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resumo 

 

 

Nesta tese consideramos códigos convolucionais sobre o anel polinomial 

[ ]r
p

D′′′′ , onde p  é primo e r  é um inteiro positivo. Em particular, focamo-nos 

no conjunto das palavras de código com suporte finito e estudamos as suas 

propriedades no que respeita às distâncias. Investigamos as duas 

propriedades mais importantes dos códigos convolucionais, nomeadamente, a 

distância livre e a distância de coluna. 

Começamos por analisar e solucionar o problema de, dado um conjunto de 

parâmetros, determinar a distância livre máxima possível que um código 

convolucional sobre [ ]r
p

D′′′′  pode atingir. Com efeito, obtemos um novo limite 

superior para esta distância generalizando os limites obtidos no contexto dos 

códigos convolucionais sobre corpos finitos. Além disso, mostramos que esse 

limite é ótimo, no sentido em que não pode ser melhorado. Para tal, 

apresentamos construções de códigos convolucionais (não necessariamente 

livres) que permitem atingir esse limite, para um certo conjunto de parâmetros. 

De acordo com a literatura chamamos a esses códigos MDS. 

Definimos também distâncias de coluna de um código convolucional. Obtemos 

limites superiores para as distâncias de coluna e chamamos MDP aos códigos 

cujas distâncias de coluna atingem estes limites superiores. Além disso, 

mostramos a existência de códigos MDP. Note-se, porém, que os códigos 

MDP apresentados não são completamente gerais pois os seus parâmetros 

devem satisfazer determinadas condições. 

Finalmente, estudamos o código dual de um código convolucional definido em 

( )( )r
p

D′′′′ . Os códigos duais de códigos convolucionais sobre corpos finitos 

foram exaustivamente investigados, como é refletido na literatura sobre o 

tema. Estes códigos são relevantes pois fornecem informação sobre a 

distribuição dos pesos do código e é neste sentido a inclusão deste assunto no 

âmbito desta tese. Outra razão importante para o estudo de códigos duais é a 

sua utilidade para o desenvolvimento de algoritmos de descodificação quando 

consideramos um erasure channel. Nesta tese são analisadas algumas 

propriedades fundamentais dos duais. Em particular, mostramos que códigos 

convolucionais definidos em ( )( )r
p

D′′′′ admitem uma matriz de paridade. Para 

além disso, apresentamos um método construtivo para determinar um 

codificador de um código dual. 
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abstract 

 
In this thesis we consider convolutional codes over the polynomial ring [ ]r

p
D′′′′ , 

where p  is a prime and r  is a positive integer. In particular, we focus in the 

set of finite support codewords and study their distances properties. We 

investigate the two most important distance properties of convolutional codes, 

namely, the free distance and the column distance.  

First we address and fully solve the problem of determining the maximum 

possible free distance a convolutional code over [ ]r
p

D′′′′  can achieve, for a 

given set of parameters. Indeed, we derive a new upper bound on this distance 

generalizing the Singleton-type bounds derived in the context of convolutional 

codes over finite fields. Moreover, we show that such a bound is optimal in the 

sense that it cannot be improved. To do so we provide concrete constructions 

of convolutional codes (not necessarily free) that achieve this bound for any 

given set of parameters. In accordance with the literature we called such codes 

Maximum Distance Separable (MDS).  

We define the notion of column distance of a convolutional code. We obtain 

upper-bounds on the column distances and call Maximum Distance Profile 

(MDP) the codes that attain the maximum possible column distances. 

Furthermore, we show the existence of MDP codes. We note however that the 

MDP codes presented here are not completely general as their parameters 

need to satisfy certain conditions.  

Finally, we study the dual code of a convolutional code defined in ( )( )r
p

D′′′′ . 

Dual codes of convolutional codes over finite fields have been thoroughly 

investigated as it is reflected in the large body of literature on this topic. They 

are relevant as they provide value information on the weight distribution of the 

code and therefore fit in the scope of this thesis. Another important reason for 

the study of dual codes is that they can be very useful for the development of 

decoding algorithms of convolutional codes over the erasure channel. In this 

thesis some fundamental properties have been analyzed. In particular, we 

show that convolutional codes defined in ( )( )r
p

D′′′′  admit a parity-check matrix. 

Moreover, we provide a constructive method to explicitly compute an encoder 

of the dual code.  
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Notation

Zp prime field of order p

Zp[D] ring of polynomials with coefficients in Zp

Zp(D) field of rational matrices with coefficients in Zp

Zpr ring of integers modulo pr

Zpr [D] ring of polynomials with coefficients in Zpr

Zpr(D) ring of rational matrices with coefficients in Zpr

Zpr((D)) ring of the Laurent series with coefficientsin Zpr

Ap {0, 1, · · · , p− 1}

Ap[D] set of polynomials with coefficients in Ap

Ap(D) set of rational matrices with coefficients in Ap

(n, k, δ) parameter of a code: n the length, k the p-dimension, δ the p-degree

(ñ, k̃, δ̃) parameter of a code: n the length, k the dimension, δ the degree

1





Chapter 1

Introduction

Communication systems are everywhere and they have become increasingly important

with the development of new technologies for data communications and data storage.

Errors in digital communication systems may occur due to noisy communication chan-

nels, electrical interference, human error, or equipment error. To guarantee reliable

transmission or to recover degraded data, techniques from Coding Theory are used.

The aim of Coding Theory is to develop methods to detect and correct these errors.

Hence, in the last decades it became an active subject of research in different areas

of knowledge such as mathematics, computer science, electrical engineering, statistics,

among others.

Shannon, Hamming and Golay were the pioneers that started working with the sub-

ject of Coding Theory. They developed studies and ideas that are still used nowadays

in, for instance, mobile communications, data storage devices, satellite communica-

tions, digital image processing, internet, radio, among others.

A representation of a transformation of information (or storage) from a source to

a receiver can be represented as in Figure 1.1. When a message is sent from an in-

formation source a process, called source encoder, divides the message into sequences

or blocks. Each of them is transformed into a digital form (a group of symbols often

called “alphabet”) forming an algebraic structure, usually a field or a ring. The original

message becomes a source message. Then redundancy is added by the channel encoder

to each source block to create a longer block called codeword. The set of codewords

forms the code. A codeword is transmitted over a transmission channel (or stored in

memory) where errors can occur. To recover the original message, a channel decoder

uses the redundancy of the information to detect and correct the errors, when it is

possible, and retrieve the most likely codeword that had been sent. Finally, a source

decoder determines the source message and delivers the reconstructed message to the

destination.

3



4 1. Introduction

Figure 1.1: Communication (storage) system

In this thesis we focus on the problem of adding redundancy to the source message.

In other words we deal with the problem of constructing “good” codes. A “good” code

is one that not only detects and corrects the largest number of errors but it is also easy

to implement.

The encoding process is described as follows. The information sequence is sliced

into blocks of k symbols of information, say u = (u0, . . . , uk−1) ∈ Fk, where F is a

finite field. At time i, the encoder shifts an k-block of the information sequence and

generates a block of n encoded symbols, say v = (v0, . . . , vn−1) ∈ Fn, called codeword,

via a linear map, i.e., v = uG, G ∈ Fk×n. An (n, k)-linear block code is the set of

all possible codewords and it has structure of a k-dimensional subspace of the vector

space Fn. In these codes the data is encoded into independent blocks of length n,

i.e., the encoded block at time i depends only on the information block at time i

(see Figure 1.2a). Hamming’s codes [Ham50] were the first block codes, but many

other authors developed variations. The first followers of Hamming were Hocquenghem

[Hoc59], in 1959, and Bose and Ray-Chaudhari [BRC60], in 1960. They introduced

the BCH codes, a generalization of the Hamming codes for multiple-error correction

over the binary field. Also in 1960, Reed and Solomon [RS60] built a class of codes

for nonbinary channels, named Reed-Solomon codes. Over the years new codes have

been discovered and a well-developed algebraic theory of linear block codes has been

developed [MS77, LC83, HP98, vL99].

Besides the class of linear block codes there are a more general class of linear codes,

called convolutional codes. The main difference between these two classes of codes is

that the encoded block at time i depends not only on the information block at time
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(a) Block Code (b) Convolutional Code

Figure 1.2: Block codes versus convolutional codes

i, but also on a fixed number of previous information blocks, that is, a convolutional

encoder requires memory (see Figure 1.2b). In this thesis we shall focus on this class

of codes. Convolutional codes were introduced in 1955 by Peter Elias [Eli55]. In 1957,

Wozencraft [Woz57] developed the first algorithm capable of decoding such codes, called

sequential decoding. Around the same time other decoding algorithms were developed,

such as threshold decoding and the Viterbi algorithm. Threshold decoding was first

introduced for block codes but Massey [Mas63], in 1963, applied it to convolutional

codes. This algorithm is simpler than sequential decoding however less efficient. In

1967, Viterbi [Vit67] presented an optimum decoding method for convolutional codes

using the Viterbi algorithm. However, the decoding effort grows exponentially with

memory orders. These decoding methods allowed the application of convolutional

codes in several types of systems.

Forney [For70], Piret [Pir88] and McEliece [McE98], in 1970, 1988 and 1998, re-

spectively, formalized the theory of convolutional codes and thoroughly studied the

algebraic structure of these codes.

In order to determine the performance of convolutional codes, the distance is argu-
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ably the most important parameter. The rule is, the larger the distance, the better the

code. For convolutional codes the free distance and the column distance are the most

important distance properties.

In [RS99], Rosenthal and Smarandache determined an upper bound on the free dis-

tance of a convolutional code. This bound was called the generalized Singleton bound

since it generalizes in a natural way the Singleton bound for block codes. An MDS con-

volutional code is one whose free distance achieves the generalized Singleton bound. In

2001, Smarandache, Gluesing-Luerssen and Rosenthal [SGLR01] presented construc-

tions of MDS convolutional codes. The same three authors in [HGLS06] constructed

strongly MDS convolutional codes, in 2006. These codes are characterized by attain-

ing the generalized Singleton bound at the earliest possible column distance. These

constructions were restricted to some parameters and the general case was treated

in 2015 by Napp and Smarandache [NR16]. Other examples related with MDS are

[RL89, Hut08, CNPP12, CNPP16].

Convolutional codes whose column distances increase as rapidly as possible for as

long as possible are called maximum distance profile (MDP) codes. These codes are

specially appealing for sequential decoding algorithms because they have the potential

to have a maximum number of errors corrected per time interval, hence they achieve

good performance. Regarding MDP convolutional codes we can highlight the work of R.

Hutchinson, J. Rosenthal and R. Smarandache [RHS05], in 2005. Later, R. Hutchinson

[HST08] and P. Almeida, D. Napp and R. Pinto [ANP13], in 2008 and 2013, respect-

ively, discussed how superregular matrices may be used to construct MDP codes. V.

Tomás, J. Rosenthal and R. Smarandache [VTS09, TRS12], in 2009 and 2012, respect-

ively, analysed decoding capabilities of convolutional codes over the erasure channel

and showed how MDP convolutional codes perform particularly well over the erasure

channel.

The extension of the concept of convolutional codes from finite fields to finite rings

was first introduced by Massey and Mittelholzer [MM89], in 1989, and has attracted

much attention in recent years. This interest is mainly due to the discovers that the

most appropriate codes for phase modulation are the linear codes over the residue

class ring ZM , M a positive integer. It was immediately apparent that convolutional

codes over ZM behave very differently from convolutional codes over finite fields. For

instance, in contrast with the field case, convolutional codes over ZM are not necessarily

free modules.

Fundamental results of the structural properties of convolutional codes over finite

rings have been studied over the years and can be found in [JWW98, Nor99, NS00,
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FZ01]. In particular, the properties of being noncatastrophic, right invertible, basic

and systematic ring convolutional encoders were thoroughly discussed. The problem of

deriving minimal encoders (left prime and row-reduced) was posed in 1997 by Fagnani

and Zampieri [FZ97] and in 2007 by Solé and Sison [SS07]. This problem was solved in

2007 by Kuiper, Pinto and Polderman [KPP07] and in 2009 by Kuiper, Pinto [KP09]

using the concept of minimal p-encoder, which is an extension of the concept of p-basis

introduced in [VSA96] to the polynomial context.

The search for and design of unit-memory convolutional codes over Z4 that gives

rise to binary trellis codes with high free distance was investigated by Ashikhmin

and Zyablov [AZ94] and by Kötter, Dettmar and Sorger [KDS95] in 1994 and 1995,

respectively, where several concrete constructions were reported. In 1998, Johannesson

and Wittenmark [JW98] found, by computer search, two 16-state trellis codes of rate
2
4
again over Z4. However, in contrast to the block code case [GG12, NS01] little is

known about distance properties and constructions of convolutional codes over large

rings, see [SS07].

Recently, in 2013 El Oued and Solé [EOS13] derived a bound for the free distance of

convolutional codes over Zpr , generalizing the bound given in [RS99] for convolutional

codes over finite fields. The concrete constructions of MDS convolutional codes over

Zpr presented in this paper were restricted to free codes and cannot be extended to the

general case. An explicit general construction of nonfree MDS codes over finite rings

was left as an open problem and we address it in this thesis. Another fundamental

problem treated in this dissertation is the study of column distance and constructions of

MDP convolutional codes over Zpr . In order to investigate these two problems, we adopt

a novel approach, in particular, we derive new upper-bounds on the free distance and

the column distances and provide explicit novel constructions of MDS (not necessarily

free) and MDP convolutional codes over Zpr for a set of given parameters. In the proof

of these results, an essential role is played by the theory of p-basis and in particular of a

canonical form of the p-encoders. In contrast with the papers [NS01, EOS13] where the

Hensel lift of a cyclic code was used, in this thesis a direct lifting is employed to build

convolutional codes over Zpr from known constructions of convolutional codes over

Zp. Note that even though we will focus on the ring Zpr , by the Chinese Remainder

Theorem, results on codes over Zpr can be extended to codes over ZM , as can be seen

in [McD74, CCL94, JWW98].

We also investigate the dual codes of convolutional codes over Zpr . They are useful

for the development of decoding algorithms of convolutional codes by erasure channel.

In this thesis we present a preliminary study of these codes.



8 1. Introduction

This thesis is divided into six chapters. A brief outline of the contents of the

chapters is given below.

Chapter 2 - The module Zn
pr [D]

This chapter presents some preliminaries on Zn
pr [D] related with p-basis. Most of

the definitions and results were presented in [KPP07] and [KP09]. The results that

are well known will be presented without proof, together with the reference of the

respective author(s).

Chapter 3 - Convolutional codes over Zpr

We start by considering block codes and propose a novel special form for its gen-

erator matrix, called the p-standard form. We give an algorithm to construct such

generator matrix which will be very useful throughout the thesis.

We define a convolutional code as a Zpr [D]-submodule of Zn
pr [D]. We introduce its

free and row distance using the notion of the Hamming weight of a polynomial vector

and we establish an upper-bound on the free distance generalizing the main result in

[EOS13]. We define maximal distance separable (MDS) convolutional codes as those

which their free distance reach this upper-bound. Moreover, we show the existence of

MDS convolutional codes by providing a class of convolutional codes whose distance

achieve such an upper bound. These results have been published in [NPT16].

Next we address the notion of column distance of a convolutional code over Zpr .

We derive upper-bounds on the column distances and we define maximal distance

profile (MDP) convolutional codes as the ones that their column distances achieve the

maximum possible values.

Chapter 4 - Constructions of convolutional codes over Zpr

In this chapter we concentrate on constructions of MDS and MDP convolutional

codes over Zpr .

First we build MDS convolutional codes that are not necessarily free. We lift MDS

convolutional codes over Zp to Zpr in such a way that the resulting convolutional code

is MDS over Zpr . These results have been published in [NPT16]. In the second part

of this chapter, we present constructions of MDP convolutional codes given a set of

parameters. We consider two cases regarding this set of parameters and the idea is

the same as that given for the construction of MDS codes: start from well-known

constructions of MDP convolutional codes over Zp and then lift them to Zpr in such a

way that the resulting convolutional code is MDP over Zpr .
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Chapter 5 - Duality

We also investigate the dual codes of convolutional codes defined in Zpr((D)), the

ring of Laurent series with coefficients in Zpr [EONPT]. We show that, as opposed to

convolutional codes over Zpr , convolutional codes defined in Zpr((D)) always admit a

kernel representation, which defines an image representation of the dual, and we give a

procedure to determine it. Thus, given a convolutional code C over Zpr , we are able to

determine a kernel representation of the smallest convolutional C̃ defined in Zpr((D))

that contains C. This property is fundamental when we consider decoding over an

erasure channel.

The work on Chapter 5 have been presented in MAT-TRIAD 2015 and published

in [EONPT].

Chapter 6 - Conclusions

Finally, in the last chapter, we summarize the main results obtained, and discuss

some future work.





Chapter 2

The module Zn
pr[D]

In this chapter we will consider Zn
pr [D]-submodules of Zpr [D], where Zpr [D] denotes

the ring of polynomials with coefficients in Zpr , with p prime and r an integer greater

than one. We will study these modules using known concepts of p-generator sequence,

p-linearly independence and p-basis and we will present novel results on these modules

using these notions. Most of these definitions and results come from [KPP07] and

[KP09].

2.1 P -basis

Any element a ∈ Zpr can be written uniquely as a linear combination of 1, p, p2, . . .

. . . , pr−1, with coefficients in Ap = {0, 1, . . . , p− 1} ⊂ Zpr , i.e.,

a = α0 + α1p+ · · ·+ αr−1p
r−1, αi ∈ Ap, i = 0, 1, . . . , r − 1,

called the p-adic expansion of the element [CS95]. Note that all elements in Ap\{0}

are units. In [VSA96], the authors considered this property to define a special type of

linear combination of vectors, called p-linear combination, which allows to define the

notion of p-generator sequence, p-basis and p-dimension for every submodule of Zn
pr [D].

These notions were extended for vectors in [KPP07] and we recall them in this section.

Definition 2.1. [KPP07] Let v1(D), . . . , vk(D) be in Zn
pr [D]. The vector

k∑

j=1

aj(D)vj(D),

with aj(D) ∈ Ap[D], is said to be a p-linear combination of v1(D), . . . , vk(D)

and the set of all p-linear combinations of v1(D), . . . , vk(D) is called the p-span of

11



12 2. The module Zn
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{v1(D), . . . , vk(D)}, denoted by p-span (v1(D), . . . , vk(D)).

Notice that p-span(v1(D), . . . , vk(D)) may not be a Zpr [D]-submodule of Zn
pr [D] as

can be seen in the next example.

Example 2.2. Consider the module Z2
4[D] and

M = p-span((1 +D, 0), (0, 1 +D)).

M is not a Z4[D]-submodule of Z2
4[D] since, for instance,

(2 + 2D, 0) 6∈M.

