
An Online Learning Platform for Teaching, Learning,

and Assessment of Programming

Philip E. Robinson

Department of Electrical & Electronic Engineering Science

University of Johannesburg

Auckland Park, South Africa

Email: philipr@uj.ac.za

Johnson Carroll

Faculty of Engineering and the Built Environment

University of Johannesburg

Auckland Park, South Africa

Email: jcarroll@uj.ac.za

Abstract— In this paper the use of an open-source online

learning platform to aid in teaching and assessment of computer

programming in large classes is discussed. The pedagogical

philosophy of how the subject of computer programming is

taught is presented. Based on the skills and learning processes

that are identified for effective teaching of computer

programming, a strategy for employing modern web technology

coupled with an automated assessment capability to meet these

goals is discussed. The paper describes the technology and

implementation of the learning platform and new methods for

automated assessment of programming assignments and exams.

Finally, the application of the system to achieve the pedagogical

goals and the benefits of using the system for teaching large

classes is reported.

Keywords— Online Learning Platform, Automated Assessment,

Programming

I. INTRODUCTION

Teaching large classes is a challenging exercise, they
inherently limit the amount of personal attention a student can
expect from the lecturer or teaching assistants. The teaching of
computer programming is particularly challenging in this
environment for several reasons. First, programming is a topic
that requires an unusually rapid progression through the first
three learning levels of Bloom’s taxonomy [1] through to
application. It is only at this point that the subject matter can be
clearly linked to the broader context of solving engineering and
computing problems. Such a rapid progression requires
significantly more hands-on practice than other subjects, as
developing skills and fluency allow a student to approach,
deconstruct, and solve more complex programming problems.
This hands-on approach to solving problems through tinkering
and actively engaging in the making of an artefact that solves a
problem builds the intuition needed to become a competent and
adept programmer.

 In large programming classes one encounters the additional
problem of a scarcity of computer resources for students, which
can place a hugely problematic constraint on assessment
methods. Authentic and constructively aligned assessment of
programming should emulate the setting in which students
might write programs in the real world: on a computer with the
instantaneous feedback from the programming environment,
iterative submissions, and a debugging or trial-and-error
approach to producing functional programs. However, many
programming classes are assessed using traditional written

exams despite many lecturers’ discomfort with that approach
[3]. Written assessments also have a significant administrative
disadvantage in that the process of grading these assessments is
a laborious and extremely time consuming process. The
authors have noted that grading a typical written programming
exam for a 400-student class can require up to 40 man-hours.

This paper describes the design and implementation of an
open-source online learning platform for teaching and
assessing programming. The platform allows for online
completion of programming assignments using automated
assessment tools, allowing both the standard
compiler/interpreter feedback as well as customized contextual
instructor guidance. We describe the pedagogical approach
underpinning the design of the platform, as well as the
technical details of how the platform is implemented. The
platform was utilized for both formative and summative
assessments in an introductory programming class of 400
engineering students. We describe both the benefits and
challenges encountered when utilizing the platform, and
describe some of the additional information available from the
online system that would not be available through traditional
assessment methods. This additional data provides ample
scope for future research into how students learn to program.

The remainder of this paper will be structured as follows.
Section II will present the pedagogical philosophy that is
employed in the implementation of the online platform. Section
III will describe the implementation of the system. Section IV
will discuss how the system meets the pedagogical goals laid
out in Section II and, finally, Section V will provide some
concluding remarks.

II. PEDAGOGICAL APPROACH

The process of learning the skill of computer programming
involve understanding only a handful of basic concepts.
However, these concepts form only a small part of the true
complexity of solving programming problems. Even the simple
programming problems will contain many emergent issues. It
is effectively impossible to exhaustively teach all the possible
permutations of instructions and algorithmic structures that can
solve a given programming problem of moderate complexity.
Hence, students of programming each construct their own body
of knowledge and understanding which expands when the
student encounters and overcomes additional problems.
Particularly in the modern, internet-connected learning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/85146734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:philipr@uj.ac.za
mailto:jcarroll@uj.ac.za

environment, the process of learning programming can be
neatly described by Papert’s constructionism [2], where
learning occurs through creatively solving problems rather than
the transmission and reception of knowledge. This construction
of knowledge is most reliably achieved when the learner is
experiencing the process of constructing a meaningful product
rather than reproducing a rote learned series of concepts [2]. To
foster these processes, a teaching and learning strategy should
allow a student to tackle problems in an environment where
they can explore and tinker with their solutions while receiving
real-time guidance.

The method used to assess a student’s level of
understanding of a topic is also an important factor to consider
when designing a teaching and learning strategy. We consider
two key characteristics of programming assessment:
authenticity and constructive alignment, ala Biggs [12]. In
order to be authentic, assessment of programming ability
should allow the student to tinker with a solution with the
benefit of feedback from the compiler or interpreter. This is a
far more authentic situation than a written test, as a
programmer is rarely (if ever) asked to produce a working
program on paper. Further, if the natural method of learning
programming is through a constructionist process of
experimentation and problem solving, then the assessment
should also take place in a context which allows the same type
of experimentation during the assessment. If the format of the
summative assessment mirrors both the formative assessment
as well as the instructional setting, the educational outcomes
and assessment should be inherently and easily aligned.

