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resumo Sabe-se  hoje  que  o  genoma  humano,  para além da sua 

sequencia nucleotídica, revela várias alterações químicas no 
DNA, nomeadamente metilações das citosinas. Estas 
modificações estabelecem padrões específicos que podem 
ser transmitidos de uma geração para a seguinte e exercem 
controlo sobre os genes que são expressos a cada momento 
nas células, tecidos ou orgãos. Esta tese teve como 
objectivos: explorar as principais bases de dados que contêm 
dados epigenómicos relevantes; obter ficheiros fastq de 
bibliotecas bisulfite-seq aplicando métodos de data mining a 
dados reais de bases de dados públicas de sequenciação de 
segunda geração; alinhar e mapear estes ficheiros usando 
software adequado (Methy-Pipe); fazer uma análise 
comparative por forma obter características associadas ao 
envelhecimento saudável de indivíduos e á evolução do 
epigenoma ao longo da vida; finalmente é esperado que, 
após atingidos os objectivos anteriores, se perceba o 
contributo do epienoma no envelhecimento saudável das 
populações . 
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abstract It is already known today, that the human genome, in addition 

to its nucleotide sequence, shows multiple chemical 
modifications at the DNA level, namely cytosine 
methylations. These modifications changes establish 
specific patterns that can be transmitted from generation to 
generation and exercise control over the genes that are 
expressed at every moment in the life of the cells / tissues / 
organs. This thesis aimed to: understand the contribution of 
the epigenome to a healthy lifestyle; to explore the main 
databases containing relevant epigenomic data; to obtain 
fastq files of bisulfite-seq libraries by applying data mining 
methods to real data from next generation public databases; 
to align and map these files using adequate software (Methy 
Pipe); to do a comparative analysis in order to identify 
features associable to a healthy aging of individuals and the 
evolution of the epigenome in humans throughout life.In 
doing so, it is expected that this work will contribute to the 
understanding of the contribution of the epigenome to a 
healthy lifestyle. 
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1. INTRODUCTION 

 
1.1 EPIGENETICS, EPIGENOMICS AND EPIGENOMIC 

MECHANISMS 

1.1.1 Basic Concepts and Definitions 

 

Epigenetic is a recent scientific field that refers to the study of every process that regulates 

the expression of certain genes without causing any change in the primary sequence of the 

genome. Epigenomics, on the other hand, refers to the global analysis of epigenetic changes 

that occur genome-wide (Fraga, 2009). 

The renewed interest in epigenetics has led to new findings about the relationship between 

epigenetic changes and a host of disorders including age related disorders. The increased 

knowledge and improved technologies in epigenetics made recently, allow us to better 

understand the interplay between genetics and epigenetics; and hopefully will lead to the 

development of new targeted and personalized treatments across the clinical spectrum. 

There are three main epigenetic mechanisms: including non-coding RNA (ncRNA), histone 

modification and DNA methylation; that regulate various biological processes (see figure 1). 
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Figure 1 - Overview of epigenetic features. “Each chromosome (panel c) consists of both condensed 

and open chromatin regions (panel b), with different histone modifications present. Loose regions 

are, for example, characterized by histone lysine acetylation and the possibility of gene expression. 

Nucleosome (re)positioning results in nucleosome free regions, for example, at the transcription 

start site (TSS) (panel b), which is required for gene transcription (panel a). The resulting 

transcriptome not only consists of coding mRNAs, but also of noncoding RNAs (ncRNA). 

Promoter regions of transcriptionally silenced genes are typically densely packed without 

nucleosome free regions, lack histone lysine acetylation (panel b), and are often featured by DNA 

methylation (panel a).” Adapted from Klaas Mensaert, (2014). 

 

 

 
1.1.2 DNA methylation and demethylation effects 

One of the best understood molecular epigenetic mechanisms, and on which rests this study is 

the methylation of cytosine residues in DNA specific position. Cytosine methylation group (5-

methylcytosine or 5mC), is caused by the covalent addition of a methyl group from S-adenosyl 

methionine to carbon 5 of cytosines, by a family of DNA methyltransferases (He, Chen, & Zhu, 

2011) (see figure 2). 

This mechanism is essential for normal development and cell/tissue differentiation, but is also 

associated with a number of key processes including genomic imprinting (an epigenetic 

mechanism that consists in silencing an allele depending on its parent of origin), X chromosome 

inactivation, suppression of repetitive elements (such as retrotransposons) and oncogenes; and 

to maintain chromosome stability (due to the hypermethylation of telomeres and centromeres).
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 (Ester Lara V. C., 2011). Once established, global cytosine methylation patterns must be 

conserved in order to keep transposons and oncogenes repressed, thus preserving cell integrity 

(Kim, Samaranayake, & Pradhan, 2009;jacobsen, 2010). The maintenance of methylation 

patterns through the genome is a complex but very important process involving many factors, 

but mainly catalyzed by DNMT1 methyltransferase during DNA replication and regulated 

by cofactors such as Np95 (Winnefeld & Lyko, 2012; Igor.P.Pogribny, 2009). It has been 

speculated that decreased DNMT1 expression might contribute to global hypomethylation 

upon aging (Weidner CI, 2014). In addition, the de novo methyltransferases DNMT3A and 

DNMT3B, do not only contribute to methylation maintenance, but also have the capacity to 

establish new methylation marks (Marc Winnefeld, 2012). Another member of the DNMT3 

family is DNMT3L, which has no catalytic activity, but interacts with DNMT3A and 

DNMT3B and stimulates their enzymatic activity. The mechanism by which methyl groups 

are removed from methylated DNA is thought to be initiated by the oxidation of 5′- 

methylcytosine into 5-hyroxymethylcytosine, which is catalyzed by the ten-eleven 

translocation (TET) family enzymes. The oxidized form of 5mC by the ten- eleven 

translocation 1,2, or 3 (TET1,2,3), 5hmC, can be demethylated, also by TET1,2,3, into 5- 

formylcytosine(5fC) and finally into 5-carboxylcytosine(5caC)(figure 2) also plays an 

important functional role. 

Activation-induced cytidine deaminase/apolipoproteinB mRNA-editing, enzyme-catalytic, 

polypeptide (AID/APOBEC) family of deaminases can also deamination 5hmC, forming 5-

hydroxymethyluracil (5hmU). This led to the hypothesis that 5hmC is an active 

demethylation mark of 5mC. 

 
 

Figure 2 – “DNA cytosine methylation reaction catalyzed by DNMTs and DNA 5- 

hydroxymethylcytosine oxidative reactions catalyzed by the TET family enzymes.” Adapted from 

Vichithra R. B. Liyanage 1, 2014. 
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After 5fC and 5caC are formed, the N-glycosidic bond is destabilized and subsequently 

thymine DNA glycosylase (TDG) and methylated DNA binding domain- containing protein 

4 (MBD4) glycosylases initiate Base Excision Repair (BER) by removing the modified base, 

leading to an apurine/pyramidine site (AP site) (Vichithra R. B. Liyanage 1, 2014). These 

sites are toxic and have to be replaced with a base. AP endonuclease 1 (APEX1) then cleaves 

the AP site, allowing DNA polymerase to re-insert the appropriate base, in this case cytosine.  

In Embrionic Stem Cells (ESCs), 5hmC levels dominate that of 5fC and 5caC levels, 

implying that TET expression is strictly controlled. (Vichithra R. B. Liyanage 1, 2014). 

In somatic cells, 5-mC occurs mostly in the CpG context, where a cytosine nucleotide is 

located next to a guanidine nucleotide. An exception to this rule can be seen in embryonic 

stem (ES) cells, where a considerable amount of 5-mC can also be seen in non-CpG contexts. 

In the human genome, methylated CpGs cover approximately 1.5% of genomic DNA and 

affect 70–80% of all CpG dinucleotides in the genome, being irregularly distributed into 

CpG-poor regions and CpG-rich regions named “CpG islands” (CGI) (Bestor, Edwards, & 

Boulard, 2014) (figure 3). In normal cells, the CpG islands are usually unmethylated, unlike 

the rest of the CpG which are usually methylated. These are found mainly in the 5’ end of 

the regulatory region, particularly enhancers and transcription factor-binding sites, of 

approximately half of all genes allowing for cell/tissue differentiation. Repetitive sequences 

also contain a high percentage of CpG dinucleotides that are normally hypermethylated 

(Lister et al., 2009). The rest of CGI are either within or between characterized transcription 

units and have been termed ‘‘orphan’’ CGIs to reflect uncertainty over their significance 

(Illingworth et al., 2010). 

 

 
Figure 3 - The genomic distribution of CGIs. “(A) CGIs can be located at annotated TSSs, within 

gene bodies (Intragenic), or between annotated genes (Intergenic). Intragenic and intergenic CGIs 

of unknown function are classed as ‘‘orphan’’ CGIs. (Empty circles) Unmethylated CpG residues. 

(Filled circles) Methylated CpG residues.” Adapted from Bird, 2011. 
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What distinguishes DNA methylation in vertebrate genomes is the fact that only a portion of 

CpGs are methylated in a given cell type, thus constituting differential methylated regions 

(DMR), which are stretches of DNA in an organism’s genome that have different DNA 

methylation patterns between samples (Szyf, 2010). The difference between these 

methylated regions is mainly due to factors, such as gender, tissue/cell type and also age, 

which is the one we are most interested in. 

Moreover, in the DNA there are sequence variants that are associated with DNA methylation 

patterns dispersed throughout the genome across different tissues, known as methylation 

quantitative trait loci (mQTLs), (Zhang et al., 2014).These have been demonstrated to act 

mostly at cis level (such as promoters and enhancers) while the majority of estimated genetic 

variation that influences methylation levels is acting at trans level (such as transcription 

factors), increasing the level of regulation complexity between methylation and the DNA 

sequence(Gaunt et al., 2016). 

Levels of DNA methylation at a promoter-associated CpG island are generally associated 

with gene repression, although the opposite effect has been noted in particular genes 

(Meaghan, 2015). In general, CpG-rich promoters are largely unmethylated, regardless the 

state of expression; whereas CpG-poor promoters drift toward partially methylated states 

during prolonged inactivity and begin demethylation when transcription is initiated (Bestor 

et al., 2014). It is believed that methylated promoter CGIs are usually restricted to genes at 

which there is long- term stabilization of repressed states, such as imprinted genes and genes 

located in the inactive X chromosome (P. A. Jones, 2012). However, many CGI free 

promoters are active in a tissue specific manner suggesting that they can be tightly regulated, 

as well (Deaton & Bird, 2011). 

Conversely, DNA methylation in the gene body is often positively associated with levels of 

gene expression (Lister et al., 2009; Gutierrez Arcelus et al., 2013), which is thought to be 

due to the tissue-restricted use of CpG islands as alternative transcription start sites. Recent 

findings about intragenic (or gene body methylation) and its role in alternative splicing have 

changed the conventional view of the role of DNA methylation in transcription by proving 

to be an enrichment of DNA methyl marks within exons in contrast to the nearby intronic 

regions. 
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Moreover, there are some differences in the CpG and methylation density between splice 

donor and acceptor sites. The involvement of DNA methylation in splicing was further  

observed in alternate exons and spliced exons (Liyanage et al., 2014). Interestingly, this 

negative correlation does not hold true when comparing expression and DNA methylation 

for a specific gene across individuals (Bestor et al., 2014; M. J. Jones, Goodman, & Kobor, 

2015). 

Non-CpG methylation has been detected in mammals recently. Studies have found CpH (H 

= A/C/T) methylation to be present in cultured pluripotent stem cells, namely embryonic 

stem cells (ESCs), induced pluripotent stem cells (IPSC), and adult stem cells, where it may 

help repressing genes as cells transition into their differentiated state. Low levels of CpA 

methylation have been observed in early mouse embryos and ESCs, but are significantly 

decreased in somatic cells (Ursula Munoz Najar, 2011). Several recent profiling studies have 

shown the presence of CpH methylation in the adult mouse cortex and human brains which 

consist of mixtures of many neural subtypes. Thus, it indicates a tissue-specific distribution 

that is different from those genes that were previously identified in embryonic stem cells and 

the brain (Schultz et al., 2015). Actually, as observed in studies done in brain tissue, the 

preferential CpH methylation in CpG- depleted regions suggests that CpH methylation might 

compensate for the lack of CpGs and increase the local mC density in neurons without adding 

constitutively methylated new CpG dinucleotides to the genome (Junjie U Guo, 2014). 

DNA methylation offers significant advantages as a biomarker over expression-based and 

proteomic based markers, namely: the high stability of the DNA , which can survive routine 

processing for histopathology; the possibility to compare DNA methylation levels with 

absolute reference points (completely methylated or completely unmethylated DNA); the 

ability to amplify and identify by by polymerase chain reaction (PCR)-based approaches 

even when alterations are present only in a few cells (Olkhov-Mitsel & Bapat, 

2012).However it is also difficult to establish a suitable reference for comparison due 

precisely to the susceptibility of DMRs  to change according to the aforementioned factors.  



7 
 

1.2 THE EFFECT OF DNA METHYLATION ON AGING 

AND HUMAN AGE-RELATED DISEASES 

 
Aging is a complex process that results from an advanced state of a series of degenerative 

processes such as somatic mutations, telomere attrition, activation of transposable elements 

and oxidative stress which ultimately leads to a loss of physiological integrity and increased 

susceptibility to diseases over time (Weidner & Wagner, 2014). Although age can be 

measured chronologically from the date of birth (chronological age), it can also be measured 

by a set of health-related biomarkers (biological age). In this regard, epigenomic studies on 

phenotypes associated with aging can help detect molecular changes related to the biological 

aging process. The retrotransposon theory of aging, for example, which hypothesizes that 

epigenetically silenced transposable element become deleteriously activated as cellular 

defense and surveillance mechanisms break down with age, has been supported recently 

(Wood et al., 2016). 

It is clear that the genetic component of methylation variation across the genome is relevant, 

but, in what concerns to variation between individuals, environmental or stochastic 

influences are a more important determinant of sex-specific and age-specific methylation 

than genetic influences, which is estimated to be around 25–30 % (Gaunt et al., 2016; van 

Dongen et al., 2016). In what regards to the gender effect on DNA methylation, Tsong et al. 

(2005) suggests that gender is at least as strong a predictor of methylation level in the genes 

under study as age and Allison M. Cotton (2011) proved that X-linked promoters show 

differences in methylation dependent on sex and CpG density in four autosomal genes 

(ESR1, MTHFR, CALCA and MGMT) (see table 13 in appendix). 

Some aspects of mammalian aging result from an age associated decrease in number and 

decline in the replicative function of adult or somatic stem cells. One of the major 

mechanisms known to interfere with somatic stem cell function during aging is the 

accumulation of unrepaired DNA and chromosomal damage which, consequently, prevents 

the right production of differentiated cells for proper tissular function (Huidobro, Fernandez, 

& Fraga, 2013) 
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Once aging is the main risk factor of several human disorders, it is very likely that age related 

processes including epigenetic alterations and oxidative stress, promote the onset and 

development of these illnesses (Lardenoije & Iatrou, 2015). Complex disorders, such as 

neurodegenerative, are caused by the contribution of genetic and environmental factors and not 

one isolated (Sanchez-Mut et al., 2016). Early life experiences modify the neurobiology of 

development and such influences continue to affect biological patterns and psychological 

outcomes in adulthood (Kanherkar, Bhatia- Dey, & Csoka, 2014). 

In this context, epigenetics, acting as a mediator between genome and environment, is a key 

modulator of adult neurogenesis, affecting extracellular signaling molecules and patterns of 

neural circuit activity (figure 4). 

 

 
Figure 4 - Causal scenarios that can explain the significant genetic correlations between epigenetic 

age, neuropathology and cognitive decline. Adapted from (Levine, Lu, Bennett, & Horvath, 2015). 

 

 

Despite a global DNA methylation in early life and gradual demethylation in later life across 

the genome, these changes are not symmetrical. Actually, these changes can be explained 

considering the periods and locations where they occur: in the early life when the rate of 

change is much higher and DNA methylation is gained globally, mainly at island shores and 

intergenic regions; and later life when DNA the rate of change is slower and DNA is lost 

globally but still gained at islands and shores (Gronniger et al., 2010; Meaghan, 2015). So 

the CpG sites inside CGIs are more likely to gain rather than loose DNA methylation with 

aging (Numata et al., 2012). 
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Because most CpGs are located outside of CpG islands and are highly methylated, this leads 

to a global loss of DNA methylation in later life as well as a tendency for DNA methylation 

levels to shift toward the mean with increased age. This changes make what is called the 

epigenome erosion and are responsible for what is called broadly the epigenetic drift. This 

drift was noticed for the first time in studies done with identical twins where it was proven 

that the difference of DNA methylation patterns between the twins increases throughout aging 

(Fraga et al., 2005). A component of this drift is tissue-specific, but another component is 

tissue-independent, aiming for stem cell differentiation pathways which may explain the 

increased dysfunction of stem cell with age (Teschendorff, West, & Beck, n.d.). Another 

interesting concept, other than the epigenetic drift, is the epigenetic clock which regards 

specific genomic sites that are more likely to suffer methylation changes in throughout aging 

(M. J. Jones, Goodman, & Kobor, n.d.). 

Previous studies noticed that CpG sites in genes such as those involved in cancer and tumor 

suppression, DNA repair, and telomere maintenance have mostly increased methylation with 

aging. These include MGMT, ESR1, RASSF, RAD50, GSTP1/GTS3, RARB, MYOD1, 

LAMB1, and the Werner gene WRN, the latter gene associated with a premature aging 

syndrome (for more details about these genes see table 14 in Appendix). A more recent study 

found genes with age-related methylation changes throughout life, and particularly in the 

transition from fetal to postnatal life period, for genes, such as DLG4, DRD2, NOS1, 

NRXN1, and SOX10, that have been implicated in schizophrenia and autism (for more 

details about these genes see table 14 in Appendix) (Numata et al., 2012). 

 
 

1.3 THE USE OF BLOOD AS A SAMPLE TISSUE FOR 

DETECTION OF HUMAN AGE-RELATED DISEASES 

 
In one hand, some investigators believe that the correlations between blood and brain versus 

two brain tissues are very similar, and so blood could be used to predict the methylation 

patterns in a specific brain tissue in a similar degree as another brain tissue (K. A. Aberg et 

al., 2014). Some even found that epigenetic age acceleration in dorsolateral prefrontal cortex 

(DLPFC) is highly heritable in a similar way reported for blood (Levine et al., 2015). 
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Actually, the use of surrogate tissues seems supported by studies suggesting that tissue- 

specific DMRs, (Brock C. Christensen, 2009) constitute only a limited proportion of all 

methylated sites. Blood, in particular, is a multicellular tissue and this heterogeneity can 

reduce inter individual differences as the cell type differences may average out across 

subjects (Konstantin Shakhbazov, 2016). 

This can be explained by three possible reasons. First, peripheral tissues may reveal 

methylation marks resulting from the epigenetic de novo reactions affecting germline and 

embryogenesis (K. A. Aberg et al., 2013) (Monk M, 1987; Efstratiadis, 1994). As the 

epigenetic profile is inherited, these epigenetic mutations can also be detected in multiple 

tissues. Second, blood contains cells that may be modified while they travel through unhealthy 

tissues, includin cell- free DNA from those tissues (serum DNA can define tumor-specific 

genetic and epigenetic markers in gliomas of various grades). As such, traces of the aberrant 

methylation in disease- targeted regions may be detectable in blood. Finally, and perhaps 

most importantly, environmental factors such as diet, drugs and lifestyle factors, as well as 

genetic polymorphisms can affect methylation levels. Although these changes may only 

affect some tissues, it is very likely that the changes themselves are more global and cause 

similarities in methylation profiles across tissues. (McGowan, Meaney, & Szyf, 2008; 

Pilsner, 2007). 

On the other hand, there is also data supporting the opposite idea, that is, tissues have specific 

DMR and so, they can’t be replaced by any other tissue. It has been even shown that tissue 

specific variation in DNA methylation greatly exceeds interindividual differences within any 

one tissue (Davies et al., 2012). As an example of differentially methylated genes were 

reported the following genes (in brain, pleura, lung, blood and solid tissues): ESR1, GSTP1, 

IGF2, MGMT, MYOD1, MYOD1, RARB, RASSF1, RASSF1, DNMT1, DNMT3B, 

HDAC1, HDAC5, HDAC7A, HDAC11, LAMB1, RAD50 , TERT and WRN. 

This is particularly problematic for neurodegenerative diseases because a typical brain 

biopsy contains multiple cell types, including neurons, astrocytes and other glia cells, all 

with different methylation patterns (Lord & Cruchaga, 2014). 

Particularly in Alzheimer’s Disease’s (AD) case, the data supports that the top-ranked 

Differentially Methylated Positions (DMPs) in blood are distinct to those identified in the 

brain and there is no significant overlap with either cortex or cerebellum suggesting that AD- 

associated DMPs in blood are unlikely to be directly related to the actual neurodegenerative 

process itself. 
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Although distinct from Alzheimer Disease’s associated changes occurring in the brain, many 

of the Alzheimer´s Disease-associated DMPs (ANK1, RPL13, RHBDF2, CDH23, ABCA7 and 

BIN1) (see table 15 in Appendix) identified in blood before death may be used as detectable 

transcriptomic changes and, given the “relative stability and ease of profiling DNA 

modifications compared to RNA, have potential utility as diagnostic biomarkers of the 

disorder” (Davies et al., 2012) (see tables in appendix). 

