
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2016

Ivo Daniel
Pinto da Silva

Standards IdC para Cidades Inteligentes
IoT Standards for Smart Cities

“If you cannot fail, you cannot
learn.’

— Eric Ries

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2016

Ivo Daniel
Pinto da Silva

Standards IdC para Cidades Inteligentes
IoT Standards for Smart Cities

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2016

Ivo Daniel
Pinto da Silva

Standards IdC para Cidades Inteligentes
IoT Standards for Smart Cities

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica de Diogo
Gomes, Professor Auxiliar do Departamento de Eletrónica, Telecomu-
nicações e Informática da Universidade de Aveiro

o júri / the jury

presidente / president Professor Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Professor Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar da Universidade de Aveiro (orientador)

Professora Doutora Ana Cristina Costa Aguiar
Professora Auxiliar da Faculdade de Engenharia da Universidade do Porto

agradecimentos /
acknowledgements

I want to thank my family. Without them I would not have the needed
support to enroll, pursue and conclude this degree.

On another note, professor Diogo Gomes and Ricardo Vitorino from Ubi-
where were excellent supervisors. I want to thank Ricardo for the availability
and understanding and professor Diogo for good advice and for always hav-
ing my best interest in mind.

I am also very thankful for all the support given by the Ubiwhere team,
especially André Duarte and Francisco Monsanto that were always avail-
able to help with technical issues and Ricardo Machado that gave me the
opportunity to grow, as a person and developer, with the company.

From the University, André Marques was definitely an enormous help for
technical discussions and for good insight on IoT related subjects.

On a personal level I want to thank all my closest friends. Thank you
Fabiana for keeping me grounded and always being there when I need.
Thank you Diogo Cardoso, Daniel Silva, Tiago Henriques, Tiago Magalhães,
Ricardo Martins and André Jerónimo for letting me share my experiences
and always taking my opinions into account.

Resumo Hoje em dia, o panorama da Internet das Coisas enfrenta um grande
obstáculo ao tentar estabelecer um ecossistema global devido so surgimento
de vários standards de dados que se adequam às necessidades de diferentes
use cases e/ou indústrias.

No cenário das Cidades Inteligentes é agora mais claro do que nunca que
é absolutamente necessário traçar o caminho para a interoperabilidade de
diferentes soluções verticais de modo a tornar as cidades verdadeiramente
inteligentes.

No âmbito desta dissertação o objetivo é partir de uma implementação
desenvolvida de uma solução IdC vertical e possibilitar a integração de
aplicações de terceiros de uma forma transparente.

Abstract Nowadays, the IoT panorama faces a great obstacle in establishing a global
ecosystem, due to the emergence of a number of data standards created to
fit the needs of di↵erent use cases and/or industries.

In the Smart Cities scenario it is now clear that paving the way for the
interoperability of di↵erent vertical solutions is an absolute necessity in order
to make them truly intelligent.

It is in the interest of this dissertation to take a developed implementation of
a vertical IoT solution and enable the integration of third-party applications
in a transparent way.

Contents

Contents . i

List of Figures . v

Acronyms . vii

1 Introduction . 1
1.1 Internet of Things . 1
1.2 Development in a business environment . 3
1.3 Involvent Project/Product . 4
1.4 Motivation . 6

2 State of the art . 7
2.1 Internet of Things . 7

2.1.1 Cisco . 8
2.1.2 AT&T . 8
2.1.3 IBM . 8
2.1.4 AllSeen Alliance . 9
2.1.5 Open Mobile Alliance . 9
2.1.6 European Telecommunications Standards Institute (ETSI) M2M . . 10
2.1.7 Eclipse Internet of Things (IoT) . 10
2.1.8 FIWARE . 11

2.2 Smart Cities . 12
2.2.1 Porto, Portugal . 13
2.2.2 Santander, Spain . 13
2.2.3 Array of Things . 14

2.3 IoT Protocols . 14
2.3.1 Hypertext Transfer Protocol (HTTP) 14
2.3.2 Constrained Application Protocol (CoAP) 15
2.3.3 MQ Telemetry Transport (MQTT) 15
2.3.4 Lightweight Machine-to-Machine (LwM2M) 16
2.3.5 Extensible Messaging and Presence Protocol (XMPP) 16
2.3.6 Overview and Comparison . 17

2.4 Interoperability . 17
2.4.1 Meshblu . 18
2.4.2 Ponte by eclipse . 18
2.4.3 Hypercat . 19

i

2.4.4 FIWARE’s enablers . 20
2.4.4.1 IDAS . 21
2.4.4.2 Orion Context Broker . 22
2.4.4.3 NGSI 10 . 23

2.4.5 OpenMTC . 24
2.4.6 Overview and Comparison . 24

3 Citibrain . 27
3.1 General Description . 27

3.1.1 Devices . 28
3.1.2 Message broker . 30
3.1.3 Core components . 31
3.1.4 Backends & Application Program Interface (API)s 32
3.1.5 Client applications . 33

3.2 Hypercat Interoperability . 35
3.2.1 Reasons to support Hypercat . 35
3.2.2 Solution . 35
3.2.3 Implementation and tests . 37
3.2.4 Benchmarks . 41

3.3 FIWARE support . 43
3.3.1 FIWARE at Ubiwhere . 43
3.3.2 NGSI at Citibrain . 46
3.3.3 IDAS at Citibrain . 47
3.3.4 Implementation and Tests . 49
3.3.5 Benchmarks . 51

3.4 LwM2M Support . 52
3.4.1 Experiments . 52
3.4.2 First approach . 54
3.4.3 Integration with Meshblu . 55
3.4.4 Citibrain’s object specification . 56
3.4.5 Communication flow . 58
3.4.6 Tests . 61

3.4.6.1 Device registration . 62
3.4.6.2 Device observation . 66
3.4.6.3 Resource update . 67

3.4.7 Benchmarks . 69

4 Open-source contributions . 73
4.1 LwM2M . 73
4.2 Hypercat . 73
4.3 Fiware . 74

5 Conclusion . 75
5.1 Future work . 76

6 Appendix A . 77
6.1 Citibrain’s Hypercat “/cat” method response 77

7 Appendix B . 81
7.1 Citibrain’s Hypercat “/cat/parking/assets” request response 81

ii

8 Appendix C . 83
8.1 LwM2M waste event specification . 83

Bibliography . 87

iii

List of Figures

2.1 ETSI M2M architecture reference points. 10
2.2 Ponte’s wide range of protocols support. 19
2.3 FIWARE enablers for IoT platforms . 21
2.4 Fundamental use-case for the IDAS component 22
2.5 An example architecture diagram for the use of the Orion Context Broker 22
2.6 An NGSI compliant APIs resource tree . 23

3.1 Citibrain’s architecture overview . 28
3.2 Citibrain’s range of sensors communicating with a Gateway 29
3.3 Citibrain’s broker and brokerage nodes . 30
3.4 Citibrain’s core components . 31
3.5 Citibrain’s backends and APIs . 32
3.6 Citibrain’s client applications . 33
3.7 Citibrain’s mobility API serving parking information to app 34
3.8 Citibrain data translation into/from the hypercat specification 35
3.9 Citibrain architecture diagram after the hypercat wrapper implementation . . . 36
3.10 Citibrain’s Hypercat API GET methods . 37
3.11 Parking events request . 40
3.12 Time spent processing a Hypercat GET request in comparison to Citibrain . . . 41
3.13 Time spent processing a Hypercat POST request in comparison to Citibrain . . 42
3.14 FIWARE Porto’s demo . 46
3.15 Vertical APIs exposing NGSI nodes . 47
3.16 LwM2M client creation . 48
3.17 IDAS receiving a registration request successfully 48
3.18 IDAS reporting an error due to the fact that it can’t find the Context Broker . . 49
3.19 IDAS client registration flow . 49
3.20 Waste event response in proprietary format . 50
3.21 Waste event response in NGSI format . 50
3.22 Elapsed time on HTTP requests to the Citibrain API endpoints in comparison to

NGSI endpoints . 51
3.23 Leshan server detecting the LwM2M client . 52
3.24 Leshan server reading/subscribing client’s resources 52
3.25 LwM2M client creation and resource assignment 53
3.26 LwM2M first approach . 54
3.27 LwM2M integration in Meshblu . 55
3.28 LwM2M registration flow . 58
3.29 LwM2M registration flow saving the Meshblu’s credentials 59

v

3.30 LwM2M object observation . 60
3.31 LwM2M complete message flow example for parking sensor 61
3.32 LwM2M client creation and registration. 64
3.33 Meshblu registering the device and printing the generated device Universally

Unique Identifier (UUID) and authentication token. 64
3.34 Client’s Meshblu credentials being written in appropriate resources. 65
3.35 Client’s resource value list. 65
3.36 Meshblu’s HTTP registered clients list method. 66
3.37 Meshblu establishing an observer connection with the valuable client’s resources. 67
3.38 A LwM2M client updating its "water_flow" resource. 67
3.39 Meshblu’s output for a device registration and following update. 68
3.40 HTTP list devices request to Meshblu. 69
3.41 Time elapsed registering devices into Meshblu via HTTP 70
3.42 Time elapsed updating devices into Meshblu via HTTP 70
3.43 Time elapsed registering devices into Meshblu via LwM2M 71
3.44 Time elapsed updating devices into Meshblu via LwM2M 72

5.1 Overview of the Citibrain platform . 75

vi

Acronyms

IoT Internet of Things

M2M Machine-to-Machine

H2M Human-to-Machine

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

CoAP Constrained Application Protocol

LwM2M Lightweight Machine-to-Machine

MQTT MQ Telemetry Transport

API Application Program Interface

XMPP Extensible Messaging and Presence Protocol

ETSI European Telecommunications Standards Institute

OMA Open Mobile Alliance

GSCL Gateway Service Capability Layer

NSCL Network Service Capability Layer

SME Small and medium-sized Enterprises

JSON Javascript Object Notation

UUID Universally Unique Identifier

XML Extensible Markup Language

OpenXPS Open XML Paper Specification

REST Representational State Transfer

3GPP Third Generation Partnership Project

CEP Complex Event Processing

IFTTT If-This-Than-That

CRUD Create, Read, Update and Delete

URL Uniform Resource Locator

URI Uniform Resource Identifier

OASC Open and Agile Smart Cities

DSCL Device Service Capability Layer

vii

chapter 1
Introduction
1.1 internet of things

Nowadays, the Internet of Things panorama is suffering from a severe problem that is preventing
the paradigm from establishing itself and becoming the truly interconnected ecosystem that it aims to
be.

IoT is an idea that predicts the interconnection of billions of devices worldwide. The goal is to turn
every device smart, which means being able to get information from the outside world and surrounding
devices and being able to act upon it.

One can imagine how a device gets the ability of sensing its surroundings, how can it be aware
of the temperature, for example. Through sensors, sensors have a big role on the Internet of Things
scenario. A sensor is capable of measuring something or detecting a change in the state of what it is
monitoring.

This leads us to the Smart Cities scenarios. The term Smart City refers to a city that is sustainable
and has monitored useful information about itself.

A smart city takes advantage of the IoT use-cases to enhance the quality of the services that it
provides to the community while reducing costs by controlling the waste, of the used resources and
actual garbage, that it generates.

A couple of examples of how this can be achieved are:

- Building systems that detect water level rises and predict floods;
- Monitoring traffic in certain areas so that, in case of emergency, ambulances and police cars take

less time getting to a desired location.

The possibilities are endless.
It is not hard to visualise the overlap of the the Internet of Things and Smart Cities.

1

In a place filled with sensors, one is able to extract so much knowledge about what surrounds us
that we can build very useful applications. But there is a big question: how can developers get their
systems and platforms communicating with these sensors?

Every sensor is different. A temperature sensor can provide measurements in Celsius and the other
in Fahrenheit. There is a need of context on the received information in order to understand it in an
automatic way. First, if a device is communicating with another, whether it is a sensor or another
device, it will interpret the received information the way the developer intends it to.

Following this line of thought, a developer decides to build an app that reads temperature
information from a sensor. It is expected for the sensor to provide a number that corresponds to the
temperature. Also, there is the need of knowing if the said temperature is in Celsius, Fahrenheit or
any other unit. One can predict the outcome of testing the same application using different sensor
models. Possibly it will not work because it will not make the information available in the same way
that the previous one did. As it is implied, this is not scalable. The developer would have to develop
an application for each sensor type that would be installed in the different locations to do the same
exact operation. This is a big problem, “telling a device” how he should interpret the information. A
device is only as intelligent as we program it to be. It does not have the capability of interpreting
information and decide if it is good or bad like humans do.

This is why standards are needed in the IoT world. If sharing information with devices around us
is a true goal to achieve, a valid, homogeneous interface from one device to another must be set so
that they become able to “talk” and “understand” each other.

The fact is that, for the Internet of Things to scale and reach the potential that developers and
big corporations are intending for it, there must exist one single communication standard. This
will enable a large range of devices to communicate with one another. With this in mind, several
early-adopters started to develop standards that they hope will define the communication and enable
IoT interconnection.

Until this point, all was progressing as expected. Everyone agreed with what has been mentioned
previously. From this point forward, it can be said that the competition has started.

The competition is between different companies that want to set the trend and get developers to
build platforms upon their systems. Every effort should be invested in moving forward with technology
and making the world a better place but many companies have the ambition of holding a big part of
the market share and increasing their profit.

Yes, there are many initiatives that aim to turn the IoT dream to reality. But there are corporations,
consortia and foundations which for them it is a business. Right now there are different “teams” with
their standard competing to be the most interoperable out of all. Because of this, now a number of
standards exist and not just one. Having different systems using different standards is what is available
today. In what will it benefit developers having multiple standards for the same thing? If there are
many ways of doing something, and people do it differently from one another, than there is no point in
calling that a standard.

