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Abstract: The evolving multiphase induction generators (MPIGs) with more than three phases are 
receiving prominence in high power generation systems. This paper aims at the development of a 
comprehensive model of the wind turbine driven seven-phase induction generator (7PIG) along 
with the necessary power electronic converters and the controller for grid interface. The dynamic 
model of the system is developed in MATLAB/Simulink (R2015b, The MathWorks, Inc., Natick, 
MA, USA). A synchronous reference frame phase-locked loop (SRFPLL) system is incorporated for 
grid synchronization.  The modeling aspects are detailed and the system response is observed for 
various wind velocities. The effectiveness of the seven phase induction generator is demonstrated 
with the fault tolerant capability and high output power with reduced phase current when 
compared to the conventional 3-phase wind generation scheme. The response of the PLL is 
analysed and the results are presented. 

Keywords: multi-phase induction machine; synchronous reference frame; induction generator; 
PWM inverter; seven phase rectifier; PLL; grid. 

 

1. Introduction 

Electric power generation gained by exploring the use of renewable energy sources is a viable 
solution for reducing the dependency on fast depleting fossil fuels and to adhere to environmentally 
friendly conditions [1]. Among all existing non-conventional sources, wind has latent qualities that 
can be utilized to meet the heaping energy demand [2]. Self-excited induction generators (SEIGs) are 
usually deployed for wind energy conversion systems in standalone applications with their inherent 
characteristics as mentioned in [3,4]. Later they also operated in a grid connected mode for 
distributed power generation in hybrid micro grids [5]. However, they are suitable for low and 
medium power applications [4]. Multiphase induction generator (MPIG) with more than three 
phases is a potential contender which combines the advantages of MPIG with SEIG technologies to 
yield an efficient, reliable, and fault tolerant machine that has diverse applications [6–9]. Multiphase 
systems can be employed for different applications, such as offshore energy harvesting, electrical 
vehicles, electric ship propulsion, and aircrafts. The earlier proposed research works describe the 
supremacy of multiphase machines for obtaining a better reliable performance [10–22]. 

As a consequence, MPIG research has evoked interest among researchers in the recent past 
which has culminated into gradual but steady progress in this field. However, the available 
literature suggests that finite modeling approaches should be implemented for MPIG analysis. 
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The d-q model of the six phase induction generator with a dual stator and single rotor has been 
presented in many papers [23,24–26]. The performance of the six phase dual stator induction 
generator has been investigated in [25–27]. Dynamic analysis of the six phase induction generator for 
standalone wind power generation was investigated in [28], while steady state performance analysis 
of the machine, and its experimental validation have been carried out in [29–31]. 

The most challenging requirement for wind electric systems is the low voltage ride through 
capability that requires generators to remain connected during grid faults and to contribute to the 
system recovery. Unbalanced voltage conditions and dips in the grid can have significant negative 
effects on the performance of induction generators. These effects can decrease the lifetime of 
sensitive components in the wind energy converter in the long term and in extreme cases, they can 
cause damage and tripping of the system, leading to violation of the grid code requirements [32–35]. 

The grid integration of wind electric generators (WEG) is a critical aspect in the planning of a 
wind power generation system. The variation in production and higher intermittency of wind 
generation makes it difficult for grid integration. Hence it is necessary to provide the appropriate 
synchronization techniques such that the system maintains constant frequency and voltage to ensure 
stable and reliable operation of the grid [36,37]. A good synchronization method must detect the 
frequency and phase angle variations proficiently in order to reduce the harmonics and disturbances 
for safe operation of the grid. Further simple implementation and cost decides the reliability of the 
synchronization schemes [38]. The power transfer between distributed generation and the grid is 
enhanced by a good synchronization method. Earlier known zero crossing detectors have adverse 
power quality issues in a weak grid. Nowadays, phase-locked loop (PLL) is one of the generally 
used techniques and it controls the distributed power generation system and other applications. 
Several types of PLL are analysed in [37,38]. This paper aims to develop a PLL based grid connected 
seven phase WEG where PLL enables the frequency and voltage synthesis. 