The next definition introduces a property on sequences of vectors (v1(D), . . . , vk(D))

in Zn
pr [D] that will guarantee that p-span(v1(D), . . . , vk(D)) is a Zpr [D]-submodule of

Zn
pr [D].

Definition 2.3. [KPP07] An ordered set of vectors (v1(D), . . . , vk(D)) in Zn
pr [D] is said

to be a p-generator sequence if p vi(D) is a p-linear combination of vi+1(D), . . . , vk(D),

i = 1, . . . , k − 1, and p vk(D) = 0.

Lemma 2.4. [KPP07] Let v1(D), . . . , vk(D) be in Zn
pr [D]. If (v1(D), . . . , vk(D)) is a

p-generator sequence, it holds that

p-span(v1(D), . . . , vk(D)) = span(v1(D), . . . , vk(D)).

Consequently p-span(v1(D), . . . , vk(D)) is a Zpr-submodule of Zn
pr [D].

Note that if M = span(v1(D), . . . , vk(D)) is a submodule of Zn
pr [D] then

(v1(D), pv1(D) . . . ,pr−1v1(D), v2(D), pv2(D), . . . ,

. . . , pr−1v2(D), . . . , vk(D), pvk(D) . . . , pr−1vk(D)).
(2.1)

is a p-generator sequence of M .

Definition 2.5. Two p-generator sequences V (D) = (v1(D), . . . , vk(D)) and V ′(D) =

(v′1(D), . . . , v′k′(D)) in Zn
pr [D] are said to be equivalent if they generate the same

module M, i.e., M = span(V (D)) = span(V ′(D)).

Note that in Zn
pr [D] it may happen that two vectors are linearly dependent without

any of them being a linear combination of the other, which is illustrated in the following

example.
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Example 2.6. In Z2
8[D], the vectors (4+4D, 0) and (0, 2+2D) are linearly dependent

since

2(4 + 4D, 0) + 4(0, 2 + 2D) = (0, 0)

but none of these vectors is a linear combination of the other.

So, we need to introduce a new notion of linear independence.

Definition 2.7. [KPP07] The vectors v1(D), . . . , vk(D) in Zn
pr [D] are said to be p-

linearly independent if the only p-linear combination of v1(D), . . . , vk(D) that is

equal to 0 is the trivial one. If v1(D), . . . , vk(D) are not p-linearly independent, they

are called p-linearly dependent.

The following result establishes a necessary condition in order to reduce a given

p-generator sequence.

Lemma 2.8. Let (v1(D), . . . , vi(D), vi+1(D), . . . , vk(D)) be a p-generator sequence of

a submodule M of Zn
pr [D], with vi+1(D), . . . , vk(D) p-linearly independent vectors. If

vi(D) is written as p-linear combination of vi+1(D), . . . , vk(D) then

(v1(D), . . . , vi−1(D), vi+1(D), . . . , vk(D))

is a p-generator sequence of M .

Proof Since vi(D) is a p-linear combination of vi+1(D), . . . , vk(D) then

vi(D) = βi+1(D)vi+1(D) + βi+2(D)vi+2(D) + · · ·+ βkvk(D), (2.2)

for some βt(D) ∈ Ap[D], t = i+ 1, . . . , k. To see that

(v1(D), . . . , vi−1(D), vi+1(D), . . . , vk(D))

is a p-generator sequence, we need to prove that pvj(D) is a p-linear combination of

the vectors in {vj+1(D), . . . , vk(D)}\{vi(D)}, for j < i.

Let j < i− 1.

As (v1(D), . . . , vi(D), vi+1(D), . . . , vk(D)) is a p-generator sequence then

pvj(D) =αj+1(D)vj+1(D) + · · ·+ αi−1(D)vi−1(D) + αi(D)vi(D)+

+ αi+1(D)vi+1(D) + · · ·+ αk(D)vk(D),
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for some αs(D) ∈ Ap[D], s = j + 1, . . . , k. Replacing vi(D) as in (2.2) we have that

pvj(D) = αj+1(D)vj+1(D) + · · ·+ αi−1(D)vi−1(D) +

+(αi(D)βi+1(D) + αi+1(D))vi+1(D) + (αi(D)βi+2(D) + αi+2(D))vi+2(D) +

+ · · ·+ (αi(D)βk(D) + αk(D))vk(D)

= αj+1(D)vj+1(D) + · · ·+ αi−1(D)vi−1(D) +

+γ′i+1(D)vi+1(D) + γ′i+2(D)vi+2(D) + · · ·+ γ′k(D)vk(D),

with γ′t(D) = αi(D)βt(D)+αt(D) ∈ Zpr [D], t = i+1, . . . , k. Since (vi+1(D), . . . , vk(D))

is a p-generator sequence, by Lemma 2.4, it follows that

p-span(vi+1(D), . . . , vk(D)) = span(vi+1(D), . . . , vk(D))

and, so

pvj(D) = αj+1(D)vj+1(D)+ · · ·+γi+1(D)vi+1(D)+γi+2(D)vi+2(D)+ · · ·+γk(D)vk(D)

for some γt(D) ∈ Ap[D], t = i+ 1, . . . , k.

Note that if j = i− 1 then

pvi−1(D) = αi(D)vi(D) + αi+1(D)vi+1(D) + · · ·+ αk(D)vk(D)

= (αi(D)βi+1(D) + αi+1(D))vi+1(D) + · · ·+ (αi(D)βk(D) + αk(D)))vk(D)

and by the same reasoning as before it follows that

pvi−1(D) ∈ p-span(vi+1(D), . . . , vk(D)).

Thus, (v1(D), . . . , vi−1(D), vi+1(D), . . . , vk(D)) is a p-generator sequence.

Finally,

span(v1(D), . . . , vi−1(D), vi(D), vi+1(D), . . . , vk(D)) =

= span(v1(D), . . . , vi−1(D), vi+1(D), . . . , vk(D))

because vi(D) is a linear combination of vi+1(D), . . . , vk(D). Thus, by Lemma 2.4,

M = p-span(v1(D), . . . , vi−1(D), vi(D), vi+1(D), . . . , vk(D))

= p-span(v1(D), . . . , vi−1(D), vi+1(D), . . . , vk(D))
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and, therefore
(
v1(D), . . . , vi−1(D), vi+1(D), . . . , vk(D)

)
is a p-generator sequence of M .

�

Note that a set of linearly independent polynomial vectors is also a set of p-linearly

independent polynomial vectors, but the reciprocal may not occur as it can be seen in

the next example.

Example 2.9. Let us consider (3 + 3D, 3D2), (3 + 3D, 0) ∈ Z2
9[D]. These two vectors

are p-linearly independent but not linearly independent. In fact,

3(3 + 3D, 3D2) + 3(3 + 3D, 0) = (0, 0),

but, if α1(D), α2(D) ∈ Ap[D] then

α1(D)(3 + 3D, 3D2) + α2(D)(3 + 3D, 0) = (0, 0)⇒ α1(D) = α2(D) = 0.

Definition 2.10. [KPP07] An ordered set of vectors (v1(D), . . . , vk(D)) which is a

p-generator sequence of M and p-linearly independent is said to be a p-basis of M .

It is proved in [KP09] that two p-bases of a Zpr [D]-submodule M of Zn
pr [D] have

the same number of elements and, so the number of elements of a p-basis of M is an

invariant of M .

Definition 2.11. [KPP07] The number of elements of a p-basis of a Zpr [D]-submodule

M of Zn
pr [D] is called p-dimension of M , denoted as p-dim(M).

Next we provide new elementary operations on a given p-basis of M so that we

obtain another p-basis of M .

Lemma 2.12. Let (v1(D), . . . , vk(D)) be a p-generator sequence of a submodule M of

Zn
pr [D]. Then,

1. If v′i(D) = aivi(D) +
∑k

t=i+1 at(D)vt(D), where ai ∈ Zpr is a unit and at(D) ∈

Zpr [D], t = i+ 1, . . . , k then

(v1(D), . . . , vi−1(D), v′i(D), vi+1(D), . . . , vk(D)) (2.3)

is a p-generator sequence of M . Moreover, if (v1(D), . . . , vk(D)) is a p-basis of

M then (2.3) is a p-basis of M .

2. If pvi(D) is a p-linear combination of vt(D), vt+1(D), . . . , vk(D), for some t > i,

then

(v1(D), . . . , vi−1(D), vi+1(D), . . . , vt−1(D), vi(D), vt(D), . . . , vk(D)) (2.4)
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is a p-generator sequence of M . Moreover, if (v1(D), . . . , vk(D)) is a p-basis of

M then (2.4) is a p-basis of M .

Proof

1. Since (v1(D), . . . , vk(D)) is a p-generator sequence then

pvi(D) = αi+1(D)vi+1(D) + αi+2(D)vi+2(D) + · · ·+ αk(D)vk(D), (2.5)

for some αt(D) ∈ Ap[D], t = i+1, . . . , k. From v′i(D) = aivi(D)+
∑k

t=i+1 at(D)vt(D)

we can write

pv′i(D) = paivi(D) +
k∑

t=i+1

pat(D)vt(D)

and, replacing pvi(D) as defined in (2.5),

pv′i(D) =(aiαi+1(D) + pai+1(D))vi+1(D) + (aiαi+2(D) + pai+2(D))vi+2(D)+

+ · · ·+ (aiαk(D) + pak(D))vk(D).

As (vi+1(D), . . . , vk(D)) is a p-generator sequence, by Lemma 2.4 we have that

p-span(vi+1(D), . . . , vk(D)) = span(vi+1(D), . . . , vk(D)) (2.6)

and, so

pv′i(D) = βi+1(D)vi+1(D) + βi+2(D)vi+2(D) + · · ·+ βk(D)vk(D),

with βt(D) ∈ Ap[D], t = i + 1, . . . , k. Thus, (v′i(D), vi+1(D), . . . , vk(D)) is a

p-generator sequence.

Let j < i− 1 and

pvj(D) = γj+1(D)vj+1(D) + · · ·+ γi−1(D)vi−1(D) + γi(D)vi(D) +

+γi+1(D)vi+1(D) + · · ·+ γk(D)vk(D)

for some γt(D) ∈ Ap[D], t = i + 1, . . . , k. Replacing vi(D) by a−1i (v′i(D) −
∑k

t=i+1 at(D)vt(D)) it follows that

pvj(D) = γj+1(D)vj+1(D) + · · ·+ γi−1(D)vi−1(D) + γi(D)a−1i v′i(D) +

+(γi+1(D)− γi(D)a−1i ai+1(D))vi+1(D) + · · ·+ (γk(D)−

−γi(D)a−1i ak(D))vk(D).
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From (2.6) it follows that

pvj(D) = γj+1(D)vj+1(D) + · · ·+ γi−1(D)vi−1(D) + γ′i(D)v′i(D) +

γ′i+1(D)vi+1(D) + · · ·+ γ′k(D)vk(D),

for some γt(D) ∈ Ap[D], t = i, . . . , k.

If j = i− 1 then

pvi−1(D) = γi(D)vi(D) + γi+1(D)vi+1(D) + · · ·+ γk(D)vk(D),

for some γt(D) ∈ Ap[D] and therefore applying the same reasoning as before we

have that

pvi−1(D) = γ′i(D)v′i(D) + γ′i+1(D)vi+1(D) + · · ·+ γ′k(D)vk(D),

for some γ′t(D) ∈ Ap[D], t = i+ 1, . . . , k.

Thus, (v1(D), . . . , vi−1(D), v′i(D), vi+1(D), . . . , vk(D)) is a p-generator sequence.

We also have that

span(v1(D), . . . , vi−1(D), vi(D), vi+1(D), . . . , vk(D)) =

=span(v1(D), . . . , vi−1(D), v′i(D), vi+1(D), . . . , vk(D)),

because v′i(D) is a linear combination of vi(D), . . . , vk(D). By Lemma 2.4,

M = p-span(v1(D), . . . , vi−1(D), vi(D), vi+1(D), . . . , vk(D))

= p-span(v1(D), . . . , vi−1(D), v′i(D), vi+1(D), . . . , vk(D))

and, therefore (v1(D), . . . , vi−1(D), v′i(D), vi+1(D), . . . , vk(D)) is a p-generator se-

quence of M .

To conclude the proof, it remains to show that

v1(D), . . . , vi−1(D), v′i(D), vi+1(D), . . . , vk(D)

are p-linearly independent. Let us consider δt(D) ∈ Ap[D], t = 1, . . . , k such that

δ1(D)v1(D) + · · ·+ δi−1(D)vi−1(D)+

+ δi(D)v′i(D) + δi+1(D)vi+1(D) + · · ·+ δk(D)vk(D) = 0.
(2.7)
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Since v′i(D) = aivi(D) +
∑k

t=i+1 at(D)vt(D), then

δ1(D)v1(D) + · · ·+ δi−1(D)vi−1(D) + δi(D)aivi(D)+

+ (δi(D)ai+1(D) + δi+1(D))vi+1(D)+

+ · · ·+ (δi(D)ak(D) + δk(D))vk(D) = 0.

(2.8)

By Lemma 2.4 and using the fact that (v1(D), . . . , vk(D)) is a p-generator se-

quence, we can rewrite (2.8) as

δ1(D)v1(D) + . . .+ δi−1(D)vi−1(D) + δ′i(D)vi(D)+

+ δ′i+1(D)vi+1(D) + · · ·+ δ′k(D)vk(D) = 0,

for some δ′t ∈ Ap[D], t = i, . . . , k. As v1(D), . . . , vk(D) are p-linearly independent

then

δ1 = · · · = δi = δ′i+1 = · · · = δ′k = 0.

Thus, substituting δt by zero, t = 1, . . . i, in (2.7) we obtain

δi+1(D)vi+1(D) + · · ·+ δk(D)vk(D) = 0.

From the p-linearly independence of vi+1(D), . . . , vk(D) we have that

δi+1 = · · · = δk = 0.

2. It is obvious.

�

Note that all definitions and all results above can be applied for submodules over

Zn
pr [VSA96]. In fact, as mentioned before, these notions were first introduced in this

paper for such modules and later extended for the module Zn
pr [D] in [KPP07].

Next, we will introduce a special type of p-basis of a submodule of Zn
pr [D]. For that

we need first to introduce some notions on vectors and matrices over Zpr [D].

Definition 2.13. [KPP07] A nonzero polynomial vector v(D) in Zn
pr [D], written as

v(D) =
ν∑

t=0

vtD
t, with vt ∈ Zn

pr , and vν 6= 0, is said to have degree ν, denoted by

deg v(D) = ν, and vν is called the leading coefficient vector of v(D), denoted by

vlc. For a given matrix G(D) ∈ Zk×n
pr [D] we denote by Glc ∈ Zk×n

pr the matrix whose

rows are constituted by the leading coefficient vectors of the rows of G(D).
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Definition 2.14. [KPP07] A p-basis (v1(D), . . . , vk(D)) of a submodule M of Zn
pr [D]

is called a reduced p-basis if the vectors vlc1 , . . . , v
lc
k are p-linearly independent in Zn

pr .

Every submodule M of Zn
pr [D] has a reduced p-basis. Algorithm 3.11 in [KPP07]

constructs a reduced p-basis for a submodule M from a generator sequence of M . For

completeness, we rewrite this algorithm as Algorithm 2.15 taking as input a p-generator

sequence of M .

Algorithm 2.15. [KPP07] Input data: V ← (w1(D), . . . , wg(D)) p-generator

sequence, with wi(D) ∈ Zn
pr [D].

Step 1: Re-order V according to non-increasing degrees such that

V ← (v1(D), . . . , vk(D), 0, . . . , 0),

making sure that vectors of equal degree are not swapped. Denote di := deg vi(D)

for 1 ≤ i ≤ k.

Step 2: Remove zero vectors, resulting in

V ← (v1(D), . . . , vk(D)).

Step 3: Determine the smallest ℓ such that

(vlcℓ+1, . . . , v
lc
k )

is a p-basis in Zn
pr .

Step 4: For i = 1, . . . , k − ℓ let αi ∈ Zpr be such that

vlcℓ + α1v
lc
ℓ+1 + α2v

lc
ℓ+2 + . . .+ αk−ℓv

lc
k = 0.

Replace vℓ(D) by

vℓ(D) + α1D
dℓ−dℓ+1vℓ+1(D) + α2D

dℓ−dℓ+2vℓ+2(D) + · · ·+ αk−ℓD
dℓ−dkvk(D).

Go to Step 1.

The algorithm stops when ℓ = 0 at Step 3.

Output data: (v1(D), . . . , vk(D)).
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Remark 2.16. Algorithm 3.11 in [KPP07] starts by constructing a p-generator se-

quence for M in an initialization step. If the input of the algorithm is already a p-

generator sequence this step is redundant.

Lemma 2.17. [KPP07] The degrees of the vectors of two reduced p-bases of M are the

same (up to permutation). Therefore, the degrees of a reduced p-basis of a submodule

of Zn
pr [D] are an invariant of the code.

Definition 2.18. The degrees of the vectors of a reduced p-basis of a submodule M

of Zn
pr [D] are called the p-indices of M and the sum of the p-indices is called the

p-degree of M .

Lemma 2.19. [KPP07] Any reduced p-basis (v1(D), . . . , vk(D)) of M exhibits the p-

predictable degree property:

deg

(
k∑

i=1

ai(D)vi(D)

)
= max

j:aj(D)∈Ap[D]\{0}
(deg aj(D) + deg vj(D))

By Lemma 2.19, it follows that any reduced p-basis of a submodule M of Zn
pr [D]

can be ordered by non increasing degrees to produce another reduced p-basis of M .



Chapter 3

Convolutional Codes over Zpr

In this chapter, we will concentrate on convolutional codes over Zpr . Particular atten-

tion will be given to the class of block codes over Zpr seen as an instance of the class

of convolutional codes over Zpr . We will present the definition of convolutional code,

encoder and p-encoder, p-basis and reduced p-basis of convolutional codes. At the end

of this chapter, we define free distance and column distance of a convolutional code

over Zpr , using the notion of the Hamming weight of a polynomial vector, and establish

upper bounds for these distances.

3.1 Block Codes

Definition 3.1. A (linear) block code C of length n over Zpr is a Zpr-submodule

of Zn
pr and the elements of C are called codewords. A generator matrix G̃ ∈ Zk̃×n

pr

of C is a matrix whose rows form a minimal set of generators of C over Zpr . If G̃

has full row rank, then it is called an encoder of C and C is a free module. If C has

p-dimension k, a p-encoder G ∈ Zk×n
pr of C is a matrix whose rows form a p-basis of

C and therefore

C = ImAp
G

= {v = uG ∈ Zn
pr : u ∈ Ak

p}.

Next, we introduce the notion of p-standard form that will play an important role

in the sequel. First we recall the definition of standard form as introduced in [NS01].