 

 

1.4 EPIGENOMIC GENOME-WIDE PROJECTS 

 
Believing that our knowledge of the Epigenome will extend our understanding of the 

genome regulation, development, disease etiology, and even define polymorphic variation 

in populations susceptibility to diseases, some Epigenomic Genome-Wide projects were 

initiated in order to explore and understand epigenetic mechanisms and elements. 

 

1.4.1 Roadmap Epigenomic Project 

“The Roadmap Epigenomic Program (also known as Epigenomic Roadmap initiative), 

launched by NIH (2008), seeks to create a series of epigenome maps to study epigenetic 

mechanisms, develop new epigenetic analytics, generate a repository and long-term data 

archive, standardize procedures and practices in epigenomics and support new technologies 

for these” (Shakya, O’Connell, & Ruskin, 2012). As part of the $190 million, five-year 

initiative, the Roadmap Epigenomics Mapping Consortium44 was formed to provide a 

public database for human epigenomic data, the Human Epigenome Atlas. 

(http://www.roadmapepigenomics.org/overview/epigenomics-human-health). 

To attain substantial coverage of the human epigenome, International Human Epigenome 

Consortium (IHEC) aims to decipher at least 1,000 epigenomes in the next years. Officially 

launched in Paris (Bae, 2013), “with an initial (first phase) budget target of $130 million, 

IHEC aims to coordinate the mapping of epigenomes from the NIH’s Epigenomics Mapping 

Consortium and from the European Epigenome Network of Excellence, the Danish National 

Research Foundation Centre for Epigenetics, and the Australian Epigenetic Alliance. The 

IHEC web portal provides links to databases, such as GEO, ARRAYEXPRESS and DDBJ, 

where epigenetic sequencing data will be made available “(Shakya, O’Connell, et al., 2012). 

http://www.roadmapepigenomics.org/overview/epigenomics-human-health)
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Several papers published by the Roadmap Epigenomic Project up to now investigate histone 

modifications and DNA methylation providing insights into the relationship between histone 

signatures and gene expression throughout development and adult life. 

 
 

1.4.2 Encode 

Another important program including epigenetic data, is the Encyclopedia of DNA Elements 

(ENCODE). “This is supported by the ENCODE Consortium, an international collaboration 

of research groups funded by the National Human Genome Research Institute (NHGRI). The 

NHGRI began as the National Center for Human Genome Research (NCHGR), which was 

established in 1989 to carry out the role of the National Institutes of Health (NIH) in the 

International Human Genome Project (HGP) and is today a component of the National 

Institutes of Health (NIH) and the Department of Health and Human Services (DHHS)” 

(https://www.genome.gov/10001763/about-nhgri-a-brief-history-and-timeline/). 

The purpose of this project is to identify every functional element in the human genome 

sequence, both at the protein as well as RNA levels, and regulatory elements that control 

cells and circumstances in which a gene is active (Shakya, O’Connell, et al., 2012). A 

remarkable feature of this project was the discovery of hundreds of thousands of enhancer-

like regions in the mammalian genome that regulate gene expression at long range, through 

epigenomic signatures. From this vast set, each cell type is regulated by a subset of perhaps 

20,000–40,000 enhancers, which determine its particular gene-expression profile 

(Romanoski, Glass, Stunnenberg, Wilson, & Almouzni, 2015). 

 
 

1.4.3 MethDB 

The concept of methylomes was first introduced by Andrew Feinberg, defined as “the 

complete set of DNA methylation modifications of a cell” (Novik et al., 2002). MethDB is 

a source for experimentally confirmed methylome data designed to store and annotate 

information on the occurrence of methylated cytosines in DNA. Until recently, it contained 

219,905 methylation data items and 5,382 methylation patterns or profiles for 48 species, 

1,511 individuals, 198 tissues and cell lines and 79 phenotypes. MethDB “also has a public 

online submission system available.”(Shakya, O’Connell, & Ruskin, 2012)
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The resource “forms part of an integrated network of biological databases through DAS 

(Distributed Annotation System), enabling the epigenetic data to be viewed as a layer in the 

human genome, and is also connected to Ensemble” (for DNA sequences with available 

MethDB data aligned to NCBI Refseq) (Shakya, Connell, & Ruskin, 2012). 

 
 

1.5 PUBLIC DATABASES, REPOSITORIES AND 

LIBRARIES WITH EPIGENETIC INFORMATION 

 

The rise of massively parallel sequencing technologies has enabled innumerous research 

possibilities, such as: elucidation of the human microbiome, discovery of polymorphisms 

and mutations, mapping of protein–DNA interactions, and positioning of nucleosomes; among 

others (http://www.ncbi.nlm.nih.gov/books/NBK47539/).  In order to reach these goals, 

researchers must be able to store, access and use the big volume of short read data generated 

from massively parallel sequencing experiments into runs. In an attempt to deal with this 

situation, there have been created public databases repositories and libraries to store all the 

data. 

 

1.5.1 INSDC 

The International Nucleotide Sequence Database Collaboration (INSDC) is an initiative that 

operates between DDBJ, EMBL-EBI and NCBI (figure 5). It contains the spectrum of raw 

data reads, alignments and assemblies, annotated with metadata and setup configurations. 

(http://www.insdc.org/) The INSDC advisory board, is made up of members of each of the 

databases' advisory bodies. who endorsed and reaffirmed the existing data-sharing policy of 

the three databases that make up the INSDC (ENA, NCBI and DDBJ). These must be 

followed by anyone who wants to submit their data (figure 5 (http://www.insdc.org/about ). 

http://www.insdc.org/about
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Figure 5 – There is permanent data exchange between the different international databases: 

NCBI, EBI DDBJ. Picture done by the author 

 

 

 

1.5.2 NCBI: Genbank and GEO 

As the US national resource for molecular biology information, “NCBI is responsible for: 

creating automatic systems capable of storing and analyzing knowledge about molecular 

biology, biochemistry, and genetics; facilitating the use of such databases and software by 

the research and medical community; coordinating efforts to gather biotechnology 

information both nationally and internationally; and performing research into advanced 

methods of computer-based information processing for analyzing the structure and function 

of biologically important molecules” ( http://www.ncbi.nlm.nih.gov/home/about/). 

 

GenBank is the NCBI’s genetic sequence database, an annotated library of every available 

DNA sequence. The complete release notes for the current version of GenBank are available 

on the NCBI ftp site. These databases were conceived to provide and promote access within 

the scientific community to the most up to date and comprehensive DNA sequence 

information. Therefore, NCBI does not restrict the use or distribution of the GenBank data. 

However, some submitters may claim patent, intellectual property rights in the data they have 

submitted (http://www.ncbi.nlm.nih.gov/genbank/). 

http://www.ncbi.nlm.nih.gov/home/about/)
http://www.ncbi.nlm.nih.gov/genbank/)
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GEO is NCBI’S international public repository that archives and freely distributes 

microarray, next-generation sequencing, and other types of high-throughput data. The three 

main goals of GEO are to: store high-throughput functional genomic data in a versatile 

database; facilitate submission procedures and formats that support metadata; provide user-

friendly mechanisms that allow users to search and download studies and gene expression 

profiles of interest (http://www.ncbi.nlm.nih.gov/geo/info/overview.html). The main data 

records found in GEO are: Platform (GPL), or the technology used and the features detected; 

Sample (GSM) or preparation and description of the sample, with their own set of runs 

(SRR); Series (GSE) defines a set of samples and how they are related; and DataSets (GDS) 

which is the sample data collections assembled by GEO staff. Both samples and Series are 

submitted by experimentalists, the platforms are submitted by the manufacturers and the 

datasets are curated by NCBI experts. 

 
 

1.5.3 EMBL/EBI and ArrayExpress 

The European Nucleotide Archive (ENA) stores experimental data that are based in 

nucleotide sequencing workflows. The workflows typically include the isolation and 

preparation of material for sequencing, a run of a sequencing machine in which sequencing 

data are produced and a subsequent bioinformatics analysis pipeline. “ENA records this 

information in a data model that covers input information (sample, experimental setup, 

machine configuration), output machine data (sequence traces, reads and quality scores) and 

interpreted information (assembly, mapping, functional annotation) 

“(http://www.ebi.ac.uk/ena/about ). There are three ENA data types: reads, assemblies and 

annotations (http://www.ebi.ac.uk/ena/submit/data-formats) (figure 6). 

http://www.ncbi.nlm.nih.gov/geo/info/overview.html)
http://www.ebi.ac.uk/ena/about
http://www.ebi.ac.uk/ena/submit/data-formats)
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Figure 6 - The three ENA different tiers: annotations, assemblies and reads. Adapted 

from (https://www.ebi.ac.uk/training/online/course/nucleotide-sequence-data-

resources-ebi/what-ena) 

 

 

ArrayExpress is a database that stores microarray and high through-put sequencing 

experiments described and archived according to the community guidelines for microarray 

(MIAME) and High Throughput Sequencing (MINSEQE) data. The functional genomics data 

collected in ArrayExpress is organized into experiments, which are defined as collections of 

assays often related to a scientific publication. ArrayExpress can be searched to yield 

information about functional genomic experiments. For example, one can access data files 

and sample annotations relating to an experiment of interest (figure 7). Submitting functional 

genomics data to ArrayExpress is required by some major publishers and encouraged by 

others. This benefits the whole scientific community, enabling data available as part of the 

public record of science and facilitating meta-

analysis.(https://www.ebi.ac.uk/training/online/course/arrayexpress-discover-functional-

genomics- data-qui/what-arrayexpress). 

 

 

Figure 7 - The relation between study’s, samples, runs and experiments in ENA database. 

Adapted from (http://www.ebi.ac.uk/ena/submit/metadata-model). 

http://www.ebi.ac.uk/training/online/course/arrayexpress-discover-functional-genomics-
http://www.ebi.ac.uk/training/online/course/arrayexpress-discover-functional-genomics-
http://www.ebi.ac.uk/ena/submit/metadata-model)
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1.5.4 DDBJ 

As the two other databases, DDBJ Center also collects nucleotide sequences from 

researchers, mainly from Japan, and their accession numbers. The accession number 

assigned to each sequence data is unique and internationally recognized to guarantee the 

submitter the property of the submitted and published data. Due to its origin, DDBJ submits 

the largest majority of Japanese data to INSDC, but also accepts data and accession numbers 

to researchers from any other countries. (http://www.ddbj.nig.ac.jp/intro-e.html). 

 
 

1.5.5 Other Useful Databases with DNA Methylation data 
 

MethylomeDB- “The Brain Methylome Database includes genome-wide DNA 

methylation profiles for human and mouse brains”. 

(http://ww w.neuroepigenomics.org/methylomedb/) 

DiseaseMeth “A web based resource focused on the aberrant methylomes of human 

diseases”. (http://www.bio-bigdata.com/diseasemeth/). 

NGSmethDB “A dedicated database for the storage, browsing and data mining of 

whole-genome, single-base-pair resolution methylomes. It collects NGS data from 

high-throughput sequencing together with bisulfite conversion of DNA from literature 

and public repositories, then generating high-quality chromosome methylation maps for 

many different tissues, pathological conditions and species”. 

(http://bioinfo2.ugr.es:8080/NGSmethDB/). 

Deepblue Epigenomics – “provides a central data access hub for large collections of 

epigenomic data. It organizes the data from different sources using controlled 

vocabularies and ontologies. The data is stored in the server, where the users can access 

the data programmatically or by web interface” (http://deepblue.mpi- 

inf.mpg.de/) 
 

Table 1-some databases with useful DNA methylation data for epigenomic studies 

http://www.ddbj.nig.ac.jp/intro-e.html)
http://www.bio-bigdata.com/diseasemeth/)
http://deepblue.mpi-/
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1.6 SRA and SRA Toolkit 

Due to the community need, the International Nucleotide Sequence Database Collaboration 

(INSDC), have developed the Sequence Read Archive (SRA) data storage and retrieval 

system (http://www.ncbi.nlm.nih.gov/books/NBK47539/). SRA is the database that stores 

sequence data obtained from next generation sequence (NGS) technology. 

Through this database, one can query metadata to retrieve the sequence read files for download 

and further analyses. Specifically, SRA archives raw files of NGS data for various organisms 

from several platforms and requires per-base quality scores for all submitted data. Thus, 

unlike GenBank and some other NCBI repositories, FASTA and other formats are not 

sufficient for submission, although FASTA can be submitted.  

The SRA Toolkit and System Development Kit from “NCBI is a collection of tools and 

libraries for using data in the INSDC Sequence Read Archives. Much of the data submitted 

these days contain alignment information. The process to restore original data, for example 

as FASTQ, requires fast access to the reference sequences to which the original data was 

aligned. NCBI recommends SRA users to dedicate local disk space to store reference 

sequences that need to be downloaded from the NCBI SRA site”. (https://ncbi.github.io/sra-

tools/)

http://www.ncbi.nlm.nih.gov/books/NBK47539/)


19 
 

 

1.7 CHRONOLOGICAL VIEW OF SEQUENCING 

TECHNOLOGIES 

The Human Genome Project, initiated in 1990 and finished in 2003, in which researchers 

sequenced the entire Human genome, arose from two key ideas that emerged in the early 

1980s: that new genomic discoveries could greatly improve biomedical research, by allowing 

researchers to attack problems in a comprehensive and unbiased fashion; and that the creation 

of such global views would require an effort in infrastructure building, as never seen before 

(Lander et al., 2001). The technology used in this project was based in Sanger sequencing 

principles. A few years later, in 2008, it was initiated the 1000 Genome Project which aimed to 

catalogue human genetic variations from 1092 genomes of individuals from different ethnics. 

This project used next generation sequencing technologies (Auton et al., 2015). Both these 

projects provided invaluable data about the Human Genome, but also highlighted the value 

of sequencing technologies and the urge for faster and cheaper ones. 

 

1.7.1 First Generation Sequencing 

First-generation sequencing was first developed by Sanger in 1975 (the chain- termination 

method) and, a few years later by Maxam and Gilbert (a chemical sequencing 

method).However Sanger sequencing prevailed given it was more user friendly and more 

amenable to being scaled up. 

Sanger sequencing is a method that mixes dye-labelled normal deoxynucleotides (dNTPs) and 

dideoxy-modified and chromatophore labelled dNTPs (figure 8). A standard single primer 

PCR reaction is carried out and, as elongation occurs, some strands incorporate a dideoxy-

dNTP, and so, ending elongation. The strands are then split up on a gel and the terminal base 

label of each strand is identified by laser excitation and spectral emission analysis (Sara 

Goodwin, 2016). The outcome is read with a mean length of 800 bases, although may be 

extended until 1000 bases. While fully automated implementations of this approach were the 

mainstay for the original sequencing of the human genome, their main limitation was the 

small amounts of DNA that could be processed per unit time, referred to as throughput, as well 

as high cost, taking roughly 10 years and three billion dollars to sequence the first human 

genome (Schadt, Turner, & Kasarskis, 2010). 
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Figure 8 - A modern implementation of Sanger sequencing is shown to illustrate differential 

labeling and use of terminator chemistry followed by size separation to resolve the sequence. 

Adapted from (Schadt et al., 2010). 

 

 
 

1.7.2 Massively Parallel Sequencing or Second Generation Sequencing 

Platforms 

Next-generation sequencing (NGS), or high-throughput sequencing, is the term used to 

describe a number of different sequencing technologies including, Roche 454 sequencing, 

Ion torrent: Proton / PGM sequencing, SOLiD sequencing, and Illumina (Solexa) sequencing 

(José L. Oliver, 2012). A commonality of Next-Generation Sequencing methods is the 

simplified workflow used to prepare genes for sequencing. Library preparation includes: 

fragmenting the DNA (through sonification, enzymatic cleavage, or any other method); 

ligation of an adapter sequence, barcode and primer and size selection of the fragments. 

Previous methods relied on capillary electrophoresis, which could only read up to 96 wells at 

a time. NGS's massively parallel sequencing allowed for innumerous of reads to run 

simultaneously, although most reads come out as short, unless additional techniques such as 

mate-pair sequencing are used. 

There are currently numerous NGS platforms available (Metzker, 2010). The most well-

known platforms include an array-based pyrosequencing approach, such as 454 sequencing 

(Balzer, Malde, Lanzn, Sharma, & Jonassen, 2011), a sequencing-by synthesis method called 

Illumina sequencing (Bentley, 2006), and sequencing-by-ligation method named SOLiD 

sequencing (Valouev et al., 2008). New sequencing technologies are being developed 

continuously. 
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With the advent of PCR and its variations, no longer DNA fragments were transformed into 

bacterial cells to replicate DNA. Instead, NGS techniques use two different types of PCR: 

emulsion PCR (or emPCR) and bridge/cluster PCR (Teng & Xiao, 2009) (figure 9). 

 

 

 

 

Figure 9 – “The 454, and SOLiD platforms rely on emulsion PCR to amplify clonal sequencing 

features. In brief, an in vitro–constructed adaptor flanked shotgun library (shown as gold and 

turquoise adaptors flanking unique inserts) is PCR amplified (that is, multi-template PCR, not 

multiplex PCR, as only a single primer pair is used, corresponding to the gold and turquoise 

adaptors) in the context of a water-in-oil emulsion. One of the PCR primers is tethered to the 

surface (5′- attached) of micron-scale beads that are also included in the reaction. A low template 

concentration results in most bead-containing compartments having either zero or one template 

molecule present. In productive emulsion compartments (where both a bead and template 

molecule is present), PCR amplicons are captured to the surface of the bead. After breaking the 

emulsion, beads bearing amplification products can be selectively enriched. Each clonally 

amplified bead will bear on its surface PCR products corresponding to amplification of a single 

molecule from the template library. The Solexa technology relies on bridge PCR (aka ‘cluster 

PCR’) to amplify clonal sequencing features. In brief, an in vitro–constructed adaptor-flanked 

shotgun library is PCR amplified, but both primers densely coat the surface of a solid substrate, 

attached at their 5′ ends by a flexible linker. As a consequence, amplification products originating 

from any given member of the template library remain locally tethered near the point of origin. 

At the conclusion of the PCR, each clonal cluster contains ~1,000 copies of a single member of the 

template library. Accurate measurement of the concentration of the template library is critical to 

maximize the cluster density while simultaneously avoiding overcrowding.” Adapted from Next- 

generation DNA sequencing, Jay Shendure1 & Hanlee Ji2). 
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SOLiD Helicos 

The SOLiD platform uses a sequence by ligation approach, in which libraries of fragments 

are clonally amplified on the surface of a 1micron bead and an oligo complementary to one 

of the two adapters used in the library construction is covalently bound. 



23 
 

 

 

“Clonal amplification is achieved by limiting dilution of the fragment library during emulsion 

PCR, which is performed as an emulsion generated by mechanical whipping of an aqueous 

solution containing PCR reagents, amplification beads, the library and oil. Following 

emulsion PCR ‘loaded’ beads are enriched by hybridization of the alternate adapter to 

complementary oligos covalently attached to a polystyrene bead” (Hirst & Marra, 2010) 

(figure 10). 

 

 

 

 
Figure 10 - SOLiD sequencing. “Following cluster generation or bead deposition onto a slide, 

fragments are sequenced by ligation, in which a fluorophore-labelled two-base-encoded probe, 

which is composed of known nucleotides in the first and second positions (dark blue), followed by 

degenerate or universal bases (pink), is added to the DNA library. The two-base probe is ligated 

onto an anchor (light purple) that is complementary to an adapter (red), and the slide is imaged 

to identify the first two bases in each fragment. Unextended strands are capped by unlabeled 

probes or phosphatase to maintain cycle synchronization. Finally, the terminal degenerate bases 

and the fluorophore are cleaved off the probe, leaving a 5 bp extended fragment. The process is 

repeated ten times until two out of every five bases are identified. At this point, the entire strand 

is reset by removing all of the ligated probes and the process of probe binding, ligation, imaging 

and cleavage is repeated four times, each with an n + 1, n + 2, n + 3 or n + 4 offset anchor.” Adapted 

from (Goodwin, McPherson, & McCombie, 2016) 

 

A related system to the SOLiD is the Polonator, based in part on the system developed by 

J.S. and the Church group 13 at Harvard. This platform also uses sequencing features 

generated by emulsion PCR and sequencing by ligation. However, this instrument is 

substantially cheaper than that of other second-generation sequencing instruments. 

Additionally, “the instrument is open source and programmable, potentially enabling user 

innovation (e.g., the use of alternative biochemistries).” The current read-lengths, however, 

may be significantly limiting (Ji, 2008). 
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Roche 454 Sequencing 

Roche 454 uses a pyrosequencing approach. “Pyrosequencing is a non-electrophoretic, 

bioluminescence method that measures the release of inorganic pyrophosphate by 

proportionally converting it into visible light using a series of enzymatic reactions. Unlike 

other sequencing approaches that use modified nucleotides to terminate DNA synthesis, the 

pyrosequencing method manipulates DNA polymerase by the single addition of a dNTP in 

limiting amounts. Upon incorporation of the complementary dNTP, DNA polymerase 

extends the primer and pauses. DNA synthesis is reinitiated following the addition of the 

next complementary dNTP in the dispensing cycle. The order and intensity of the light peaks 

are recorded as flowgrams, which reveal the underlying DNA” (Metzker, 2009). As in 

Illumina, the DNA or RNA is fragmented into shorter reads, in this case up to 1kb. Generic 

adaptors are added to the ends and these are annealed to beads, one DNA fragment per bead. 