The Internet of Things needs one standard, that is agreed upon by experts, in order to truly benefit
of the interoperability of devices. Until then, it will be impossible for devices to share information and

2

create the desired cross-functionality.
These different teams of companies that are gathering to create their own standard, often do not

agree with the decisions of other conglomerates and insist that their implementation should be the
standard. So now, multiple consortia exist and companies join not only one but several of them in
the same way as they would place bets on which standard will prosper. These “bets” also allow them
to analyse the situation from the inside, getting a better understanding of the vision and how the
standard is being developed.

Knowing that, it is clear that the ideal situation for the Internet of Things, which is the implemen-
tation of one, and only one, standard for communication between devices will not become reality as
soon as we wish. It becomes obvious that this delays the deployment of true Smart Cities.

In the Smart City scenario, it is necessary to guarantee the interoperability of the different endpoints
while enabling the creation of a unified ecosystem for the cities, in order for them to become truly
intelligent.

This dissertation has the goal of paving the way to make the IoT developers lives easier when
using the Citibrain platform. It is important that developers are able to integrate their applications
seamlessly with the IoT solutions already implemented and working in the field, potentiating the
transparency and interoperability of the Smart Cities solutions.

1.2 development in a business environment
This dissertation was developed in conjunction with an internship at Ubiwhere, a company based

in Aveiro. The opportunity arose and it felt like a better suited environment for me. It also gave me
the chance to position myself better in the market and provided me a smooth transition from the
academic field into the business environment.

Ubiwhere is a company based in Aveiro, Portugal. It had its origin in the University of Aveiro’s
Business Incubator (IEUA) and its creation arose from the enthusiasm of three young researcher’s
from the Institute of Telecommunications and PT Inovação, SA in pursuing a successful career.

The proximity to the Institute of Telecommunications of Aveiro, the headquarters of PT Inovação
and Nokia Siemens Networks division was an important fact in the choice of Aveiro for the company’s
headquarters.

One of the main goals of the company is to research and develop bleeding edge technologies, design
state-of-the-art solutions and create valuable intellectual property.

Ubiwhere’s vision is to be an international reference in smart cities and future internet and its
mission is to improve people’s lives by developing usable technologies.

3

The company is involved in several projects regarding Smart Cities and Telecommunications but
the biggest interest in this particular theme comes from the fact that Ubiwhere is a major part of the
Citibrain consortium which specialises in smart solutions for today’s cities.

Citibrain’s solutions for Smart Cities includes parking, waste management, environmental quality
control, traffic management, vending and smart cards. These solutions are very great and have been
implemented singularly but the goal here is to connect the different verticals and in this way provide a
unique product that fits most of the needs of Smart Cities, all in one platform.

My first contact with Ubiwhere was when I applied for a Summer Internship. I spent that same
Summer working at the company and learned everything I know about web development, working in a
team, continuous integration and overall work life. Because I liked the in-house environment and the
projects proposed were in the fields I wished for, I took the opportunity of doing my dissertation along
with this team and implementing something that may actually be a part of a shipped, on the field
platform is very rewarding.

1.3 involvent project/product

The Citibrain platform offers six main services that are:

Smart Parking

Brings together all aspects of parking management technology into one integrated system. It is a
parking management system in real time that collects performance indicators and translates them into
knowledge so that the managers are able to formulate better policies. Smart Parking is also a robust
way to let users know about the location of free parking spaces. This solution reduces costs of parking,
accidents and traffic congestion as it improves parking operations.

4

Smart Waste Management

Citibrain introduces a system that makes the collection of the city’s urban waste easier. This is
done by placing sensors with low energy consumption and high durability in the traditional trash bins
and containers. By doing this, it is possible to keep a tight control on the state of the container, its
location and security, thus increasing the effectiveness and efficiency of the waste management teams
while aiming to make the cities greener.

Smart Environmental Quality

Through sensing stations positioned in the current urban infrastructure, it is possible to draw
indicators on air quality, noise pollution levels, temperature, humidity among others. This data is
useful to respond to the problems of the citizens, to improve urban planning and obtain objective data
on the quality of life provided.

Smart Traffic Management

Solves the problem of traffic management in urban environments, done in an adaptive and non-
invasive way. This happens through the installation of low cost sensors throughout the city. The sensor
data is transmitted in real time and combining it with information from the drivers’ mobile devices, it
is possible to adapt the traffic flow of the city. It is meant to operate in real time, setting the states of
vertical signs, informative panels and even sending alerts to the citizens’ mobile devices.

Smart Vending

The solution offers its costumers flexible payment options and allows to achieve high levels of
efficiency in the management of their assets by monitoring the machines remotely in real time. The
vending machines accept payments in money, debit/credit card and Citibrain Smart Card. They also
contain multiple sensors that alert the owners about their location, inventory and maintenance issues.
This solution simplifies the business, enables the automation of routine tasks and allows companies to
increase efficiency in the management of their assets.

Smart Card

The Smart Card monitors physical access to buildings and controlled spaces and can be used
in a wide range of applications. It is intended to support organisational management bodies such
as companies, governmental institutions and schools in security, control, payments and information
management areas. Each user is assigned a single and multifunctional card, which acts as their
identification, installations access, parking and substitute for money.

However, the main and core services where Citibrain is the most efficient and revolutionary are
parking, waste management, environmental quality and traffic management.

5

1.4 motivation
With no end in sight for this “standard war” and as an agreement between companies is not a

likely outcome, IoT developers are in need of a tool that is capable of doing the standard conversion
for them.

This is Ubiwhere’s way of getting closer to what is truly the desired consequence of the Internet
of Things as a whole. While the one universal standard is still in development and being fought for
among the big players in the corporate world, this project comes to force the integration of different
standards within the platform in order to move one step closer to interoperability. This can add value
in the sense that it makes Citibrain a more available platform allowing the team to connect different
verticals and also decouple them to integrate in other deployed platforms that are using different
communications protocols and formats from our proprietary one.

6

chapter 2
State of the art
2.1 internet of things

The next generation of the Internet is expected to be the Internet of Things. Now society takes
advantage of e-commerce, the cloud, social media among others. But the next step is to connect things
and devices. This will enable the interconnection of sensors, vehicles, mobile phones and other devices
instantly without the need for pairing nor connection to the cloud.

Developers will benefit from this by being able to build context aware applications. For example, if
the trash bins in one’s house are full, the company that is in charge of the garbage collection is notified
to pick up the trash earlier than it was supposed to. This is only one use case for the IoT era.

The Internet of Things panorama is quite undefined at this moment. Universities and companies
know what they are supposed to do but no one does it well. This results in everyone implementing
their IoT systems in the way that they consider correct, which leads to small interoperability.

In order for the “Things” to communicate with each other, they must know how to do it. This
means that there has to exist a common interface to which every device must obey in order to achieve
the full interoperability. What is happening is that, nowadays, many groups of companies have different
visions on what that interface should look like. Different consortia are building different standards
interpreted to be the best-fitting one and refuse to compromise with the view of others.

One standard is perfect. If there is more than one standard for the same purpose, then there is no
standard at all.

Some companies are really thriving and trying to push the Internet of Things to the next level.
There are the big players that are always looking for the next big thing. They are IBM, AT&T, Cisco,
General Electric, Apple, Google, Amazon and other major influencers.

IBM’s effort is seen in the for of its Watson platform: “IBM’s well-known machine learning platform
Watson is a big part of IBM’s vision of the IoT world. The super computer renders actionable insight
from massive amounts of data produced by IBM IoT sensors at a pace no human could ever match.”[1]

AT&T predicts that the IoT is a way for the company to grow while providing ways for the sensors,
devices and platforms to communicate with each other. “In order to function, the “Internet of Things”

7

relies on wireless broadband connections and AT&T sees IoT applications in a number of verticals as
the natural next step in the evolution of the company.”[2]

Google is a company that always wants to be the first to achieve the most innovative solutions as
seen with extravagant initiatives such as project Loon[3] and the space elevator[4]. So the IoT is, by
no means, a field that they are forgetting as “The ubiquitous technology giant is often synonymous
with forward thinking innovation and the Internet of Things space is no exception.”[5]

Right now, IDC (International Data Corporation) predicts that the market for the Internet of
Things will nearly triple, reaching $1.7 trillion in four or five years.[2]

The following subsections will provide a more detailed analysis of the above mentioned companies
and consortia.

2.1.1 cisco
Cisco aims to help push IoT scenarios into the real world by featuring solutions such as:

- Managing and giving intelligence to multiple enterprise-class networks;

- Optimising scalability of solutions. This is extremely crucial if the rising number of connected
devices is taken into account. And the number is only going to keep rising;

- Moving to IoT connected network without the need of upgrading your current infrastructure
solution;

- Making the network solutions perform well in extreme conditions;

- Promoting normalisation and connectivity across multiple network environments, which means:
to support multiple communication protocols.

According to Cisco, the big benefits of and Internet of Things world are that data-driven efficiencies
are able to reduce inventory, downtime and time to market in a company, will provide new business
opportunities and revenue streams and better decision making through informed prioritisation.[6]

2.1.2 at&t
From AT&T’s point of view, IoT solutions will also help lowering costs, performing more efficiently

and improve competitive advantage.

They state that “Harnessing data to predict, learn, and make real-time decisions can create a
distinct competitive advantage for your business”. Which means that data is much more valuable
than what society imagines right now and recognising it is the first step into taking advantage and
welcoming a positive change using IoT.

2.1.3 ibm
When it comes to IBM, they state that “The early applications of IoT are undoubtedly delivering

great value. They are reshaping customer experiences by putting consumers into context, and offering

8

new avenues for engagement.”

They go so far as sharing that data is the currency of IoT and the capturing and transmission of
this data in a secure way is critical to the success of any IoT strategy. Their vision includes having
products and services with cognition. This will enable the creation of products that sense, reason and
learn from their users and the world around them. The main goal of this is to allow these companies
to develop “things” that are in constant adaptation and improvement.

Yet, their position is that the Internet of Things is nothing without cognitive computing. “It is
essential in realising the true value of the IoT. And in so doing, together we will discover answers to
questions we never thought to ask.”[1]

2.1.4 allseen alliance
The AllSeen Alliance has the mission of enabling the interoperability between different products

and brands to provide intelligent experiences for the Internet of Things. The initiative includes more
than two hundred members in which are included leading consumer electronic manufacturers, home
appliance makers, automotive companies, cloud providers. . .

This alliance has created an open source software framework[7] that makes it easy for devices and
apps to discover and communicate with each other. The main goal is to enable the developers to write
apps that are interoperable without knowing the transport layer, manufacturer and without needing
internet access.

AllSeen framework uses a client-server model to organize itself. Each “information producer” on
the network has an Extensible Markup Language (XML) file called introspection that advertises the
devices abilities and what it can be asked to do.

2.1.5 open mobile alliance
The Open Mobile Alliance is an association that develops open standards for the mobile communi-

cations industry.[8]

Open Mobile Alliance (OMA)’s goals are:

- Provide open technical specifications that take into account market requirements and improve
the extensibility and modularity of the systems while reducing the industry’s implementation efforts;

- Ensure their enablers provide interoperability across a wide range of endpoints, locations, service
providers, networks. . . ;

- Strive for the consolidations of standards in the mobile industry by working with other existing
standards organisations;

- Value and benefit members in OMA regardless of where they stand in the value chain;

The OMA maintains a large number of specifications including MMS (multimedia messaging), OMA
IMPS (instant messaging and presence service) and OMA LwM2M (Light Weight Machine-to-Machine).

9

2.1.6 ETSI m2m
ETSI M2M is an initiative that thrives to standardise the Internet of Things. In order to do so,

ETSI proposed a solution to manage, process, store and transfer big amounts of data in a secure
fashion.[9]

An ETSI compliant platform needs to consist of three service capability layers:

- Gateway Service Capability Layer (GSCL);
- Network Service Capability Layer (NSCL);
- Device Service Capability Layer (DSCL);

The GSCL is a flexible Machine-to-Machine (M2M) gateway that supports various M2M area
network technologies and communication protocols such as ZigBee and Wireless M-Bus.

The NSCL is a cloud-based M2M platform that aggregates and stores data from various devices
and acts as a device management and abstraction layer providing intuitive APIs.

Figure 2.1: ETSI M2M architecture reference points.

2.1.7 eclipse IoT
The IDE giant Eclipse also wants to be apart of the IoT future. With this in mind they are trying

to push a set of standards that they feel that are definitely important in the development and maturing
of the ecosystem.[10]

They state that there are many aspects of an end-to-end solution where it’s important to rely
on standards like protocols that enable device-to-device and device-to-server communication, device
management and gateway interface discovery. Eclipse believes that open standards are essential but
it is also important to make available open-source implementations of these standards in order to
motivate their adoption by IoT developers and the whole industry.

The project provides implementations of CoAP, ETSI SmartM2M, MQTT and LightWeightM2M.

10

2.1.8 fiware
FIWARE is a middleware platform that’s driven by the European Union with the goal of developing

and deploying applications for the Future Internet and Smart Cities.[11]

“The involvement of users and developers is critical for this platform to become a standard and
reusable solution.”

Its purpose is to facilitate a cost-effective creation and delivery of Internet of Things applications
and services in a variety of areas that include smart cities, sustainable transport, renewable energy
and environmental sustainability.

FIWARE’s main targets are small and medium entrepreneurs and startups with the intention of
leveraging opportunities in areas as the Internet of Things, Open Data, Big Data, Smart Cities. . .

The platform is entirely open-source and based on openstack and the project attempts to not only
setup european but also worldwide standards.

There already are thirty one cities that agreed on using FIWARE standards to adopt open APIs
to gather, publish, query and subscribe to context information describing what happens in the city
at any point in time. This translates into an achievement in their attempt at the establishment of a
standardised environment. These municipalities that are adopting the standard are striving to create
big market to attract small and medium entrepreneurs to invest in high quality, cheap and scalable
applications.

FIWARE is a result of a public-private partnership between the EU and professional IT compa-
nies.[12] The EU’s interest in the digital market comes from the desire to be more independent of big
US commercial players and wants to promote innovation by common standards. The initial program
includes many accelerators to help small teams that have ideas and, hopefully, transform them into a
business.

