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ABSTRACT 

A new range of Good’s buffer ionic liquids (GB-ILs), displaying simultaneously the 

properties of ionic liquids and Good’s buffers, were synthesized by combination of Good’s 

buffers anions (MOPSO, BES, TAPSO and CAPSO) and tetrabutylammonium, 

tetrabutylphosphonium and cholinium cations via an acid-base neutralization reaction. The 

activity and stability of a lipolytic enzyme from Pseudomonas cepacia in aqueous solutions 

of these buffers were evaluated and the results show their advantage as media for enzymatic 

reactions when compared to conventional phosphate buffers. Moreover aqueous biphasic 

systems (ABS) composed by these GB-ILs and potassium citrate were investigated and 

shown to be highly effective and selective for the partitioning of the lipolytic enzyme into the 

GB-IL-rich phase. The results allow the development of an efficient and biocompatible 

process combining the self-buffering and enzyme-stabilizing properties of the GB-ILs in the 

reaction step, with the advantages of GB-ILs as extraction solvents in ABS. 

 
KEYWORDS: Good’s buffer ionic liquids, self-buffering GB-ILs, aqueous biphasic 

systems, enzyme-stabilizing systems, biocatalysis and bioseparation 
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Introduction 

Ionic liquids (ILs) have been proposed as environmental benign solvents1 to replace 

harmful volatile organic compounds due to their unique properties,2 thus enhancing their 

recycling ability and product recovery, and improving the safety of (bio)chemical processes.3 

The interest in biotechnological applications of ILs is growing not only for enzyme catalysis4-

8 but also for bioseparation process.9-10 Their potential as media for biocatalytic reactions 

with remarkable yields11 has been demonstrated, in addition to their enantioselectivity12 and 

enzyme stability.13 In bioseparations water miscible-ILs hold great potential as a feasible 

alternative for phase forming agents in aqueous biphasic systems (ABS) to replace 

conventional polymer and/or salt-rich phases,14 for the purification of various enzymes 

including alcohol dehydrogenases,15 lysozyme,16 cyclodextrin glycosyltransferase,17 

peroxidases,18 and lipases.19-22  

The need to maintain a stable pH during an enzyme-catalysed reaction is well 

established.23-24 Therefore, most applications of ILs in biotechnological field involve the 

addition of buffers to stabilize hydrogen ion concentrations during enzymatic reaction. 

However, this is not adequate to maintain a precise pH control in IL systems as the intrinsic 

acidity or basicity of hydrophilic ILs might destroy the buffer effect,25 depending on the ILs 

concentrations applied. Additionally, ionic liquid-based ABS (IL-based ABS) for enzyme 

extraction are always limited by the selection of a buffer in order to prevent the loss of 

activity during the extraction process. The phosphate buffer is most commonly used,26 and 

the use of organic salts, such as citrates is seldom considered when dealing with labile 

enzymes as these systems create a pH of 8 to 10, and lack buffering capacity to maintain the 

optimum pH during the extraction process,27 thus limiting ABS formation28 and the 

partitioning behaviour of enzymes.16 It would, therefore, be important to find alternative 

approaches.  

Page 3 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 

 

In this work, the design of ILs with self-buffering and enzyme-compatible behaviour was 

addressed. The use of self-buffering ILs in IL-based ABS offers further advantages compared 

to traditional buffers, namely the possibility of controlling salt precipitation/crystallization, 

since most ILs present low melting temperatures, exist in liquid state at room temperature, 

are miscible with water in the entire range of concentration, allowing the tailoring of the 

polarity of both phases due to the wide array of IL structures available.29 After the first report 

of the buffer-like ILs,30 recently, some works reported the synthesis of ILs with self-buffering 

properties31-33 through the selection of anions derived from biological buffers, namely the 

Good’s buffers (GBs). Besides the buffering ability, these GBs anions34 also conferred high 

biocompatibility to the synthesized ILs. The GBs anions Tricine, TES, CHES, HEPES and 

MES have been paired with alkylimidazolium,32 tetraalkylammonium,32 and cholinium 

cations31, 33 and these new ILs demonstrated self-buffering behaviour, low toxicity, ability to 

form ABS with inorganic and organic salts, thus revealing high protein stability. Yet, there is 

no literature available concerning these ILs in enzymatic systems. 