“The fragments are then amplified by PCR using adaptor-specific primers. Each bead is then 

placed in a single well of a slide. So, each well will contain a single bead, covered in many 

PCR copies of a single sequence. The wells also contain DNA polymerase and sequencing 

buffers. The slide is flooded with one of the four NTP species. Where this nucleotide is next 

in the sequence, it is added to the sequence read. If that single base repeats, then more will be 

added. So if we flood with Guanine bases, and the next in a sequence is G, one G will be 

added, however if the next part of the sequence is GGGG, then four Gs will be added. The 

addition of each nucleotide releases a light signal. These locations of signals are detected and 

used to determine which beads the nucleotides are added to. This NTP mix is washed away.”  

(http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-

course/what-next-generation-dna-sequencing/454-seque) 

The next NTP mix is now added and the process repeated, cycling through the four NTPs 

(see figure 11). This kind of sequencing generates graphs for each sequence read, showing 

the signal density for each nucleotide wash. 

The sequence can then be determined computationally from the signal density in each wash. 

All of the sequence reads we get from 454 will have different lengths, because different 

numbers of bases will be added with each cycle 

(https://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-  

practical-course/what-next-generation-dna-sequencing/454-seque). 

http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-
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Figure 11 - Roche 454 (pyro) sequencing. “After bead-based template enrichment, the beads are 

arrayed onto a microtiter plate along with primers and different beads that contain an enzyme 

cocktail. During the first cycle, a single nucleotide species is added to the plate and each 

complementary base is incorporated into a newly synthesized strand by a DNA polymerase. The 

by-product of this reaction is a pyrophosphate molecule (PPi). The PPi molecule, along with ATP 

sulfurylase, transforms adenosine 5′ phosphosulfate (APS) into ATP. ATP, in turn, is a cofactor 

for the conversion of luciferin to oxyluciferin by luciferase, for which the by-product is light. 

Finally, a pyrase is used to degrade any unincorporated bases and the next base is added to the 

wells. Each burst of light, detected by a charge-coupled device (CCD) camera, can be attributed 

to the incorporation of one or more bases at a particular bead”. Adapted from (Goodwin, 

McPherson, & McCombie, 2016) 

 

 

 

Illumina Genome Analyzer 

Illumina sequencing uses a sequence-by-synthesis (SBS) approach, a cyclic method that 

comprises nucleotide incorporation, fluorescence imaging and cleavage (figure 12). Each 

read is then cluster-PCR amplified, creating a spot with many copies of the same read. They 

are then separated into single strands to be sequenced. The slide is flooded with nucleotides 

and DNA polymerase (Metzker, 2009). In the first step, the DNA polymerase, bound to the 

primed template, adds or incorporates just one fluorescently modified nucleotide, which 

represents the complement of the template base. Following incorporation, the remaining 

unincorporated nucleotides are washed away. Imaging is then performed to determine the 

identity of the incorporated nucleotide. This is followed by a cleavage step where the 

terminating/inhibiting group and fluorescent dye are  removed.100-150bp reads are used. 

Somewhat longer fragments are ligated to generic adaptors and annealed to a slide using 

the adaptors. Current sequencing on the Illumina platform often produces data whose 

quality deteriorates towards later cycles. 
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Up to a read length of  nearly 60-70bp, the quality of these reads is considered excellent 

(> Phred 30). After that, however, Phred scores tend to drop dramatically in a fairly large 

number of sequences, probably due to wrong nucleotide addition (or “background 

noise”), which means the rates at which bases are called erroneously increase and need 

to be processed before alignments (Andrews, 2013).Base call errors in reads can result 

in  alignment mismatch (reduced mapping efficiency), incorrect methylation calls or, in 

the worst case, misalignments (which will most likely also generate incorrect 

methylation calls) (https://www.ebi.ac.uk/training/online/course/ebi-next-generation- 

sequencing-practical- course/what-next-generation-dna-sequencing/illumina-). 

With the Illumina genome analyzer, nearly a terabyte of image files is generated during 

a single run where image files are analyzed and converted into sequence reads. Before 

any high throughput sequencing experiment, it is recommended to design and test a data 

analysis pipeline (Kyle R. Pomraning K. M, 2009). 

 

Figure 12 - Sequencing by synthesis: cyclic reversible termination approaches. Illumina. “After 

solid-phase template enrichment, a mixture of primers, DNA polymerase and modified 

nucleotides are added to the flow cell. Each nucleotide is blocked by a 3′-O-azidomethyl group 

and is labelled with a base-specific, cleavable fluorophore (F). During each cycle, fragments in 

each cluster will incorporate just one nucleotide as the blocked 3′ group prevents additional 

incorporations. After base incorporation, unincorporated bases are washed away and the slide is 

imaged by total internal reflection fluorescence (TIRF) microscopy using either two or four laser 

channels; the colour (or the lack or mixing of colours in the two-channel system used by NextSeq) 

identifies which base was incorporated in each cluster. The dye is then cleaved and the 3′-OH is 

regenerated with the reducing agent tris(2-carboxyethyl)phosphine (TCEP). The cycle of 

nucleotide addition, elongation and cleavage can then begin again”. Adapted from (Sara Goodwin, 

2016). 

http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-
http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-
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Ion Torrent 

In contrast to other platforms such as Illumina and 454, Ion torrent and Ion proton sequencing 

is based in the release of an H+ ion due to the addition of a dNTP to a DNA polymer, although 

the input DNA or RNA is also fragmented, this time ~200bp. Adaptors are added and one 

molecule is placed onto a bead. The molecules are amplified on the bead by emulsion PCR, 

where PCR reagents, primer-coated particles, and a low concentration of template fragments 

are mixed with oil and emulsified, forming micro reactions. Each bead is placed into an 

individual nano well of a slide, which is then flooded with a single species of dNTP, along 

with buffers and polymerase. Nucleotides are added cyclically one at a time, being registered 

by the unleash of  an H+ ion (Salipante et al., 2014). The pH is detected in each of the wells, 

as each H+ ion released will decrease the pH. The changes in pH allow us to determine if that 

base, and how many thereof, was added to the sequence read. The dNTPs are washed away, 

and the process is repeats itself with different dNTP species.  

(https://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical- 

course/what-next-generation-dna-sequencing/ion-torre) . 

 

 

Figure 13 - Ion torrent sequencing. “After bead-based template enrichment, beads are carefully 

arrayed into a microtiter plate where one bead occupies a single reaction well. Nucleotide species 

are added to the wells one at a time and a standard elongation reaction is performed. As each base 

is incorporated, a single H+ ion is generated as a by-product. The H+ release results in a 0.02 unit 

change in pH, detected by an integrated complementary metal-oxide semiconductor (CMOS) and 

an ion-sensitive field-effect transistor (ISFET) device. After the introduction of a single nucleotide 

species, the unincorporated bases are washed away and the next is added.” Adapted from 

(Goodwin et al., 2016). 

http://www.ebi.ac.uk/training/online/course/ebi-
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1.7.3 Third Generation of Sequencing Platforms 

The third generation of sequencing platforms are distinct from their forbearers, in that they 

are designed to sequence DNA at the level of a single molecule. The advantages of such an 

approach include simple library preparation, massively parallel sequencing at long read 

lengths (which is very useful to detect repetitive elements) and, importantly, the lack of the 

repeated PCR amplifications before sequencing (Hirst & Marra, 2010). The emerging third-

generation technologies are the PacBio, Life Technologies and Oxford Nanopore platforms.  

 

 

 

 

 

 

1.8 FASTQ FILES FORMAT 

When high-throughput sequencing instruments began generating millions of reads per run, 

there was a demand for a way to check the quality of each base call. In order to represent both 

the sequence and the probability of each nucleotide to be well sequenced, FASTQ format 

was invented. The "Q" suggests quality, as in the quality of the read. In this format, the quality 

scores are represented by ASCII characters, instead of a sequence of numbers. This type of 

coding is more efficient because it only requires 1 byte, instead of the generally 3 bytes 

required. It is shown below an example of a FASTQ file 

(http://binf.snipcademy.com/lessons/sequence- file-formats/fastq). 

 

@SRR478995.2 HWI-ST565_0122:5:1101:1475:2117/1 
 

TTTTAAGAAGTTTTTGAGTTTGTTTTTATTAGTATTTATTTTATAGAAAGATATTTTTTTGTGGTTTTGGGGTT 

TTTTTTTTGTACTAAGGTTTTTTTAG 

+ 
 

?@CFA;D=ADDHHIIICGEHIIHGIGIGHIIIIFHIIGHIGGFGCGDGHFDGC*BFHII''..(.5C(?/539?BB(39&)&&( 

4(:(:4(:@ABDDD## 

 
Figure 14 - The FASTQ file format. The first line gives the name of the read and the number of 

pair at the end (in this case pair one). The second and third lines show the nucleotide sequence, 

which is a, c, g, or t. Then there's a plus. Finally, the fifth and sixth lines give the quality (ASCII 

code) of each nucleotide from the second and third lines and this code can be looked up/searched 

to see for what these qualities are. 

 

In order to be intelligible and easily edited, ASCII printable characters were restricted to 32– 

126 (decimal), and since ASCII 32 is the space character, Sanger FASTQ files use ASCII 

33–126 characters to encode PHRED qualities from 0 to 93 (i.e. PHRED scores with an 

ASCII offset of 33. The quality score is the probability that a base is incorrectly identified, 

and is often parameterized by bioinformatics tools such that reads beyond a threshold of 

http://binf.snipcademy.com/lessons/sequence-
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inaccuracy are discarded from the fastq file. 
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The quality score, or PHRED quality score, was named after the PHRED software which 

reads DNA sequencing traces, calls bases and assigns each a quality value. This gives a very 

broad range of error probabilities, from 1.0 (a wrong base) through to 109.3 (an extremely 

accurate read), so the Sanger FASTQ format is convenient both for raw sequencing reads and 

post-processed assemblies where higher qualities scores are read. ENA/EMBL ArrayExpress 

provides FASTQ files so that they don’t require uncompressing but take longer to download 

as they are larger files. Unlike Arrayexpress, NCBI GEO provides raw data as SRA files, 

which are compressed versions of the FASTQ files which means that paired reads come in 

two the two FASTQ files for the two paired end reads. So there is a trade off when choosing 

between these options 

In 2004, Solexa, Inc. introduced their own version of the FASTQ format. Although the 

FASTQ format only stores a single quality score per letter, Solexa also produced quality 

scores for all four bases, and in order to represent low-quality information more accurately, 

an alternative logarithmic scale was used (Cock, Fields, Goto, Heuer, & Rice, 2009). 

Although Illumina initially continued to use the Solexa FASTQ variant, from Genome 

Analyzer Pipeline version 1.3 onwards, PHRED quality scores rather than Solexa scores 

were used. “However, rather than adopt the original Sanger format, Illumina introduced a 

third incompatible FASTQ variant designed to be interchangeable with their earlier ‘Solexa 

FASTQ’ files for good quality reads. The Illumina 1.3+ FASTQ variant encodes PHRED 

scores with an ASCII offset of 64, and so can hold PHRED scores from 0 to 62 (ASCII 64– 

126), although currently raw Illumina data quality scores are only expected in the range 0– 

40.”(Cock, Fields, Goto, Heuer, & Rice, 2009) 

Illumina could have adopted the original Sanger format and, consequently, could have 

unified the FASTQ format. Although Illumina 1.3+ FASTQ variant is interchangeable with 

the earlier Solexa FASTQ version for high quality reads, there are currently three 

incompatible FASTQ variants (figure 17). 
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Figure 15 - The three described FASTQ variants. In columns there is the description, format name 

used in Open Bioinformatics foundation (which is a non-profit, volunteer-run group dedicated to 

promoting the practice and  philosophy  of Open  Source software  development and Open Science 

within the biological research community. projects, range of ASCII characters permitted in the 

quality string (in decimal notation), ASCII encoding offset, type of quality score encoded and the 

possible range of scores. Adapted from (Cock et al., 2009). 
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2. OBJECTIVES 
 

 

The primary goals of this thesis are: 

 
1- To know and make use of the main biological databases with relevant data for 

epigenomics; 

2- To obtain fastq files from methyl-seq and/or bisulfite-seq next generation 

sequencing from public databases (ENA, GEO or DDBJ), of healthy individuals with their 

respective metadata attached giving information about the age, gender, tissue/organ, health 

status 

 

3- To use the current bioinformatic protocol from the laboratory to map methylations, 

using the files obtained previously. Adapt, if necessary, the protocol for any other possible 

modifications 

4- To do a comparative analysis with the results obtained previously in order to 

identify any possible features related to healthy human ageing 

5- To do a comparative analysis using brain and blood samples from healthy 

individuals with samples from age matched individuals in order to establish possible markers 

for human healthy aging 

6-To further understand the of the Epigenome in a healthy lifestyle. 
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3. METHODOLOGIES 
 

 

3.1 PRIMITIVE METHODS AND TECHNOLOGY OF DNA 

MEHTYLATION QUANTIFICATION 

 
DNA methylation research can be approached in several ways because there is a wide range 

of techniques available for the study of the occurrence and localization of methyl cytosine in 

the genome. 

 

The focus of a study might be the methylation status of a gene of interest (locus-specific 

study) or of a large number of genes (genome-wide study), or the total DNA methylation 

content in a cell or tissue under normal or pathological conditions (global study). The 

techniques used for qualitative analysis of DNA methylation yield information about the 

methylation status of a gene or comparative information in paired samples. Quantitative 

methylation provides information about particular genes or, a particular CpG in the region 

of interest. (Ester Lara V. C., 2011). 

The first techniques used to explore the epigenetic patterns were based on the separation of 

methylated and unmethylated deoxynucleotides. Quantification of methylcytosine in the 

genomic DNA can be done by high-performance separation techniques or by 

enzymatic/chemical means. The most significant technique at the time was the separation of 

purines and pyrimidines through paper chromatography, based on the quantitative hydrolysis 

of DNA using DNase I and nuclease P1, followed by treatment with alkaline phosphatase. 

The individual bases can then be monitored based on their UV absorbance at 254 and 280 

nm. The Reverse Phase-High Performance Liquid Cromatography (RP-HPLC) method was 

further improved throughout the 1980s with incorporation of mass spectrometry with 

standard High Performance Liquid Chromatography (HPLC) (Alan Harrison, 2011). 

Because, HPLC based methods demand specialized machinery, alternative separation 

techniques were developed. Bestor et al (1984) used two restriction endonucleases, Msp1 and 

Taq1 to distinuish between methylated and unmethylated-CpG residues in their restriction 

sites, CCGG and TCGA respectively. Digested DNA is first labeled with   a 32P isotope in 

the 5′  end-  and then hydrolyzed to deoxyribonucleotide monophosphate followed by 

separation in two dimensions via thin-layer chromatography (TLC). 
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Quantitative analysis of DNA methylation is measured by the ratio between C and 5mC 

fractions after separation. In the former, DNA can be digested into single nucleotides and 

total genomic 5-methylcytosine, and can be quantified by high- performance liquid 

chromatography thin-layer chromatography, liquid chromatography/mass spectroscopy or 

high performance capillary electrophoresis, which is the best choice because is faster, 

cheaper, and more sensitive than chromatography based techniques (Fraga M. F., 2002). 

The enzymatic/means are never as accurate as the former, and sometimes their resolution is 

limited by the endonuclease cleavage sites. However, enzymatic/chemical approaches were 

still able to replace the earlier methods because, unlike separation techniques, they do not 

require expensive and complex equipment that is not always available, require minor 

amounts of DNA and, so, are much more convenient. 

An important impulse for epigenetic research was the adoption of DNA microarrays to 

methylation profiling (Estécio, Yan, Huang, & Issa, 2008) but the generation of whole 

genome, single-base-pair resolution methylation maps became possible just recently with the 

upcoming Next-Generation Sequencing (NGS) or High-Throughput Sequencing (HTS) (José 

L.Oliver, 2012). 

 

 
Microarray-Based Methylome-Wide Analysis and Platforms 

 
Throughout the 1990s, the development of DNA microarray technology caused a revolution 

in functional genomics, allowing high-throughput analysis of single nucleotide genomic 

variants (Southern et al., 1999). Microarrays consist of an a series of packed microscopic 

spots of DNA or RNA fragments, called features. Three main classes of microarray-based 

methods have been developed to map 5mC patterns in genomes: methods enriching for highly 

methylated regions using an antibody specific for 5mC or methyl- binding proteins; methods 

based upon bisulfite modification; and methods utilizing restriction enzymes for methylated 

sites (Yu-I Weng, 2009) Microarrays allow to obtain information of the "mean" methylation 

values of a given region, however the methylation pattern is not revealed at a single base pair 

resolution (José L. Oliver, 2012).There are some exceptions of  arrays for individual CpGs 

which cover several thousand sites
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The regions covered by the arrays can be short sections of DNA used as probes to hybridize to 

RNA or DNA from sample (called target). “The underlying principle across microarray-based 

methods is the same: methylated and unmethylated fragments of the genome are split and 

analyzed. When previously known probes hybridize to a microarray, areas of the genome that 

are methylated or unmethylated are quantified and identified. This is achieved by fluorescence-

based detection of fluorophore-labeled targets thus giving the level of abundance of nucleic 

acid sequences in the target.” (Parle-McDermott, 2011).  In standard microarrays, the probes 

are attached to a solid surface, which can be a solid surface or a silicon chip, by a covalent bond 

to a chemical matrix. (Teng & Xiao, 2009). 

While powerful, microarrays do have some drawbacks such as the need for a priori knowledge 

of the genome or genomic features. This directly harms genome annotations when they are 

incomplete, incorrect, or outdated. Furthermore, metagenomics approaches (where the genetic 

content from undefined mixtures of organisms in an environment is sampled en masse) are 

difficult due to this restriction of microarrays. Another major obstacle in microarray analysis 

is cross hybridization between similar sequences. This restricts microarray analysis to the non- 

repetitive regions of genomes and hampers the analysis of related genes (or features), 

alternatively spliced transcripts, allelic gene variants, and SNPs (Nelson, 2009). Finally, 

particularly in those cases based on enrichment of methylated DNA, it can survey for the 

presence or absence of methylated DNA, but it does not inform about the extent and pattern of 

CpG methylation in a given region. Often, more studies must be conducted on a single gene 

basis to confirm the results of such microarray experiments. (Manuscript, 2014). 

Illumina® technologies, such as the Illlumina Infinium and GoldenGate beads array, which 

analyzes bisulfite-converted DNA, have designed bead arrays to analyze the methylation 

content in different samples simultaneously (Ester Lara V. C., 2011).



36 
 

  

 

3.1.1 High Throughput Sequencing Methods for Cytosine Methylation 

Mapping 

Enrichment-based Methods 

MeDIP-Seq 

Methylated DNA Immuno-precipitation sequencing (MeDIP-Seq) is, as the name of the 

technique suggests, based in immunoprecipitation. Similarly to the microarray, the 

fragmented DNA is enriched based on its methylation content. Antibodies are raised against 

a single stranded methyl-cytosine and  so the immuno-precipitation occurs in a denatured 

state. To prevent over repetitive content in the subsequent library through preferential 

annealing of very methylated genomic repeats, library construction is performed before the 

immuno-precipitation and amplified following enrichment by PCR. Highly specific isolation 

and enrichment of methylated DNA provides an advantage for the convenient and 

comprehensive identification of methylation status of normal and diseased cells. The 

methylated DNA immunoprecipitation protocol uses an antibody specific to methylcytosine 

in order to capture methylated DNA. An ideal MeDIP assay should be very sensistive and 

specific, have minimal background and fast high-throughput capability (Kelsie L. Thu, 

2009). 
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MBD-Seq 

Methylated DNA Binding Domain sequencing (MBD-seq) shares the same concept of 

MeDIP- seq, because in both techniques, genomic fragments are enriched based on their 

methylation content. However, MBD-seq uses recombinant methylated-CpG binding 

proteins MECP2 or MBD2 to enrich for methylated DNA fragments from a collection of 

fragmented genomic DNA with 100–300 bp in length. Following enrichment of methylated 

double stranded DNA fragments, standard techniques are utilized to create a representative 

library of the methylated fraction of the genome (Marra, 2011). 

MRE-Seq 

This technique involves parallel digestion with methylation sensitive restriction enzymes 

(HpaII, AciI, and Hin6I), selection of cutted fragments of approximately 50bp–300bp, 

pooling the digests, library construction, and sequencing. This interrogates higher CpG 

density regions because they have many unmethylated recognition sites for these enzymes. 

Therefore, the coverage of MRE-seq and enrichment methods is notably complementary. 

(Harris et al.2010). 

 

OVERALL COMPARISON BETWEEN METHODS 

MeDIP and bisulphite-based techniques both use one DNA strand, so both are therefore 

compatible with previously denatured DNA samples. 

 MeDIP sequencing as well as MBD- isolated DNA sequencing (MBD-seq) can detect 

differentially methylated regions (DMRs) and capture nearly the same fraction of the 

methylome. However, “while the proteins used for MBD-based capture strictly bind to 

methylated CpGs, the antibody used in MeDIP does not discriminate methylated C in the 

DNA fragments” (Klaas Mensaert, 2014). MeDIP enrichment profiles are preferentially used 

to distinguish between highly or low methylated CpG dense regions, but not recommended 

to decipher a methylome on the basis of enrichment data only. 

