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Palavras Chave Processamento de Eventos Complexos, Redes de Sensores, Internet das
Coisas, Ambientes Inteligentes, Automação

Resumo Num mundo de constante desenvolvimento tecnológico e acelerado cres-
cimento populacional, observa-se um aumento da utilização de recursos
energéticos. Sendo os edifícios responsáveis por uma grande parte deste
consumo energético, desencadeiam-se vários esforços de investigações de
forma a criarem-se edifícios energeticamente eficientes e espaços inteligen-
tes. Esta dissertação visa, numa primeira fase, apresentar uma revisão das
atuais soluções que combinam sistemas de automação de edifícios e a Inter-
net das Coisas. Posteriormente, é apresentada uma solução de automação
para edifícios, com base em princípios da Internet das Coisas e explorando
as vantagens de sistemas de processamento complexo de eventos, de forma
a fornecer uma maior integração dos múltiplos sistemas existentes num edifí-
cio. Esta solução é depois validada através de uma implementação, baseada
em protocolos leves desenhados para a Internet das Coisas, plataformas de
alto desempenho, e métodos complexos para análise de grandes fluxos de
dados. Esta implementação é ainda aplicada num cenário real, e será usada
como a solução padrão para gestão e automação num edifício existente.





Keywords Complex Event Processing, Wireless Sensor Networks, Internet of Things,
Smart Environments, Automation

Abstract In a world of constant technological development and accelerated population
growth, an increased use of energy resources is being observed. With build-
ings responsible for a large share of this energy consumption, a lot of research
activities are pursued with the goal to create energy efficient buildings and
smart spaces. This dissertation aims to, in a first stage, present a review of
the current solutions combining Building Automation Systems (BAS) and In-
ternet of Things (IoT). Then, a solution for building automation is presented
based on IoT principles and exploiting the advantages of Complex Event Pro-
cessing (CEP) systems, to provide higher integration of the multiple building
subsystems. This solution was validated through an implementation, based
on standard lightweight protocols designed for IoT, high performance and real
time platforms, and complex methods for analysis of large streams of data.
The implementation is also applied to a real world scenario, and will be used
as a standard solution for management and automation of an existing building.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction to BAS Systems . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Building Automation System (BAS) Protocols . . . . . . . . . . . . . 8

2.2.1 BACnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 LonWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 KNX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 DALI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 BAS Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 The Edge: A Philips and Delloite project . . . . . . . . . . . 15

2.4 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Wireless Sensor and/or Actuator Networks (WSAN) . . . . 19
2.4.3 Wireless Communication Standards . . . . . . . . . . . . . . 20
2.4.4 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Automation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 High Performance and Real Time Platforms . . . . . . . . . 35
2.5.2 Complex Event Processing (CEP) . . . . . . . . . . . . . . . 41
2.5.3 CEP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Smart Environment solution . . . . . . . . . . . . . . . . . . . 47
3.1 SmartLighting Project . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



3.1.1 Overview and Objectives . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 User Driven Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Smart Environment Solution Architecture . . . . . . . . . . . . . . . 57

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Comparison with IoT Reference Model . . . . . . . . . . . . 60

4 Smart Environment Implementation . . . . . . . . . . . . . . 63
4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Adopted Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Access to Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Objects Definition . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Message Format . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 WSO2 CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Building Management . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Structure Management . . . . . . . . . . . . . . . . . . . . . 75
4.6.2 Rules Management . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Device Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 BLE Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Deployment Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Testing Configurations . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 WSO2 CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3 System Latency . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix A: Example modules implementation . . . . . . . . 109

Appendix B: Example Rule . . . . . . . . . . . . . . . . . . . . . . . . 111

ii



List of Figures

2.1 Building services in a Building Automation System [8]. . . . . . . . . . . 6
2.2 Building Automation System layers. . . . . . . . . . . . . . . . . . . . . . 7
2.3 BAS protocols diagram [11] (Adapted) . . . . . . . . . . . . . . . . . . . . 8
2.4 BACnet layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 BACnet/IP configuration example [9]. . . . . . . . . . . . . . . . . . . . . 10
2.6 Example of a LonWorks building automation network. . . . . . . . . . . . 12
2.7 KNX configuration methods mapped against functionality and complexity

[25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Global Estimated Internet-Connected Device Installed Base [38] . . . . . 17
2.9 An example 6LoWPAN network connected to the Internet [57]. . . . . . . 22
2.10 ZigBee IP example network topology [61]. . . . . . . . . . . . . . . . . . . 24
2.11 Bluetooth Smart service properties. . . . . . . . . . . . . . . . . . . . . . 25
2.12 MQTT Publish/Subscribe model [64]. . . . . . . . . . . . . . . . . . . . . 29
2.13 IoT with HTTP and CoAP . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.14 Publish/subscribe mechanism of AMQP [74] . . . . . . . . . . . . . . . . 33
2.15 Spark Streaming diagram [79]. . . . . . . . . . . . . . . . . . . . . . . . . 36
2.16 Spark Streaming batch processing [79]. . . . . . . . . . . . . . . . . . . . 37
2.17 Apache Storm real time processing [85]. . . . . . . . . . . . . . . . . . . . 37
2.18 Pulsar deployment architecture [96]. . . . . . . . . . . . . . . . . . . . . . 39
2.19 Heron topology example [98]. . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.20 CEP Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.21 WSO2 CEP High Level Architecture [105]. . . . . . . . . . . . . . . . . . 45
2.22 Distributed Mode - High Level Architecture [106]. . . . . . . . . . . . . . 46

3.1 Use case diagram: User arrives at the building. . . . . . . . . . . . . . . . 50
3.2 Use case diagram: User enters the hallway. . . . . . . . . . . . . . . . . . 51
3.3 Use case diagram: User moves through the building. . . . . . . . . . . . . 52
3.4 Use case diagram: User arrives at his desk. . . . . . . . . . . . . . . . . . 52
3.5 Use case diagram: interaction with building occupants. . . . . . . . . . . 56
3.6 Use case diagram: building manager interaction . . . . . . . . . . . . . . 57
3.7 Smart Environment: architecture diagram . . . . . . . . . . . . . . . . . . 58
3.8 IoT World Forum Reference Model [107]. . . . . . . . . . . . . . . . . . . 61

4.1 Device objects representation . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



4.2 Luminaire object representation example . . . . . . . . . . . . . . . . . . 67
4.3 SmartEnvironment: architecture diagram . . . . . . . . . . . . . . . . . . 72
4.4 WSO2 CEP flow diagram example . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Building Management diagram . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Structure Manager Database . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Rule Manager Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 WSO2 CEP Engine Controller Architecture. . . . . . . . . . . . . . . . . 82
4.9 Simulator - Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.10 Simulator - Plant View matching IT2 building. . . . . . . . . . . . . . . . 85
4.11 Simulator - Room View. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.12 Object/Resource mapping in BLE’s UUID . . . . . . . . . . . . . . . . . 86
4.13 Simulator - Room View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Deployment Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Configuration A - Physical Memory Details (MB) . . . . . . . . . . . . . 92
5.3 Configuration B - Physical Memory Details (MB) . . . . . . . . . . . . . 93
5.4 Configuration A - Average System Load . . . . . . . . . . . . . . . . . . . 93
5.5 Configuration B - Average System Load . . . . . . . . . . . . . . . . . . . 94

1 Example action configured at Web interface. . . . . . . . . . . . . . . . . 112
2 Example filtering configured at Web interface. . . . . . . . . . . . . . . . 112
3 Full Flux Diagram of a rule used in configuration A. . . . . . . . . . . . . 113
4 Part of Flux Diagram of a rule used in configuration B. . . . . . . . . . . 114

iv



List of Tables

2.1 OSI model layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Wireless technologies comparison . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Internet Protocol Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 IoT Protocols comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Devices operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Implemented Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Engine Interface Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Configuration A - End-to-end latency when using a simulated device . . . 95
5.2 Configuration A - End-to-end latency when using a physical device . . . . 95
5.3 Configuration B - End-to-end latency when using a physical device . . . . 96

v





Acronyms

6LoWPAN IPv6 over Low power Wireless
Personal Area Networks

AES Advanced Encryption Standard

AFS Apache Software Foundation

AMQP Advanced Message Queuing
Protocol

ANSI American National Standards
Institute

API Application Programming
Interface

APP Application

ARCNET Attached Resource Computer
Network

ASHRAE American Society of Heating,
Refrigerating, and
Air-Conditioning Engineers

ATNoG Aveiro Telecommunications and
Networking Group

BAS Building Automation System

BACnet Building Automation and
Control Networks

BLE Bluetooth Low Energy

BREEAM Building Research
Establishment Environmental
Assessment Method

BRMS Business Rules Management
System

CCTV Closed-Circuit Television

CEA Consumer Electronics
Association

CEN European Committee for
Standardization

CEP Complex Event Processing

CFL Compact Fluorescent Lamps

CoAP Constrained Application
Protocol

CPU Central Processing Unit

CSV Comma-Separated Values

DALI Digital Addressable Lighting
Interface

DETI Departamento de Eletrónica,
Telecomunicações e Informática

DSL Domain Specific Language

DTLS Datagram Transport Layer
Security

ECA Event Condition Action

EHS European Home System

EIB European Installation Bus

EN European Standard

epl Event Processing Language

ETS Engineering Tool Software

EXI Efficient XML Interchange

vii



FO Fiber Optic

GATT Generic Attribute Profile

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation and Air
Conditioning

ID Identifier

IEC International Electrotechnical
Commission

IEEE Institute of Electrical and
Electronics Engineers

IETF Internet Engineering Task Force

IM Instant Messaging

IoT Internet of Things

I/O Input/Output

IPSP Internet Protocol Support
Profile

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IPSec Internet Protocol Security

IP Internet Protocol

ISO International Organization for
Standardization

IT2 Instituto de Telecomunicações 2

IT Instituto de Telecomunicações

JMS Java Message Service

JSON JavaScript Object Notation

KNX Konnex

LAN Local Area Network

LED Light Emitting Diode

LLC Logical Link Control

LMSC IEEE 802 LAN/MAN
Standards Committee

LonWorks Local Operating Network

LR-WPAN Low Rate WPAN

M2M Machine-to-Machine

MAN Metropolitan Area Network

MAC Media Access Control

MQTT Message Queue Telemetry
Transport

MQTT-SN MQTT for Sensors Nodes

MS/TP Master-Slave/Token-Passing

NFC Near Field Communication

ODM Operational Decision
Management

OPC Open Platform
Communications

ORM Object-Relational Mapper

OSI Open Systems Interconnection

P2P Peer-to-Peer

PAN Personal Area Network

PANA Protocol for Carrying
Authentication for Network
Access

PIR Passive Infrared

PL Powerline

PoE Power-over-Ethernet

PTP Point-to-Point

QL Query Language

QoS Quality of Service

QR Quick Response

RDMS Relational Database
Management System

REST Representational State Transfer

RF Radio Frequency

RFID Radio-Frequency Identification

RPL Routing Protocol for Low
Power and Lossy Networks

RTC Real-Time Computing

viii



RTS Real-Time Streaming

SASL Simple Authentication and
Security Layer

SCADA Supervisory Control And Data
Acquisition

SCoT Smart Cloud of Things

SIG Special Interest Group

SMS Short Message Service

SNVT Standard Network Variable
Type

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TP Twisted Pair

TTL Time To Live

UDP User Datagram Protocol

URL Uniform Resource Locator

URI Uniform Resource Identifier

UUID Universally Unique ID

VLC Visible Light Communication

WLAN Wireless LAN

WPAN Wireless PAN

WSN Wireless Sensor Network

WSAN Wireless Sensor and Actuator
Network

WS Web Service

XML eXtensible Markup Language

XMPP Extensible Messaging and
Presence Protocol

YARN Yet Another Resource
Negotiator

ZCL ZigBee Cluster Library

ix





chapter 1
Introduction

It is clear today how much technology has evolved over the last decades, and how much it is

now part of our lives. Technology is everywhere, from our small gadgets to large industries

and buildings, where its usage is imperative. Nonetheless, technology is powered by electricity,

a resource we continuously strive for. Renewable energies are expanding and addressing this

issue with good results, but they still have a long way to go before reaching acceptable costs.

Moreover, buildings, which have been continuously growing in numbers and size, are

responsible for a large part of the global energy consumption [1] [2]. With this in mind, a

lot of investigation and research has been triggered with the goal of creating energy efficient

solutions.

There are currently several solutions in the Building Automation Systems (BAS) domain,

capable of automating multiple systems in order to reduce energy wastage. However, these

are generally basic in the sense that they only support simple reactions to predefined events

coming from the sensors, lacking complex correlations and dynamic integration of all the

information provided by those events. Additionally, most are vendor specific solutions and

despite using existing standards, integration and interoperability of new system features is

still difficult to achieve.

On the other hand, a huge revolution is happening in the Internet, commonly referred

to as Internet of Things (IoT). The IoT is a new technological paradigm where devices are

capable of generating and sharing large amounts of data with each other, and also pushing

it into cloud servers, where it can be analysed and valuable information extracted. These

devices, in line with the technological evolution, are achieving smaller sizes, lower costs, and

lower energy needs. They are thus becoming suitable for integration into everyday objects, or

“things”, providing them with the intelligence that allow us to call them “smart objects”.

Equipped with sensors and actuators, smart objects are able to collect information from

the environment and interact with the physical world, having then the potential not only to
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enrich our everyday life, but also to empower new ways of working by increasing our comfort

and productivity.

Furthermore, the servers, responsible for receiving and analysing the data generated by

smart objects, perform tasks with a continuously increasing degree of complexity. This calls

for new methodologies and platforms that are able to cope with processing huge amounts of

data, in the order of billions of events per second, analyse it, and infer conclusions in near

real-time.

It is within the scope of these visions that the current dissertation fits, by proposing a

solution that aims to combine and integrate the low cost and low power principles of the IoT

in order not only to improve energy efficiency of buildings, but also to give their occupants

an increased level of comfort and productivity. In fact, the use of these principles allows the

creation of dynamic solutions where new data sources may be easily added as either new

devices, able to interact with the environment, or modules that provide different types of

information.

1.1 motivation

With buildings responsible for more than 40% of energy consumption [3], the development

of efficient building automation systems that can reduce operational costs through improvement

of energy efficiency is a motivation factor by itself. As an additional incentive is the deployment

of IoT concepts, recognized as one of the most important research topics in the industrial

and academic worlds for the immediate and near future. The work performed within this

dissertation combines both motivations, and does so as preliminary work of an internal research

activity of the Instituto de Telecomunicações (IT) of Aveiro, named “SmartLighting”.

The institute’s facilities in Aveiro, are composed by two buildings. The latest, referred

as Instituto de Telecomunicações 2 (IT2), was inaugurated in 2014 and, despite including

modern facilities, is not completely endowed with energy efficient solutions. However, there

is an ongoing activity to requalify the existing lighting infrastructure, replacing luminaires

with Compact Fluorescent Lamps (CFL) with Light Emitting Diode (LED) units. The simple

exchange spurred an interest to enhance the infrastructure with intelligence and automation

systems, leading to the SmartLighting project.

The project is being developed by two research groups within IT, the Aveiro Telecommu-

nications and Networking Group (ATNoG) and the Integrated Circuits group. Furthermore, it

has the cooperation of Think Control, an engineering consultancy company, and the Zumbtobel

Group, a global player in the professional lighting business. The main goal of the project

is to build and deploy a wireless network of sensors and LED luminaires that are able to
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dynamically adapt, by detecting changes in the surrounding environment and reacting to

them in a coordinated fashion, taking into account a multitude of conditions.

1.2 objectives

The key objective of this dissertation is to propose a solution capable of receiving and

processing every environmental change in the IT2 building, and rapidly take actions, in order

to provide an automated workplace. Moreover, the solution must allow a seamless integration

of new devices and systems in order to be easily extensible and thus allow the addition of new

features in the future.

In line with the SmartLighting project, an implementation of this solution is expected,

endowed with the most basic functionalities for automating a real prototype composed by a

couple luminaires equipped with multiple sensors able to read several environmental variables.

The prototype is developed by two other students from the Integrated Circuits group, as

their dissertation work. The implementation provides a centralized web interface for building

managers to configure the system, by managing the devices and the building structure and,

creating and activating simple rules that form the logic that runs the system.

To enable the automation of the real prototype, a gateway agent is also expected for

connecting the devices to the platform using Bluetooth Low Energy, as well as a simple device

simulator, for allowing not only to create virtual devices for generating data for performance

testing purposes, but also to visualize the correct functioning of the platform by showing the

state of every sensor and luminaire.

1.3 contributions

This work mainly contributes with a solution for integration of Complex Event Processing

(CEP) with IoT in the context of building automation. As part of the SmartLighting

project, the solution is tested and validated with real sensors following the complete workflow.

Additionally, the solution was designed and elaborated aiming to ensure standardized protocol

support for the IoT.

The implementation of the solution in conjunction with the developed prototype formed

a final demonstrator for the SmartLighting project, which was first publically shown at

Students@DETI. This is an annual event which takes place at Departamento de Eletrónica,

Telecomunicações e Informática (DETI) of University of Aveiro where students present
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prototypes developed in project course units, as well as dissertation results or PhD progress.

Additionally, a complete demonstration was also performed at the Research Day event [4]

of University of Aveiro. This is, also an annual event that aims to present the most relevant

research achievements undertaken by the different departments and research units of the

university.

Moreover, contributing to the academic and scientific development, a paper with the title

“SmartLighting - A platform for intelligent building management” was submitted and accepted

for publication at INForum 2016 [5]. The paper, describes the implementation, along with

the prototype, and thus enabling a more assertive dissemination of the project and obtained

results, reaching a broader target population.

1.4 structure

This document is split into 6 chapters of which, chapter 1, Introduction, was already

presented. The remaining chapters are organised as follows.

• Chapter 2: presentation of the state of art. In this chapter some key concepts

regarding building automation, Complex Event Processing and the Internet of Things

will be presented, focusing on the open-source protocols and standards used by current

solutions in these areas;

• Chapter 3: brief introduction to the SmartLighting project, presenting its main

goals and advantages to IT2 building’s stakeholders. An analysis of multiple use cases

is used to later describe the approach used for building a smart smart environment

solution. It presents an architecture, followed by an explanation of its components;

• Chapter 4: description of the implementation of the proposed architecture using

WSO2 CEP1. The solution’s architecture is shown along with the technologies use,

thus providing a detailed explanation of the followed approach during implementation;

• Chapter 5: presentation and analysis of results obtained from testing the implemented

solution. The test methodology is described and the results are analysed under a

feasibility perspective, with special focus in latencies which are crucial for real-life

scenarios.

• Chapter 6: final conclusions about the chosen path and obtained results of this work,

also addressing potential improvements for future follow up work.

1A Complex Event Processing (CEP) engine provided by WSO2 Inc.
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chapter 2
State of the art

In a world of constant technological development and continuous population growth, the

strain on the planet’s energy resources is notorious. A large share of the world’s energy

usage is taken by buildings, either residential or commercial, whose number and size keeps

growing [1][2]. With such strong economic and social impact, legislation is introduced towards

achieving higher levels of efficiency. In turn, this triggers a lot of research activities focusing

on the problem of delivering energy efficient solutions.

This chapter aims to provide a short review on building automation concepts followed

by the IoT and automation concepts that can be used to develop novel solutions. For each

section, State-of-the-Art topics are also given to better expose the direction of these research

fields and how they can be combined.

2.1 introduction to bas systems

Initially the need for control and later the need for improved building efficiency, led to

the development of Building Automation System (BAS) solutions. Nowadays, the primary

goal, and selling point, of a BAS is to achieve significant cost reductions over the lifetime of a

building, mainly through energy savings. Furthermore, a BAS is also used to achieve a higher

ranking in the sustainable buildings scale, such as LEED [6], BREEAM [7] and others, which

increase the value of the building while contributing to help protect the environment.

Cost reduction is achieved by BAS by efficiently automating several systems inherent

to a building such as Heating, Ventilation and Air Conditioning (HVAC), lighting, water,

Closed-Circuit Television (CCTV) to name a few of those depicted in figure 2.1. Furthermore,

given the fact that people spend much of their time inside buildings (in the office or at home),
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Figure 2.1: Building services in a Building Automation System [8].

these solutions can help improve their productivity by delivering higher levels of comfort,

through monitoring and adjusting environmental parameters. “The key driver of the building

automation market is the promise of increased user comfort at reduced operation cost” [9].

Additionally, by automating different systems on a building, other costs besides those

related to energy use, can be reduced. The centralized control and monitoring provided by a

BAS can provide support for preventive maintenance, and also the means for early detection

and location of faulty system sections or components. The ability to react early, and in some

cases even correct issues without human intervention, is key in reducing the down-time of

building services and systems, thus improving its overall efficiency. The history of BAS is

fairly old, with some solutions appearing over one century ago. One of the first was the

Automatic Temperature Control System presented by Warren Johnson in 1895 [10]. From an

early stage, a common model, as shown in figure 2.2, started to emerge with three distinct

layers: field, automation and management.

The field layer considers the devices located in the building and through which all the

interactions are made. They are controlled by the automation layer which is responsible for

the automation of the different building processes, while the management layer allows control

and management of the entire system, as well as data collection and its analysis.