In the present study, the synthesis of ILs based on GBs anions, with pKa values closer to 

the optimum pH of most enzymes was achieved. The anions chosen are MOPSO, BES, 

TAPSO and CAPSO with pKa values of 6.90, 7.09, 7.60 and 9.60, respectively, at 25 ºC and 

0.1 M. The selected anions were coupled with cations belonging to the tetrabutylammonium, 

tetrabutylphosphonium, and cholinium ILs families in order to produce twelve Good’s buffer 

ILs (GB-ILs). These cations were selected due to their characteristics reported in literature.35-

37 To further assess the GB-ILs produced the GB-ILs buffering capacity was validated and 

compared to the respective GBs. The toxicity of each GB and GB-IL towards the Vibrio 

fischeri marine bacteria also was characterized. The viability of GB-ILs as a benign medium 

to the enzymes was also investigated by measuring the activity of a lipase from Pseudomonas 

cepacia (recently reclassified as Burkholderia cepacia) in 0.05 M and 1.0 M aqueous solution 
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of GB-ILs at pH 7.0, after 4 hours of contact, and comparing with the phosphate buffer. 

Finally, the ability of the synthesized GB-ILs to form ABS with a biodegradable citrate-based 

salt was investigated and the partitioning behaviour of the lipase in the selected GB-ILs-

based ABS was studied, aiming at evaluating the applicability of these GB-ILs in 

bioseparations.  

Experimental Section 

Materials 

Tetrabutylammonium hydroxide solution (40 wt% in H2O), tetrabutylphosphonium 

hydroxide solution (40 wt% in H2O), choline hydroxide solution (46 wt% in H2O),  2-

hydroxy-3-morpholinopropanesulfonic acid (MOPSO, purity ≥ 99 %), 2-[bis(2-

hydroxyethyl)amino]ethanesulfonic acid (BES, purity ≥ 99 %), N-

[tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid (TAPSO, purity ≥ 99 

%), 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid (CAPSO, purity ≥ 99 %), 

potassium citrate tribasic monohydrate (C6H5K3O7·H2O, analytical grade), potassium 

phosphate monobasic (KH2PO4, analytical grade), potassium phosphate dibasic (K2HPO4, 

analytical grade), 4-nitrophenyl laurate (p-NFL, purity ≥ 98.0 %), 4-nitrophenol (p-NP, 

spectrophotometric grade), brilliant blue G-250 and the protein standard of bovine serum 

albumin (BSA) were supplied by Sigma-Aldrich. The enzyme used throughout this work was 

a lipase from P. cepacia (Burkholderia cepacia) powder purchased from Sigma-Aldrich. It 

should be highlighted that in this work P. cepacia is used, despite the fact that this 

microorganism was reclassified as Burkholderia cepacia, to maintain the commercial 

designation from Sigma-Aldrich, and thus the lipase name will be described along this work 

in accordance with the trade name, in order to allow the cross reference of these commercial 

lipase. Methanol (HPLC grade, purity ≥ 99.9 %), acetonitrile (HPLC grade, purity ≥ 99.9 %), 

dimethyl sulfoxide (DMSO), hydrochloric acid (HCL), ethanol, acetic acid, and 
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orthophosphoric acid were acquired from Fisher Scientific, and sodium hydroxide (NaOH) 

was purchased from Merck. Ultra-pure water treated by a Milli-Q integral water purification 

system was used throughout the work. All the stock solutions and buffers for polyacrylamide 

gel electrophoresis and pre-stained protein standards (broad range) were obtained from Bio-

Rad, and Proteosilver silver stain kit were purchased from Sigma-Aldrich. 

Methods 

Synthesis of GB-ILs 

 GB-ILs were synthesized by acid-base neutralization reaction of hydroxide solution of 

cations and GBs as detailed in Section S1 from Supporting Information (SI).  

GB-ILs’ buffering capacity  

The pH titration profiles were established using a potentiometric titrator (Metrohm, model 

904 Titrando) controlled using the Tiamo software version 2.3, and equipped with a 801 

stirrer with stand and 805 dosimat with an exchange unit of 20 mL, a pH glass electrode 

6.0262.100a temperature sensor 6.1114.010. The pH electrode was previously calibrated with 

aqueous solutions of standard buffers of pH 4.0 and 7.0. The acid-base titration was 

performed with 10 mL of an aqueous solution of each GB-ILs (0.05 M) in a double-walled 

glass vessel at two different temperatures, 25 and 37 °C, which were controlled using a 

thermostatic water bath. The titrants used were 0.05 M of NaOH and 0.05 M of HCl. The 

potentiometric titration measurements were performed in duplicate.  