These techniques enrich mainly low CpG density regions, as well as few methylated CpG 

islands. On the other hand, MRE-seq interrogates more CpG density regions because they 

have an abundance of unmethylated recognition sites for these enzymes (R. Alan Harris, 

2010). Purification-based methods reduce overall cost by limiting the amount of DNA to be 

sequenced while maintaining a genome-wide approach, however there are also several 

drawbacks . 
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First, neither MBD-seq or MeDIP have the base pair resolution of bisulfite sequencing. 

Second, CpG-density and GC-content affect, the efficiency of affinity purification 

particularly for Methyl- seq (Bock et al., 2010; Robinson et al., 2011) and subsequent 

sequencing (Robinson et al., 2011; Benjamini and Speed, 2012). As a consequence, several 

methylated regions cannot be captured and sequenced by MBD-seq and/or MeDIP-seq, 

sugesting that the genome-wide character of both methods is limited. 

 

Figure 16 - Enrichment-based sequencing. “After DNA fragmentation (a, b), DNA fragments 

bearing the specific epigenetic modification of interest are captured using antibodies or specific 

protein domains. Unbound fragments can be washed away, whereas an elution step is required to 

obtain the DNA fragments of interest (d). After adaptor ligation and sequencing, sequence reads 

are aligned to a reference genome to identify the epigenetically modified loci (e, f)”. Adapted from 

(Hirst & Marra, 2010). 

 

 

Another benefit when using enrichment methods, is the ability to retain every nucleotide, which 

increases the rate of uniquely mappable sequence reads and allows more genotype-

epigenotype correlations. However, enrichment methods do not yield precise quantification 

of methylation levels. The inability of enrichment methods to quantify methylation was 

addressed by integrating MeDIP-seq to map methylated regions with MRE-seq to map 

unmethylated CpG sites (R. Alan Harris, 2010). 
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3.1.2.1 Bisulfite Based Sequencing Methods 

 
These methods are based on the discovery that, after long incubation with sodium bisulfite, 

cytosines in single-stranded DNA are deaminated to give uracil. 5-methyl cytosines are 

immune to this transformation and, therefore, any cytosines presented in bisulfite-treated 

DNA must have been methylated (Yoshihisa Watanabe, 2010). 

 

 
Figure 17 - Principles of bisulfite methods and interpretation of methylation sequencing results. 

“After fragmentation, bisulfite treatment and PCR amplification, all unmethylated cytosines (C) 

convert to thymine (T) and the presence of a C-peak indicates the presence of 5mC in the genome. 

Total methylation or complete conversion of a single residue shows a single peak. The presence of 

both C- and T-peaks indicates partial methylation or potentially incomplete bisulfite conversion.” 

Adapted from Yuanyuan Li, 2011. 

 

 

Following the bisulfite treatment, which is performed under denaturing conditions, the library 

is PCR amplified using PCR primers that extend the adapter sequencing and allowing for 

clonal amplification and sequencing. The main difference between these methods is the 

nature of the library, that is, the way how fragments and reads are generated and amplified 

by PCR, respectively. The majority of bisulfite libraries are directional, which preserves 

strand specificity; or non directional libraries, which do not preserve strand specificity, so 

strand identity of a bisulfite read is a priori unknown (Krueger, Kreck, Franke, & Andrews, 

2012; Pomraning, Smith, & Freitag, 2009). 
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Bisulfite-Seq 

In this protocol, the fragments are first generated by sonication, then go through end-repair, 

adapter ligation, and treated with sodium bisulfite (Cheng & Zhu, 2013). 

 

At the end, after two consecutive PCR amplifications, forward and reverse reads, as well as 

their reverse complementary strands are yielded. These type of library is called non- directional, 

and so, it does not preserve strand identity. When performed genome-wide this protocol is also 

called Whole Genome Bisulfite Sequencing (WGBS) 

 

 

Figure 18 - Analysis of reads from high throughput Bisulfite sequencing. “To map sequence reads 

derived from BS-Seq, two additional reference genomes are prepared from a current reference 

genome (0). The first (1) is the reference genome with all cytosines changed to thymines. The 

second(2) is the complement sequence to the genome with all guanines changed to adenines. After 

bisulfite conversion the DNA is subjected to PCR amplification resulting intwo main products from 

any given sequence. The products are sequenced and aligned to their best hits in either of the two 

converted reference genomes. C/T mismatches (in the C to T converted reference sequence) and 

G/A mismatches (in the G to A converted complement reference sequence) indicate the position 

of a methylated cytosine. Methylated cytosines are red while uracils derived from converted 

unmethylated cytosines are shown in green”. Adapted from (Kyle R. Pomraning K. M., 2009). 

 
 

MethylC-seq 

As in Bisulfite-seq protocols, fragments are also generated by sonication but in this case the 

reads come from the forward and reverse bisulfite treated DNA fragments, which means that 

the library is directionsl. Therefore, all cytosines of the input reads will be converted to 

thymines and will be tried to align to the C to T converted reference. 
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RRBS 

Reduced representation bisulphite sequencing (RRBs) was introduced to select naturally 

CpGs enriched regions by size-fractionation of DNA fragments after BglII digestion121 or 

after MspI digestion (Lee, 2014). Directional libraries, the most wide-spread way of (RR)BS, 

only ever sequences reads originating from the original top (OT) or original bottom (OB) 

strands. Often, the library is also size-selected for fragments with length range within 40 and 

220bp .This fragment size has been shown to be represented in the sample and yield 

information on the vast majority of CpG islands (CGIs) in the human or mouse genome. This 

is followed by end- repair, A-tailing, adapter ligation and bisulfite conversion. Thus, 

depending on their methylation status, the first three bases of almost all RRBS reads are 

either CGG or TGG. This applies to reads from both the OT and OB strand, and as nearly all 

reads in a directional RRBS experiment start with one of these two ways, every read suplies 

information on at least one CpG right in the start. Finally, amplification by PCR converts 

every unmethylated cytosine to a thymidine while leaving methylated cytosines intact. The 

fairly small fragment size of RRBS fragments can become a potential problem especially for 

sequencing reads with high read length (e.g. > 75bp or >100bp). RRBS provides substantial 

coverage of CpGs in CGIs, but low CpG coverage genome-wide. (Harris et al., 2011). 

Non-directional bisulfite sequencing is less common, but has been performed in several 

studies (Cokus et al., 2008; Popp et al., 2010; Smallwood et al., 2011; Hansen et al., 2011; 

Kobayashi et al., 2012). 
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Figure 19 - Preparation of a directional RRBS library. “Cytosines in blue retain the original 

genomic methylation state, whereas cytosines in red are introduced experimentally during the 

fragment end-repair reaction (this can be accomplished with either unmethylated or methylated 

cytosines but the trend seems to be that unmethylated cytosines are being used primarily now)”. 

Adapted from (Reduced Representation Bisulfite-Seq –A Brief Guide to RRBS, 2013). 

 

In the paired-end library, each end of the DNA fragment is sequenced, resulting in two reads: 

one coming from one of the original strand and the other coming from the complementary 

strand, respectively. In these type of libraries, a considerable number of the wrong mappings 

can be avoided. 

Normally, the approximate fragment length distribution is known and therefore a narrow 

window on the genome can be established to which both reads must map. So, if the two mate 

reads are independently mapped to the genome and the result of the best alignment yields 

reads far away from each other, these mappings can be eliminated as at least one of the two 

alignments will be incorrect (Hackenberg, Barturen, Oliver, Genética, & Ciencias, 2010). 

Other than reading into the adapter on the other side, paired-end reads may also generate 

potentially redundant methylation calls. These need to be discarded if positions are filtered 

for a certain coverage by independent reads, since overlapping regions are overrepresented, 

although not twice as much. 
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Figure 20 - Preparation of a non directional paired-end RRBS library. Again, cytosines in blue 

retain the original genomic methylation state, whereas cytosines in red are introduced 

experimentally during the fragment end-repair reaction. Although this can be accomplished with 

either unmethylated or methylated cytosines, the trend seems to be that unmethylated cytosines 

are being used primarily now. Adapted from (Andrews, 2013). 

 

Many sequencing platforms cannot sequence the DNA directly, so the addition of platform 

specific adapter sequences to the ends is needed to support the sequencing chemistry 

reactions. These reactions are designed so that the primer anneals right upstream of the insert 

to be sequenced and the first sequence to be generated is the desired insert sequence, and not 

the adapter. 

 

 
Figure 21 - Paired reads.” A linker ligation step coupled to PCR after bisulfite treatment selects 

only the sequences that have undergone complete cytosine to uracil conversion and, because only 

18 PCR cycles are used, this allows for unbiased amplification.” Adapted from (Pomraning et al., 

2009). 



44 
 

 

“After successful bisulfite PCR amplification or sub-cloning procedures, DNA methylation 

status can be interpreted by further sequencing analysis. Direct sequencing of PCR products 

may be easily accessible; however, a series of problems limit its application such as failing 

to read the entire target region and high background interference. Cloning sequencing can 

provide useful methylation information on a molecular basis. To obtain high confidence in 

the results, a large number of clones (minimum 5, ideally 10) need to be sequenced, which 

can be time- and labor-intensive. DNA methylation status can be interpreted by comparing 

the sequencing results and the original DNA sequence. During bisulfite sequencing the 

treatment of DNA with sodium bisulfite converts cytosines into uracils, whereas 

methylcytosines remain unmodified. Uracils are read as thymines by DNA polymerase, so, 

after PCR amplification, unmethylated cytosines appear as thymines. By comparing the 

modified DNA with the original sequence, the methylation state of the original DNA can 

therefore be deduced. Incomplete bisulfite conversion is indicated if both C-and T-peaks 

appear. The ratio of 5mC to C can be interpreted by analyzing the relative square area of 

these two bands” (Tollefsbol, 2004) (figure 21). 

 

Overview and Comparison between bisulfite based methods 

The DNA methylation is erased by PCR and not detected by hybridization, therefore, most 

techniques rely on a methylation pretreatment of the DNA before hybridization, amplification 

or sequencing. 

The biggest advantage of bisulfite-based methods is to allow quantitative comparisons of 

methylation levels at single base resolution. Bisulfite-based methods also detect 

hydroxylmethylation, but they do not differ from methylation. In the original methodology, 

bisulfite treated genomic regions were amplified by site specific PCR, cloned and sequenced 

by Sanger’s method. Sequence are assessed one by one and visualized as a matrix with the 

CpG content of each clone represented as a row. 
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The most critical issue in BS-Seq experiments in general is to be able to obtain a complete 

bisulfite conversion of the sample DNA material, while avoiding erroneous conversion of 

methylated cytosine to uracil is also important. To achieve complete conversion, the two most 

critical parameters are incubation time and incubation temperature. While maximum bisulfite 

conversion occurs at either 95°C incubation temperature for a short incubation time of 1 hour, 

or 55°C for longer incubation of 4-18 hours, these conditions affect DNA stability, and lead 

to a degradation of 84-96% of available DNA. Other quality issues of Bisulfite-Seq are 

sensitivity and reproducibility of the method, which are important factors due to the often 

small amounts of initial original DNA material available for analysis. The amount of 

unmethylated cytosines which are not converted by bisulfite treatment is known to as ’non- 

conversion-’ or ’false methylation’ rate, which depends on the completeness of bisulfite 

conversion. This has been expected to be nearly complete in existing studies, but may be 

significantly lower for gentler bisulfite conversion treatment.  

RRBS revealed to be very useful in the determining the methylation status of discrete genomic 

regions but it cannot be applied to whole genome studies (K. a Aberg et al., 2014). Notably, 

RRBS can be applied to a minute amount of input DNA. However, it cannot be used to examine 

particular regions of interest unless they are adequately flanked by the restriction enzyme sites 

(Miura & Ito, 2015). In all of these bisulfite PCR- based methods, primer design is the key for 

successful amplification. Ideally, these shouldn´t contain any CpGs due to CpG density, but 

if this is not possible, one CpG site can be included at the 5’ end. Such primers must be 

synthesized as Y (C/T) in the forward strand and R (G/A) in the reverse stand and should 

incorporate enough cytosines in the original sequence to avoid amplification of unchaned 

DNA. 

The main concern for bisulfite-PCR occurs when methylated and unmethylated DNA 

molecules sometimes amplify with significantly different efficiencies which can bias the final 

amplification result (Shen & Waterland, 2007). 
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Bisulfite treatment of 5-hydroxymethylcytosine (5hmC) provides a similar result as 5-

methylcytosine, meaning that bisulfite based methods can be used to detect whether a position 

is (hydroxy-) methylated but not to determine the exact type of modification, thus indicating 

that previous studies using bisulfite methods may have been simultaneously examining 5- mC 

and 5-hmC (Krueger et al., 2012). Based on the rapidly increasing interest in the epigenomic 

role of 5- hmC, and its chemical similarity to 5-mC, new and specific 5-hmC analysis schemes 

have been developed. 

 
3.1.2.2 High Throughput Methods That Can Detect 5hmC 

Due to the inability of bisulfite sequencing based methods to distinguish between methyl and 

hydroxymethylcytosines, new techniques have been developed to detect only the latter. 

Some of these techniques have similar approaches to the ones mentioned previously for 

microarray based methods, such as enzymatic digestion with (hydroxy) methylation sensitive 

enzymes (as is the case for RRHP and ABA-seq) (Petterson, Chung, Tan, Sun, & Jia, 2014; 

Horton et al., 2014) imunoprecepitation detection assays with antibodys (such as HMEDIP) 

(John P. Thomson, 2013) and binding proteins (JBP) (Skinner et al., 2015). Other methods, 

such as OXB-seq or TAB-seq, have an oxidative demethylation detection approach, in which 

hydroxymethylcytosines are oxidized until 5-formylcytosine and 5- carboxylcytosine, 

respectively, before detection (Yu et al., 2012). 

 

3.1.3 Bisulfite-Seq Dataset Analysis and Workflow 

The general process of converting the sequencing data into methylation maps can be divided 

into 3 steps: pre-processing of the reads, alignment and the profiling of the methylation states 

from the alignments. Some of these steps are shared by all of the tools, but others, however, 

are unique to a single or few applications. (Hackenberg et al., 2010). The analysis of 

methylation from BS-Seq is usually direct, but one should be careful with initial quality 

control, trimming and suitable alignment of BS-Seq libraries since these are keen to a variety 

of errors or biases that can be missed with other sequencing applications (Krueger & 

Andrews, 2012). 
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3.1.3.1 Pre-Processing of the Reads 
 

The pre-processing of the reads can be separated in two steps: elimination of low quality 

reads, and preparation of the reads for the alignment step. Because Illumina sequence reads 

loose quality towards the 3' end and, Lister et al. (2009) proposed to trim the read before the 

first occurrence of a low quality base call (PHRED score <= 2) in order to use the high quality 

part. Another step which might increase the alignment accuracy is the removal of the artificial 

adapter sequences because the addition of these adapter sequences on the end of reads in a 

library will probably cause those reads to fall out of any downstream analysis fairly quickly 

and introduce large numbers of mismatches into any genomic alignments (José L.Oliver, 

2012;https://sequencing.qcfail.com/articles/read- through-adapters-can-appear-at-the-

ends-of-sequencing-reads/). 

 

When some softwares do a 3-letter alignment, reads must before be manipulated in order to 

replace the unconverted cytosines by thymines. Since the maximum GC content of 

(mammalian) BS-Seq libraries ranges from 20 to 30%, the per-base GC-content plot can be 

another way of spotting contaminating sequences. The GC profile can be increased up to 40-

60% due to adaptor contamination, but this can usually be fixed by trimming the sequence 

file. It is also recommended to remove: base calls with a Phred score of 20 or lower (assuming 

Sanger encoding), any signs of the Illumina adapter sequence from the 3' end 

(AGATCGGAAGAGC), and any sequences that got shorter than 20 bp(Krueger & Andrews, 

2012). 

 

3.1.3.2 Alignment 

 

After the treatment of the genomic DNA with sodium bisulfite, the DNA is subjected to PCR 

amplification and the sequence complexity is reduced as unmethylated cytosines, are 

converted into thymine. As the methylation state of bisulfite-treated DNA must be inferred 

by comparison to an unchanged reference sequence, it is crucial to obtain a correct alignment. 

This is difficult because the aligned sequences do not exactly match the reference due to the 

conversion, so, usually, only unique alignments are accepted by programs and softwares. In 

some cases, one and the same read has a unique alignment in a 4-letter presentation but maps 

to several positions in a 3-letter alphabet, without loosing quality. In these cases, the 

information carried by the read is lost. 
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Also, as cytosine methylation is not symmetrical, each strand of DNA in the reference 

genome must be considered separately. A single site can have a different methylation state 

in different cells, so the percentage of methylation at each site needs to be pre-determined 

when handling with mixtures of cells or tissues (Pomraning et al., 2009). 

Another challenge in bisulfite read mapping is the enlarged search space. This is because the 

forward and reverse strands of bisulfite treated DNA sequences are not complementary to 

each other as the bisulfite just acts on cytosines. As a consequence, both bisulfite forward 

and reverse strands have their own reverse complementary strands (José L. Oliver, 2012).As 

in the bisulfite-seq, three reference genomes must be used for alignment of bisulfite-

converted reads (as shown in figure 20). Methylated cytosines can be identified by a 

mismatch when a cytosine is aligning to a thymine or a guanine aligning to an adenine and 

if the position was originally a cytosine or guanine in the original sequence (Pomraning et 

al., 2009). 
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“Considering that mapping efficiencies of BS-seq and standard genomic reads converge 

quickly for read lengths greater than 40 base pairs, single-end reads of 50–75 base pairs seem 

to offer a reasonable compromise between high quality read sequencing and good mapping 

efficiency”, at least using Ilumina Genome analyzers (Krueger, 2015). 

 

3.1.3.3 Post-Processing and Output 

 

After the reads have been aligned to the reference genome, each cytosines can be analyzed 

to assess its methylation status. First, both the reads and the reference sequences need to be 

converted back to a 4-letter alphabet. Methylated cytosines are then indicated by C/C 

matches while cytosines are given by a T/C mismatch in the alignment (also G/G and G/A in 

the case of BS-Seq). The methylation level of a given cytosine position in the genome is given 

by the number of methylcytosines divided by the total number of reads that map to the 

position. In this way, the methylation level lies within 0 (completely unmethylated) and 1 

(completely methylated). Intermediate methylation levels may be caused when a cell 

population is used to extract DNA and these values can indicate fluctuations at a given 

position between the individual cells and allele specific methylation. 

Because bisulfite sequencing can assess the methylation level of each individual cytosine 

can be assessed, not only the methylation levels of CpGs can be determined but also other 

sequence contexts like CHG or CHH (Lister et al., 2009). 

 

3.1.3.4 Quality Control and Common Sources of Errors 

 

While not completely preventable, a poor sequencing run will have several misinforming 

sequencing reads such as un-mappable reads, PCR duplicates, low quality reads, adapter 

dimer or sequencing adapter reads. Several factors are crucial to determine the methylation 

state of a read from a BS-seq experiment: 

 First, the sequence of the read must be correct and totally derive from a bisulfite-treated 

sequence in the original genome. 

Second, the read must be properly mapped to the match position of the targeted genome. If 

any of these criteria fails, the result is the generation of incorrect methylation calls which, in 

turn, can deviate the conclusions drawn from the whole experiment. 
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If a base is misaligned or miscalled, the methylation rate will be around  50% because both 

cytosine and thymine are equally likely to be misplaced against a genomic cytosine (Krueger 

et al., 2012). Third, both BS-seq alignments and methylation calls assume that the genomic 

reference sequence that reads are compared to remains unchanged. Thus, if no SNP 

information is available, extensive systematic errors may occur. Such effects could be 

minimized considering available genomic-variation data, for example, “from SNP databases 

into the reference sequence before bisulfite alignments are carried out or by using nucleotide 

information of the opposing genomic strand” (Krueger et al., 2012). 

In real data, the quality of base calls tends to fall as the length of the reads increases. Until 

60-70bp, the quality is excellent (> Phred 30). From then on, however, Phred scores tend to 

decrease significantly in a fairly large number of sequences, which means the rates at which 

bases are miscalled increase significantly. Base call errors in reads can result in 

misalignments which will most likely also generate incorrect methylation calls (Andrews, 

2013). Particularly in RRBS libraries, artificial methylation calls that arise during the end 

repair step are a common source of errors. “ As base-call errors are random, the frequency 

for each base will tend toward 25% each at positions with high error rate. Also, if the read 

length is longer than the MspI-MspI fragment itself, the sequencing read may continue to read 

into the adapter sequence on the 3’ end” (Andrews, 2013). Removal of 3’-MspI-sites, as well 

as low-quality bases of the reads, in RRBS data analysis, is crucial since its methylation state 

is determined by the cytosine nucleotide used for library preparation (Krueger & Andrews, 

2012). 

Paired-end RRBS libraries “may contain reads originating from filled-in MspI sites at the 

beginning of the reads, which consequently need to be excluded from downstream analysis” 

(Felix Krueger, 2012). Another frequent problem of paired-end alignments seems to be a low 

mapping efficiency which may result from setting the lower and upper fragment lengths too 

narrowly. Such stringent settings are not recommended because, quite often, the size-selected 

fragments turn out to be much smaller or larger than intended (Andrews, 2013). 