A d-q model of the seven-phase induction generator (7PIG) with the stator windings phase 
shifted by 51.42° is developed. A simulation is carried out to study the performance under varying 
wind velocities. The voltage build up process is shown. The generator voltage, current, and power 
output is presented under varying load conditions. The reliability of the machine under a fault 
condition is examined with one or two phases open. The results are compared with the three phase 
generator. The power electronic interface, namely the seven phase rectifier, boost converter, and the 
three phase neutral point clamped (NPC) inverter are simulated for varying modulation indices and 
the results are explored. The synchronous reference frame (SRF) PLL is designed to track the phase 
angle and frequency. The PLL response analyses various grid conditions such as unbalanced grid 
voltages, voltage sags, line to line (LL) faults, and line to line ground faults (LLG), and the results are 
explored. 

2. Proposed System Description 

Figure 1 shows the proposed multiphase AC power system for wind power application. The 
grid connected seven phase wind generation system considered for the study, consists of a wind 
turbines that is driven by a 7PIG through a gearbox. The generated seven phase AC output is 
rectified by the seven phase rectifier and filtered by an LC filter. The filtered and boosted DC output 
voltage is injected through a three phase inverter to the grid with proper synchronization through 
SRF PLL. The inverter is controlled using the synchronous d-q reference frame approach. The phase 
lock loop technique that is incorporated synchronizes the inverter and the grid. The high frequency 
ripple at the inverter is filtered. The filtered output of the inverter is fed into the grid through a 
step-up transformer. 
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Figure 1. Seven Phase Grid Connected Wind Electric Generator. 

3. Modeling of System Components 

The mathematical modeling of the seven phase wind generator components, namely the wind 
turbine, seven phase induction generator, seven phase rectifier, and three phase inverter and PLL 
are discussed in the following sections. 

3.1. Wind Turbine 

The following equation defines the power output of the wind turbine, which is the aerodynamic 
power developed on the main shaft of the wind turbine: 

30.5 ( )turP AC Vp wρ λ= , (1)

Cp is a dimensionless power coefficient that depends on the wind speed and constructional 
characteristics of the wind turbine. For the wind turbine used in this study, the following form 
approximates Cp as a function of λ  known as the tip-speed ratio, which depends on the rotor speed 
of the turbine and the wind speed. 
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where, turρ : Air density (kg/m3); Vw—wind speed (m/s); R—Radius of the wind turbine rotor (m); 

A—Area swept out by the turbine blades (m2); Cp: power coefficient defined by Equation (2); λ—Tip 
speed ratio given by Equation (3); turω : angular rotor speed of the turbine (rad/s); β : The blade 
pitch angle (degree). 
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3.2. 7PIG Model 

A 7PIG has seven stator windings sinusoidally distributed with a phase displacement of 51.4° 
(360°/7) and the rotor is short circuited for the squirrel cage induction machine. The 7P induction 
machine operating as a generator is represented as a two phase equivalent circuit. The ds-qs 
represent the stator direct and quadrature axes and dr-qr represents the rotor direct and quadrature 
axes. The transformation of the seven phase stationary reference frame variables to a two phase 
stationary reference frame is given by Equation (5). The assumptions made in modeling 7PIG are the 
same as those given in [8,39–41]. The modeling of 7PIG is carried out using a d-q equivalent circuit, as 
shown in Figure 2 [39–41]. 
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where α = 2π/n; n = number of phases; s and r represent stator and rotor quantities, respectively; d-q 
represents a direct and quadrature axis. 

Equations (5) and (6) define the stator side voltages 

  qs s qs ds qsV R i pωλ λ= − + + , (6)

  ds s ds qs dsV R i pωλ λ= − − + , (7)

Equations (7) and (8) define the rotor side voltages 

( )   qr r qr r dr qrV R i pω ω λ λ= + − + , (8)

( )  dr r dr r qr drV R i pω ω λ λ= − − + , (9)

The voltage equations for dynamic performance analysis under balanced conditions are 
represented in a stationary reference frame (ω = 0). The rotor side voltages Vqr and Vdr are zero for the 
squirrel cage induction generators. The rotor side quantities are referred to as stator reference frame. 
The flux linkage expression as a function of the current is given by Equations (10)–(15). 