Ecotoxicity analysis of GB-ILs 

The GB-ILs and GBs ecotoxicity was investigated using the standard Microtox liquid-

phase assay, which is based on the evaluation of the luminescence response of a marine 

bacteria, Vibrio fischeri strain NRRL B-11177, after exposure to each compound at 15 °C, as 

described elsewhere.38 The decrease in the toxicant concentration and the light output of the 

bacteria produced a dose/response relationship and the results were computed using the 
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Microtox Omni Software version 4.1 to calculate the effective concentration associated with a 

50% reduction in the luminescence from the marine bacteria V. fischeri, EC50, at the exposure 

time of 5, 15 and 30 minutes for all the GB-ILs and GBs. 

Enzyme activity of lipase in GB-ILs 

The lipolytic enzyme from P. cepacia was incubated in the aqueous solutions of phosphate 

buffers (K2HPO4/KH2PO4 mixture), GBs and GB-ILs (pH 7.0, at both concentration of 0.05 

M and 1.0 M) at 100 rpm at 25 ± 1 ºC for 4 hours and the residual enzyme activity was 

assayed. The experiments were performed in triplicate for each compound. The results are 

presented in relative enzyme activity, as described in eq. 1. 

Relative	enzyme	activity = 	 EA123456/126	(9.9;	</=.9	<)		
EA?@A6?@BCD	EFGGDH	(9.9;	</=.9	<)

 (eq. 1) 

Potential of GB-ILs in ABS formation 

The ability of GB-ILs to form ABS with potassium citrate (K3C6H5O7) was investigated 

and the experimental binodal curves determined using the cloud point titration method at 25 

± 1 ºC and atmospheric pressure. The experimental procedure of determining ABS with ILs 

was adopted from other works performed and validated by us,26, 39-40 using an analytical 

balance (Mettler Toledo, model AB204-S/FACT). All the calculations considering the mass 

fractions or molarity of the citrate-based salt were carried out discounting the complexed 

water presented in the commercial citrate-based salt. The experimental coexisting curves 

were fitted to eq. 2:  

IILL = A	expI(B × IKRCTH;OWL9.;) − (C × IKRCTH;OWLR)L (eq. 2) 

where IILL and IKRCTH;OWL are the weight fraction percentages of IL and potassium citrate, 

and A, B, and C are constants obtained by the regression of the experimental binodal curves. 

The tie-lines (TLs) and respective tie-line lengths (TLL) of several selected ternary phase 

diagrams were determined as described elsewhere.26-27, 40 
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Partitioning behaviour of lipolytic enzyme in GB-ILs-based ABS 

The total mass of GB-ILs-based ABS was 5.0 g and 0.1 wt% of commercial lipase from P. 

cepacia was added. The mixture pH was adjusted to 7.0 and measured at 25 ± 1 ºC using a 

pH meter (Fisher scientific, model accumet AB15 basic). The mixture was stirred in a vortex 

until all the components were dissolved. Then, the enzymatic solutions were centrifuged at 

2500 rpm for 15 min by a centrifuge (Eppendorf, model 5810 R), and placed in an incubator 

at 25 ºC for at least 12 hours to reach equilibrium. After this period, both phases were 

carefully separated and their volume and weight were measured, and prepared for enzyme 

activity assay and protein assay. Triplicate independent runs were performed for each 

partitioning test and the result was expressed as the average of the three assays.  

The partitioning behaviour of the lipolytic enzyme was studied by determining the partition 

coefficient of the enzyme, KE, and total proteins, KP, as defined by eqs. (3 and 4), and 

additionally, the enzyme recovery, RYZ , and protein recovery, RY[ , in the top GB-IL-rich phase, 

and well as the selectivity parameter, SE/P, were determined, as described by eqs. (5 to 7). 

KZ =
EAY
EA2

	 (eq. 3) 

K[ =
CY
C2

 (eq. 4) 

RYZ =
100

1 +	 1
R_KZ

 (eq. 5) 

RY[ =
100

1 +	 1
R_K[

 (eq. 6) 

SZ/[ =
KZ
K[
	 (eq. 7) 
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where EAY and EA2 are the enzyme activity at the top and bottom phases, CY and C2 are the 

total protein concentration at the top and bottom phases, and R_ is the volume ratio of top 

and bottom phases.  