One of the major problems in building automation, as stated by the authors of [9],

is that different manufacturers have created different building automation systems with
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Figure 2.2: Building Automation System layers.

proprietary communication interfaces and protocols, with none of them providing all the types

of applications. A need for expert know-how in each individual building service, over time,

led to a segmented market. Thus, integration of different systems and components of multiple

manufacturers became an often impossible task.

To solve this problem, several vendors began by opening up their system specifications,

trying to make their solutions more captivating and securing a dominant market position. With

time, standards often evolved as a combination of multiple vendor specifications. Currently

the most notable standards in BAS are: BACnet on the management layer; LonWorks and

parts of KNX on the automation layer; KNX and DALI (specific for lighting) in the field

layer. BAS standards will be discussed in section 2.2.

However, with the ongoing IoT revolution, new solutions have been presented over the

past few years, specially designed for constrained devices and low-power wireless links. This

is interesting for the building automation area for several reasons. First, the interconnection

integration problem stated before is solved by the use of an Internet Protocol (IP) network,

which is a well-known open standard. Second, there are various advantages in the use of

wireless devices, such as simplified installation, less cost for cabling infrastructure, mobility

and high scalability. Third, the use of low-power devices, allows extended life time often using

batteries, and sometimes even be self-sufficient. The IoT concept and its protocols shall be

discussed in section 2.4.

Also at the automation level, new developments can be exploited. Besides the typical

input-output relations, automation can be achieved by analysing and processing data from

multiple sources and, based on it, actuate over different systems of the building, including

HVAC, lighting equipment and others. This complex correlation of data sources requires

mechanisms able to analyse and process heterogeneous sources, and issue commands with

very low latency. These concepts will be further addressed in section 2.5.
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2.2 Building Automation System (bas)

protocols

Building Automation is accomplished through an integrated control of multiple building

services such as HVAC, lighting and others. Thus, in order for sub-systems to be able to

communicate and exchange information amongst them, as well as allow the integration of

solutions and components from multiple manufacturers, standard communication protocols

are needed.

Figure 2.3: BAS protocols diagram [11] (Adapted)

In this section, the Building Automation and Control Networks (BACnet) [12], the Local

Operating Network (LonWorks) [13] and the Konnex (KNX) [14] protocols will be presented.

These are the main industry-maintained protocols, specifically targeting BAS. In addition

to these, the Digital Addressable Lighting Interface (DALI) [15] protocol will also be briefly

introduced, since it is the most proliferous digital protocol used in professional lighting control

systems. Figure 2.3 shows a diagram with these protocols mapped across the previously

presented BAS layers (figure 2.2).

Additionally, the EnOcean Alliance [16] has been providing energy harvesting wireless

technologies, mainly targeting Building Automation. Their solutions provide ultra-low-power

electronics capable of harvesting the energy they need from external sources, such as solar or

kinetic energy. However, since EnOcean provides self-powered devices, which is an asset for

8



the Internet of Things, it has been evolving towards this concept and thus will be included in

the IoT section, 2.4.

There are other protocols also adopted in BAS solutions such as ModBus and OPC, which

are often used in industrial automation. However, they are not so widespread in commercial

and residential building automation, and thus out of scope of this chapter.

2.2.1 bacnet

The BACnet protocol, whose development began in 1987 by the American Society of

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), was first published in 1995

when it was adopted as an American National Standards Institute (ANSI)/ASHRAE standard.

Later, in 2003, it was also adopted as an International Organization for Standardization (ISO)

and a European Committee for Standardization (CEN) standard [9]. It is vendor-independent,

without any license fees, and is under continuous development by ASHRAE [11].

BACnet was specifically designed for the management and control of building automation,

allowing integration of different systems and components from multiple vendors. It makes use

of several standardized physical and data link layers, as depicted in figure 2.4. This allows

multiple network types, including Attached Resource Computer Network (ARCNET), Ether-

net, Master-Slave/Token-Passing (MS/TP), LonTalk and Point-to-Point (PTP). Additionally

BACnet also supports, Zigbee, a set of IEEE 802.15.4-based application specifications, and

IP communications through the BACnet/IP specification [9].

Figure 2.4: BACnet layers.

On the network layer, due to BACnet restrictions such as maximum message length,

a specific protocol or adaptation, called the BACnet Virtual Link Layer (BVLL) is used.

This allows to present a view of some network topology and function to the existing BACnet

network layer. As an example, the BACnet/ZigBee Data Link Layer (BZLL) defined in

Addendum 135-2008q [17], performs the adaption to the network layer between Zigbee and

BACnet.
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Figure 2.5: BACnet/IP configuration example [9].

Furthermore, BACnet/WS was introduced in 2006 [18], extending the BACnet standard

to allow the integration of other systems using web services, which enables the access and

manipulation of data in a BACnet server. Figure 2.5 shows an example of a BACnet/IP

configuration, where both a BACnet/IP workstation and another one using web services can

be used for accessing the BACnet network of devices.

The BACnet protocol defines an object-based access to BACnet devices, i.e. all the

information is represented as objects [19]. Each object contains information relative to a

function, divided in data elements called properties of the object. For example, a temperature

sensor can have multiple properties related to temperature reading, so its not only possible to

read the current temperature value, but also the type of the value (units) and maximum and

minimum values. Several object types are defined by BACnet, but new objects or properties

can also be added, without interfering with similar ones, by freely obtaining a vendor ID from

ASHRAE.

The objects are then used by BACnet services, which define how to access and manipulate

the objects. BACnet defines various services grouped into five categories: Alarm and Event,

File Access, Object Access, Remote Device Management, and Virtual Terminal [9].

As examples, there are defined services for reading and writing object properties, namely

ReadProperty and WriteProperty which are included in the Object Access category, as well as

services for BACnet device discovering, which is the case of Who-Has and I-Have that belong

to the Remote Device Management category.
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In short, BACnet protocol offers enough services to try to entirely cover any building

automation applications, making it an excellent choice in the development of complete building

automation systems. However, the fact that it allows each manufacturer to focus on its own

devices, and so their specific functions and tools, resulted in a big variety of tools. This can

be seen as a downside when devices from multiple manufacturers are chosen [20].

2.2.2 lonworks

LonWorks is an open networking solution for building control and automation. Initially

developed by Echelon Corporation in 1988, the communication protocol behind it, called

LonTalk, was presented for standardization to ANSI/Consumer Electronics Association

(CEA) and accepted as a standard for control networking (ANSI/CEA-709.1-B) in 1999,

and later was also accepted as ISO/International Electrotechnical Commission (IEC) 14908.

Currently maintained by LonMark International, an industry association, LonWorks has

gained international recognition and is supported through a multitude of standards, through

different application domains [21] [22].

The main objective of LonWorks is to provide a decentralized communication platform

which can also be dedicated to the automation of several building subsystems, including HVAC

and lighting. In fact, the peer-to-peer style of communication is one of the main differentiation

factors when comparing with device networks like DeviceNet, Profibus and Modbus. Thus,

instead of having a master device, through which all information flows, a LonWorks device

can exchange data directly with any other device on the network, enabling basic automation

operations without need for a central controller. Furthermore, it can use different types of

communication media, namely Twisted Pair (TP) cables, Powerline (PL), Fiber Optic (FO),

Radio Frequency (RF) or even exploit IP tunnelling mechanism with LonWorks/IP [11].

LonWorks is an event-triggered control network system, which consists of a dedicated

controller (Neuron Chip), the physical medium transceiver, a network management tool

and the communication protocol, LonTalk [19]. The prime component of each network

device (called node) is the Neuron Chip, which provides the intelligence and networking

capabilities to any device. It implements the entire LonTalk protocol stack and is comprised

of multiple Central Processing Units (CPUs), memory, Input/Output (I/O), communications

port, firmware, and operating system. Commonly Neurons comprise three 8-bit processors,

from which two are responsible for the communication protocol execution, while the third

provides all the application functions. The 8-bit structure is due to historical reasons when the

chips were still licensed from Echelon, however, currently software code of this functionality

also exists for 32 bit microcontrollers [19].

Figure 2.6 represents a typical LonWorks network in a building automation scenario.

The nodes are split by network segments which are interconnected by routers and repeaters.
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Figure 2.6: Example of a LonWorks building automation network.

Gateways are also often used to provide either remote connection or interfacing existing

building systems.

Another great benefit of LonWorks is the use of Standard Network Variable Types

(SNVTs), which are used to describe physical device’s properties or parameters. As an

example, an area SNVT, which is defined in square meters, has an index 110, is of type

unsigned long and ranges from 0 to 65.535, with a resolution of 2 square centimetres [23].

Despite LonWorks huge potential to be a dominant solution for building automation

systems, some issues led to a low market acceptance in some countries. Particularly, the

high cost associated not only to the initial acquisition and tools but also extra costs for the

per node royalty. Sometimes the inability for vendors to interact with some devices due to

proprietary implementations of communication objects also deterred LonWorks widespread

[20].

2.2.3 knx

KNX is the result of combining the best aspects of three technologies for home and building

control: European Installation Bus (EIB), BatiBUS and European Home System (EHS) [9].

With more significance in European market, KNX conforms to international ISO/IEC 14543 ,

European Standard (EN) (EN50090) and Chinese (GB/T20965) standards [24]. The standard

is maintained by the industry association, KNX Association, and since early 2016 has been

made open free for basic subscribers [14].
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Similar to LonWorks, KNX can also be used over different communication mediums. In

this case, TP, PL, IP/Ethernet (IP tunnelling) and RF (known as KNX) can be used RF

[19]. As a field bus system, the main concept of KNX is to have a hardware independent

solution that enables interoperability of field devices. KNX certified products are guaranteed

to interconnect each to other. However, to ensure that the proper input is associated with the

correct output action, thus enabling automation, requires a fairly complex configuration. For

this configuration the Engineering Tool Software (ETS) must be used. Historically this was a

complex process, where an ETS expert technician was required, sometimes even in the most

basic installations. This made the KNX Association release two methods for configuration,

as shown in figure 2.7 [25]. The simple E-mode is meant for installers with basic know-how,

given that compatible components are already pre-programmed and loaded with a default set

of parameters. The more complex S-mode is oriented for expert installers and technicians as

it requires the full capabilities of the ETS platform, but it also provides the highest level of

flexibility for configuring devices.

Figure 2.7: KNX configuration methods mapped against functionality and complexity [25].

A KNX network of devices is somewhat similar to LonWorks, it basically consists of zones

which are connected through a backbone line. Each zone is comprised of lines that can have

at maximum 254 devices. Yet, more devices can be added to zones with the use of sub-lines

connected to the main ones via routers. Every KNX device has a unique individual address,

corresponding to its position in the network (zone/line/device), which is used for unicast

addressing. Multicast addressing is achieved through an additional group address, and is, in

addition to its propagation mechanism, highly efficient. Furthermore, KNX communication

follows an event-driven approach, with individual nodes making use of a shared variable model.
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This allows the combination of devices into a group that can also be addressed as a group

object, for read and/or write operations [9].

Summing up, KNX is a complete and open system for building automation, with the

advantage of having a very rigorous device certification program, which has been leading to

a reduction in manufacturer specific communication objects, and also in fewer flavours of

management tools. In fact, the ETS platforms available are all derived from the one provided

by the KNX association.

2.2.4 dali

The DALI is the outcome of a combination of specifications from multiple lighting ballast

manufacturers in the mid-1990s. Initially available in products as an industry standard, the

DALI specification was adopted as standard IEC60929, annex E and G, in 2002. However,

this early publication only considered the general definitions and the specifics for control gears

(common ballasts), leaving out any other control device type. Recently, in 2014, a revised

and extended version of DALI was published under IEC 62386, above all, introducing the

capabilities to interface an extended number of devices such as motion sensors, switches, etc.

[15].

In general, a DALI system follows the master/slave principle, where each controller(master)

can address 64 devices (slaves) through an assignable unique address. The slaves can be

divided in up to 16 groups, where each of them can have 16 different scenes [26]. It allows the

control of the devices individually using the slave unique address, or the control of an entire

group of devices using the group address. Additionally, it supports broadcast addressing,

which makes it possible to control all units simultaneously. The protocol also provides several

advantageous options, such as the identification of unit types, automatic search for control

devices, simultaneous dimming of all the devices when a scene is selected and integration of

emergency lighting [27].

DALI is a two-way communication system that runs on top of dedicated wiring. Its control

structure resorts to specific commands that define the interactions between the controller

and the devices. Despite being one of the most complete digital solutions for controlling

luminaires, DALI does not allow implementation of automation rules, it rather defines how to

interface the devices. In practice DALI gateways perform the connection to the automation

and/or management platforms.
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2.3 bas solutions

This section aims to briefly introduce some of the most proliferous BAS solutions currently

available, focusing on their features and their supported protocols.

In fact, nowadays there are not that many market available products with the intent of

reducing energy consumption in buildings. It is a consolidated market that comprised of strong

players, which have developed and maintained their systems over the years. In fact, this goes

in line with the long life-time required of any BAS solution. For instance, Siemens provides

Desigo, APOGEE and Synco, three similar systems targeting different regions and different

building sizes (Desigo) [28]. There is also Johnson Controls, who claims to have the world’s

leading BAS system, the Metasys [29], and Honeywell that provides a few separated but easily

integrated systems, targeting building automation [30]. However, these reference products are

often subject to significant customization depending on the project requirements for which they

are used. They all claim to support most of the open standard protocols discussed in section

2.2 such as BACnet, LonWorks and KNX. However, as mostly used in business-to-business

scenarios, and having closed source, the actual details and technical information is hard to

obtain and thus will not be discussed in further detail, with the exception of the solution

presented in subsection 2.3.1, due to its similarity with this dissertation’s goals.

Additionally, there are multiple open-source platforms enabling home automation. That

is the case of openHAB [31], Home Assistant [32], DomotiGa [33] and Domoticz [34]. These

actually provide several interesting features, allowing to observe and control devices from

various different technologies and systems. Furthermore, some of these platforms even provide

automation based on basic rules, such as dimming lights when starting to watch a movie,

or turn on your computer when you arrive home. However, those are basic rules made to

work with a small amount of information, and do not support complex correlations between

the information. In addition, they are designed to deal with a few events per minute, as is

common in the residential segment. When compared to commercial and industrial buildings,

houses are much smaller places and contain a limited number of occupants. In a professional

building, there could be hundreds of people working, generating thousands of events per

second, and fast responses are required in order to maintain comfort and productivity of their

occupants.

2.3.1 the edge: a philips and delloite project

All the different proposals of BASs converge to one common goal: create solutions

that allows, through sustainable methods, providing a productive, comfortable and efficient

environment to its occupants. Philips was responsible for the development of a BAS for the

Edge building, in Amsterdam, for the consulting firm Deloitte. This project had, among

others, the goal of increasing the buildings efficiency, by allowing for instance its occupants to,
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using a simple mobile application, control their workspace’s light and temperature conditions,

in order to adapt it to their personal preferences.

This solution includes, all the 15 floors which form the building, about 6500 LED

luminaires, with half of them having sensors integrated and connected to the management

system, the Phillips Envision Lighting System Management. This enables collecting data for

posteriorly being analysed and re-used for improved management of the energy consumption.

Each luminaire is connected to the management system using an Ethernet cable, which

allows support of IP to the end-node, and thus being individually addressable. Along with

the use of Power-over-Ethernet (PoE), a combination of both energy and data in one single

cable is achieved, eliminating the need of separated cables. This also simplifies the whole

system in terms of protocols, since only the IP protocol is used for data transport.

As stated before, using a mobile application developed by Philips, each occupant may

adjust the temperature and lighting levels relative, for instance, to a specific desk assigned to

him (this is particularly interesting since there is no pre-defined desk for each occupant). To

identify the desk, the mobile application makes use of Visible Light Communication (VLC).

The LED luminaires emit a light beam with their location information encoded into it, that

information is retrieved through the smartphone’s camera and may be used to query a server

on the user exact location [35].

By collecting all the data through the luminaires, the system is able to make data

analytics, and then make suggestions in order to increase even further the efficiency. As an

example, if a specific floor does not register any activity at Friday’s afternoons, the system

will suggest a shutdown of the lighting and HVAC systems at that time.

Moreover, this building, opened in 2015, was classified in 2016 as Outstanding by Building

Research Establishment Environmental Assessment Method (BREEAM), being the most

sustainable building until then, with a 98,36% score [36].

2.4 internet of things (iot)

2.4.1 concept

Internet of Things is a vision that has been evolving over the recent years, where in

addition to the devices we usually see connected to the Internet, like our personal computers

and smartphones, a large diversity of new device types will also be connected, forming an

huge network of smart objects. These objects can vary from everyday devices like vehicles,

televisions and music systems, to more constrained devices equipped with sensors and/or

actuators which can sense, collect, transmit, analyse, and distribute data on a massive scale.
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Figure 2.8: Global Estimated Internet-Connected Device Installed Base [38]

Considering the way people process information, this gives humanity the opportunity to have

the knowledge to make better decisions [37].

The number of devices connected to the Internet will grow drastically. We can see in

figure 2.8 that, by 2020, 34 billion devices are expected to be connected, with 24 billion of

them being IoT devices. Considering the continuous increase of world population [39], we can

verify that there are more devices than people connected to the Internet. In fact, we can also

infer that, while nowadays the number of devices per person is around 2, in 2020 that number

will increase to a little less than 5. While this number still seems low, we must consider that

nowadays not all the world population has access to the Internet. According to [40], in 2015

only 43.4% of the world’s population had access to the Internet, predicting this number to

increase to 60% in 2021. With that in mind, the number of devices per person for 2020 should

indeed be greater.

According to some authors [41], we will be surrounded by networks of interconnected

devices, which will be providing content and services, to empower new ways of working and

interacting, improving our comfort and quality of life. In fact, it is predicted in [38], that

governments, which will be the second-largest IoT adopters, will mainly focus in increasing

productivity and decreasing costs, but also in improving citizen’s quality of life. Yet, businesses

will be the leading adopter of IoT solutions, again by trying to increase productivity and

decrease costs, but also by expanding to new markets with new product offerings.

The IoT concept was introduced by Ashton in 1999 [42], through exposing and presenting

new business solutions requiring an interaction between Radio-Frequency Identification (RFID)

devices and the Internet [43]. This initially simple concept has stood out in the recent years,

essentially due to the overcome of some initial obstacles, such as the devices themselves which
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are now smaller, low powered and with low cost.

A few years before [44], Mark Weiser in an attempt to create a human-to-human tech-

nological interface, developed a similar concept, ubiquitous computing [44]. It consisted

in combining the physical world and the technological world, through the interaction with

sensors, actuators, displays and computational elements, incorporating technology in the

everyday life of individuals [45]. It supports the idea that computing tasks which are typically

done in a common desktop computer, can be made in several devices embedded into everyday

objects, the smart objects. A smart object is defined in [46] as an item equipped with 4 main

components: a sensor or actuator which is the gate for interaction with the physical world,

a microprocessor that allows processing data obtained from the sensors, a communication

device for exchanging information with other smart objects or other types of devices, and a

power source to provide electrical energy to the device.

While both ubiquitous computing and IoT try to focus on the interaction between smart

objects and humans, the IoT also focus on smart objects virtual representations and how they

exchange information with each other and other platforms from the outside world. That is,

the existence of methods for automatic identification using a unique and machine readable

Identifier (ID), and the presence of standard technologies and communication protocols, as

well as their security.

To finalize, IoT will actually change the world as we know today, to a better one. With the

potential to automate quotidian tasks, improve comfort and decrease costs, IoT will represent

the next evolution of the Internet, opening boundless possibilities for solution creation in

several areas.

2.4.1.1 m2m

Machine-to-Machine (M2M), is a term frequently used over the past few years, often

in association with IoT. Its concept refers to communication between machines, which are

computing devices that perform specific tasks, in order to exchange information and perform

actions, without the need for human intervention or interaction.

It is also not a new concept considering the fact that we already see M2M devices in

several applications, mainly in telemetry, industrial, automation and Supervisory Control And

Data Acquisition (SCADA) systems.

However, with the IoT revolution the concept of M2M has been enriched, essentially

in the sense of giving meaning to the information exchanged by the machines in order to

autonomously perform actions.

Ultimately, M2M should not be used as an IoT synonym, but as a subset of it. While

M2M refers to the device-to-device only communications, IoT is a broad network, not only
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of endless M2M networks, but also of applications and interactions that can perform, for

instance, data analytics and decision making. Additionally, IoT is not only about interacting

with connected objects, it also allows interactions with non-connected objects such as objects

with RFID and Near Field Communication (NFC) tags, which may use our smartphones as

gateway to the IoT, just like printed bar codes or Quick Response (QR) codes.

In short, while M2M can be better seen from a vertical and closed perspective, IoT

encloses a horizontal and meaningful approach where all the vertical applications are joined

together in order to create and provide solutions, either in industry or for people and their

environments.

2.4.2 wireless sensor and/or actuator networks

(wsan)

A sensor is a device capable of detecting events or changes in its physical environment,

and provide that information. Temperature, humidity, luminosity, motion and pressure are

just examples of the countless physical or environmental data that a sensor can read. In

contrast, an actuator is a device that, based on its input data, triggers or controls a mechanism

that performs actions upon the physical environment.

Both sensors and actuators, when included in a broader device, along with a power source,

a microcontroller and a transceiver, constitute what is called a mote, which is also known as a

sensor node. Note that these components are enough to constitute a smart object as defined

in the beginning of this section 2.4, being the communication device in this case a transceiver.