The online learning system presented in this paper
addresses the pedagogical concerns of both the learning
environment and assessment of programming. As described in
the coming sections, the system emulates a development
environment, allowing the student to engage with the
programming tasks in a setting comparable to real-world
programming environment. In addition to the built-in compiler
and interpreter feedback, the system also allows the instructor
to devise automated guidance to help students overcome
common problems. The exact same system can be used for
formal assessment, ensuring that the students are assessed in a
realistic manner that is aligned with their learning process.

III. STRUCTURE OF THE ONLINE LEARNING SYSTEM

Over the years, various automated programming evaluation
systems have been devised and implemented. Surveys such as
[4] and [13] describe dozens of automated assessment tools and
studies. As noted in [4], these projects often have a limited
lifespan or restricted applicability due to the short-term or
limited nature of the overall project, frequently a single class or
postgraduate research field. However, as indicated in [13], the
trend toward online education has renewed and expanded
interest in effective, automated, online assessment of
programming. Unfortunately, the technical exposition of the
systems is usually lacking, making it difficult to reproduce
and/or customize the system without substantial duplication of
effort. Here, we present a full technical description of the new
system, focusing on the non-standard features and system
structures that allow the system to be utilized in both formative
and formal summative assessment.

The system described in this work is based on the popular
Moodle open-source learning platform. This platform was
developed by Dougiamas, who decided to build a free and
open-source learning platform focused on constructivist
pedagogical principles [5]. Moodle is licensed under the GPL
written for the GNU project [6], this protects the rights of end
users to run, study, share and modify the software. This open-
source principle has fostered a large and active development
community surrounding the Moodle project with constant
active contribution to the core code-base and many community
developed plug-ins that extend the capabilities of the platform
in a variety of ways.

Moodle itself is a PHP-based Course Management System
(CMS) that can be deployed on a variety of operating systems,
web servers and database systems. The full source code is
available for free and is well documented which allows for end
users to tinker with the system if they so please. However, easy
one-click automated installation packages have also been
created by companies like Bitnami to make deployment
exceedingly simple [7]. Moodle provides all the core features
one would expect from a CMS, which includes robust user
management, diverse content management tools, scheduling
tools, a variety of assessment tools, messaging, a grade
management system, integration of plug-ins and support for e-
learning module standards like SCORM [8].

This open community has led to the development of many
useful plug-ins for Moodle, and the system described in this
paper is based on a Moodle plug-in called the Virtual
Programming Lab (VPL) developed and maintained by
Rodríguez-del-Pino [9].

A. Virtual Programming Lab (VPL) Plug-In

The VPL plug-in is a system designed to present and assess
programming assignments through the Moodle platform. The
plug-in consists of three main elements. The first is the main
plug-in module that runs on the Moodle server; the second is
an editor component that allows for the editing of source code
in the browser. Finally, there is the jail server that acts as a
sandbox environment that executes the student’s code.

The main plug-in module of VPL, which runs on the
Moodle server, manages the descriptions of the assignments,
the marking scripts and protocols, the grading process,
scheduling settings, access restrictions, similarity checks and
controls how a student’s code will be executed on the jail
server.

The editor is an integral part of the VPL plugin and
provides a capable in-browser editor environment that supports
syntax highlighting for the various supported languages and
multiple file support through tabs. The editor allows students to
edit the assignment source code, provides the interface to the
development environment to receive feedback from compilers
or interpreters and allows the student to submit assignments for
automatic assessment, feedback and grading.

The final element of the VPL system are the jail servers.
These are the servers that the VPL plug-in transmits a student’s
code to for execution. These servers are where the toolchains
for the various supported languages are installed. As of the
writing of this report, VPL can currently execute 27 languages

with varying levels of support for syntax highlighting,
debugging and graphical user interfaces [10]. Executing
student’s code is a risky endeavour for a server as students are
prone to producing bad code that can inadvertently
compromise an operating system through memory leaks,
infinite loops or system calls. Some students are also bound to
test the limits of an execution environment and attempt to
execute malicious code on the server. Therefore, VPL servers
execute code in a chroot jail1. In this way, the VPL system can
control the maximum allowed system resources that a given
student program can use and protect the jail system from
erroneous or malicious code during execution.

The VPL system supports using multiple jail servers for a
single Moodle environment and manages the load balancing
between these servers when many students are using the
system simultaneously. When a student submits a program for
execution it is transmitted to the jail server along with the
execution scripts created by the instructor. These scripts are
then used to execute the code using the appropriate compiler or
interpreter. The output of the program, compiler or interpreter
is then sent back to the student with a standard command-line
interface [9]. VPL has recently added support for graphical
output from programs in addition to the command line
interface. This is achieved by using the VNC remote access
software that is built into most modern Linux distributions.
This interface then streams a basic windows environment back
to the student’s browser allowing them to interact with the
graphical elements of the environment they are currently
engaged with.