Enzyme activity assay 

The lipase activity was spectrophotometrically assayed using a UV-Vis spectrophotometer 

(Shimadzu, model UV-1800), as described in our earlier work.41 The substrate solution was 

prepared by dissolving 0.018 g of p-NFL in 1 mL of DMSO and diluted 100 times in a 

phosphate buffer solution KH2PO4/K2HPO4 (50 mM and pH 7.0). The substrate solution was 

incubated at 37 ºC for 30 min. 200 µL of each sample was added into 2.8 mL of substrate 

solution and the linear range of absorbance variation at 410 nm during 150 s (∆Abs·min-1) 

was analysed. The enzyme activity is expressed in U·L-1, being one unit (U) of enzyme 

activity defined as the amount of enzyme that produces 1 µmol of p-NP per minute under 

standard assay conditions. 

Protein assay 

The protein concentration was determined by the Bradford’s method,42 using a UV-Vis 

spectrophotometer (Shimadzu, UV-1800) at 595 nm, and a standard calibration curve 

established using the standard protein BSA. To eliminate the influence of the ILs presence on 

the protein concentration analysis, a blank control system for each partition systems without 

enzyme was prepared under the same conditions used as reference for measurement.  

Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis  

The SDS-PAGE analysis was performed using hand cast polyacrylamide gel made of a 

12% revolving gel and a 4 % stacking gel, thus added to a vertical gel electrophoresis unit 

(Bio-Rad, model mini-PROTEAN tetra cell), as described by Laemmli,43 at 160 V for 1 hour. 

After the electrophoresis process, the gel was stained following the direct silver staining 

procedure.  
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Results and discussion 

Synthesis and characterization of GB-ILs 

The chemical structures of the synthesized GB-ILs depicted in Figure S1 in SI, were 

confirmed by NMR analysis as reported in Table S1 in SI. Unlike the previous work,32 all the 

GB-ILs in this study are liquids at room temperature, except [N4,4,4,4][TAPSO], 

[P4,4,4,4][TAPSO] and [Ch][CAPSO]. 

All GB-ILs studied are completely miscible with water. The potential of aqueous solutions 

of GB-ILs to act as a buffer media was investigated by determining their pH profiles, which 

corresponds to the titration of acid and base, at 25 ºC and 37 ºC. All the buffering properties 

data of GB-ILs and GBs are presented in Table S2 of the SI. As depicted in Figure 1(a), GB-

ILs with the same anionic species have identical buffering capacity at every single acid/base 

titration points as the respective GB, including their buffer region, midpoint of buffer region 

and buffer capacity.  

One of the important characteristics of the GBs is the temperature stability of their 

buffering capacity. This temperature independent character of the buffering ability is also 

displayed by GB-ILs, for which there is only a slight change in their buffering behaviour 

between 25 ºC and 37 ºC, as depicted in Figure 1(b) for the GB-ILs based on the MOPSO 

anion. This GB-ILs behaviour shows their potential as buffer media to be used at the 

optimum temperature of a specific enzyme.  

The (eco)toxicity of each GB-IL for 5, 15 and 30 minutes of exposure was assessed using 

Microtox bioassay and further compared with the respective GBs toxicity (EC50 data in unit 

of mg·L-1 and mmol·L-1, respectively, in Table S3 and Table S4 in SI).  In general, GBs 

demonstrate a toxicity decrease with the increase of exposure time from 5 to 30 minutes, 

which is explained by the marine bacteria adaptation to the solution. An inverse trend of 

toxicity-exposure time relationship was observed for tetrabutylammonium- and 
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tetrabutylphosphonium-based GB-ILs, exhibiting at the same time, an increase of toxicity 

with exposure time, which is justified by the fact that longer time periods of contact are 

essential for the toxicity mechanism to take place.44-45 On the other hand, cholinium-based 

GB-ILs show a nonlinear relationship of toxicity-exposure time and this complexity might be 

explained by the different trends found for this family44 and also probably due to the toxicity 

mechanism in which both cationic and anionic parts participate.    

To carry the analysis at the maximum effect of the GB-ILs towards the bacteria, the 

discussion will be based on the 30-minutes of exposure time (Figure 2). Taking into account 

the 30 min-EC50 > 100 mg·L-1 obtained, all GB-ILs studied can be classified as “practically 

harmless”.44 The results here reported suggest that the cation has a dominant impact on the 

GB-ILs ecotoxicity, following an increasing tendency of [Ch]+ < [N4,4,4,4]+ < [P4,4,4,4]+. It is 

noteworthy to mention that the incorporation of the cholinium into the structure of GBs 

contributes, in this case, to drastically reduce the toxicity of the salts while simultaneously 

magnifying the effect of the anions, following the identical trend of  increasing ecotoxicity 

exhibited by their respective GBs in the order: [CAPSO]- < [BES]- < [MOPSO]- < [TAPSO]-. 