Typically, these devices are designed to be small and have low power consumption, resulting

in limited hardware, and thus constrained resources. Hence, operating systems capable of

running on hardware of this nature are needed, being “TinyOS” [47] and “Contiki OS” [48]

the most widely adopted. Considering these aspects, a sensor node is capable of collecting

information or making actions, process that information and communicate through a wireless

medium with other motes.

This network of sensor nodes properly distributed and linked by a wireless medium is

what defines a Wireless Sensor and Actuator Network (WSAN), sometimes called Wireless

Sensor Network (WSN) when no actuators are present. This way, a WSAN is capable of

detecting and making several changes on multiple environments, by spreading diverse sensor

nodes on it and cooperatively exchanging data with a central location, thus, allowing a remote

and automated interaction with that environment.

With its first research in 1980, WSNs and WSANs have been used in diverse areas, being

industrial automation one of its main adopters primarily due to its ability mainly to reduce

cabling costs [49]. Nowadays, they are one of the primary enablers of the IoT, by converting
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their sensor nodes into smart objects through the use of IoT protocols and standards, discussed

in the following subsection.

2.4.3 wireless communication standards

The idea of having devices to “talk” to each other in the Internet of Things, is only

possible if they all “speak” the same language. This is achieved with the establishment

of communication standards, which, among other benefits, ensure interoperability between

devices.

This section aims to present the most adopted standards for the Internet of Things, as

well as other standards that evolved towards it. Given the fact that the majority of the

devices in IoT will require a wireless connection, along with the fact that most of them will

be battery-powered, only the standards targeting wireless connections for low power devices

will be discussed. Additionally, the last subsection will present a brief summary of all wireless

technologies discussed, and their key characteristics, by presenting a comparison between

them in a table.

There are already several standards defined for the Internet, describing the protocols

that have allowed the coexistence of endless applications even from different vendors and

manufacturers. Part of these standards are defined and maintained by IEEE 802 LAN/MAN

Standards Committee (LMSC), which is the group responsible for defining standards for Local

Area Networks (LANs) and Metropolitan Area Networks (MANs) (the Institute of Electrical

and Electronics Engineers (IEEE) 802 family of standards), targeting the two lowest layers of

the Open Systems Interconnection (OSI) model. The OSI is a conceptual model that divides a

communication system into 7 different layers, as shown in table 2.1. LMSC group also divides

the Data Link Layer into two more layers: Logical Link Control (LLC) and Media Access

Control (MAC).

Layer Description
Application High-level API that communicates with the operation system

Presentation
Data translation between application and networking service,

including compression, encoding and encryption
Session Allows session establishment between two nodes

Transport Transmission of data segments between two network points
Network Addressing, routing and traffic control in a multi-node network

Data Link
Ensures a reliable transmission of data frames between two nodes

connected by a physical layer
Physical Physical medium transmission of raw bit streams

Table 2.1: OSI model layers
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IEEE 802 family have already specified a considerable number of standards, with some of

them being widely used, such as the 802.3 for wired Ethernet connections, and for wireless

connections, the 802.11 for Wireless LANs (WLANs) (commonly known as Wi-Fi) and the

802.15 for Wireless PANs (WPANs).

IEEE 802.11, is one of the most commonly used specifications nowadays. It is hard today

to find a laptop or a smartphone without Wi-Fi built in. It allows us to access the Internet

in a neat and easy way without inconvenient cables. With its first version launched in 1997,

Wi-Fi is already expanded to a diversity of markets, always presenting new standards with

new improvements, being one of their key priorities raising the network throughput, hitting

its highest value with 802.11ac standard, supporting a data rate up to 6 Gbps [50].

One the other hand, in 1999 [51] another wireless technology specification was introduced,

Bluetooth. Standardized by LMSC as IEEE 802.15.1, Bluetooth is currently maintained by

the Bluetooth Special Interest Group (SIG). Over the years it has achieved its own market

for data exchanging in short distances, especially on connections between mobile phones,

wearables and electronic accessories. Unlike the IEEE 802 standards, which only specify

services and protocols for the two lowest layers of the OSI model, Bluetooth has its own stack

from the physical layer to application one.

Although both Wi-Fi and Bluetooth define solid specifications for providing reliable

wireless communications, they were not initially designed having constrained devices in mind,

and thus did not provide efficient means for having wireless communications with a low energy

consumption and low capabilities devices. With that in consideration, another standard was

specified in 2003 [52], the IEEE 802.15.4, from the IEEE 802.15 group.

2.4.3.1 IEEE 802.15.4

IEEE 802.15.4 was the first standard targeting Low Rate WPANs (LR-WPANs) by

specifying the physical and MAC layers for them, with lower data rates, simple connectivity

and battery saving in mind. With its first version in 2003, standardization process continued

and improved versions of the standard have been launched in the latest years [53].

It is due to IEEE 802.15.4 that is possible today to replace most wired sensors with

wireless ones and thus creating the WSANs. In contrast to IEEE 802.11, IEEE 802.15.4 has

smaller payload, simpler modulation, less frame overhead and better power management

mechanisms [54]. This allows sensors and actuators to operate using batteries that last months

or years. This makes IEEE 802.15.4 one of the main enablers of the Internet of Things, as it

provides the base structure for allowing constrained devices to be connected to the Internet.

Furthermore, IEEE 802.15.4 is designed for several types of LR-WPANs, where battery

friendly algorithms may be adopted in order to improve both the performance and the lifetime

of device batteries [55]. In fact, it serves as base for other specifications, such as Zigbee and
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Thread (described below), where different approaches are followed to develop the upper layers

of the OSI model (except physical and MAC layers).

2.4.3.2 6lowpan

Since IEEE 802.15.4 only provides the lowest layers from the OSI model, other standards

are needed in order to obtain a full communication stack. This lead to the development of

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN), a standard defined by

Internet Engineering Task Force (IETF). It is defined in [56] as a networking or adaptation

layer that allows the efficient transport of Internet Protocol version 6 (IPv6) packets within

small link layer frames.

Figure 2.9: An example 6LoWPAN network connected to the Internet [57].

6LoWPAN offers several advantages for the Internet of Things. Its main advantage is

clearly the fact that it allows the definition of IP-based networks, which allows 6LoWPAN

networks to be connected to other networks (including the Internet) using simple edge IP

routers, as shown in figure 2.9. Additionally, the use of IPv6 also brings some advantages over

its predecessor Internet Protocol version 4 (IPv4), such as Quality of Service (QoS), mobility

and multicasting, along with the fact that its use naturally avoids some problems related to

IPv4. These are, essentially address range limitation, which already led into its scarcity more

than once [58]. IPv6’s addressing space is much wider, allowing even small devices to have a

real-world reachable address. Plus, and also inherent to IPv6, 6LoWPAN has the stateless

auto configuration feature, which allows a device to auto configure its address.

A not less relevant benefit is the fact that 6LoWPAN does header compression, fragmen-

tation and reassembly in order to keep the packets size as small as possible, allowing the

accomplishment of low rates and low power usage on their transmission.

Another extremely important feature, is 6LoWPAN’s support for mesh networks, which

allows having a robust, scalable and self-healing network of nodes. It is done by setting some

nodes as routers, which are able to route data destined to other devices, allowing host nodes
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to sleep for longer periods of time, and a range extension of the network, since two nodes can

exchange information without being in each other’s range.

Regarding security, 6LoWPAN not only inherits the strong Advanced Encryption Standard

(AES)-128 from IEEE 802.15.4 at the data link layer, but also supports the usage of Transport

Layer Security (TLS) for Transmission Control Protocol (TCP) and Datagram Transport

Layer Security (DTLS) for User Datagram Protocol (UDP). However, there are some security

concerns still not addressed which makes 6LoWPAN not completely secure, such as the lack of

Internet Protocol Security (IPSec), that could take care of the authentication and encryption

of the packets at the network layer during a communication session [59].

2.4.3.3 zigbee

ZigBee, developed by the ZigBee Alliance, is a protocol that, similarly to 6LoWPAN,

uses the IEEE 802.15.4 standard as its base at the physical and data link layers, and adds its

own unique stack on remaining layers (considering the OSI model). At the application layer,

ZigBee provides ZigBee Cluster Library (ZCL) which is basically a repository of commands

to be used in application profiles defined by developers.

Like 6LoWPAN, ZigBee also provides a mesh networking topology whose advantages

have already been addressed in the previous subsection. It supports up to 64000 nodes in

network with the multi-hop tree, multi-hop mesh or start topologies, where each node has a

unique 16-bit short address, and provides several routing protocols in order for users to be

able to choose an optimal routing strategy for their applications [60].

Just like Bluetooth, ZigBee has also conquered its own market. In fact, since it targeted

constrained devices from the beginning, it dominates the low-power networking market.

However, with the rapid evolution of the Internet of Things, other standards have been

evolving towards this market (discussed in the following subsections). This in addition to

the lack of IP-based networking of ZigBee, led the ZigBee Alliance to bring IPv6 network

protocols to ZigBee. Therefore ZigBee IP was introduced, as an open standard, claiming

to offer a scalable architecture with end-to-end IPv6 networking based on standard Internet

protocols. These include 6LoWPAN, IPv6, Protocol for Carrying Authentication for Network

Access (PANA), Routing Protocol for Low Power and Lossy Networks (RPL), TCP, TLS and

UDP, to a create cost-effective and energy-efficient wireless mesh network [61].

Similar to 6LoWPAN, ZigBee IP also enables the establishment of self-configuring and

self-healing wireless mesh networks through the use of several device types such as coordinators,

routers, border routers and the regular hosts. Figure 2.10 shows an example network topology,

where two devices are connected to a mesh network formed by a few router nodes and one

coordinator, which is connected to the Internet using a ZigBee IP border router.
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Figure 2.10: ZigBee IP example network topology [61].

2.4.3.4 bluetooth low energy

With the Internet of Things expansion, the low power sector has gained more attention.

Bluetooth SIG noticed that, and presented an extension with Bluetooth specification 4.0. This

was in fact a completely separate technology with a different stack and frequency map, taking

advantage from previous Bluetooth versions only at the data models. This new specification

was initially known as Bluetooth Low Energy (Bluetooth Low Energy (BLE)), still often used,

and later with the brand name Bluetooth Smart.

With this new version, BLE became a high potential competitor for ZigBee in the IoT

domain by providing, in relation to its previous versions, ultra-low power and low latency

communication to low cost and small devices, while keeping a decent data rate.

Although the BLE component is not compatible with older versions of Bluetooth, recent

devices support both single-mode implementations, named Bluetooth Smart, and dual-mode

implementations, called Bluetooth Smart Ready, where the latter is able to communicate with

both old versions and new versions of Bluetooth.

Interactions between Bluetooth Smart devices are made through the Generic Attribute

Profile (GATT) protocol, which specifies how the data is organized in a device and the

available operations to perform on it. GATT is divided in two roles: client and server. A

GATT client is basically the entity that initiates requests and commands over a BLE link

with the goal of performing operations on a GATT server or reading data from it.
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Figure 2.11: Bluetooth Smart service properties.

A BLE device can be a Master or Slave, but not both at the same time. A Slave, also

known as peripheral, is a device that keeps broadcasting advertising packets and waiting for

a connection from a Master device. Typically, a Slave contains a GATT server providing

resources that can be accessed by a Master which runs a GATT client. A Master is able

to scan for advertising packets from slaves, and then connect to them in order to establish

the BLE connection and thus accessing their resources. It can connect to multiple slaves,

while each slave can only be connected to one Master. For instance, a smartphone is able to

listen for advertising packets from multiple peripherals such as smartwatches or a heart rate

monitor, and connect to all of them.

A GATT server is responsible for storing information that can be managed by a GATT

client, through requests, commands and confirmations. The attributes of the server are

organized as multiple services, being each service also divided in several characteristics, as

shown in figure 2.11. Additionally, and also presented in figure 2.11, each characteristic may

have a value and several descriptors. A descriptor provides additional information about a

characteristic, such as the units of its value or the format in which it is presented. Moreover, a

GATT client can also make a request for receiving notifications from a characteristic whenever

its value changes, which will cause the GATT server to asynchronously send the new value to

the client.

All three types of attributes of a GATT server (services, characteristics, and descriptors)

are identified by a 128-bit Universally Unique ID (UUID). In order to allow interoperability,

Bluetooth SIG reserved a range of UUIDs and defined standard attributes. For instance, there

are assigned UUIDs for several services such as Health Thermometer or Blood Pressure. The

same applies to characteristics and descriptors, e.g the Characteristic Presentation Format

defines the commonly known formats for a value, such as integer, float or string.
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A major advantage of BLE over ZigBee, is its widespread integration in smartphones,

tablets and even laptops, with a large share of them already equipped with Bluetooth Smart

Ready. This makes it better suitable for some IoT applications such as health care and

building automation, where the user’s smartphone can be an integral part of the system, being

able to interact with the other devices.

Additionally, with its most recent versions, Bluetooth 4.2 and Bluetooth 5.0, by taking

advantage of the 6LoWPAN standard, Bluetooth SIG introduced new profiles, being one of

them the Internet Protocol Support Profile (IPSP) which brings IPv6 networking to Bluetooth.

This means that IPv6 packets can be sent and received by BLE devices, in addition to keep

their core Bluetooth Smart capabilities.

In short, with the latest version of the specification, Bluetooth becomes one of the best

solutions for many IoT applications, by providing decent data rates at acceptable ranges and

low power consumption.

2.4.3.5 others

There are other open standards for wireless communication which despite not being fully

or yet available, have potential to be adopted in the future. That is the case of Thread,

which is an open standard, which also makes use of IEEE 802.15.4 standard and 6LoWPAN

adaptation layer, to create secure, reliable and power-efficient mesh networks.

It is designed specifically for connected home applications, with special focus on easy

installation, security, large networks support, high range and low power consumption [62].

Additionally, IEEE 802.11ah standard also known as Low Power Wi-Fi, and recently

named Wi-Fi HaLow [63], is the evolution of Wi-Fi towards the Internet of Things. With

an optimized physical and MAC layers, Wi-Fi offers extended range, power efficiency, and

scalable operation, thus targeting constrained devices, and consequently, the IoT.

Although not yet released, Wi-Fi HaLow will have an extremely important feature: IP

from scratch. While all other technologies such as ZigBee, Bluetooth and 6LoWPAN have

been making some effort to add IP-based networking to their specifications, Wi-Fi HaLow will

naturally include it. Plus, since wireless router companies constantly evolve their technology

to support the latest IEEE standards, HaLow will possibly, and naturally, appear on our

home’s router.

Along with IP, Wi-Fi HaLow also claims to bring the same security existent in the

well-established Wi-Fi standards, which is another feature of extraordinary importance.
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2.4.3.6 wireless technologies comparison

In this section a comparison between the so far discussed wireless standards is presented

resorting to table 2.2, adding two more wireless technologies which, despite not being completely

aimed to device-to-device communication, will have an important role in the IoT, those are

RFID and NFC.

Briefly, RFID allows to uniquely identify items using radio waves through the attachment

of tags on them. It supports both active and passive tags, where the key difference between

them is the existence of a power source in the active tags. The lack of a power source in the

passive tags (they are powered by the electromagnetic energy transmitted from the RFID

reader) makes RFID a suitable technology for the IoT, allowing the identification of objects

with an infinite battery life. Similar to RFID, NFC is new and more refined version of RFID,

also allowing the read of tags, and operating in one of the RFID frequencies. Plus, NFC devices

are able to act as both reader and tag which enables Peer-to-Peer (P2P) communication on

NFC, a feature that made it a popular choice for secure communications such as contactless

payment.

The existence of open standards allows the creation of interoperable solutions for the IoT.

But the IoT market is not constituted only by open standards, and there are at least two other

solutions for wireless communication already with a considerable share in this market, ANT

and Z-Wave, and will thus be included in the comparison table. Similarly, EnOcean wireless

technology also provides wireless communication between devices, and has the big advantage

of being self-powered. However, these are all proprietary solutions. Nonetheless, and despite

not being discussed in this state of the art, they will be included in the comparison table.

Considering this comparison, it is possible to conclude that most of the wireless technolo-

gies included can be suitable for different situations. Thread and Wi-Fi HaLow are still not

fully available and thus, despite their potential, cannot be used in any situation for now.

NFC and RFID target a specific market where data transfers are made only between two

devices. While NFC is considered an evolution of RFID, they are still both quite adopted in

the market. RFID is suitable for situations where higher range is necessary, whereas NFC is

mostly used for low range and secure operations such as data transfer between smartphones

or credit card payments.

Regarding to the WSANs domain, proprietary solutions such as Z-Wave, ANT+ and

EnOcean, provide mesh networks and have acceptable ranges and data rates, with exceptional

battery life (infinite in the case of EnOcean). Yet, their price and lack of interoperability

might turn them into undesirable options.

On the other hand, both ZigBee IP and BLE are suitable technologies for WSANs, such

as for building automation, which is the target scenario of this dissertation work. In fact,

ZigBee is already used in several sensor nodes in similar situations, while BLE is generally
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Topologies Frequencies
Max Data

Rates
Max

Range
Battery

Life
IP

Support

ZigBee IP
Mesh
Star
Tree

2.4 GHz
915/868 MHz

250 Kbps 200 m Years Yes

BLE (4.2)
P2P
Star

2.4 GHz
2.1 Mbps

800 Kbps(LE)
100 m

Months
to Years

Yes

Wi-Fi
HaLow

Star
Tree

900 MHz 150 Kbps 1000 m - Yes

Thread
Mesh
Star

2.4 GHz 250 Kbps 200 m
Months
to Years

Yes

Z-Wave
Plus

Mesh 908.42 MHz 100 Kbps 150 m Years Yes

ANT+
Mesh
Star

2.4 GHz 20 Kbps 10 m Years No

EnOcean
Mesh
P2P

868 MHz
902 MHz
928 MHz

125 Kbps 300 m N/A No

RFID One Way
125 MHz

13.56 MHz
915 MHz

100 Kbps

100 m
(Active TAG)

25 m
(Passive TAG)

Years
(Active TAG)

No

NFC P2P 13.56 MHz 424 Kbps 20 cm N/A No

Table 2.2: Wireless technologies comparison

used in electronic gadgets such wearables. However, Bluetooth Smart has been evolving, and

in its latest version has support for simple mesh networks and IPv6, while achieving extreme

power savings and offering relatively higher data rates in comparison to its competitors. Hence,

an interest in using BLE in constrained sensor nodes (and thus in WSANs) has emerged, and

was selected for the SmartLighting as well.

2.4.4 protocols

Internet of Things as described before, is a scenario in which “Things”, are connected to

the Internet. In order to do that, and to be able to communicate with existing devices, they

must communicate using the existing Internet protocols. However, most of the IoT objects

are very constrained in their resources, such as memory and processing capacity, compared to

the existing connected devices such as our smartphones and personal computers.

So, new and lightweight protocols are needed in order for constrained devices to be able

to connect to the existing Internet, but adhering to the existing Internet Protocol Suite,

presented on table 2.3, maintained by the IETF.

Since IoT devices seek different goals and, as stated before, have different capabilities,

they also have different requirements. Then, their protocols must, mainly, support various

connections, secure the information exchanged and be scalable. IoT protocols will be discussed

28



OSI Layers DARPA Layers Protocol
Application

Application
HTTP, FTP, SMTP, DNS
RIP, SNMP, SIP, SSH, ...

Presentation
Session

Transport Transport TCP and UDP
Network Internet IP (IPv4 and IPv6), ICMP, ARP, ...

Data Link Network
Interface

Ethernet, 802.11 Wi-Fi,
Frame Relay, ATM, ...Physical

Table 2.3: Internet Protocol Suite

in the following subsections, with the last one (subsection 2.4.4.5) comparing the protocols

discussed, by summarizing their main aspects into a table.

2.4.4.1 mqtt

Message Queue Telemetry Transport (MQTT) is a lightweight messaging protocol, that

follows a publish/subscribe model, and whose simplicity makes it suitable for constrained

devices. It can work well on low bandwidth and high latency networks, and a single broker is

able to support thousands of devices.

The publish/subscribe model is a message pattern where each device, instead of exchanging

messages directly with another one, uses an intermediate server (the broker) to deliver the

messages for it. In this model, every node is a client, and every client can publish messages

on, or subscribe to, a topic. A topic is a hierarchical structured string, that can be used for

Figure 2.12: MQTT Publish/Subscribe model [64].
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routing and/or filtering messages by the broker. This way, it is the broker’s responsibility to

distribute each message it receives to other clients, based on their topic subscriptions. Figure

2.12 helps conceptualizing this model, showing an example where two clients subscribe a

common topic for receiving temperature information from a sensor.

Regarding security, although its specification does not provide any security at the trans-

port level (despite some implementations [64] providing Secure Sockets Layer (SSL)/TLS

encryption), it allows the authentication of packets using an username or password.

In relation to clients and its messages, some interesting options are available. One of them

is the QoS, which allows setting higher levels of effort for the server to deliver the message,

ensuring the message is delivered. The Retained Message option, enables the server to keep

a message retained on server, for delivering on new client subscriptions. There is also the

Clean Session flag, which sets the server to keep the client state (subscriptions and messages

with high QoS), so every time the client disconnects, it can reconnect without losing its

subscriptions and most important messages. To finish, there is the Wills option, which enables

adding a message to be sent by the server to specific topics, when the client disconnects [65].

The not so good in MQTT, is the use of TCP protocol, which was designed for devices

with decent processing resources and memory, where keeping a connection open all the time

is not a problem. However, this is considered heavy for constrained devices, causing a higher

energy use and thus, reducing their battery life.