 

 

 
 

3.2 USED METHODS AND TECHNOLOGY 

3.2.1 Data Mining: Finding Bisulfite-Seq Data and Metadata 

First I searched for SRA files of samples from tissues/organs most abundantly present in the databases and found them to be the brain (Pre Frontal 

Cortex) and (peripheral) blood which was apparently a good idea because both of them are involved, particularly the brain, in age related 

diseases. We did so through searching in NCBI and EMBL/ENA and then confirmed the statistic results in DeepBlue Epigenomics. 

Through NCBI I searched for epigenetic studies submitted to the SRA archive that were done with humans using “bisulfite-seq” in the first 

search of Entrez: "strategy bisulfite seq"[Properties] AND "study type epigenetics"[Properties] AND “Homo sapiens [Organism]”. Then through 

ArrayExpress I first searched with the query “Human AND bisulfite AND age AND sex "and then narrowed down the search to “Human AND 

peripheral blood AND DNA methylation AND bisulfite”. 

Because most of the samples resulting from the initial search didn’t completely match with our query or didn’t completely fulfilled the metadata 

required, we refined our search using Rstudio and the Bioconductor GEO metadb package, which led to the following results (see table 2 and 3). 

 



 

Table 2 - Brain samples found and downloaded with its respective metadata annotation (age, gender, tissue), accession numbers (study serie, 

submission accession, experiment accession, sample accession and run accession) and additional information about sequencing method (method type), 

pre processing parameter (mean filter reads).Paired reads have the same accession numbers, differing only the run accession. Each gse serie number 

has its own citation number:  a) 22922032; b) 24594098; c) 26030523; d) 23925113. 

Table 3 - peripheral blood samples found and downloaded with its respective metadata annotation (age, gender, tissue), accession numbers (study 

serie, submission accession, experiment accession, sample accession and run accession) and additional information about sequencing method (method 

type), pre processing parameter (mean filter reads).Paired reads have the same accession numbers, differing only in the run accession. 
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3.2.2 PRE PROCESSING READS WITH PIPELINE PILOT 

After having found and downloaded every file and its corresponding metadata, we used the 

pipeline pilot to do the first quality control. “Pipeline Pilot presents a visual working 

environment for viewing and editing protocols and for running them on a server. Each 

protocol is comprised by a set of components that perform operations such as data reading, 

calculation, merging, and filtering. The connections between each components define the 

sequence in which data is processed. Data from files, databases, and the web is merged, 

compared, and processed, according to the logic of the protocol. Multiple components can be 

incorporated into a single component exposed at the outer level of a protocol. The component 

that comprises these components is known as a "subprotocol". A protocol can include any 

number of subprotocols. Each one is a complete protocol with its own set of inner 

components” (Biovia Help Center). The reads were filtered using the homemade script. 

 

 

Figure 22 - Pipeline Pilot example of a protocol for pre processing reads. Protocols are made of 

components (blue boxes) linned among them to indicate the flow of the data and ordered 

accordingly, each component can integrate subprotocols as exemplified for the last component of 

the figure. 

 

The protocol used for read filtering includes the following subprotocols: 

Trim Read by Quality - Remove fragments with bad quality from the processed read 

(default threshold = 20 and minimum remaining length =50). 

Length Filter - Remove reads too small (default threshold = 50 ). 

Ambiguity Filter - Remove reads with a high percentage of N occurrence (default threshold 

= 5%). 

Average Quality Filter - Remove reads with a low average quality (default quality cutoff 

threshold = 20). 
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Filter unpaired reads-Removes those runs that don’t come with both paired reads files 

Trim read by length-Removes bp from either 5’end and/or 3’end of the reads. This 

component was only applied to reads that presented abnormal sequence base content and 

low quality either at the beginning or the end of the read, respectively. 

In the case of paired reads runs, another protocol was necessary (Manipulate FASTQ 

paired read files) to merge both paired reads in a single file so it could be used more 

accurately as input for Methy Pipe. 

 

3.2.3 CHECKING QUALITY CONTROL WITH FASTQC 

After filtering all the reads in Pipeline Pilot, we checked the output reads using FASTQC. 

FASTQC provides a modular set of analyses, which one can use to quickly tell if whether 

the data has any problems of which one should be aware before doing any further analysis. 

Allthouh some reads from our dataset had higher quality than others, all of them fulfilled the 

quality criteria. As a way to exemplify how main quality issues that can be detected with 

FASTQC, I will present a series of FASTQC plots from a sample chosen as representative 

of a globaly good quality of reads. 

 

 
Quality Control of a filtered single end reads run: SRR921706 

 

 

Figure 23 - Distribution of sequence length (in pbs) over all sequences. 
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Idealy, every sequence should be 100pb long, although in this case some sequences have 

length lower than 100 bp and the majority have between 99-101 pbs. 

 

 
Figure 24 - Mean sequence quality over all sequences. 

 

 

 
 

Most reads have a mean sequence quality Phred score near 37, which is very good. 
 

Figure 25 - Mean GC content distribution over all sequences. 
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The typical GC content of (mammalian) BS-Seq libraries peaks between 20 and 30%. This 

plot represents the normal distribution on GC content across all sequences, which is near 

23%, as expected. 

 
Figure 26 - Mean GC content distribution over all sequences. 

 

 

Typical BS -seq experiments in mammals tend to have an average cytosine content of ~1- 

2% throughout the entire sequence length. This may certainly be different for cell types or 

organisms with different methylation rates, especially in non-CG context. 

 

Figure 27 - Quality scores across all bases in every position of the sequence. 
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If the occurrence of C seems to increase to more than 20% towards later cycles one is almost 

certainly looking at adapter contamination of variable length. In contrast to other sequencing 

techniques, the low overall C content of BS-Seq libraries makes adapter contamination easy to 

spot and remove. Good mean quality scores, as represented here with boxplots, must be over 30. 

 

 

Figure 28 - N content across all bases in every position of read, where N means an undetermined 

base. 

N content plot shows the ideal situation where N content across every base is zero, which means 

that the base composition in every position was determined. 

 

 
Figure 29 - GC content across all bases in every position of the sequence. 
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The per-base GC-content plot can be another way of spotting contaminating sequences. 

Adapter contamination can shift the GC profile to 40-60%, but this can usually be fixed by 

adapter trimming the sequence file. 
 

Figure 30 -Kmer plot showing relative enrichment over read length in every position of sequences. 

 
 

FastQC estimates over expected ratio of individual k-mers by considering the overall frequency 

of all bases in the library. Once C is usually undererepresented in the sequence file (~1-2%, 

see), the probability of encountering C containing k-mers is so low that one can easily get 

high observed/expected ratios from just a few occurrences of C- containing k-mers. 

Whereas a prediction of sequence duplication level is 10% for a mammalian shotgun BS-

Seq experiment is exected, a level of 80% leads to believe that the sample is highly suffering 

from PCR duplication which should probably be removed before starting with further 

analysis. If the over-represented sequence plot contains any sequences it may provide more 

clues of the potential source of contamination, usually Illumina adapters or primer sequences 

as a result of primer-dimers. 
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Figure 31 - Sequence duplication levels of read. 

 

 

3.2.3 ALIGNMENT WITH METHY PIPE 

Finaly, for the alignment process and statistic results, we used the software Methypipe. 

Methypipe is directed towards the analysis of high- or low-resolution DNA methylomes in 

multiple species, handling (hydroxy-)methyl-cytosines in both CpG and non-CpG sequence 

context. Methy Pipe is able to perform multiple whole-genome bisulfite sequencing 

experiments, while maintaining the ability of integrating targeted genomic data. The input 

data consists of high-throughput bisulfite sequencing reads sequenced from either single or 

paired end libraries prepared according to the MethylC/Bisulfite-Seq protocol in FASTQ 

format. 

 

Methypipe Modules and Functions 

 

 
Figure 32 - Scheme of the functions of BSAligner Module.Adapted from (Jiang et al., 2014). 
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Before the alignment, the reads may need to be pre-processed (if not completely pre 

processed already with other softwares such as pipeline pilot). First, the low-quality bases (that 

is, bases with quality score lower than 5) and sequenced adaptors at the 3’ ends of the reads 

are removed. The preprocessed reads are then mapped to C-to-T converted reference genomes 

before executing alignment. 

 Paired-end and single-end reads use different alignment approaches. Single-end reads are 

mapped to reference genome by allowing at most 2 mismatches and only uniquely mapped 

reads are kept for further analysis; whereas paired-end reads not only consider the number of 

mismatches and aligned hits, but also take into account the insert size between the paired-end 

reads (e.g., from 50 to 600 bases). The ambiguous reads mapped to both forward and reverse 

strands are removed. Finally, the alignments yielded in a text file that records the aligned 

chromosomes, positions, mismatches as well as sequencing qualities. To present clear insights 

of the methylation status of each sample, Methy-Pipe generates genome-wide methylation 

profiles using Methylation Densitys (MDs, calculated as shown in equation 1) of fixed 

windows across the whole genome to visualize the MDs in a scatter plot. In these plots, each 

dot represents a genomic region with a fixed length of 100 kb. The MDs of these fixed 

windows are plotted against their genomic locations in the reference genome. (see the plots of 

the section Methylation Density across the chromosomes, in the Appendix). 

 
 

 

Figure 33 - Calculation of methylation density formula, where,  in a given genomic region” Ci is 

the number of cytosines and Ti is the number of thymines, in the ith position.n is the total number 

of cytosines, C(i) is the total number of sequenced cytosines at the ith cytosine position in the 

reference genome, suggesting the methylated event, and T(i) is the total number of sequenced 

thymines at the ith position which is suggestive of unmethylated event. When n equals to 1, MD at 

a single-base resolution could be calculated.”Adapted from Peiyong Jiang, 2014. 
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Figure 34 - Scheme of the functions of the BSAnalyzer Module.Adapted from Peiyong Jiang, 2014. 

 

MethtyPipe identifies Differentially methylated regions (DMRs) that have been widely 

identified among tissues, developmental cells and cancer types as being involved in tissue-, 

cell- or cancer-specific gene expression. Therefore, the identification and analysis of DMRs 

for paired or multiple samples is of wide interest (Su et al., 2013). 

The identification of genome-wide DMRs between two compared samples is achieved 

through 4 steps: determination of the seed regions (with a 500 bps extension window from 

the 5’ part of the read of the two samples); identification of differentially methylated seed 

regions; extension of differentially methylated seed regions; and merging of adjacent 

differentially methylated seed regions. (Peiyong Jiang, 2014) (figure 38). As cutoff, we 

admitted DMRs with p-values (which indicate statistical significance) <0,01. 
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Figure 35 - Principle of DMR detection by BSAnalyzer. “(A) Firstly, starting from one end of the 

genome to search for a seed region (i.e., 500 bps) using a sliding window. (B) If the seed region is 

located, Mann-Whitney test will be used to test if the seed region is a differentially methylated 

seed region. (C) Two adjacent differentially methylated seed regions are merged into one extended 

seed region (seed region extension). (D) Two discontinued differentially methylated regions are 

further merged together if they are within a certain distance (e.g. less than 1000 bps) for further 

differential methylation test.” Adapted from Peiyong Jiang, 2014. 

 

 

 

 

 

 

 

 

 
 

3.2.4 PRELIMINARY ANALYSIS OF DMRS WITH 

G:PROFILER 

Among all the outputs that Methy-Pipe retrieved, we were mainly interested in obtaining 

DMRs. Since we had extensive DMRs annotation tables comparing several pairs, a deep and 

thorough analysis of these genes and their functions would be unfeasible within the scope of 

this thesis (the most extensive tables were those comparing DMRs between the test file 

SRR949197 from 82-year-old female brain and control SRR847424 from 42-year-old female 

brain, which retrieved 810 hypermethylated genes 
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and 2729 hypermehtylated genes; and those comparing the test file SRR330576 from 103 year 

old male blood with the control file SRR330578 from 1 year old male blood which retrieved 

2319 hyper methylated genes an 1212 hypomethylated genes). 

Therefore, we began a preliminary analysis of the main functions affected by these genes with 

an online tool called G:PROFILER. (g:Profiler).This is a public web server for characterizing 

and manipulating gene lists of high-throughput genomics. It has a simple user- friendly web 

interface with powerful visualization and is currently available for 80+ species, including 

mammals, plants, fungi, insects, etc from Ensembl and Ensembl Genomes. The core of the 

g:Profiler, performs statistical enrichment analysis to provide interpretation to user-provided 

gene lists, ordered gene lists and chromosomal regions. It studies many sources of functional 

evidence, such as Gene Ontology terms, biological pathways, regulatory motifs of 

transcription factors, microRNAs, human disease annotations and protein-protein interactions. 

The tool we used, GOST, performs functional profiling of gene lists using various kinds of 

biological evidence. It also performs statistical enrichment analysis to find over- 

representation of information such as Gene Ontology terms, regulatory DNA elements, human 

disease gene annotations, and protein-protein interaction networks. The basic input of g:GOSt 

is a list of genes. (http://biit.cs.ut.ee/gprofiler/page.cgi?welcome). The output is a tabular 

graphic where genes are shown in columns, functions in rows, and colored table cells showing 

functional associations. ( http://biit.cs.ut.ee/gprofiler/). 

g:GOSt uses multiple testing correction algorithms for distinguishing significant results from 

random matches. We used the Bonferroni Correction to show more clearly the difference 

between approximate values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://biit.cs.ut.ee/gprofiler/page.cgi?welcome)
http://biit.cs.ut.ee/gprofiler/)
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3.2.5 PRELIMINARY ENRICHMENT ANALYSIS OF METHYLATION 

DENSITY PLOTS USING SPSS 
 

Given the enormous amount of entries of the Regional Methylation Density Calculation 

tables generated by Methy-Pipe, it would be unfeasible to display them, so we used SPSS to 

do a preliminary enrichment analysis with these because of its capacity to manage large 

amount of data. 

“SPSS is a widely used program for statistical analysis in social science. It is also used by 

market researchers, health researchers, survey companies, government, education 

researchers, marketing organizations, data miners, and others.
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In addition to statistical analysis, data management (case selection, file reshaping, creating 

derived data) and data documentation (a metadata dictionary was stored in the datafile) are 

features of the base software.” (http://www.ibm.com/analytics/us/en/technology/spss/) 

The main output elements were retrotransposons (LINE and SINE), given the frequency and 

relevant role on aging. 

http://www.ibm.com/analytics/us/en/technology/spss/
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4 RESULTS AND DISCUSSION 
 

 

We summarized the main conclusions we got from our samples from a biological standpoint 

according to the output sections: 

 

4.1 METHYPIPE OUTPUTS 

4.1.1 Methylation Density across the chromosomes 

In this section, we performed whole chromosome methylation profiling within a fixed 

window approach for brain and blood samples. In general, we can´t notice much difference 

among the plots, except in some cases (such as the chromosome 11) where those from older 

donors (64, 81 and 82) show a more dissipated methylation density cloud, which indicates 

they have more CpG sites less methylated (methylation density ranges from nearly 50-80% 

as opposed to the younger donors whose methylation density ranges from 70-80%). This 

could be explained by the epigenome erosion that states there is a global hypomethylation 

throughout aging which



68 
 

decreases transcription regulation and increases genome instability and susceptibility to develop 

diseases but it should also be taken into consideration that the tissues that the samples came from 

are not exactly the same: the sample from the younger donor derived from pre frontal cortex 

whereas the sample from the older donor originated from frontal cortex. 

 
SRR847424 (42 year old female) SRR949197 (82 year old female) 

 
 

Figure 36 - Methylation Density in chromosomes 11 of both sample files SRR847424 and 

SRR949197 from brain. Here is evident the MD profile of CpGs to be clustered around 80% in 

the first file as opposed to the second file where the MD profile of Cps is more dissipated, ranging 

50- 80%. 

 

 

 

4.1.2 Base Content Percentage throughout the sequence cycles 

 
We observed, for most samples, a very small percentage of cytosines C (1~2%), a small 

percentage of Guanines and Adenines (25% and 30%, respectively), and a high percentage 

of thymines (~45%) along all the sequence cycle (which roughly corresponds to the length 

of the sequences). This confirms, that most cytosines are unmethylated because, again, after 

bisulfite treatment and PCR amplification, unmethylated cytosines are converted to thymines 

and so, their naturally occurrence percentage content changes (decrease of   cytosines from 

~25% to ~1/2% and an increase of thymines from ~25% to ~43%). 

The peaks we observe (mainly from the files SRR 47900, SRR 478994 and SRR478991, 

which belong to the same dataset) might be probably due to incomplete conversion of 

cytosines into uracils during the bisulfite treatment. 
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Figure 37 - Base content percentage across sequence cycles from fil SRR949197 (82 year old 

female). The plots present the base frequency at each sequencing cycle, where X-axis indicates the 

sequencing cycle and Y-axis indicates the base frequency. Similarly, to the plot from FASTQC, 

each cycle here is equivalent to the nucleotide position within the read. 

 

 

 
 

4.1.3 Methylation density from CpG sites around TSS regions with 200 

bp bins in Watson and crick strands 

Here CpG sites are considered to have a length of 200 pb (bin). Methy-Pipe performs the profile 

with the mean methylation density for each CpG within 5000 pbs, upstream and downstream 

from the transcription start sites. 

 

MDs around (TSSs) (Peiyong Jiang, 2014), are usually correlated with low levels of 

expression. From a first insight of those plots we can see that each chromosome has an 

overall similar methylation pattern among the samples, presenting very low methylation 

density near the TSSs. This is to be expected, because it follows the methylation-induced 

expression theory that states that CpG-rich promoters remain largely unmethylated 

regardless the state of expression. We were able to confirm this hypothesis, with our plots 

from the brain samples showing a very similar profile among them and in comparison, with 

the output plots of the blood samples, for every life stage. This is supported by the literature 

since age related changes in MD near TSS are local and can either increase or decrease giving 

an overall constant result. 
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Figure 38 - MD from CpGs around TSS in the watson strand from the file SRR921723 (53 year 

old female). Methy- Pipe builds the profile with the mean methylation density for each CpG within 

5000 pbs, upstream and downstream from the transcription start sites, computing the average 

among 200pb bin. 

 

 

4.1.4 Methylation Density According to the Sequence Context 

“Fractional methylated C is calculated as the proportion of the methylated cytosines at a 

particular sequence context over total methylated C sequenced”(Jiang et al., 2014).To 

determine the methylation density according to the sequence context, Methy-Pipe performs 

whole genome methylation profiling within different sequence contexts. MDs at different 

sequence contexts, namely ( CAC, CAA, CAG, CAT, CCA, CCC, CCG, CCT, CGA, 

CGC, CGG,CGT, CTA, CTC, CTG, CTT), are calculated. 

 
Although only a minor portion of all cytosines throughout the genome are methylated  

“mCH and hmC constitute major, and nonoverlapping, components of the methylated 

fraction of the genome in adult frontal cortex (mCG = 57.2%,mCH = 25.6%, hmC = 17.2%), 

with neurons contributing with a major percentage account of mCH” (nearly 53% in 50 year 

old adults) (Lister et al., 2013). 

 

At a genome-wide level, “it has been noticed that neuronal mCH is depleted in expressed 

genes, with mCH levels throughout the 5′-upstream, gene-body, and 3′-downstream regions 

inversely correlated with the abundance of the associated transcript” (Kinde, Gabel, Gilbert, 

Griffith, & Greenberg, 2015). Research using genome wide single-base resolution analysis 

in fetus and adults has found that “mCH is absent in the fetal cortex but accumulates in the 

early post-natal life (in the first 2 years in humans, characterized by a burst in synaptogenesis 

followed by activity-dependent pruning of excess synapses meaning that neurons could use 
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this modification to sculpt their gene expression during critical periods” (Tognini, Napoli, & 

Pizzorusso, 2015); followed by slower accumulation of mCH during later adolescence which 

may eventualy become the predominant form of DNA methylation in mature neurons (Lister 

et al., 2013).Our results do support this theory, given the trend towards an increase in CpH 

and decrease in CpG methylation, when comparing the cytosine methylated fraction of 

samples from younger male donors to their older donors (figure 39). 

 

SRR330578 (1 year old male) SRR330576 (103 year old male) 

  
 
 

SRR330578 (1 year old male) SRR330576 (103 year old male) 

 

Figure 39 - Methylation Density and Fraction of Methylated Cytosines according to the sequence 

context of sample file SRR330578 (1 year old male) and SRR330576 (103 year old male). The 

fraction of Methylated Cytosines in CpG context is relatively higher in case of the first sample 

than in the second sample, and conversely, the fraction of Methylated Cytosines in CpH context 

is higher in the second sample. 
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When comparing middle age males (55 year olds) with their age matched females (53 year 

olds) from brain samples we can observe two different situations: one where the dominant 

methylated sequence context is CpG (which is the case for the sample files SRR921723, 

SRR921749, which are from glia cell samples) and the other where it is CpH (as is the case 

for sample files SRR921735 and SRR921706 which are from neuron cells). As reported by 

(Lister, 2013), neurons are globally more enriched for mCH compared with glia, which is 

consistent with our results. This is an important result since it proves that our methodology 

is sensitive enough to detect such relevant differences between methylomes representative 

of similar ages. Additionally, it stresses the high importance of quantifying methylcytosines 

within their nucleotide context, due to its functional relevance as well (figure 40). 

 

SRR921723 (53-year-old female) SRR921735 (55-year-old male) 
 
 

 
Figure 40 - The fraction of methylated C according to the sequence context for files SRR921723 

and SRR921735. Since the first sample file is from glia cells, we can see CpG as the major 

methylated context, whereas the second sample, that is from neurons the major methylated 

context is CpH (H=A,T,G) which is according to the previous results. 