The VPL system also includes a source code similarity
measurement system which is used to analyse the submissions
for a given assignment and report back on their relative
similarities using an easy to navigate interface. This tool makes
it possible to determine which students submitted plagiarised
code with a minimal time investment [9].

For use of VPL in strict testing environments, the plug-in
includes the standard Moodle activity security features that
provide the ability to control access to an activity using a
password and to limit access by network addresses. This allows
an instructor to limit access to an activity to a specified set of
computers, such as those in the lab where the assessment is
being conducted. VPL can also disable the ability to copy and
paste text in the editor, which ensures that a student was the
author of an activity [9].

B. Automated Assessment using VPL

The real power of VPL as a tool for teaching and assessing
programming assignments is in its automated execution and
assessment capabilities. VPL runs a student’s code using a
BASH script to prepare the source files, compile the code (or
send it to the relevant interpreter) and then execute the code.
The standard output stream of this process is then provided to
the student via a console window in their browser where a
student can interact with the running program. When a program
is being assessed, a different BASH script is used to compile

1 A chroot jail is a feature in the Unix operating system that

allows one to isolate a process and limit its access to the file

system and system resources [9].

and execute the program. This assessment script will then
provide automated input to the program and evaluate its
behaviour for grading purposes [9].

Out of the box VPL includes default run, evaluation and
debugging scripts for all the supported languages. A standard
format for defining basic evaluation test cases is also provided.
Using the built-in evaluation scripts involves defining a series
of test cases where the input provided to the program is defined
along with the expected output that the program should print to
the standard output stream. Grading conditions are provided for
each test case. VPL includes a C++ grading program which
takes in the specified test cases and uses them to evaluate a
student’s submission and automatically grade the
submission [9]. While this capability provides an easy way to
quickly produce automatically assessed programming
assignments it is very limited. Input can only be provided via
the standard input stream and the output is naively assessed as
a single output numeric or direct string comparison. This
means that for a student to be graded as correct their program’s
output must conform exactly to the specified solution output
with no extra spaces or new-line characters. This can often lead
to confusion: defining the exact form of the required output can
be challenging, and students will often not understand the
formatting issues created by spaces and new-line characters
which are difficult to spot in a text console.

Unfortunately, the execution script side of VPL is not very
well documented and the only real source of information
provided comes in the form of the default run and evaluation
BASH scripts provided with the VPL source code. Luckily,
Thiébaut has recently published some of his work on using this
feature of VPL and the website accompanying this work has
provided several tutorial examples of how the execution scripts
used by VPL can be employed for custom evaluation of
activities [11].

In VPL each activity has three default scripts created to
manage the various modes of execution

• vpl_run.sh and vpl_debug.sh are called when the
student clicks Run or Debug in the editor. These scripts should
prepare the submitted source code and execute it using the
appropriate toolchain. These execution modes allow the student
to interact with the program using a console.

• vpl_evaluate.sh is called when the student clicks the
Evaluate button which indicates they are ready to grade their
submission. This script should execute the submission and
evaluate its behaviour to produce a grade that is recorded in
Moodle.

For custom evaluation to be conducted one must edit the
vpl_evaluate.sh BASH script. The execution scripts work by
producing an executable script called vpl_execution that VPL
will execute in the chroot jail. The vpl_execution executable
will contain the BASH commands to prepare the submitted
source code for execution, execute it and then evaluate its
output. This script must then print comments and the final
grade to the standard output stream. The comments are
presented to the student in the browser and VPL will parse the
grade which is recorded in Moodle. Thiébaut tackles the
evaluation of interpreted languages and compiled languages

using different approaches [11]. For interpreted scripting
languages, Python in Thiébaut’s case, it is very easy to write a
custom evaluation script in the same language and then import
and execute the submitted code within the evaluation script.
This is convenient because using the same programming
environment enables the evaluation script to natively examine
variables in memory or other mechanics of the submitted code.
When dealing with a compiled language, Java in Thiébaut’s
case, he conducts all his evaluation using the BASH script by
compiling the submission code, running the resulting
executable and piping the program’s output into a text file.
Because BASH scripts do not have access to the internal
variables of a program or the standard input and output streams
of a program the BASH script cannot directly interact with a
running program. This means that the input to the program
must be provided as command line arguments or in the form of
a text file. The output of the program is piped into a text file
and Linux commands like diff are used to compare the

output to a model output file to determine the resulting grade.
This method of grading is effective, but relying solely on the
BASH script means that all evaluation logic and interaction
with the submitted program must be done using the command-
line interface in Linux, making it quite clumsy for complex
evaluation.

In this work we build on the techniques proposed by
Thiébaut and present an approach to running and evaluating
both compiled submissions and interpreted submissions using a
more capable scripting environment that allows for the
implementation of more complex evaluation logic. This is done
by including additional evaluation scripts for VPL to use
during the evaluation process. VPL allows for the inclusion of
additional files for evaluation, but one must just tell VPL which
of these files must be sent to the jail server during execution in
the Advanced Settings menu.