Definition 3.2. [NS01] Let C be a block code over Zpr . A generator matrix G̃ for C is

21
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said to be in standard form if

G̃ =




Ik0 A0
1,0 A0

2,0 A0
3,0 · · · A0

r−1,0 A0
r,0

0 pIk1 pA1
2,1 pA1

3,1 · · · pA1
r−1,1 pA1

r,1

0 0 p2Ik2 p2A2
3,2 · · · p2A2

r−1,2 p2A2
r,2

...
...

...
...

. . .
...

...

0 0 0 0 · · · pr−1Ikr−1
pr−1Ar−1

r,r−1




, (3.1)

where the columns are grouped into blocks of sizes k0, . . . , kr−1, n−
∑r−1

i=0 ki and Iki
denotes the identity matrix of size ki.

Lemma 3.3. [NS01] Any nonzero block code C over Zpr has a generator matrix in

standard form. Moreover, all generator matrices of C in standard form have the same

parameters k0, k1, . . . , kr−1.

Remark 3.4. Note that a block code over Zpr is free if and only if its parameters are

k0 = k̃, ki = 0, i = 1, . . . , r − 1.

We are now in position to introduce the novel notion of p-standard form that will

be extensively use throughout the thesis.

Definition 3.5. Let C be a block code over Zpr . A p-encoder G of C is said to be in
p-standard form if

G =




Ik0
A0

1,0 A0
2,0 A0

3,0 · · · A0
r−1,0 A0

r,0

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
pIk0

0 pA0
2,1 pA0

3,1 · · · pA0
r−1,1 pA0

r,1

0 pIk1
pA1

2,1 pA1
3,1 · · · pA1

r−1,1 pA1
r,1

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
p2Ik0

0 0 p2A0
3,2 · · · p2A0

r−1,2 p2A0
r,2

0 p2Ik1
0 p2A1

3,2 · · · p2A1
r−1,2 p2A1

r,2

0 0 p2Ik2
p2A2

3,2 · · · p2A2
r−1,2 p2A2

r,2

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
.

.

.

.

.

.

.

.

.

.

.

. · · ·
.

.

.

.

.

.

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
pr−1Ik0

0 0 0 · · · 0 pr−1A0
r,r−1

0 pr−1Ik1
0 0 · · · 0 pr−1A1

r,r−1

0 0 pr−1Ik2
0 · · · 0 pr−1A2

r,r−1

0 0 0 pr−1Ik3
· · · 0 pr−1A3

r,r−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · pr−1Ikr−1
pr−1Ar−1

r,r−1




(3.2)

where Iki denotes the identity matrix of size ki, with i = 0, . . . , r − 1.

Remark 3.6. The p-standard form defined above is a particular case of a p-basis in

row echelon form (see [VSA96]).

Given a generator matrix of C in standard form we can extend it to obtain a p-

encoder in p-standard form applying the following algorithm.
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Algorithm 3.7. Input data: G̃ ←




B1,k0

pB1,k1

p2B1,k2
...

pr−1B1,kr−1




generator matrix in standard

form, i.e., as in (3.1), of a block code C over Zpr , where B1,k0 is constituted by the first

k0 rows of G̃ defined in (3.1) and piB1,ki, for i = 1, . . . , r− 1, is the matrix constituted

by the rows k0 + · · ·+ ki−1 + 1, . . . , k0 + · · ·+ ki−1 + ki of G̃.

Step 1: Extend G̃ multiplying piB1,ki by p, p2, . . . , pr−(i+1), with i = 0, . . . , r − 2, res-

ulting in

G←




B′1,k0
B′2,k0
B′3,k0
...

B′r,k0
−−−

B′1,k1
B′2,k1
...

B′r−1,k1
−−−

B′1,k2
...

B′r−2,k2
−−−

...

−−−

B′1,kr−1




,

where B′j,ki = pi+j−1B1,ki, j = 1, . . . , r − i, i = 0, . . . , r − 1.

Step 2: For j = 2, . . . , r − i and i = 0, . . . , r − 2 replace

B′j,ki → B′j,ki −

j−1∑

t=1

Ai
i+t,iB

′
j−t,ki+t

.

Step 3: Reorder the rows in order to have G written in p-standard form.

Output data: G.
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Theorem 3.8. Given a generator matrix G̃ in standard form as in (3.2) of a block

code C over Zpr , the Algorithm 3.7 produces a p-encoder G of C in p-standard form as

in 3.2.

Proof From (2.1) we guarantee that, in Step 1 of Algorithm 3.7, we construct a p-

generator sequence of C. The structure of G̃ defined in (3.1) allows to state immediately

that the rows of G are p-linearly independent and, therefore G is a p-encoder of C. By

Lemma 2.12, Step 2 and Step 3 of Algorithm 3.7 always produce a p-encoder. �

Remark 3.9. If one wants to construct a p-basis in p-standard form from an arbit-

rary p-basis instead of starting with a set of generators, on can use results in [VSA96].

In fact, in [VSA96] was developed an algorithm, called the Gaussian Elimination al-

gorithm, that constructs a p-basis in row echelon form for a submodule M of Zn
pr starting

with an arbitrary p-basis of M . This algorithm can be easily adjusted in order to con-

struct a p-basis in p-standard form using the operations of Lemma 2.12 adapted for the

constant case.

The next lemma immediately follows from Lemma 3.3 together with Theorem 3.8.

Lemma 3.10. Any nonzero block code C over Zpr has a p-encoder in p-standard form

as in 3.2.

The scalars ki, i = 0, 1, . . . , r−1, are equal for all p-encoders of C written in p-standard

form, i.e., they are uniquely determined for a given C and, if C has p-dimension k then

k =
∑r−1

i=0 ki(r − i).

Definition 3.11. Let G be a p-encoder in p-standard form of a block code C over Zpr

as in 3.2. The scalars k0, k1, . . . , kr−1 are called the parameters of C.

Definition 3.12. The free distance d(C) of a linear block code C over Zpr is given

by

d(C) = min{wt(v), v ∈ C, v 6= 0}

where wt(v) is the Hamming weight of v, i.e., the number of nonzero entries of v.

Since the last row of a p-encoder in p-standard form is obviously a codeword it is

trivial to derive a Singleton-type of upper bound on the free distance of a block code

over Zpr .

Theorem 3.13. [NS01] Given a linear block code C ⊂ Zn
pr with parameters k0, . . . , kr−1,

it must hold that

d(C) ≤ n− (k0 + · · ·+ kr−1) + 1.



3.1. Block Codes 25

Among block codes of length n and p-dimension k, we are interested in the ones

with largest possible distance. For that we need to define an optimal set of parameters

of M .

Definition 3.14. Given an integer r ≥ 1 and a non-negative integer k we call an

ordered set (k0, k1, · · · , kr−1), ki ∈ N, i = 0, · · · , r−1 an r-optimal set of paramet-

ers of k if

k0 + k1 + · · ·+ kr−1 = min
k=rk′

0
+(r−1)k′

1
+···+k′r−1

(k′0 + k′1 + · · ·+ k′r−1).

Note that when r divides k, (k0, 0, . . . , , 0), with k0 = k
r
, is the unique r-optimal

set of parameters of k. However,in the general case, the r-optimal set of parameters

of k is not necessarily unique for a given k and r. For instance if k = 25 and r = 6,

(4, 0, 0, 0, 0, 1) and (0, 5, 0, 0, 0, 0) are two possible 6-optimal set of parameters of 25.

Note that the computation of the r-optimal set of parameters is the well-known change

making problem [CG70].

Lemma 3.15. Let (k0, k1, · · · , kr−1) be an r-optimal set of parameters of k. Then,

k0 + k1 + · · ·+ kr−1 =
⌈
k
r

⌉
.

Proof Write k = rb + a, where b, a ∈ N and a < r. Note that a can be written as

a = r − i, for some 1 ≤ i ≤ r.

If r|k then a = 0 and necessarily k0 =
k
r
and kj = 0, for 1 ≤ j ≤ r − 1.

If r ∤ k, we can select k0 = b, kr−a = 1 and kj = 0, for j ∈ {1, . . . r− 1}\{r− a}. Hence

k0 + k1 + · · · + kr−1 = b + 1 =
⌈
k
r

⌉
. It is easy to verify that these values minimize

k0 + k1 + · · ·+ kr−1 subject to k = rk0 + (r − 1)k1 + · · ·+ kr−1. �

Using the previous lemma, the Singleton bound of codes over Zpr in terms of the

p-dimension reads as follows.

Corollary 3.16. Given a block code C ⊂ Zn
pr and p-dimension k,

d(C) ≤ n−

⌈
k

r

⌉
+ 1.

Using a completely different approach this result was also derived in [EOS13, The-

orem 3.1] without using the notions of p-standard form nor the r-optimal set of para-

meters. We note, however, that our approach and in particular these two notions will

turn out to be crucial to derive our results in the next section and Chapter 4.
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3.2 Convolutional Codes

Definition 3.17. A convolutional code C of length n is a Zpr [D]-submodule of

Zn
pr [D]. A generator matrix G̃(D) ∈ Zk̃×n

pr [D] of C is a polynomial matrix whose

rows form a minimal set of generators of C over Zpr [D] and therefore

C = Im Zpr [D]G̃(D)

=
{
u(D)G̃(D) : u(D) ∈ Zk̃

pr [D]
}
.

If G̃(D) has full row rank, then it is called an encoder of C and C is a free code. If C

has p-dimension k, a p-encoder G(D) ∈ Zk×n
pr [D] of C is a polynomial matrix whose

rows form a p-basis of C and therefore

C = ImAp[D]G(D)

=
{
u(D)G(D) : u(D) ∈ Ak

p[D]
}
.

If the rows of G(D) (G̃(D)) form a reduced p-basis (basis) then we say that G(D)

(G̃(D)) is in reduced form1. The row degrees of any p-encoder in reduced form are

invariants of the code C, see Lemma 2.17, and are called p-Forney indices of C. The

sum of the p-Forney indices is the p-degree of C, denoted by δ.

Note that if a convolutional code admits a constant generator matrix, it is called a

block code.

In the sequel, we will adopt the notation used by McEliece [McE98, p. 1082] and

denote by (n, k, δ)-convolutional code a code C ⊂ Zn
pr [D] with p-dimension k and p-

degree δ.

Note that convolutional codes C ⊂ Zn
pr [D] always admit a p-encoder however they

may not admit a full row rank generator matrix, i.e., an encoder. The difference is that

the input vector takes values in Ap[D] for p-encoders whereas for generator matrices

takes values in Zpr [D]. This idea of using a p-adic expansion for the information input

vector is already present in, for instance, [CS95] and was further developed in [VSA96].

Example 3.18. Let C = span{g0, g1} ⊂ Z3
33 [D] be a convolutional code, with

g0 =
[
1 1 +D 0

]

1A basis (v1(D), . . . , vk(D)) of a free submodule M of Zn
pr [D] is called reduced if vlc1 , . . . , v

lc
k are

linearly independent.
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and

g1 =
[
3 0 3 + 3D

]
.

The generator matrix

G̃(D) =

[
1 1 +D 0

3 0 3 + 3D

]

is not full row rank and C does not admit an encoder. However,

G(D) =




g0

3g0

9g0

g1

3g1



=




1 1 +D 0

3 3 + 3D 0

9 9 + 9D 0

3 0 3 + 3D

9 0 9 + 9D



.

is a p-encoder of C.

3.3 Distances of Convolutional Codes

It is well-known that the distance is the simple most important parameter to determine

the performance of a block code. In the context of convolutional codes there are two

fundamental distance properties that are typically analysed, namely the free distance

and the column distance. In this section we formally introduce these two notions and

study convolutional codes that have good distance properties.

3.3.1 Free distance

Definition 3.19. The weight of v(D) =
∑

i≥0 viD
i, vi ∈ Zpr is given by

wt(v(D)) =
∑

i≥0

wt(vi).

Definition 3.20. The free distance of a convolutional code C is defined as

d(C) = min{wt(v(D)) : v(D) ∈ C, v(D) 6= 0}.

El Oued and Solé in [EOS13] presented for the first time an upper bound on the free

distance. Moreover, they showed that the bound is optimal by presenting constructions

free MDS convolutional codes, i.e., convolutional codes achieving this bound. However,

the existence of nonfree MDS convolutional codes were left as an open problem and it

was not clear whether nonfree convolutional codes could attain such a bound. Using a
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different approach we solve this problem and provide, in the next chapter, explicit novel

constructions of nonfree convolutional codes over Zpr , for every set of given parameters,

that reach this bound.

The next definition will allow us to obtain an upper bound on the free distance of an

(n, k, δ)-convolutional code over Zpr . It generalizes to convolutional codes over Zpr the

notion of row distance for a convolutional code over a finite field [JZ99].

Definition 3.21. The j-th row distance drj of a p-encoder in reduced form G(D)

is defined as the minimum of the weights of all codewords resulting from a nonzero

information sequence u(D) ∈ Ak
p[D] with deg(u(D)) ≤ j, i.e.,

drj = min
deg(u(D)) ≤ j

u(D) 6= 0

wt(u(D)G(D)).

Clearly, if C = ImAp[D]G(D),

d(C) ≤ · · · ≤ drj ≤ · · · ≤ dr1 ≤ dr0. (3.3)

Let C be an (n, k, δ)-convolutional code defined over Zpr . Let

G(D) = G0 +G1D + · · ·+Gν1D
ν1 (3.4)

be a p-encoder in reduced form with ordered row degrees ν1 ≥ ν2 · · · ≥ νk, and let

ν = min{ν1, ν2, . . . , νk} denote the value of the smallest row degree and ℓ the number

of rows with row degree equal to ν.

We can bring the last ℓ rows of Gν into p-standard form (see Remark 3.9). By

Lemma 2.12 we still obtain a p-encoder Ĝ(D) of C in reduced form with the last ℓ rows

of Ĝlc in p-standard form. Moreover, by the p-predictable degree property (Lemma

2.19), the last ℓ rows of Ĝ(D) have degree equal to ν.

Theorem 3.22. Let G(D) = G0 +G1D + · · ·+Gν1D
ν1 be a p-encoder of an (n, k, δ)-

convolutional code C in reduced form and row degrees ν1 ≥ ν2 · · · > νk−(ℓ−1) = · · · = νk

and define ν = νk. Assume that the last ℓ rows of Gν are in p-standard form with

parameters ℓ0, ℓ1, . . . , ℓr−1. Then the free distance of C must satisfy

d(C) ≤ n(ν + 1)− (ℓ0 + ℓ1 + · · ·+ ℓr−1) + 1. (3.5)

Proof We show that the upper bound in (3.5) is actually an upper bound of dr0 and

therefore the result readily follows from (3.3).
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Denote by G′i the last ℓ rows of Gi(D), i = 0, . . . , ν1. As these rows have degree ν we

can write

G′(D) = G′0 +G′1D + · · ·+G′νD
ν

where G′i ∈ Zℓ×n
pr , i = 0, . . . , ν. Using the fact that G′ν is in the p-standard form,

i.e.,

G
′

ν =









































































Iℓ0 A0

1,0 A0

2,0 A0

3,0 · · · A0

r−1,0 A0

r,0

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pIℓ0 0 pA0

2,1 pA0

3,1 · · · pA0

r−1,1 pA0

r,1

0 pIℓ1 pA1

2,1 pA1

3,1 · · · pA1

r−1,1 pA1

r,1

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

p2Iℓ0 0 0 p2A0

3,2 · · · p2A0

r−1,2 p2A0

r,2

0 p2Iℓ1 0 p2A1

3,2 · · · p2A1

r−1,2 p2A1

r,2

0 0 p2Iℓ2 p2A2

3,2 · · · p2A2

r−1,2 p2A2

r,2

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

.

.

.
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pr−1Iℓ0 0 0 0 · · · 0 pr−1A0

r,r−1

0 pr−1Iℓ1 0 0 · · · 0 pr−1A1

r,r−1

0 0 pr−1Iℓ2 0 · · · 0 pr−1A2

r,r−1

0 0 0 pr−1Iℓ3 · · · 0 pr−1A3

r,r−1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · pr−1Iℓr−1
pr−1A

r−1

r,r−1









































































,

it is easy to see that the input vector

u = (0, 0, · · · , 0, 1) ∈ Ak
p[D]

gives a codeword

v(D) = uG(D) = u′G′(D)

with u′ = (0, · · · , 0, 1) ∈ Aℓ
p[D]. The polynomial vector v(D) has the last n− (ℓ0+ ℓ1+

· · · + ℓr−1) + 1 entries with weight at most ν + 1 and the first ℓ0 + ℓ1 + · · · + ℓr−1 − 1

coordinates with weight at most ν. Therefore,

dr0 ≤ [n− (ℓ0 + ℓ1 + · · ·+ ℓr−1) + 1](ν + 1) + (ℓ0 + ℓ1 + · · ·+ ℓr−1 − 1)ν

= n(ν + 1)− (ℓ0 + ℓ1 + · · ·+ ℓr−1) + 1,

which concludes the proof. �

Given a convolutional code C with a p-encoder in reduced form as defined in (3.4),

the parameters (ℓ0, . . . , ℓr−1) are invariants of C as we can see in the next lemma.

Lemma 3.23. Let

G(D) = G0 +G1D + · · ·+Gν1D
ν1 and G(D) = G0 +G1D + · · ·+Gν1D

ν1
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be two p-encoders in reduced form of an (n, k, δ)-convolutional code C with row degrees

ν1 ≥ ν2 · · · > νk−ℓ−1 = · · · = νk and define ν = νk. Assume that the last ℓ rows of

Gν and Gν are in p-standard form with parameters ℓ0, ℓ1, . . . , ℓr−1 and ℓ0, ℓ1, . . . , ℓr−1,

respectively. Then ℓi = ℓi, i = 0, . . . , r − 1.

Proof Let

G
′
(D) = G

′

0 +G
′

1D + · · ·+G
′

νD
ν

and

G′(D) = G′0 +G′1D + · · ·+G′νD
ν

be the matrices constituted by the last ℓ rows of G(D) and G(D), respectively.

Then, since G(D) and G(D) are p-encoders in reduced form, the p-predictable

degree property (Lemma 2.19) implies that

ImAp[D]G
′(D) = ImAp[D]G

′
(D)

and furthermore

ImAp
G′ν = ImAp

G
′

ν

which shows, by Lemma 3.10, that ℓi = ℓi, i = 0, . . . , r − 1. �

Taking the maximum of the bound (3.5) over all (n, k, δ)-convolutional codes we

obtain the main result of [EOS13, Theorem 4.10], stated in the next corollary.

Corollary 3.24. The free distance of an (n, k, δ) convolutional code C satisfies

d(C) ≤ n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1. (3.6)

Proof Let G(D) be as in Theorem 3.22. The highest value of (3.5) is obtained by

considering the maximum value of ν and the minimum value of (ℓ0 + ℓ1 + · · · + ℓr−1).

It is easy to see that the maximum value of ν is when

ν =

⌊
δ

k

⌋
and ν1 = ν2 = · · · = νk−ℓ =

⌊
δ

k

⌋
+ 1.