 

Some output plots (from files SRR847432, and SRR847427_1/SRR847427_2) had to be 

disconsidered due to the fact that these samples were not only bisulfite sequenced, but also 

tab sequenced. This, in turn, retrieved only hydroxymethylations, which reduced the overall 

total methylation (methylation and hydroxymethylations). We could also immediately notice 

a very similar methylation density between both strands (Watson and Crick) that is to be 

expected, because in general each nucleotide has the same genome-wide frequency in both 

strands (at least in CG context, due to base pair complementarity). We also confirmed 

previous observations about the preferred non CpG sequences in neurons as being CAC 

(Lister et al., 2013). 
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4.1.5 Enrichment Analysis of Regional Methylation Density using SPSS 
 

The results we obtained clearly highlighted particular methylated regions: the transposons and 

retrotransposons, which shouldn’t be surprising at all. Indeed, nearly 40% of the genome is 

composed of sequences derived from these mobile genetic sequences 

A major fraction of methylation sites inside the genome are in repeat sequences and 

transposable elements, like SINE and long-interspersed nuclear element (LINE-1) which are 

among the most common and best characterized repetitive elements. Alu is the most 

abundant of the short-interspersed nuclear elements (SINE) with more than a million copies 

per genome, composing approximately 11% of the mass of human genome and contain 30% 

of its methylation sites. They are nonautonomous non-long-terminal-repeat retrotransposons 

derived from human gene 7SL (which codes for the RNA component of the signal recognition 

particle ribonucleoprotein complex); and are the most successful human SINEs (Angela 

Macia, 2011). 

 
Despite the high prevalence of transposable elements in the human genome and the abundance 

of several LINE and SINE subfamilies in this genome, apparently at present only certain 

members of each class are active (Macia et al., 2011). Previous research established that 

heterochromatin is enriched for transposable elements, which are known to have harmful 

effects on the genome when transposed, leading some researchers to postulate a role for TEs 

in ageing. Moreover, it has been suggested that an age-related expression of transposable 

elements may contribute to ageing, consistent with the previously proposed retrotransposon 

theory of ageing (Wood et al., 2016). When comparing the methylation density between 

younger and older donors, that of older donors have, overall, a slightly lower methylation 

density in LINE and SINE elements, as predicted by the retrotransposon theory of age. 

Therefore, our results also suggest 
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that our workflow was able, once more to lead to conclusions consistent with current theories 

about aging. 

 

 

 

 
 

 

 

Figure 41 - Enrichment analysis of files SRR330578 (shown on top) and SRR330576 (shown on bottom) for LINE elements. It 

is clear that in case of file SRR330578 (1 year old male from blood) most LINE subfamilies have methylation density over 80%, 

unlike file SRR330576 (103 year old male from blood) most LINE subfamilies have a methylation percentage under 80%. 
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4.2 PRELIMINARY ENRICHMENT ANALYSIS OF 

DIFFERENTALLY METHYLATED REGIONS WITH 

G:PROFILER 

 
Our analysis of differential Methylated Regions was based on three main different type of 

comparisons: Older individual (82 year old female and 103 year old male ) with younger 

individual (42 year old female, 1 year old male) within the same tissue sample (brain and 

blood, respectively) so we could discuss the effect of aging within the same gender; middle 

age male individuals with middle age female individuals from the same tissue sample (brain) 

to ascertain the effect of gender; and young adults from both tissue samples (31 year old 

from brain samples and 26 year old from blood samples) to evaluate the effect of tissue 

difference. For the first comparisons, we will briefly discuss the main biological processes 

(those with the highest statistical significance, given by the lowest -log(pvalue)) affected by 

the genes found in the DMRs. The complete DMR data obtained for every comparison 

described below are presented in tables 4 to 16, together the genes found to be associated 

with those regions. 

This shall be, however, an over simplified analysis since it is only based on the transcription- 

induced demethylation theory mentioned previously in the introduction (mostly applied to 

promoter regions) that may not always be accurate, which states: biological processes 

assigned to hypo methylated regions will be considered upregulated and biological processes 

assigned to hypermethylated regions will be considered downregulated. Unfortunately, we 

were not able to assign genes to the DMRs detected for the two last types of comparisons due 

to a relatively smaller amount of DMRs to start with or to their location within the genome 

that could not be associated with any nearby genes. 

 

 

4.2.1 Assessing the effect of Aging Upon Methylation 

 
From the first comparison between the brain samples (82-year-old with 42-year-old females) 

we can see up regulated biological process involved in carcinogenesis found in the hypo 

methylated genes. Since DNA hypomethylation can activate oncogenes and initiate 

chromosome instability, whereas DNA hypermethylation initiates silencing of tumor 

suppressor genes, these results are in line with the hypothesis of increasing susceptibility to 

cancer development with age. 
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From the list of genes mentioned previously in the Introduction chapter as being 

hypermethylated with aging, we could find MGMT and WRN and from those genes related 

with Alzheimer´s disease, we could also find ANK1 and RHBDF2 included in the table of 

hypo methylated regions. Again, this shows that our methodology is sensitive and generates 

results as expected, suggesting the onset of age related diseases (figure 42). 

 

 

Figure 42 - Putative up regulated biological processes assigned to the hypo methylated genes 

found between the test sample SRR949197 (82-year-old female sample) and the control sample 

SRR847427 (42 year old female) from brain. 

 

 

 
 

As downregulated processes, we had highlighted the regulation of actin cytoskeleton. Actin 

cytoskeleton dynamics plays a crucial part in processes such as: embryonic 

morphogenesis, immune surveillance, angiogenesis and tissue repair and regeneration, 

mediating the formation of cellular structures such as lamellipodia, filopodia, stress fibers 

and focal adhesions. (Lee & Dominguez, 2010). In this regard, it is interesting to confirm 

the conclusions from a recent study done with samples from Sri Lanka which states that 

“aging cytoskeletal pathologies are comparatively higher in elderly Sri Lankans and this 

might be due to their genetic, dietary and/ or environmental variations” (Wijesinghe P, 

2016) (figure 43). 
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Figure 43 – Putative down regulated biological processes assigned to the hyper methylated genes 

found between the test sample of SRR949197 (82-year-old female sample) and the control sample 

of SRR847427 (42-year-old female) from brain. 

 

 

For the second comparison between blood samples of the centenarian and the newborn, we 

can also highlight some upregulated biological functions: type II diabetes mellitus t and 

natural killer cells mediated cytotoxicity (figure 44). The incidence and prevalence of Type 

2 diabetes increases with age although the underlying mechanisms behind why diabetes is 

increasing in the elderly is still not clearly understood. It has been proposed that insulin 

resistance increases with age due to increased adiposity, decreased lean muscle mass, 

deficient nutrition, and reduced physical activity (Gunasekaran & Gannon, 2011). On the 

other hand, natural killer cells mediated cytotoxicity is a process by which mature natural 

killer (NK) cells induce target cell death (Zamai et al., 1998), which in turn debilitates the 

immune system. In conclusion, both these processes are more likely to occur in older people, 

as our results corroborate. We could detect some Alzheimer related genes, as well, in the 

samples: ANK1 and CDH23  

 

 

 

. 

 

 

 

 

 

 

 

 

 
Figure 44 - Putative up regulated biological processes assigned to the hypo methylated genes 

found between the test sample of SRR330576 (103year old male) and the control sample of 

SRR330578 (1-year-old male) from blood. 
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As the main downregulated biological processes we can clearly highlight age related 

processes: the mTOR pathway, involved in the regulation of the cell cycle; the Wnt signaling 

pathway, involved in the cellular proliferation and embryonic development; phospholipase 

D signaling pathway, involved in functions, such as: growth/proliferation, vesicle 

trafficking, cytoskeleton modulation, development, and morphogenesis (Jang, Lee, Hwang, 

& Ryu, 2012); and signaling pathways regulating pluripotency of stem cells, all cellular 

mechanisms known to be modulated by age. 

It is also interesting to notice as one of the main downregulated biological processes the 

retrograde endocannabinoide system (figure 45). This system has many interactions with 

other signaling and neuromodulatory systems and is the principal mode by which 

endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and 

inhibitory synapses. It is believed that by modulating synaptic strength, endocannabinoids 

can regulate a wide range of neural functions, including cognition, motor control, feeding 

behaviors and pain. (Purpura & Einstein, 2013) Due to this crucial role in the central nervous 

system function, and, particularly in the brain, this downregulation is very consistent with 

our hypothesis of increased risk of neurodegenerative diseases with aging. We could also 

detect some of those genes mentioned in the introduction chapter as being differentially 

methylated with aging, namely MGMT and NOS1 in the samples. 

 

 

Figure 45 - Putative down regulated biological processes assigned to the hyper methylated genes 

found between the test sample SRR330576 (103year old male) with the control sample SRR330578 

(1 year old male) from blood. 
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4.2.2 Assessing the effect of gender upon methylation 

 
In this case, we made four comparisons: test sample files of SRR9211723 (53 year old female) 

with controls SRR9211749 and 921735 (55 year old males); and test files SRR921706 (53 

year old female) also with control files SRR921749 and SRR9211735. Although we were 

not able to assign any gene to the DMRs detected, we were able to notice that each 

comparison revealed a Hypo Methylated Region on the X chromosome which confirms the 

initial expectations due to the chromosome X inactivation. 

 

 

4.2.3 Assessing the effects of differential tissues (brain and blood) 

samples upon methylation 

 

From the comparison between the samples of both tissues (31 year old male sample brain 

with 26 year old male blood sample) we could find some DMRs and, although we couldn´t 

assign them any gene, we cannot exclude the hypothesis of these DMRs regions of having any 

functional role (because they could be affecting regulatory regions, at trans level). 
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Table 4-Hypo methylated regions found between the test file SRR949197 (82-year-old female) and control sample of SRR84742 (42-year-old 

female) from brain tissue. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning 

and end of the DMR position in the aforementioned chromosome, column TYPE indicates whether the DMRs are of the type hypo or hyper; the 

columns TEST (C/T) and CONTROL (C/T) indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the 

columns METH%(TEST/CONTROL) indicate the methylation percentage of the DMR in test and control samples, respectively; the column P 

value indicates the statistical significance of each DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in 

eacha DMR for TEST and CONTROL samples; and AFECTED REGION indicates the gene and region affected by the DMR detected. This is only 

a  small portion of the original table which can be supplied if requested 
 

 
 

CHR 
 

START 
 

END 
 

TYPE 
TEST CONTROL %METH  

P-VALUE 
CpG  

AFFECTED REGION 
C T C T TEST CONTROL TEST CONTROL 

chrX 152127500 152128000 hypo 42 215 27 18 16.34 60 5.30E-63 18 6 ZNF185:intron 

chrX 153361600 153362600 hypo 88 209 81 53 29.63 60.45 5.30E-63 29 21 MECP2:intron 

chrX 137794300 137794800 hypo 51 167 30 26 23.39 53.57 1.44E-57 12 6 FGF13:promoter 

chrX 130926900 130927400 hypo 46 84 46 11 35.38 80.7 7.58E-51 11 8 LOC286467:intron 

chrX 135848600 135849100 hypo 23 71 23 13 24.47 63.89 7.58E-51 11 5 ARHGEF6:intron 

chrX 117957200 117957700 hypo 43 124 22 12 25.75 64.71 3.10E-50 15 6 ZCCHC12:promoter 

chrX 119377900 119378400 hypo 16 71 36 30 18.39 54.55 3.10E-50 9 8 NKAPP1:intron 

chrX 110188000 110188500 hypo 17 78 19 18 17.89 51.35 1.10E-36 12 6 PAK3:intron 

chrX 117957200 117957700 hypo 43 124 22 12 25.75 64.71 1.10E-36 15 6 ZCCHC12:promoter 

chrX 106871400 106871900 hypo 68 213 37 30 24.2 55.22 1.99E-33 34 11 
PRPS1:promoter, 

PRPS1:5UTR 

 

 
chrX 

 

 
106449600 

 

 
106450100 

 

 
hypo 

 

 
118 

 

 
225 

 

 
40 

 

 
14 

 

 
34.4 

 

 
74.07 

 

 
1.92E-28 

 

 
22 

 

 
7 

NUP62CL:promoter, 

CXorf41:promoter, 

NUP62CL:5UTR, 

CXorf41:5UTR 

chrX 106362000 106362500 hypo 24 78 23 17 23.53 57.5 2.48E-28 10 5 
RBM41:promoter 

RBM41:5UTR 
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Table 5-Hyper methylated regions found between the test file SRR949197 (82-year-old female) and control sample file of SRR84742 (42-year-old 

female), from brain sample. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning 

and end of the DMR position in pbs; column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST (C/T) and 

CONTROL (C/T) indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the columns 

METH%(TEST/CONTROL) indicate the methylation percentage of the DMR in test and control samples, respectively; the column P value 

indicates the statistical significance of each DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each 

DMR for TEST and CONTROL samples; and AFECTED REGION indicates the gene and region affected by the DMR detected. This is only a  

small portion of the original table which can be supplied if requested 
 
 

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

AFFECTED REGION 
C T C T TEST CONTROL TEST CONTROL 

chr12 49297400 49297900 hyper 38 17 23 52 69.09 30.67 9.98E-03 8 12 
CCDC65:promoter, 

CCDC65:5UTR 

chr11 118498900 118499400 hyper 116 68 13 35 63.04 27.08 9.92E-03 20 7 PHLDB1:CDS:5 

chr5 135415300 135416300 hyper 338 233 21 177 59.19 10.61 3.55E-15 35 28 VTRNA2-1:ncexon:1 

chr4 187125100 187126100 hyper 307 47 14 71 86.72 16.47 1.29E-09 36 14 CYP4V2:intron 

chr4 57252800 57253300 hyper 35 15 0 65 70 0 3.45E-09 10 6 AASDH:intron 

chr16 55362100 55365600 hyper 646 1379 61 376 31.9 13.96 4.25E-09 133 68 
IRX6:CDS:5 
IRX6:CDS:6 

chr10 42862500 42864000 hyper 183 424 2 132 30.15 1.49 5.09E-09 59 21 LOC441666:ncexon:1 

chr5 134259200 134259700 hyper 124 369 34 393 25.15 7.96 5.13E-09 20 14 PCBD2:intron 

chr16 55794100 55795100 hyper 378 121 16 77 75.75 17.2 1.11E-08 40 16 CES1P1:ncexon:1 

chr6 163680800 163682300 hyper 92 288 1 136 24.21 0.73 6.86E-08 34 22 PACRG:intron 

chr20 21491400 21492400 hyper 36 87 13 207 29.27 5.91 5.29E-07 18 29 NKX2-2:3UTR 

chr8 145670400 145670900 hyper 122 131 0 53 48.22 0 9.06E-07 24 7 TONSL:promoter 

chr18 21167100 21167600 hyper 44 23 5 60 65.67 7.69 1.65E-06 5 6 NPC1:promoter 

chr18 21167100 21167600 hyper 44 23 5 60 65.67 7.69 1.65E-06 5 6 NPC1:promoter 

chr19 14639300 14639800 hyper 45 49 4 75 47.87 5.06 1.67E-06 13 8 TECR:promoter 

chr19 14639300 14639800 hyper 45 49 4 75 47.87 5.06 1.67E-06 13 8 TECR:promoter 

chr8 101169600 101170100 hyper 28 15 3 57 65.12 5 2.03E-06 7 8 SPAG1:promoter 
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chr8 101169600 101170100 hyper 28 15 3 57 65.12 5 2.03E-06 7 8 SPAG1:promoter 

chr19 55591100 55591600 hyper 88 92 1 54 48.89 1.82 2.20E-06 25 8 EPS8L1:promoter 

chr19 55591100 55591600 hyper 88 92 1 54 48.89 1.82 2.20E-06 25 8 EPS8L1:promoter 

chr7 111396300 111397800 hyper 143 131 27 123 52.19 18 2.66E-06 25 21 DOCK4:intron 

chr1 3633300 3633800 hyper 43 9 0 32 82.69 0 2.87E-06 7 5 TP73:intron 

chr20 44001200 44003100 hyper 171 276 15 124 38.26 10.79 3.24E-06 54 26 TP53TG5:CDS:5 

chr15 78422900 78423400 hyper 87 32 4 43 73.11 8.51 4.27E-06 14 7 CIB2:intron 
 

 

Table 6-Hypo methylated Regions found between the test file SRR330676 (103 year old male) with the control file SRR330578 (1 year old male) from 

blood sample. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning and end of the 

DMR position in the aforementioned chromosome, column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST 

(C/T) and CONTROL (C/T) indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the columns 

METH%(TEST/CONTROL) indicate the methylation percentage of the DMR in test and control samples, respectively; the column P value indicates 

the statistical significance of each DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each DMR for 

TEST and CONTROL samples; and AFFECTED REGION indicates the gene and region affected by the DMR detected. This is only a  small portion 

of the original table which can be supplied if requested 
 

 

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

AFFECTED REGION 
C T C T TEST CONTROL TEST CONTROL 

chr1 111215900 111216900 hypo 7 329 80 125 2.08 39.02 5.43E-21 46 32 KCNA3:CDS:1 

chr19 1905500 1906000 hypo 1 244 19 17 0.41 52.78 3.93E-20 37 5 ADAT3:promoter 

chr19 2150300 2152300 hypo 2 422 33 95 0.47 25.78 6.11E-20 58 22 
AP3D1:promoter, 

AP3D1:5UTR 

chr12 1701700 1702700 hypo 16 234 86 69 6.4 55.48 8.64E-17 37 21 FBXL14:CDS:1 

chr6 501900 502400 hypo 0 108 33 3 0 91.67 1.61E-15 12 6 EXOC2:intron 

chr1 52498000 52499000 hypo 4 193 45 53 2.03 45.92 1.26E-14 30 17 KTI12:CDS:1 

chr9 92033200 92035600 hypo 7 164 86 74 4.09 53.75 2.54E-14 27 24 
SEMA4D:promoter, 

SEMA4D:5UTR 

chr5 41870700 41871200 hypo 0 91 40 10 0 80 5.79E-13 13 5 
OXCT1:promoter, 

OXCT1:5UTR 
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chr3 71275900 71276900 hypo 1 145 41 51 0.68 44.57 1.73E-12 23 14 FOXP1:intron 

chr10 124638500 124640100 hypo 38 319 101 135 10.64 42.8 2.62E-12 54 32 
FAM24B:promoter, 

FAM24B:5UTR 

chr2 231788900 231789900 hypo 20 154 60 22 11.49 73.17 1.11E-11 19 14 
GPR55:promoter, 

GPR55:5UTR 

chr17 36283000 36294100 hypo 11353 3024 9208 1067 78.97 89.62 3.22E-11 307 306 
TBC1D3F:promoter, 

TBC1D3:5UTR 

chr1 17053400 17055000 hypo 323 346 490 65 48.28 88.29 4.09E-11 42 42 MIR3675:intron 

chr16 30077700 30078200 hypo 5 143 32 30 3.38 51.61 4.70E-11 20 7 ALDOA:promoter 

chr16 2390800 2391300 hypo 0 154 34 75 0 31.19 1.27E-10 26 20 ABCA3:promoter 

chr3 52279900 52280900 hypo 8 246 36 85 3.15 29.75 1.33E-10 38 18 
PPM1M:promoter, 

PPM1M:5UTR 

chr9 130829100 130829600 hypo 0 71 54 20 0 72.97 1.44E-10 10 12 
NAIF1:promoter, 

NAIF1:5UTR 

chr19 2945500 2946000 hypo 7 123 25 11 5.38 69.44 2.43E-10 15 7 ZNF77:promoter 

chr16 3116000 3117800 hypo 15 117 84 38 11.36 68.85 2.91E-10 18 18 IL32:CDS:2,IL32:CDS:3 

chr22 39495900 39496400 hypo 5 75 61 12 6.25 83.56 4.66E-10 9 11 
APOBEC3H:promoter, 

APOBEC3H:5UTR 
 

 

Table 7-Hyper Methylated Regions found between the test file SRR330676 (103-year-old male blood) sample and the control file of SRR330578 (1 year 

old male), from blood sample. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning 

and end of the DMR position in the pbs, column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST (C/T) and 

CONTROL (C/T) indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the columns 

METH%(TEST/CONTROL) indicate the methylation percentage of the DMR in test and control samples, respectively; the column P value indicates 

the statistical significance of each DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each DMR for TEST 

and CONTROL samples; and AFECTED REGION indicates the gene and region affected by the DMR detected. This is only a  small portion of the 

original table which can be supplied if requested
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CHR 
 

START 
 

END 
 

TYPE 
TEST CONTROL %METH  

P-VALUE 
CpG  

AFFECTED REGION 
C T C T TEST CONTROL TEST CONTROL 

chr1 47897900 47900400 hyper 143 181 30 416 44.14 6.73 5.07E-22 49 66 MGC12982:ncexon:1 

 

 

 
chr10 

 

 

 
50818400 

 

 

 
50822800 

 

 

 
hyper 

 

 

 
327 

 

 

 
811 

 

 

 
86 

 

 

 
876 

 

 

 
28.73 

 

 

 
8.94 

 

 

 
4.77E-21 

 

 

 
167 

 

 