The course being presented using this system covers the
Octave language and the C language which are an interpreted
language and a compiled language respectively. First the
evaluation of an Octave activity is presented as this is the
simplest case for a custom evaluation script and can be seen in
Code Snippet 1 and Code Snippet 2.

In Code Snippet 1 the BASH script that is executed is
shown. For an interpreted language the custom evaluation
script is launched using the relevant interpreter. The snippet
also demonstrates how an environment variable is passed,
containing the current student’s ID, to the evaluation script.
These variables are made available by VPL by including the
common_script.sh script. The custom evaluation script for this
activity is shown in Code Snippet 2. This activity required the
student to generate the first ten Fibonacci numbers and place
them in an array called result. With an interpreted language it
is possible to execute the students script within the evaluation
script. A try-catch clause could be used to gracefully catch any
errors but if an error occurs the error stream will be presented
to the student in the editor. This script contains a model answer
that is directly compared to the students answer and feedback is
provide by using the Comment tags. The final grade is
reported using a Grade tag which VPL then records in
Moodle. This approach is very flexible and it is possible to test

the submitted code in a variety of ways and incorporate
intelligent feedback and a variety of grading strategies.

When it comes to a compiled language like C, the

submission must first be compiled before evaluation. In Code

Snippet 3 an example of this process is shown. The program is

compiled using the GCC compiler and the output of the

compiler is piped into a dummy text file. This text file is then

printed on the standard output stream as feedback for the

student. The BASH script then checks if the compilation

succeeded by confirming that the executable exists. For

grading the BASH script then calls a custom Python script that

will execute the compiled program.

Code Snippet 1: Example of vpl_evaluate.sh for an Octave submission

Code Snippet 2: Example of customEval.m for an Octave assignment.

#! /bin/bash

 . common_script.sh

cat > vpl_execution <<EOF

#! /bin/bash

octave -q customEval.m $MOODLE_USER_ID

EOF

chmod +x vpl_execution

%Call the students submission script

main

%Model answer, calculate the first 10

%Fibonacci numbers

ansResult = [0, 1];

for i = 3:10

 ansResult(i) = ansResult(i-1)+ \

ansResult(i-2);

end

%Perform grading

grade = 0;

if exist('result')

 if isequal(ansResult,result)

 printf('Comment :=>> Your answer

is correct!\n');

 grade = 100;

 else

 printf('Comment :=>> Your result array

is not correct!\n');

 end

else

 printf('Comment :=>> The result does not

exist!\n');

end

printf('Grade :=>> %d\n',grade);

Code Snippet 3: Example of vpl_evaluate.sh for a C submission

Code Snippet 4: Example of a custom Python evaluation script

(customEval.py) for a compiled C activity

In Code Snippet 4 an example of a Python script being

used to evaluate a compiled C program is shown. Firstly, the

model answer is calculated and then the Subprocess Python

Module is used to execute the student’s compiled program

while providing input arguments and reading the output from

the student’s program. The output is then parsed, cleaned up

and analysed for grading purposes. The example shows a very

basic clean up and parsing of output stream. The stream is

split by new lines, any empty terms are removed and the

strings are then converted to integers. This parsing process can

be far more robust: it can validate the output stream’s contents

and can be made more resilient to variations in formatting and

incorrect data types.

In the next example we will demonstrate a more

complicated evaluation script, which will demonstrate passing

standard input to the submitted program and inserting

diagnostic code into the submitted source code before

compilation. Unlike interpreted languages that can be

executed directly by the evaluation scripts (and which

therefore have direct access to the variables in memory),

gaining access to the data stored in variables in compiled

programs is more difficult. Generally, when a script runs a

compiled executable, the only interface between the script and

the running program is via command line arguments passed

when the program is executed or using the standard input and

output streams. Being able to examine the state of internal

variables in the program is not directly possible. However, the

evaluation scripts are able to modify the submitted source

code before compiling it and executing it. This means that one

can programmatically insert diagnostic code into the student’s

submitted code to aid in the evaluation process.

Code Snippet 5: Starting code provided for second example array question in C
language.

Code Snippet 6: Example of vpl_evaluate.sh for a C submission which test
compiles the submitted code, runs a python script to insert diagnostic code into
the submitted code and then compiles and evaluates the modified submission.

Code Snippet 5 shows the code given to the students for an
assignment. In this question the students are provided with the
code to generate a 20-element array of randomly generated

#! /bin/bash

 . common_script.sh

cat > vpl_execution <<EOF

#! /bin/bash

gcc main.c -o testProg 2> dummy.out

cat dummy.out

if [-e testProg]; then

 echo "No Compile Error"

 python3.4 customEval.py $MOODLE_USER_ID

fi

EOF

chmod +x vpl_execution

import sys

import subprocess

#Model answer to calculate first 10

#Fibonacci Numbers

ansFibonacci = [0, 1]

for i in range(2,10):

ansFibonacci.append(ansFibonacci[i-1] \

+ansFibonacci[i-2])

p = subprocess.Popen(["./testProg"], \

stdout=subprocess.PIPE,stdin= \

subprocess.PIPE,universal_newlines = \

True);

output = p.communicate(input='10')[0];