From this it follows that

δ = (k − ℓ)

(⌊
δ

k

⌋
+ 1

)
+ ℓ

⌊
δ

k

⌋
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and, thus

ℓ = k

(⌊
δ

k

⌋
+ 1

)
− δ.

On the other hand, the values of (ℓ0, ℓ1, . . . , ℓr−1) that minimize ℓ0+ ℓ1+ · · ·+ ℓr−1 and

such that ℓ =
∑r

i=0(r − i)ℓi are the r-optimal set of parameters of ℓ. By Lemma 3.15,

ℓ0 + ℓ1 + · · ·+ ℓr−1 =

⌈
ℓ

r

⌉
.

Finally,

d(C) ≤ n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k(

⌊
δ
k

⌋
+ 1)− δ

r

⌉
+ 1

i.e.,

d(C) ≤ n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1.

�

Similarly to the field case, we call the bound (3.6) the generalized Singleton

bound.

Definition 3.25. An (n, k, δ)-convolutional code over Zpr is said to be Maximum

Distance Separable (MDS) if

d(C) = n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1.

It is important to remark that the Singleton-type upper bound presented in (3.6)

is derived as a corollary of the Theorem 3.22 by taking an r-optimal set parameters

of ℓ = k
(⌊

δ
k

⌋
+ 1

)
− δ and therefore it follows that MDS convolutional codes over Zpr

must have these optimal set of parameters.

3.3.2 Column distance

Next definition extends the well-known truncated sliding generator matrix of a convo-

lutional code over a finite field [RS85] to convolutional codes over Zpr .

Definition 3.26. Given a p-encoder G(D) = G0 +G1D + · · ·+GνD
ν ∈ Zk×n

pr [D], we
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can define, for every j ∈ N0, the truncated sliding generator matrix Gc
j as

Gc
j =




G0 G1 · · · Gj

G0 · · · Gj−1

. . .
...

G0



∈ Z

(j+1)k×(j+1)n
pr

where Gj = 0 whenever j > ν.

Lemma 3.27. If G(D) ∈ Zk×n
pr [D] is a p-encoder of a convolutional code C then the

rows of Gc
j form a p-generator sequence, for any j ∈ N0.

Proof Let us represent G(D) by

G(D) =




g1(D)

g2(D)
...

gk(D)




where gs(D) =
∑

i∈N0

gisD
i, with s = 1, . . . , k, is the s − th row of G(D). Since G(D) is

a p-encoder, its rows form a p-generator sequence and therefore

1. p gs(D) ∈ p-span{gs+1(D), . . . , gk(D)}, s = 1, . . . , k − 1;

2. p gk(D) = 0.

Thus, p gs(0) ∈ p-span{gs+1(0), . . . , gk(0)}, s = 1, . . . , k− 1, and p gk(0) = 0, which

means that the rows of Gc
0 form a p-generator sequence.

Let us assume now that the rows of Gc
j form a p-generator sequence and let us prove

that the rows of Gc
j+1 also form a p-generator sequence. For that it is enough to prove

that

p rows(G
c
j+1) ∈ p-span{rows+1(G

c
j+1), . . . , rowk(j+1)(G

c
j+1)}, (3.7)

s = 1, . . . , k − 1, where rowi(G
c
j+1) denotes the i-th row of Gc

j+1.

Let s ∈ {1, . . . , k − 1}. By condition 1. there exists

at(D) =
∑

i∈N0

aitD
i ∈ Ap[D],
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t = s+ 1, . . . , k, such that

p gs(D) = as+1(D) · gs+1(D) + as+2(D) · gs+2(D) + · · ·+ ak(D) · gk(D)

=

(
∑

i∈N0

ais+1D
i

)(
∑

i∈N0

gis+1D
i

)
+

(
∑

i∈N0

ais+2D
i

)(
∑

i∈N0

gis+2D
i

)
+

+ · · ·+

(
∑

i∈N0

aikD
i

)(
∑

i∈N0

gikD
i

)
,

which implies that

p gls =
k∑

α=s+1

l∑

i=0

aiα · g
l−i
α ,

for l = 0, . . . , j + 1. Thus

p
[
g0s g1s · · · gj+1

s

]
= a0s+1 ·

[
g0s+1 g1s+1 · · · gj+1

s+1

]
+ · · ·+

+a0k

[
g0k g1k · · · gj+1

k

]
+

+a1s+1

[
0 g0s+1 · · · gjs+1

]
+ · · · a1k

[
0 g0k · · · gjk

]
+

+ · · ·+

+aj+1
s+1

[
0 · · · 0 g0s+1

]
+ · · ·+ aj+1

k

[
0 · · · 0 g0k

]
,

which proves 3.7. �

Notice that the rows of Gc
j may not be p-linearly independent for some j as the

following example shows.

Example 3.28. Consider the p-encoder

G(D) =




1 +D 1 +D 1 +D 1 +D

3 + 3D 3 + 3D 3 + 3D 3 + 3D

0 0 0 3D2


 ∈ Z3×4

9 [D]

The rows of

Gc
1 =

[
G0 G1

G0

]
=




1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0

1 1 1 1

3 3 3 3

0 0 0 0



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are not p-linearly independent.

Definition 3.29. [KP09] A p-encoder G(D) of a convolutional code C ⊂ Zn
pr [D] is

said to be delay-free if, for any N ∈ Z and any v(D) = u(D)G(D), u(D) ∈ Ak
p[D],

we have

supp (v(D)) ⊂ [N,∞)⇒ supp (u(D)) ⊂ [N,∞),

where, considering v(D) =
∑

i∈N0
viD

i, supp (v(D)) = {i ∈ N0 : vi 6= 0} (supp (u(D))

is defined in the same way).

Lemma 3.30. [KP09] Let G(D) = G0 + G1D + · · · + GνD
ν, with Gi ∈ Zk×n

pr , i =

0, . . . , ν, be a p-encoder of a convolutional code C of length n and p-dimension k. Then

G(D) is delay-free if and only if the rows of G(0) = G0 are p-linearly independent.

If G(D) is a delay-free p-encoder, since the rows of G(0) are p-linearly independent,

all rows of Gc
j are p-linearly independent, for j ∈ N0.

Let us define

C0 = {v0 : v(D) =
∑

i≥0

viD
i ∈ C}.

It is immediate that

C0 = ImAp
G0,

for any p-encoder G(D) of C.

Lemma 3.31. If a convolutional code C of length n and p-dimension k admits a delay-

free p-encoder, then all the p-encoders of C are delay-free.

Proof Let G(D) ∈ Zk×n
pr [D], G′(D) ∈ Zk×n

pr [D] be two different p-encoders of C. If

G(D) is delay-free then the rows of G(0) are p-linearly independents and therefore

p-dim(C0) = k, with C0 as defined above. So, since ImAp
G0 = ImAp

G′0, the rows of

G′(0) must also be p-linearly independent, which means that G′(D) is also delay-free.

�

From now on, convolutional codes with delay-free p-encoders will be called delay-

free convolutional codes.

Definition 3.32. Given a p-encoder G(D) of a convolutional code C over Zpr we define

the j − th column distance of G(D) as

dcj(G) = min{wt(v) : v = uGc
j ∈ Z

n(j+1)
pr , u = [u0 . . . uj], u0 6= 0, u ∈ Ak

p, i = 0, . . . , j}.
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for j ∈ N0.

It is obvious that dcj(G) ≤ dcj+1(G), for j ∈ N0.

Remark 3.33. If C is a delay-free convolutional code and G(D) and G′(D) are two

p-encoders of C, then

dcj(G) = dcj(G
′)

= min{wt
(
v(D)|[0,j]

)
: v(D) ∈ C and v0 6= 0},

where v(D)|[0,j] = v0+ v1D+ · · ·+ vjD
j, for v(D) =

∑
i∈N viD

i. Thus, the j-th column

distance of p-encoders of C is an invariant of the code and we will simply denote it by

dcj.

Let C be a delay-free convolutional code with a p-encoder G(D) written as

G(D) = G0 +G1D + · · ·+GνD
ν ,

with Gi ∈ Zk×n
pr , i = 0, . . . , ν and Gν 6= 0. We can consider G0 in the p-standard form

as

G0 =









































































Ik0
A0

1,0 A0

2,0 A0

3,0 · · · A0

r−1,0 A0

r,0

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pIk0
0 pA0

2,1 pA0

3,1 · · · pA0

r−1,1 pA0

r,1

0 pIk1
pA1

2,1 pA1

3,1 · · · pA1

r−1,1 pA1

r,1

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

p2Ik0
0 0 p2A0

3,2 · · · p2A0

r−1,2 p2A0

r,2

0 p2Ik1
0 p2A1

3,2 · · · p2A1

r−1,2 p2A1

r,2

0 0 p2Ik2
p2A2

3,2 · · · p2A2

r−1,2 p2A2

r,2

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

.

.

.
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pr−1Ik0
0 0 0 · · · 0 pr−1A0

r,r−1

0 pr−1Ik1
0 0 · · · 0 pr−1A1

r,r−1

0 0 pr−1Ik2
0 · · · 0 pr−1A2

r,r−1

0 0 0 pr−1Ik3
· · · 0 pr−1A3

r,r−1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · pr−1Ikr−1
pr−1A

r−1

r,r−1









































































(3.8)

where k0, k1, . . . , kr−1 are the parameters of C0. With these parameters we can rewrite
G(D) and Gi, i = 0, 1, . . . , ν, as

G(D) =




Ĝ(0)(D)

Ĝ(1)(D)
...

Ĝ(r−2)(D)

Ĝ(r−1)(D)




(3.9)
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and

Gi =




Ĝ
(0)
i

Ĝ
(1)
i
...

Ĝ
(r−2)
i

Ĝ
(r−1)
i



, (3.10)

where Ĝ(0)(D) and G
(0)
i , are the submatrices of G(D) and Gi by considering the first

k0 rows, respectively, and Ĝ(b)(D) and Ĝ
(b)
i , b = 1, 2, . . . r − 1, are constituted by the

rows k̄0 + k̄1 + · · ·+ k̄b−1 +1, . . . , k̄0 + k̄1 + · · ·+ k̄b of G(D) and Gi, respectively, where

k̄j = k0+k1+ · · ·+kj, j = 0, . . . , r−1. Note that Ĝ(b)(D) ∈ Zk̄b×n
pr [D] and Ĝ

(b)
i ∈ Zk̄b×n

pr .

Lemma 3.34. Let C be a delay-free convolutional code with a p-encoder G(D) written

as in (3.9) and (3.10). Then, for b = 1, 2, . . . , r − 1,

Ĝ
(b)
i ∈ pℓZk̄b×n

pr (3.11)

where ℓ = b− i, for b− i ≥ 0 and ℓ = 0 for b− i < 0.

Proof Since G(D) is a p-generator sequence

p rowlG(D) ∈ p-span{rowl+1G(D), . . . , rowkG(D)},

for l = 1, . . . , k − 1, implies that

p rowjĜ
(r−1)(D) = aj+1(D)rowj+1Ĝ

(r−1)(D) + · · ·+ ak̄r−1
(D)rowk̄r−1

Ĝ(r−1)(D),

where rowtĜ
(r−1)(D) and rowtĜ

(r−1) represent the t-th row of Ĝ(r−1)(D) and Ĝ(r−1),

respectively, and aj+1(D), . . . , ak̄r−1
(D) ∈ Ap[D], for j = 1, . . . , k̄r−1 − 1.

Note that Ĝ
(r−1)
0 ∈ pr−1Z

k̄r−1×n
pr . Thus, for j = 1, . . . , k̄r−1 − 1,

0 = aj+1(0)rowj+1Ĝ
(r−1)(0) + · · ·+ ak̄r−1

(0)rowk̄r−1
Ĝ(r−1)(0),

which implies that

aj+1(0) = · · · = ak̄r−1
(0) = 0,

since the rows of G0 are p-linearly independent. Thus, for i = 1, . . . , r − 1, it follows

that
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p Ĝ
(r−1)
i ∈ ImAp




Ĝ
(r−1)
i−1

Ĝ
(r−1)
i−2
...

Ĝ
(r−1)
0




and, therefore

Ĝ
(r−1)
i ∈ pr−1−iZ

k̄r−1×n
pr , if r − 1− i ≥ 0

or

Ĝ
(r−1)
i ∈ Z

k̄r−1×n
pr , if r − i− 1 < 0.

Following the same reasoning, we prove that

p Ĝ
(b)
i ∈ ImAp




Ĝ
(b)
i−1
...

Ĝ
(b)
0

−−−−

Ĝ
(b−1)
i−1
...

Ĝ
(b−1)
0

−−−−
...

−−−−

Ĝ
(r−1)
i−1
...

Ĝ
(r−1)
0




which implies the result. �

Theorem 3.35. Given a delay-free convolutional code C with length n and p-dim(C) =

k, with k0, k1, . . . , kr−1 being the parameters of C0, it holds

dcj ≤ (j + 1)

(
n−

r−j∑

i=0

ki

)
−

j∑

s=2

skr−(s−1) + 1, j ≤ r

and

dcj ≤ (j + 1)n−
r−1∑

i=0

ki − k − (j − r)k0 + 1, j > r.
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Proof Let G(D) ∈ Zk×n
pr [D] be a p-encoder of C and let us consider the truncated

sliding generator matrix Gc
j to obtain

dcj = dcj(G) = min{wt(v) : v = uGc
j, u = [u0 . . . uj], u0 6= 0, ui ∈ A

k
p, i = 0, . . . , j}.

By Lemma 3.30, the rows of G0 form a p-basis and then we can assume without loss of

generality that G0 is in p-standard form as in (3.8), with parameters k0, k1, . . . , kr−1.

Let us consider j = 0 and take

u = u0 =
[
0 0 . . . 1

]
∈ Ak

p.

Then v = uG is given by

v =
[
0 . . . 0 1 pr−1Ar−1,k

r,r−1

]
,

where Ar−1,k
r,r−1 represents the last row of Ar−1

r,r−1. Since v has at least (k0+k1+· · ·+kr−1−1)

zero elements, we have that

wt(v) ≤ n− (k0 + k1 + · · ·+ kr−1) + 1,

and therefore,

dc0 ≤ n− (k0 + k1 + · · ·+ kr−1) + 1.

Let us consider now j = 1 and u =
[
u0 u1

]
, with u0, u1 ∈ A

k
p such that u0 6= 0, and

v = uGc
1

⇔
[
v0 v1

]
= u0

[
G0 G1

]
+ u1

[
0 G0

]
,

with vi ∈ Zn
pr , i = 0, 1. Taking again

u0 =
[
0 0 . . . 1

]

we obtain 



v0 =
[
0 . . . 0 1 pr−1Ar−1,k

r,r−1

]

v1 = g
′

1 + u1G0

,
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where pr−1Ar−1,k
r,r−1 represents the last row of Ar−1

r,r−1 and g
′

1 represents the last row of G1.

Thus,

wt(v0) ≤ n− (k0 + k1 + · · ·+ kr−1) + 1.

Note that, since G(D) is a p-encoder, its last row is in pr−1Zn
pr [D] and therefore

the last row of G1 can be written as pr−1g̃1, for some g̃1 ∈ Zn
pr . Moreover, g̃1 can be

written uniquely as

g̃1 = α0 + α1p+ · · ·+ αr−1p
r−1, αi ∈ A

n
p , i = 0, 1, . . . , r − 1.

Thus,

pr−1g̃1 = pr−1α0.

It is now clear that v1 = pr−1g1 + u1G0, with g1 ∈ A
n
p .

Write g1 as

g1 =
[
g1,k0 g1,k1 . . . g1,kr−1

g1,n−(k0+···+kr−1)

]
,

with g1,i ∈ A
i
p, i = k0, k1, . . . , kr−1 and g1,n−(k0+···+kr−1) ∈ A

n−(k0+···+kr−1)
p .

Let us construct u1 such that:

- its first [(r − 1)k0 + (r − 2)k1 + · · ·+ kr−2] components are zero;

- the remaining k0 + k1 + · · ·+ kr−1 components are written as

[
α1,k0 α1,k1 · · · α1,kr−1

]
,

where α1,ki ∈ A
i
p are such that pr−1 (−g1,ki) = pr−1α1,ki , i = 0, . . . , r − 1.

So, we obtain v1 with its first (k0 + k1 + · · ·+ kr−1) elements equal to zero.

Thus,

wt(v) = wt(v0) + wt(v1)

≤ 2n− 2(k0 + k1 + · · ·+ kr−1) + 1,

and we obtain

dc1 ≤ 2n− 2(k0 + k1 + · · ·+ kr−1) + 1.

Let j = 2, u =
[
u0 u1 u2

]
, ui ∈ Ak

p, i = 0, 1, 2, with u0 6= 0, and let v =
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[
v0 v1 v2

]
, with vi ∈ Zn

pr , i = 0, 1, 2, such that

v = uGc
2

⇔
[
v0 v1 v2

]
= u0

[
G0 G1 G2

]
+ u1

[
0 G0 G1

]
+ u2

[
0 0 G0

]
,

Considering

u0 =
[
0 0 . . . 1

]
∈ Ak

p

we have that 



v0 =
[
0 . . . 0 1 pr−1Ar−1,k

r,r−1

]

v1 = g′1 + u1G0

v2 = g′2 + u1G1 + u2G0

,

where pr−1Ar−1,k
r,r−1 represents the last row of Ar−1

r,r−1 in G0 and g′1 and g′2 represent the

last row of G1 and G2, respectively, with g′1, g
′
2 ∈ Zn

pr . So,

wt(v0) ≤ n− (k0 + k1 + · · ·+ kr−1) + 1.

Considering u1 as in the previous case we obtain v1 with

wt(v1) ≤ n− (k0 + k1 + · · ·+ kr−1).

Let us now consider v2 = g′2 + g̃1 + u2G0, with g̃1 = u1G1. By Lemma 3.34

g̃1 ∈ pr−2 Zn
pr

and therefore

g′2 + g̃1 = pr−1 g11 + pr−2 g21,

for some g21, g
1
1 ∈ A

n
p .

Write 



g21 =
[
g211 g212

]

g11 =
[
g111 g112

] ,

with gi11 ∈ A
k0+k1+···+kr−2

p and gi12 ∈ A
n−(k0+k1+···+kr−2)
p , for i = 1, 2, and let us construct

ũ2 ∈ Zn
pr such that:

- its first [(r − 2)k0 + (r − 3)k1 + · · ·+ kr−3] components are zero;
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- the next (k0 + k1 + · · ·+ kr−2 + k0 + k1 + · · ·+ kr−2) components are written as

[
−g111 −g211

]
;

- the last kr−1 components are zero.

Since the rows of G0 form a p-generator sequence, consider u2 ∈ Ap such that

ũ2G0 = u2G0. Thus, the first k0 + k1 + · · ·+ kr−2 columns of v2 are zero and con-

sequently

wt(v2) ≤ n− (k0 + k1 + · · ·+ kr−2).