In a Smart City that supports FIWARE, they would implement and maintain the setup for the
application developers, hiding the complexity of the data gathering and processing from the developer,
this way the application would only connect to the front-end of the FIWARE ecosystem that is the
context broker. In this situation, the app developers do not need to worry about how the data is
collected and is always sure that the app is aware of the context of the city that it is built for.

Adopting FIWARE means making developed applications “aware”. What FIWARE does to help
this task is giving the developer the tools to produce, gather, publish and consume context information
in a very large scale. Data from thousands of sensors is being made available in their interfaces.
Additionally, the more developers start supporting FIWARE, the more data is made available and,
consequently, applications become more and more context aware due to the fact that they become
able to sense their surroundings better.

The ultimate goal for the FIWARE project is to be installed in every city around the globe. This
would mean that every device supporting their standards would be interoperable. They could create
content at the same time that they would be consuming it. Every device would be able to use each
other’s context information in a way that would make applications truly “smart” and “aware”.

11

2.2 smart cities
A smart city is one that uses information technologies, consumes and makes relevant data available.

Relevant data can be information regarding the weather, the water level, traffic conditions, among
others. There is a lot of information referring to a city that can be used by developers to build
applications.

This data is, for the most part, collected by sensors placed in strategic locations. These sensors
need to communicate their events to a centralised platform that gathers all the information. This is
known as a broker.

A broker serves as a mediator between producers and consumers of the information, which in this
case are sensors and user applications.

The main goal of the cities when they make this kind of data publicly available is to motivate
developers to build software that can help the citizens of that same city in their daily life improving
the quality of the services provided by the municipalities.

Services like public transports can be improved by knowing the time that they get more attendance,
the traffic situation of the route and information of that nature.

In this scenario, there are already several cities investing and disclosing data for developers to
build these smart platforms for them.

“Imagine walking or driving through a city and the city itself tells you which trendy spots to
check out, where to park your car in that moment, or which areas to avoid because of air quality or
traffic congestion. In Porto, Portugal, this vision has become a reality and the city itself is already
communicating directly with residents, tourists and even startup businesses using FIWARE standards
and the UrbanSense platform.”[13]

The quote above refers to the implementation of the FIWARE standards in Porto, Portugal. Porto
is serving as a test bench for FIWARE developers to test the applications they build in a real world
scenario. Porto is positioning itself to become a very attractive city for SmartCity development and
establishment. “Porto has been a pioneer city adopting FIWARE standards with the support of
Ubiwhere”.

In the same article we can read that “Lack of standard interfaces for accessing real-time data of
cities becomes a rather huge challenge for Small and medium-sized Enterprises (SME)s and startups
because they cannot afford to repeat the development of adapters in each city. While the benefits for
end users can be great, they are too high to be passed on through a low-costing app, which has held
back the smart cities, Internet of Things, and civic tech industries so far.”

So, here lies the cause of the delaying of the Smart Cities and IoT solutions in general. There are
no standards and until there is an establishment of a technology that allows for different devices to
communicate with each other, being from different manufacturers or not, there is no way that the true
Smart City concept becomes reality. Right now, even if there are cities that make data available and
invest in the development of Smart City solutions, this effort is made in different directions in different
cities. An example of this is that Porto and other cities like Amsterdam and Eindhoven support the
FIWARE ecosystem and that’s great because they’re allowing FIWARE developers to take advantage
of their data and build useful solutions. While this is happening, the city of Chicago is running a
project called Array of Things.

“IoT will provide real-time, location-based data about the city’s environment, infrastructure
and activity to researchers and the public. This initiative has the potential to allow researchers,

12

policymakers, developers and residents to work together and take specific actions that will make
Chicago and other cities healthier, more efficient and more livable.” It is extremely unlikely that this
Array of Things specification for the openly available data communication is the same that FIWARE
is using in Porto and Amsterdam. This means that if a developer builds a fantastic app for Porto and
everyone loves it there, it is not possible to deploy it in Chicago.

2.2.1 porto, portugal
In 2016 Porto has been a pioneer adopting FIWARE’s smart city standards. This leap has already

leveraged the development of the UrbanSense infrastructure that was developed under the Future
Cities project, which is a partnership between the University of Porto and the city council.[14]

With the participation of Citibrain, the city of Porto and Ubiwhere have developed platforms that
bring access to real-time environmental data from seventy five monitoring stations located across the
city and more than two hundred scanners installed on the Council’s fleet of cars.

External service providers like water suppliers, transports data providers, social media data and
business statistics are connected into the platform allowing the city to guide citizens as they go about
their lives.

To demonstrate their commitment to the Smart Cities initiative, the city of Porto created a
competition called “Desafios Porto” where they challenged developers to build applications that would
take advantage of this data and provide useful use cases for the city’s population. These challenges
included building apps to discover what is happening in town at any given moment or one to report
real-time issues that would happen in Porto so that their resolution could be performed faster.

2.2.2 santander, spain
There was a time where the Spanish city of Santander had little interaction with the outside world.

This happened before it was chosen to be Europe’s test bed for a sensor-based smart city.

More than ten thousand sensors were placed around the city with the goal of measuring everything
from the amount of trash in containers, number of parking spaces available, affluence of citizens in a
given area. . . In addition, there are sensors on police and taxi cars that measure air pollution levels
and traffic conditions.[15]

The wide number of sensors allows for a huge data collection and analysis that proceeds to give the
city the possibility to adjust their different services in order to better suit the needs of the citizens. The
goal for Santander is to make it a more attractive place to visit, shop and get around while allowing
the city to save significant amounts of money.

This sunny Spanish city is now technologically advanced due to the SmartSantander project,
funded by the European Union, that started when a professor at the University of Cantabria installed
sensors in the city’s downtown area to have a better management of the limited parking spaces.

People that are responsible for the smart city implementation in Santander are concerned about
what to share and what should remain private. Security is a big issue when it comes to public

13

sharable information. They want to create a cooperative relationship between the people and the city
government in order for the citizens to embrace technology and not fear it.

2.2.3 array of things
The Array of Things is an initiative of an urban sensing project. It will take place in the city of

Chicago, in the United States of America, and it consists of a network of interactive and modular
sensor boxes installed around the city to collect real-time data on the environment, infrastructure and
activity for public use of that information. They make a great analogy of it being a fitness tracker for
the city.[16]

Its creators claim that this data will help make Chicago a truly “smart city”, allowing it to operate
more efficiently as well as save on unnecessary costs and address potential urban problems. All the
data will be published openly without any charge in order to motivate developers to build innovative
applications that use the city’s real-time data.

2.3 IoT protocols
The internet of Things is widely considered the next internet evolution and many companies and

universities are in the race for the establishment of its standards.

Setting these standards has become so complex that has triggered comparisons to other technological
competitions of the past, for example VHS and Betamax. Many do not believe that devices can
seamlessly connect without this battle being resolved once and for all. While there is not one standard
to rule them all, we will see a lot of debate and competing parties.

2.3.1 HTTP
HTTP is the foundation of data communication for the World Wide Web. The development of

HTTP was coordinated by the Internet Engineering Task Force (IETF) and the World Wide Web
Consortium (W3C).

HTTP is a protocol that follows the client-server model. The client sends an HTTP request to the
server and the server performs certain actions, on behalf of the client that requested them, and returns
a response message to the client. The response code is an indicative of the completion of the desired
task and the response may also contain some requested content in the message body.

It is designed to enable communications between clients and servers and it is commonly used when
it comes to the Internet of Things world. This happens because of the very common Representational
State Transfer (REST) architectures in which systems have a central server that answers clients’
requests, this way making possible for the processing to be held server side instead of on the end-user
devices reducing the load and speeding applications. These REST services are based on HTTP and
are widely used in order to communicate between remote devices.[17]

14

It is not hard to imagine a use case where a sensor detects some kind of event and communicates
it to some sort of message broker. In this implementation, for example, the sensor can be the client
and the broker the server. When the event is triggered, the sensor sends an HTTP POST request to a
certain address signalling that said event occurred.

2.3.2 CoAP
The Constrained Application Protocol’s specification allows devices to communicate over the

internet and is objectively targeted for low power sensors that require remote supervision, making it a
very useful protocol for Smart Cities and Internet of Things scenarios.[18]

CoAP was designed to easily translate to HTTP for an easier integration with the web and, at the
same time, meeting requirements like multicast support and simplicity. These requirements are of an
extreme importance for the IoT because the devices that are going to use them often have very scarce
resources than regular internet devices. This protocol is able to work on most devices that support
UDP.[19]

When it comes to developers, CoAP feels very familiar. To obtain a value from a sensor is not
that much different from what they are used to with HTTP, using web APIs.

Additionally, there is a protocol extension that enables CoAP clients to observe resources, retrieve
representations of the said resource and keep it updated over a period of time.

In 2014, CoAP was analysed and compared to HTTP [20] and the results indicate that a wide
variety of situations exist where the use of CoAP is more cost-efficient than HTTP.

It was concluded that one special case where CoAP is especially beneficial is when the smart
objects are kept asleep in between communications instead of scenarios where they need to be active
for most of the time.

CoAP is also friendly in the volume of data transferred in communications, when compared to
HTTP, because "the small overhead of the protocol and its reliance on the UDP enable a manifold
reduction in the transferred data volume." [20]

2.3.3 MQTT
MQ Telemetry Transport is a publish-subscribe lightweight messaging protocol that runs on top of

the TCP/IP protocol. The “MQ” in “MQTT” comes from IBM’s MQ message queueing products but
the queueing itself is not a required standard feature. Its characteristics make it an ideal choice for
constrained environments implementations like machine to machine communications and IoT contexts
where small footprints are a must.[21]

MQTT uses a publish/subscribe message pattern that enables one-to-many message distribution
and the decoupling of applications.

It supports three types of quality of service control for the message delivery that are: “At most
once”, where message loss can occur but the receiver will never receive the same message twice; “At
least once”, where it’s ensured that messages will arrive but duplicates may occur; “Exactly onde”,
where messages arrive to the destination only exactly once.

15

The protocol also supports a mechanism to notify interested parties when irregular disconnections
happen.

2.3.4 LwM2M
Lightweight M2M is a protocol defined by the Open Mobile Alliance with the purpose of managing

M2M or IoT devices. It defines the application layer communication protocol between a LwM2M
server and client. As happens with other standards, the target devices are the ones that are resource
constrained because it makes use of a light protocol and it strives for an efficient resource data model
and it is frequently used with CoAP.

LwM2M provides device management functionalities, transfers service data to devices and is
extensible to meet other application requirements.[8]

However, a LwM2M server only recognises attributes that are in its object specification file. Every
resource that a developer wishes to use has to be present in the LwM2M object specification because
it is the main way for servers and clients to discover information and what that data pertains to.

2.3.5 XMPP
The XMPP is an XML-based protocol that was originally designed for instant messaging and

online presence detection.[22] There is an experimental extension that specifies how Things can be
installed and safely discovered being, therefore, connected into networks of Things.

The installation of enormous amounts of Things into public networks needs to be simple yet secure
to prevent hacking or hijacking.

A specification exists that specifies a network architecture based on XMPP that provides a way
to install, configure, find and connect Things together. It also provides information on how each
individual step in can be performed aiming at having no manual configuration.

There are many use cases for the usage of this technology in an IoT scenario but the main ones are
production, installation, finding an XMPP server and connecting to one. The production is the phase
of assigning responsibility for the parameters on the creation of the Thing in the network. Installation
is the part of the process where a Thing might require extra values that could not be set in the
production environment. Any manual configuration should be avoided. But manual entry of parameter
might allow for Things to use local resources that cannot be found in the production phase. Finding
an XMPP server is almost self explanatory and it is the attempt of the Thing finding an XMPP server
in its local surrounding by several methods like DHCP. The connection to an XMPP server happens
when it has already been found. If there are multiple servers available, the client is free to choose the
one that best suits its purposes.

As this is an experimental use of the XMPP protocol, some of the security features are still to be
decided and implemented and the use of this specification for a production environment is not advised
by its developers.

16

2.3.6 overview and comparison
While HTTP is commonly used in web scenarios, protocols like CoAP and MQTT were designed

to work in more constrained environments where the processing power of the device is much lower and
the data volume of communications matter.

MQTT features three Quality of Service policies to avoid packet loss, which can be a very important
feature for real-world reliable Smart City applications.

CoAP has several similarities to HTTP, being built with a RESTful approach. It makes use of the
same verbs and response status code’s are very similar and it features an observe mechanism that will
be discussed meticulously further.

LwM2M is a standard that is often found hand-in-hand with CoAP and It provides M2M platforms
a simple and efficient device resource model. The advantage of the CoAP implementation of this
standard is that it enables the observation of certain clients’ resources from the server eliminating the
need of querying them for changes.

For this specific point in time, XMPP is not a recommended solution for any platform as it is still
in very experimental conditions. However, the community is starting to see some potential in the use
of this protocol for IoT scenarios.

2.4 interoperability
A true smart city can only be achieved if the different parts of the solution reach a state of

interoperability. By this it is meant to explain that the different parts of the architecture need to be
able to understand and communicate with one another.

There is the need of a specification that enables the true intercommunication between these IoT
devices. This necessity comes from the fact that there are countless manufacturers of devices, with
them being sensors, actual devices where consumers can run software or any other kind of IoT meant
device. Whichever category the device may fall in, by coming from different manufacturers they are
bound to work with different mechanisms and standards. If this happens and they cannot understand
each other, true interoperability is not attainable.

Every manufacturer could just agree on a specification and use it exclusively. However this does
not happen because different companies disagree on what they think that the best specification is.
Also, the big manufacturers are always trying to profit, as it is their main goal at the end of the day,
so they try to push their own proprietary specifications in hope that it will be adopted by the IoT
community some day. If they’re successful, they are in control of the market and can explore new
sources of income.

The main goal of this dissertation is to provide an alternative to the traditional exclusive adoption
of one technology and get to a point where the platform is compatible with more than one standard in
order to achieve true interoperability between them.