Additionally, there is also the fact that the broker can be seen as a single point of failure,

as all nodes require a connection to it. While this point of failure issue can be easily solved

with the use of a load balancer and a cluster of MQTT nodes [66], addressing the TCP

drawback is a harder task. Here, MQTT for Sensors Nodes (MQTT-SN) can be used, which

allows the use of UDP with MQTT.

MQTT-SN is a protocol for constrained devices, as well as a variant of the MQTT. It

is a rebuild of MQTT in order to address issues concerning to constrained devices, such as

lossy networks, sleepy devices, low power devices and low bandwidth. It allows the use of

UDP (although not limited to it) as the transport protocol, resulting in a more lightweight

communication by removing the TCP handshakes and the need for a constant connection

[67]. In addition to resolving the issues already stated, concerning to constrained devices,

there is another advantage, which is the fact the it uses a topic ID instead of a long topic

string that each MQTT client has to send on every message, resulting in smaller message

sizes. However, clients using MQTT-SN protocol still need to connect through a gateway,

which makes a bridge between the MQTT-SN packets and MQTT ones, which may also be

seen as a drawback by adding more points of failure.

To summarize, MQTT is an open protocol suitable for the Internet of Things that offers

an extraordinary performance [68] and various features, while working at minimum bandwidth,

supporting real push notifications and near real time communication.
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2.4.4.2 coap

Having in mind the continuous growing of the IoT, and how important it has become,

IETF defined Constrained Application Protocol (CoAP) [69]. In contrast to MQTT, which

being a publish/subscribe protocol supports all kinds of relationships in the devices interaction,

CoAP is an application layer protocol that follows a client/server model, which defines one-to-

one relationships. Nonetheless, broadcast and multicast addresses are also supported, though

with some limitations, by CoAP.

CoAP was designed to support Internet of Things from the beginning, by particularly

targeting constrained devices. Therefore, it uses UDP as the transport protocol, mainly to

take advantage of its connectionless and efficient communication. Here, each packet is sent

individually without any handshaking, congestion control or any other mechanism present

on TCP protocol. In addition, the non-existing or little fragmentation due to the small fixed

header (4 bytes) and compact encodings specified on CoAP, makes it possible for devices to

save power by waking-up faster and remaining more time in a sleepy state, since they take

less time to exchange information.

CoAP can be seen as the well-known Hypertext Transfer Protocol (HTTP) but for

constrained devices of the Internet of Things. In fact, it is also a document transfer protocol,

and it is based on the Representational State Transfer (REST) model, where servers provide

resources that are accessible by clients using the GET, POST, PUT and DELETE methods.

Additionally, since both protocols share the REST model, they can be connected simply using

application-agnostic cross-protocol proxies [69], giving a totally interoperable and transparent

network as shown in figure 2.13.

CoAP also presents other interesting features such as resource discovery, in which servers

provide a list of their resources so the clients can discover them, and the observe flag, that

can be set on a GET request in order to inform server to keep replying on resource state

Figure 2.13: IoT with HTTP and CoAP
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changes. This is actually analogous to the subscribe operation from MQTT, where instead of

subscribing a topic, a device can observe a Uniform Resource Locator (URL). Indeed, it is

possible to have a similar publish/subscribe model on CoAP, and actually a draft was already

submitted [70].

Because IoT devices will be connected to the Internet, and because they might carry

important and private information, they will consequently become a target of exploitation

just like any other device we use nowadays. Hence, CoAP allows securing that information

using DTLS, which basically provide similar security to UDP as TLS provides for TCP.

In short, CoAP is a lightweight protocol built for the Internet of Things that provides an

excellent performance [68], and minimizes the power usage on constrained devices, which is

very important for the growing IoT market.

2.4.4.3 xmpp

While not conceived for the Internet of Things, the Extensible Messaging and Presence

Protocol (XMPP) [71] is a message-oriented protocol developed for Instant Messaging (IM),

that is quite adopted on IoT. Initially named “Jabber”, XMPP sought to approach not only

near real-time IM, but also presence information and contact lists.

While running over TCP protocol, XMPP has some key features to offer to the IoT world,

such as a simple email like addressing scheme e.g. username@example.com/mobile, both

publish/subscribe and request/response models, security and authentication. Additionally, its

decentralized nature, in the sense that anyone can have its own server, ensures high scalability.

Another major advantage of XMPP, is its extensibility. With its eXtensible Markup

Language (XML)-based approach, high flexibility is allowed for creating multiple extensions

to the protocol.

In contrast, despite this XML-based messages allowing high extensibility, they are text

based and thus cause an higher communication overhead. Nonetheless, this is already being

addressed, and should soon be solved by the Efficient XML Interchange (EXI), which is an

efficient way to compress XML documents and fragments [72].

Briefly, although not designed for the Internet of Things, the high XMPP extensibility

allows it to be easily adapted for new applications, and recent work have been making it

suited to run in constrained devices, enabling it to join the IoT protocols suite.

2.4.4.4 amqp

The high efficiency of a protocol is also attention worthy, and although a considerable

amount of applications on the Internet of Things do not require reliable communications or a
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guaranty that a message was delivered, others do. For instance, in an application where a

temperature sensor periodically reports its current value, the loss of one read is not really an

issue. First, because another will be sent again shortly, and second, the probability of that

lost value having a significant variation is low. However, in an health care application for

example, the delivery assurance of an emergency message is crucial. This is where Advanced

Message Queuing Protocol (AMQP) [73] comes up on the IoT.

AMQP is an open standard protocol, with a publish/subscribe model, designed to support

message-oriented environments efficiently. It offers a reliable communication with message

delivery primitives, in order to ensure each message arrives its destiny even if a failure or a

reboot occurs. AMQP broker is mainly composed by exchanges and queues, as shown in figure

2.14, where an exchange is responsible for routing messages into queues according to predefined

rules and conditions. A queue, is where messages are stored before being consumed by an

application. The broker has one queue per consumer, which is deleted when the connection

closes, and will survive even the broker restarts, ensuring there are no lost messages.

Figure 2.14: Publish/subscribe mechanism of AMQP [74]

Also, AMQP features high interoperability since it is a programmable protocol in the

sense that its entities and routing schemes are defined by the applications themselves and not

by a broker administrator. Plus, it is also very extensible and flexible by supporting custom

exchange types, additional attributes on the queues such as a message Time To Live (TTL)

per queue, and broker additional extensions and plugins.

Regarding security, the protocol uses TCP for a reliable transport of messages, allowing

the use of SSL/TLS to secure all the information exchanged.

Summarizing, AMQP is an efficient protocol with special focus on not losing messages,

able to process thousands of queued transactions per second. It can be seen as a more advanced

version of MQTT, making a better and efficient use of resources and is thus quite adopted in

the IoT, especially when security, efficiency, reliability and performance in delivering messages

is needed.
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2.4.4.5 protocols comparison

This section aims to show a comparison of the protocols discussed, with their main aspects

summed up in table 2.4. This is followed by a brief on which situations each of them is more

suitable.

MQTT CoAP XMPP AMQP
Publish/Subscribe Yes Yes* Yes Yes
Request/Response No Yes Yes No

Transport
TCP

(UDP on MQTT-SN)
UDP TCP TCP

Security
Username/Password

Authentication
SSL

DTLS TLS and SASL TLS and SASL

QoS Yes Yes No Yes
Dynamic Discovery No Yes Yes No
Encoding Binary Binary Plaintext Binary
6LoWPAN Yes Yes No Yes
Real time No No Near Real Time No

Table 2.4: IoT Protocols comparison.

XMPP is a powerful protocol offering extended security and a near real time service, with

the ability to use both publish/subscribe and request/response models. However, it is still not

suitable for constrained devices due to its text based messages which cause a communication

overhead. Yet, as already stated in its section, EXI format is already proposed [72], aiming to

compress both XML documents and fragments in order to be used in resource constrained

networks, such as in 6LoWPAN.

Regarding CoAP, it is basically for constrained devices, what HTTP is for regular ones.

Despite supporting a publish/subscribe model (using the observe flag), it is primarily a

request/response protocols and thus is more suitable for state transfer models.

MQTT and AMQP are both efficient message queuing protocols, following a publish/sub-

scribe model, making them both suitable for event based situations. MQTT is simpler and its

clients are easier to implement. It is suited for applications where simple clients communicate

through a local and trusted network. However, when both security and reliability of message

delivering is needed, as well as increased performance is needed at the broker, AMQP can be

an asset.

2.5 automation logic

The application logic components are the central unit in any automation system. They

are responsible for every action that is sent to the environment to be automated. They operate
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by receiving all the events from the environment, and generate actions accordingly. An event,

can be any change detected in the environment, such as a movement, a change in temperature,

a smartphone connection or even simply a phone ringing.

When the environment to be automated is relatively small, such as in a vehicle equipped

with sensors and actuators, a low number of events will be generated and thus the application

logic can be achieved using usual techniques with typical platforms. On the other hand, when

the target environment has a considerable size, such as in a building, a huge number of events

can be generated, and in this case a regular application will not be able to process all of them

efficiently.

This calls for platforms that are able to process large streams of events in the minimum

amount of time. Those will be addressed in the section 2.5.1. Additionally, implementing

efficient automation logic on these high performance platforms might be a difficult task, where

the use of efficient methods for event processing can be an asset. Section 2.5.2 introduces an

efficient approach on this matter.

2.5.1 high performance and real time platforms

High performance and/or Real-Time Computing (RTC) platforms are combinations of

software and hardware, that aim to give the highest performance and thus the minimum

response times to applications. They normally take advantage of distributed computing, which

consists on software capable of dividing a task into several and distribute them for multiple

nodes. Each node is then responsible for processing its part of the task and by communicating

and coordinating with the other nodes, they all contribute to achieve a common goal. This

enables to process data in parallel, allowing to achieve the minimum processing time.

Regarding processing methods, there are generally two to be adopted: batch processing

and stream processing. Batch processing is the process of collecting high volume data at once,

process it and produce results. This processing type is mostly concerned about the produced

results than the latency. In fact, it could take minutes, hours or even days to process. Batch

processing can be useful in big data applications where processing time is not an issue such as

analysis of operational, historical, or archived data.

On the other hand, stream processing tries to achieve the minimum processing time,

providing real time or near real time processing. The data is collected from continuous streams

of data and each data element is immediately processed in order to produce results as fast as

possible.

Additionally, some systems try to deliver stream processing by offering micro-batch

processing, where the approach is the same as in batch processing but for much smaller data

batches coming from small time windows.

35



This section aims to let know the current solutions for high performance and real time

processing, by briefly describing the most adopted open-source platforms at this field and, at

the end, also briefly refer the most known commercial solutions.

2.5.1.1 apache projects

Apache Software Foundation (AFS) [75] has several open-source frameworks in this field.

Apache Hadoop [76], an open-source distributed processing framework, was the first earning a

reputation as a big data analytics engine. With its first version released in 2006, Hadoop uses

batch processing to process large datasets across computer clusters, offering fault tolerance

and good scalability, from a single node to thousands, each of them providing local storage

and computing capabilities. It can even be used on low cost clusters with nodes having lower

memory and processing capabilities, such as Raspberry Pi computers [77], where although the

performance is, as expected, lower than in a cluster that uses traditional computers, it can

still provide a high performance system with a variety of uses.

Hadoop is primarily composed by Hadoop Common, which provide a set of utilities to

support other modules, Hadoop Distributed File System (HDFS) that offers a distributed

file-system with high-throughput access, Hadoop Yet Another Resource Negotiator (YARN)

which is the framework responsible for managing the cluster’s resources and schedule its tasks,

and finally, Hadoop MapReduce that consists on Hadoop’s implementation of MapReduce

[78] for parallel processing of large scale data [76].

Apache Spark [79], is another a framework for performing general data analytics on

distributed computing cluster like Hadoop. However, Spark handles most of its operations in

memory which allows it to be much faster. In fact, it claims to run up to 100 times faster

than Hadoop [79]. Spark started as a research project at the University of California at

Berkeley’s AMPLab [80] in 2010, and was later moved to Apache, in 2013. One year later, it

was announced by AFS as a Top-Level project [81].

Spark can run on top of Hadoop’s YARN, also taking advantage of its HDFS from where

Figure 2.15: Spark Streaming diagram [79].
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Spark can read data directly. It has support for multiple data sources such as Cassandra and

HBase, and includes some interesting libraries such as MLib for machine learning, SQL for

working with structured data, and GraphX for making graph-parallel computations [79].

One of the most relevant libraries is Spark Streaming, whose high level diagram is

presented in figure 2.15. It is the Spark’s attempt to provide stream processing for real time

scenarios, providing high-level functions such as operating over a sliding window of data

(windowing) and aggregating data. However, since it is done using micro-batch processing as

shown in figure 2.16, data is not immediately processed when arrives, and thus provides at

most near real time processing.

Figure 2.16: Spark Streaming batch processing [79].

In parallel with Spark development, there was another project that also achieved an

Apache Top-Level status in 2014 [82], Apache Storm [83]. Storm is an open-source real time

distributed computing framework, that basically does for real time what Hadoop does for

batch processing, being able to process up to one million messages per second and per node

[83]. As shown in figure 2.17, it is able to process events immediately when they arrive

(stream processing), providing sub-second latency, and other interesting features such as fault

tolerance, reliable data processing, and the fact that any programming language can be used

with it, which is enabled by Apache Thrift [84].

Figure 2.17: Apache Storm real time processing [85].
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Moreover, Storm provides Trident which is an high-level micro-batching system similar to

Spark Streaming, that provides higher level operations like windowing, aggregations or state

management.

It is better suitable than Hadoop and Spark for applications that require minimal

processing times, by using stream processing instead of batch processing which has its

limitations on real time scenarios.

With the continuous growing of the Internet, the amount of data generated also grows

brutally. This called for even better performance on big data processing. LinkedIn, which

started using Apache Hadoop to process their large datasets, started noticing the batch

processing limitations of Hadoop, and resolved to create their own proprietary framework for

continuous processing of data, Apache Samza [86]. Samza was later open-sourced by LinkedIn

in 2013 [87], and also became a Top-Level project in 2015 [88]. Like Apache Storm, Samza

sought to build a lightweight framework for making stream processing, so it could have real

time responses, in the order of sub-seconds. It was made to process feeds of messages, and

like Storm, is able to process up to one million messages per second.

Additionally, by taking advantage of the Hadoop’s YARN, it is able to provide fault

tolerance, processor isolation, security, and resource management [86].

Another framework in this category is Apache Flink [89]. It started as Stratosphere

project with its first publication in 2009 [90], and has evolved to an Apache Top-Level project

in 2015 [91], and although not much adopted yet, it offers both batch and stream processing,

with the ability to use the same algorithms in both modes. Flink implements its own memory

management in order to reduce the garbage collection overhead, which allows it to provide an

higher throughput than Storm, providing not only the same features such as fault tolerance and

scalability (using YARN), but also libraries and Application Programming Interfaces (APIs)

for graph processing, machine learning and CEP [89].

Finally, another Apache project that has very recently evolved to an Apache Top-Level

project [92], and is probably the most promising one, is Apache Apex [93]. It was a commercial

product of DataTorrent, the DataTorrent Real-Time Streaming (RTS), but is now an open

source Apache project since 2015 [94].

Apache Apex is a unified big data stream and batch processing platform. It is able to

process large scale data, with low latency and a high throughput. It also runs on top of

Hadoop’s YARN, inheriting most of its features, such as fault tolerance, processor isolation,

security, and resources management. In addition, it provides a pipeline processing architecture,

which allows it to be faster than the other platforms.

In summary, AFS has several open-source projects to address high performance and

real time computing, being the most common the Apache Storm and Apache Spark for,

respectively, stream processing and batch processing. However, Apache Apex is almost the
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merging of the two, providing both stream and batch processing but outperforming both,

which will most likely make it a better choice for big data and real time applications in the

future.

2.5.1.2 ebay pulsar

With the continuous growth of online shopping, consumer expectations have also increased

and thus they require a fast a reliable service, that is able to respond to them in real time. In

order to achieve this, Ebay presented an open-source real time analytics platform and stream

processing framework, Pulsar [95]. Pulsar was designed to address real time applications

such as fraud detection and business activity monitoring, being able to process hundreds of

thousands of events per second and thus rapidly react to user activities. It is scalable, offers

sub-second latency and a high availability, without downtime even on software upgrades [96].

Figure 2.18: Pulsar deployment architecture [96].

Pulsar’s processing logic is declared in Structured Query Language (SQL), and deployed

in several nodes as shown in figure 2.18. Each node is called a CEP cell and may be located at

different data centers. The architecture for each cell is formed by a main processor endowed

with an inbound channel from where the events arrive to be processed, and an outbound

channel for delivering the processed data.

To finish, Pulsar provides a high performance platform, with several qualities such as

scalability, sub-second latency and flexibility, with the ability of being deployed in cloud

infrastructures across data centers.
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2.5.1.3 twitter heron

Apache Storm was used by Twitter for several years for analysing the millions of events

they get every day. In fact, it was Twitter who acquired and later open-sourced Storm under

an apache license [97]. However, just like Ebay, with the increasing number of users and

events every day, they needed better performance, which led them to introduce Heron [98].

Figure 2.19: Heron topology example [98].

Heron, presented by Twitter in 2015, is a real-time analytics platform that offers architec-

tural improvements and thus better performance over Storm. It is able to process billions of

events per minute, with sub-second latency and has the advantage of having a fully compatible

API with Storm. In fact, Heron was designed to be the successor of Apache Storm with the

main goal of overcoming its performance and efficiency, by solving its limitations. To achieve

this, besides providing a better management and isolation of processes, Heron implements

additional mechanisms to improve its efficiency and reliability, such as a back-pressure mecha-

nism which allows topologies to automatically adjust themselves in case of their components

start lagging, thus avoiding tuple drops. A topology is, as in Storm, a directed acyclic graph

used to process streams of data, which is divided in spouts and bolts as shown in the example

of figure 2.19. Spouts are the entities responsible for spawning the tuples across bolts, which

are responsible for processing them.

Compared with Storm, it can provide up to 14 times improvements in throughput and 10

times reductions in latency [99]. Additionally, Heron was recently open-sourced [100] under

an Apache license, which makes it an even better choice for real time applications. However,

it is still in a beta stage and thus not ready for production.

2.5.1.4 enterprise solutions

Given the fact that both big data and IoT concepts have been evolving in the latest

years, naturally many commercial products start emerging. One that was already referred
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in subsection 2.5.1.1, was DataTorrent RTS, which although being open-sourced in 2015, its

development is kept active, adding features over Apache Apex, which is stated as its core.

Other solutions, mainly targeting streaming analytics, are Apama from Software AG,

Infosphere Streams from IBM, Connected Streaming Analytics from Cisco and Azure Stream

Analytics from Microsoft.

Regarding business rules and events, Operational Decision Management (ODM) from

IBM and BusinessEvents from TIBCO are the most known commercial platforms.

However, these are all proprietary solutions and thus will not be discussed in this chapter,

mostly because open-source solutions tend to have higher levels of adoption in the market

as they generally provide software not only with more quality, but more secure, flexible,

interoperable and customizable.

2.5.2 complex event processing (cep)

When processing large streams of events, some of them might be insignificant, either by

being isolated either by the lack of other events or conditions. Therefore, only when a set of

events along with certain conditions are matched, an action might be required. These are

complex events, where a “Complex Event is an event that could only happen if lots of other

events happened” [101].

CEP is the process of analysing large streams of information from multiple sources and, by

detecting patterns and identifying meaningful complex events, quickly infer a conclusion from

them and possibly generate an action. It can be very useful in a large variety of applications,

by allowing to predict situations and thus avoiding issues or seizing opportunities.

While CEP emerged on financial industry, mainly for recognition of profitable transactions,

it is now used in a lot more industries, essentially in real time and big data applications, such

as trading and data analytics. Credit card companies, for instance, can use CEP for better

managing frauds, by shutting off credit cards when a fraud pattern is detected, and before

there are significant losses.

As an example where CEP can be applied, consider the following atomic events, along

with figure 2.20 to illustrate them:

• A car is being driven on the road.

• The car has bald tires.

• The car’s driver is sending a text message from his phone.

• It is raining.
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Figure 2.20: CEP Scenario

• Semaphore is showing red light for transit, and green light for the crosswalk.

• A person is walking into the crosswalk direction.

From this scenario, some complex events can be observed. First, from the fact that the

car has bald tires along with that fact that it is raining, we can conclude the car would slip

on a sudden braking. Then, since the person is walking in the crosswalk direction, and the

semaphore is showing green light on it, we can deduct the person intends to cross the road.

Finally, considering that the driver is sending a text message and thus is not paying complete

attention to its driving, in addition to the fact that semaphore light for the transit is red,

we conclude that he will end up making a sudden stop. Considering all this complex events

we can predict the car will hit the person, something we can avoid if all this complex events

could be processed in almost real time.

Of course this is a very simple example, a CEP system is able to analyse much more

complex scenarios with huge amounts of data from countless sources. Essentially, a CEP

system, or a CEP component of a system, provides a set of tools that allows for instance

filtering incoming data, storing windows of event data, computing aggregations of these event

data, and detect patterns or sequences on the acquired data. This means that any platform

that offers these capabilities, is actually considered a CEP platform.