 
145 

CHAT:promoter, 

SLC18A3:promoter, 

CHAT:5UTR, 

CHAT:5UTR, 

SLC18A3:5UTR 

chr9 124981900 124983400 hyper 138 301 12 364 31.44 3.19 2.06E-18 63 58 LHX6:5UTR 

chr14 65007200 65009200 hyper 373 527 78 508 41.44 13.31 4.09E-18 132 96 
HSPA2:promoter, 

HSPA2:5UTR 

chr13 58207100 58208700 hyper 272 611 58 609 30.8 8.7 6.32E-18 110 98 PCDH17:CDS:1 

chr2 157185200 157187200 hyper 140 56 38 225 71.43 14.45 3.49E-16 30 44 
NR4A2:promoter 

NR4A2:5UTR 

chr1 200842200 200843700 hyper 168 89 23 190 65.37 10.8 5.77E-16 42 38 GPR25:CDS:1 

chr1 119525700 119529300 hyper 171 476 17 405 26.43 4.03 6.92E-16 99 72 TBX15:intron 

 

 

chr9 

 

 

140056300 

 

 

140057800 

 

 

hyper 

 

 

97 

 

 

105 

 

 

17 

 

 

244 

 

 

48.02 

 

 

6.51 

 

 

2.09E-15 

 

 

34 

 

 

42 

GRIN1:CDS:12 

GRIN1:CDS:13, 

GRIN1:CDS:14, 

GRIN1:CDS:15, 
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             GRIN1:CDS:16, 

GRIN1:CDS:17 

chr20 44686600 44687600 hyper 95 111 5 185 46.12 2.63 3.77E-15 35 31 SLC12A5:3UTR 

chr17 41465900 41466400 hyper 139 513 17 478 21.32 3.43 9.94E-15 27 22 LOC100130581:ncexon:1 

chr3 73672700 73674700 hyper 95 219 18 365 30.25 4.7 1.41E-14 50 63 
PDZRN3:promoter 

PDZRN3:5UTR 

chr22 19710000 19711000 hyper 97 38 10 134 71.85 6.94 3.18E-14 20 25 GP1BB:promoter 

chr1 201617800 201618800 hyper 172 55 28 158 75.77 15.05 4.10E-14 35 31 NAV1:CDS:1 

chr3 62304100 62305100 hyper 74 135 18 315 35.41 5.41 8.00E-14 31 44 C3orf14:promoter 

chr2 25383800 25384800 hyper 51 26 18 198 66.23 8.33 9.64E-14 14 32 POMC:CDS:2 

chr1 149286100 149288100 hyper 200 415 43 420 32.52 9.29 2.56E-13 62 52 LOC388692:ncexon:1 

chr16 66612300 66613300 hyper 57 122 12 303 31.84 3.81 2.62E-13 26 39 CMTM2:promoter 

chr2 20869100 20871700 hyper 130 174 25 262 42.76 8.71 3.19E-13 52 49 GDF7:CDS:2 

chr2 172944900 172949300 hyper 124 394 18 397 23.94 4.34 6.07E-13 82 66 DLX1:promoter 

chr10 112838500 112839000 hyper 48 15 10 136 76.19 6.85 6.32E-13 11 19 ADRA2A:CDS:1 
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Table 8-Hyper Methylated regions found between the test file SRR479000 (31-year-old male) from brain and the control file SRR389249 (26 year old 

male) from blood sample. There couldn’t be assigned any gene to the DMRs. Column CHR indicates the chromosome where the DMR is located, 

columns START and END indicate the beinning and end of the DMR position pbs, column TYPE indicates whether the DMRs are of the type hypo 

or hyper; the columns TEST (C/T) and CONTROL (C/T) indicate the number of cytosines/thymines in DMR of the test and control sample, 

respectively: the columns METH%(TEST/CONTROL) indicate the methylation percentage of the DMR in test and control samples, respectively; the 

column P value indicates the statistical significance of each DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of 

CpGs in eacha DMR for TEST and CONTROL samples; and AFECTED REGION indicates the gene and region affected by the DMR detected.

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CPG 

C T C T TEST CONTROL TEST CONTROL 

chr16 33962800 33964000 hyper 723 1860 85 391 27.99 17.86 2.96E-04 54 25 

chr4 49099300 49099800 hyper 106 234 14 113 31.18 11.02 3.83E-04 12 6 

chr4 49109900 49110400 hyper 196 262 19 100 42.79 15.97 1.01E-04 12 5 

chr4 49142100 49142600 hyper 84 114 6 41 42.42 12.77 5.39E-03 7 6 

chr4 49653100 49653600 hyper 159 336 15 93 32.12 13.89 3.10E-03 10 6 

chr5 99387200 99390500 hyper 402 916 18 1330 30.5 1.34 1.81E-70 66 41 
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Table 9-Hypo Methylated regions found between the test file SRR479000 (31 year old male) from blood and the control file SRR389249 (26 year old 

male) from blood sample. There couldn’t be assigned any gene. Column CHR indicates the chromosome where the DMR is located, columns START 

and END indicate the beginning and end of the DMR position in pbs, column TYPE indicates whether the DMRs are of the type hypo or hyper; the 

columns TEST (C/T) and CONTROL (C/T) indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the 

columns METH%(TEST/CONTROL) indicate the methylation percentage of the DMR in test and control samples, respectively; the column P value 

indicates the statistical significance of each DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each 

DMR for TEST and CONTROL samples. There couldn´t be assigned any gene to the DMRs. 

 

Table 10-Hypo Methylated Regions between test sample of  SRR921723   (53 year old female) and the control sample SRR921735 (55  year old male 

), from brain. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning and end of 

theDMR position in pbs, column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST (C/T) and CONTROL (C/T) 

indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the columns METH%(TEST/CONTROL) indicate the 

methylation percentage of the DMR in test and control samples, respectively; the column P value indicates the statistical significance of each DMR 

given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each DMR for TEST and CONTROL samples. There 

couldn’t be assigned any gene. 

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

C T C T TEST CONTROL TEST CONTROL 

chr15 28817600 28818100 hypo 9 30 31 7 23.08 81.58 3.32E-03 6 5 

chr17 31149200 31149700 hypo 37 180 145 293 17.05 33.11 8.92E-04 17 17 

chr1 91852400 91853400 hypo 273 1321 528 1237 17.13 29.92 8.06E-12 19 19 

chr21 9825200 9827700 hypo 1765 7661 3754 9753 18.72 27.79 1.32E-35 334 335 

chr21 10732900 10733400 hypo 17 42 29 9 28.81 76.32 7.54E-03 5 5 

chr7 74631100 74631600 hypo 11 40 35 1 21.57 97.22 1.35E-04 6 6 

chr8 70602000 70602500 hypo 112 451 211 407 19.89 34.14 3.16E-05 10 10 

chrX 108297000 108297500 hypo 24 139 36 54 14.72 40 5.23E-04 9 5 
 

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

C T C T TEST CONTROL TEST CONTROL 

chr10 42392300 42396600 hypo 5459 2245 797 138 70.86 85.24 3.16E-04 170 67 

chr16 46386200 46390400 hypo 5058 2496 799 196 66.96 80.3 3.48E-04 131 64 

chr16 46427400 46429900 hypo 6847 2459 2615 597 73.58 81.41 1.00E-03 102 86 
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Table 11-Hyper Methylated Regions between the test sample of SRR921723 (53-year-old female) and the control sample SRR921735 (55-year-old 

male) from brain. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning and end of 

the DMR position in pbs, column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST (C/T) and CONTROL (C/T) 

indicate the number of cytosines/thymines in DMR of the test and control sampe, respectively: the columns METH%(TEST/CONTROL) indicate the 

methylation percentage of the DMR in test and control samples, respectively; the column P value indicates the statistical significance of each DMR 

given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each DMR for TEST and CONTROL samples, 

respectively.There couldn’t be assigned any gene.

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

C T C T TEST CONTROL TEST CONTROL 
chr16 22482600 22484700 hyper 173 43 149 133 80.09 52.84 3.74E-03 21 26 

chr4 190611000 190611500 hyper 19 7 4 25 73.08 13.79 3.97E-03 5 5 

chr9 67791800 67792300 hyper 57 39 10 41 59.38 19.61 2.97E-03 15 9 
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Table 12-Hyper Methylated Regions between the test sample file of SRR921706 (53 year old female) and the control sample file SRR921735 (55 year 

old male) from brain. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning and end 

of the DMR position in pbs, column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST (C/T) and CONTROL (C/T) 

indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the columns METH%(TEST/CONTROL) indicate the 

methylation percentage of the DMR in test and control samples, respectively; the column P value indicates the statistical significance of each DMR 

given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each DMR for TEST and CONTROL samples; There 

couldn’t be assigned any gene. 
 

 

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

C T C T TEST CONTROL TEST CONTROL 

chr10 39139900 39140400 hyper 132 48 10 26 73.33 27.78 7.76E-03 11 5 

chr5 99387400 99387900 hyper 25 82 5 81 23.36 5.81 3.83E-03 8 6 

chr5 99389300 99389800 hyper 60 15 12 99 80 10.81 5.50E-10 5 5 

chr9 67791800 67792300 hyper 92 60 10 41 60.53 19.61 1.60E-03 15 9 
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Table 13-Hypo Methylated Regions between the test file of SRR921706 (53-year-old female) and the control file SRR921735 (55 year old male), 

from brain. Column CHR indicates the chromosome where the DMR is located, columns START and END indicate the beginning and end of the 

DMR position in pbs; column TYPE indicates whether the DMRs are of the type hypo or hyper; the columns TEST (C/T) and CONTROL (C/T) 

indicate the number of cytosines/thymines in DMR of the test and control sample, respectively: the columns METH%(TEST/CONTROL) indicate 

the methylation percentage of the DMR in test and control samples, respectively; the column P value indicates the statistical significance of each 

DMR given by its Pvalue; the CpG (TEST/CONTROL)columns indicate the number of CpGs in each DMR for TEST and CONTROL 

samples.There couldn’t be assigned any gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHR START END TYPE 
TEST CONTROL %METH 

P-VALUE 
CpG 

C T C T TEST CONTROL TEST CONTROL 

chr17 31149200 31150200 hypo 190 1172 344 629 13.95 35.35 1.78E-21 54 45 

chr17 33477700 33478700 hypo 155 836 246 529 15.64 31.74 2.55E-10 26 24 

chr1 91852500 91853500 hypo 306 1746 528 1237 14.91 29.92 4.18E-19 19 19 

chr1 156185900 156186900 hypo 434 2555 794 1411 14.52 36.01 1.07E-44 56 53 

chr20 26188400 26190900 hypo 425 2678 739 1565 13.7 32.07 2.14E-38 116 115 

chr2 133025500 133026000 hypo 87 466 101 301 15.73 25.12 3.32E-03 18 18 

chr4 49142100 49142600 hypo 24 131 52 79 15.48 39.69 4.56E-04 7 7 

chr5 71146300 71147300 hypo 108 729 157 408 12.9 27.79 1.14E-08 18 18 

chrX 108297300 108297800 hypo 88 446 180 419 16.48 30.05 2.28E-05 18 20 
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5 FUTURE WORK 
 

In the adult mammalian brain, while the DNA epigenome is globally stable at the genome- 

wide level (Ma et al., 2009), “evidence suggests the presence of active DNA modifications 

at specific genomic loci and these modifications are critical for certain types of brain 

plasticity” (Day and Sweatt, 2010; Ma et al., 2010). Because it is becoming evident that DNA 

methylation are a powerful epigenetic tool to modulate neuronal functions and synaptic 

plasticity, methylation is one of the most broadly studied and well- characterized epigenetic 

modifications in studies done by Griffith and Mahler who suggested that DNA methylation 

may be important in long term memory function (Bestor et al., 2014). This evidence has been 

reinforced with the discovery of the Rett Syndrome, a neurological disorder linked to 

mutations in methyl-CpG-binding protein 2 (MeCP2) which implies that alterations to the 

methylome landscape might interfere also with the normal DNA binding of MeCP2 or other 

functions, leading to neurological symptoms. In this regard, one important area of research is 

to study samples of brain from peoples suffering from different neurological disorders in order 

to evaluate the methylome contribution for the condition, especially in an interactive 

approach where DNA variants, epigenetics and gene expression data could be studied 

together. 

Current data indicates that hmC is substantially enriched in neurons compared with different 

cells and accounting for nearly 25% modified CG dinucleotides in the frontal cortex(Kinde 

et al., 2015). Studies that examined the first two years of human development have reported 

that DNA methylation levels increase rapidly and then stabilize by adulthood in the brain. 

(Alisch et al., 2012; Lister et al., 2013). Also, the adult mammalian brain contains the highest 

levels of hmC that have been observed among tissues (Lister et al., 2013) and is generally 

found near transcription start sites, making it essential for proper development. There is, so 

far, two roles assigned to this base: it works as an intermediate mark and/or plays a role as 

modulator of genomic function (Kinde et al., 2015). Considering this, it would also be 

interesting, for future directions, to compare more samples from brain and blood that went 

through TAB seq or any other method capable to detect 5hmc to see the relative methylation 

fraction variation throughout aging and see how they differ between these tissues. Through 

this approach, we could determine that 5hmC also plays a functional role, particularly in brain. 
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Overall, in order to be more statistically relevant, biologically meaningful and avoid some 

caveats inherent to cross sectional studies, the ideal study on this subject would have to 

include more samples (perhaps through searching data from microarray sequencing).It would 

also be interesting, if possible, to use data from longitudinal studies in order to assess 

intraindividual changes in the methylation; although none of these kind have been found up 

to this study. Finally, to validate these results, I would recommend to run expression 

experiments such as mRNA-seq, especially in the case of the comparison between samples 

from both tissue samples (brain from 31-year-old from and blood from 26 year, given the 

mismatch of DMR between these tissues) to evaluate the difference of the transcriptome of 

these two tissues and to do a comparative analysis with their respective methylome. 
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6 FINAL REMARKS 

 

 
  Although we had some limitations in the beginning of our work, we were able to accomplish 

our goals.  

Our main limitation was the difficulty in finding a good amount of well annotated samples. 

This was due to two main reasons: the first one had to do with the high throughput sequencing 

method used as query input, and the second had to do with the misinformation in metadata. 

Indeed, most of the studies done so far on DNA methylation used microarrays as the main 

sequencing method and not bisulfite-based NGS methods; and most of the samples missed the 

metadata regarding age, gender or health status, which were the main contributors to the 

DMRs, and the ones we were trying to assess. Because of this, we started our data set with 18 

sample files from blood and 65 sample files from brain, and in the end we narrowed to only 3 

(peripheral) blood sample files and 16 effectual brain sample files (shown in tables 2 and 3, 

respectively). 

 

However, our goals have been accomplished and we could validate most of our initial 

hypothesis: we were able explore and learn how to use the main databases in order to obtain 

fastq files from methyl-seq and bisulphite-seq next generation sequencing reads; we 

validated our homemade protocol, and script to do both quality control and alignment of the 

reads, respectively with results that replicate what has been described in the literature. 

Finally, although we had a small dataset, we could still verify that the epigenome is modulated 

by age, both in brain and blood, regardless the gender (at least in healthy 

subjects).Furthermore the functions that could be affected are also relatable to aging, 

suggesting that our methodology can be used in the future to confirm general and particular 

features features associated to a healthy and pathological status, and thus to contribute to 

expand our knowledge about the role of the epigenome as a modulator of human health in 

every stage of life. 
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APPENDIX 

 

R code to search for brain (Pre Frontal Cortex) sample files 
 
library(GEOmetadb) 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.source_name_ch1 LIKE '%cerebral cortex%'". sep=" 

 

data1 <- dbGetQuery(con.sql) 

 
 

 

 

library(xlsx) 

write.xlsx(data1. file="datasource.xlsx") 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 
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gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 
sep=" ") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%cerebral cortex%'". 

 

data2 <- dbGetQuery(con.sql) 

 

 

library(xlsx) 

write.xlsx(data2. file="datachara.xlsx") 

----------------------------------------------------------- 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 
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AND 

 

 

 

 

 

 

sep=" ") 

gpl.technology LIKE '%high-throughput sequencing%' 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%frontal cortex%'". 
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data <- dbGetQuery(con.sql) 

library(xlsx) 

write.xlsx (data. file="chara.xlsx") 

 

 

R CODE USED TO SERCH FOR PERIPHERAL BLOOD 

SAMPLES 
 
library(GEOmetadb) 

if(file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

 

####DATA WHOLE BLOOD#### 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND gpl.organism 

LIKE 'Homo%' AND gsm.type LIKE '%SRA%'AND 

 

 

 

gsm.characteristics_ch1 LIKE '%whole blood%'". sep=" 

") 

data <- dbGetQuery(con.sql) 
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R code for peripheralblood 
 
library(GEOmetadb) #acess geometadb functions# 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') #connect to the 

database# 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". #joins the tables gse. gsm e gpl keeping the 

common fields# 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". #filters the fields with the respective# 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 
sep=" ") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%peripheral blood%'". 
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data <- dbGetQuery(con.sql) #devolve os resultados da filtragem na 

BD# 

library(xlsx) 

write.xlsx(data. file="datachara.xlsx") 

#this will writ the outcome in an excel file# 

 

 

 

library(GEOquery) 

#peripheral blood# 

geo <- c('GSM…'.'GSM…'.…) 

for (i in 1:length(geo)){ 

getGEO(geo[i]) 

} 

#this code will download metadata of the FASTQ files using GSM 

id’s# 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 
sep=" ") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.source_name_ch1 LIKE '%peripheral blood%'". 
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data <- dbGetQuery(con.sql) 

library (SRAdb) 

sra_dbname <- 'SRAmetadb.sqlite' 

sra_con <- dbConnect (dbDriver("SQLite"). sra_dbname ) 

res <- dbGetQuery(sra_con. "select run_accession. 

experiment_accession. sample_alias. submission_accession. 

 

 

study_name from sra_ft where experiment_accession in 

('SRX….'SRX….'.….)") 

#The first three lines of the code give access to the SRA database 

and the last one retrieves a table from sra_ft with the mentioned 

fields from dbgetuery function with the corresponding experiment 

accessions# 

library (xlsx) 

write.xlsx (res. file="ids.xlsx") 

 

 

getFASTQfile( in_acc = c('SRR…'.'SRR…'.…). sra_con. destDir = 

getwd(). srcType = 'ftp') 

---------------------------------------------------------------- 

library(GEOmetadb) 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse", 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse", 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl", 

"WHERE", 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 
")
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m.organism_ch1 LIKE 'Homo%' AND 

g 
gpl.organism LIKE 'Homo%' AND 

s 
gsm.type LIKE '%SRA%'AND 

gsm.source_name_ch1 LIKE '%frontal cortex%'". sep=" 

data <- dbGetQuery(con.sql) 
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Library (xlsx) 

write.xlsx(data. file="datasource.xlsx") 

 

 

R code to search for brain (Pre Frontal Cortex) sample files 
 
library(GEOmetadb) 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

 

 
sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

 
" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

 

gpl.technology LIKE '%high-throughput sequencing%' AND 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 
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gsm.source_name_ch1 LIKE '%cerebral cortex%'". sep=" 

") 

 

data1 <- dbGetQuery(con.sql) 

 

 

 

library(xlsx) 

 
write.xlsx(data1. file="datasource.xlsx") 

 
sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

 
" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

 

gpl.technology LIKE '%high-throughput sequencing%' AND 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%cerebral cortex%'". 

sep=" ") 

 

data2 <- dbGetQuery(con.sql) 
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R code to search for brain (Pre Frontal Cortex) sample files 
 
library(GEOmetadb) 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.source_name_ch1 LIKE '%cerebral cortex%'". sep=" 

 

data1 <- dbGetQuery(con.sql) 

 
 

 
library(xlsx) 

write.xlsx(data1. file="datasource.xlsx") 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 



130 
 

 

 

 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

sep=" ") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%cerebral cortex%'". 

 

data2 <- dbGetQuery(con.sql) 

 

 

library(xlsx) 

write.xlsx(data2. file="datachara.xlsx") 

----------------------------------------------------------- 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

gsm.organism_ch1 LIKE 'Homo%' AND 
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sep=" ") 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%frontal cortex%'". 

 

 

data <- dbGetQuery(con.sql) 

library(xlsx) 

write.xlsx (data. file="chara.xlsx") 

 

 

R CODE USED TO SERCH PERIPHERAL BLOOD 

SAMPLES 
 
library(GEOmetadb) 

if(file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

 

####DATA WHOLE BLOOD#### 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%whole blood%'". sep=" 
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data <- dbGetQuery(con.sql) 
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R code for peripheralblood 
 
library(GEOmetadb) #acess geometadb functions# 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') #connect to the 

database# 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". #joins the tables gse. gsm e gpl keeping the 

common fields# 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". #filters the fields with the respective# 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

sep=" ") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.characteristics_ch1 LIKE '%peripheral blood%'". 

 

data <- dbGetQuery(con.sql) #devolve os resultados da filtragem na 

BD# 

library(xlsx) 

write.xlsx(data. file="datachara.xlsx") 

#escreve os resultados num ficheiro excel# 

library(GEOquery) 

#peripheral blood# 

geo <- c('GSM…'.'GSM…'.…) 

for (i in 1:length(geo)){ 
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getGEO(geo[i]) 

} 

#this code will download metadata of the FASTQ files using GSM 

id’s# 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design. gse.status. gse.pubmed_id. gpl.gpl. gpl.title. 

gpl.technology. gpl.organism. gsm.gsm. gsm.type. gsm.organism_ch1. 

gsm.source_name_ch1. gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

sep=" ") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.source_name_ch1 LIKE '%peripheral blood%'". 