It is being made a true effort to push Smart Cities scenarios and deploy them but the companies
that are the most persistent with this approach want to profit as much as they can. Knowing this, they
are trying to control IoT panorama with their ecosystem. In an example we can see that Google is
working on smart watches[23] and smart cars[24] that run some modified version of Android and work
with other Android running devices. Meanwhile, Apple is on the other end doing the same thing with

17

their iOS platform. So, by implementing these features using their mobile operating systems, they are
trying to buy costumers into the Google/Apple ecosystems. They provide these IoT/Smart services
and devices but they are all dependant and only compatible with the devices in their ecosystem.

Components and standards that drive the IoT and M2M communication will be analysed and
discussed below.

2.4.1 meshblu
Meshblu enables machine-to-machine instant messaging. It provides an API that is available on

HTTP REST, Web Sockets via remote procedure calls, MQTT and CoAP. The main focus is to
seamlessly bridge all the protocols so that devices that support, for example, CoAP can communicate
with devices that support only MQTT.[25]

Each registered device is assigned a UUID and secret tokens so that they are used as credentials
to authenticate with Meshblu and maintain the device in the device history.

With Meshblu, we are allowed to discover and query devices and send messages to one or several
of them as well as subscribing to messages and sensor activities.

2.4.2 ponte by eclipse
Ponte allows the developers to receive and publish data using either HTTP, MQTT or CoAP. It

even enables sending and receiving the said data in different formats. Devices can get real-time updates
thanks to MQTT and CoAP subscribe and observe methods, respectively. After that, the users can
also get near real-time notifications due to the implementation of MQTT-over-Websockets.[26]

It also aims to support multiple data formats including Javascript Object Notation (JSON),
MsgPack and XML.

Like Meshblu, Ponte also proceeds to authenticate the Thing that is talking to him. So, there’s no
need for the developers to prepare custom authentication.

18

Figure 2.2: Ponte’s wide range of protocols support.

As the diagram explains, Ponte is able to bridge the gap between developers and Things. Using
this platform, programmers that are used to build REST-based applications are now closer to the
Internet of Things protocols while the core publish/subscribe methods that are more appropriate for
IoT scenarios continue to work extremely well side by side. The current implementation of Ponte is
built on top of the Node.js framework because it provides a fast event loop.

2.4.3 hypercat
Hypercat is a consortium and standard that aims to push a secure and truly interoperable Internet

of Things. The specifications intends to enable IoT clients to discover what resources are available in
an IoT server. Its implementation is tightly related to common web standards like Hypertext Transfer
Protocol Secure (HTTPS), REST and JSON. It’s described as “the most that forty companies could
agree on”.[27]

These forty companies began to look for similarities between the architectures of the platforms
that we’re implemented already.

First, they started to look at the lower level interfaces, which they found out to be very different
from one case to another. It was quickly realised that trying to achieve the desired interoperability
at this low-level specification would be just too hard due to the facts that there are many different
protocols used to connect Things.

Instead, the focus went “up”. To connect with client applications, these platforms used a pretty
homogeneous Web standards like HTTPS, REST and JSON which are widely used in the majority
of information systems today. This seemed a lot more achievable than the first attempt. The main
goal now was to make it possible for an applications built for an information source, to also work with
another information source.

19

Now that the common interfaces for the applications were found, other problems rose:

- The way that information is displayed and organised is different from source to source. The data
is shared in a way that makes sense for the data source at hand but not necessarily for everyone else.
An example is that to find a temperature reading from different data sources can be different according
to the purpose of the information. A building-management service would display it on the endpoint
‘/country/customer/site/building/temperature’, while a connected home service would organise it as
‘/customer/home/devicetype/device/temperature’;

- The “semantics” vary from source to source. The same thing is not always called by the same
name in different data sources. For example, a european company would name their temperature
resource “temperature_celsius”, while an american company would name it “temperature_fahrenheit”.
Again, there is not a standard way to provide these attributes.

The current solution to overcome these obstacles is for the developer to read the documentation,
learn how the data is organised and build software according to that implementation of the data source.
This is not how the Internet of Things idealised the interconnection of the devices as it requires a
developer to build software for each different source of data and this is not scalable. As the number
of apps grows with the number of data hubs, the interaction between apps and data hubs explodes
creating the need to develop different software for each of these interactions. It is clear that this is not
feasible.

The solution would be to get every API to be organised in the same way and get everyone to use
the same semantics. This was considered to be an unviable approach because there are reasons for
these differences.

Knowing this, the Hypercat consortium quickly decided that the way to go was to create a way for
machines to automatically solve the problem for themselves, without humans, embracing the differences
between data organisation and semantics.

The hypercat standard aims to implement a way for an app to discover Resources, on the data
hub, that it can understand. “If it understands only temperatures in degrees Centigrade, it needs a
way to find such on a hub.”

As the goal was to approach the problem in such a way that it would be applicable to any modern
web interface, built on the same web standards. By doing it this way, it is facilitating the adoption of
the standard by the data source and app developers.

From these principles, Hypercat was born.

It is described as a “very thin layer which allows apps to either explore what is available on a hub,
or search for particular types of resource outright”.

2.4.4 fiware’s enablers
The most interesting and pivotal FIWARE enablers for the Citibrain consortium are the three

specified below.

20

Figure 2.3: FIWARE enablers for IoT platforms

From the bottom up, IDAS could help us support various protocols like HTTP, CoAP and MQTT.
The Orion Context Broker would provide us a smooth transition into delivering our data according to
the FIWARE NGSI 10 specification and, also, integrating it with IDAS should be a pretty seamless
process as the two of them are often bundled together.

2.4.4.1 idas
The IDAS component handles all the backend device management for the platforms and according

to FIWARE, it is needed if there is the necessity of connecting devices/gateways into FIWARE-based
ecosystems. Its main focus is to translate IoT-specific protocols into the NGSI context information
standard.

IDAS provides a smooth way of connecting regular IoT devices to platforms that use FIWARE’s
generic enablers, more specifically the Orion Context Broker. On a very brief note, the goal of this
component is to get messages from external devices and transform their data into something that the
broker is able to understand and vice-versa.

21

Figure 2.4: Fundamental use-case for the IDAS component

Analysing the image above, IDAS corresponds to the “IoT Device Management” component.
It receives data from devices and gateways through various IoT adopted protocols and bridges the
communication to the context broker by providing the device information in an NGSI specification for
the broker to “understand”.

2.4.4.2 orion context broker
Orion is an implementation of a Publish/Subscribe broker. It allows several operations such as

registering context producer devices, update, subscribe and query context information. This component
stores the context information and the queries are based on this data.

Figure 2.5: An example architecture diagram for the use of the Orion Context Broker

A context broker such as Orion is very useful to mediate the context between context producer and
context consumer devices. It saves and transforms the received data from, for example, sensors and
delivers it to the consumers, such as, web applications that use the context data to perform certain
operations.

22

2.4.4.3 ngsi 10
NGSI is an open RESTful API specification for exchanging context information. This specification

was created by FIWARE in order to make possible the interaction between their architecture and other
endpoints that want to communicate with its ecosystem.

The three main interaction types it supports are:

- One-time queries for context information;
- Subscriptions for context information updates;
- Unsolicited updates.

The main goal of this API is to ensure interoperability with the FIWARE enablers that expose
NGSI interfaces.

It enables different actors in the environment to provide/consume context information and discover
context entities.

Figure 2.6: An NGSI compliant APIs resource tree

The main interaction types are supported exclusively via POST methods. These are listed above
as the green part of the tree.

The yellow part corresponds to the convenience operation resources that are available through
more than just POST HTTP methods, typically supporting GETs, PUTs and DELETEs also. These
operations support a subset of the functionality of the corresponding NGSI operations but they provide
a simpler navigation and more straightforward access.

23

2.4.5 openmtc
The Open Machine Type Communications platform implements a machine-to-machine middleware

that aligns with international M2M standards like oneM2M, OMA LwM2M, ETSI M2M and Third
Generation Partnership Project (3GPP). Developers user OpenMTC to interconnect various sensors
and actuators from different vertical domains. It is a cloud-enabled and open platform that forwards
data to the applications and enables event-based control to devices.[28]

It promises to:

- Optimize the network by integrating 3GPP elements in order to get connectivity status without
having a constant keep-alive channel;

- Scale because it can be deployed in low resource and also Linux and Android compatible devices
while the backend platform can be deployed on cloud infrastructure allowing for a smooth horizontal
scaling;

- Converge M2M with Human-to-Machine (H2M) by integrating the Open XML Paper Specification
(OpenXPS) which is the Open XML Paper Specification format for documents that enables the
transformation of the handled data into human-readable documents;

- Offer multi-transport protocols like HTTP, CoAP and Websockets to allow different domain-
specific applications to interact with the platform.

2.4.6 overview and comparison
In this section, several components that promote interoperability were displayed. However, most

of them do not follow the same approach.

Comparing, for example, Hypercat to Meshblu is not appropriate because they do not have many
similarities. Hypercat works at the northbound of platforms specifying discoverable APIs, thriving
to enable resource discovery for devices using the available data, while Meshblu is a message broker
that aims to make lower-end devices (sensors, mainly) interoperable in a way that the communication
protocol that they use becomes irrelevant.

It is obvious that there is a long way to go until full M2M interoperability is achieved and it is
very good to see a number of initiatives that are trying to solve different problems in this scenario.

24

Ponte aims to be a solution for receiving and publishing data using multiple protocols and
supporting also a range of data formats.

FIWARE takes an ambitious approach and has the goal of providing different components and
enablers for most of the necessities of an IoT platform backend.

25

chapter 3
Citibrain
Citibrain’s value proposal is to deliver a unified solution for Smart Cities, covering diverse vertical
domains like parking, environment and traffic management while crossing information and adding
intelligence to the multiple city life’s domains.

This means that the architecture of the platform is going to have a clear separation between each
vertical solution while still providing ways to infer certain behaviours by gathering and examining
information from different origins.

3.1 general description
On a very brief note, the platform works as follows:

1. Sensors send state data to gateways;
2. Gateways send messages to the Meshblu broker;
3. Broker authenticates sender and sends messages to their respective queues to be processed.

Simultaneously, data is collected and analysed by the Complex Event Processing (CEP) and If-This-
Than-That (IFTTT) modules and events are triggered, if necessary;

4. Messages are processed in their arrival order on their backend system;
5. Data is made available in the backends’ APIs and ready for analysis on the web portals.

This provides for a unified, centralised system that aggregates data from different vertical applica-
tions. Crossing this data is, the company believes, an advantage to better understand the necessities
of a city and provide the needed help as quickly as possible.

27

Figure 3.1: Citibrain’s architecture overview

3.1.1 devices
At this moment, the Citibrain platform is focused on four main areas that are waste, environment,

traffic and parking. In order to gather information about these four scenarios, the basic component
that the platform needs are sensors. The types of sensors that exist at the moment are:

- Parking sensors that detect whether a parking spot is occupied or free;
- Traffic sensors which monitor the vehicle congestion in strategic places of the cities;
- Waste sensors in order to capture the state of trash bins to conclude if they’re full or still have

capacity for more;
- Environment sensors to monitor temperature, humidity, pollution and other statistics about the

city;
- Water metering sensors;

All these sensors communicate with their respective gateways and they, on the other hand,
communicate with the rest of the platform on the sensor’s behalf.

28

Figure 3.2: Citibrain’s range of sensors communicating with a Gateway

Afterwards, the gateway machines message the rest of the platform through HTTP messages.
This ignores the physical location of the servers that will process the messages. An event in Aveiro
can be processed in a server in New York, where the platform may be deployed. Better yet, heading
for the path of a decentralised solution, handling these messages using web protocols seems like a
logical approach as it provides a certain transparency so that the physical location of the platform
deployments stop influencing as much the overall workflow of the applications.

29

3.1.2 message broker

Figure 3.3: Citibrain’s broker and brokerage nodes

In the second tier we have the message broker. Right now, our message broker is a machine-to-
machine instant messaging platform for the internet of things called Meshblu1.

Following Meshblu’s description, they provide a “secure, cross-protocol scalable cloud-based system
enabling communication between smart devices, sensors, cloud resources. . . ”[25]

This broker helps us by creating an instant messaging network and API. The API is available
through HTTP, WebSockets, MQTT and CoAP, which are widely used protocols in the Internet of
Things use cases. Meshblu also bridges the gap between devices that use different protocols allowing
for devices that support HTTP to communicate with devices that use CoAP.

Authentication of the sensors and gateways is also taken care of by the broker, which maintains a
JSON description of the devices in the device directory.

When a device registers into the Meshblu server, it will be assigned a pair of authentication and
identification parameters, which are “meshblu_auth_token” and “meshblu_auth_uuid”, respectively.
These fields are necessary in every request to the broker, after the registration. If the device performing
the request cannot be identified and authenticated, no request will be processed. This means that at
the registration, the devices will be responsible for storing their credentials for future interactions.

Additionally, Meshblu allows for discovery and query of devices as well as the subscription to
messages being sent to or from devices (very useful for tracking sensor activities).

The broker is the component that receives the sensor updates from the gateways and then is
in charge of authenticating who sent the message and filter them, according to their type (waste,
environment. . .), to the brokerage nodes.

1https://meshblu.readme.io/

30

Right now, this message filtering is done by scanning one field of the content received on the
requests. A field called “devices” stores a unique identifier that corresponds to one of five areas:

- Parking sensor devices;
- Traffic sensor devices;
- Waste sensor devices;
- Air sensor devices;
- Water sensor devices.

Each one serves a specific vertical solution in the Citibrain platform. So, “devices”: “df5b2380-
7a4d-11e4-bff6-ffd7eef4967c”, means that the device that triggered the message is a parking sensor and
that this information belongs to the parking solution use-case.

3.1.3 core components

Figure 3.4: Citibrain’s core components

From the brokerage nodes, the events and messages are placed into their respective queue. Each
queue represents a segment of the platform. That means that we have one queue for waste events,
another one for parking, environment and traffic. Said message queues are very useful mainly to improve
the overall scalability of the platform by helping with the load distribution and the asynchronous
message processing.