In order to use these tools, most CEP systems follow one of two approaches: rule-based or

query-based. Query-based systems allow to consume event streams, taking advantage of the

CEP tools, using a query language, typically similar to SQL. On the other hand, rule-based

systems, which generally adopt Event Condition Action (ECA) rule semantics, divide a rule

in three main components: event, condition and action. The event component defines or

describes the event that triggers the rule, while the condition part is where a conditional

expression is evaluated resulting in a boolean value. Finally, the action component, is the

action to be triggered if the condition results in a true value.
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With the rapid evolving of the Internet of Things, which brings huge quantities of data

and events to the Internet, CEP has also gained a lot of attention, and there is already a

large variety of both commercial and open-source platforms available that support it. Section

2.5.3 aims to present some of them.

2.5.3 cep systems

Several CEP enabled platforms have emerged over the years and there are now plenty of

them available. In fact, most of the real time platforms discussed in subsection 2.5.1.1 support

or provide libraries to support it. That is the case of Apache Flink with its native FlinkCEP

library and Ebay’s Pulsar through Esper integration, a software that will be introduced below.

Regarding enterprise solutions, there are several providing Complex Event Processing such

as DataTorrent RTS, Apama from Software AG, IBM Infosphere Streams, Microsoft Stream

Insight, StreamBase from TIBCO and Oracle Complex Event Processing.

Moreover, there is also open-source software specifically designed to address Complex

Event Processing, which will be referred in the subsections bellow.

2.5.3.1 esper

Esper [102], developed by EsperTech, is an open-source java-based software built to

provide all the tools required for Complex Event Processing. With its first version launched

in 2006, Esper is a processing engine capable of analysing real time streams of events, by

performing continuous queries, and provides an high throughput and low latency.

Esper provides the CEP required tools and functions for dealing with large volumes of

event data, such as aggregate functions, patterns matching, events windowing and events

joining. All these functions are accessible through Event Processing Language (epl), its own

Domain Specific Language (DSL), which is an SQL-like declarative language. As an example,

consider the following query:

select feed, avg(cnt) as avgCnt, cnt as feedCnt

from TicksPerSecond.win:time(10 seconds)

group by feed

having cnt < avg(cnt) * 0.75

Snippet 1: Esper query example.

Considering that “TicksPerSecond” is a stream that contains the number of ticks per

second in an example data feed, this simple query is able to look over all the records present
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in it in the last 10 seconds, and select the feeds whose ticks per second is below 75% of the

average in those 10 seconds.

While Esper is able to run in single mode and in a single machine, it can also be

integrated in other platforms such as Apache’s Storm or Spark Streaming and thus achieve

better performance. Since it is a Java application, it supports multi platforms. In addition, it

is not limited to Java, and provides a C# version for running in the .NET framework.

EsperTech also provides an enterprise version of Esper, offering additional features, such

as richer debuggers, REST-style Web services, multi-window Graphical User Interface (GUI)

and push services.

2.5.3.2 drools fusion

Drools [103] is a Business Rules Management System (BRMS) solution provided by Red

Hat. It is an open-source software built in Java, that uses rule-based approach and provides a

collection of tools that enables the separation of logic and data in business processes, where

data resides on domain objects and all the logic in rule files. A simple rule consists as follows:

rule "HelloWorld"

when

message: Message (type == ’Hello’)

then

message.printMessage();

end

Snippet 2: Drools rule example.

This rule is triggered when drools receives an instance of the “message” class with its

variable “type” set to “Hello”. This triggers the rule’s action which is the execution of the

“printMessage()” method.

Furthermore, Drools also provides decision tables, allowing to separate the rule’s data

from the rule itself. The rule resides in a template with defined variables, while the values for

that variables resides in a decision table. In addition, it is possible to have decision tables

defined in a spreadsheet, allowing the use of known spreadsheet software such as Microsoft

Excel, OpenOffice.org or Libreoffice.

This does not yet describe Drools as a CEP enabled platform. For that, the CEP high-

level tools must be provided. That is where Drools Fusion gets into the picture. It is the

module responsible for adding complex event processing capabilities into Drools, such as

sliding windows and temporal operators.
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2.5.3.3 siddhi and wso2 cep

Siddhi is an open-source query-based CEP engine. It started as a research project at

University of Moratuwa, Sri Lanka [104], and is now being improved by WSO2 Inc.

One of Siddhi’s assets, is the fact it is really lightweight, being its minimum requirements

a Pentium processor clocking at 800MHz or equivalent, with a minimum of 500 megabytes of

memory. Like Esper, it can run in single mode or can be integrated with other platforms.

Currently it has support for multiple functions, like windowing, filtering, joining, aggre-

gating and pattern/sequence detection. It also allows the definition of event tables, enabling

Siddhi to work with stored events either in memory either in a Relational Database Manage-

ment System (RDMS). All of this is done using the Siddhi Query Language (QL), which is

similar to SQL.

As another feature, there is the fact that Siddhi can process events using other pro-

gramming languages (JavaScript, R and Scala), by defining functions. In fact, even custom

extensions can be written in Java by extending defined Siddhi interfaces, which makes it a

highly extensible platform.

As stated before, Siddhi is now being improved by WSO2. Using Siddhi as base, they

developed an even more complete CEP engine, WSO2 CEP [105]. It is also open-source and

offers a low latency and lightweight platform for real time event detection and correlation.

Besides improving Siddhi, what WSO2 also did was enrich it with multiple tools. WSO2

CEP provides a complete Web GUI interface not only for managing and monitoring every

Figure 2.21: WSO2 CEP High Level Architecture [105].
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aspect of the platform, but also to define all the Siddhi QL queries. It allows the creation of

nice dashboards for data visualization, as well as collecting statistics, monitor and visualize

operation metrics through the web interface.

Moreover, WSO2 CEP has support for multiple formats for data transport, namely

JavaScript Object Notation (JSON), XML, Text or Map, and also supports multiple ways of

receiving and publishing events (receivers and publishers) such as HTTP posts, Java Message

Service (JMS), Short Message Service (SMS), Simple Object Access Protocol (SOAP), REST,

e-mail and MQTT. Figure 2.21 shows its high level architecture diagram, where it is possible

to observe on the left the multiple receivers and available formats, which are then transformed

in event streams that can be queried by the Complex Event Processing, using Siddhi QL.

After queries are performed, several new events may be generated and are thus sent to their

different destinations through the publishers (on the right).

Figure 2.22: Distributed Mode - High Level Architecture [106].

Additionally, to achieve higher performance, it is also possible to run WSO2 CEP in

a distributed manner, using Apache Storm [106], as shown in figure 2.22. Here, multiple

instances of Siddhi engines can be spawned across a cluster of nodes, resulting a highly scalable

system. The event processing is done in multiple nodes called Siddhi bolts, which are managed

by the Siddhi spouts. Siddhi spouts are responsible for retrieving events from receivers and

partitioning them through the multiple Siddhi bolts. Finally, every Siddhi bolt passes its

events to the publisher bolts, which will then publish them using the publishers.
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chapter 3
Smart Environment solution

The goal of this chapter is to present a solution for providing intelligence to a building, through

smart automation, in order to improve the overall efficiency and usability. In this process

advantage is draw from IoT principles and deployment of an high-performance real-time

platform for analysing and processing large streams of data with complex correlations. The

implementation, targeted for a real world scenario integrated in the SmartLighting project,

will be presented in the following chapter.

Following this short introduction, the chapter ensues, in section 3.1, with a description of

the SmartLighting project, and its goal of developing an efficient lighting control system in

IT2 building.

To design such a solution, there are several aspects that must be considered in order to

ensure reliability. For that purpose, certain requirements must be laid out which identify the

necessary capabilities or qualities that the system must have to satisfy its stakeholders. These

will be addressed in the section 3.2, and some example use cases will be identified in section

3.3. Finally, in section 3.4, the system architecture is presented using a diagram, along with a

description of each component and the interactions between each other.
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3.1 smartlighting project

3.1.1 overview and objectives

The SmartLighting project’s purpose, is to replace the current lighting infrastructure of

IT2 building, which is currently based on CFL luminaires, with a new lighting infrastructure

equipped with a network of LED luminaires and sensors, capable of collecting environmental

data, such as temperature, luminance level, humidity and motion.

This new infrastructure will be backed up by an intelligent management system, able

to process all environmental data and react to it in real-time. Furthermore, the system will

also be able to analyse all the collected data and derive additional information, such as user

behaviour patterns and statistics on the building’s power usage.

Also, the system is designed to enable easy integration with other systems and applications,

allowing inclusion of additional features in order to provide its occupants with increased

comfort and enhanced usability.

An example of such extended features lies in the inclusion of external data sources

such as network traffic, that enable the identification of building’s occupants through their

smartphones. This would then allow the system to get and/or learn the user’s preferences,

and apply them accordingly. In particular, a management solution integrating both lighting

controls and HVAC systems, would be able to adjust the light intensity and the temperature

of the occupant’s office on arrival, or even turn his computer off when he leaves the building.

Another interesting source of data would be an external meteorological service. Weather

conditions and predictions could enable the system to take preventive actions. As an example,

the prediction of cold days could lead the system to change the HVAC profile to start heating

the rooms earlier. Also, when a wind storm is predicted, the system could open all the blinds

in order to avoid them being broken.

Additionally, interactions between the user and the system can be delivered, through

either a mobile Application (APP) or a web interface. It has the potential to not only provide

a user with a way of controlling his environment, but also to send him alerts or notifications

which may be either from the controlled environment or other linked systems. As an example,

the integration of a meeting scheduling system would enable the management platform to

notify each of the participants before the event, remembering them the actual time and

location of the room. Furthermore, such information may also be used to provide operational

warnings to building managers, informing them that the room was used and might need

cleaning services.

In fact, using the smartphone as an interface tool may enable a lot more features beyond

the control of the surrounding environment, e.g based on location information. First, the

smartphone itself can be used to validate the occupant’s identity in the security system when
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he enters the building. Then, it is possible to locate the occupant in the building, eventually

allowing other people to find him if he shares that information. This solution further enhances

the presence detection systems inside the the rooms, complementing the sensor data from

motion sensors. Furthermore, notifications may be triggered when the occupant arrives or

leaves the building. For instance, an occupant can request the system to notify him when

another occupant arrives.

3.1.2 stakeholders

The people involved in any project are a big dependency for its success, either by having

a direct influence in the project’s execution, or simply by being the users of its outcome. It is

crucial to identify the stakeholders and their expectations, in order to ensure that each of

them is motivated and/or pleased with the project, thus achieving the better results.

In the SmartLighting project, the involved parts are essentially 4, namely:

• Developers Team

• IT2 occupants

• Building owners

• Building management team

• Building systems maintenance team

IT2 occupants and its owners are the primary stakeholders, the first by being the ones

who will take advantage of the system’s features and usability, and the latter by taking direct

economic benefit from both the reduced energy consumption and the reduced maintenance

costs. The building management team will benefit mostly from easier processes derived

from the centralized control panels and dashboards that provide an overview of all systems.

Furthermore, the building systems maintenance team will benefit from the notifications and

alerts, that can also be sent to the management team, and ultimately allow faster detection of

issues and enable a quicker response, sometimes solving problems even before they appear

(e.g scheduled maintenance).

Finally, the developers team is fully committed and interested in creating a system that

is able to satisfy all the other stakeholders and thus make the project a success.
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3.1.3 use cases

In order to better understand the features offered by the management system, and its

interactions with users, some example use cases are presented in this section. These examples

cover the first contact the user has with the system and the system’s reactions to the presence

of the user inside the building, with and without direct user interaction.

User arrives at the building

The first situation to consider is when the user starts interacting with the system, which

occurs the moment he arrives at the building. Figure 3.1 shows the possible interactions for this

situation. Here, the first step is the user’s identification, which can be done automatically at

the moment the user’s smartphone connects to the building’s wireless network, if configured to

automatically do so. The user may also be identified using his regular ID card, or alternatively,

through the use of virtual cards, taking advantage of NFC technology, beacons or QR codes.

Figure 3.1: Use case diagram: User arrives at the building.

User enters the hallway

Following a typical scenario, the second use case occurs when the user enters the hallway

(figure 3.2). There, a screen presents generic information related to the building such as current

energy consumption, the number of persons inside and available meeting rooms. Additionally,

the system may also present personalized information, configured by the user, that can go

from a simple welcome message to notifications, eventually informing he is late for a meeting

and where that meeting is taking place. Here, the system can also start sending notifications

or messages to the user’s smartphone via the mobile APP. For instance, the user can receive

information of a more private nature, such as a message informing that another user would

like to speak to him.
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Figure 3.2: Use case diagram: User enters the hallway.

Since the user has entered the building, the system may also start, if necessary, to adjust

light intensity, mainly based on the background light levels or the detection of movement.

At this stage, user defined preferences may be loaded and trigger changes to either the user

surrounding space or to his destination, e.g his office. Here, the features available are strongly

dependent on the integrated systems. As an example, the user can have configured the system

to turn his personal desktop computer on when he arrives at building, or, in a more futuristic

space, start preparing his coffee.

A similar use case can also be defined when the user leaves the building. Instead of turning

on his settings, the system would perform actions, such as turning the personal computer to

an off or standby state, switching off his desk lamp or even closing the automated blind in his

office. Additionally, his state could be set to “Away” in the internal building user directory,

which could be visible to others. The main difference in this use case is the detection of the

user’s departure which besides the previously mentioned methods for login/logout, would also

include detection of absence through, e.g. long periods of inactivity.

User moves through the building

The third use case considers the movement of the user through the building, e.g. when

he is on his way to his office (figure 3.3). As he walks, the system continuously adjusts

the lighting in the space surrounding him, providing the necessary brightness whilst trying

to reduce energy consumption. Here, a feature typically known as “corridor function” is

applied. Based on the user location and the movement direction, the intensity of the nearest

luminaires is increased while those further away from him are kept at a lower level. As he

moves, the luminaires in his path start to brighten and those behind him begin to dim down,

and eventually shutting off after a given period of time with no activity.
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Figure 3.3: Use case diagram: User moves through the building.

The dynamic process of adjusting the luminaire’s output requires a decent method for

detecting the position of the user along with a fast response time of the automation and

management platform. As users are quite susceptible to variations in light levels, a proper

tuning of the brightening and dimming times and final brightness values is required, and may

be improved by learning typical usage conditions such as common destination, average speed,

etc.

User arrives at his desk

Finally, the user enters in his workroom and sits at his desk (figure 3.4). If he is the first

getting into the workroom, the system will start by lighting the room. Next, more specific

preferences are applied to the surrounding environment. These may include opening the

automated blinds, setting the HVAC level and adjusting the brightness level of his desk lamp,

or the luminaires closer to him, to a level that the user considers more comfortable.

Moreover, the user can keep interacting with the system, either using the web interface or

the mobile APP. He can adjust all his preferences and take control of all the building services

surrounding him or receive notifications, such as the missing paper in his workroom printer.

Figure 3.4: Use case diagram: User arrives at his desk.
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All this information can be filtered, for better usability, from the user position information.

As an example, a regular user should not be able to change the conditions of a room he is not

currently on.

It is also important to note that, a user might not be alone at his workplace, and thus

the system must consider preferences from multiple users. Here, the system shall consider

priorities based on user’s access level, and may only partially apply each user’s preferences or

combine them into an intermediate level.

To conclude, it is important to emphasize the low number of situations where an interaction

from the user is requested. Mostly, these consist of changing his preferences or interacting with

third-party applications, such as the example meeting room scheduling system. This reduced

interaction calls for a dynamic and “smart” decision making process from the management

system, which must control the automation systems, often based on complex and real-time

situations.

3.2 requirements

As stated, the proposed solution is being designed for a real-world scenario, integrated in

the SmartLighting project which was elaborated in section 3.1. Therefore, the requirements

in this section must also fulfil the project’s objectives defined in section 3.1.1.

Fast Responsiveness

One of the most important requirements to be satisfied in any BAS is fast responsiveness.

Even if not-critical for some functionalities, many others require sub-second delays. For

instance, if the system detects that the room temperature is below a certain threshold, and

takes some seconds to start the heating system, occupants will not even notice the delay as

the process itself may take several minutes. But if someone enters a room and the system

takes more than a second to turn on the lights, the occupant will certainly notice the delay,

and surely be unsatisfied with it.

Flexibility and Scalability

Other important requirements are the levels of flexibility and scalability. The system

must not only support easy integration of other applications, so that new functionalities

can be attached, but also effortlessly accommodate its growth, i.e. allow to easily add new

devices, either sensors or actuators, without difficult configurations or cumbersome processes.

Furthermore, as a consequence of adding a large number of new devices, scalability should

also be supported at the servers side. Independent of the number of added computing nodes

the highest performance levels and real-time responsiveness must be maintained.
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Failure Handling

A secondary requirement is failure handling. The system should be able to recover from

faults and, even when the whole management platform fails, minimum functionalities must be

maintained by some of the infrastructure systems. As an example, in case of management

platform failure the lighting system should default to a locally automated mode, or at least a

manual mode.

Basic Functionalities

A system that satisfies these requirements is, in fact, a good base for developing a BAS

solution. The functionalities and features built on top of it, are what creates an intelligent

and automated environment. Typically, a BAS must, at least, perform an automated control

of the lighting and HVAC systems, an therefore should also be addressed by this solution.

To make an efficient lighting control in any space, there are three main factors to take into

consideration: when, where and how much light is needed. The amount of light needed can be

easily obtained from the information provided by illuminance sensors. This is then processed

in order to calculate the adequate percentage of light output to be applied on luminaires.

It is the question of when and where to apply it, that tends to be more complex to resolve.

Although simple solutions can be achieved with simple motion detection information to infer

the presence of people, it is difficult to get precise data with low power sensors and at a low

deployment cost. Typically infrared motion sensors are used, which are the cheapest, but

unless combined with other more expensive types of sensors, such as microwave or ultrasonic

sensors, they tend to generate a lot of false positive detections, thus making them unreliable.

However, people nowadays are most of the time “connected” to the different wireless access

points of a building, either with their laptops or smartphones, or through the new trend of

wearables such as smartwatches. Information from the network can be fetched and combined

with access points positions, in order to detect the presence of building occupants. Similarly,

BLE beacons can also be used indoor with the same goal, where beacons associated with

rooms, can periodically send signals that occupant’s devices can receive and then report back

with their estimated location to a server.

Regarding the control of HVAC, it is typically easier to achieve due to the inherent slower

dynamic of temperature changes. It is only dependent on the information retrieved from

sensors, such as room temperature, humidity and sometimes gas sensors. Yet, it can also be

improved with the use of information gathered for the lighting system, because the number of

people in a room also has influence in the temperature and air quality.

Data Correlation

From the functionalities described so far, we can observe that correlation of information

from multiple sources is needed in order to make the different components of the system

more accurate. This is, in fact, another important requirement for the proposed solution and,
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actually a differentiating factor from others currently available in the market.

User Control

In line with the SmartLighting project, the system must also provide means for the

building’s occupants to manually control the equipment around them. However, to ensure only

authorised actions are performed, there needs to be in place a system component responsible

for managing users and access control.

User-friendly Interfaces

The solution under discussion in this chapter has the intent to provide a smart and

comfortable environment to the building’s occupants, and reduce the energy costs by efficiently

managing components either disabling them or putting them in a minimum state, when not

needed. However, and as a final requirement, the management and configuration platform

must also be user-friendly for the management team, since they usually are not endowed

with programming skills. Thus, they should be able to configure every automation rule and

manage the building’s virtual structure, i.e. the division of the building in floors, rooms and

areas in a human friendly and intuitive fashion.

3.3 user driven cases

Albeit there are several stakeholders in any BAS, there are mainly two actors for which

use cases can be specified, the building’s manager and its occupants/users. Although the

solution presented in this chapter aims to address all the requirements established in the

section above, more focus will be given to requirements like scalability and extensibility rather

than functionalities. In fact, the key feature of this solution is to provide an easy way for

adding new system behaviour rules, which can be used to extend functionalities even without

additional devices. By letting the building manager dynamically add new rules, a custom

behaviour can be implemented from already existing sensor information from multiple areas.

For instance, information from sensors in neighbouring areas could be used for adjusting

the on, off and delay times of luminaires. Therefore, there are countless use cases regarding

interaction of the management system with the automated environment. Thus, those defined

for SmartLighting project, in section 3.1.3, are considered as minimum requirement.

Building occupant

Regarding to the interaction of the user with the system, either through a mobile or a

web application, figure 3.5 shows the primary use cases to be approached in this solution

where, besides the common operations of login, logout and profile edit, we have five main use

cases, each doing the following:
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Figure 3.5: Use case diagram: interaction with building occupants.

• Get nearby devices: request the system a list of devices near the user. Here, in an

initial design, the user will get all the devices from the room he is in;

• Make change request: this is the process of requesting a change of state in a device. It

could be for instance a light, a group of lights or the air conditioner unit. The system

can deny the change, apply it fully or partially depending on the user’s access rights;

• Create/edit preferences: create or edit preferences device’s pre-sets, so they can be

applied automatically. Again, user’s access rights might not allow it;

• Create/edit personal rules: this is where the user can create his personal automation

rules. The platform should allow the integration of subsystems in order to provide

this kind of functionalities to the user. As an example, the user could add a rule to

turn his computer on when he enters the building, and turn it off when he leaves;

• Report user location: this is an automatic operation done only on the mobile APP.

If the Bluetooth is on, whenever the device gets a signal from a beacon, it sends a

message to the system with the beacon ID and the user ID, allowing the system to

know the user’s location.