 

---------------------------------------------------------------- 

data <- dbGetQuery(con.sql) 

library (SRAdb) 

sra_dbname <- 'SRAmetadb.sqlite' 

sra_con <- dbConnect (dbDriver("SQLite"). sra_dbname ) 

res <- dbGetQuery(sra_con. "select run_accession. 

experiment_accession. sample_alias. submission_accession. 

study_name from sra_ft where experiment_accession in 

('SRX….'SRX….'.….)") 

#The first three lines of the code give acess to the SRA database 

and the last one retrieves a table from sra_ft with the mentioned 
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fields from dbgetuery function with the corresponding experiment 

accessions# 

library (xlsx) 

write.xlsx (res. file="ids.xlsx") 

 

 

getFASTQfile( in_acc = c('SRR…'.'SRR…'.…). sra_con. destDir = 

getwd(). srcType = 'ftp') 

---------------------------------------------------------------- 

library(GEOmetadb) 

if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 

con <- dbConnect(SQLite().'GEOmetadb.sqlite') 

sql <- paste("SELECT gse.gse. gse.type. gse.title. gse.summary. 

gse.overall_design, gse.status, gse.pubmed_id, gpl.gpl. gpl.title, 

gpl.technology, gpl.organism, gsm.gsm. gsm.type. gsm.organism_ch1, 

gsm.source_name_ch1, gsm.characteristics_ch1. 

gsm.supplementary_file. gsm.characteristics_ch2. gsm.status". 

"FROM". 

" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm". 

" JOIN gse ON gse_gsm.gse=gse.gse". 

" JOIN gse_gpl ON gse_gpl.gse=gse.gse". 

" JOIN gpl ON gse_gpl.gpl=gpl.gpl". 

"WHERE". 

"gse.type LIKE '%Methylation profiling by high 

throughput sequencing%' AND 

gpl.technology LIKE '%high-throughput sequencing%' 

AND 

 

 

 

 

 

 

") 

 

 

gsm.organism_ch1 LIKE 'Homo%' AND 

gpl.organism LIKE 'Homo%' AND 

gsm.type LIKE '%SRA%'AND 

gsm.source_name_ch1 LIKE '%frontal cortex%'". sep=" 

 

data <- dbGetQuery(con.sql) 

 

 

---------------------------------------------------------------- 

Library (xlsx) 

write.xlsx(data. file="datasource.xlsx") 
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R CODE TO DOWNLOAD FASTQ FILES FROM THE 

DATABASES 
 
source("https://bioconductor.org/biocLite.R") 

biocLite("SRAdb") 

browseVignettes("SRAdb") 

 

 
library(SRAdb) 

sqlfile <- 'SRAmetadb.sqlite' 

if(!file.exists('SRAmetadb.sqlite')) sqlfile <<- getSRAdbFile() 

sra_con <- dbConnect(SQLite().sqlfile) 

list<-c('SRX’.…') 

getSRAfile( in_acc = (list). sra_con = sra_con. destDir = getwd(). 

fileType = 'fastq') 

 

 

Table 13 – Differentially methylated autosomal genes with gender. 
 

gene location FUNCTION 
 

 

 

 

 

 

 
 

ESR1 

 

 

 

 

 

 
 

Start (pbs):151,656,691 
End (pbs):152,129,619 
Chromosome:6 

This gene encodes an estrogen receptor, a ligand- 
activated transcription factor composed of several 
domains important for hormone binding, DNA 
binding, and activation of transcription. The protein 
localizes to the nucleus where it may form a 
homodimer or a heterodimer with estrogen receptor 
2. Estrogen and its receptors are essential for sexual 
development and reproductive function, but also play 
a role in other tissues such as bone. Estrogen 
receptors are also involved in pathological processes 
including breast cancer, endometrial cancer, and 
osteoporosis. Alternative promoter usage and 
alternative splicing result in dozens of transcript 
variants, but the full-length nature of many of these 
variants has not been determined. [provided by 
RefSeq, Mar 2014] 

 

 

 

 
MTHFR 

 

 

 
Start:11,785,723 bp 
End:11,806,920 bp 
Chromosome:1 

MTHFR (Methylenetetrahydrofolate Reductase) is a 
Protein Coding gene. The protein encoded by this 
gene catalyzes the conversion of 5,10- 
methylenetetrahydrofolate to 5- 
methyltetrahydrofolate, a co-substrate for 
homocysteine remethylation to methionine. Genetic 
variation in this gene influences susceptibility to 
occlusive vascular disease, neural tube defects, colon 
cancer  and  acute  leukemia,  and  mutations  in this 
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  gene are associated with methylenetetrahydrofolate 

reductase deficiency.[provided by RefSeq, Oct 2009] 
 

 

 

 

 
 

CALCA 

 

 

 

 

 
calcitonin related 

polypeptide 

This gene encodes the peptide hormones calcitonin, 
calcitonin gene-related peptide and katacalcin by 
tissue-specific alternative RNA splicing of the gene 
transcripts and cleavage of inactive precursor 
proteins. Calcitonin is involved in calcium regulation 
and acts to regulate phosphorus metabolism. 
Calcitonin gene-related peptide functions as a 
vasodilator and as an antimicrobial peptide while 
katacalcin is a calcium-lowering peptide. Multiple 
transcript variants encoding different isoforms have 
been found for this gene.[provided by RefSeq, Aug 
2014] 

 

 

 

 

 

 

 
MGMT 

 

 

 

 

 

 
Start(pbs):129,467,184 
End(pbs):129,768,042 
Chromosome:10 

MGMT (O-6-Methylguanine-DNA Methyltransferase) 
is a Protein Coding gene. Diseases associated with 
MGMT include Spinal Cord Astrocytoma and 
Glioblastoma. Among its related pathways are p53 
Pathway (RnD) and DNA Damage Reversal. The 
protein encoded by this gene is a DNA repair protein 
that is involved in cellular defense against 
mutagenesis and toxicity from alkylating agents. The 
protein catalyzes transfer of methyl groups from 
O(6)-alkylguanine and other methylated moieties of 
the DNA to its own molecule, which repairs the toxic 
lesions. Methylation of the genes promoter has been 
associated with several cancer types, including 
colorectal cancer, lung cancer, lymphoma and 
glioblastoma. [provided by RefSeq, Sep 2015] 
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Table 14 - Differentially methylated related to healthy and pathologic aging. 
 

GENE LOCATION FUNCTION 

 

 

 

 

 

 
 

MGMT 

 

 

 

 

 
 

Start(pbs):129,467,184 
End(pbs):129,768,042 
Chromosome:10 

 

MGMT (O-6-Methylguanine-DNA Methyltransferase) is a Protein Coding 
gene. Diseases associated with MGMT include Spinal Cord Astrocytoma and 
Glioblastoma. Among its related pathways are p53 Pathway (RnD) and DNA 
Damage Reversal. The protein encoded by this gene is a DNA repair protein 
that is involved in cellular defense against mutagenesis and toxicity from 
alkylating agents. The protein catalyzes transfer of methyl groups from O(6)- 
alkylguanine and other methylated moieties of the DNA to its own molecule, 
which repairs the toxic lesions. Methylation of the genes promoter has been 
associated with several cancer types, including colorectal cancer, lung 
cancer, lymphoma and glioblastoma. [provided by RefSeq, Sep 2015] 

 

 

 

 

 

 
ESR1 

 

 

 

 

 

Start (pbs):151,656,691 
End (pbs):152,129,619 
Chromossome:6 

 

This gene encodes an estrogen receptor, a ligand-activated transcription 
factor composed of several domains important for hormone binding, DNA 
binding, and activation of transcription. The protein localizes to the nucleus 
where it may form a homodimer or a heterodimer with estrogen receptor 
2. Estrogen and its receptors are essential for sexual development and 
reproductive function, but also play a role in other tissues such as bone. 
Estrogen receptors are also involved in pathological processes including 
breast cancer, endometrial cancer, and osteoporosis. Alternative promoter 
usage and alternative splicing result in dozens of transcript variants, but the 
full-length nature of many of these variants has not been determined. 
[provided by RefSeq, Mar 2014] 
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RASSF1 

 

 

 

 
Start (pbs):50,329,782 
End(pbs):50,340,980 
Chromosome:3 

 

This gene encodes a protein similar to the RAS effector proteins. Loss or 
altered expression of this gene has been associated with the pathogenesis 
of a variety of cancers, which suggests the tumor suppressor function of this 
gene. The inactivation of this gene was found to be correlated with the 
hypermethylation of its CpG-island promoter region. The encoded protein 
was found to interact with DNA repair protein XPA. The protein was also 
shown to inhibit the accumulation of cyclin D1, and thus induce cell cycle 
arrest. Several alternatively spliced transcript variants of this gene encoding 
distinct isoforms have been reported. [provided by RefSeq, May 2011] 

 

 

 

 

 

RAD50 

 

 

 

 

Start (pbs):132,556,019 
End (pbs):132,646,344 
Chromosome:5 

 

The protein encoded by this gene is highly similar to Saccharomyces 
cerevisiae Rad50, a protein involved in DNA double-strand break repair. This 
protein forms a complex with MRE11 and NBS1. The protein complex binds 
to DNA and displays numerous enzymatic activities that are required for 
nonhomologous joining of DNA ends. This protein, cooperating with its 
partners, is important for DNA double-strand break repair, cell cycle 
checkpoint activation, telomere maintenance, and meiotic recombination. 
Knockout studies of the mouse homolog suggest this gene is essential for 
cell growth and viability. Mutations in this gene are the cause of Nijmegen 
breakage syndrome-like disorder.[provided by RefSeq, Apr 2010] 

 

 

 

 

 
 

GSTP1 

 

 

 

 
 

Start (pbs):67,583,595 
End (pbs):67,586,660 
Chromosome: 11 

 

Glutathione S-Transferase Pi 1 is a Protein Coding gene. Glutathione S- 
transferases (GSTs) are a family of enzymes that play an important role in 
detoxification by catalyzing the conjugation of many hydrophobic and 
electrophilic compounds with reduced glutathione. Based on their 
biochemical, immunologic, and structural properties, the soluble GSTs are 
categorized into 4 main classes: alpha, mu, pi, and theta. This GST family 
member is a polymorphic gene encoding active, functionally different GSTP1 
variant proteins that are thought to function in xenobiotic metabolism and 
play a role in susceptibility to cancer, and other diseases. 

 

 

 

 

RARB 

 

 

 

Start (pbs):25,174,332 
End (pbs):25,597,932 
Chromosome: 3 

This gene encodes retinoic acid receptor beta, a member of the thyroid- 
steroid hormone receptor superfamily of nuclear transcriptional regulators. 
This receptor localizes to the cytoplasm and to subnuclear compartments. It 
binds retinoic acid, the biologically active form of vitamin A which mediates 
cellular signalling in embryonic morphogenesis, cell growth and 
differentiation. It is thought that this protein limits growth of many cell types 
by regulating gene expression. The gene was first identified in a 
hepatocellular carcinoma where it flanks a hepatitis B virus integration site. 
Alternate promoter usage and differential splicing result in multiple 
transcript variants. [provided by RefSeq, Mar 2014] 

 

MYOD1 
Start (pbs):17,719,563 
End (pbs):17,722,131 
Chromosome: 11 

This gene encodes a nuclear protein that belongs to the basic helix-loop- 
helix family of transcription factors and the myogenic factors subfamily. It 
regulates muscle cell differentiation by inducing cell cycle arrest, a 
prerequisite for myogenic initiation. The protein is also involved in muscle 
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  regeneration. It activates its own transcription which may stabilize 

commitment to myogenesis. [provided by RefSeq, Jul 2008] 
 

 

 

 

 
 

LAMB1 

 

 

 

 

Start (pbs):107,923,799 
End (pbs):108,003,359 
Chromosome :7 

Laminin Subunit Beta 1 is a Protein Coding gene. This gene encodes the beta 
chain isoform laminin, beta 1. The beta 1 chain has 7 structurally distinct 
domains which it shares with other beta chain isomers. The C- terminal 
helical region containing domains I and II are separated by domain alpha, 
domains III and V contain several EGF-like repeats, and domains IV and VI 
have a globular conformation. Laminin, beta 1 is expressed in most tissues 
that produce basement membranes, and is one of the 3 chains constituting 
laminin 1, the first laminin isolated from Engelbreth-Holm- Swarm (EHS) 
tumor. A sequence in the beta 1 chain that is involved in cell attachment, 
chemotaxis, and binding to the laminin receptor was identified and shown 
to have the capacity to inhibit metastasis. [provided by RefSeq, Aug 2011] 

 

 

 

 

 
WRN 

 

 

 

 
Start (pbs):31,033,262 
End (pbs): 31,173,769 
Chromosome:8 

This gene encodes a member of the RecQ subfamily and the DEAH (Asp- Glu- 
Ala-His) subfamily of DNA and RNA helicases. DNA helicases are involved in 
many aspects of DNA metabolism, including transcription, replication, 
recombination, and repair. This protein contains a nuclear localization signal 
in the C-terminus and shows a predominant nucleolar localization. It 
possesses an intrinsic 3' to 5' DNA helicase activity, and is also a 3' to 5' 
exonuclease. Based on interactions between this protein and Ku70/80 
heterodimer in DNA end processing, this protein may be involved in the 
repair of double strand DNA breaks. Defects in this gene are the cause of 
Werner syndrome, an autosomal recessive disorder characterized by 
premature aging. [provided by RefSeq, Jul 2008] 

 

 

 

DLG4 

 

 

Start (pbs):7,189,890 
End (pbs):7,220,050 
Chromosome:17 

Discs Large MAGUK Scaffold Protein 4) is a Protein Coding gene. This gene 
encodes a member of the membrane-associated guanylate kinase (MAGUK) 
family. It heteromultimerizes with another MAGUK protein, DLG2, and is 
recruited into NMDA receptor and potassium channel clusters. These two 
MAGUK proteins may interact at postsynaptic sites to form a multimeric 
scaffold for the clustering of receptors, ion channels, and associated signaling 
proteins. Multiple transcript variants encoding different isoforms have been 
found for this gene. [provided by RefSeq, Jul 2008] 

 

 

 

DRD2 

 

 

Start (pbs):113,409,595 
End (pbs):113,475,691 
Chromosome 11 

Dopamine Receptor D2 gene encodes the D2 subtype of the dopamine 
receptor. This G-protein coupled receptor inhibits adenylyl cyclase activity. 
A missense mutation in this gene causes myoclonus dystonia; other 
mutations have been associated with schizophrenia. Alternative splicing of 
this gene results in two transcript variants encoding different isoforms. A 
third variant has been described, but it has not been determined whether 
this form is normal or due to aberrant splicing. [provided by RefSeq, Jul 
2008] 

 

 

 

NOS1 

 

 

Start(pbs):17,208,142 
End (pbs):117,452,170 

Chromosome 12 

The protein encoded by this gene belongs to the family of nitric oxide 
synthases, which synthesize nitric oxide from L-arginine. Nitric oxide is a 
reactive free radical, which acts as a biologic mediator in several processes, 
including neurotransmission, and antimicrobial and antitumoral activities. In 
the brain and peripheral nervous system, nitric oxide displays many 
properties of a neurotransmitter, and has been implicated in neurotoxicity 
associated with stroke and neurodegenerative diseases, neural regulation of 
smooth muscle, including peristalsis, and penile erection. This protein is 



140 
 

 
  ubiquitously expressed, with high level of expression in skeletal muscle. 

Multiple transcript variants that differ in the 5' UTR have been described for 
this gene but the full-length nature of these transcripts is not known. 
Additionally, alternatively spliced transcript variants encoding different 
isoforms (some testis-specific) have been found for this gene.[provided by 
RefSeq, Feb 2011] 

 

 

 

 

 
 

NRXN1 

 

 

 

 

Start (pbs):49,918,505 
End (pbs):51,225,575 
Chromosome:2 

This gene encodes a single-pass type I membrane protein that belongs to the 
neurexin family. Neurexins are cell-surface receptors that bind neuroligins to 
form Ca(2+)-dependent neurexin/neuroligin complexes at synapses in the 
central nervous system. This complex is required for efficient 
neurotransmission and is involved in the formation of synaptic contacts. 
Three members of this gene family have been studied in detail and are 
estimated to generate over 3,000 variants through the use of two alternative 
promoters (alpha and beta) and extensive alternative splicing in each family 
member. Recently, a third promoter (gamma) was identified for this gene in 
the 3' region. Mutations in this gene are associated with Pitt- Hopkins-like 
syndrome-2 and may contribute to susceptibility to schizophrenia. [provided 
by RefSeq, Aug 2016] 

 

 

 

SOX10 

 

 

Start (pbs):37,970,686 
End (pbs):37,987,422 
Chromosome:22 

This gene encodes a member of the SOX (SRY-related HMG-box) family of 
transcription factors involved in the regulation of embryonic development 
and in the determination of the cell fate. The encoded protein may act as a 
transcriptional activator after forming a protein complex with other proteins. 
This protein acts as a nucleocytoplasmic shuttle protein and is important for 
neural crest and peripheral nervous system development. 
Mutations in this gene are associated with Waardenburg-Shah and 
Waardenburg-Hirschsprung disease. [provided by RefSeq, Jul 2008] 

 

 

 

 
 

Table 15- Differentially methylated genes with Alzheimer’s Disease 
 
 

gene location function 
 

 

 

 

 
 

ANK1 

 

 

 

 

Start (pbs):41,653,220 
End (pbs):41,896,762 

Chromosome:8 

ANK1 (Ankyrin 1) is a Protein Coding gene. Attaches 
integral membrane proteins to cytoskeletal elements; 
binds to the erythrocyte membrane protein band 4.2, to 
Na-K ATPase, to the lymphocyte membrane protein GP85, 
and to the cytoskeletal proteins fodrin, tubulin, vimentin 
and desmin. Erythrocyte ankyrins also link spectrin (beta 
chain) to the cytoplasmic domain of the erythrocytes 
anion exchange protein; they retain most or all of these 
binding functions. 
Isoform Mu17 together with obscurin in skeletal muscle 
may provide a molecular link between the sarcoplasmic 
reticulum and myofibrils 

 

RPL13 
Start (pbs):89,560,657 

End:89,566,829 
Chromosome 16 

RPL13 (Ribosomal Protein L13) is a Protein Coding gene. 
The protein belongs to the L13E family of ribosomal 
proteins.  It  is  located  in  the  cytoplasm.  This  gene    is 
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  expressed at significantly higher levels in benign breast 

lesions than in breast carcinomas. Alternatively spliced 
transcript variants encoding distinct isoforms have been 
found for this gene. As is typical for genes encoding 
ribosomal proteins, there are multiple processed 
pseudogenes of this gene dispersed through the genome. 

 

 

 
RHBDF2 

 

 
Start (pbs):76,470,891 
End (pbs):76,501,790 

Chromosome:17 

RHBDF2 (Rhomboid 5 Homolog 2) is a Protein Coding gene. 
Rhomboid protease-like protein which has no protease 
activity but regulates the secretion of several ligands of 
the epidermal growth factor receptor. Indirectly activates 
the epidermal growth factor receptor signaling pathway 
and may thereby regulate sleep, cell survival, proliferation 
and migration (By similarity). 

 

 

 

 

 
 

CDH23 

 

 

 

 

Start (pbs):71,396,934 
End (pbs):71,815,947 

Chromosome: 10 

This gene is a member of the cadherin superfamily, whose 
genes encode calcium dependent cell-cell adhesion 
glycoproteins. The encoded protein is thought to be 
involved in stereocilia organization and hair bundle 
formation. The gene is located in a region containing the 
human deafness loci DFNB12 and USH1D. Usher syndrome 
1D and nonsyndromic autosomal recessive deafness 
DFNB12 are caused by allelic mutations of this cadherin- 
like gene. Upregulation of this gene may also be associated 
with breast cancer. Alternative splice variants encoding 
different isoforms have been described. [provided by 
RefSeq, May 2013] 

 

 

 
ABCA7 

 

 
Start (pbs):1,040,101 
End (pbs):1,065,572 

Chromosome: 19 

ABCA7 (ATP Binding Cassette Subfamily A Member 7) is a 
Protein Coding gene. Plays a role in phagocytosis by 
macrophages of apoptotic cells. Binds APOA1 and may 
function in apolipoprotein-mediated phospholipid efflux 
from cells. May also mediate cholesterol efflux. May 
regulate cellular ceramide homeostasis during 
keratinocytes differentiation. 

 

 

 

 
BIN1 

 

 

 
Start (pbs):127,048,023 
End (pbs) :127,107,400 

Chromosome:2 

BIN1 (Bridging Integrator 1) is a Protein Coding gene. This 
gene encodes several isoforms of a nucleocytoplasmic 
adaptor protein, one of which was initially identified as a 
MYC-interacting protein with features of a tumor 
suppressor. Isoforms that are expressed in the central 
nervous system may be involved in synaptic vesicle 
endocytosis and may interact with dynamin, synaptojanin, 
endophilin, and clathrin. May act as a tumor suppressor 
and inhibits malignant cell transformation. 
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METHY PIPE BRAIN SAMPLES OUTPUTS 

Methylation density from CpG sites around TSS regions with 200 bp 
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Methylation Density according to the Sequence Context 
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METHY PIPE OUTPUT OF BLOOD SAMPLES 
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