( )   ls qs mqs qr qsL i L i iλ = − + − , (10)

( )       ds ls ds m dr dsL i L i iλ = − + − , (11)

( )    qr qrlr m qr qsL i L i iλ = + − , (12)

( )   dr dlr rr m d dsL i L i iλ = + − , (13)

( )m L  + dm ds dri iλ = , (14)
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( )m L  + qm qs qri iλ = , (15)

 
Figure 2. d-q-axis Equivalent Circuit of Seven-Phase Induction Generator (7PIG). 

The leakage inductance of the stator and rotor are assumed to be constant. The degree of 
magnetic saturation decides the magnetizing inductance Lm and it is a non-linear function of the 
magnetizing current, which is given by the following equation 

( ) ( )2 2I   
m qr qs dr dsi i i i= + + + , (16)

The non-linear piecewise relationship between the magnetizing inductance and the current (Lm, im) 
is given by 
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The developed electromagnetic torque of the 7PIG is defined by 

( )7    
2 2g m qs d r ds qr

P
T L i i i i

 
 


= − −


, (18)

A negative (-ve) sign indicates generation action. 

   r lr mL L L= + , (19)

   s ls mL L L= + , (20)

3.3. Modeling of the Shunt Capacitor and Load 

The modeling equations of the voltage and current of the excitation capacitor and the load in 
the d-q-axis are given by Equations (21)–(26) 

1  qs cqs dspV i V
C

ω  − 
 

= , (21)
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The 7P voltages are transformed to 2P using Equation (27). 
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4. DC Link Converter 

The power electronics based interface system, namely the DC link converter, involves a seven 
phase rectifier, three phase inverter, and a DC-DC boost converter. The uncontrolled seven phase 
rectifier converts the seven phase AC output of the generator to DC and is boosted by the boost 
converter. 

4.1. Seven Phase Diode Bridge Rectifier 

A variable magnitude, the variable frequency voltage at the seven phase induction generator 
terminal, is converted to DC using a seven-phase diode bridge rectifier [42–45]. The voltage Vrec at 
the output is given by Equation (28) in terms of the peak phase voltage Vds of the generator. The LC 
filter reduces the output voltage ripple of the seven phase rectifier. 

/14

/14

1 1.949 cos( ) ( )
(2 /14)rec dsV V t d t

π

π

ω ω
π −

=  , (28)

1.932rec dsV V= , (29)

4.2. DC-DC Boost Converter 

A DC-DC boost converter (Figure 3) steps up the input voltage depending on the duty ratio, 
inductor, and capacitor values [40]. The output voltage of the boost converter is given by 

1
rec

dc

V
V

δ
=

−
, (30)
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where, Vrec—Input voltage from the seven phase rectifier; δ—Duty cycle of the switch. The 
inductance and capacitance are determined using Equations (31) and (32). 
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Figure 3. Power Circuit of Boost Converter. 

4.3. Three Level Neutral Point Clamped Inverter 

The DC input is given to this inverter from the DC/DC converter (Figure 3) and the three phase, 
three level output obtained is given to the grid through a step-up transformer. The modulation index 
of the reference signal is varied to control the output voltage of the inverter and is given by Equation 
(33) 

aModulation Index, M

2

m

dc

V
V

= , (33)

where, Vm—Peak value of the Phase voltage (V); Vdc—Input Input DC voltage/Output of the Boost 
converter. 

5. Grid Interface Using PLL 

The effective power transfer between the grid and the source can be realized by the efficient 
synchronization technique. The most familiar method is tracking of the phase angle using the PLL 
which synchronizes the voltage and frequency of a given reference and output signal. A phase 
detector, loop filter, and voltage controlled oscillator (VCO) together make a basic PLL system, 
wherein the phase detector generates an error signal by comparing the reference and output signal. 
The harmonics of the error signal are eliminated by the loop filter. Depending on the output of the 
loop filter, the VCO generates the output signal. The basic structure of the PLL circuit is shown in 
Figure 4. A linear PLL is usually used in a single phase system, whereas a three phase system 
employs an SRF PLL or otherwise a d-q PLL. 