Building manager

Building manager use cases, which can be found in figure 3.6, address the operations

related with the configuration of the system and the creation of rules. A description of the

use cases follows:
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Figure 3.6: Use case diagram: building manager interaction

• Create building structure elements: this is where the manager creates a virtual

representation of the building, where he can specify the buildings, floors, rooms and

areas inside each room;

• Organize devices: distribute the devices (sensors and actuators) by the areas of each

room;

• Create/edit rules: this is the process of creating automation rules to be applied in the

building;

• Enable/disable rules: allow the manager to enable or disable rules without deleting

them;

• Test rules: this is a special feature in which the manager can first test a rule in a

simulation environment before applying it in the building.

3.4 smart environment solution archi-

tecture

Having in mind the SmartLighting project’s requirements, the proposed architecture

fits with the intent of using IoT and CEP principles in order to achieve not only an energy

efficient solution, but also a smart, automated and comfortable workplace. This section aims
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to present the architecture, by specifying the different components that form it and describe

their goals and interactions.

3.4.1 overview

The architecture diagram presented in figure 3.7 shows the four different layers in which

this solution is divided.

Figure 3.7: Smart Environment: architecture diagram
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Services and Applications Layer

On top, the services and applications layer, is where both the building user and the

manager interact with the platform. The manager is able to administrate all the building’s

structure and automation rules through a web application. Here, a user-friendly interface

should be provided along with intuitive dashboards for easy monitoring. Regarding the typical

user, the building occupant, besides a web application that allows him to configure and

manage its personal preferences, also a mobile APP can be provided to change settings and

states of nearby devices. Additionally it may be used to provide his location to the system,

an information that can help detect presence in rooms but also support new features such

as “finding friends”. This layer also provides interfaces for other services such as additional

dashboards and analytical tools for alarmist, management and forensic analysis.

Field and Network Layers

Devices, that can sense and/or actuate, stay at the field layer, where all the interactions

with the environment are made. Sensors are responsible for collecting data and detecting

changes, and then push that information to the automation layer. The later may respond

with actions to be executed in order to change the monitored environment conditions through

the actuators. The devices communicate with the automation layer through gateways, which

are found at the network layer, and shall be responsible for inter-connecting the WSANs and

the aggregation and automation layer.

In order to ensure devices are trustworthy, and that only they are able to connect to the

platform, both the gateway and devices can implement a challenge-response authentication.

This enables the gateway to discover new devices automatically, and to only process authorized

devices.

Additionally, in this solution the network layer is also considered to be the basic automa-

tion layer. That is because gateways should also be endowed with lightweight processing

engines, which is a very important feature in failure handling. If the connection to the

complex automation layer fails, gateways must become responsible for providing minimum

functionalities. Considering this, gateways shall also be configured with basic automation

rules, since they are the closest processing engines to the WSANs and thus might provide

faster reactions. For instance, in corridors, the lights should turn on based only on motion

detection and illuminance readings from local sensors. Thus, if a rule for this is configured

at the gateway processing engine, faster responsiveness might be provided and even on a

platform failure, the lighting infrastructure would keep working without users noticing.

Aggregation and Automation layer

Regarding the prime part of the whole architecture, at the aggregation and automation

layer, it is divided in four main components that interact with each other to provide the

automation and intelligence to all the different building’s systems. The broker component,

59



refers to a message broker responsible for receiving, routing and delivering all the exchanged

information between the WSANs and the rest of the components. The use of a message broker

has several advantages. First, it becomes the central place from where all the information

passes and thus all other components can get information directly from it. Then, it avoids

additional burdens on other components regarding to the reception/delivery of messages

from/to multiple sources/destinations. In addition, they are an extensibility enabler, by

easily allowing new systems to connect to it for data retrieval. For instance, a data analytics

component could be easily added for statistics or machine learning purposes.

Still in the aggregation and automation layer, one of the most important components

is the CEP engine. The CEP engine must be a high performance and real-time platform

with support for CEP such as the ones discussed in chapter 2. This platform is responsible

for processing every event generated by sensors, and using complex event processing, infer

actions in real time. Here, an action is not necessarily an action on the environment using

actuators. It can also be an alert that can be pushed to another component or directly sent

to the building manager.

Although the CEP engine can run by itself, it is governed by rules that are usually too

complex for building managers. That is where the building management component gets into

the picture. Its purpose is to provide a user-friendly interface for the building manager to

create, edit or delete rules. Then, based on these rules it generates the complex code that

forms a rule to be applied on the CEP engine.

Additionally, it is also in this component that the user creates the virtual representation

of the building, and distributes the devices by areas in rooms. Thus, this component is also

responsible for providing the information about a device’s location, i.e. to what building,

floor, room and area it belongs, and configure the devices accordingly.

Finally, the user management is the platform responsible for managing all the system

user’s related functionalities. It provides both the web and the API interfaces through which

the users interact. On the internal side, it is responsible for sending the users locations to

the broker (so it can also be processed in the CEP engine), control field devices also through

the broker, and apply user defined rules either using the building management platform, or

directly in the CEP engine.

3.4.2 comparison with iot reference model

The given architecture is also able to fit in the IoT reference model, shown in figure 3.8.

The IoT reference model was introduced by Cisco in order to simplify and standardize IoT

systems and their connections. It provides a seven-levels architecture specifying the tasks

performed on each one of them, in order to achieve an high extensibility, scalability, simplicity

and supportability [107].
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Figure 3.8: IoT World Forum Reference Model [107].

The first level, Physical Devices and Controllers, is where the IoT devices (or “Things”)

are found, generating events and exchanging information with the upper levels, which is

analogous to the Field layer specified in the presented architecture. Similarly, the Connection

level of the IoT reference model can also be directly associated to the Network layer of the

present model, where switching and routing of events is performed in a reliable manner.

Regarding our core layer, Aggregation and Automation, it originally only addresses the

fifth level of the IoT model, Data Abstraction. This is where data is combined, transformed

and selected, by the CEP engine along with the building and user management components.

The third and fourth levels can also be included in this solution with the use of a more

complex platform replacing the broker. In fact, the next chapter presents the implementation

of the proposed solution where the broker used is taken from an existing platform, where

Edge Computing and Data Accumulation is done.

Finally, Application and Collaboration & Processes levels of the IoT Reference Model

can also be naturally associated to the Services and Applications layer of the presented

architecture, allowing the integration of new systems and services and thus the interaction

with people and business.

Summary

This section has presented a model that addresses all the specified requirements and

use cases, with a simple architecture capable of creating an abstraction layer between all

the complexity and both building occupants and the building’s manager. Additionally, the

architecture fits in the reference model for IoT provided by Cisco, which defines a standard
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way for development of systems for the IoT by describing each of the seven levels that form it,

along with the interactions between them.

The CEP engine is responsible for achieving the fast responsiveness of the system, while

providing means for correlating information in a complex manner, which is also an important

defined requirement.

Furthermore, to address the failure handling requirement, processing engines may be

used in the gateways, at the network layer, so the system is able to pursue its main function

even when the automation platform or the connection to it fails. This is allowed by using

gateways as local engines with the basic and time-critical functionalities, leaving the main

platform with the responsibility to perform more complex automation. Alternatively, such

behaviour may be triggered only when a failure is detected. Nonetheless, each device should

also be endowed with an automatic mode, for situations considering network failures with the

gateway.

The specified use cases for the building occupant user, in section 3.3, are carried by the

user management component of the aggregation and automation layer, where the user shall

be able to manage its preferences and rules, and manually control a device. The latter is

done by requesting the building management component (using its API) to put the device

in manual mode, and then directly send actions to the devices using the broker. Regarding

the building manager use cases specified in the same section, they are all approached by the

building management component which provides a simple web interface for that purpose.

There multiple tools exist in order to provide all the functionalities and features such as the

lighting and HVAC automation.

Furthermore, with the use of a central broker, and the provision of APIs for interaction

with the user and building management platforms, the presented solution promotes the

integration of new platforms that can access the sensors data and provide new features,

addressing the extensibility and scalability requirements.
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chapter 4
Smart Environment

Implementation

In chapter 3, the high-level architecture of a possible solution was presented, addressing all

the requirements for endowing any building with intelligent and efficient capabilities in order

to provide an automated environment and reduce energy wastage.

This chapter’s objective is to describe an implementation following this model, explaining

the steps taken and the reasoning behind each decision For this purpose diagrams and code

snippets will be used when pertinent. It starts by defining the objectives to be accomplished,

in section 4.1, and then referring the platforms and protocols adopted, in section 4.2. After

that, a description of how access to devices is done is presented in section 4.3. The diagram

of the whole implementation is shown in section 4.4, followed by an introduction to the main

concepts of WSO2 CEP in section 4.5. A detailed explanation of the core component of the

implementation, the building management, is given in section 4.6.

As previously stated, this implementation is intended to be applied in a real world

scenario, in line with the SmartLighting project. Within the same project, work from two

other dissertations from the Integrated Circuits group of IT are being developed, focusing the

creation of devices, particularly luminaires, equipped with sensors and actuators. A device

simulator was also developed to verify if the implementation behaves correctly. It is described

in section 4.7. Finally, as the physical devices connect to the platform using Bluetooth Low

Energy, a gateway was implemented, as described in section 4.8.
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4.1 objectives

Despite the fact that implementation of the whole solution, as presented in chapter

3, would be ideal to perform in depth validation, it would be unrealistic when considering

the amount of work it would require, and the available time. Thus, considering that this

implementation is targeted for a real scenario, at the IT2 building, a set of objectives were

defined in order to ensure the most relevant functionalities were present.

Considering this, the user management component defined in the architecture of the pre-

sented solution was left for future implementation, waiving features related to user interaction

with the system. In contrast, all the use cases defined for the manager interaction with the

system were implemented, in order to allow management of all the rules necessary to create a

smart and automated environment. The use of automation rules at the gateways was also

discarded from this dissertation at the initial implementation, despite this fact, the means to

do so are provided.

Extensibility, which was one of the most important requirements defined, was approached

in this implementation not only by allowing the integration of other platforms and services,

but also by enabling the addition of new tools and functions to the building management

platform. This allows to increase the number of options for customizing rules. Nonetheless,

basic functionality should be available from scratch, allowing at least the automation of the

lighting infrastructure.

4.2 adopted technologies

As shown in the architecture model adopted by this implementation, components like

a CEP engine and a message broker are both needed in order to provide complex and high

performance processing of events. Therefore, this section aims to state the chosen technologies

as well as explaining the reasons behind the decision process.

One of the main goals of the SmartLighting project is to take advantage of the Internet of

Things concept, and use low power constrained devices equipped with sensors and actuators.

Hence, the use of protocols adapted to this kind of devices is necessary. The most commonly

used protocols in the IoT were presented in chapter 2, where CoAP and MQTT are seen as

the most suitable for constrained devices.

Although they are both proven to be lightweight and offer high performance, MQTT was

chosen because of its publish/subscribe model, which brings more advantages to this kind of

applications. With this model, devices can subscribe multiple topics, allowing them not only

to subscribe their own topic, and receive events targeted individually at them, but also to

subscribe to more generic topics, enabling them to receive events sent to a group, such as their
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area, room or floor. Additionally, this implementation makes use an existent MQTT broker

on the Smart Cloud of Things (SCoT) platform, which is the work of another dissertation,

whose purpose is to integrate different data sources in one common platform [108].

Regarding the choice of a CEP engine, while it was shown in chapter 2 that one can be

built by combining a CEP system and a real-time platform, solutions as Drools (with Drools

Fusion) and WSO2 CEP already provide that combination. The later was chosen for three

main reasons. First, it is a full open-source solution that provides all of its features out of

the box, while the best of Drools is provided in an enterprise version by Red Hat, the JBoss

BRMS [109]. Second, Siddhi QL is very similar to SQL, which is a powerful and familiar

language. Finally, WSO2 CEP provide several ways for both receiving and publishing data,

including MQTT, SMS and e-mail, with these last two being interesting for notifications and

alerts.

Finally, to be referred that objects definitions from another dissertation’s work was also

implemented, creating a standardized way for both reading and writing information from/to

devices. This will be better explained later, along with the rest of the implementation.

4.3 access to devices

An intelligent and automated environment can only be achievable with the use of devices

able to detect changes in the environment (sensors) and trigger or control mechanisms that

are able to make changes in that same environment. Currently, there is a plethora of sensors

and actuators capable of measuring/acting-upon a diversity of variables. Thus, it should be

expected for new devices to be added, moved or removed in the future. With that in mind,

standard ways of accessing the devices as well as message formats should be defined in order

to support extensibility of the system.

4.3.1 objects definition

In line with another dissertation’s work, an object representation was implemented for this

platform, following the guidelines of the IP Smart Objects Alliance. This ensures a standard

way for reading and writing device’s properties. Objects are abstract representations of an

actuator or sensor type, containing a generic description and some additional information,

and each unique object is identified by the object ID. A device can have multiple objects,

which represent the different sensing and actuating capabilities it provides. For instance, a

device can have objects representing a luminaire actuator, a temperature sensor and a motion

sensor.
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Inside each object, the information is organized in resources. These represent either values

that can be read and/or write, e.g. a sensor configuration parameter or an actuator’s current

state, or actions that can be triggered remotely, such as the request to dim a luminaire’s output

brightness. Each resource of a given type is also identified by an ID number. Additionally, since

a device can contain multiple objects of the same type, as well as objects can contain multiple

resources of the same type, e.g. for creating arrays of values, both objects and resources

contain an instantiation number for being easily accessed. Figure 4.1 helps understand this

representation.

Figure 4.1: Device objects representation

The access to a device’s property is made, hence, through a path containing an object

ID, its instantiation number, and similarly, a resource ID with its instantiation number, in

the following manner:

.../Object_ID/Object_Instance/Resource_ID/Resource_Instance

As an example, a luminaire with a resource to turn it on or off, and another one for

controlling its dimming level, would have the representation shown in figure 4.2. This way,
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Figure 4.2: Luminaire object representation example

the access to the luminaire’s dimming level, either for reading or changing it, can be easily

done using, for instance, a Uniform Resource Identifier (URI) that contains both the IDs and

the instance numbers of the object and the resource, as follows:

.../1501/0/15012/0

Relating this structure to the MQTT protocol, where every message is sent by publishing

it in a specific topic of a broker, and received by every client who has subscribed to the same

topic, it makes sense to include the URI within this topic.

Additionally, MQTT has support for wildcards, which are specific characters that can

be used for replacing one or more levels of the topic’s multi-level hierarchy. This implies

subscribing simultaneously to more than one topic. For this purpose MQTT currently supports

two wildcards: + and #. #, which must be used as the final character of a subscription,

allows the access to all remaining levels of the hierarchy. For example, the following topic

may be used for subscribing to all events of a luminaire in a device. Note that 1501 is the ID

associated to a luminaire, as in the examples presented before.

.../1501/#

Similarly, the + wildcard can be used in a single level for matching all the topics where

the rest of the hierarchy exists, i.e the topic excluding the levels where the + is at. For

instance, to subscribe all the events of dimming levels in a luminaire, the following topic could

be used:

.../1501/+/15012/+

As a drawback, MQTT does not support wildcards on publishing. Yet, this was resolved

by making devices subscribe topics with a new wildcard, which is a solution specifically
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designed to address this problem. Considering the example presented before in figure 4.2, if

the device subscribes the following topics, the term “all” can be used for publishing, exactly

in the same manner as the + wildcard is used for subscribing.

.../1501/0/15012/0

.../1501/0/15012/all

.../1501/0/all/all

.../1501/all/all/all

.../all/all/all/all

etc.

4.3.2 message format

The definition of the message format is an essential part of any platform. Since most

of the messages exchanged in the whole system are between constrained devices and the

automation platform, JSON was chosen as the data format, as it is compact and typically

faster.

{

"event": {

"metaData": {

"attribute_1":VALUE,

"attribute_2":VALUE,

...

},

"correlationData": {

"attribute_1":VALUE,

"attribute_2":VALUE,

...

},

"payloadData": {

"attribute_1":VALUE,

"attribute_2":VALUE,

...

}

}

}

Snippet 3: WSO2 CEP JSON event format.

Considering the choice of using WSO2 CEP as the engine for this implementation, and

in order to enable an easier integration, its event format was adopted in this implementation.

Therefore, an event in WSO2 CEP is defined as in snippet 3, where the event’s attributes may
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be divided in three main logical sections: Payload Data, Correlation Data and Meta Data.

Payload Data refers to the most important data to transport in the event, corresponding to

the actual values that need to be processed. The Correlation Data is intended to transport

information that allows correlating events with other events. Finally, the Meta Data is where

other attributes that describe the event itself may be included.

This implementation considers two types of messages exchanged: events and operations.

An event is a message that contains a resource value. The event can be sent to a device for

writing that value into a resource, or as a device’s report of a resource value change. Either

way, information about the object and resource must be included in the event message. An

example of an event generated by a device containing a motion sensor, to report a motion

detection is presented in snippet 4. Here, only Payload Data is considered because all the

information to be transported is mandatory. This includes information about device, object

and resource, along with its value.

{

"event": {

"payloadData": {

"device" "motion_1",

"object": 3302,

"object_instance" 0,

"resource": 5500,

"resource_instance": 0,

"value": 1

}

}

}

Snippet 4: Example message format for an event generated by a device.

Regarding the events sent to devices for changing resources values, an example is shown

in snippet 5 where an event for turning on a luminaire is presented. In the attributes for

the object, resource, and their instances, the value -1 may be used for targeting all the

available options for that attribute. For instance, in the example of snippet 5, the attributes

“object_instance” and “resource_instance” are set with the value -1, thus the event must

change the value of all resource instances containing the ID 15011, and belongs to any object

instance that has the ID 1501.

Moreover, considering the solution stated before for publishing messages with wildcards

in MQTT, where the objects and resources information is provided in the topic, the same

event can be simplified to the one in snippet 6, if published in the following topic:

.../1501/all/15011/all
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{

"event": {

"metaData": {

"operation":"set"

},

"correlationData": {

"object": 1501,

"object_instance" -1,

"resource": 15011,

"resource_instance": -1,

}

"payloadData": {

"value": 1

}

}

}

Snippet 5: Example message format for an event sent to a device.

{

"event": {

"metaData": {

"operation":"set"

},

"payloadData": {

"value": 15

}

}

}

Snippet 6: Example simplified message format for an event sent to a device.

Hence, the object and resource information are not mandatory in the event message,

which led to moving it to the Correlation Data. Thus, the Payload Data only includes the

value to be written to the resource. Furthermore, an additional attribute (“operation”) is

used as Meta Data for describing the operation performed. Instead of “set” for writing a value

to a resource, the value “get” can also be used in order to force the report of an event with

the current value of the resource(s) specified. In this case, the Payload Data can be omitted.

Operations format are very similar to events. They are mainly used to configure a device’s

MQTT topics, either the subscribed ones or the ones in which it must publish every event. The

possible operations to be made on devices will be addressed later on section 4.6. Nonetheless,

their format is as shown in snippet 7, where the “operation” attribute, included as Meta

Data, specifies the name of the operation to be made and the Payload Data contains all the

necessary parameters for that function.
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{

"operation": {

"metaData": {

"operation": OPERATION NAME

},

"payloadData": {

"parameter1": VALUE,

"parameter2": VALUE,

etc.

}

}

}

Snippet 7: Example operation message format.

4.4 architecture

Considering both the objectives and the adopted technologies defined in sections 4.1 and

4.2, figure 4.3 shows the diagram of the currently implemented platform, now considering

the WSO2 CEP engine and the SCoT platform as the central broker. In comparison with

the diagram presented in figure 3.7, it is noticeable the exclusion of the user management

component, left for future work as previously mentioned. Additionally, the diagram also shows

that, besides the management of the WSO2 CEP engine which is only attainable using SOAP,

all other communications rely on MQTT protocol, using the MQTT broker existent in the

SCoT platform.

Hence, the work of this dissertation is mainly focused on the Building Management

component, further addressed in section 4.6. It is able to configure and control a server hosting

the WSO2 CEP system, and use the SCoT platform for creating the Smart Environment, in

this case an automated building. Additionally, considering that this work targets a real world

scenario, a gateway implementation is also presented in section 4.8, allowing the connection

of real devices to the platform.

71



Figure 4.3: SmartEnvironment: architecture diagram

4.5 wso2 cep

WSO2 CEP was the chosen CEP engine for this implementation, as explained in section

4.2, for being fully open-source, containing a powerful and familiar language, and providing

several ways for both receiving and sending information. Despite already described in chapter

2, this section intends to better explain the primary concepts of WSO2 CEP, by identifying

and describing the main elements that form the structure of a continuous stream processor.

Figure 4.4 shows a basic example of a flow diagram containing these elements, which are

described as follows:

• Event Stream (“InStream” and “OutStream”): this is the rudimentary element of the

whole CEP platform. Event streams are what define the data and messages format for
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Figure 4.4: WSO2 CEP flow diagram example

a continuous stream of information. From the execution plans point of view, it works

as an SQL table where queries can be made;

• Receiver: as the name suggests, it refers to an interface for receiving data. WSO2

CEP supports several types of receivers that are able to collect data from multiple

sources and insert it into event streams;

• Publisher: the tasks performed by a publisher are in everything similar to the ones

performed by a receiver, except on the event flow direction. When connected to an

event stream it is responsible for sending out every event from that stream;

• Execution Plan: this is where all the logic is implemented. An execution plan is a list

of functions and queries made in Siddhi QL that allows processing and correlating

data from multiple event streams, resulting in new events that are inserted in new

streams for being published.