#The following lines split the output

#stream using \n as a delimiter and

#removes any empty terms

terms = output.split('\n')

terms = [i for i in terms if i != '']

terms = [int(i) for i in terms]

if terms == ansFibonacci:

 print("Comment :=>> Correct answer!")

 print("Grade :=>> 100")

else:

 print("Comment :=>> Incorrect!")

 print("Grade :=>> 0")

#include <stdio.h>

int main() {

//Do not change any of the

//following code!

 srand(time(NULL));

 int data[20],index=0;

 while(index<20) {

 data[index++] = rand()%199+1;

 }

 //Provide your code below

}

#! /bin/bash

 . common_script.sh

cat > vpl_execution <<EEOOFF

#! /bin/bash

#Check that the students code compiles

gcc -w main.c -o testProg 2> dummy.out

cat dummy.out

if [-e testProg]; then

 echo "No Compile Error"

 #Run script to insert diagnostic code

 python3.4 parseCode.py

 #Compile modified code

 gcc -w newMain.c -o testProg

 #Run evaluation script

 python3.4 customEval.py

fi

EEOOFF

chmod +x vpl_execution

integers. The assignment then asks the students to accept as
input from the standard input stream an integer between one
and nine. They must then write the code to count how many
multiples of that number are present in the array and print out
the resulting count. Providing the code to generate the array
that the student needs to work with gives the student an insight
into how the data is structured and stored, and making the data
randomly generated means they cannot hardcode a solution to
suit a static data set. The evaluation of this problem will
present two new challenges. Firstly, when the evaluation
Python script executes the compiled submission it must provide
the random number via the standard input stream. Secondly, to
calculate the correct answer for the current randomly generated
data set the evaluation script needs to access the data in the
array.

To gain access to the contents of variables in a compiled
program we will need to insert some diagnostic code into the
submitted code which writes the data to a file which the
evaluation script can then open and read in. Code Snippet 6
shows the BASH script for this example. Firstly, the BASH
script compiles the unmodified code to confirm there are no
errors present. If the code compiles, the BASH script runs
parseCode.py which is the script that inserts our diagnostic
code. Once the code is modified the BASH script compiles the
new code and then calls our evaluation Python script
(customEval.py) to run the result and perform the evaluation.

Code Snippet 7: Python script (parseCode.py) that inserts diagnostic code into
the submitted code. The code is inserted at the end of the main() function and
writes the contents of the data array to a file for the evaluation script to
examine.

Code Snippet 7 shows the script that inserts the diagnostic
code. This script opens the student’s submission source code
file, reads it in and separates it into lines. It then searches
through the code to find the last closing brace which will
indicate the very end of the program. The script then inserts the
diagnostic code, which opens a new text file and writes all the
values data array values into the text file. The code includes a
strangely named integer variable which is so named as to make
it unlikely to clash with any variables declared by the student.
When the modified code is compiled and executed the contents
of the data array variable will be written to a text file which the
evaluation script can access.

Code Snippet 8 (shown on full page) shows the evaluation
script for this example. The first thing this script does is
generate a random integer between one and nine to pass to the
student’s program when it is run. The Subprocess Python
module is used to run the compiled executable and the
communicate() function includes the ability to transmit data
via the standard input stream as is shown here. The next step is
for the script to calculate the model answer for this randomly
generated input and the values in the data array. The script
opens and reads the contents of the text file generated by the
diagnostic code. It then calculates the model answer for this
data set. The script then reads in the values output by the
submitted program. The script confirms that only one value
was output by the program (otherwise the script returns a
message to the student and assigns a grade of 0). The script
then compares the student’s answer to the model answer, and
an appropriate message and grade are provided.

The final example presented in this paper is for an Octave
assignment. The example will demonstrate how to use a Python
script to parse the Octave code to validate certain elements of
the submission, insert diagnostic code and communicate these
results to the Octave based custom evaluation script.

Code Snippet 9: Starting code provided for third example which is an Octave
based sorting question.

 The assignment given for this last example consists of
provided code that generates an array of random integers,
which can be seen in Code Snippet 9. The students are then
tasked with writing the code to sort that array in descending
order using the “Insertion Sort” algorithm. If the student sorts
the array using any other algorithm they will receive half
marks. The students are forbidden from using the built in sort()
function. Code Snippet 10 (shown on full page) shows the
Python script used to enforce the conditions of the question and
insert the diagnostic code. First the script reads in the submitted
source code and checks if the critical line has been modified or
not. Next the script looks for any occurrence of a call to the
sort() function. Finally, the results of these checks are written
to mat file which can be easily opened in the custom Octave
evaluation script.

import sys

#Open the students source code

f = open('main.c','r')

#Read it in and split it by newlines

codeMain = str(f.read())

mainLines = codeMain.split('\n');

f.close();

#Parse the code and find the last

#closing brace

lastLine = 0;

for i in range(0,len(mainLines)):

 if(mainLines[i].strip() == '}'):

 lastLine = i

#Insert the code to write the contents

of the data array to a text file

mainLines.insert(lastLine-1,'FILE

*out;out = fopen("data.txt","w");

int ixx;for(ixx=0;ixx<20;ixx++) {

fprintf(out,"%d\\n",data[ixx]);}

fclose(out);')

#Write the modified source code to a

new file

newMain = open('newMain.c','w')

for l in mainLines:

 newMain.write(l+'\n')

newMain.close()

%Provided random matrix, do not tamper\

with this line!