Therefore,

wt(v) =
2∑

i=0

wt(vi)

≤ 3n− 2(k0 + k1 + · · ·+ kr−1)− (k0 + k1 + · · ·+ kr−2) + 1,

and therefore

dc2 ≤ 3n− 2(k0 + k1 + · · ·+ kr−1)− (k0 + k1 + · · ·+ kr−2) + 1.

Taking a general j, u =
[
u0 u1 · · · uj

]
, ui ∈ A

k
p, with u0 6= 0, and let v =

[
v0 v1 · · · vj

]
, with vi ∈ Zn

pr , i = 0, 1, . . . , j, such that

v = uGc
j

⇔
[
v0 v1 . . . vj

]
= u0

[
G0 G1 . . . Gj

]
+ u1

[
0 G0 . . . Gj−1

]
+ · · ·+

+ uj

[
0 0 . . . G0

]
.

Using the same procedure as before we can construct u0, . . . , uj ∈ A
k
p, such that

wt(v0) ≤ n− (k0 + k1 + · · ·+ kr−1) + 1, (3.12)

wt(vi) ≤ n− (k0 + k1 + · · ·+ kr−i), i ≤ r (3.13)

and

wt(vi) ≤ n− k0, i > r, (3.14)
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for all i = 1, . . . j. So, since

wt(v) =

j∑

i=0

wt(vi),

we conclude that

wt(v) ≤ (j + 1)n− (k0 + k1 + · · ·+ kr−1)−

j∑

i=1

(k0 + k1 + · · ·+ kr−i) + 1, if j ≤ r

and

wt(v) ≤ (j+1)n−(k0+k1+ · · ·+kr−1)−
r∑

i=1

(k0+k1+ · · ·+kr−i)−

j∑

i=r+1

k0+1, if j > r.

Therefore, for j ≤ r

dcj ≤ (j + 1)n− (k0 + k1 + · · ·+ kr−1)−

j∑

i=1

(k0 + k1 + · · ·+ kr−i) + 1

= (j + 1)n− [(j + 1)(k0 + k1 + · · ·+ kr−j) + jkr−(j−1)+

+ (j − 1)kr−(j−2) + · · ·+ 2kr−1] + 1

= (j + 1)

(
n−

r−j∑

i=0

ki

)
−

j∑

s=2

skr−(s−1) + 1

and, for j > r

dcj ≤ (j + 1)n− (k0 + k1 + · · ·+ kr−1)−
r∑

i=1

(k0 + k1 + · · ·+ kr−i)−

j∑

i=r+1

k0 + 1

= (j + 1)n− (k0 + k1 + · · ·+ kr−1)− [rk0 + (r − 1)k1 + · · ·+ kr−1]− (j − r)k0 + 1

= (j + 1)n−
r−1∑

i=0

ki − k − (j − r)k0 + 1.

�

The column distance measures the distance between two codewords within a time

interval. Hence we seek for codes with column distances as large as possible. Column

distances are very appealing for sequential decoding: the larger column distance the

larger number of error we can correct per time interval. Thus, it follows from Theorem

3.35 that the r-optimal set of parameters of k has to be such that the value of k0 has
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to be the greatest possible. So, the r-optimal set of parameters of k, (k0, k1, . . . , kr−1),

is given by

k0 =

⌊
k

r

⌋
, kr−R = 1 and ki = 0, (3.15)

where R = k −
⌊
k
r

⌋
r and i = 1, . . . , r − 1, i 6= r −R.

With this r-optimal set of parameters we can maximize the bound found in Theorem

3.35 as is shown in the next result. Note that if C is a nondelay-free convolutional code

with p-encoder G(D) ∈ Zk×n
pr [D] then there exists u0 ∈ A

k
p\{0} such that u0G(0) =

0, which implies that dc0(G) = 0. Thus, convolutional codes with maximal column

distances will always be delay free. From now on, we consider delay-free convolutional

codes.

Corollary 3.36. Given a convolutional code C with length n and p-dim(C) = k it holds

dcj ≤

(
n−

⌈
k

r

⌉)
(j + 1) + 1, j ≤ R

and

dcj ≤

(
n−

⌊
k

r

⌋)
(j + 1)−

(⌈
k

r

⌉
−

⌊
k

r

⌋)
(R + 1) + 1, j > R,

with R = k −
⌊
k
r

⌋
r.

Proof Let k0, k1, . . . , kr−1 be the parameters of C0 and let us recall that

dcj = dcj(G) = min{wt(v) : v = uGc
j, u = [u0 . . . uj], u0 6= 0, ui ∈ A

k
p, i = 0, . . . , j},

where Gc
j the truncated sliding generator matrix of a p-encoder G(D) ∈ Zk×n

pr [D] of C.

From (3.12), (3.13) and (3.14) in the proof of Theorem 3.35, and (3.15) we have

wt(v0) ≤ n−

⌈
k

r

⌉
+ 1,

wt(vi) ≤ n−

⌈
k

r

⌉
, i ≤ R

and

wt(vi) ≤ n−

⌊
k

r

⌋
, i > R.

Therefore, since

wt(v) =

j∑

i=0

wt(vi),
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we conclude that, for j ≤ R,

dcj ≤ (n−

⌈
k

r

⌉
)(j + 1) + 1,

and for j > R,

dcj ≤ n(j + 1)−

⌈
k

r

⌉
+ 1−

⌈
k

r

⌉
R−

⌊
k

r

⌋
(j −R)

=

(
n−

⌊
k

r

⌋)
(j + 1)−

(⌈
k

r

⌉
−

⌊
k

r

⌋)
(R + 1) + 1.

�

Let us denote the bound obtained in Corollary 3.24 for the column distance by

B(j) =





(
n−

⌈
k
r

⌉)
(j + 1) + 1 , j ≤ R

(
n−

⌊
k
r

⌋)
(j + 1)−

(⌈
k
r

⌉
−
⌊
k
r

⌋)
(R + 1) + 1 , j > R

,

where R = k −
⌊
k
r

⌋
r, and the singleton bound obtain in Corollary 3.36 for the free

distance

SB = n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1

=

(
n−

k

r

)(⌊
δ

k

⌋
+ 1

)
+

δ

r
− ϕ+ 1,

with ϕ =
⌈
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

⌉
−
(
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

)
.

Definition 3.37. An (n, k, δ)-convolutional code C over Zpr is said to be Maximum

Distance Profile (MDP) if

dcj = B(j),

for j ≤ L, where

L = max{j : B(j) ≤ SB}.

The next theorem determines explicitly the value of the integer L that appears in

the definition of MDP (n, k, δ)-convolutional code over Zpr .
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Theorem 3.38. Let C be an MDP (n, k, δ)-convolutional code over Zpr , R = k−
⌊
k
r

⌋
r,

X =

(
n− k

r

) ⌊
δ
k

⌋
+ δ

r
− ϕ+

⌈
k
r

⌉
− k

r

n−
⌈
k
r

⌉

and

X ′ =

⌊
δ

r

⌋
+
−R

r

(⌊
δ
k

⌋
+ 1
)
+ δ

r
− ϕ+

(⌈
k
r

⌉
− k

r

)
(r + 1)

n−
⌊
k
r

⌋ ,

with ϕ =
⌈
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

⌉
−
(
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

)
.

Then

L =





⌊X⌋ , if X ≤ R

R, if X > R ∧B(R + 1) > SB

⌊X ′⌋ , otherwise

.

Proof Let us consider the increasing function f defined by

f : R+
0 −→ R+

0

x 7→ B(x)
,

with

B(x) =





(
n−

⌈
k
r

⌉)
(x+ 1) + 1 , x ≤ R

(
n−

⌊
k
r

⌋)
(x+ 1)−

(⌈
k
r

⌉
−
⌊
k
r

⌋)
(R + 1) + 1 , x > R

,

where x ∈ R+
0 and R = k −

⌊
k
r

⌋
r.

If X ≤ R we have that

f(X) =

(
n−

⌈
k

r

⌉)((
n− k

r

) ⌊
δ
k

⌋
+ δ

r
− ϕ+

⌈
k
r

⌉
− k

r

n−
⌈
k
r

⌉ + 1

)
+ 1

= SB

and, therefore L = ⌊X⌋.

If X > R and B(R + 1) > SB it follows immediately that f(R) = SB.
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Finally if X > R and B(R + 1) ≤ SB we can write

f(X ′) =

(
n−

⌊
k

r

⌋)(⌊
δ

r

⌋
+
−R

r

(⌊
δ
k

⌋
+ 1
)
+ δ

r
− ϕ+

(⌈
k
r

⌉
− k

r

)
(r + 1)

n−
⌊
k
r

⌋ + 1

)
−

−

(⌈
k

r

⌉
−

⌊
k

r

⌋)
(R + 1) + 1

=

(
n−

⌊
k

r

⌋)⌊
δ

r

⌋
−

R

r

(⌊
δ

k

⌋
+ 1

)
+

δ

r
− ϕ+ n−

⌊
k

r

⌋
+ 1

= SB

and, therefore L = ⌊X ′⌋.

�

In this thesis we shall consider two particular cases, namely when k | δ and r | k.

For these cases Theorem 3.38 reads as follows.

Corollary 3.39. Let C be an MDP (n, k, δ)-convolutional code over Zpr with k | δ. Let

X =
δ

k
+

⌈
k
r

⌉
δ
k

n−
⌈
k
r

⌉

and

X ′ =
δ

k
+

⌊
k
r

⌋
δ
k
+R

n−
⌊
k
r

⌋ ,

with R = k −
⌊
k
r

⌋
r. Then,

L =





⌊X⌋ , if X ≤ R

R, if X > R ∧ B(R + 1) ≤ SB

⌊X ′⌋ , otherwise

Corollary 3.40. Let C be an MDP (n, k, δ)-convolutional code over Zpr with r | k.

Then

L =

⌊
δ

k

⌋
+

⌊ ⌊
δ
r

⌋

n− k
r

⌋
.

Note that r | k means that R = 0, and so

B(j) =

(
n−

k

r

)
(j + 1) + 1. (3.16)

In this case we can prove the next lemma.
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Lemma 3.41. Let C be an (n, k, δ)-convolutional code over Zpr with r | k. If dcj = B(j)

then dci = B(i), for all i ≤ j.

Proof It is sufficient to prove that

dcj = B(j)⇒ dcj−1 = B(j − 1), for j ≥ 1.

Let us consider G0 written in p-standard form. Since r | k, the r-optimal set

of parameters (k0, k1, . . . , kr−1) of k is such that k0 = k
r
and ki = 0, for all i =

1, 2, . . . , r − 1. Let us assume that

dcj−1 ≤

(
n−

k

r

)
j.

Let v(D) ∈ C such that v0 6= 0 and

wt
(
v(D)|[0,j−1]

)
= dcj−1,

where v(D)|[0,j−1] = v0 + v1D + · · ·+ vj−1D
j−1, for v(D) =

∑
i∈N viD

i.

Then,

v(D)|[0,j−1] =
[
v0 v1 . . . vj−1

]

=
[
u0 u1 . . . uj−1

]



G0 G1 . . . Gj−1

. . .
...

G0


 ,

for some ui ∈ A
k
p, i = 0, . . . , j − 1.

Let ṽ(D) ∈ C be such that

ṽ(D)|[0,j] =
[
v0 v1 . . . vj−1 vj

]

=
[
u0 u1 . . . uj−1 uj

]




G0 G1 . . . Gj−1 Gj

. . .
...

...

G0 G1

G0



,
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for some uj ∈ A
k
p. Then

vj =
[
u0 u1 . . . uj−1 uj

]




Gj

Gj−1

...

G1

G0




=

j−1∑

t=0

utGj−t + ujG0.

Let us consider uj such that ujG0 negates the first k0 =
k
r
entries of

∑j−1
t=0 utGj−t.

So,

wt (vj) ≤ n−
k

r
,

and then, since ṽ(D)|[0,j−1] = v(D)|[0,j−1] it follows that

wt
(
ṽ(D)|[0,j]

)
≤

(
n−

k

r

)
(j + 1)

which contradicts (3.16).

�

Remark 3.42. Note that, for r | k an (n, k, δ)-convolutional code C is an MDP if and

only if

dcL =

(
n−

k

r

)
(L+ 1) + 1.



Chapter 4

Constructions of convolutional

codes over Zpr

In this chapter we address the problem of providing explicit constructions of convolu-

tional codes over Zpr that are optimal with respect to the free distance and column

distance, i.e., MDS and MDP convolutional codes. These constructions generalize

the existing constructions of convolutional codes over finite fields [SGLR01, ANP13,

Gua14, NR16]).

4.1 MDS Convolutional Codes

We start by presenting a general procedure for building (non necessarily free) MDS

convolutional codes over Zpr . The idea is to start from well-known constructions of

MDS convolutional codes over Zp and then lift them to Zpr in such a way that the

resulting convolutional code is MDS over Zpr . This method is direct and works for any

given set of parameters (n, k, δ).

For the sake of simplicity of exposition, we first assume that k | δ. The general case

will be treated at the end of the section.

Since k | δ the row degrees νi, i = 1, . . . , k of any p-encoder G(D) of C in reduced

form are

ν = ν1 = · · · = νk =
δ

k

The MDS (n, k, δ)-convolutional C that we aim to construct must satisfy

d(C) = n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1.

49
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Note that

n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1

=n(ν + 1)− (k0 + k1 + · · ·+ kr−1) + 1

where (k0, k1, . . . , kr−1) is an r-optimal set of parameters of k (by Theorem 3.22 and

Corollary 3.24).

Take {
k̃ = k0 + k1 + · · ·+ kr−1

δ̃ = νk̃
,

and let us consider an MDS convolutional code C̃ with length n, dimension k̃ and

degree δ̃ over the field Zp (constructions of such codes can be found in [SGLR01,

Gua14, NR16]).

The distance of C̃ equals (see [RS99])

d(C̃) = (n− k̃)

(⌊
δ̃

k̃

⌋
+ 1

)
+ δ̃ + 1.

Let

G̃(D) =




G̃k0(D)

−−−−

G̃k1(D)

−−−−
...

−−−−

G̃kr−1
(D)




, (4.1)

with G̃(D) ∈ Zk̃×n
p [D] be an encoder of C̃ in reduced form, where G̃ki(D) is a ki × n

matrix, i = 0, 1, . . . , r − 1.

By Lemma 3.15,

k̃ =

⌈
k

r

⌉

and since

δ̃ = νk̃

we get

d(C̃) = n (ν + 1)−

⌈
k

r

⌉
+ 1. (4.2)
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Next, we lift G̃(D) to construct a k × n matrix G(D) over Zpr [D] as follows,

G(D) =




G̃k0
(D)

pG̃k0
(D)
...

pr−1G̃k0
(D)

−−−−

pG̃k1
(D)

p2G̃k1
(D)

...

pr−1G̃k1
(D)

−−−−
...

−−−−

pr−1G̃kr−1
(D)




. (4.3)

G(D) is a p-encoder of an MDS (n, k, δ)-convolutional code as we will prove in the

next lemma.

Lemma 4.1. The matrix G(D) defined in (4.3) is a p-encoder in reduced form with

row degrees all equal to ν. Moreover, the convolutional code generated by G(D) has

length n, p-dimension k and p-degree δ.

Proof Since all the rows of G̃(D) have row degrees ν, the rows of G(D) have also

degree ν. From the construction of G(D), it is straightforward to verify that its rows

form a p-generator sequence. It remains to show that G(D) is in reduced form, i.e.,

that the rows of

Glc =




G̃lc
k0

pG̃lc
k0
...

pr−1G̃lc
k0

−−−−

pG̃lc
k1

p2G̃lc
k1

...

pr−1G̃lc
k1

−−−−
...

−−−−

pr−1G̃lc
kr−1




,
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are p-linearly independent. This amounts to show that for aij ∈ Ap, with i = j, . . . , r−1

and j = 0, . . . , r − 1,

a00G̃
lc
k0
+ a10pG̃

lc
k0
+ · · ·+ ar−10 pr−1G̃lc

k0
+ a11pG̃

lc
k1
+ a21p

2G̃lc
k1
+ · · ·+

+ · · ·+ ar−11 pr−1G̃lc
k1
+ · · ·+ ar−1r−1p

r−1G̃lc
kr−1

= 0
(4.4)

implies that

a00 = a10 = · · · = ar−10 = 0, a11 = a21 = · · · = ar−11 = 0, . . . , ar−1r−1 = 0.

Note that, multiplying (4.4) by pr−1 we obtain

a00p
r−1G̃lc

k0
= 0.

As G̃(D) is in reduced form, G̃lc
k0

must be full row rank over Zp and therefore a00 = 0.

Proceeding in the same way, by successively multiplying (4.4) by pr−2, . . . , 1, we show

that aij = 0, with i = j, . . . , r − 1 and j = 0, . . . , r − 1.

For the proof of the last statement note that since k̃ = k0 + k1 + · · · + kr−1 and

(k0, . . . , kr−1) is an r-optimal set of parameters of k we obtain that G(D) has k rows,

i.e., C has p-dimension equal to k. Moreover, since G(D) is in reduced form, the degree

of C is

νk =
δ

k
k = δ.

�

The following technical lemma will be used in the next theorem. First, we need to

define the order of a codeword.

Definition 4.2. If v(D) ∈ Zpr [D] \ {0} we define the order of v(D), denoted by

ord(v(D)), as the j ∈ {1, 2, . . . , r} such that

pjv(D) = 0 and pj−1v(D) 6= 0.

Lemma 4.3. Let C be the convolutional code generated by the encoder G̃(D) and p-

encoder G(D) defined in (4.1) and (4.3), respectively. Then, if v(D) ∈ C has order

j,

pj−1v(D) ∈ ImAp[D] p
r−1G̃(D).
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Proof Since the matrix G̃(D) defined in (4.1) is full row rank over Zp[D], it follows

that, for any nonzero codeword of C,

v(D) =
r−1∑

i=0

r−1∑

l=i

ul
i(D)plG̃ki(D), withul

i(D) ∈ Aki
p [D],

we have that

ord(v(D)) = max
i,l:ul

i(D) 6=0
ord(plG̃ki(D)). (4.5)

Thus, if v(D) has order j then pj−1v(D) has order one and therefore, by (4.5),

pj−1v(D) ∈ ImAp[D] p
r−1G̃(D).

�

Now we are ready to present the result that shows that our construction is indeed

an MDS convolutional code.

Theorem 4.4. Let C be the (n, k, δ)-convolutional code with k | δ and p-encoder G(D)

as in (4.3). Then, C is MDS, i.e.,

d(C) =n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1.

Proof Since k | δ the Singleton bound can be written as

n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1 = n

(
δ

k
+ 1

)
−

⌈
k

r

⌉
+ 1.