These results are consistent with the model prediction conducted by Couling et al 46 where 

ILs toxicity decreases as the number of negatively charged atoms in the cation increases, and 

further strengthened by the experimental work stating that the cholinium cation (with 

negatively charged oxygen atoms) is relatively non-toxic. In addition, several works also 

reported that the toxicity increases with the elongation of the cation’s alkyl side chain47-48 and 

this is supported by the findings that hydrophobic compounds will attach or penetrate into 

membranes of aquatic organisms, resulting in the disruption of their metabolic activity.49 

Besides, the results suggest that the phosphonium salts were shown to have a more 

deleterious effect on the bacterial population compared to the ammonium counterpart, which 

is in good agreement with our earlier work.48  
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In contrast to the least toxic cholinium-based GB-ILs, the variation of the anionic species 

has a minimal effect on the toxicity of the GB-ILs comprised of [N4,4,4,4]+ and [P4,4,4,4]+ 

cations, which suggests that, for these particular GB-ILs, the toxicity is largely driven by the 

cation instead of the anion. In addition, those GB-ILs have different toxicity mechanisms 

since they do not follow the same ecotoxicity sequence of the respective GBs, described by 

the following trend: [MOPSO]- < [BES]- < [TAPSO]- < [CAPSO]-. Likewise, when compared 

to those reported earlier,32 for the GB-ILs with the same cation, the presence of the beta-

hydroxyl group in the anionic species of these GB-ILs in particular [MOPSO]-, [TAPSO]- and 

[CAPSO]- contributes to a higher toxicity, although this functional group exerts a decreasing 

effect on the GBs’ toxicity.  

Lipase enzyme activity in GB-ILs  

In the applications dealing with labile enzymes it is important that the enzyme-solvent 

system is capable to establish balanced interactions allowing the enzyme to retain its function 

and conformational structure.50 Phosphate buffer is commonly used in enzyme applications to 

keep the system’s pH constant, preventing the alteration/disruption of the enzyme’s surface 

properties. Moreover, the selection of the salting-out agent in IL-based ABS is limited by its 

effect on pH, and thus, often a phosphate buffer aiming at controlling the pH value of the 

coexisting aqueous phases is used.19, 51 Therefore, in order to examine the viability of self-

buffering GB-ILs as media for enzyme applications, the enzyme activity and stability 

parameters were investigated regarding the contact effect of 0.05 M and 1.0 M of water-GB-

ILs mixtures (pH= 7.0) after 4 hours of exposure, and the results were expressed in relative 

enzyme activity. Phosphate buffer in the same concentrations is used as control. The effects 

in water-GBs mixtures to enzyme were also studied. In this work, a lipase from P. cepacia 

was used as model enzyme. The class of lipases is widely recognized as a key enzyme as 
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biocatalyst in biotechnological applications due to its multiplicity of catalytic applications.41, 

52-53  

As depicted in Figure 3(a), the lipase exhibits a higher activity after 4 hours of exposure to 

some of the 0.05 M GB-ILs solutions, in particular GB-ILs based on the BES anion and 

[Ch][MOPSO], while a slightly lower relative activity was observed for the remaining GB-

ILs, when compared with the results attained with the phosphate buffer. Besides, the lipase 

displays a lower relative activity after being in contact for 4 hours in both 0.05 M and 1.0 M 

of GBs’ aqueous solution. This behaviour can be attributed to the kosmotropic/chaotropic 

effects,54 in which GBs comprising the sulfonate anion are more chaotropic than the 

phosphate anion and thus destabilize the enzyme.55 However, the incorporation of a bulky 

and hydrophobic cation into the GBs’ structure has a significant effect in improving the 

enzyme-stabilizing properties of the GB-ILs. This effect is even more pronounced at high 

concentration of GB-ILs. At 1.0 M, tetrabutylammonium and tetrabutylphosphonium families 

demonstrate a higher capacity to enhance the enzyme’s catalytic activity, with approximately 

