1,2)=ytopx(1,e(2,j)); Xy(2,2)=y0x(1,e(2,j)); Xy(2,1)=y0x(1,e(1,j)); 

        Yy(1,1)=ytopy(1,e(1,j)); Yy(1,2)=ytopy(1,e(2,j)); Yy(2,2)=y0y(1,e(2,j)); Yy(2,1)=y0y(1,e(1,j)); 

        Zy(1,1)=ytopz(1,e(1,j)); Zy(1,2)=ytopz(1,e(2,j)); Zy(2,2)=y0z(1,e(2,j)); Zy(2,1)=y0z(1,e(1,j)); 

        C1=sqrt(real(utopx(e(1,j))).^2+real(utopy(e(1,j))).^2+real(utopz(e(1,j))).^2); 

        C2=sqrt(real(utopx(e(2,j))).^2+real(utopy(e(2,j))).^2+real(utopz(e(2,j))).^2); 

        C4=sqrt(real(u0x(e(1,j))).^2+real(u0y(e(1,j))).^2+real(u0z(e(1,j))).^2); 

        C3=sqrt(real(u0x(e(2,j))).^2+real(u0y(e(2,j))).^2+real(u0z(e(2,j))).^2); 

        surf(Xy,Yy,Zy,[C1 C2;C4 C3]) 

        Xy1(1,1)=ybotx(1,e(1,j)); Xy1(1,2)=ybotx(1,e(2,j)); Xy1(2,2)=y0x(1,e(2,j)); Xy1(2,1)=y0x(1,e(1,j)); 

        Yy1(1,1)=yboty(1,e(1,j)); Yy1(1,2)=yboty(1,e(2,j)); Yy1(2,2)=y0y(1,e(2,j)); Yy1(2,1)=y0y(1,e(1,j)); 

        Zy1(1,1)=ybotz(1,e(1,j)); Zy1(1,2)=ybotz(1,e(2,j)); Zy1(2,2)=y0z(1,e(2,j)); Zy1(2,1)=y0z(1,e(1,j)); 

        C1=sqrt(real(ubotx(e(1,j))).^2+real(uboty(e(1,j))).^2+real(ubotz(e(1,j))).^2); 

        C2=sqrt(real(ubotx(e(2,j))).^2+real(uboty(e(2,j))).^2+real(ubotz(e(2,j))).^2); 

        C4=sqrt(real(u0x(e(1,j))).^2+real(u0y(e(1,j))).^2+real(u0z(e(1,j))).^2); 

        C3=sqrt(real(u0x(e(2,j))).^2+real(u0y(e(2,j))).^2+real(u0z(e(2,j))).^2); 

        surf(Xy1,Yy1,Zy1,[C1 C2;C4 C3]) 

        plot3(Xy(1,:),Yy(1,:),Zy(1,:),'k') 

        plot3(Xy1(1,:),Yy1(1,:),Zy1(1,:),'k') 

        if e(5,j)~=edge 

            edge=e(5,j); 

            plot3([Xy(1,1) Xy1(1,1)],[Yy(1,1) Yy1(1,1)],[Zy(1,1) Zy1(1,1)],'k') 

        end 

    end 

     

    colormap jet 

    view([135,30]) 

    axis equal 

    axis off 

    colorbar 

    shading interp 

    xlabel('X'); ylabel('Y'); zlabel('Z'); 

    material metal 

     

end 

 

………………………………………………………….. 

function [Z,u]=assempde2(W,Wcoef); 

  

K=evalin('base', 'K'); 

M1=evalin('base', 'M1'); 

M2=evalin('base', 'M2'); 

F=evalin('base', 'F'); 

O=evalin('base', 'O'); 

Q=evalin('base', 'Q'); 

G=evalin('base', 'G'); 

H=evalin('base', 'H'); 

R=evalin('base', 'R'); 

N=evalin('base', 'N'); 

p=evalin('base', 'p'); 

t=evalin('base', 't'); 