31

These queues are powered by the RabbitMQ technology which implements the Advanced Message
Queueing Protocol[29]. RabbitMQ allows the messages to arrive to their destination in the correct order
to maintain the information consistency and provides message delivery guarantees like at-most-once
and at-least-once.

This is also the stage where the logging and system-wide user authentication is done.

Ubiwhere is also doing extensive research on our IFTTT feature, which is also being subject of
a Master’s degree dissertation that is being taken into development by Eduardo Duarte along with
the University of Aveiro. This feature goes hand in hand with our CEP engine. This engine combines
data, like sensors’ events and messages, from multiple resources and infers patterns. These patterns
are used to act and respond to the identified problems as quickly as possible.

3.1.4 backends & APIs

Figure 3.5: Citibrain’s backends and APIs

This is where the verticals are differentiated. Each backend receives information from its respective
queue and processes it.

The information is accessible from other applications through their APIs. They allow for the
retrieval of asset and events informations as well as the registration and edition of assets.

32

3.1.5 client applications

Figure 3.6: Citibrain’s client applications

Finally, we have web portals where we can manage and view the information regarding the different
vertical solutions. We’ve also built a unified control center that is a centralised web portal to control
the different settings of the overall platform.

The Citibrain APIs make it possible to build applications that make use of this real-time information
provided by the users.

An example of it is an smart parking application developed in Ubiwhere that lets the user know
which parking spots are available and which are not.

33

Figure 3.7: Citibrain’s mobility API serving parking information to app

When selecting a parking spot, the app will tell the user if it is available or occupied and provide
directions to its location.

The above application is just an example and a use case for the available APIs.

34

3.2 hypercat interoperability

3.2.1 reasons to support hypercat
Hypercat was used in order to build a wrapper to a set of APIs that were created to serve the

Citibrain’s services.

These APIs serve information about parking, traffic, environment and waste. They are used to
provide services such as informing someone that the waste bins are full or giving the municipalities
information about traffic in their cities.

So, these services can be enhanced if they provide a discoverable way to share the information. The
intention is that this information enables the communication in a standard way. As it was discussed
earlier, there is no standard way. The idea here is to provide an alternative and support multiple
standards.

3.2.2 solution
With that in mind, the solution found was to implement a Hypercat server that serves the

information requested from the APIs in the Hypercat specification and performs the Create, Read,
Update and Delete (CRUD) operations of the desired items.

The Hypercat server gets the request and, depending on the desired operation, serializes the data
received into or from a compliant Hypercat catalogue.

Figure 3.8: Citibrain data translation into/from the hypercat specification

Essentially there are two types of data that we want to manipulate: Events and Assets.

Assets are mostly sensors and Events are notifications of the state change of an asset. The desired
operations for this Hypercat server are to list event and asset information and also register and update

35

assets. There is no point in inserting and editing events because they are triggered by the assets’ state
change.

By using this implementation, we are able to support architectures using the Hypercat standard
while not taking the risk of migrating all the interaction with our system to it and interfering with the
work done until now, which uses the proprietary data model.

Figure 3.9: Citibrain architecture diagram after the hypercat wrapper implementation

36

3.2.3 implementation and tests

Figure 3.10: Citibrain’s Hypercat API GET methods

The above image reflects our APIs GET methods. These cover all the Citibrain’s vertical solutions
for operations involving events and assets. Asset related methods also support POST and PUT method
which correspond to asset creation and update, respectively.

Every Hypercat server is required to have a “/cat” endpoint where the API is described. This is
mandatory in the implementation and its goal is to make the rest of the endpoints discoverable by
other machines.

With this in mind, it is likely that the response contains references to the other API Uniform
Resource Locator (URL)s so that they are quickly accessible. It also features a human readable
description in English and other languages are also supported but not mandatory.

The JSON serialized data in Appendix A represents a response from the "/cat" HTTP method in
the Citibrain API. A snippet can be found below.

{
"catalogue-metadata": [

{
"val": "application/vnd.hypercat.catalogue+json",
"rel": "urn:X-hypercat:rels:isContentType"

},

37

{
"val": "Citibrain Hypercat Catalogue",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
],
"items": [

{
"href": "/cat/parking/assets/",
"item-metadata": [

{
"val": "application/parking_assets",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Parking Assets",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/parking/events/",
"item-metadata": [

{
"val": "application/parking_events",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Parking Events",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},

. . .

]
}

The "items" array is a collection of all the endpoints available in this server that obey the Hypercat
specification. Every “items” object has two mandatory fields:

- "href" : The Uniform Resource Identifier (URI) to the desired Hypercat endpoint. It refers to a
further catalogue;

- "item-metadata" : Metadata of the resource which provides a human readable description and a
content type to be recognised by other machines.

38

When there is a request to one of the items’ href URLs, it will trigger a request to the actual
Citibrain API. After getting the response that is serialized in a proprietary fashion, it is transformed
into a Hypercat format response so that the data provided by the mobility backend is interoperable
with Hypercat supporting devices.

As an example, accessing the “/cat/parking/assets” endpoint returns the Hypercat formatted
JSON response in Appendix B. A snippet can be found below.

{
"items": [

{
"i-object-metadata": [

{
"val": "application/asset",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "30-0001",
"rel": "urn:X-hypercat:rels:hasDescription:en"

},
{

"val": "",
"rel": "additional_fields"

},
{

"val": "30-0001",
"rel": "uuid"

},
{

"val": "True",
"rel": "is_active"

},

. . .
]

}
]

}

It is noticeable that the responses show a pattern. All the Hypercat messages come in the form of
catalogues of information. By showing consistently the same message structure, it becomes easier for
machines to “predict” what to expect and to handle the information in the best way possible.

Again, there’s a content type field specifying what the catalogue is actually characterising, in this
case an asset, that is a general object on all the verticals. The human readable description shows
what asset is being listed (30-0001). Other dictionaries in the object’s metadata correspond to the real

39

attributes of the resource being specified by the catalogue like, for example, the UUID, location (split
in latitude and longitude), type, among others.

To better illustrate the process and the data transformation, an example is given where a parking
request is performed to the Hypercat server.

Figure 3.11: Parking events request

Figure 3.11 serves to demonstrate the serialisation of the Citibrain data into the required Hypercat
specification. The original data undergoes quite a bit of processing, being because of this reason a
rather slower operation. On top of that, there is an additional overhead of performing, in fact, two
HTTP requests for each operation. The original one for the Hypercat API and the one performed by
the actual server to one of the vertical’s APIs.

The Hypercat catalogue is actually very large in terms of content when compared to the original
data. But it is the necessary price to pay for discoverability. The reason behind it is that the attributes
need to be announced in order to become discoverable by other machines. In this format other machines
supporting Hypercat know what to expect from the messages and have the ability to parse through
the items metadata to, hopefully, be able to understand what that attribute actually means and how
it is presented.

40

3.2.4 benchmarks
To benchmark the Hypercat server, it was decided to perform a series of the same operation using

nothing but the proprietary Citibrain API and then exactly the same operations were executed via the
Hypercat interface.

It is to be reminded that every method of the Hypercat API requires a call to the Citibrain one.
Knowing this, it expected that every Hypercat method takes a longer time interval for processing.
Additionally, as the proprietary data is converted into the required Hypercat format, the transformation
time also makes this request more expensive.

Figure 3.12: Time spent processing a Hypercat GET request in comparison to Citibrain

Figure 3.12 proves the reasoning above. The expected behaviour is displayed in the graph. It is
visible that the majority of the Citibrain’s API requests take less processing time than the Hypercat
requests.

However, in this particular situation the Hypercat server was being executed on the machine’s
localhost. This means that a lot of the delay of the client’s API call is not taken into account in these
requests, as it would in a regularly deployed platform. This means that the Hypercat requests can be
slower when the system is deployed in a regular server instead of a local machine where the actual
request is also being executed.

In this case, the overhead percentage that the Hypercat requests have when compared to the
regular Citibrain ones is roughly 14% on average.

41

Figure 3.13: Time spent processing a Hypercat POST request in comparison to Citibrain

Above, it is shown what happens with HTTP POST requests. Requests made to the Hypercat
server are roughly as expensive as the ones made directly to the Hypercat server, in terms of processing
time.

Hypercat’s requests peaks are slightly more expensive but the difference is not very significative.

42

3.3 fiware support

3.3.1 fiware at ubiwhere
Ubiwhere is one of the early adopters of the FIWARE’s standards in its Citibrain consortium and

smart city solutions. By making our systems compatible and compliant with the FIWARE specifications
we are enabling the interoperability of all devices that also use this European Union supported IoT
enablers.

Taking by example Porto and Santander, two cities that are supporting and making their data
available according to FIWARE’s rules:

One is able to prepare applications and whole architectures to work in Porto, which is more
convenient due to Ubiwhere’s geographical situation, configure it, deploy it and test it there and,
afterwards, take it to Santander and deploy it with zero effort. This happens because the data that is
distributed in each city obeys the same rules and is propagated in the same way. Our backend service
is developed once taking into account these directives and then just deploy it in any city that supports
FIWARE.

In this case it was only being referred the high level information availability through public APIs.
This information is listed using the NGSI specification but this is not the only enabler that FIWARE
has to offer.

According to the organisation’s website they provide a “rather simple yet powerful set of APIs
that ease the development of Smart Applications in multiple vertical sectors.”

Some of the most relevant “pieces of the puzzle” for Citibrain include the above mentioned NGSI
10 API specification that is used on the northbound of systems to disseminate the knowledge obtained
by the whole backend, the IDAS that handles everything related to device management and the Orion
context broker that bridges the gap between the devices and the northbound API, sitting right in the
middle of IDAS and the NGSI 10 API.

As a proof of Ubiwhere’s involvement in the dissemination of FIWARE’s ideologies, the organisation
itself published an article[13] where it details the project.

“As one of the first cities that joined the Open and Agile Smart Cities (OASC) initiative back
in March this year, Porto has been a pioneer city adopting FIWARE standards with the support of
Ubiwhere, a Portuguese company experienced in the development of middleware and platforms.”OASC

“The Future Cities Project is a partnership between the University of Porto and the City Council
aiming to create a Competence Centre for Future Cities in the city of Porto. Together, but also with
the participation of the Citibrain joint-venture, the city of Porto and Ubiwhere have developed the
interfaces bringing access to real-time, contextual environmental data from 75 fixed and mobile units
(monitoring stations) located across the city. The data is augmented by scanners installed on the city
Council’s 200+ fleet of vehicles, creating a large-scale mobile scanner. External providers like the
city’s water supplier, transport data providers, social media data and business startup statistics are all
plugged in to the platform to allow the city itself to guide you as you explore, travel, and work.”OASC

“Following the steps taken by Porto, and again with the support of Ubiwhere, several other
Portuguese cities (e.g. Águeda, Aveiro, São João da Madeira and Torres Vedras) are starting to provide
real-time data on mobility/ transportation and environment.”OASC

Ubiwhere is the main force thriving to standardise the IoT world and working towards a truly
interoperable smart city scenario. This is being done by creating several testbeds in different cities in

43

order to test the detachment of the platform to the data we use, meaning that one platform should
work seamlessly in different cities.

{
"contextElement":{

"attributes":[
{

"type":"coords",
"name":"coordinates",
"value":"41.1579, -8.58516",
"metadatas":[

{
"type":"string",
"name":"location",
"value":"WGS84"

}
]

},
{

"type":"datetime",
"name":"date",
"value":"2016-04-08T07:15:18.000000Z"

},
{

"type":"integer",
"name":"distance",
"value":"215"

},
{

"type":"integer",
"name":"hdop",
"value":"10"

},
{

"type":"float",
"name":"latitude",
"value":"41.1579"

},
{

"type":"float",
"name":"longitude",
"value":"-8.58516"

},
{

"type":"integer",

44

"name":"movement",
"value":"1"

},
{

"type":"integer",
"name":"speed",
"value":"12"

},
{

"type":"string",
"name":"vehicle",
"value":"a1bb8a923iw8jcellqk10xo9sjamsndj2j283sisjcem1qsa9xo"

}
],
"type":"TrafficEvent",
"id":"a1bb8a923iw8jcellqk10xo9sjamsndj2j283sisjcem1qsa9xo",
"isPattern":"false"

},
"statusCode":{

"code":"200",
"reasonPhrase":"OK"

}
}

Above is an example of the data that the city of Porto is making available to developers. It is
according to the NGSI specification and, as we can see, it translates into a traffic event. By this, the
developers have information of what vehicle triggered this event, the speed that it was going at, its
position, among other data.

But this is just an example of the resources that are public. An API like this is extremely useful to
enable smart city application developers build their software and make the city a livable and friendly
as possible for the citizens.

45

Figure 3.14: FIWARE Porto’s demo

For demonstration purposes, a small web app was built using this data that Porto publicly publishing
on the web. The app featured a map that showed the information of traffic and environmental elements.
The user was able to see where in the city were these sensors and, by clicking on them, its information
and measurements were displayed in real-time. It needs to be reminded that, as this app is working in
the city of Porto, it can work anywhere that supports the NGSI API specification.

3.3.2 ngsi at citibrain
In the Citibrain platform, we have every interest in supporting such an API specification. By

doing so, it enabled the deployment of our solutions wherever there are already apps working with this
standard. Not only this but installing Citibrain solutions in a city means that every app built around
the FIWARE specification is able to be ported very easily into that city.

This portability means that if some developer is having a huge success with his smart city solution,
he is able to scale his application quickly. If some municipality is having a huge success in saving
water due to a system that takes the city’s water data, that same system can be made available to
their neighbours, their neighbour’s neighbours and so on. This is the ultimate achievement and the
true consequence that defines the concept of interoperability, and is what we, the developers and the
citizens, hope to have one day. Obviously, this is not going to solve all the problems. It will only work
with FIWARE compliant platforms but it is an initiative and at Ubiwhere, the goal is to future-proof
the platform making it “talk and understand” every language we can.