(1.7 to 3.0)-fold higher activities when compared to phosphate buffer at the same 

concentration, as presented in Figure 3(b). These results clearly reveal that the enzyme 

activity is correlated with the hydrophilic/hydrophobic nature of the enzyme-solvent system 

on the water hydration level of micro-aqueous phase at the enzyme surface.56 The presence of 

tetrabutyl-ammonium and -phosphonium cations, comprising hydrophobic alkyl side chains, 

reduces the tendency to strip off the hydration water from the enzyme surface. On the other 

hand, cholinium-based GB-ILs with polar cations, especially at high concentrations, 

dehydrate the microenvironment at the enzyme surface causing enzyme deactivation. This 

behaviour explains the lower relative activity observed for the cholinium-based GB-ILs 

compared to their counterparts. The results here reported suggest that more hydrophobic GB-

ILs stabilize the enzyme whereas hydrophilic GB-ILs act as an enzyme destabilizer as 
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reported previously for other ILs.57 Additionally, the experimental results ascertain that 

tetrabutylammonium- and tetrabutylphosphonium-based GB-ILs contribute to the 

preservation of the enzyme active catalytic conformation in aqueous solution through 

balanced IL-enzyme interactions. Furthermore, the outstanding solvation ability normally 

found in ILs can enhance enzyme solubility and establish a better enzyme-medium-substrate 

relationship,15 and thus improve the enzymes catalytic efficiency. 

GB-IL based ABS  

The ability of GB-ILs to create ABS with biodegradable potassium citrate was investigated 

in order to assess the potential of the GB-ILs to create more efficient and sustainable ILs-

based ABS. The experimental weight fraction data for the studied systems are provided in the 

SI (Table S5). The experimental binodal data of these systems was adequately fitted to the 

mathematical model described by eq. 2. The corresponding parameters and the respective 

standard deviations and correlations are presented in the SI (Table S6). The general results of 

the ABS formation depicted in Figure 4 show that, apart from the cholinium-based GB-ILs, 

all the tetrabutylammonium- and tetrabutylphosphonium-based GB-ILs are able to undergo 

liquid-liquid demixing in presence of potassium citrate. The GB-ILs’ ability to form ABS 

with potassium citrate follows the rank: [N4,4,4,4][TAPSO] < [P4,4,4,4][TAPSO] < 

[N4,4,4,4][BES] < [N4,4,4,4][MOPSO] < [P4,4,4,4][BES] < [P4,4,4,4][MOPSO] < [N4,4,4,4][CAPSO] 

< [P4,4,4,4][CAPSO]. The ability of quaternary ammonium and phosphonium salts for ABS 

formation can be attributed to their higher hydrophobicity resulting from the four butyl side 

chains attached to the central heteroatom, leading to a low affinity for water and, 

consequently, displaying a higher tendency to be salted-out from the aqueous solution. 

Quaternary salts with phosphorus as the cation’s central atom have demonstrated a higher 

hydrophobic nature when compared to ammonium salts48 and thus are more effective in 

promoting the ABS formation.26 Cholinium cations, which are smaller in size and present a 
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polar hydroxyl group at the side chain, have a higher affinity for water which reduces their 

ability to induce ABS formation with citrates. Nevertheless, cholinium-based GB-ILs are 

capable to form ABS with more hydrophobic phase components.31, 33  

The influence of the ILs anion’s nature on the ABS formation is also dominated by the 

system hydrophobicity/hydrophilicity39. Thereby, the GB-ILs aptitude to induce ABS, for the 

same cation, follows the anions hydrophobic sequence: [TAPSO]- < [BES]- < [MOPSO]- < 

[CAPSO]-, reflected by the octanol-water partition coefficient: TAPSO (log P = −2.81) < 

BES (log P = −2.52) < MOPSO (log P = −2.05) < CAPSO (log P = −0.36).58 Additionally, 

the effect of the anion’s nature on ABS phase behaviour is correlated with the relative 

hydrogen bond accepting strength of the IL’s anion.59 The anionic species with greater 

hydrogen bond accepting strength, in this case [TAPSO]-, present larger ability to form 

stronger interactions with water and to create hydration complexes, and therefore they are not 

easily salted-out (for more details see Table S7 of the SI).  