 
Figure 4. Basic Phase Locked Loop (PLL) Structure. 
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Synchronous Reference Frame (SRF/d-q) PLL 

In the synchronous frame PLL, Clarke’s transformation [39] is applied to the three-phase 
voltage vector to transform abc to the αβ stationary reference frame. Park’s transformation changes 
αβ to the d-q rotating frame, as shown in Figure 5. The feedback loop controls the angular position of 
the d-q reference, making the q-axis component zero in the steady state. The d-axis will be the voltage 
amplitude during steady state conditions. 

 
Figure 5. Synchronous Reference Frame (SRF)/d-q PLL Structure. 

The d- and q-axis components are defined by the following equation under balanced conditions. 

ˆ ˆ ˆcos      sin cos cos( )
ˆ ˆ ˆsinsin    cos sin( )

d

q

V U U

V U U

θ θ θ θ θ
θθ θ θ θ

   −   = =      
− −         

, (34)

where U, θ —amplitude and phase of the input signal; θ̂ —PLL output; and d,  are the d- and 
q-axis components. 

The phase is denoted by the q-axis and the amplitude in steady state is denoted by the d-axis 
error. The generalized voltage vector under unbalanced utility conditions (without voltage 
harmonics) is represented by 

0 V V V V+ −= + + , (35)

The positive, negative, and zero sequence components are represented by subscripts +, −, and 0. 
The αβ component using Clarke’s transformation is given by 
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The zero-sequence component is neglected as it is on the γ-axis. The expression of the voltage 
vector on the αβ-plane is: 

/

cos cos
( )

sin sinabc

U U
V T V V

U Uαβ αβ

θ θ
θ θ
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+ −

+ + − −

+ 
= + =  + 

, (38)

The αβ frame is transformed to the d-q frame using Park’s transformation. 
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ω is the angular frequency of the voltage vector and ˆ tθ θ θ ω+ −= = = . 

6. Simulation Result 

The modeling equations of the various system components are simulated with the parameters 
given in Appendix A. The individual component models are analysed and integrated to study the 
performance of the seven phase wind electric generator. The simulation results are discussed in the 
following sections. 

6.1. Wind Turbine 

A 250 kW wind turbine is simulated using the Equations (1)–(4) for various wind speeds and 
rotational speeds. Figure 6 shows the power curves of the wind turbine at various wind speeds. The 
rated power of 250 kW is achieved at the rated wind speed of 15 m/s and 40 rpm. The wind turbine 
produces the maximum power at various rotational speeds for the different wind speeds. 

 
Figure 6. Wind Turbine Power Output vs. Wind Velocity (Wind Speed). 

6.2. Seven Phase Induction Generator 

The mathematical equations represented by Equations (5)–(27) are used to develop a 
mathematical model of the seven phase induction generator from the d-q equivalent circuit shown in 
Figure 2. The performance of 7PIG is investigated under various operating conditions. 

The rated speed of 1018 rpm with the excitation capacitance of 2332 µF is given as the input to 
the generator and the voltage and current of the 7PIG are obtained at no load and are presented in 
Figure 7. The self-excitation process begins at time t = 0, and the stator voltage builds and the steady 
state value of 419 V (peak) and a current of about 165 A is reached at t = 2.2 s with the phases 
mutually displaced by 51.4° (2π/n). 

The 7PIG is loaded at t = 3 s with the excitation capacitance held constant at 2332 µF. At t = 3 s, 
the terminal voltage of the stator is reduced from 419 volts to 386 volts and the current increases from 
165 A to 241 A. The steady state is reached at t = 2 s as shown in Figure 7a,b. The generated torque 
and speed of the generator are represented in Figure 7c,d which show that for increasing the load, 
the speed of the generator decreases with an increase in the torque. The line voltages of the seven 
phase induction generator varies for the adjacent (Vab = 0.8676 Vm) and non-adjacent sides (Vac = 
1.5629 Vm) and (Vad = 1.949 Vm), which is clearly illustrated using the results shown in the Figure 8a–c. 
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(a)

(b)

(c)

(d)

Figure 7. 7PIG (a) Output Voltage; (b) Current; (c) Generator speed; (d) Generator Torque. 
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(a)

(b)

(c)

Figure 8. Generated Line Voltage of 7PIG Adjacent Side and Non Adjacent Side (a) Vab; (b) Vac; (c) Vad. 