By making the platform “talk” NGSI, we are already making our data available in three formats:

- Proprietary;
- Hypercat;
- NGSI.

And like so, the company is competing in three leagues. No one knows which “standards” are
going to persist, so the best bet is to try and understand them all so the platform does not become

46

obsolete, no matter what the future looks like.

Figure 3.15: Vertical APIs exposing NGSI nodes

The figure shows a slightly different implementation from the Hypercat implementation to the
NGSI one. This is because the Hypercat wrapper is literally a proxy server that receives Hypercat
requests, serializes the information into Citibrain’s proprietary specification and interacts with the
proprietary APIs, while the NGSI endpoints are a Django add-on that is used by the own APIs to
expose different methods.

3.3.3 idas at citibrain
IDAS is a rather interesting component. It enables the interaction with devices using different

communication IoT protocols like HTTP, LwM2M and MQTT. That’s a good thing but the Meshblu
broker that is being used in Citibrain already supports HTTP, MQTT and CoAP. So, maybe it could
be useful using IDAS for adding the LwM2M device compatibility that we want to have.

Knowing this, some experiments with IDAS started being made. The official FIWARE code
repository was used to perform these experiments. Two main repositories exist that implement the
IDAS behaviour. One for the LwM2M support and the other one to offer compatibility for HTTP
and MQTT devices. Having no interest, for now, on the HTTP or MQTT we went with the LwM2M
version of the code base.

The description of this component (OMA Lightweight M2M IoT Agent):

47

“An Internet of Things Agent is a component that lets groups of devices send their data to and
be managed from a FIWARE NGSI Context Broker using their own native protocols. This project
provides the IoT Agent for the Lightweight M2M protocol, i.e. the bridge between OMA Lightweight
M2M enabled devices and a NGSI Context Broker.”

In other words, it provides the possibility of LwM2M devices communicating with the FIWARE’s
context broker.

So, after studying these facts and having good knowledge of what IDAS actually is, it was decided
to run a small experiment. It consisted in deploying an IDAS instance, creating a regular LwM2M
client and trying to register the client into the device manager. For this it was used a completely
independent library, not affiliated with FIWARE in any way, that gives us the ability of creating a
LwM2M client and perform the supported operations according to the OMA specification.

Figure 3.16: LwM2M client creation

Here, the client creation is demonstrated, using a node.js library. It is also defined the resource
with the “/100/1” URI just to see what happened when this request got to the IDAS instance. The
next step was to register the client into the server, meaning, IDAS.

The registration is done successfully into the device management system.

Figure 3.17: IDAS receiving a registration request successfully

48

However, it breaks when trying to send that same information to the Orion Context Broker because
we didn’t connect one to its northbound.

Figure 3.18: IDAS reporting an error due to the fact that it can’t find the Context
Broker

Figure 3.19: IDAS client registration flow

So, the conclusion wast that the system really does not need IDAS at the southbound of Citibrain.
The reasons for that are:

- Meshblu, the platform’s broker, handles the device management;
- Citibrain’s core architecture does not use the Orion Context Broker.

IDAS handles the IoT protocols and feeds the information in them in the NGSI format to the
Orion Context Broker. Meshblu doesn’t need the context information in the NGSI specification. As
long as we can provide that same format in the northbound to external applications, the data format
we use while communicating between different components of our architecture becomes transparent to
the developers. In other words, Meshblu already supports HTTP and MQTT. The only advantage
IDAS would bring the platform would be the LwM2M support but with the drawback of having to
change our message broker, which would mean altering the core architecture quite a bit.

In the next chapter it will be explained how the LwM2M support was achieved on the platform.

3.3.4 implementation and tests
In the end, it was decided that the real need was for the platform to support FIWARE’s NGSI in

its northbound. This means that out platform will be usable by any application that’s is built with its
basis on the FIWARE NGSI 10 API specification.

Integrating this feature in our APIs means one more interoperability point between Citibrain and
smart city application developers.

For this purpose, new endpoints were exposed in the already existing APIs.

All the URLs available in the {domain}/NGSI10/{. . . } are obeying the NGSI 10 specification. It
was not implemented in the same way as the Hypercat wrapper but rather like the original proprietary

49

Figure 3.20: Waste event response
in proprietary format

Figure 3.21: Waste event response
in NGSI format

APIs, this way eliminating the existing overhead of the two HTTP requests that exist in the Hypercat
solution.

As an example, two responses from different endpoints are listed above in figure 3.20 and 3.21.

They roughly correspond to the same request in the sense that they carry the same attributes in
their payload and developers can extract identical information about the waste event that they are
characterising.

Technically, achieving this implied implementing a new Django app. The waste API was built
in Django, so it was only logical to follow the same approach. This app was built in the waste API
project. It could be done in the same app or even in the same file where the original interface is
specified but, for the sake of clearness and organisation, it was decided that a separate app would suit
our needs the best.

50

3.3.5 benchmarks
For this subsection, a benchmark was performed where one hundred requests were performed to a

Citibrain API endpoint and another one hundred to an NGSI endpoint.

Both requests were very similar as they’re goal was to list one event’s attributes. One in the
proprietary JSON format and the other obeying the NGSI specification.

It is not expected a big difference in the time intervals that both requests take to process. Unlike
what happened in Hypercat, in this case there are no additional overheads in comparison to the
proprietary implementation so the processing cost should be similar.

Figure 3.22: Elapsed time on HTTP requests to the Citibrain API endpoints in
comparison to NGSI endpoints

It is somewhat surprising to discover that the NGSI implementation is actually faster that the
original Citibrain one. As the graph shows, there is not much of a difference (roughly 20 ms) but the
NGSI requests always seem to be faster.

One reason for this can be the implementation of both. The original API is built with the support
of the Django Rest Framework, while the NGSI also is but very few features of that framework are
used and a part of the necessary implementation is actually overridden to display the data in the NGSI
format, which may save quite a bit of processing time.

On average, the NGSI requests are 28% faster than the regular Citibrain ones.

51

3.4 LwM2M support

3.4.1 experiments
Experimentations started with a Java library that implements a LwM2M server and client. The

project is called Leshan and is hosted by the Eclipse Foundation[30].

A big feature that this implementation provides is a demo web portal which makes the LwM2M
connections easily visible. It also allows client subscription and information query for a variety of fields.

Figure 3.23: Leshan server detecting the LwM2M client

Figure 3.24: Leshan server reading/subscribing client’s resources

The above images show the most relevant LwM2M features for our architecture which are device
registration and resource observation and reading.

Breaking this experiment into pieces, it contains:

- A LwM2M server running;
- A LwM2M client named “Ivos-Macbook-Pro.local”; - The client registers into the server and

appears in the connected clients list displayed in figure 3.23;
- Scanning the LwM2M object specification, the server is able to query for certain resources of the

client and know what they mean;
- The server has five available operations to act in the clients, which are observing, reading, writing,

deleting and executing;

52

- Tapping the observe command on the instance makes the server observe all the available resources
of that client.

The Leshan demo worked but both the client and the server integrated seamlessly and, being built
in the scope of the same project, they should. To go a bit further and have more control over the
whole device registration/creation part, it was decided to test the same exact server with a completely
different implementation of a LwM2M client built with Node.js.

Doing this experiment helped to know if the LwM2M protocol is truly outlined and implementation-
agnostic as well as how things are done “under the hood”. Many things appeared on the Leshan screen
but, if we want to implement it in the company’s platform, a good knowledge of the core workflow is
needed.

Going from the LwM2M node.js library, the test was started by tweaking the client implementation
slightly by making it register in the port in which the server was listening, the same address, among
other slight modifications.

In the beginning, a LwM2M client was created and some resources were assigned to it.

Figure 3.25: LwM2M client creation and resource assignment

In the above image, it is shown the following resources being created:

- “/1/1/student”: “ivo”;
- “/1/1/company”: “ubiwhere”;

53

- “/1/1/thesis”: “IoTStandardsForSmartCities”.

This was a very valuable experience because it was when it was discovered that LwM2M’s URIs
don’t support non-numerical characters. So when this client device was registered into the Leshan
server, the registration was concluded perfectly but, however, no resources were recognised. Here was
the right moment to dive into the LwM2M object specification. It was learned that one LwM2M server
only recognises attributes that are in its object specification file.

Concluding, this experiment was very insightful as it showed us how LwM2M servers handle the
reading of resources from its clients and how can we make the clients’ resources known to the servers.

Afterwards, it was clear to understand how the server processes the messages that arrive to him.
This enabled capturing the received LwM2M messages and paved the way for the first integration
approach.

3.4.2 first approach

Figure 3.26: LwM2M first approach

The first approach was to ease the integration process by installing a proxy LwM2M server. The
idea behind this was to make this proxy server receive the LwM2M specific requests and messages,
parse them to build a similar message to one that the HTTP server would receive and forward it to
out meshblu message broker as a regular HTTP request.

However, this approach could have been better planned and executed as I was not familiar with
how the LwM2M standard and CoAP protocol worked at the time.

54

Firstly, we acknowledged that Meshblu does not take advantage of CoAP’s main selling features
when compared to HTTP, such as clients’ observation on behalf of the server. The biggest benefit of
using CoAP instead of HTTP is that the server has the possibility to subscribe to the client’s resources.
Each time the client’s (sensor’s in our case) attributes are modified, the server gets notified and acts
accordingly. Allied to the fact that CoAP is better suited for low-power devices, it would be a shame
not to use it to its full potential.

In Meshblu’s situation, this does not happen. The devices use CoAP to communicate with Meshblu
in an HTTP style. Every time there is a change to be made in a device, the device itself has to POST
a request to change its attributes in the broker. This is a rather ineffective way of doing things.

Knowing this, it would be profitable to take advantage of CoAP’s advantages and make the least
amount of changes we could in the broker that was already being used. The goal is to not break
features that we have already have in production and add LwM2M support in the most unobtrusive
way possible.

3.4.3 integration with meshblu

Figure 3.27: LwM2M integration in Meshblu

With the updated approach, CoAP’s advantages in contrast with HTTP were a possibility.

Citibrain uses Meshblu to “talk” with the devices at its Southbound, this means that the most
critical communication for us is between the broker and the sensors.

The easiest process for this communication would be to register the devices in Meshblu and then
subscribe to all their resources. This method would make the implementation of LwM2M almost

55

transparent to the broker. Each sensor sends a “register device” request to Meshblu and it would be
done.

During the registration process, the broker is in charge of all the normal registering that occurs
with any other protocol and in the end it would just observe the device. Each time a sensor value
would update, our Meshblu instance would get notified and proceed to update its registry for that
device, being the attributes affected by the LwM2M notification up-to-date and available in all the
other protocols without interfering with the regular workflow that is already available in the production
phase.

3.4.4 citibrain’s object specification
LwM2M works in such a way that resources are accessed by their URI.

A typical LwM2M resource URI is usually defined by its object identifier, the instance identifier
and the resource identifier. This means that it is not possible at first sight to decipher what attribute
does the URI “/3/3/1” represent. For this purpose, there is the need of an object specification to map
resources into their specific URI.

The Open Mobile Alliance produced a specification with several generic objects that usually appear
in the problems LwM2M tries to solve. Although this specification is very broad and covers all the
major resources needed, it does not suit the system we being built.

We have some measurements from the sensors we use that are not covered by the OMA specification
and, beyond that, our broker needs to receive a series of arguments so that it knows what kind of
sensor is sending information, to what vertical solution does it belong. . .

Also, Meshblu handles all the device authentication and registration for the Citibrain platform.
This means that there are certain fields that are needed to prove the identity of the device trying to
send data to the broker. This is not a predicted use case in the object specification.

Our solution was to build our own specification. This translates roughly into something of what
can be seen in Appendix C. A small snippet is shown below.

{
"name": "waste_event",
"id": 7300,
"instancetype": "multiple",
"mandatory": false,
"description": "Description: Citibrain’s waste message spec",
"resourcedefs": [

{
"id": 7301,
"name": "name",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",

56

"units": "",
"description": "The name of the signal"

},
{

"id": 7302,
"name": "devices",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "devices type should be \"736421b0-e6a2-11e4-9715-7535251c3282\""

},

. . .
]

}

This reflects the LwM2M specification for a waste event. So, if a device was to be configured to be
registered in the broker as a waste sensor, it would need to have defined every attribute in the “7300”
object specification.

When the device registration is received by the broker, a message scan is performed and it is
discovered what the device actually represents and the resources that it is able to retrieve from it.

For example, if it is wanted to register a waste sensor, there will be the need of creating a LwM2M
client that contains an object id “7300”. The URI of this instance would be “/7300/x”, being x the
instance id of the device.

This client would need to define the resources that are within the waste event object specification.
To read a resource, the server needs to access the “/7300/x/y”, where y is a resource id. So the URI
“/7300/x/7301” corresponds to the name of the device.

One big problem with this approach, due to the state of the art, is that whenever a new attribute
needs to be added to a client, it is absolutely required that the object specification is also updated to
support it. There is no way for the server to discover the attributes that are being sent to him without
this context. This breaks the whole interoperability concept because, for example, if you want to start
using different sensors that support different kinds of resources (or even the same resource specified
in some other format), the server is not able to know what changed and what is the URI that it is
receiving. There are some efforts being made (involving machine learning) in order to fix this issue but
they are still in a premature state and not ready to be deployed in production environments like ours.

57

3.4.5 communication flow

Figure 3.28: LwM2M registration flow

The first step is having the client send a register command to the server, which in Citibrain’s
case is a Meshblu message broker instance. This message contains valuable client information like its
address, the port from which the client is communicating (this will be useful), LwM2M’s object id and
instance id, client lifetime, LwM2M version, among other data.

Receiving this message, the server gets the client’s object id and scans the object specification for
it. By doing so, the server is “discovering” what the client actually is and resources that it is able to
provide. After this discovery, we are able to generate the same JSON-serialized content that would be
stored in an HTTP device register request. This enables us to register a LwM2M device exactly in
the same way that we are currently doing, meaning by this that every device’s would be accessible
through meshblu’s northbound API, independently of how this device was created.