R = round(rand(1,15)*100+1);

%Only modify the values in the data\

array. Do not modify R.

data = R;

Code Snippet 8: Custom Python evaluation script (customEval.py) that reads in
the array data that was written to file by the diagnostic code inserted into the
student’s submission to calculate the correct answer for grading purposes.

Code Snippet 10: Python script to parse a student’s source code submission to
check if the provided code was tampered with, insert diagnostic code to allow
for characterising what type of sort algorithm was used and to confirm that the
student did not use the built-in sort() function as was specified in the question.

import sys, subprocess, random

#Run the modified source code passing a

#random value via standard input stream

in_val = random.randint(1,9)

p = subprocess.Popen(["./testProg"],\

stdout=subprocess.PIPE,stdin= \

subprocess.PIPE,universal_newlines \

= True)

output = p.communicate\

(input=str(in_val))[0]

#Read in the array data from text file

data_file = open('data.txt','r');

data = str(data_file.read())

data = data.split('\n')

#Separate out the integer terms

terms = [i for i in data if i != '']

terms= [int(i) for i in terms]

#Calculate the correct answer

multiple_count = 0

for i in range(0,len(terms)):

 if terms[i]%in_val == 0:

 multiple_count = multiple_count + 1

#Print the output from the submission

#for reference by the student

output = output.split('\n')

output = [i for i in \

output if i != '']

print("Comment :=>> You Printed:");

for n in output:

 print("Comment :=>> " + n)

print("Comment :=>> ---------------")

#Convert input strings to integers

for i in range(0,len(output)):

 output[i] = int(output[i])

#Check only a single number was output

if len(output) > 1:

 print("Comment :=>> Printed too

many numbers....question says to only

print the number of multiples in the

array.");

 print("Grade :=>> 0")

elif len(output) <= 0:

 print("Comment :=>> You didn't

print any numbers.")

 print("Grade :=>> 0")

else:

 if output[0] == multiple_count:

 print("Comment :=>>

Correct!")

 print("Grade :=>> 100")

 else:

 print("Comment :=>> Printed

answer not correct")

 print("Grade :=>> 0")

import sys

#Open the students source code

fMain = open('main.m','r')

#Read it in and split it by newlines

codeMain = str(fMain.read());

mainLines = codeMain.split('\n')

fMain.close();

#Test to see if the provided code was

#tampered with

codeTamper = 0; flag = 0;

if len(mainLines) > 1:

 if mainLines[1].strip() != "R =

round(rand(1,15)*100+1);":

 codeTamper = 1

#Check if sort() function was used

usedSort = 0;

#Clear out all spaces, tabs, newlines

noSpace = codeMain.replace(" ","");

noSpace = noSpace.replace("\t","");

noSpace = noSpace.replace("\n","")

sortPos = noSpace.find('sort(')

if sortPos >= 0:

 usedSort = 1

#Find the line containing the last END

#statement, which is where we will

#insert the diagnostic code

TooManyEnds = 0; count = 0; index = 0

for i in range(0,len(mainLines)):

 if mainLines[i].strip() == 'end':

 count = count + 1

 index = i

if count!=3:

 TooManyEnds = 1

else:

 #Insert diagnostic code

 mainLines.insert(3,'swapMatrix=[];')

 mainLines.insert(index+1,'swapMatrix

= [swapMatrix; R==data];')

#Write modified code to new file

fMain = open('newMain.m','w')

for l in mainLines:

 fMain.write(l+'\n')

fMain.close()

#Write the parsing flags to file

fOut = open('parse.out','w')

fOut.write(str(codeTamper) + '\n' + \

 str(TooManyEnds) + '\n' + \

 str(usedSort))

fOut.close()

load parse.out %Load the output of the parseCode.py script

if parse(1) == 1

 printf('Comment :=>> You tampered with the top lines of provided code!\n');

 printf('Grade :=>> %d\n',0);

elseif parse(2) == 1

 printf('Comment :=>> Your code is not in the correct form for an Insertion Sort

algorithm. The algorithm consists of two loops (nested) and an If statement\n');

 printf('Grade :=>> %d\n',0);

elseif parse(3) == 1

 printf('Comment :=>> Do not call the sort() function!\n');

 printf('Grade :=>> %d\n',0);

else

 newMain %Execute and Evaluate submission

 %Save the current random matrix, rerun student code, load old random matrix

 R_old = R; save r_old.mat R_old; clear all; newMain; load r_old.mat

 %Students sometimes declare variables with core function names

 clear sum prod floor

 if(isequal(R_old,R))

 printf('Comment :=>> You have changed the code that generates Random Matrix! Do

not change the values generated for the random matrix!\n');