The elements described above are, in fact, everything that is needed to create an au-

tomation platform capable of rapidly processing large streams of events. However, this is all

defined statically using a web interface, where simple changes could take hours to define. As

an example, to add new sources of data, it would be necessary to create new event streams

and corresponding receivers, and change the Siddhi code to include those new sources, along

with other new operations to do over those streams, such as filtering data. This is what lead

to the creation of the building management platform, further discussed in section 4.6, whose

main purpose is to develop modules capable of dynamically managing all these elements of

WSO2 CEP, based on rules specified in a user-friendly web interface.

The process needed to have a working WSO2 CEP system is very easy. In fact, the only

requirement is to have Java 1.8 installed. WSO2 products are generally managed internally

using SOAP web services, which are used by the web interface to manage and configure

the system. They are actually the only interface available for managing the WSO2 CEP

services. Thus, in order to allow the use of these web services by the Building Management

component, a configuration file had to be changed to enable their discovery, by setting the

HideAdminServiceWSDLs property to false.
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4.6 building management

The growing success of building automation is largely due to the autonomy given to the

managers responsible for each building. In order to guarantee this autonomy, a system was

implemented around Siddhi language allowing easy interaction with users, even if they only

hold a few basic concepts, thus bypassing the complexity of the language.

The person responsible for the building management is, therefore, provided with a highly

intuitive and dynamic interface in which he only needs to define and configure the desired

rules and apply them to the building. It is the system that is responsible for generating the

Siddhi code that forms that rule.

Additionally, in order to minimize the configuration effort, the system is also capable

of discovering the devices and provide means for the building manager to define to which

areas the devices belong to. Furthermore, it also automatically configures all the devices for

publishing/receiving events to/from the right topics.

Hence, the building management platform, built in Django1, comprises two main applica-

tions: a structure manager; and a rule manager. The high-level diagram for this platform is

shown in figure 4.5.

Figure 4.5: Building Management diagram

The Structure Manager is the application responsible for configuring devices according to

their location in the building. It provides a web interface for creating every element of the

building’s structure, as well as the devices positions, and makes use of the Device Manager

module for configuring them through MQTT.

1A Python Web framework.
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Similarly, the Rule Manager shares the web interface with the Structure Manager appli-

cation, from where the building manager can configure rules in a graphical manner. Then,

using the WSO2CEP Engine Controller, it applies the rules on the WSO2 CEP engine, which

also makes use of MQTT for controlling devices. We can also see in the diagram additional

Engine Controllers (in light blue colour), which intends to show that additional engines may

be added to the system as long as an Engine Controller implementation is provided.

The following sections aim to better describe both these applications, referring to all

their modules and the potential they provide.

4.6.1 structure management

The structure manager application, is the part of the system that holds a virtual rep-

resentation of the building, in order to allow more complex selection of data in the rules.

For instance, a rule can be applied to a set of specific sensor types in all the bathrooms of a

specific floor in a specific building. This structure is persisted in a simple database, whose

diagram is shown in figure 4.6.

Figure 4.6: Structure Manager Database

Besides the entities corresponding to the structure elements, which mainly have an ID

and a name, the diagram also shows entities for areas, devices, objects and resources. The

object and resource entities correspond to the objects representation discussed in section 4.3,

and thus also contain fields for holding their ID and instance number. Additionally, a name

and a description is also held in the database mainly for better describing both the objects

and the resources in the graphical web interface.
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The device only contains its ID in the database and a fixed string corresponding to the

unique device ID, while the Area entity, was defined in order to enable grouping of devices

inside a room. It is important to note the “row” and “column” fields of the Area entity. They

allow the representation of room areas in a matrix, providing a notion of their location. This

is important towards allowing even more complex rules. For instance, a rule can be configured

to, when motion is detected, light up not only the current area but also the areas around it.

Moreover, the purpose of having an area ID is to include a natural numeration of areas inside

each room, and thus allowing repetition of IDs across different rooms, i.e each room has its

areas numbered in a natural order starting from number 0.

Linked to the structure manager application, is the device manager module. This is the

module responsible for discovering and configuring devices. Internally, and for each device,

based on the information available on the database, it generates the topics necessary for

enabling the device to publish and receive events. It makes sure it subscribes not only its

individual topic but also the topics of the structure elements it is in. In addition, as previously

discussed in section 4.3, it also generates the topics necessary for supporting the new wildcard

for event publishing.

Having this in consideration, the topics for addressing device’s resources, follow the

format:

../Building/Floor/RoomType/Room/Area/Device/Obj.ID/Obj.Instance/Res.ID/Res.Instance

The module makes use of seven simple operations that must be supported by devices, who

have a list of subscribed topics from which they listen for events and a list of publishing topics

to which they push each of their own events. The operations, which are sent to the devices

using MQTT messages with the format already specified in section 4.3, are shown with a brief

description in table 4.1.

Operation Description
subscribe_topic Add a topic to device’s subscriptions
unsubscribe_topic Remove a topic from device’s subscriptions
add_publish_topic Add a topic for device’s publishing topics
remove_publish_topic Remove a topic from device’s publishing topics

report_device_info
Request a device to report the information
about the objects and resources it provides

unsubscribe_all Remove all device’s subscriptions
remove_publish_all Remove all device’s publishing topics

Table 4.1: Devices operations

Lastly, this is all managed through an intuitive web interface, where the manager can

easily create, edit or delete buildings, floors, room types and rooms. Moreover, in each
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room, the manager can dynamically create areas, to which he can associate devices, with a

drag-and-drop interface.

4.6.2 rules management

The rules manager is the most complex application of the whole Smart Environment

implementation. Although WSO2 CEP provides a lot of possibilities for creating complex

queries with its powerful language, Siddhi QL, they are difficult to map to a Graphical User

Interface. With this in mind, one of the first principles taken into consideration when starting

this implementation, was to design a solution that would be highly extensible, with pluggable

new modules.

In order to achieve that, and taking advantage of the Django’s Object-Relational Mapper

(ORM), the database, whose diagram is shown in figure 4.7, was implemented in a way that

new modules could be added just by dropping them on a specific directory of the application.

These modules just need to inherit one of the defined entities, which are shown in green

in the database’s diagram, and enrich them with extended features. In fact, the “Pattern”

and “Sequence” are special modules that inherit a “function”, in order to endow the system

with the ability of detecting patterns or sequences. Appendix A shows an example of a

module implementation, where all the mandatory methods are shown. It is important to note

that even the parameters that must be specified by the building manager in a module can

be defined in its implementation. It is the platform that is responsible for generating the

necessary web forms to match them.

The diagram shows that, a Rule, which can be applied on an Engine, is formed by actions.

Each action must contain a Target and a Function. The Target defines to where the final

events will be sent, while the Function defines how and when that events are sent. It is at

the function that all the necessary calculations are made. The input data for the function is

provided by the InData module. The latter, must necessarily have a Listener, which defines

from where the events will be received, and optionally include other modules that allows

selecting and make basic transformations over the event stream.

There are four types of modules that enable the transformation of the event stream. Those

are the Aggregators, Converters, Windows and Filters. Filters can be used with event streams

to filter events based on the given filter condition. Regarding Windows, they allow the CEP

engine to collect a subset of events based on a criteria. A very common example of Windows

are the time windows that can capture all the events that arrived in a given time period.

Aggregators, as the name suggests, are commonly used with Windows to perform aggregate

calculations, such as summing the events or calculating averages. Finally, Converters are used

to make calculations on each event. Their most common use is to make unit conversions.

As already stated, two special functions are provided in order to allow the detection of
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Figure 4.7: Rule Manager Database

patterns and sequences, which are one of the most frequent and powerful methods of the

Complex Event Processing concept. Along with other optional parameters, they are both

mainly formed by Events. Events are organized in ordered linked lists (defining the order

of the desired detection), each of them contain an InData object. Generally, the InData is

at least endowed with Filters for matching a specific condition. Thus, a sequence is found

when all the specified Events, have a match in their InData, in the order they were defined.

Patterns are very similar to sequences, but they allow other events to exist between matched

events. As an example, a pattern could be the detection of an increase of temperature in a

room of more than 10 degrees within 15 minutes. While that can be made by detecting that

change between any two events in a 15 minutes window, a sequence could only detect that

change if they were consecutive events.

In order to provide a functional system, implementations for all the inheritable modules

were made. Table 4.2 shows the implemented modules along with a brief description on what

they do.

All these modules can be used in a user-friendly interface for creating complex rules, that

are then applied by the system on the CEP engine. However, instead of directly creating the

Siddhi code to be sent to the WS02 CEP, the system represents the whole rule in a JSON

object. The reason leading to this was, one more time, to allow a high extensibility of the

system. By creating JSON rules in a specific format, the system is not obliged to use WSO2
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Type Module Description

Window
Time Window Capture events in a predefined time

Length Window Capture a predefined number of events

Aggregator
Average Calculate the average value of all the events in a window

Any Returns 1 if any of the values in the window is greater than 0
None Returns 1 if all the values in a window are 0

Converter
Lux To Percentage

Calculates an output percentage value to apply on a luminaire’s
dimming level based on a value in lux units

Set 1 Sets the value to 1
Set 0 Sets the value to 0

Filter

Time Greater Than Allows filtering events that arrive after a given time
Time Less Than Allows filtering events that arrive before a given time

Equal Filter events with the value equal to a given value
Not Equal Filter events with the value different than a given value

Greater Than Filter events with the value greater than a given value
Less Than Filter events with the value less than a given value

Greater or Equal Than Filter events with the value greater or equal to a given value
Less or Equal Than Filter events with the value less or equal to a given value

Listener
MQTT Receive events through MQTT
HTTP Receive events through HTTP posts

Target
MQTT Send events through MQTT
HTTP Send events through HTTP posts
E-mail Send events by email

Function
Set Value Set the value received from input streams to the output streams

Set Percent
Set a percentage of a value from input streams to the output
streams, based on boolean data from another input stream

Table 4.2: Implemented Modules

CEP specifically, and thus other CEP engines can be used and even coexist. To achieve this,

as already shown in figure 4.5, an engine controller must be implemented to support a different

CEP engine. The primary task of an engine controller is to parse the JSON rule and convert

it to code supported by its engine. With this approach, although not implemented, an engine

controller is all that is needed to support automation at the gateways.

To better understand the JSON rules generated by the system, consider the example rule

shown in snippet 8, which contain a single action.

79



{
"name": "Labs Lights",
"subrules": [

{
"actions": [

{
"target": {

"type": "mqtt",
"topic": "/SM/out_events/IT2/Floor_1/Lab/1.10/1/*/3302/*/5851/*",
"value_type": "int"

},
"function": {

"name": "setif_value_percent",
"listen_boolean": {

"type": "single",
"listeners" : [

{
"type": "mqtt",
"topic": "/SM/IT2/Floor_1/Lab/1.10/1/+/3302/+/5500/+",
"value_type": "int"

}
],
"window": {

"type": "time",
"units": "seconds",
"value": 6

},
"aggregator": {

"type" : "any"
}

},
"listen_value": {

"type": "single",
"listeners" : [

{
"type": "mqtt",
"topic": "/SM/IT2/Floor_1/Lab/1.10/1/+/3301/+/5700/+",
"value_type": "float"

}
],
"window": {

"type": "length",
"value": 5

},
"aggregator": {

"type" : "avg"
},
"converter": {

"type" : "lux_to_percentage",
"value": 50

}
},
"percent_if_true": 100,
"percent_if_false": 50

}
}

]
}

]
}

Snippet 8: JSON rule example.
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The first important aspect to note from this rule, is the existence of the “subrules” key.

Since the system supports reading and publishing data from different places in the building,

each rule may be divided in several smaller rules that addresses each of those places. Then, we

observe that the action is formed by an MQTT target and a “setif_value_percent” function.

The function contains two sources of data: one for listening to events that will be treated

as boolean values (corresponding to motion sensors) and other for listening for events to be

treated as float values (corresponding to illuminance sensors). The boolean data is read for a

time window of 6 seconds and aggregated with the “any” Aggregator which, as seen on table

4.2, detects if there was any motion in the last 6 seconds. The data containing the values of

the illuminance sensors, is aggregated with an average over the last 5 events, and converted

using a “lux_to_percent” converter. Hence, the function sends to the target an event with

the value of 100% calculated percentage if motion is detected in the last 6 seconds, and 50%

otherwise. These values in particular are application dependent.

4.6.2.1 engine controller

In the same line with the pluggable modules, engine controllers can also be dynamically

added to a specific directory of the application. In fact, they just need to implement a python

interface to be ready for use by the system. The interface contains few methods that are used

for managing the rule on the engine (add, update, remove or check if it is supported), and

to set some general configurations, such as the engine’s host address. These methods are

described in table 4.3, along with the parameters they should receive.

In order to use WSO2 CEP engine, its controller had to be developed by implementing

the interface methods shown in table 4.3. The final controller architecture is presented in the

diagram of figure 4.8, where besides the Engine Interface to which the Building Management

system interacts with, other components that back it up are shown.

The WSO2 Configurations component shown in the diagram is responsible for persisting

the main configurations of the whole engine. It is intended for general configurations which

Method Parameters Description

get_config -
Return a python dictionary with the engine configurations.
May include relevant addresses and ports regarding to the engine.

set_config
Python dict with

configurations
Override current engine configurations with the ones provided as
parameter.

add_rule JSON rule Add a rule to the engine.

update_rule JSON rule
Update a rule in the engine (the rule name is also included in the
JSON string).

remove_rule JSON rule Remove a rule from the engine.
rule_exists JSON rule Check if a rule exists in the engine.
supports JSON rule Check if a rule is supported in the engine.

Table 4.3: Engine Interface Methods.
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Figure 4.8: WSO2 CEP Engine Controller Architecture.

include the WSO2 Server address and port, as well as the login credentials for accessing its

services, and similar fields the MQTT server it uses for receiving events. It relies on python’s

configparser module, which implements a basic configuration file parser, allowing the provision

of a default configuration file for configuring the engine. Furthermore, the first two methods

on table 4.3 are implemented using this component, thus enabling the Building Management

component to also be able to change these configurations.

The Rule Parser, as the name suggests, is intended for parsing the JSON rule and not only

convert it to Siddhi code, but also identify the needed event streams, receivers and publishers.

Here, a similar approach to the one used in the Rule Management system (described in section

4.6.2) is adopted, allowing new modules to be easily added to the controller. In fact, each

time a new module is added to the Building Management system, its implementation must

also be included in a controller in order to support it. WSO2 CEP engine controller currently

implements all the modules referred in table 4.2. Appendix A shows an example of both a

module at the Building Management platform and its implementation for WSO2 CEP engine

controller.

After parsing a rule, the Rule Parser module provides a structure containing both the

Siddhi code for the rule, along with the identified event streams, receivers and publishers.

Then a central module, the Elements Builder, is responsible for receiving that structure and

build all the elements necessary for creating a rule at WSO2 CEP engine, as presented in

section 4.5.

It was also important to include here an additional module, the Persistence Manager.
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Its main purpose is to hold some information about the rules, event streams, receivers and

publishers created, and enable their reuse in other rules. It makes use of SQL Alchemy (an

open-source python ORM), for keeping a local SQLite database with that information. Its

main methods aim to inform the Elements Builder module, when it is deploying a rule, of

which elements must be created and which ones must not. Moreover, it also provides methods

for finding orphan elements, whenever a rule is removed from the engine, allowing it to act as

a garbage collector and thus remove every unused element.

Finally, the WSO2 Manager module makes use of the only available interface for managing

the WSO2 CEP, SOAP Web services, applying the entire rule on the engine. It allows getting,

adding, updating and removing each of the elements existent on the WSO2 CEP engine, using

simplified Python dictionaries and thus creating an abstraction layer between Python and

WSO2’s SOAP services.

To finish, another important feature delivered by this approach, is that an engine controller

can be replicated, using the same engine but with different controllers and thus different

configurations. Hence, it is possible, for instance, to use a replicated engine in a simulated

environment, allowing to test any rule before applying it in the real world. The next section

presents a devices simulator, which despite being mainly developed for testing the platform,

can also be used with this purpose.

4.7 device simulator

The device simulator is a software implemented in Python that is able to reproduce the

behaviour of both sensors and actuators. It meets both the objects definition and the message

formats defined in section 4.3, and implements all the operations defined in table 4.1.

The simulator is organized as shown in figure 4.9, where we can see two main modules:

the Task Scheduler and the Web Server. The Task Scheduler is responsible for reading the

configurations defined in the configuration file, corresponding to the existing devices and their

properties, and launch different threads for each of them. Thus, each device runs independently

and is able to send/receive events, using MQTT protocol.

All the configurations are loaded from a single configuration file, where besides some

general configurations mainly related to the MQTT server and web server properties, the

objects and resources that each device should have are specified. Moreover, it is also in this

configuration file that value generators may be appended to resources. Value generators are

responsible for simulating events in order to provide a test scenario as close as possible to

reality and thus allowing to infer better conclusions.

There are a few types of generators provided for use with the simulator, allowing not only
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Figure 4.9: Simulator - Architecture

to simulate events with random values but also with real values from existing databases, either

using raw or Comma-Separated Values (CSV) files. Actually, most of the events currently

generated by the simulator contain values from databases provided in [110].

Additionally, the log of an existing mobile application (Motion Detector [111]) which can

be used for detecting motion using a built in camera can also be used to provide real data to

the simulator. In fact, in combination with Tasker [112] and its MQTT plug-in, it is possible

to provide live motion events to the simulator using a smartphone or a tablet.

Besides the creation of simulated devices, the simulator is also endowed with a web server

built with Flask, that allows visualization of the device’s states. Here, the IT2 building’s plant

was included, not only because it is the building where this implementation will be deployed,

but also to simulate a number of devices close to the expected for the SmartLighting project.

Thus a view closer to the future automation and intelligence platform behaviour is expected.

Figure 4.10 shows the main overview given by the simulator’s web server, where only the

luminaire’s states can be seen (as little squares) over the building’s plant. When a luminaire

is on its square is coloured, being the colour dependent on the type of room. Green colour is

used for corridors, yellow for bathrooms and red for rectangular luminaires. Blue is used for

the rest of the rooms.

When a room is clicked on the plant, its overview is shown, as seen in figure 4.11, with
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Figure 4.10: Simulator - Plant View matching IT2 building.

all the available information from devices. Here, the luminaires show their dimming level

inside their symbol, while the circles, which refer to motion sensors, turn red when motion is

detected. With the green colour are the illuminance sensors which show their current value in

lux. Finally, at the right side, three device values are show, which represent the air conditioner

state, and the values from a temperature and a humidity sensor.
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Figure 4.11: Simulator - Room View.

4.8 ble gateway

In order to allow the connection of the real devices through BLE, developed as the

work of two other dissertations from the Integrated Circuits group of IT, a Python agent

was developed for transporting information between them and an MQTT broker. Besides

transporting information between the two different technologies/protocols, it is the gateway

who is responsible for providing the objects definition and use the messages format defined

in section 4.3, as well as the operations defined in table 4.1. In fact, it is the provision of

these aspects that creates the abstraction layer that makes it possible to have both real and

simulated devices working simultaneously.

Figure 4.12: Object/Resource mapping in BLE’s UUID

Bluetooth Low Energy, as described in chapter 2, divides a device’s properties in services

and characteristics which are, in comparison with the objects representation presented in

section 4.3, similar to objects and resources. Having this in mind, the implementation for

the gateway was focused on mapping services to objects and characteristics to resources.

However, instead of a simple device ID, BLE uses a more complex approach, by using UUIDs
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Figure 4.13: Simulator - Room View

for identifying both the services and characteristics. Thus, in order to achieve the desired

mapping, the ID and the instance of both the objects and resources are included in the UUID,

as shown in figure 4.12. Additionally, the base UUID must be replaced with one corresponding

to the entity that is defining this new services and characteristics, since the one on the figure

corresponds to the Bluetooth SIG. A random one is used for testing purposes.

In figure 4.13, where the gateway’s architecture diagram is shown, we can see how the

gateway operates. It contains a BLE advertisement listener, that launches a new device thread

for each BLE device found. Then each device thread, having its MQTT client, is responsible

for listening for new notifications from BLE devices in order to publish them as events to the

MQTT broker, and write new values in BLE device’s characteristics each time it receives an

event from MQTT broker.

The connection to BLE devices relies on bluepy library [113], which is an open-source

Python interface to BLE on Linux. Besides other objects for representing, for instance, a

Service or a Characteristic, bluepy provides two main classes: Scanner and Peripheral. Scanner

is the class that allows having an always active thread, listening for BLE advertisements from

devices. It is provided with a Delegate object containing the function to start a new device

thread, which is called every time a new device is found.

Regarding the Peripheral class, it is the core of the bluepy library that provides all the

methods for interacting with the BLE device, and thus an object of it is instantiated in

each device thread. It is constructed with the unique 6-byte MAC address of a device as

parameter, leading to an immediate connection to the BLE device containing that address.
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After that, the interaction with the BLE device is mainly made through methods for getting

the list of services, characteristics and descriptors the device provides, reading and writing

characteristics, and receiving notifications.