6.3. Fault Tolerant Operation of 7PIG 

The most important ability of the multiphase phase generator is that it continues to operate 
even after the fault occur in one (or more) phase(s), whereas three-phase machines can hardly 
continue their operation. Under the faulty conditions, the additional degrees of freedom available in 
MPIG are efficiently used for the post fault operating strategy. One-, two-phases are open circuited 
Vc, Vc and Vd at t = 3 s for the seven phase induction generator for the investigation test. It is clear from 
the obtained numerical results by Figures 9 and 10 that the generator continues to operate with the 
reduced phase current in amplitude for continuous propagation under open circuit faulty conditions. 

The performance of the seven phase induction generator is compared with the three phase 
generator in terms of generating voltage and current. The per phase voltage of the three phase and 
seven phase system remains the same whereas the current per phase is reduced, as clearly shown in 
Figure 11a,b. 
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Figure 9. Fault Current of 7PIG with One Phase Open (Vc). 

 
Figure 10. Fault Current of 7PIG with Two Phases Open (Vc and Vd). 

(a)

(b) 

Figure 11. (a) Seven Phase Current vs. Three Phase Current for Varying Wind Velocity; (b) Three 
Phase Voltage vs. Seven Phase Voltage. 
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6.4. DC Link Converter 

The generated seven phase AC output is fed as an input to the seven phase rectifier which 
converts AC to DC. The rectified DC output voltage feeds the boost converter. The boost converter 
output voltage and current of 845 V and 279 A is achieved, as shown in Figure 12a,b. 

 
(a) 

 
(b) 

Figure 12. (a) Boost Voltage; (b) Boost Current. 

6.5. Grid Integration 

The grid tied inverter is the power electronic converter that converts the DC signal into AC, but 
with the appropriate synchronizing techniques. It is basically used in the integration of renewable 
energy to the utility line. The magnitude and phase of the inverter voltage should be the same as that 
of the grid and its output frequency should be equal to the grid frequency for proper grid 
synchronization. The output phase voltage of the inverter is 365 V (peak) and a current of about 508 V 
(peak) is achieved at a 0.85 modulation index with a DC input of 845 V as shown in Figures 13 and 14. 
The line voltage of the inverter is given by Figure 15. 

 

Figure 13. Vdc and Modulation Index. 
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Figure 14. Inverter Output Voltage and Inverter Current. 

 
Figure 15. Inverter Line Voltage. 

The d- and q-axis voltage of the d-q PLL and frequency tracking is shown in Figure 16. The 
voltage and current drawn by the load connected at the point of common coupling is shown in 
Figure 17. The grid voltage and current are shown in Figure 18. The power injected into the grid is 
about 196 kW, which is shown in Figure 19. 

 
Figure 16. Graph of Vd, Vq, and Frequency. 



Energies 2017, 10, 926 15 of 21 

 

  

Figure 17. Load Voltage and Load Current. 

  

Figure 18. Grid Voltage (Vgrid) and Grid Current (Igrid). 

 

Figure 19. Power injected into the Grid. 

6.6. SRF PLL Performance under Various Grid Conditions 

The grid is subjected to different fault conditions to investigate the performance of the SRF PLL. 
Figure 20a shows the frequency and phase detection variation during a line to line fault. It is clear 
from the figure that phases B and C are in phase with each other and their magnitude is less than 
phase A, whereas the magnitude of phase of B and C are zero during a line to line ground fault as 
shown in Figure 21a. The voltages of the d-q-axis also vary, as it contains second harmonic ripples as 
given by Equation (35), which is illustrated by Figure 20b and Figure 21b. 
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(a)

(b)

Figure 20. (a) Frequency and Phase Angle Variation during a Line to Line Fault; (b) q-axis and d-axis 
Voltage Magnitude during a Line to Line Fault. 

During unbalanced grid voltage condition, the sinusoidal nature of the q-axis voltage 
component affects the output of the PI controller. Therefore, the PI controller generates a sinusoidal 
error signal, angular frequency is shown in Figure 22a,b, which is similar to that of the line to line 
fault. 