Let v(D) ∈ C \ {0}. Obviously,

wt(v(D)) ≥ wt(pj−1v(D)),

where j is the order of v(D). By Lemma 4.3,

wt(pj−1v(D)) = wt(pr−1u(D)G̃(D)),

for some u(D) ∈ Ak
p[D]. Note that, since u(D) ∈ Ak

p[D],

wt(pr−1u(D)G̃(D)) = wtp(ū(D)G̃(D)),
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where ū(D) = u(D) is the projection of u(D) over Zp[D] and wtp represents the

Hamming weight over Zp. This together with the fact that C̃ is an MDS convolutional

code over Zp shows that

wt(pr−1u(D)G̃(D)) ≥ (n− k̃)

(⌊
δ̃

k̃

⌋
+ 1

)
+ δ̃ + 1.

It is straightforward to check that for

{
δ̃ = νk̃ = δ

k
k̃

k̃ =
⌈
k
r

⌉

this lower bound coincides with the Singleton bound given in Corollary 3.24. This

shows that

d(C) = n

(
δ

k
+ 1

)
−

⌈
k

r

⌉
+ 1.

�

Let us now assume that k ∤ δ and let us construct an MDS (n, k, δ)-convolutional

code C. Note that a p-encoder G(D) of C in reduced form has:

- ℓ rows of degree ν =
⌊
δ
k

⌋

- k − ℓ rows of degree k − ℓ, where

ℓ = k

(⌊
δ

k

⌋
+ 1

)
− δ.

Select (ℓ0, . . . , ℓr−1) an r-optimal set of parameters of ℓ. Then

d(C) = n(ν + 1)− (ℓ0 + ℓ1 + · · ·+ ℓr−1) + 1.

Let a, b ∈ N0 such that

k − ℓ = ar + b,

with b < r. Take





k̃ = a+ 1 + ℓ0 + ℓ1 + · · ·+ ℓr−1

ν =
⌊
δ
k

⌋

δ̃ = (a+ 1)(ν + 1) + (ℓ0 + ℓ1 + · · ·+ ℓr−1)ν
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and let C̃ be an MDS convolutional code of length n, dimension k̃ and degree δ̃ over

the field Zp. Construct

G̃(D) =




G̃a(D)

−−−−

G̃1(D)

−−−−

G̃ℓ0(D)

−−−−

G̃ℓ1(D)

−−−−
...

−−−−

G̃ℓr−1
(D)




∈ Zp[D]k̃×n (4.6)

to be an encoder of C̃ in reduced form, where G̃a(D) is a a× n matrix and G̃1(D) is a

1× n matrix with row degrees ν + 1 and G̃ℓi(D) is an ℓi × n matrix with row degrees

ν, i = 0, 1, . . . , r − 1.

Since C̃ is an MDS (n, k̃, δ̃)-convolutional code over Zp, its distance equals (see

[RS99])

d(C̃) = (n− k̃)

(⌊
δ̃

k̃

⌋
+ 1

)
+ δ̃ + 1.

Note that from





k̃ = a+ 1 + ℓ0 + ℓ1 + · · ·+ ℓr−1

δ̃ = (a+ 1)(ν + 1) + (ℓ0 + ℓ1 + · · ·+ ℓr−1)ν

we have that
δ̃

k̃
= ν +

a+ 1

k̃

and therefore

ν =

⌊
δ̃

k̃

⌋
,

and also that

d(C̃) = n(ν + 1)− (ℓ0 + ℓ1 + · · ·+ ℓr−1) + 1.
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Now, let us consider the following k × n matrix in Zpr [D],

G(D) =




G̃a(D)

pG̃a(D)
...

pr−1G̃a(D)

−−−−

pr−bG̃1(D)
...

pr−1G̃1(D)

−−−−

G̃ℓ0(D)

pG̃ℓ0(D)
...

pr−1G̃ℓ0(D)

−−−−

pG̃ℓ1(D)

p2G̃ℓ1(D)
...

pr−1G̃ℓ1(D)

−−−−
...

−−−−

pr−1G̃ℓr−1
(D)




. (4.7)

In order to prove that G(D) defined as in (4.7) is a p-encoder of an MDS convolutional

code we first need the next lemmas.

Lemma 4.5. The matrix G(D) defined in (4.7) is a p-encoder in reduced form where

the first k− l rows have degree equal to ν+1 and the last ℓ rows have degree equal to ν.

Moreover, the convolutional code generated by G(D) has p-dimension k and p-degree

δ.

Proof Since the rows of G̃a(D) and G̃1(D) have degrees ν + 1 and the row degree of

G̃ℓi(D), for all i = 0, . . . , r − 1, is equal to ν, the first k − l rows of G(D) have degree

ν + 1 and the last ℓ rows have degree ν.

Once the rows of G̃(D) are p-linearly independent and form a p-generator sequence,

the rows of G(D) are also p-linearly independent and form a p-generator sequence.
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Finally let us prove that G(D) is in reduced form. Considering

Glc =




G̃lc
a

pG̃lc
a

...

pr−1G̃lc
a

−−−−

pr−bG̃lc
1

...

pr−1G̃lc
1

−−−−

G̃lc
ℓ0

pG̃lc
ℓ0
...

pr−1G̃lc
ℓ0

−−−−

pG̃lc
ℓ1

p2G̃lc
ℓ1

...

pr−1G̃lc
ℓ1

−−−−
...

−−−−

pr−1G̃lc
ℓr−1




,

let us to prove that

b00G̃
lc
a + b10pG̃

lc
a + · · ·+ br−10 pr−1G̃lc

a + br−b1 pr−bG̃lc
1 + b

r−(b+1)
1 pr−(b+1)G̃lc

1 + · · ·+

+br−11 pr−1G̃lc
1 + b02G̃

lc
l0
+ b12pG̃

lc
l0
+ · · ·+ br−12 pr−1G̃lc

l0
+ b13pG̃

lc
l1
+ b23p

2G̃lc
l1
+ · · ·+

+br−13 pr−1G̃lc
l1
+ · · ·+ br−1r+1p

r−1G̃lc
lr−1

= 0

(4.8)

implies that

b00 = · · · = br−10 = br−b1 = · · · = br−11 = b02 = · · · = br−12 = b13 = . . . , br−13 = . . . , br−1r+1 = 0,
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with b00, . . . , b
r−1
0 ∈ An

p , b
r−b
1 , . . . , br−11 ∈ Ap, b

0
2, . . . , b

r−1
2 ∈ Aℓ0

p , b
1
3, . . . , b

r−1
3 ∈ Aℓ1

p , . . . ,

br−1r+1 ∈ A
ℓr−1

p . Note that, multiplying (4.8) by pr−1 we obtain

b00p
r−1G̃lc

a + b02p
r−1G̃lc

l0
= 0,

that implies

b00 = b02 = 0,

since G̃(D) is in reduced form. By successively multiplying (4.8) by pr−2, . . . , 1, and

proceeding in the same way, we obtain that

b00 = · · · = br−10 = 0, br−b1 = · · · = br−11 = 0,

b02 = · · · = br−12 = 0, b13 = . . . , br−13 = 0, . . . , br−1r+1 = 0.

To prove that C has p-dimension k, note that k̃ = a + b + ℓ0 + ℓ1 + · · · + ℓr−1 and

that (ℓ0, . . . , ℓr−1) is an r-optimal set of parameters of ℓ. Then, the number of rows of

G(D) is

ra+ b+ rℓ0 + (r − 1)ℓ1 + · · ·+ ℓr−1 = ra+ b+ ℓ = k.

The p-degree of C is

(ra+ b)(ν + 1) + ℓν = (k − ℓ)(ν + 1) + ℓν

= k(ν + 1)− ℓ

= k(

⌊
δ

k

⌋
+ 1)− ℓ

= δ.

�

Applying the same reasoning as in the proof of Lemma 4.3, the next lemma holds

immediately.

Lemma 4.6. Let C be the convolutional code generated by encoder G̃(D) and p-encoder

G(D) defined in (4.6) and (4.7), respectively. Then, if v(D) ∈ C has order j,

pj−1v(D) ∈ ImAp[D] p
r−1G̃(D).

Finally, we can prove our last theorem.

Theorem 4.7. Let C be the (n, k, δ)-convolutional code with p-encoder G(D) as in
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(4.7). Then, C is MDS, i.e.,

d(C) =n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1

Proof Let v(D) ∈ C \ {0} and let j be the order of v(D). We have that

wt(v(D)) ≥ wt(pj−1v(D)).

By Lemma 4.6,

wt(pj−1v(D)) = wt(pr−1u(D)G̃(D)),

for some u(D) ∈ Ak
p[D].

Note that, since u(D) ∈ Ak
p[D],

wt(pr−1u(D)G̃(D)) = wtp(ū(D)G̃(D)),

where ū(D) = u(D) is the projection of u(D) over Zp[D] and wtp represents the

Hamming weight over Zp. This together with the fact that C̃ is an MDS convolutional

code over Zp shows that

wt(pr−1u(D)G̃(D)) ≥ (n− k̃)

(⌊
δ̃

k̃

⌋
+ 1

)
+ δ̃ + 1.

From k̃ = a+1+ ℓ0+ ℓ1+ · · ·+ ℓr−1 and δ̃ = (a+1)(ν+1)+(ℓ0+ ℓ1+ · · ·+ ℓr−1)ν,

we have that

(n− k̃)

(⌊
δ̃

k̃

⌋
+ 1

)
+ δ̃ + 1 = n(ν + 1)− (ℓ0 + · · ·+ ℓr−1) + 1.

Since, by Lemma 3.15,

ℓ0 + ℓ1 + · · ·+ ℓr−1 =

⌈
ℓ

r

⌉

and

ℓ = k

(⌊
δ

k

⌋
+ 1

)
− δ

we obtain

(n− k̃)

(⌊
δ̃

k̃

⌋
+ 1

)
+ δ̃ + 1 = n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1.

This lower bound coincides with the Singleton bound given in Corolary 3.24, which
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means that

d(C) =n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1

�

4.2 MDP Convolutional Codes

In this section we present constructions of MDP (n, k, δ)-convolutional codes over Zpr .

We are going to consider two cases:

Case 1 Constructions of MDP (n, k, δ)-convolutional codes with r | k, r | δ and n > k
r
.

Case 2 Constructions of MDP (n, k, δ)-convolutional codes considering equal p-Forney

indices.

4.2.1 Case 1

Given n, k, δ ∈ N such that r | k, r | δ and n > k
r
, we aim at building an MDP

(n, k, δ)-convolutional code over Zpr [D].

Take k̃ = k
r
and δ̃ = δ

r
, and let us consider an MDP convolutional code C̃ with length

n, dimension k̃ and degree δ̃ over Zp and let G̃(D) ∈ Zk̃×n
p [D] be an encoder of C̃ in

reduced form (constructions of such codes can be found in [HGLS06, ANP13, NR16]).

Write

G̃(D) = G̃0 + G̃1D + · · ·+ G̃νD
ν

and consider the corresponding j-th truncated sliding generator matrix

G̃c
j =




G̃0 G̃1 . . . G̃j

G̃0 . . . G̃j−1

. . .
...

G̃0




Note that since C̃ is an MDP, G̃(D) must be delay-free and therefore G̃0 is full row

rank.

Since C̃ is an MDP it follows that its column distances satisfy

d̃cj = (j + 1)(n− k̃) + 1, j ≤ L
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where L =
⌊
δ̃

k̃

⌋
+
⌊

δ̃

n−k̃

⌋
(see [HGLS06]).

Construct

G(D) =




G̃(D)

pG̃(D)
...

pr−1G̃(D)



. (4.9)

From the fact that G̃(D) is in reduced form, it immediately follows that G(D) is a

p-encoder in reduced form.

Theorem 4.8. Let C be an (n, k, δ)-convolutional code over Zpr , with r | k, r | δ and

with p-encoder G(D) as in (4.9). Then C is an MDP convolutional code .

Proof We need to show that

dcj = (j + 1)(n−
k

r
) + 1,

for j ≤ L, with L =
⌊
δ
k

⌋
+
⌊

δ
nr−k

⌋
.

Consider the j-th truncated sliding matrix correspondent to G(D) is

Gc
j =




G̃0 G̃1 . . . G̃j

pG̃0 pG̃1 . . . pG̃j

...
... . . .

...

pr−1G̃0 pr−1G̃1 . . . pr−1G̃j

G̃0 . . . G̃j−1

pG̃0 . . . pG̃j−1

... . . .
...

pr−1G̃0 . . . pr−1G̃j−1

...

G̃0

pG̃0

pr−1G̃0




.

Let

u =
[
u0 u1 . . . uj

]
,

with ui ∈ A
rk̃
p , i = 0, . . . , j and u0 6= 0, and let

v =
[
v0 v1 . . . vj

]
,
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with vi ∈ Zn
p , i = 0, . . . , j, such that v = uGc

j.

Take

ℓ = max
0 ≤ t ≤ j

ord(vt)

and

i = min
0 ≤ s ≤ j

{s : ord(vs) = ℓ} = min
0 ≤ s ≤ j

{s : pℓ−1vs 6= 0}.

There exists v̂s ∈ A
n
p such that

ṽs = pℓ−1vs = pr−1v̂s,

s = i, . . . , j and then

pℓ−1v =
[
0 0 . . . 0 ṽi . . . ṽj

]

= pr−1
[
0 0 . . . 0 v̂i . . . v̂j

]
.

(4.10)

Applying the same reasoning as in the proof of Lemma 4.3 we conclude that

pℓ−1v = pr−1
[
ũ0 ũ1 . . . ũi . . . ũj

]




G̃0 G̃1 . . . G̃i . . . G̃j

G̃0 . . . G̃i−1 . . . G̃j−1

. . .
...

...

G̃0 . . . G̃j−i

. . .
...

G̃0




,

for some ũ0, ũ1, . . . , ũi, . . . , ũj ∈ A
k̃
p, with ũ0 = · · · = ũi−1 = 0, because G̃0 is full row

rank and ũi 6= 0. Thus

[
ṽi . . . ṽj

]
= pr−1

[
ũi . . . ũj

]



G̃0 . . . G̃j−i

. . .
...

G̃0




where ũi 6= 0. Then, using the fact that C̃ = Im Zp[D]G̃(D) is MDP we obtain

wt
([

vi . . . vj

])
≥ wt

([
ṽi . . . ṽj

])

≥ (n− k̃)(j − i+ 1) + 1.
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Considering [
v0 . . . vi−1

]
=
[
u0 . . . ui−1

]
Gc

i

and reasoning in the same way we conclude that

wt
([

v0 · · · vi−1

])
≥ (n− k̃)i+ 1

and therefore

wt
([

v0 · · · vj

])
≥ (n− k̃)(j + 1) + 1.

Consequently, dcj = (n− k̃)(j + 1) + 1, i.e.,

dcj = (n−
k

r
)(j + 1) + 1,

for j ≤ L, with L =
⌊
δ̃

k̃

⌋
+
⌊

δ̃

ñ−k̃

⌋
=
⌊
δ
k

⌋
+
⌊

δ
nr−k

⌋
.

�

4.2.2 Case 2

Let us now construct an MDP (n, k, δ)-convolutional code over Zpr , n, k, δ ∈ N, con-

sidering equal p-Forney indices. Note that k must divide δ and all the p-Forney indices

are equal to δ
k
.

We first introduce two technical lemmas that will be useful for this construction.

The next one readily follows from Lemma 3.34.

Lemma 4.9. If C is a (n, k, δ)-convolutional code with equal p-Forney indices and a

reduced p-encoder G(D) written as in (3.4) and (3.10) then

Ĝ
(r−1)
i ∈ pr−1Z

k̄r−1×n
pr , (4.11)

i = 1, . . . ,
⌊
δ
k

⌋
.

Proof Since G(D) is a p-generator sequence

p rowℓG(D) ∈ p-span{rowℓ+1G(D), . . . , rowk(D)},

where rowℓG(D) represents the ℓ-th row ofG(D), for ℓ = 0, . . . , k−1. The p-predictable

degree property (see Lemma 2.19) and the fact that all rows of G(D) have the same
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degree imply that

p rowjĜ
(r−1)(D) = aj+1rowj+1Ĝ

(r−1)(D) + · · ·+ ak̄r−1
rowk̄r−1

Ĝ(r−1)(D),

with aj+1, . . . ak̄r−1
∈ Ap, for j = 1, . . . , k̄r−1 − 1.

As Ĝ
(r−1)
0 ∈ pr−1Z

k̄r−1×n
pr it follows that

0 = aj+1rowj+1Ĝ
(r−1)
0 + · · ·+ ak̄r−1

rowk̄r−1
Ĝ

(r−1)
0 ,

which implies that

aj+1 = · · · = ak̄r−1
= 0,

for j = 1, . . . , k̄r−1 because the rows of G0 are p-linearly independent. Consequently,

Ĝ
(r−1)
i ∈ pr−1Z

k̄r−1×n
pr .

�

The following lemma shows that a delay-free convolutional code with equal p-Forney

indices is such that

dcj ≤

(
n−

⌈
k

r

⌉)
(j + 1) + 1,

for all j. The proof follows the proof of Theorem 3.35 for this particular case.

Lemma 4.10. If C is a (n, k, δ)-convolutional code with equal p-Forney indices then C

is an MDP if and only if

dcj =

(
n−

⌈
k

r

⌉)
(j + 1) + 1,

for all j ≤ L, with

L =

⌊(
n− k

r

) ⌊
δ
k

⌋
+ δ

r
− ϕ+

⌈
k
r

⌉
− k

r

n−
⌈
k
r

⌉
⌋
,

where ϕ =
⌈
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

⌉
−
(
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

)
.

Proof Let G(D) ∈ Zn×k
pr [D] be a p-encoder of C in reduced form. Write

G(D) = G0 +G1D + · · ·+GνD
ν ,



4.2. MDP Convolutional Codes 65

with ν = δ
k
,and let us consider G0 written in the p-standard form as

G0 =









































































Ik0
A0

1,0 A0

2,0 A0

3,0 · · · A0

r−1,0 A0

r,0

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pIk0
0 pA0

2,1 pA0

3,1 · · · pA0

r−1,1 pA0

r,1

0 pIk1
pA1

2,1 pA1

3,1 · · · pA1

r−1,1 pA1

r,1

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

p2Ik0
0 0 p2A0

3,2 · · · p2A0

r−1,2 p2A0

r,2

0 p2Ik1
0 p2A1

3,2 · · · p2A1

r−1,2 p2A1

r,2

0 0 p2Ik2
p2A2

3,2 · · · p2A2

r−1,2 p2A2

r,2

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

.

.

.
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pr−1Ik0
0 0 0 · · · 0 pr−1A0

r,r−1

0 pr−1Ik1
0 0 · · · 0 pr−1A1

r,r−1

0 0 pr−1Ik2
0 · · · 0 pr−1A2

r,r−1

0 0 0 pr−1Ik3
· · · 0 pr−1A3

r,r−1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · pr−1Ikr−1
pr−1A

r−1

r,r−1









































































and G(D) and Gi, i = 1, . . . , ν, written as in (3.4) and (3.10), respectively. From

Theorem 3.35, it follows that

dc0 ≤ n− (k0 + k1 + · · ·+ kr−1) + 1

and that

dc1 ≤ 2n− 2(k0 + k1 + · · ·+ kr−1) + 1.