Hl=evalin('base', 'Hl'); 

Djk=evalin('base', 'Djk'); 

vI=evalin('base', 'vI'); 

vI1=evalin('base', 'vI1'); 

Area=evalin('base', 'Area'); 

Vtop=evalin('base', 'Vtop'); 

Vbot=evalin('base', 'Vbot'); 

LinPot=evalin('base','LinPot'); 

ZContInt=evalin('base','ZContInt'); 

NJ=evalin('base','NJ'); 

  

% M Matrix 

M = M1 + Wcoef*M2; 

  

  

KK=K+M+Q+O; 

FF=F+G; 

  

u=KK\FF; 

  

Neq = 4*(N+1);          % Number of equations 4*(N+1) 

nt = size(t,2); 

np = size(p,2); 

  

% Linear potential(simplification) 

if LinPot==1 

    u1=u; 

    u=[]; 

    N1=size(u1,1)/(np*3); 

    for I=0:N1-1 

        if I==0 
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            u=cat(1,u,[u1(3*I*np+1:3*(I+1)*np,1);ones(np,1)*(Vtop+Vbot)/2]); 

        elseif I==1 

            u=cat(1,u,[u1(3*I*np+1:3*(I+1)*np,1);ones(np,1)*(Vtop-Vbot)/Hl]); 

        elseif I==N+1 

            u=cat(1,u,[u1(3*I*np+1:3*(I+1)*np,1);ones(np,1)*(Vtop-Vbot)/Hl]); 

        else 

            u=cat(1,u,[u1(3*I*np+1:3*(I+1)*np,1);zeros(np,1)]); 

        end 

    end 

elseif LinPot==2 

    u1=u; 

    u=[]; 

    II=1; 

    III=1; 

    if ZContInt~=2 

        N1=Neq; 

    else 

        N1=2*Neq-4; 

    end 

    for I=1:N1 

        if I==NJ(II) 

            u=cat(1,u,zeros(np,1)); 

            II=II+1; 

        else 

            u=cat(1,u,u1((III-1)*np+1:III*np,1)); 

            III=III+1; 

        end 

    end 

end 

  

  

  

U=pdeintrp(p,t,u); 

[dUx,dUy]=pdegrad(p,t,u); 

if ZContInt~=2 

    Utop=U; 

    Ubot=U; 

    dUtop=[dUx;dUy]; 

    dUbot=[dUx;dUy]; 

else 

    Utop=U(1:Neq,:); 

    Ubot=U([1:4 Neq+1:2*Neq-4],:); 

    dUtop=[dUx(1:Neq,:);dUy(1:Neq,:)]; 

    dUbot=[dUx([1:4 Neq+1:2*Neq-4],:);dUy([1:4 Neq+1:2*Neq-4],:)]; 

end 

D3av=zeros(1,nt); 

  

for J=0:N 

    for k=1:4 

        D3av1=zeros(1,nt); 

        for a=1:2 

            D3av1=D3av1 + (vI(J+1,1)*Djk(4,k,3,a,1))*dUtop(4*J+k+(a-1)*Neq,:) + (vI(J+1,2)*Djk(4,k,3,a,2))*dUbot(4*J+k+(a-

1)*Neq,:); 

        end 

        D3av=D3av + (1/Hl)*(D3av1 + (vI1(J+1,1)*Djk(4,k,3,3,1))*Utop(4*J+k,:) + 

(vI1(J+1,2)*Djk(4,k,3,3,2))*Ubot(4*J+k,:)); 

    end 

end 

  

 

Usumtop=sum((dUx+dUy)*Area')-(Vtop-Vbot)*sum(Area); 

Charge3=D3av*Area'; 

Y=-1i*W*(Charge3)/(Vtop-Vbot); 

Z=[W./(2*pi) real(Y) imag(Y) abs(Y) (abs(Y)*(2*pi))./W real(Usumtop) imag(Usumtop) abs(Usumtop)]; 
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