(a)
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(b)

Figure 21. (a) Frequency and Phase Angle Variation during a Line-Line ground LLG Fault; (b) q-axis 
and d-axis Voltage Magnitude during a LLG Fault. 

 
(a)

 
(b)

Figure 22. (a) Frequency and Phase Detection Variation during Unbalanced Grid Voltages; (b) q-axis 
and d-axis Voltage Magnitude during Unbalanced Grid Voltages. 

The SRF PLL performance during voltage sag is shown in Figure 23a,b. Voltage sag occurs in 
the grid such that the magnitude of all phase voltages are equal and their magnitudes are 50% of the 
nominal voltage. It is noticed that it does not cause any oscillations in the frequency and the d-q 
voltages. Balanced voltage sag does not affect PLL tracking. However, a sudden change in the 
magnitude causes a dip in the estimated frequency of d-q PLL, and later it tracks the phase angle of 
the grid voltages. 
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(a)

 
(b)

Figure 23. (a) Frequency and Phase Detection Variation during Voltage Sag; (b) q-axis and d-axis 
Voltage Magnitude during Voltage Sag. 

7. Conclusions 

In this article, a comprehensive model of a wind driven 7PIG in grid connected mode was 
developed using the two axis d-q equivalent circuit. A seven phase wind electric generator is 
integrated using the individual system components and the performance of the seven phase wind 
electric generator is analysed for varying wind speed [46]. A synchronous reference frame PLL 
incorporated for the grid interface is simulated and analysed. The enhanced performance of 7PIG is 
evaluated through the fault tolerant capability and high output power with reduced current per 
phase when compared with the three phase model. The performance of SRF-PLL incorporated in the 
grid connected seven phase wind electric generator was analysed for various operating grid 
conditions. The use of multiphase machines along with the PLL synchronization of the grid 
increases the reliability of the WEG. Notably by the possibility of achieving post-fault disturbance 
free operation provided by the seven phase machine, as well as the constant voltage and frequency 
operation enabled by the d-q PLL. 
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Nomenclature 

MPIG Multiphase Induction Generator 
7PIG Seven Phase Induction Generator 
WEG Wind Electric Generator 
d-q Direct-Quadrature axis 
Rs, Rr Stator, Rotor resistance (Ω) 
Ls, Lr Stator. Rotor leakage inductance (mH) 
Lm Mutual inductance (mH) 
ids, iqs Stator d-q-axis currents (Amps) 
idr, iqr Rotor d-q-axis currents (Amps) 
Vds, Vqs Stator d-q-axis voltage (V) 
Vdr, Vqr Rotor d-q-axis voltage (V) 
λds, λqs Stator d-q-axis flux linkage 
SRFPLL Synchronous Reference Frame Phase Locked Loop 
λdr, λqr λqr Stator d-q-axis flux linkage 
P Numbers of poles 
p Differential operator with respect to t 
∆ Tip Speed ratio 
B Blade Pitch Angle 
ωtur Angular speed of turbine 
Tg Electromagnetic Torque 
fs Switching frequency (Hz) 
δ Duty ratio 
Vm Peak value of phase voltage (V) 
U,θ Amplitude and phase of input 

Appendix A 

Table A1. Wind Turbine and Seven Phase Induction Generator Parameters taken for Investigation. 

Wind Turbine 7PIG
Rated power 250 kW Rated power 210 kW 
No. of blades 3 Rated voltage 240 V 
Rated speed 40 rpm Rated current 240 A 

Rotor Diameter 29.8 m Rated frequency 50 Hz 
Air density 1.2 kg/m3 Rated power factor 0.82 

Blade pitch angle −1.1 Rated speed 1018 rpm 
Gear Ratio 1:24.52 No. of poles 6 

Cut-in wind speed 3 m/s Stator resistance 0.12 ohms 
Cut-out wind speed 25 m/s Stator leakage inductance 0.017197 mH 
Rated wind speed 15 m/s Rotor resistance referred to stator 0.0047 ohms 
Equivalent inertia 1542 kg·m2 Rotor leakage inductance referred to stator 0.015605 mH 
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