Partitioning studies of lipase from P. cepacia in GB-ILs based ABS 

The applicability of GB-ILs based ABS in purification system dealing with labile enzymes 

was evaluated through the determination of the partitioning of lipase from P. cepacia in GB-

ILs-based ABS. Several GB-ILs-based ABS were selected considering their buffering 

capacity at pH 7.0. For all the six selected GB-ILs/potassium citrate ABS, the biphasic 

mixture chosen for the lipase partitioning corresponds to the TLs with similar TLL, namely 

between 40.23 and 42.65, in order to guarantee identical compositions of each component 

and similar surrounding environment conditions for the enzyme partition. The shorter tie-line 

was chosen as the operation biphasic mixture for the partitioning studies to minimize the 

difference in physical properties between the two phases and maximize the water content, 

providing a gentle environment for the enzyme. All the ternary phase diagrams for the 

selected ABS composed by GB-ILs with the TLs determined and the respective operation 

Page 15 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 

 

two-phase point are presented in SI (Figure S2). It should be highlighted that for all ABS 

studied, the top layer is the GB-IL-rich phase, whereas the bottom represents the salt-rich 

phase. As aforementioned, a commercial lipase from P. cepacia was applied as a model 

enzyme and the respective SDS-PAGE analysis is reported in SI (Figure S3). It is clearly 

seen the presence of the target lipase from P. cepacia at circa 33 kDa, which is consistent 

with the literature,60 and several less pronounced bands representing the contaminant 

proteins. Since the lipase used in this study is of commercial purity, the expectable 

purification in the GB-ILs-based ABS is limited.  

Table 1 presents the phase compositions of GB-IL/potassium citrate ABS, the respective 

TLL, partition coefficients and recovery yields of both enzyme and total proteins, and as well 

as the purification factors and selectivity parameters. In all the investigated systems, the 

lipolytic enzyme partitions preferentially to the GB-IL-rich (top) phase. The enzyme displays 

partition coefficients, between 29.3 ± 1.9 and 119.5 ± 7.0, while the enzyme recovery yields 

at the GB-IL-rich phase ranges from 95.7 ± 0.3 (%) to 99.2 ± 0.0 (%). The total protein 

recovery yields achieved at the GB-IL-rich phase range between 93.4 ± 0.7 (%) and 97.1 ± 

0.1 (%), based on the partition coefficients ranging from 18.3 ± 0.6 to 36.9 ± 1.6. The results 

for enzyme and total proteins recovery yields at the GB-IL-rich (top) phase are similar, since 

almost all the lipolytic enzyme (protein exhibiting lipolytic activity) migrates to the top 

phase. As described before, the main goal of using ABS based in the GB-ILs was the 

evaluation of their potential as purification systems, meaning their capacity to isolate the 

target enzyme from the remaining proteins (here considered as the contaminants present in 

the system). As the protein partitioning in ABS can be described as a surface-dependent 

phenomenon,61 it can be proposed that the preferential partition of lipolytic enzyme into GB-

IL-rich phase is mainly due to the hydrophobic interaction with the hydrophobic groups of 

GB-ILs. Furthermore, bigger proteins with negative charges on their surface will tend to have 
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higher affinity to the IL-rich phase, mainly because of the driving force established by the 

interactions between negatively charged amino-acid residues and the IL’s cation.15 Thus, the 

extent of the enzyme isolation from the contaminant proteins is here discussed by considering 

the SE/P presented in Table 1.  

The results obtained demonstrate that all of these systems, especially those based on the 

BES anion, in particular [N4,4,4,4][BES] and [P4,4,4,4][BES], are more selective to the target 

enzyme than to total proteins, thus showing a selective capacity to isolate the target lipase 

from the main contaminants. It should be highlighted that, despite the limited selectivity 

parameters observed in this study, these results suggest that, with the adequate optimization 

of different conditions, it will be possible to increase the purification capacity of these ABS. 

In this context, this work proposes the development of an integrated process scheme 

considering the industrialization of this process, combining the self-buffering and enzyme-

stabilizing properties of the GB-ILs as media of the catalytic reaction step. In this process, the 

advantages of GB-ILs as extraction solvents in ABS, thus allowing the enzyme recycling and 

the products purification is envisaged, as depicted in Figure 5. This process will allow the 

recovery of most of the GB-ILs, since the recyclability of the top layer,  enriched in GB-ILs 

is possible to be totally achieved, which will be decreasing the economic impact and 

environmental footprint of the process.62   
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Conclusions 

GB-ILs were synthesized with anions derived from Good’s buffers (MOPSO, BES, 

TAPSO, and CAPSO) and coupled with tetrabutylammonium, tetrabutylphosphonium and 

cholinium cations. It was shown that these “practically harmless” GB-ILs possess 

temperature independent self-buffering characteristics and exhibit an enzyme-stabilizing 

effect for retaining the catalytic activity of lipase from P. cepacia. Besides, these GB-ILs are 

capable to form ABS with a biodegradable citrate salt and present a significant selectivity on 

the isolation of the target lipolytic enzyme from P. cepacia into GB-ILs ascertaining the 

potential of these GB-ILs-based ABS as purification technologies. The ABS technique based 

on GB-ILs can be a feasible alternative to replace the conventional ABS using phosphate 

buffer for the extraction of the biomolecules in particular enzymes. The experimental data 

reported suggest that GB-ILs should be further explored for their application in enzyme 

catalysis and/or bioseparation technology, due to their great advantageous properties. 
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Table 1. Experimental results of the partition, purification and selectivity parameters of lipase from P. cepacia between both aqueous phases of 

GB-ILs-based ABS, and respective standard deviations, σ. 