 printf('Grade :=>> %d\n',0);

 else

 %This is the model answer which also builds the swap signature for the current

 %data

 myData = R;

 mySwapMatrix = [];

 for i = 2:length(myData)

 for j = i:-1:2

 if myData(j) > myData(j-1)

 temp = myData(j-1);

 myData(j-1) = myData(j);

 myData(j) = temp;

 else

 break;

 end

 end

 mySwapMatrix = [mySwapMatrix; R==myData];

 end

 grade = 0;

 if(isequal(mySwapMatrix,swapMatrix))

 printf('Comment :=>> Array was correctly sorted using Insertion Sort!\n');

 grade = 100

 elseif(isequal(myData,data))

 printf('Comment :=>> Array was correctly sorted using another form of sort!

Partial marks awarded\n');

 grade = 50

 else

 printf('Comment :=>> Array is not being sorted in descending order using the

Insertion Sort algorithm! This could be because you are sorting in ascending order

OR that you are not using the Insertion sort algorithm\n');

 end

 printf('Grade :=>> %d\n',grade);

 end

end Code Snippet 11: The Octave based custom evaluation script for the third example. This script reads in the results of the Python script that parsed the submitted

code and provides appropriate messages where needed. It then confirms that the data set is indeed random by running it twice and checking that the output is

different. It then uses the data set to build a model signature of the sorting process and compares it to the signature produced by the diagnostic code. IF the correct

sorting algorithm was used the student receives full marks. If the array is sorted with a different algorithm they will receive half marks.

 In order to detect which sorting algorithm was employed
some diagnostic code will be inserted at the end of the outer
For loop. The script counts how many End clauses there are in
the code; for an insertion sort algorithm there should be exactly
three such clauses. The inserted diagnostic code records the
changes in the array for each iteration. This provides a
signature which is unique to the sorting algorithm used and can
be used to determine if the insertion sort was employed. The
modified code is written to file to be executed by the custom
evaluation script which can be seen in Code Snippet 11 (shown
on full page).

The first thing the custom evaluation does is load the file

which contains the flags produced by the validation process. If

any of the three validation conditions have been detected the

appropriate message is given to the student and they receive a

zero grade. Next, the script will run the student’s submission.

In order to confirm that the random data set is indeed random,

another phase of validation is performed. The data set is

recorded to file. The student’s submission is run a second time

and the new data set is compared to first data set. If the data

set is truly random these arrays’ will be different. If they are

not, then it indicates that the student has manipulated the

contents of the dataset. They receive an appropriate error

message and grade. The script then calculates the model

sorting signature for the random data set. If the student’s

submission matches this sorting signature, then they receive

full marks. If they sorted the algorithm using a different

algorithm but the array is sorted correctly, they will receive

half credit. Otherwise they have not met the question

specifications and will receive a zero grade. This example

demonstrates a number of further validation possibilities and

the capability of providing partial credit to students who meet

certain sub-objectives of a question.

IV. APPLICATION OF LEARNING SYSTEM TO PEDAGOGICAL

GOALS

This section will discuss how the learning system supports

the pedagogical philosophy described in Section II. The first

major benefit of the system is that it lives in the cloud and is

accessible from any decently sized device that can run a

modern web browser. This means that students have access to

a code editor and the relevant toolchains from any internet

connected computer without needing to install any specialized

software. This has greatly increased the access to these

technologies, especially for students who have limited

resources at their disposal.

The system was built to support a constructionist

pedagogical philosophy and does so far better than traditional

assessment of programming. The automated assessment tools

can provide real-time feedback from the compiler/interpreter

and built-in clues and guidance from the instructor, meaning

that students can work at their own pace to solve programming

problems but are given appropriate feedback every step of the

way. An instructor can write scripts that detect common

mistakes and provide clues on how to address these common

errors to the student. In this way, the student can work at their

own pace and work towards a solution on their own terms and

when they have solved a problem the system will inform them

of the fact. This is important because often students are not

able to identify when a problem is adequately solved and by

having the system automatically inform them they get the

satisfaction of having solved a problem on their own without

having to be told days later that they were successful through a

manually graded assignment.

The system also provides an appealing alternative to

traditional partial credit grading. Paper-based assessments are

inherently submitted once, and the submitted work must be

evaluated as is. With the system presented here, students can

be expected to correct small mistakes based on the compiler or

instructor feedback and produce (and test) a working program.

This expectation of a working solution fosters learning to

develop an understanding rather than incentivizing

memorization to earn partial credit. Note that the system does

not preclude partial credit: an instructor can build assessments

that assess levels of completion of a programming task, or

allow for common mistakes (as in the sort example). This

flexibility caters for all levels of student performance but still

ensures that each student is producing at least basic complete

programs. The automation also means that it becomes possible

to very quickly and consistently assess the level of capability

that a student has demonstrated through their performance. If

deemed appropriate, grading schemes can also be adapted to

include number of incorrect submissions or compilation

attempts, code efficiency, submission time, and more; the

combination of the course management system and scripting

environment is remarkably flexible.