When the device is created, Meshblu generates its required authentication and identification tokens
for that device. This is the point where a new problem arises. There is the need to process how will
Meshblu authenticate the client and where will we store these credentials.

Every time there is a change to be made in a device, the broker needs the credentials to validate
the device that it is trying to update. These are necessary for every interaction after the registration.
CoAP and LwM2M offers servers the ability to write values in the clients resources. For this situation,
this feature becomes very interesting.

58

Figure 3.29: LwM2M registration flow saving the Meshblu’s credentials

To do this there is a need to define new resources in the object specification so that the server
knows where to write the credentials in the client, during the registration process, and where to read
from when the client’s credentials are needed to perform certain operations.

{
"name":"waste_event",
"id":7300,
"instancetype":"multiple",
"mandatory":false,
"description":"Description: Citibrain’s waste message spec",
"resourcedefs":[

...

{
"id":7308,
"name":"meshblu_auth_uuid",
"operations":"RW",
"instancetype":"single",
"mandatory":false,
"type":"string",
"range":"",
"units":"",

59

"description":"meshblu authentication uuid"
},
{

"id":7309,
"name":"meshblu_auth_token",
"operations":"RW",
"instancetype":"single",
"mandatory":false,
"type":"string",
"range":"",
"units":"",
"description":"meshblu authentication token"

}
]

}

Now that the broker’s authentication fields are supported by the client, the server is able to read
and write them at the appropriate times.

The next step is to make the server observe the desired client resources so that, whenever a client
updates a certain attribute, the server is notified and maintains its device registry updated.

Figure 3.30: LwM2M object observation

For example, if our LwM2M client has a parking sensor monitoring a certain parking spot, the
server doesn’t need to query the client in order to know if the parking spot is empty or not. Whenever
the parking situation changes, our broker will get notified and proceed to forward this information to
it northbound (APIs used by applications, IFTTT engines, and other components).

60

So, if the resources of the clients are observed when they register into Meshblu, no more major
operations are necessary to keep the object up-to-date, other than handling the observe notifications.

The process of handling the notifications includes being able to read the authentication resources
that were written by the server in the registration process so that the device is identified against the
existing Meshblu architecture.

Figure 3.31: LwM2M complete message flow example for parking sensor

Very briefly, the interaction begins with the device’s registration. After the device is registered
in the server, Meshblu emits two authentication fields which are then written to a client resource.
Next, Meshblu will observe the resources that are interesting to follow. This completes the registration
process.

When one of the observed resources changes its value, the server will receive a notification. The
notification handler will then proceed to read the mandatory credentials from the client, in order to
authenticate the device, and only then will it update the device registry with the new value.

3.4.6 tests
The tests performed covered a range of three LwM2M operations. They are device registration,

that happens when it is wanted for a device to be recognized by Meshblu, device observation, which is

61

done right after the registration and the resource update that is executed every time the server receives
a value change notification.

3.4.6.1 device registration
In this section, the main goal is to demonstrate the process of registering a device into the Meshblu

message broker using the LwM2M protocol.

The present example will show a Citibrain water leakage sensor being created and registered in
the server.

First, the object specification for the sensor is shown bellow.

{
"name": "Citibrain Water Leakage",
"id": 7100,
"instancetype": "multiple",
"mandatory": false,
"description": "Description: Citibrain’s water leakage message spec",
"resourcedefs": [

{
"id": 7101,
"name": "name",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "The name of the signal"

},
{

"id": 7102,
"name": "devices",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "devices should be \"WATER_TARGET_UUID\""

},
{

"id": 7103,
"name": "device_type",
"operations": "R",

62

"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "The type of the device that’s sending the message"

},
{

"id": 7104,
"name": "water_flow",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "integer",
"range": "",
"units": "",
"description": "Water flow measurement of the sensor"

},
{

"id": 7105,
"name": "uuid",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "Meshblu device uuid"

},
{

"id": 7106,
"name": "token",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "Meshblu device auth tokens"

}

]
}

According to it, the LwM2M client needs to have an object with the id “7100” in order to be
identified as capable of giving water leakage measurements. Following this logic, a client was created

63

with that same object id and the instance id “1”. This results in the “/7100/1” object URI.

Figure 3.32: LwM2M client creation and registration.

The Meshblu server receives the registration message and, with the help of the object specification,
builds the same structured JSON data as what is stored via an HTTP registration. After saving this
data in the meshblu platform, the authentication and identification credentials are generated. These
will be needed for every operation that the device requests to the server.

Figure 3.33: Meshblu registering the device and printing the generated device UUID
and authentication token.

Right after the registration operation happens, the device’s credentials are written into the device.
This is a big “bonus” that LwM2M offers: being able, from the server, to write into the client’s resources.
These values will not be written in any resource chosen by chance, but in the ones "programmed" in
the object specification according to the object id.

64

Figure 3.34: Client’s Meshblu credentials being written in appropriate resources.

In the end of this process, the client is finally able to communicate and update its values in the
server.

By checking all the defined resources for the clients, we can confirm that the server’s writing
operation was executed successfully.

Figure 3.35: Client’s resource value list.

For the final test, an HTTP request was performed to list all the devices stored in the Meshblu
broker. For this operation, the previously generated device UUID and authentication token are going
to be used. This test is able to demonstrate the interoperability and correct implementation of the
LwM2M registration flow.

65

Figure 3.36: Meshblu’s HTTP registered clients list method.

It is visible by the content of the response that the LwM2M device registration was performed
correctly. Otherwise, it would not even validate the request and would return an "Unauthorized"
message.

Not only that but the LwM2M device that was registered is displayed in the response and contains
all the attributes as described in the object specification for a water leakage sensor: "name", "devices",
"device_type" and "water_flow".

Some of these attributes are inside the "payload" JSON dictionary in order to mimic the current
format of the messages being used in the Citibrain platform in order to integrate this implementation
seamlessly.

3.4.6.2 device observation
After the registration process is completed, to follow the flow defined in section 6.5, the server will

observe the desired resources of the client. For our use case, the resources worth following are every
one that is listed in the object specification for that type of object with the exception of the Meshblu’s
attributed UUID and authentication token, which are constant.

In this particular situation, the server will observe the "name", "device_type" and "water_flow"
which correspond to the URIs "/7100/1/7101", "/7100/1/7103" and "/7100/1/7104" respectively.

66

Figure 3.37: Meshblu establishing an observer connection with the valuable client’s
resources.

From this point on, for every change to those resources that is made in the client, the server will
receive one notification.

3.4.6.3 resource update
However, Meshblu does not accept updates without validating the source of them. This validation

is done through the created credentials in the registration.
In the LwM2M case, these credentials are stored in client’s resources that can be discovered through

the object specification. This means that for every update that the server gets, there is the need to
identify and authenticate the device performing the notification before committing the changes.

In order to test this, a value was set in the "water_flow" resource to simulate a sensor reading, for
example.

Figure 3.38: A LwM2M client updating its "water_flow" resource.

In figure 3.38 it is understandable that the resource "/7100/1/7104" was updated in the client.
Being this resource an observed one, this triggered an notification in the Meshblu server.

67

Figure 3.39: Meshblu’s output for a device registration and following update.

The above image expresses the server’s "reaction" on the event of receiving the notification from
the client:

1. The updated value and the resource URI are received;
2. Server performs two read operations to fetch the UUID and authentication token from the

client’s resources;
3. Proceeds to update the device in its internal registry.
To further prove the viability of this implementation, one is able to check the device’s records

through other protocol, say HTTP for simplicity sake.

68

Figure 3.40: HTTP list devices request to Meshblu.

The registered device shows in the Meshblu device list and has the "water_flow" value that the
client just updated. With this implementation, now Citibrain is able to support LwM2M devices in its
Southbound.

3.4.7 benchmarks
Benchmarking the LwM2M implementation was rather difficult because there is no comparison

to be made whatsoever. The Meshblu registration via LwM2M is not just a regular operation as it
implies the actual registration and writing the authentication and identification values into the server.
When a client is updated, that implies the notification to the server, the reading of the credentials and
only then the actual submission of the updates.

However, it was decided to compare it in the best way possible to the HTTP version of the same
operations which is what the platform is actually performing right now.

69

Figure 3.41: Time elapsed registering devices into Meshblu via HTTP

Figure 3.42: Time elapsed updating devices into Meshblu via HTTP

Above, figure 3.41 and 3.42 illustrate the time spent registering and editing a device through
the HTTP endpoints provided by Meshblu. It is to be reminded that all the needed credentials and
tokens need to be placed in the request’s headers so that the server is able to authenticate the device
requesting the update. In the registration process, the credentials are returned and it is completely the
responsibility of the client to store them for further requests.

70

It is easily observable that an update operation takes roughly double the time of a registration
request, on average. A big part of this time is, most likely, spent on authenticating and retrieving
the desired device to update, while on the registration operation there is no need as the device in
non-existent at that point in time.

Below, the actual LwM2M benchmarks are shown.
One hundred registrations were performed by a LwM2M client to Meshblu and the time interval

was registered. Take into account that the time started counting in the moment that the device
initiated the request until the moment that the last server credential (UUID or authentication token)
was written into the appropriate resources of the client.

Figure 3.43: Time elapsed registering devices into Meshblu via LwM2M

The benchmark shows that the registration time is, on average, roughly the same as the HTTP
implementation (60ms). This implementation of LwM2M is based on CoAP which is a lighter protocol
when compared to HTTP. This can justify why, even performing two more operations (writing of the
credentials), the time elapsed does not increase.

On the update operation, again one hundred client updates were performed and the time was
taken from the moment when the server received the device update notification until the moment when
the changes were actually committed. Mind that the server’s reaction for receiving a client update is
to read that same client’s credentials, which means that between the notification reception and the
submission of the updates, two read operations are performed to the client.

71

Figure 3.44: Time elapsed updating devices into Meshblu via LwM2M

The information in the graph above shows that the average time elapsed on an update operation is
very similar to the one spent on the HTTP implementation, although in this case it was not possible to
track the time immediately since the notification is sent from the device but only from the point where
the server received the said notification. To be realistic, that time needs to be taken into account when
comparing to other implementations.

72

chapter 4
Open-source contributions
4.1 LwM2M

While developing our solution and using other libraries for testing purposes, I had the opportunity
to contribute to the official LwM2M Node.js implementation.

The problem I and other developers were facing was that, if a server was subscribed to client’s
resource, when the client updated its resource value, the server would get notified and get the updated
value. The issue here was that the server had no information about which client device changed some
property.

In other words, the server knew that someone had just updated a resource but didn’t know who.

My pull request aimed at solving this problem and it was something that the community was
also asking for, as there were other developers helping my pull request get accepted into the main
repository.

The accepted pull request can be found at:

- https://github.com/telefonicaid/lwm2m-node-lib/pull/99.

The previous pull request that generated somewhat of a discussion are at:

- https://github.com/telefonicaid/lwm2m-node-lib/pull/94;
- https://github.com/telefonicaid/lwm2m-node-lib/pull/97.

4.2 hypercat
During the dissertation period, the Hypercat format underwent a few revisions. The official python

repositories were not being updated so I took the chance to do it myself.

The pull requests can be found at:

- https://github.com/HyperCatIoT/python-tools/pull/1;
- https://github.com/HyperCatIoT/python-tools/pull/2.

73

4.3 fiware
For the Fiware NGSI implementation I fixed, tweaked and fully documented a Django REST NGSI

10 serializer. I also created a demo Django application that can be found in the repository to give an
example on how to use the library.

This library was used in the NGSI 10 implementation on Citibrain but it was also extensively
documented in order to be made available to the community in general but specifically at Smart City
Hackathons that will be supported by Ubiwhere. An example is "Hack-a-City" which, on the 27th
and 28th of May of 2016, occured in Amersfoort, Utrecht, Porto, Santander, Olinda and Recife. It is
essentially "a hackathon that aims to test big data and promotes its use to develop solutions that will
have an impact in the city" [31].

The library can be found at:

- https://github.com/Ubiwhere/django-rest-ngsi.

74

chapter 5
Conclusion

Figure 5.1: Overview of the Citibrain platform

In this very premature era for the Internet of Things, Smart Cities are a concept that is very well
thought out but not well executed. The execution lacks due to the state of the art and interoperability
issues. One true standard that every implementation follows does not exist and this fact imposes limits
in the communication between different ecosystems and platforms.

At Ubiwhere, the decision was to play it safe and be smart. If a true Smart City platform is to
be built and it is not known which IoT standard and protocols will persevere, then an effort needs

75

to be made in order to be prepared for whatever the outcome may be. It is not viable to implement
a platform with more features, different add-ons and that implies a lot of development effort before
paving the way for interoperability. Otherwise, if a new standard is pushed and adopted by the
industry, Ubiwhere is left with a useless great peace of software. It can truly be tremendously brilliant
but, all of a sudden, it becomes obsolete.

My master’s dissertation was the first step into making the Citibrain platform available for different
communication channels and supporting various information formats. The work done opens the door
for the platform to be understood by Hypercat and Fiware applications. In other words, Citibrain
can be used to disseminate information in the Fiware’s supported format, in a similar way to what is
happening in Porto and Santander, making it compatible with devices and applications that already
are consuming and producing the said information.

Hypercat is becoming widely popular among companies in the United Kingdom, so that becomes
a market where Ubiwhere is able to test the product.

On the other end of the platform, on its Southbound, Citibrain is now able to support LwM2M
devices which is a communication protocol built specifically with IoT devices in mind, being a
lightweight (hence the name) alternative to heavier protocols such as HTTP which was used in every
communication in the ecosystem.

5.1 future work
There is still a lot that can be done to future-proof the platform. MQTT is also a very interesting

communication protocol to support in the lower end of the system. It is already supported by Meshblu
but has various limitations so it would become a promising investigation to dive into that subject.