Let j = 2 and

v = uGc
2

⇔
[
v0 v1 v2

]
= u0

[
G0 G1 G2

]
+ u1

[
0 G0 G1

]
+ u0

[
0 0 G0

]
,

with u0 6= 0, ui ∈ Ap, i = 0, 1, 2. Then, considering

u0 =
[
0 0 . . . 1

]
∈ Ak

p

we have that 



v0 =
[
0 . . . 0 1 pr−1Ar−1,k

r,r−1

]

v1 = g1 + u1G0

v2 = g2 + u1G1 + u2G0,

where pr−1Ar−1,k
r,r−1 represent the last row of Ar−1

r,r−1 and g1 and g2 represent the last row

of G1 and G2, respectively, with g1, g2 ∈ Zn
pr . So,

wt(v0) ≤ n− (k0, k1, . . . , kr−1) + 1.
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Considering u1 as in the previous case we obtain v1 such that

wt(v1) ≤ n− (k0 + k1 + · · ·+ kr−1).

Let us now consider

v2 = g2 + ˜̃g1 + u2G0,

with ˜̃g1 = u1G1. Note that, by Lemma 4.9, ˜̃g1 ∈ pr−1 Zn
pr , therefore can be written as

˜̃g1 = pr−1ḡ1, with ḡ1 ∈ Ap.

It is easy to see that

g2 + ˜̃g1 = pr−1b̄n,

with b̄n ∈ An
p . Consider

b̄n =
[
bk0 bk1 · · · bkr−1

bn−(k0+···+kr−1)

]

with bi ∈ A
i
p, i = k0, k1, . . . , kr−1 and bn−(k0+···+kr−1) ∈ A

n−k0+···+kr−1

p .

Let us construct ū2 ∈ Zk
pr such that:

- its first [(r − 1)k0 + (r − 2)k1 + · · ·+ kr−2] columns are zero;

- the remaining (k0 + k1 + · · ·+ kr−1) columns are written as follows

[
−bk0 −bk1 . . . −bkr−1

]
,

and take u2 ∈ A
k
p such that u2G0 = ū2G0. So, we obtain v2 with its first (k0 + k1 +

· · ·+ kr−1) elements equal to zero. Thus,

wt(v2) ≤ n− (k0 + k1 + · · ·+ kr−1).

Therefore,

wt(v) =
2∑

i=0

wt(vi) ≤ 3n− 3(k0 + k1 + · · ·+ kr−1) + 1,

i.e.,

dc2 ≤ 3n− 3(k0 + k1 + · · ·+ kr−1) + 1.

Applying the same reasoning we prove that

dcj ≤ (j + 1)n− (j + 1)(k0 + k1 + · · ·+ kr−1) + 1, (4.12)

for all j.
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The highest value of (4.12) is obtained by considering the minimum value of (k0 +

k1+· · ·+kr−1). By Lemma 3.15 this minimum is given by
⌈
k
r

⌉
, and, from the definition

of MDP convolutional code, we have that

dcj =

(
n−

⌈
k

r

⌉)
(j + 1) + 1.

The value of L follows immediately from Theorem 3.38. �

Let C̃ be an MDP (n, k̃, δ
k
k̃)-convolutional code over Zp with Forney indices all equal

to δ
k
and k̃ =

⌈
k
r

⌉
. Consider G̃(D) an encoder of C̃ in reduced form and write

G̃(D) =

[
G̃(1)(D)

G̃(2)(D)

]
,

with G̃(1)(D) ∈ Z
⌊ k

r ⌋×n
p [D] and G̃(1)(D) ∈ Z1×n

p [D]. Construct

G(D) =




G̃(1)(D)

pG̃(1)(D)
...

pr−1G̃(1)(D)

pr−bG̃(2)(D)

pr−(b−1)G̃(2)(D)
...

pr−1G̃(2)(D)




∈ Zk×n
pr [D], (4.13)

where b is such that k = r
⌊
k
r

⌋
+ b.

Theorem 4.11. Let C be an (n, k, δ)-convolutional code with p-encoder G(D) as in

(4.13). Then C is an MDP convolutional code over Zpr .

The proof of the above theorem follows the same reasoning as the proof of Theorem

4.8.

Remark 4.12. If r | k, we consider G̃(D) ∈ Zk̃×n
p [D] an encoder of an MDP (n, k̃, δ

k
k̃)-
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convolutional code over Zp with Forney indices all equal to δ
k
and k̃ =

⌈
k
r

⌉
. Then,

G(D) =




G̃(D)

pG̃(D)
...

pr−1G̃(D)



∈ Zk×n

pr [D],

is a p-encoder of an MDS (n, k, δ)-convolutional code over Zpr .



Chapter 5

Duality

Encoders of a convolutional codes define an image representation of these codes. How-

ever there are some convolutional codes that admit another type of representation of

such codes, called kernel representation. For this type of representation another type

of matrices is used: parity-check matrices or syndrome formers. A polynomial matrix

H(D) is a parity-check matrix of a convolutional code C if, for every word w(D),

w(D) ∈ C ⇔ w(D)H(D) = 0.

However, convolutional codes defined in Zpr [D] do not always admit a parity-check

matrix as it shown in the next example.

Example 5.1. Consider the convolutional code C with encoder

G(D) =

[
1 +D 0 1 +D

0 1 1

]
∈ Z2×3

9 [D].

This code does not admit a kernel representation as we shall show by contradiction.

Suppose that H(D) is a parity-check matrix of C and let us consider the word

[
1 0 1

]
/∈ C.

Since [
1 +D 0 1 +D

]
∈ C

then [
1 +D 0 1 +D

]
H(D) = 0

which is equivalent to

(1 +D)
[
1 0 1

]
H(D) = 0

69
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and consequently [
1 0 1

]
H(D) = 0.

It is well-known that kernel representations are useful to detect errors introduced

during transmission. If a word w(D) is received after channel transmission, the ex-

istence of errors is checked by simple multiplication by H(D): if w(D)H(D) = 0, it

is assumed that no errors occurred. As we have seen in Example 5.1 not all convolu-

tional codes defined in Zpr [D] admit a parity-check matrix. However, if there exists

a matrix H(D) such that C ⊂ kerH(D), we still make use of H(D) to decode when

the transmission occurs over the erasure channel. In this channel the word can have

only erasures (i.e., part of the word can be missing) but no errors occur. In fact, if one

considers the erasures as indeterminate, w(D)H(D) = 0 give rises to a system of linear

equations. Solving this system amounts to decoding the received word w(D) (for more

details see [VTS09]).

Given a convolutional code C defined in Zpr [D] with encoder G(D) ∈ Zk×n
pr [D], let

us consider the set

C̃ = {u(D)G(D) : u(D) ∈ Zk
pr((D))},

where Zpr((D)) denotes the ring of Laurent series over Zpr , i.e., Zpr((D)) the set of

elements of the form

a(D) =
+∞∑

i=−∞

aiD
i

where the coefficients ai are in Zpr and only finitely coefficients with negative indices

may be nonzero.

Note that C ⊂ C̃. In the next section, we will see that C̃ is also a convolutional code

(defined in Zpr((D))) that always admit a parity-check matrix H(D), and consequently,

C ⊂ kerH(D).

5.1 Convolutional codes defined in Zpr((D))

In this section we will consider convolutional codes constituted by left compact se-

quences in Zpr , i.e., the codewords of the code will be of the form

w : Z → Zn
pr

t 7→ wt
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where wt = 0 for t < ℓ for some ℓ ∈ Z. These sequences can be represented by Laurent

series,

w(D) =
∞∑

t=ℓ

wtD
t ∈ Zpr((D)).

Let us denote by Zpr(D) the ring of rational matrices defined in Zpr . More precisely,

Zpr(D) is the set

{
p(D)

q(D)
: p(D), q(D) ∈ Zpr [D] and the coefficient of the smallest power of D in q(D) is a unit}.

This condition allows us to treat a rational function as an equivalence class in the

relation
p(D)

q(D)
∼

p1(D)

q1(D)
if and only if p(D)q1(D) = f1(D)q(D).

Note that Zpr(D) is a subring of Zpr((D)) and, obviously Zpr [D] is a subring of

Zpr(D).

A rational matrix A(D) ∈ Zℓ×ℓ
pr (D) is invertible if there exists a rational matrix

L(D) ∈ Zℓ×ℓ
pr (D) such that L(D)A(D) = I.

Lemma 5.2. Let A(D) ∈ Zℓ×ℓ
pr (D). The following are equivalent:

i) A(D) is invertible,

ii) det Ā(D) 6= 0,

iii) Ā(D) is invertible in Zℓ×ℓ
p (D),

where Ā(D) represents the projection of A(D) into Zp(D).

In fact, if Ā(D) is invertible in Zℓ×ℓ
p (D) andB(D) ∈ Zℓ×ℓ

p (D) is such thatB(D)A(D) =

I mod p, then

B(D)A(D) = I − pC(D)

over Zpr((D)), for some C(D) ∈ Zℓ×ℓ
pr (D). Then the inverse of A(D) is

L(D) = (I + pC(D) + p2C(D)2 + · · ·+ pr−1C(D)r−1)B(D) ∈ Zℓ×ℓ
pr (D).

Definition 5.3. [For70, EOS13] A convolutional code C defined in Zn
pr((D)) of

length n is a Zpr((D))-submodule of Zn
pr((D)) for which there exists a polynomial matrix

G̃(D) ∈ Zk̃×n
pr [D] such that

C = Im Zpr ((D))G̃(D)

=
{
u(D)G̃(D) ∈ Zn

pr((D)) : u(D) ∈ Zk̃
p((D))

}
.
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The matrix G̃(D) is called a generator matrix of C. If G̃(D) is full row rank then

it is called an encoder of C.

Moreover, if

C = ImAp((D))G(D)

=
{
u(D)G(D) ∈ Zn

pr((D)) : u(D) ∈ Ak
p((D))

}
,

where Ap((D)) = {
∑+∞

i=s aiD
i : ai ∈ Ap and s ∈ Z}, and G(D) ∈ Zk×n

pr [D] is a

polynomial matrix whose rows form a p-basis, then G(D) is a p-encoder of C and we

say that C has p-dimension k.

Note that if G̃(D) ∈ Zk̃×n
pr [D] is a generator matrix of a convolutional code C and

X(D) ∈ Zk̃×k̃
pr (D) is an invertible rational matrix such that X(D)G̃(D) is polynomial,

then

Im Zpr ((D))G̃(D) = Im Zpr ((D))X(D)G̃(D),

which means that X(D)G̃D) is also a generator matrix of C. Thus, the next result is

straightforward.

Lemma 5.4. Let C be a Zpr((D))-submodule of Zn
pr((D)) given by C = Im Zpr ((D))N(D),

where N(D) ∈ Zk̃×n
pr (D). Then C is a convolutional code, and if N(D) is full row rank,

C is a free code of rank k̃.

Next we will consider a decomposition of a convolutional code into simpler com-

ponents. For that we need the following lemma.

Lemma 5.5. Let M be a submodule of Zn
pr((D)). Then, there exists a unique family

M0, . . . ,Mr−1 of free submodules of Zn
pr((D)) such that

M = M0 ⊕ pM1 ⊕ . . .⊕ pr−1Mr−1. (5.1)

Proof Let M be the projection of M defined Zp((D)) and denote its dimension

by k0. Let M0 be the free code defined Zpr((D)) of rank k0 satisfying M = M0 and

M0 ⊂M . As Zn
pr((D)) is a semisimple module,M0 admits a complement codeM ′

0 inM .

Necessarily, there exists a code M ′
1 such that M ′

0 = pM ′
1 and we have M = M0⊕ pM ′

1.

Applying successively the same reasoning we obtain (5.1). �

Remark 5.6. It is not always possible to obtain the sum decomposition (5.1) when

we consider submodules of Zn
pr [D]. For example, if we consider the submodule M =

span([1 + D 1 + D + 9D2], [3 3]) ⊂ Z2
27[D] there are no free submodules of Z2

27[D],

M0,M1,M2 such that M = M0 ⊕ 3M1 ⊕ 9M2.
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Remark 5.7. Note that if C is a block code, this decomposition is directly derived from

a generator matrix in standard form. In fact, if G in the form (3.1), is a generator

matrix of C then

piCi = Im Zpr ((D))p
iGi,

where Gi = [0 · · · 0 Iki A
i
2,i · · ·A

i
r,i], i = 0, . . . , r − 1.

Note that Lemma 5.5 is not constructive and it does not give a clue on how to

build the free modules Mi, i = 0, . . . , r − 1. Moreover, it is not known whether these

modules are indeed convolutional codes. Next, we address these issues and provide a

constructive version of the Lemma 5.5 in terms of the associated matrices.

Let G̃(D) be a generator matrix of C. If G̃(D) is full row rank then C is free and

C = C0.

Let us assume now that G̃(D) is not full row rank. Then the projection of G̃(D) into

Zp[D],

G̃(D) ∈ Zk×n
p [D],

is also not full row rank and there exists a nonsingular matrix F0(D) ∈ Zk×k
p [D] such

that

F0(D)G̃(D) =

[
G0(D)

0

]
mod p,

where G0(D) is full row rank with rank k0. Regarding F0(D) in Zk×k
pr [D], it follows

that

F0(D)G̃(D) =

[
G̃0(D)

pĜ1(D)

]
,

where G̃0(D) ∈ Zk0×n
pr [D] is such that G̃0(D) = G0(D). Moreover, since F0(D) is

invertible,

[
G̃0(D)

pĜ1(D)

]
is also a generator matrix of C.

Let us now consider F1(D) ∈ Z
(k−k0)×(k−k0)
p [D] such that

F1(D)Ĝ1(D) =

[
G′1(D)

0

]
mod p,

whereG′1(D) is full row rank with rank k1. Then, considering F1(D) in Z
(k−k0)×(k−k0)
pr [D],

it follows that

F1(D)Ĝ1(D) =

[
G′′1(D)

pĜ2(D)

]
,
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where G′′1(D) ∈ Zk̃1×n
pr [D] is such that G′′1(D) = G′1(D), and therefore

[
Ik0 0

0 F1(D)

]
F0(D)G̃(D) =




G̃0(D)

pG′′1(D)

p2Ĝ2(D)


 .

If

[
G̃0(D)

G′′1(D)

]
is not full row rank, then there exists a permutation matrix P and a

rational matrix L1(D) ∈ Zk̃1×k0
pr (D) such that

P

[
Ik0 0

L1(D) Ik1

][
G̃0(D)

pG′′1(D)

]
=




G̃0(D)

pG′′′1 (D)

p2G′2(D)


 ,

where G′′′1 (D) ∈ Zk1×n
pr (D) and G′2(D) ∈ Z

(k̃1−k1)×n
pr (D) are rational matrices and[

G̃0(D)

G′′′1 (D)

]
is a full row rank rational matrix. Note that since

P

[
Ik0 0

L1(D) Ik1

]

is nonsingular it follows that

Im Zpr ((D))

[
G̃0(D)

pG′′1(D)

]
= Im Zpr ((D))




G̃0(D)

pG′′′1 (D)

p2G′2(D)


 .

Let G̃1(D)Zk1×n
pr [D] and G′′2(D) ∈ Z

(k̃1−k1)×n
pr [D] be polynomial matrices (see Lemma

5.4) such that

Im Zpr ((D))




G̃0(D)

pG′′′1 (D)

p2G′2(D)


 = Im Zpr ((D))




G̃0(D)

pG̃1(D)

p2G′′2(D)


 .

Then




G̃0(D)

pG̃1(D)

p2G′′2(D)

p2Ĝ2(D)




is still a generator matrix of C such that

[
G̃0(D)

G̃1(D)

]
is full row

rank.
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Proceeding in the same way we obtain a generator matrix of C of the form




G̃0(D)

pG̃1(D)
...

pr−1G̃r−1(D)



,

and such that 


G̃0(D)

G̃1(D)
...

G̃r−1(D)




is full row rank. Thus

Ci := Im Zpr ((D)) Gi(D)

is a free convolutional code, i = 0, 1, . . . , r − 1, and

C = C0 ⊕ pC1 ⊕ · · · ⊕ pr−1Cr−1.

If we denote by ki the rank of Ci then the family {k0, . . . , kr−1} is an invariant of the

code. Moreover, it is clear that C is free if and only if ki = 0 for i = 1 . . . r − 1.

The following lemmas will be very useful for deriving the results of the remaining

sections.

Lemma 5.8. Let C be a free convolutional code of length n defined in Zpr((D)) with

rank k. Then, p-dim (piC) = (r − i)k, i = {0, . . . , r − 1}.

Proof Let G̃(D) ∈ Zk×n
pr [D] be an encoder of C. The result follows from the fact that




piG̃(D)

pi+1G̃(D)
...

pr−1G̃(D)




is an p-encoder of piC, since G̃D) is full row rank. �

Lemma 5.9. Let C1 and C2 be two convolutional codes defined in Zpr((D)). Then

p-dim (C1 + C2) = p-dim C1 + p-dim C2 − p-dim (C1 ∩ C2).
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If the sum is direct then

p-dim (C1 ⊕ C2) = p-dim C1 + p-dim C2.

Proof Suppose that C1 and C2 are in direct sum, i.e,

C1 ∩ C2 = {0}.

If B1 is a p-basis of C1 and B2 is a p-basis of C2, then (B1, B2) is a p-basis of C1 ⊕ C2

which gives the result.

For the general case, let denote by A a complement of C1 ∩ C2 in C1, i.e.,

C1 = A⊕ (C1 ∩ C2),

and let B such that

C2 = B⊕ (C1 ∩ C2).

Then we have

C1 + C2 = A⊕ (C1 ∩ C2)⊕B

and the result is immediate. �

Next corollary follows immediately from lemmas 5.8 and 5.9.

Corollary 5.10. Let C be a convolutional code defined in Zpr((D))of length n such

that

C = C0 ⊕ pC1 ⊕ · · · ⊕ pr−1Cr−1

with Ci a free convolutional code with rank ki, i = 0, 1, . . . , r − 1. Then

p-dim (C) =
r−1∑

i=0

(r − i)ki.

5.2 Dual Code

Definition 5.11. Let C be a convolutional code defined in Zpr((D)) of length n. The

dual of C, denoted by C⊥, is defined as

C⊥ = {y(D) ∈ Zn
pr((D)) : y(D)xT (D) = 0 for all x(D) ∈ C}.

In this section we will show that the dual of a convolutional code is still a convolu-

tional code. The next theorem proves this statement for free convolutional codes.
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Theorem 5.12. Let C be a free convolutional code defined in Zpr((D)) with length n

and rank k̃. Then C⊥ is also a free convolutional code of length n and rank n− k̃.