The system also provides a trove of data about student

participation and progress, keeping track of almost every

action a student takes. This data can definitively answer

questions about student participation and progress which

might traditionally rely on self-reporting from students. For

example, how does the number of revision activities

completed relate to the student’s performance in a test

situation? Fig. 1 shows this data extracted for the first test for

the C language outcome. There is a clear trend showing that

the more a student has participated and completed the revision

activities the better they will perform on the test. This kind of

data allows an instructor to seek objective feedback on the

teaching strategies they employ.

The final benefit that the authors would like to report is the

time saved administering assessments. In the authors

experience, grading a traditional paper-based exam for 400

students could take between 30 and 50 man-hours of tedious

work (plus additional time to set the test paper). Due to the

size of available computer labs, the same 400-student class

was assessed in three separate sessions, but even setting up

three unique assessments with automated assessment only

required around 10 man-hours of work. Additionally, once test

questions are prepared on the system they can be reused either

as revision questions or assembled into a database from which

to randomly draw future assessments.

Figure 1: A plot of number of revision problem completed vs the average test

mark achieved; a red line indicates the linear regression fit.

V. CONCLUSION

This article describes the implementation of an online

learning system that enables the automated teaching and

assessment of computer programming tasks for large classes.

The pedagogical philosophy employed by the authors in

teaching programming is described and how the implemented

system addresses the goals of this philosophy is discussed.

The learning system is implemented using the open source

learning platform Moodle and an open source plug-in, VPL,

which supports the execution and assessment of a large variety

of programming languages. The author describes the VPL

system and how the scripting engine used by VPL can be used

to build flexible and robust automatically assessed

programming activities. A number of new techniques for

building these evaluation scripts are presented in detail,

allowing future efforts to reproduce and expand upon this

work.

The benefits of the system for use in a large class are also

discussed. Firstly, the system increases the amount of real-

time feedback the students receive which is significantly

higher than in the traditional model where a single lecturer and

a handful of tutors can only provide limited attention to the

large number of students in a class. The students can learn and

experiment with the work at their own pace and in their own

way. The amount of administration work is significantly

reduced for the lecturer and content produced can be reused in

many ways. Finally, the system provides a trove of data that

can be used to ask interesting questions about the class to aid

in self-reflection and course execution.

REFERENCES

[1] B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, D.R. Krathwohl,
Taxonomy of education objectives: The classification of educational
goals. Handbook I: Cognitive domain. New York: David McKay
Company, 1956.

[2] S. Papert, “Constructionism: A New Opportunity for Elementary
Science Education,” Massachusetts Institute of Technology, Media

Laboratory, Epistemology and Learning Group: National Science
Foundation, Award 8751190, 1986.

[3] J. Sheard, Simon, A. Carbone, D. D'Souza, and M. Hamilton.
“Assessment of programming: pedagogical foundations of exams,” in
Proc. of the 18th ACM conference on Innovation and Technology in
Computer Science Education (ITiCSE ‘13), 2013, pp. 141-146.

[4] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. “Review of
recent systems for automatic assessment of programming assignments,”
in Proc. of the 10th Koli Calling International Conference on
Computing Education Research (Koli Calling ’10), 2010, pp. 86-93.

[5] E. Costello, “Opening up to open source: looking at how Moodle was
adopted in higher education,” in Open Learning: The Journal of Open,
Distance and e-Learning, Vol. 28, Issue 3, 2013.

[6] (2016) The GNU Licenses Website. [Online]. Available:
http://www.gnu.org/licenses/licenses.en.html

[7] (2016) Bitnami Website. [Online] Available: https://bitnami.com/

[8] (2016) SCORM Website. [Online] Available:
http://www.adlnet.gov/adl-research/scorm/

[9] J.C. Rodríguez-del-Pino, R-R. Enrique, and H-F. Zenón, “A Virtual
Programming Lab for Moodle with automatic assessment and anti-
plagiarism features,” in Proceedings of the 2012 International
Conference on e-Learning, e-Business, Enterprise Information Systems,
& e-Government, 2012.

[10] (2016) VPL Plug-In website. [Online] Available: http://vpl.dis.ulpgc.es/

[11] D. Thiébaut, "Automatic evaluation of computer programs using
Moodle's virtual programming lab (VPL) plug-in," Journal of
Computing Sciences in Colleges, Vol. 20, Issue 6, 2015.

[12] J.B. Biggs, C. Tang, Teaching for quality learning at university: What
the student does. McGraw-Hill Education (UK), 2011.

[13] T. Staubitz, H. Klement, J. Renz, R. Teusner and C. Meinel, "Towards
practical programming exercises and automated assessment in Massive
Open Online Courses," Teaching, Assessment, and Learning for
Engineering (TALE), 2015 IEEE International Conference on, Zhuhai,
2015, pp. 23-30.

R² = 0.8076

0

10

20

30

40

50

60

70

80

0 10 20 30

A
v

er
ag

e
te

st
 m

ar
k

 (
%

)

Number of activities completed

https://bitnami.com/
http://vpl.dis.ulpgc.es/