It can also be interesting to experiment with Ponte by Eclipse. Their architecture provides HTTP,
CoAP and MQTT servers that communicate with storage engines and publish subscribe brokers. Ponte
can be a good alternative to the Meshblu broker being used right now in Citibrain. It brings to the
table the same protocol support with the benefit of having better MQTT specification coverage. Along
with that, it is also implemented with Node.js so adding LwM2M support should not be very different
from the Meshblu’s implementation.

76

chapter 6
Appendix A

6.1 citibrain’s hypercat “/cat” method response
{

"catalogue-metadata": [
{

"val": "application/vnd.hypercat.catalogue+json",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Citibrain Hypercat Catalogue",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
],
"items": [

{
"href": "/cat/parking/assets/",
"item-metadata": [

{
"val": "application/parking_assets",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Parking Assets",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/parking/events/",
"item-metadata": [

77

{
"val": "application/parking_events",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Parking Events",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/waste/assets/",
"item-metadata": [

{
"val": "application/waste_assets",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Waste Assets",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/waste/events/",
"item-metadata": [

{
"val": "application/waste_events",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Waste Events",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/environment/assets/",
"item-metadata": [

{
"val": "application/environment_assets",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Environment Assets",

78

"rel": "urn:X-hypercat:rels:hasDescription:en"
}

]
},
{

"href": "/cat/environment/events/",
"item-metadata": [

{
"val": "application/environment_events",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Environment Events",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/traffic/assets/",
"item-metadata": [

{
"val": "application/traffic_assets",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Traffic Assets",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

},
{

"href": "/cat/traffic/events/",
"item-metadata": [

{
"val": "application/traffic_events",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Traffic Events",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

}
]

}

79

chapter 7
Appendix B

7.1 citibrain’s hypercat “/cat/parking/assets”
request response

{
"items": [

{
"i-object-metadata": [

{
"val": "application/asset",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "30-0001",
"rel": "urn:X-hypercat:rels:hasDescription:en"

},
{

"val": "",
"rel": "additional_fields"

},
{

"val": "30-0001",
"rel": "uuid"

},
{

"val": "True",
"rel": "is_active"

},
{

"val": "N/A",

81

"rel": "last_activity"
},
{

"val": "-8.59954833984",
"rel": "longitude"

},
{

"val": "40.7510375977",
"rel": "latitude"

},
{

"val": "sensor",
"rel": "type"

},
{

"val": "",
"rel": "parent_asset"

},
{

"val": "sensor1",
"rel": "name"

}
],
"href": "30-0001"

},

...

],
"item-metadata": [

{
"val": "application/vnd.hypercat.catalogue+json",
"rel": "urn:X-hypercat:rels:isContentType"

},
{

"val": "Citibrain Parking Assets Hypercat Catalogue",
"rel": "urn:X-hypercat:rels:hasDescription:en"

}
]

}

82

chapter 8
Appendix C
8.1 LwM2M waste event specification
{

"name": "waste_event",
"id": 7300,
"instancetype": "multiple",
"mandatory": false,
"description": "Description: Citibrain’s waste message spec",
"resourcedefs": [

{
"id": 7301,
"name": "name",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "The name of the signal"

},
{

"id": 7302,
"name": "devices",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "devices type should be \"736421b0-e6a2-11e4-9715-7535251c3282\""

83

},
{

"id": 7303,
"name": "device_type",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "string",
"range": "",
"units": "",
"description": "The type of the device that’s sending the message"

},
{

"id": 7304,
"name": "status",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "integer",
"range": "",
"units": "",
"description": "Status of the sensor"

},
{

"id": 7305,
"name": "distance",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "integer",
"range": "",
"units": "",
"description": "Distance to full"

},
{

"id": 7306,
"name": "temperature",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "integer",
"range": "",
"units": "",
"description": "Temperature of the sensor"

},

84

{
"id": 7307,
"name": "movement_detected",
"operations": "R",
"instancetype": "single",
"mandatory": true,
"type": "integer",
"range": "0-1",
"units": "",
"description": "Movement detected at the sensor"

}
]

}

85

Bibliography
[1] F. Group, “The internet of things in the cloud”, no. December, 2013. doi: 10.1201/b13090.

[2] What you need to know about iot. [Online]. Available: http://www.business.att.com/
content/whitepaper/what-you-need-to-know-about-IoT.pdf.

[3] Loon for all – project loon – google. [Online]. Available: http://www.google.com/loon/.

[4] Google x confirms the rumors: it really did try to design a space elevator | fast company |
business + innovation. [Online]. Available: http://www.fastcompany.com/3029138/world-
changing-ideas/google-x-confirms-the-rumors-it-really-did-try-to-design-a-
space-elevat.

[5] In-depth: top 10 internet of things companies to watch. [Online]. Available: http://www.
rcrwireless.com/20151130/internet- of- things/in- depth- top- 10- internet- of-
things-companies-to-watch.

[6] The internet of things. [Online]. Available: http://www.cisco.com/c/dam/en%7B%5C_%7Dus/
solutions/trends/iot/docs/iot-aag.pdf.

[7] Core framework | allseen alliance. [Online]. Available: https : / / allseenalliance . org /
framework/documentation/learn/core.

[8] Oma lwm2m - wikipedia, the free encyclopedia. [Online]. Available: https://en.wikipedia.
org/wiki/OMA%7B%5C_%7DLWM2M.

[9] T. Specification, “Etsi ts 102 690”, vol. 1, pp. 1–279, 2013.

[10] Iot.eclipse.org — standards. [Online]. Available: http://iot.eclipse.org/standards.

[11] Fiware sites index. [Online]. Available: http://mediafi.org/about-fi-content/fiware/.

[12] Telefonica, orange, engineering and atos join forces to push common standards for smart
cities based on the fiware platform. [Online]. Available: http://atos.net/en-us/home/we-
are/news/press-release/2015/pr-2015%7B%5C_%7D03%7B%5C_%7D03%7B%5C_%7D01.html.

[13] Porto, a city that has become a real-time guide » fiware. [Online]. Available: https://www.
fiware.org/2015/11/20/porto-a-city-that-has-become-a-real-time-guide/.

[14] Porto, a city that has become a real-time guide » fiware. [Online]. Available: https://www.
fiware.org/2015/11/20/porto-a-city-that-has-become-a-real-time-guide/.

[15] Santander: the smartest smart city. [Online]. Available: http://www.governing.com/topics/
urban/gov-santander-spain-smart-city.html.

[16] Array of things. [Online]. Available: https://arrayofthings.github.io/.

87

http://dx.doi.org/10.1201/b13090
http://www.business.att.com/content/whitepaper/what-you-need-to-know-about-IoT.pdf
http://www.business.att.com/content/whitepaper/what-you-need-to-know-about-IoT.pdf
http://www.google.com/loon/
http://www.fastcompany.com/3029138/world-changing-ideas/google-x-confirms-the-rumors-it-really-did-try-to-design-a-space-elevat
http://www.fastcompany.com/3029138/world-changing-ideas/google-x-confirms-the-rumors-it-really-did-try-to-design-a-space-elevat
http://www.fastcompany.com/3029138/world-changing-ideas/google-x-confirms-the-rumors-it-really-did-try-to-design-a-space-elevat
http://www.rcrwireless.com/20151130/internet-of-things/in-depth-top-10-internet-of-things-companies-to-watch
http://www.rcrwireless.com/20151130/internet-of-things/in-depth-top-10-internet-of-things-companies-to-watch
http://www.rcrwireless.com/20151130/internet-of-things/in-depth-top-10-internet-of-things-companies-to-watch
http://www.cisco.com/c/dam/en%7B%5C_%7Dus/solutions/trends/iot/docs/iot-aag.pdf
http://www.cisco.com/c/dam/en%7B%5C_%7Dus/solutions/trends/iot/docs/iot-aag.pdf
https://allseenalliance.org/framework/documentation/learn/core
https://allseenalliance.org/framework/documentation/learn/core
https://en.wikipedia.org/wiki/OMA%7B%5C_%7DLWM2M
https://en.wikipedia.org/wiki/OMA%7B%5C_%7DLWM2M
http://iot.eclipse.org/standards
http://mediafi.org/about-fi-content/fiware/
http://atos.net/en-us/home/we-are/news/press-release/2015/pr-2015%7B%5C_%7D03%7B%5C_%7D03%7B%5C_%7D01.html
http://atos.net/en-us/home/we-are/news/press-release/2015/pr-2015%7B%5C_%7D03%7B%5C_%7D03%7B%5C_%7D01.html
https://www.fiware.org/2015/11/20/porto-a-city-that-has-become-a-real-time-guide/
https://www.fiware.org/2015/11/20/porto-a-city-that-has-become-a-real-time-guide/
https://www.fiware.org/2015/11/20/porto-a-city-that-has-become-a-real-time-guide/
https://www.fiware.org/2015/11/20/porto-a-city-that-has-become-a-real-time-guide/
http://www.governing.com/topics/urban/gov-santander-spain-smart-city.html
http://www.governing.com/topics/urban/gov-santander-spain-smart-city.html
https://arrayofthings.github.io/

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, Hypertext transfer protocol –
http/1.1, RFC 2068 (Proposed Standard), Obsoleted by RFC 2616, Internet Engineering Task
Force, Jan. 1997. [Online]. Available: http://www.ietf.org/rfc/rfc2068.txt.

[18] Constrained application protocol - wikipedia, the free encyclopedia. [Online]. Available: https:
//en.wikipedia.org/wiki/Constrained%7B%5C_%7DApplication%7B%5C_%7DProtocol.

[19] Z. Shelby, K. Hartke, and C. Bormann, The constrained application protocol (coap), RFC
7252 (Proposed Standard), Internet Engineering Task Force, Jun. 2014. [Online]. Available:
http://www.ietf.org/rfc/rfc7252.txt.

[20] T. Levä, O. Mazhelis, and H. Suomi, “Comparing the cost-efficiency of coap and http in web of
things applications”, Decision Support Systems, vol. 63, no. September 2013, pp. 23–38, 2014,
issn: 01679236. doi: 10.1016/j.dss.2013.09.009.

[21] Mqtt. [Online]. Available: http://mqtt.org/.

[22] P. Saint-Andre, Extensible messaging and presence protocol (xmpp): core, RFC 6120 (Proposed
Standard), Internet Engineering Task Force, Mar. 2011. [Online]. Available: http://www.ietf.
org/rfc/rfc6120.txt.

[23] Android wear. [Online]. Available: https://www.android.com/wear/.

[24] Android auto. [Online]. Available: https://www.android.com/auto/.

[25] Welcome to meshblu · meshblu. [Online]. Available: https://meshblu.readme.io/.

[26] Ponte - bringing things to rest developers. [Online]. Available: http://www.eclipse.org/
ponte/.

[27] J. Eriksson, S. Wengbrand, F. Handledare, and J. Juni, “A case study”, 2015. doi: 10.1177/
0961000605057849.

[28] Boosting the development of innovative m2m and iot applications. [Online]. Available: http:
//www.open-mtc.org/index.html%7B%5C#%7Dopenmtc.

[29] Rabbitmq - compatibility and conformance. [Online]. Available: https://www.rabbitmq.com/
specification.html.

[30] Leshan oma lwm2m. [Online]. Available: https://github.com/eclipse/leshan.

[31] Hackacity. [Online]. Available: https://www.hackacity.eu/.

88

http://www.ietf.org/rfc/rfc2068.txt
https://en.wikipedia.org/wiki/Constrained%7B%5C_%7DApplication%7B%5C_%7DProtocol
https://en.wikipedia.org/wiki/Constrained%7B%5C_%7DApplication%7B%5C_%7DProtocol
http://www.ietf.org/rfc/rfc7252.txt
http://dx.doi.org/10.1016/j.dss.2013.09.009
http://mqtt.org/
http://www.ietf.org/rfc/rfc6120.txt
http://www.ietf.org/rfc/rfc6120.txt
https://www.android.com/wear/
https://www.android.com/auto/
https://meshblu.readme.io/
http://www.eclipse.org/ponte/
http://www.eclipse.org/ponte/
http://dx.doi.org/10.1177/0961000605057849
http://dx.doi.org/10.1177/0961000605057849
http://www.open-mtc.org/index.html%7B%5C#%7Dopenmtc
http://www.open-mtc.org/index.html%7B%5C#%7Dopenmtc
https://www.rabbitmq.com/specification.html
https://www.rabbitmq.com/specification.html
https://github.com/eclipse/leshan
https://www.hackacity.eu/

	Contents
	List of Figures
	Acronyms
	Introduction
	Internet of Things
	Development in a business environment
	Involvent Project/Product
	Motivation

	State of the art
	Internet of Things
	Cisco
	AT&T
	IBM
	AllSeen Alliance
	Open Mobile Alliance
	ETSI M2M
	Eclipse IoT
	FIWARE

	Smart Cities
	Porto, Portugal
	Santander, Spain
	Array of Things

	IoT Protocols
	HTTP
	CoAP
	MQTT
	LwM2M
	XMPP
	Overview and Comparison

	Interoperability
	Meshblu
	Ponte by eclipse
	Hypercat
	FIWARE's enablers
	IDAS
	Orion Context Broker
	NGSI 10

	OpenMTC
	Overview and Comparison

	Citibrain
	General Description
	Devices
	Message broker
	Core components
	Backends & APIs
	Client applications

	Hypercat Interoperability
	Reasons to support Hypercat
	Solution
	Implementation and tests
	Benchmarks

	FIWARE support
	FIWARE at Ubiwhere
	NGSI at Citibrain
	IDAS at Citibrain
	Implementation and Tests
	Benchmarks

	LwM2M Support
	Experiments
	First approach
	Integration with Meshblu
	Citibrain's object specification
	Communication flow
	Tests
	Device registration
	Device observation
	Resource update

	Benchmarks

	Open-source contributions
	LwM2M
	Hypercat
	Fiware

	Conclusion
	Future work

	Appendix A
	Citibrain's Hypercat “/cat” method response

	Appendix B
	Citibrain's Hypercat “/cat/parking/assets” request response

	Appendix C
	LwM2M waste event specification

	Bibliography