Proof Let G(D) ∈ Zk̃×n
pr [D] be an encoder of C. Since G(D) is full row rank there

exists a polynomial matrix L(D) ∈ Z
(n−k̃)×n
pr [D] such that

[
G(D)

L(D)

]
is invertible. Let

[X(D) Y (D)], with X(D) ∈ Zn×k̃
pr (D) and Y (D) ∈ Z

n×(n−k̃)
pr (D), be the inverse of[

G(D)

L(D)

]
. Then

C⊥ = Im Zpr ((D))Y
T (D),

which means by Lemma 5.4 that C⊥ is a convolutional code. Moreover, since Y (D)

is full column rank, there exists a full row rank matrix polynomial matrix G⊥(D) ∈

Z
(n−k̃)×n
pr [D] such that

C⊥ = Im Zpr ((D))G
⊥(D).

Thus C⊥ is a free convolutional code or rank n− k̃. �

Next corollary is straightforward and generalizes the well-known result for vector

spaces.

Corollary 5.13. Let C be a free convolutional code defined in Zpr((D)) of length n.

Then

p-dim (C) + p-dim (C⊥) = nr.

In the sequel we propose to establish this result for any code defined Zpr((D)).

The following auxiliary lemmas will be fundamental in the proof of next theorem.

Lemma 5.14. Let C be a free convolutional code defined in Zpr((D)). Then

C ∩ piZn
pr((D)) = piC,

for i ∈ {0, . . . r − 1}.

Proof The inclusion piC ⊂ C ∩ piZn
pr((D)) is trivial. For the other direction, let

y(D) ∈ piZn
pr((D)) ∩ C. Let {x1(D), . . . , xk(D)} be a basis of C and its projection

{x1(D), . . . , xk(D)} over Zp[D] be a basis of C. Then, there exist a1(D), . . . , ak(D) ∈

Zpr((D)) such that

y(D) =
k∑

j=1

aj(D)xj(D).
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As y(D) ∈ piZn
pr((D)), it follows that

y(D) =
k∑

j=1

aj(D)xj(D) = 0 mod p,

where aj(D) = 0, ∀j = 1, . . . , k. Then, for all j = 1, . . . , k, aj(D) can be written

as pbj(D) where bj(D) ∈ Zpr((D)). By repeating this procedure i times, we obtain

aj(D) = piαj(D), j = 1, . . . , k, which gives

y(D) = pi
k∑

j=1

αj(D)xj(D) ∈ piC.

�

Lemma 5.15. Suppose that C is a free convolutional code defined in Zpr((D)). Let

y(D) ∈ Zn
pr((D)) and let i ∈ {0, . . . , r − 1}, such that piy(D) ∈ C. Then y(D) ∈

C + pr−iZn
pr((D)).

Proof By Lemma 5.14, there exists x(D) ∈ C such that piy(D) = pix(D). This

implies that y(D) = x(D). Thus there exists y1(D) ∈ C, y2(D) ∈ Zpr((D)) satisfying

y(D) = y1(D) + py2(D).

Then piy(D) = piy1(D)+pi+1y2 which implies that piy(D)−piy1(D) = pi+1y2(D) ∈ C.

Thus

y2(D) = y3(D) + py4(D)

where y3(D) ∈ C and y4(D) ∈ Zn
pr((D)). Thus

y(D) = y1(D) + py3(D)︸ ︷︷ ︸
∈C

+p2y4(D).

By repeating this procedure r − i times, we obtain

y(D) = x1(D) + pr−ix2(D)

with x1(D) ∈ C. �
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Lemma 5.16. Let C be a free convolutional code defined in Zpr((D)). Then, for all

integer i ∈ {0, . . . r − 1} it follows that

(piC)⊥ = C⊥ + pr−iZn
pr((D)).

Proof It is clear that

C⊥ + pr−iZn
pr((D)) ⊂ (piC)⊥.

For the other direction, let y(D) ∈ (piC)⊥ and then, for all x(D) ∈ C, we have

y(D)(pix(D))T = (piy(D))xT (D) = 0,

and thus piy(D) ∈ C⊥.

As C⊥ is a free convolutional code we conclude, by Lemma 5.15, that

y(D) ∈ C⊥ + pr−iZn
pr((D)).

�

Remark 5.17. Lemmas 5.14, 5.15 and 5.16 are also valid for block codes over Zpr and

they were first proved in [EO15].

Given a convolutional code C ⊂ Zn
pr((D)), an explicit construction of the dual code

is, in general, difficult. The following result provides a procedure to build C⊥. The

method is constructive as it deals only with free modules.

Theorem 5.18. Let C = C0 ⊕ pC1 ⊕ . . . ⊕ pr−1Cr−1 be a convolutional code defined in

Zpr((D)) of length n, such that Ci is free, i = 0, 1, . . . , r − 1, with

C0 ⊕ C1 ⊕ . . .⊕ Cr−1 = C0 + C1 + . . .+ Cr−1

and let Br−i be a free convolutional code defined in Zn
pr((D)) such that

(C0 ⊕ C1 ⊕ · · · ⊕ Ci−1)
⊥ = (C0 ⊕ C1 ⊕ · · · ⊕ Ci−1 ⊕ Ci)

⊥ ⊕ Br−i,

i = 1, . . . , r − 1, and B0 = (C0 ⊕ . . .⊕ Cr−1)
⊥. Then

C⊥ = B0 ⊕ pB1 ⊕ . . .⊕ pr−1Br−1.
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Proof Let us show that

(C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)
⊥ = (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)

⊥ + p(C0 ⊕ C1 ⊕ · · · ⊕ Cr−2)
⊥+

+ · · ·+ pr−3(C0 ⊕ C1 ⊕ C2)
⊥ + pr−2(C0 ⊕ C1)

⊥ + pr−1C⊥0 .

Since

C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1 ⊂ C0 ⊕ C1 ⊕ · · · ⊕ Cr−1

it follows that

(C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ ⊂ (C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)

⊥.

Moreover,

pr−1C⊥0 ⊂ C
⊥
0 and pr−1C⊥0 ⊂ pr−1Zn

pr((D)) ⊂ (pC1)
⊥ ∩ (p2C2)

⊥ ∩ · · · ∩ (pr−1Cr−1)
⊥

and therefore

pr−1C⊥0 ⊂ C
⊥
0 ∩ (pC1)

⊥ ∩ (p2C2)
⊥ ∩ · · · ∩ (pr−1Cr−1)

⊥ = (C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)
⊥.

We have also that

pr−2(C0 ⊕ C1)
⊥ ⊂ (C0 ⊕ C1)

⊥ ⊂ (C0 ⊕ pC1)
⊥

and

pr−2(C0 ⊕ C1)
⊥ ⊂ pr−2Zn

pr((D)) ⊂ (p2C2)
⊥ ∩ · · · ∩ (pr−1Cr−1)

⊥

and consequently

pr−2(C0 ⊕ C1)
⊥ ⊂ (C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)

⊥.

Applying the same reasoning, we conclude that

pr−i(C0 ⊕ C1 ⊕ · · · ⊕ Ci−1)
⊥ ⊂ (C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)

⊥,

i = 3, . . . , r − 1, and therefore

(C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ + p(C0 ⊕ C1 ⊕ · · · ⊕ Cr−2)

⊥ + · · ·+ pr−3(C0 ⊕ C1 ⊕ C2)
⊥+

+ pr−2(C0 ⊕ C1)
⊥ + pr−1C⊥0 ⊂ (C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)

⊥.
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On the other hand, let x(D) ∈ (C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)
⊥. So,

x(D) ∈ (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ + (C0 ⊕ C1 ⊕ · · · ⊕ Cr−2)

⊥ ∩ pZn
pr((D))+

+ (C0 ⊕ C1 ⊕ · · · ⊕ Cr−3)
⊥ ∩ p2Zn

pr((D)) + · · ·+ C⊥0 ∩ pr−1Zn
pr((D)).

Then, by Lemma 5.14,

x(D) ∈ (C0⊕C1⊕· · ·⊕Cr−1)
⊥+p(C0⊕C1⊕· · ·⊕Cr−2)

⊥+p2(C0⊕C1⊕· · ·⊕Cr−3)
⊥+· · ·+pr−1C⊥0 .

Thus

(C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)
⊥ = (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)

⊥ + p(C0 ⊕ C1 ⊕ · · · ⊕ Cr−2)
⊥+

+ · · ·+ pr−3(C0 ⊕ C1 ⊕ C2)
⊥ + pr−2(C0 ⊕ C1)

⊥ + pr−1C⊥0 .

Moreover, since Br−1, C0 and C0 ⊕ C1 are free convolutional codes such that

C⊥0 = (C0 ⊕ C1)
⊥ ⊕ Br−1,

it follows that

pr−1C⊥0 = pr−1(C0 ⊕ C1)
⊥ ⊕ pr−1Br−1

and therefore

(C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)
⊥ = (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)

⊥ + p(C0 ⊕ C1 ⊕ · · · ⊕ Cr−2)
⊥ +

+ · · ·+ pr−3(C0 ⊕ C1 ⊕ C2)
⊥ + pr−2(C0 ⊕ C1)

⊥ +

+pr−1(C0 ⊕ C1)
⊥ + pr−1Br−1

= (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ + p(C0 ⊕ C1 ⊕ · · · ⊕ Cr−2)

⊥ +

+ · · ·+ pr−3(C0 ⊕ C1 ⊕ C2)
⊥ + pr−2(C0 ⊕ C1)

⊥ + pr−1Br−1.

Applying the same reasoning we conclude that

(C0 ⊕ pC1 ⊕ . . .⊕ pr−1Cr−1)
⊥ = (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)

⊥ + pB1 + p2B2 + · · ·+ pr−1Br−1.

Finally, let us see that

(C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ ∩ pr−iBr−i = {0},

i = 1, . . . , r − 1, and that

pr−jBr−j ∩ pr−iBr−i = {0},
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for 1 ≤ j < i ≤ r − 1.

Let i ∈ {1, . . . , r − 1}. Since (C0 ⊕ C1 ⊕ · · · ⊕ Ci)
⊥ ∩ Br−i = {0}, pr−iBr−i ⊂ Br−i

and (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ ⊂ (C0 ⊕ C1 ⊕ · · · ⊕ Ci)

⊥ it follows that

(C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥ ∩ pr−iBr−i = {0}.

Moreover, let j ∈ {1, . . . , r−1}, with j < i. Note that Br−i ⊂ (C0⊕C1⊕· · ·⊕Ci−1)
⊥ ⊂

(C0 ⊕ C1 ⊕ · · · ⊕ Cj)
⊥ and that Br−j ∩ (C0 ⊕ C1 ⊕ · · · ⊕ Cj)

⊥ = {0}. Thus,

Br−i ∩ Br−j = {0}

and consequently also

pr−jBr−j ∩ pr−iBr−i = {0}.

�

So, we conclude that the dual of a convolutional code defined in Zpr((D)) is also a

convolutional code.

The following result generalizes Corollary 5.13 for general (non necessarily free)

convolutional codes.

Corollary 5.19. Let C be a convolutional code of length n defined Zn
pr . Then

p-dim (C) + p-dim (C⊥) = p-dim (Zn
pr((D)) = nr.

Proof Let C = C0 ⊕ pC1 ⊕ . . . ⊕ pr−1Cr−1 where Ci is a free convolutional code with

rank ki, i = 0, 1, . . . , r− 1 and C0+C1+ . . .+Cr−1 = C0⊕C1⊕ . . .⊕Cr−1. Consider also

the free convolutional codes of length n, Bi, i = 0, . . . , r − 1, as defined in Theorem

5.18. Then

rank B0 = rank (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)
⊥

= n− rank (C0 ⊕ C1 ⊕ · · · ⊕ Cr−1)

= n− (k0 + k1 + · · ·+ kr−1).



5.2. Dual Code 83

Moreover, since Br−i is such that (C0⊕C1⊕· · ·⊕Ci−1)
⊥ = (C0⊕C1⊕· · ·⊕Ci−1⊕Ci)

⊥⊕Br−i

it follows from Theorem 5.12 that

rank Br−i = rank (C0 ⊕ C1 ⊕ · · · ⊕ Ci−1)
⊥ − (C0 ⊕ C1 ⊕ · · · ⊕ Ci−1 ⊕ Ci)

⊥

= n− (k0 + k1 + · · ·+ ki−1)− (n− (k0 + k1 + · · ·+ ki−1 + ki))

= ki = rank Ci.

Then, from Lemma 5.8 it follows that

p-dim (piBi) = (r − i)kr−i

and

p-dim (B0) = nr − r(k0 + k1, · · ·+ kr−1).

Thus,

p-dim (C⊥) = p-dim (B0) + p-dim (pB1) + · · ·+ p-dim (pr−1Br−1)

= nr − r(k0 + k1 + · · ·+ kr−1) + (r − 1)kr−1 + (r − 2)kr−2 + · · ·+ k1

= nr − (k0r + k1(r − 1) + · · ·+ kr−1)

= nr − p-dim (C).

�

The next example illustrates the procedure described in Theorem 5.18 to determine

the dual of a convolutional code defined in Zpr(D)).

Example 5.20. Consider the convolutional code C defined in Z9((D)) with generator

matrix

G(D) =

[

1 +D 1 3D

0 3 + 3D 3

]

.

Thus

C = C0 ⊕ 3C1

where C0 = ImZ9((D))

[

1 +D 1 3D
]

and C1 = ImZ9((D))

[

0 1 +D 1
]

.

Since

C0 ⊕ C1 = ImZ9((D))

[

1 +D 1 3D

0 1 +D 1

]
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we have that

(C0 ⊕ C1)
⊥ = ImZ9((D))

[

1 8 + 5D + 4D2 + 6D3 1 + 5D +D2 + 3D4
]

.

Moreover,

C⊥0 = ImZ9((D))

[

1 8 + 5D + 4D2 + 6D3 1 + 5D +D2 + 3D4

8 1 +D 0

]

and therefore B1 = ImZ9((D))

[

8 1 +D 0
]

is such that

(C0 ⊕ C1)
⊥ ⊕ B1 = C

⊥
0 .

Consequently,

C⊥ = (C0 ⊕ C1)
⊥ ⊕ 3B1

has generator matrix

Ḡ(D) =

[

1 8 + 5D + 4D2 + 6D3 1 + 5D +D2 + 3D4

6 3 + 3D 0

]

.



Chapter 6

Conclusions

In this thesis a number of problems regarding convolutional codes over the finite ring

Zpr are studied. In particular the thesis focuses on three main problems. The first

two deal with distance properties of a code (Chapters 3 and 4). The last problem

investigated (in Chapter 5) involves the notion of dual codes.

Convolutional codes over finite fields have been thoroughly investigated since the

fiftieths and are widely used in many communication systems. In [MM89] Massey and

Mittelholzer observed for the first time that convolutional codes over the ring ZM , are

the most appropriate class of codes for phase modulation. The algebraic structure of

these codes was investigated and it was immediately apparent that these codes were

much more involved than the classical convolutional codes over finite fields. Indeed

many important properties that hold in the field case, fail to be true in the ring case.

Despite the fact that the distance of a code is the most important single parameter

of a code, very little is known about the distance properties of these codes. In this

dissertation we have focused on the two distances that are considered the most relevant

in the context of convolutional codes, namely, the free distance and the column distance.

As for the free distance we extended the recent work of [EOS13] by introducing a

new set of parameters of the code and we derived a novel Singleton type of bound for

the free distance. In the particular case of free codes these parameters have special

values and then our bound coincides with the bound given in [EOS13]. In order to

show that the given upper bound is optimal we presented a constructive method for

building general (non necessarily free) MDS convolutional codes over Zpr for any given

set of parameters. Instead of considering the commonly used Hensel lift of a cyclic

code, we proposed a novel type of lifting to build convolutional codes over Zpr from

convolutional codes over a finite field. According to the coding theory literature we

called this class of codes Maximum Distance Separable (MDS). In other words, this

thesis has defined and proved the existence of MDS convolutional codes over Zpr of

85
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length n, p-dimension k and p-degree δ, for a given n, k and δ.

In the context of convolutional codes the notion of column distance plays a central

role as measures the error-correcting capabilities of the code within a given time in-

terval. This feature is fundamental, for instance, for sequential decoding. The column

distance of convolutional codes over finite fields have been pretty well investigated and

there is already a large body of literature on this topic. However, column distances of

convolutional codes over Zpr were unexplored to date. In this thesis we have addressed

for the first time the notion of column distance of convolutional codes over the finite

ring Zpr . We showed that when the convolutional code is delay-free the concept of

column distance is an invariant of the code and does not depend on the choice of the

generator matrices representing the code. This property does not hold true for general

codes. Upper bounds for the columns distances were presented. These bounds give rise

to the notion of Maximum Distance Profile (MDP) codes which are codes that are op-

timal with respect to the column distance. The presented constructions are restricted

to some sets of parameters and a general construction of all sets of given parameters

is still unknown.

A complete study of the fundamental notions of free and column distance of con-

volutional codes over the finite ring Zpr was presented in this dissertation.

The last part of the dissertation deals with dual codes of convolutional codes defined

in Zpr((D)). In this last chapter we have considered the ring of Laurent series Zpr((D))

instead of Zp[D] due to technical reasons. For example, we showed that not all codes

C ⊂ Zn
pr [D] can be represented via a parity-check matrix of C, i.e., the dual code

of C does not exist. However, there always exists the dual code of a convolutional

code defined in Zpr((D)). Still, several technical problems due to the presence of zero

divisors appear when trying to explicitly describe this dual code. We presented an

explicit method to derive a representation of the dual code and moreover the method

is constructive since it is based on certain associated free Zpr(D)-modules.

The thesis raises several follow-up questions. For instance, the characterization

of the dual of a convolutional code defined in Zpr [D] remains widely open. Also the

proposed constructions of MDP requires large ring sizes due to the fact that they are

based on a lifting of an MDP convolutional codes over Zp[D] that itself requires very

large finite fields. It would be interesting to come up with constructions of MDP over

not too large finite rings, maybe using different type of lifting. This seems to be a

highly non-trivial problem.

Another challenging direction of future research is to analyze the distance properties

of the proposed codes in terms of different metrics. Two decades ago it was found out

how important binary non-linear block codes (such as the binary Golay code) can be
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constructed using linear codes over the ring Z4 by means of the Gray mapping and

the Lee metric. This was a breakthrough in the area of coding theory and the study

of analogous ideas in the context of this thesis is an interesting line of future research.

Can we build in a similar way good nonlinear (binary) trellis codes (over Zp) from good

linear convolutional codes over Zpr?

Finally, another important avenue for future research is to develop the decoding

algorithms for the classes of codes studied in this thesis. Particularly promising is the

performance of these codes over the erasure channel. We expect that making use of

the parity check matrix, efficient decoding algorithms can be developed. This is left as

an open problem.
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