GB-ILs IL (wt %) K3C6H5O7 

(wt %) 

TLL bc ± std de ± std bfe  ± std (%) dg ± std bfg  ± std (%) SE/P 

[N4,4,4,4][MOPSO] 24.40 20.00 42.08 0.65 ± 0.02 34.0 ± 3.9 95.7 ± 0.3 25.1 ± 2.3 94.2 ± 0.7 1.35 

[P4,4,4,4][MOPSO] 29.68 15.00 40.23 1.58 ± 0.00 29.3 ± 1.9 97.9 ± 0.3 18.3 ± 0.6 96.6 ± 0.3 1.60 

[N4,4,4,4][BES] 27.00 20.00 41.44 1.05 ± 0.00 115.7 ± 6.0 99.2 ± 0.0 32.4 ± 0.9 97.1 ± 0.1 3.57 

[P4,4,4,4][BES] 24.00 20.00 42.65 0.68 ± 0.00 119.5 ± 7.0 98.8 ± 0.1 36.9 ± 1.6 96.2 ± 0.2 3.24 

[N4,4,4,4][TAPSO] 31.69 20.00 41.08 0.93 ± 0.03 82.1 ± 3.5 98.7 ± 0.1 35.1 ± 2.7 97.0 ± 0.2 2.34 

[P4,4,4,4][TAPSO] 29.20 20.00 41.97 0.60 ± 0.00 41.7 ± 3.0 96.1 ± 0.3 23.6 ± 2.8 93.4 ± 0.7 1.77 
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Figure 1. The pH acid-base titration profiles of (a) tetrabutylammonium-based GB-ILs and the 

GBs at 25 ºC; (b) GB-ILs based on the MOPSO anion and the respective GB, MOPSO, at 25 ºC 

and 37 ºC. The titrant volumes from 0-6 mL are for titration of the 0.05 M GB-ILs/GBs aqueous 

solutions with 0.05 M NaOH, whereas -1 mL entries correspond to the volumes of 0.05 M HCl 

added into aqueous solution of GB-ILs/GBs (reverse titration). 
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Figure 2. EC50 experimental values towards the bioluminescent marine bacteria, Vibrio fischeri, 

at 30 min of exposure time to cholinium-based GB-ILs (green bars), tetrabutylammonium-based 

GB-ILs (blue bars), tetrabutylphosphonium-based GB-ILs (red bars) and GBs (grey bars). 
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Figure 3. Relative enzyme activity of a lipase from P. cepacia after being in contact for 4 hours 

with (a) 0.05 M and (b) 1.0 M of aqueous solutions of cholinium-based GB-ILs (green bars), 

tetrabutylammonium-based GB-ILs (blue bars), tetrabutylphosphonium-based GB-ILs (red bars) 

and GBs (grey bars). A phosphate buffer solution was used as control, regarding the same 

conditions described for the GB’s and GB-ILs samples, namely 4 hours of contact and (a) 0.05 

M and (b) 1.0 M. 
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Figure 4. Experimental binodal curves of the systems composed of GB-IL + K3C6H5O7 + water 

at 25 ± 1 (ºC): ( ) [N4,4,4,4][TAPSO], ( ) [P4,4,4,4][TAPSO], ( ) [N4,4,4,4][BES], ( ) 

[N4,4,4,4][MOPSO], ( ) [P4,4,4,4][BES], ( ) [P4,4,4,4][MOPSO], ( ) [N4,4,4,4][CAPSO], ( ) 

[P4,4,4,4][CAPSO]. 
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Figure 5. Conceptual process diagram of the integrated use of GB-ILs as buffers in a general 

catalytic reaction and as ABS formers promoting the recovery of the lipase. 
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GB-ILs are advantageous compounds to be used as extraction solvents in ABS, allowing their 

application in enzyme catalysis and in bioseparation technology. 
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