For receiving notifications, the Peripheral class provides the method waitForNotifications,

which takes exactly one argument consisting on the time in seconds for which the method

should block and listen for notifications. It is also provided with a Delegate object containing

the method to be called when a notification is available, which generates an event and sends it

through the MQTT client. However, since the Peripheral class is not thread-safe this approach

is not the most correct and results in an increased latency at the BLE connection. The problem

is, when the device thread is listening for notifications, it is blocked on waitForNotifications

method and thus is not able to write new values in characteristics until it finishes waiting for

notifications.

By looking at the library’s source code, it was possible to verify that the waitForNotifica-

tions method consisted on a poll2 method with a registered file descriptor corresponding to

the output of a another subprocess. Thus, the problem was solved by making some changes

in the library itself, which consisted in adding a dummy file descriptor to the existing poll.

Hence it allowed the inclusion of an interrupt method consisting of writing a single character

to the dummy file descriptor, and thus enabling the interruption of the process of waiting for

new notifications whenever a write operation in a characteristic is needed.

Summary

Considering the presented architecture, as well as the approaches followed in the imple-

mentation of each of its components, it is important to understand whether it meets the

requirements. In fact, it was already discussed in chapter 3, how the presented solution

addresses the defined requirements. Thus, since this implementation strictly follows the pre-

sented solution and its architecture, most of the requirements are naturally met. Additionally,

the extensibility of the system is enhanced, through the use of an approach for easily adding

new modules to the system and thus supporting new functionalities and features. Hence, the

system is further able to meet the specified use cases.

However, as already stated in section 4.1, some parts of the solution were left for future

implementation. Therefore, the use cases related to user interaction with the system are

not met, as well as the failure handling requirement. This, was directly associated with the

provision of processing engines at the network layer or, more specifically, at the gateway.

2The poll(), similarly to select(), is a method provided by the operating system that
enables synchronous I/O multiplexing, allowing programs to monitor several file descriptors,
and block until at least one of them is ready for reading or writing.
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chapter 5
Evaluation and Results

In this chapter, the crucial step of validating the solution proposed in chapter 4 is addressed.

It begins with a description of the deployment scenario, in section 5.1, which also includes

the tools used, some of which particularly developed for this process. This is followed, in

section 5.2 with an analysis of the obtained results for several performance metrics. Taking

into consideration the requirements presented in chapter 3, the effectiveness and performance

of the platform is evaluated by addressing both the WSO2 CEP system load and performance,

as well as the end-to-end latency, under different usage conditions.

5.1 deployment scenario

The final deployment scenario, as depicted in figure 5.1, comprises the Smart Environment

platform, the WSOP2 CEP engine, a simulator for virtual devices and a physical gateway

for connecting physical devices, being that all of these communicate using the MQTT broker

included in the SCoT platform.

The gateway is responsible for connecting the physical devices to the SCoT platform, by

mapping them as objects which are to accessible by the rest of the components. It is deployed

in a Raspberry Pi version 3 which includes built in Wi-Fi and BLE, the later used for the

wireless connection to the physical devices.

Regarding the simulator, its intent was to add complexity in a controlled fashion by

adding simulated devices to the scenario. This allowed to test the platform’s performance

with a larger amount of events generated per second. It was implemented and hosted in a

Linux server equipped with a single-core processor and 1 gigabyte of memory.
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Figure 5.1: Deployment Scenario

The Smart Environment platform, which is hosted in the same server as the simulator, is

the component responsible for providing the user-friendly web interface, in which the building

manager is expected to specify the management and automation rules that establish the

automated environment. The platform would then generate all the necessary elements to

deploy those rules in the WSO2 CEP engine.

Finally, the WSO2 CEP engine is the core component of the whole scenario, being

responsible for processing all the logic specified in the rules. It was hosted in a Linux server

endowed with a quad-core processor and 4 gigabytes of memory.

The final deployment configuration could be controlled through the device simulator.

Through it, it was possible to include multiple sensors for reading temperature, humidity,

illuminance and motion, and actuators for changing both the state and dimming level of

luminaires as well as air conditioners states. Temperature and humidity sensors generated

events every 10 seconds, while illuminance sensors report their value with a period of 5 seconds.

Motion sensors were thought to have a random periodicity between 1 and 10 seconds.

Regarding physical devices, the scenario was able to include devices through the gateway.

In particular, three devices (developed by the project colleagues as their dissertation work).

Two of them contained a Passive Infrared (PIR) sensor for motion detection, an illuminance

sensor, and a luminaire with all its resources. The third device was equipped with additional

sensors for reading temperature and humidity, as well as sensors for detecting gas or flame.
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The scenario includes 679 simulated devices which include sensors for reading temperature,

humidity, illuminance and motion, and actuators for changing both the state and dimming

level of luminaires as well as air conditioners states. Temperature and humidity sensors

generate events every 10 seconds, while illuminance sensors report their value with a period

of 5 seconds. Motion sensors though, have a random periodicity between 1 and 10 seconds.

5.2 performance results

This section presents the performed results, starting with a description of the testing

configuration, in subsection 5.2.1. The WSO2 CEP provides several information about its

performance, which are shown and discussed in subsection 5.2.2. This is followed by the

end-to-end latencies achieved at the field devices, presented in subsection 5.2.3.

5.2.1 testing configurations

The process chosen for testing the platform was divided in two phases: i) configuration A

considered a basic building structure with simple rules; and ii) configuration B considered an

increased complexity in the number of rules as well as a much larger number of simulated

devices.

In the first phase, under configuration A, a small segment of a building was implemented

with only four small offices along with a larger open office area. These areas were endowed

with simulated devices, which were distributed using the provided web interface of the Smart

Environment platform. Additionally, a specific room was created in the platform, in which

the real devices were linked to and also configured. With this building configuration, one

rule for each type of rooms was configured, also using the web interface. Both rules included

two actions targeting, respectively, the luminaires states and their dimming levels. The rules

defined that, in each area, lights are turned on if motion was detected during the a 10 seconds

interval. Regarding their dimming level for that period, a recommended value was calculated

from the average of the last 5 events containing the area’s illuminance. If motion is detected,

the calculated value is used for the first 5 seconds, otherwise the dimming value is set to 25%

of that. There was an additional difference between the small offices and the open spaces,

whereas in the small offices all the room’s lights are turned on if motion is detected, in the

open space only the areas surrounding the location of motion detection would have the lights

turned on. Appendix B shows one of the actions defined in the web interface, and then

presents the flux diagram from two rules, thus showing how much complexity the implemented

platform hides from the building manager.

91



In the second phase, under configuration B, the full IT2 building was considered, as

depicted in figure 4.10, and an estimation of existing devices was deployed into the platform.

This meant that a total 682 devices (3 real devices and 679 simulated) were used. Here,

the number of rules and their complexity also increased significantly by targeting also the

air-conditioner system of all the offices. With this approach, not only the performance of the

platform and its latency can be tested under strain, but also how these variables affect with

the system growth.

5.2.2 wso2 cep

The CEP engine is one of the most relevant parts of the whole platform. It is responsible

for processing every event and deliver responses as fast as possible. Thus, the analysis of

its performance is crucial to understand if it meets the requirements, particularly, the ones

related with the fast responsiveness of the platform. Hence, in order to study the performance

of WSO2 CEP, information about the server hosting it was collected for one hour of usage,

namely its CPU and memory usage, and the average system load.

It was possible to observe the CPU usage remained maximum for both configurations,

and even with a small amount of events being generated the CPU is always used in its entirety.

This allow us to conclude that WSO2 CEP takes full advantage of it in order to deliver the

lowest latencies.

Figure 5.2: Configuration A - Physical Memory Details (MB)

Regarding the memory usage, this CEP system manages it very efficiently, having more

than half the physical memory free in configuration A, as shown in figure 5.2, with a relatively

small increase of its usage in configuration B (around 1 gigabyte), where more devices and

more rules are used, as shown in figure 5.3.
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Figure 5.3: Configuration B - Physical Memory Details (MB)

Figure 5.4: Configuration A - Average System Load

The average system load is, however, quite high. Figure 5.4 shows its values measured

with configuration A applied, which are between 30 and 35, and then increase to values above

100 in configuration B, as seen in figure 5.4. While this can be seen as very bad in a first

impression, it can be explained by the existence of a huge amount of tasks simultaneously.

In fact, since there are a lot of rules with a high number of publishers and receivers, it is

acceptable the existence of thousands of threads to process them all, which are seen as tasks

by the system and are thus considered in the calculation of the system load. Yet, most of

them can be blocked in I/O operations without using CPU and thus not affecting the system

performance. The load can be, though, lightened by spreading the tasks by a cluster of servers,

which is allowed in WSO2 CEP through the use of Apache Storm as already explained in

chapter 2.

In summary, WSO2 CEP proves to be able to handle a huge amount of work, being

capable of processing hundreds of events per second with an efficient management of the server
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Figure 5.5: Configuration B - Average System Load

resources. Nonetheless, latency must be measured in order to check its fast responsiveness,

which is addressed in the next subsection.

5.2.3 system latency

The measurement of latency allows for an analysis of the system performance. As

previously stated, not all of the building services supported by the platform will require a

small latency. However, services like lighting are very sensitive to delays in the chain between

input (at the sensor) and output (at the luminaire actuator). Monitoring this parameter and

its variation interval over a different usage scenarios, allows to determine whether the system

will be able to cope with strict time requirements for near real-time functionality or not.

In order to include not only the processing time of the platform but also the network

latencies and the processing times at the devices, the measurement of the total end-to-end

latency was performed with the real-life devices. In cooperation with the project colleagues,

time was measured between an event generated by a device and the processing of its corre-

spondent reply event. In further detail, the time interval began with the triggering of a sensor,

then sent via BLE to the gateway, processed by the CEP engine where a reply was generated.

This reply event was passed back through the gateway and communicated to the end node

also by BLE. After being processed and the output action executed, the time interval was

completed.

Considering both defined configurations, for this test scenario the time between a motion

detection and the corresponding action on the luminaire was measured. A routine was

implemented on the physical devices and the simulator in order to repeatedly trigger a specific

motion sensor which would then communicate to the CEP where a predefined rule would make
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it send an event to activate a specific luminaire. In the meanwhile, the remaining devices in

the simulator operated in a random fashion in order to simulate a real environment, stressing

the platform.

For configuration A, 115 latency measurements were taken using simulated devices only,

and results are shown in table 5.1. In a second turn, 124 latency measurements were taken

using the physical devices, and the results are shown in table 5.2. Additionally, the project

colleagues were able to estimate the BLE connection delay to be around 79 ms.

Average Latency 53,92 ms
Minimum Latency 5,88 ms
Maximum Latency 233,33 ms
Standard Deviation 39,32 ms

Table 5.1: Configuration A - End-to-end latency when using a simulated device

Average Latency 149,27 ms
Minimum Latency 68,12 ms
Maximum Latency 379,52 ms
Standard Deviation 55,95 ms

Table 5.2: Configuration A - End-to-end latency when using a physical device

Regarding the simulated device results, since it does not include the BLE connection and

thus its delay, we can verify that it has a marginal delay of about 50ms. Considering the

delay from the BLE connection, an average latency of around 150 milliseconds is observed at

the physical device, which is quite acceptable. In fact, even the slowest response is still under

half a second. These results validate the system against the latency requirements previously

proposed. Taking into account the most time-critical application considered, lighting, where

sub-second (preferably bellow 500ms) latencies are expected, the measured values deliver well

within expected.

After configuring all the devices in the simulator and deploying additional and more

complex rules, as defined for configuration B, new measurements were taken in order to observe

how a significant increase in new processing tasks would affect the platform’s performance.

For this scenario, since the device simulator was hosted in a server with a single core and a

small amount of memory (1 gigabyte), the latency measurements at the simulator did not take

place. Behind this decision is the fact that for such a high number of threads, the number of

processing tasks is also increased at the simulator. Thus additional delays could take place,

which were related to the time each thread must wait to acquire the processor in order to

perform the measurement. Hence, the results would not be reliable. The results for using

physical devices are shown in table 5.3, corresponding to 86 total measurements.

From these results we can conclude that, the addition of new devices and rules does

not have a significant impact in performance. In fact, and surprisingly, even with a higher
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Average Latency 108,63 ms
Minimum Latency 68,35 ms
Maximum Latency 446,89 ms
Standard Deviation 45,04 ms

Table 5.3: Configuration B - End-to-end latency when using a physical device

Maximum latency value, the average is lower than before. This difference is tolerable since

it is in the error range defined by the standard deviation. Moreover, these measurements

were taken in separate days, which could also mean that the surrounding interference in 2.4

GHz frequency could have changed between test, thus slightly influencing the results, with a

stronger impact for configuration A.

To summarize, given these results, WSO2 CEP is proved to be a fast and capable CEP

engine, not only to support SmartLighting project, but an endless number of other scenarios

where fast responsiveness is needed. It is capable of processing hundreds of events per second

with a sub-second latency, and thus enables the presented solution and its implementation to

meet the defined requirements and objectives.
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chapter 6
Conclusions and Future

Work

The emergence of the Internet of Things and its exponential evolution allows us to assume

that, in a near future, interconnections between devices and even between people and devices

will experience a strong change, eventually changing human behaviours. However, there is still

a long way to go to explore the full potential. A topic where IoT principles are already being

exploited is automation for smart environments. Here intelligent and dynamic automation

can be used to help individuals, businesses, and societies on a daily basis. In particular,

considering the weight of buildings in the worldwide energy usage, IoT can definitely be used

to reduce resource wastage. Furthermore, the same efficient means of control and automation

can also be used to provide higher levels of comfort and convenience to building occupants.

Hence, this document presents an overview along with a critical analysis about the

applicability of some of IoT’s most relevant principles, towards a solution aiming to support

the automation of buildings. Furthermore, and as a consequence of the exponential growth

the IoT creates, support must be provided for multiple heterogeneous sources of data. The

proposed solution addresses this issue with principles from the area of Complex Event

Processing, in order to extract the most important information, in a fast and efficient manner.

Using the scenario of the SmartLighting project, the proposed solution and its imple-

mentation, was proven to be capable of responding to thousands of events with a sub-second

latency. In chapter 5, a performance evaluation of the implementation was undertaken, testing

the performance of the CEP engine and measuring latencies in the devices. It was possible

to conclude that the solution has very low latencies (around 150 milliseconds), being even

the worst case below half a second, and thus still acceptable for time-critical applications like

lighting.
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Regarding the performance of the CEP engine (WSO2 CEP), it has been shown that

it performs well with an efficient management of memory, even when processing hundreds

of events per second. Yet, the system load was shown to reach high values. Therefore, it is

worth pointing out that as future work an implementation into a cluster of servers should be

considered, which the current solution is flexible enough to support.

Another objective of this work consisted in developing a platform that could be easily

handled by a generic building manager. This was achieved by deploying a platform with a

user-friendly web interface where everything can be managed and configured, acting as an

abstraction layer able to hide hundreds of lines of complex code on a CEP engine.

The solution was also designed to be scalable and extensible. Any functionality that does

not currently exist, can be appended to the system as a new and pluggable module. In fact,

due to the chosen approach, where every rule is represented as a JSON object, even new CEP

engines can be integrated. Towards this, an engine controller capable of parsing the rules and

adapt them to the new engine must be implemented.

On the opposite side, some issues on the chosen implementation were also found, relating

to WSO2 CEP. First, the use of SOAP interface for deploying rules is slow, especially when

the system is already too busy handling a large number of events. The problem is that each

rule can have dozens or hundreds of elements associated with it, such as receivers, publishers

and event streams, and each of them is deployed individually. However, it is the only interface

available to manage the system. Furthermore, WSO2 CEP does not handle well exceptions,

specifically the ones related to the MQTT clients. When the connections to the MQTT broker

fails, an exception occurs but a retry mechanism does not exist and thus the whole system

stops working until a reboot of WSO2 CEP is performed.

Hence, and as a target of future work, some optimizations should be made to make a

better management of WSO2 CEP using its SOAP interface or, considering it is an open-source

platform, implement faster modules to do so. In addition to that, the MQTT client must also

be optimized, and means for reconnecting after a defined time, when the connection drops,

should also be implemented.

Moreover, due to time constraints, the complete solution could not be implemented,

and a module that could provide interesting features, regarding user interactions, was not

implemented. The same happened to the deployment of processing engines on the gateways,

which is mostly relevant for failure handling. Both features are valuable work for future

iterations, even more since the current implementation already enables easy integration of

both functionalities.

Security aspects were also not considered in this implementation, even though WSO2

CEP provides means for user authentication, as does the SCoT platform for authentication

of each message. Yet, it is an important aspect to have in consideration for this platform,

and should be approached in the future, adding encryption of the payload of each MQTT
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message, and user authentication to the Building Management platform.

Finally, the integration of new systems and provision of new modules to the current

implementation is also a good target for future work. In fact, the core aspect of this work was

not to provide multiple functionalities, but the means for adding them over time, and thus

enrich the platform.
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Appendix A: Example

modules implementation

class timeGT(Filter):
_type = ’time_gt’

time = models.CharField(max_length=8)

def __str__(self):
return ’Time Greater than %s’% self.time

def get_data(self):
d = super(timeGT, self).get_data()
d[’value’] = self.time
return d

def get_dict(self):
d = dict()
d[’type’] = timeGT._type
d[’time’] = self.time
return d

@staticmethod
def descript():

d = dict()
d[’name’] = ’Time Greater than’
d[’description’] = ’Filters events if current time’ \

’is Greater than specified time’
d[’type’] = timeGT._type
d[’parameters’] = {

’time’: {
’label’: ’Time’,
’type’: ’charfield’,
’max_length’: 8,
’required’ : True,
’placeholder’: ’HH:MM:SS’

}
}
return d

Snippet 9: “Time Greater Than” module for Building Management platform
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class timeGT(Filter):
_type = ’time_gt’
def __init__(self, **kwargs):

super(timeGT, self).__init__()
self.time = kwargs[’time’]

def get_filter(self):
return ’time_gt(time:currentTimestamp(), "%s")’%self.time

def has_function(self):
return True

def get_function(self):
return ’define function time_gt[JavaScript] return bool {\n’ \

’\tvar str1 = data[0];\n’ \
’\tvar str2 = str1.substring(0, 11) + data[1];\n’ \
’\tvar dt1 = new Date( str1.split(\’ \’).join(\’T\’) );\n’ \
’\tvar dt2 = new Date( str2.split(\’ \’).join(\’T\’) );\n’ \
’\treturn dt1>dt2;\n’ \
’};\n\n’

Snippet 10: “Time Greater Than” implementation on WSO2 CEP engine controller.
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Appendix B: Example Rule

This appendix aims to show the complexity hidden by the implemented platform. First,

it presents two figures, along with a brief description, of an example action defined in the

platform’s web interface, thus showing how it is organized. Second, it presents two flux

diagrams of rules defined in the WSO2 CEP engine for the test scenario considered in chapter

5.

Figure 1 shows an example of an action defined in the user-friendly interface, which is

organized in two main parts: target definition on top, and function definition below it. A

target can be chosen using the drop-down box at the left where an MQTT target is selected,

and then in the right side its parameters must also be chosen. Similarly, the function definition

is also selected using a drop-down box, and its parameters defined below it. Yet, there is

an additional part regarding the function data, where a listener, a window, an aggregator

and a converter may be defined, along with filters for making selection of data coming from

the defined listener. All the elements that can be defined in the function data part follow

an organization similar to the target definition, except for filters which have more complex

combinations, and thus are specified as shown in figure 2.

WSO2 CEP automatically generates flux diagrams for each rule that is defined. From

these, it is possible to understand the correlation of data from multiple sources, by checking

the streams from which each query reads data from. Figure 3 shows the flux diagram for a

complete rule used in configuration A of the test scenario considered, while figure 4 shows

only a portion of a much bigger and complex rule, used in configuration B.
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Figure 1: Example action configured at Web interface.

Figure 2: Example filtering configured at Web interface.

112



F
ig

u
re

3
:

F
u
ll

F
lu

x
D

ia
gr

a
m

o
f

a
ru

le
u
se

d
in

co
n

fi
gu

ra
ti

o
n

A
.

113



F
ig

u
re

4
:

P
a
rt

o
f

F
lu

x
D

ia
gr

a
m

o
f

a
ru

le
u
se

d
in

co
n

fi
gu

ra
ti

o
n

B
.

114


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Structure

	State of the art
	Introduction to BAS Systems
	Building Automation System (BAS) Protocols
	BACnet
	LonWorks
	KNX
	DALI

	BAS Solutions
	The Edge: A Philips and Delloite project

	Internet of Things (IoT)
	Concept
	Wireless Sensor and/or Actuator Networks (WSAN)
	Wireless Communication Standards
	Protocols

	Automation Logic
	High Performance and Real Time Platforms
	Complex Event Processing (CEP)
	CEP Systems


	Smart Environment solution
	SmartLighting Project
	Overview and Objectives
	Stakeholders
	Use Cases

	Requirements
	User Driven Cases
	Smart Environment Solution Architecture
	Overview
	Comparison with IoT Reference Model


	Smart Environment Implementation
	Objectives
	Adopted Technologies
	Access to Devices
	Objects Definition
	Message Format

	Architecture
	WSO2 CEP
	Building Management
	Structure Management
	Rules Management

	Device Simulator
	BLE Gateway

	Evaluation and Results
	Deployment Scenario
	Performance Results
	Testing Configurations
	WSO2 CEP
	System Latency


	Conclusions and Future Work
	References
	Appendix A: Example modules implementation
	Appendix B: Example Rule

