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Abstract: The contributions of Distributed Energy Generation (DEG) and Distributed Energy 13 

Storage (DES) for Demand Side Management (DSM) purposes in a smart macrogrid or microgrid 14 

cannot be over-emphasized. If not well coordinated, standalone DEG and DES can lead to 15 

under-utilization of energy generation by consumers and financial investments, but a 16 

grid-connection mode of DEG and DES can offer arbitrage opportunities for consumers and utility 17 

provider(s). A grid-connected smart microgrid comprising heterogeneous (active and passive) 18 

smart consumers, electric vehicles and a large-scale energy storage device is considered in this 19 

work. Energy management by each smart entity is carried out by the proposed Microgrid Energy 20 

Management – Distributed Optimization Algorithm (MEM-DOA) installed distributively within 21 

the network according to consumer type. Each smart consumer optimizes its energy consumption, 22 

expenditure and trading for comfort and profit. The proposed model was observed to yield 23 

consumer satisfaction, financial benefits, grid reliability, resilience and sustainability, reduced 24 

investment on peaker plants, reduced Peak-to-Average-Ratio (PAR) demand and associated 25 

environmental benefits. The MEM-DOA also offers participating smart entities energy and tariff 26 

incentives so that passive smart consumers do not benefit more than active smart consumers like in 27 

some previous energy management algorithms. 28 

Keywords: Distributed Energy Generation (DEG); Distributed Energy Storage (DES); Demand Side 29 

Management (DSM); Microgrid Energy Management – Distributed Optimization Algorithm 30 

(MEM-DOA); Smart microgrid 31 

 32 

1. Introduction 33 

Smart grid provides an enabling environment for the integration of Distributed Energy 34 

Generation (DEG) and Distributed Energy Storage (DES) for Demand Side Management (DSM) 35 

purposes with mutual benefits to electricity utility providers and consumers. The incorporation of 36 

DEGs and DES devices into the supply mix of the smart grid is expected to help in balancing energy 37 

demand and supply curves in (near) real time. These energy pockets maybe distributed within a 38 

smart grid in consumer premises or as microgrids. A microgrid can be a regional or communal 39 

energy system comprising distributed energy sources (renewable and/or non-renewable) often in 40 

order to optimize power quality, reliability, efficiency and sustainability with accompanying 41 

economic benefits (cheaper cost of energy, local employment generation and economic 42 

development) and environmental benefits (if renewable energy sources are used). 43 
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Microgrids would be a common feature in the smart grid either in standalone [1] or 44 

grid-connected [2] mode. Some literatures have shown contributions on DEG [3,4] and DES [5-7] in 45 

the smart grid. However, this work focuses on possible heterogeneous community of smart 46 

consumers with local DEG and DES in a grid-connected smart microgrid with a centralized 47 

large-scale Microgrid Energy Storage (MES) device for arbitrage opportunities. Each smart entity 48 

(smart consumers, MES device and utility) optimizes their benefits in the energy market through 49 

the proposed Microgrid Energy Management – Distributed Optimization Algorithm (MEM-DOA). 50 

The MEM-DOA is made up of energy consumption scheduling, storage and generation 51 

optimization algorithms. The MEM-DOA approach is proposed in order to enhance scalability of 52 

deployment, privacy and security in the smart microgrid. The proposed algorithm can be installed 53 

into the smart meters of consumers, and Energy Management Controller (EMC) of the MES device 54 

and Plug-in Hybrid Electric Vehicles (PHEVs) and the utility grid.  55 

Another advantage of this work over existing literature [3-11] is that it guides against a 56 

situation where passive smart consumers can benefit more than active smart consumers in a smart 57 

grid as in [8]. Also, it encourages the penetration of DEG and DES devices in the future energy web. 58 

This type of architecture can additionally offer grid reliability and stability, financial benefits to all 59 

its smart entities, consumers’ social welfare, reduction in Peak-to-Average-Ratio (PAR) demand and 60 

CO2 emissions etc. Grid-connected DEG and DES [2-6,10,11] as will be presented in this work can 61 

offer grid resilience and stability in the face of energy imbalance with ever-growing demand and 62 

certain emergencies.   63 

The rest of the paper is organized as follows: the smart microgrid model is described in Section 64 

II, while its mathematical formulation is presented in Section III. The MEM-DOA problems and the 65 

simulation results are presented in Sections IV and V respectively, while the conclusion is in Section 66 

VI.  67 

2. Description of a Smart Microgrid Energy Management Model 68 

This work proposes a model for a Smart Microgrid Energy Management (SMEM) system 69 

comprising heterogeneous consumers who are connected to the utility grid and a large scale 70 

Microgrid Energy Storage (MES) device. A sketch of the proposed grid-connected smart microgrid 71 

energy management architecture is presented in Figure 1. This type of architecture is envisaged as a 72 

possibility in the future, even among residential consumers, with increasing penetration of DEG and 73 

DES in the smart grid.  74 

The smart microgrid has a large scale DES installed as a 75 

grid-connected-and-consumer-connected energy storage device providing an alternative centralised 76 

source of power to consumers in the smart microgrid. This MES device can be charged from the grid 77 

or by any active consumer in the microgrid with their excess energy generation or storage at low 78 

price periods and sell back the stored energy to the consumers and grid as the need arises at a higher 79 

price; thereby enhancing profitability in its energy trading.  80 

Passive consumers are connected uni-directionally for energy flow with the grid and MES 81 

device, but bi-directionally for information and communication flow because they neither sell 82 

energy to the grid nor MES device. However, active consumers and PHEVs are connected 83 

bi-directionally with both MES device and the utility grid for energy, information and 84 

communication flows. Hence, a consumer is said to be passive in the SMEM network if it always 85 

buys all its energy consumption, or active if it has the ability to both buy and sell energy in the 86 

network.  87 

Therefore, a consumer in the smart microgrid can either be passive (Type-A) consumer � ∈88 ��, �� ⊂ � or an active consumer belonging to �	. The active consumers are further sub-divided 89 

into Type-B consumer � ∈ �
 , �
 ⊂ �with DES e.g. in-Home Energy Storage (iHES) device only, 90 

Type-C consumer � ∈ �� , �� ⊂ � with DEG only, Type-D consumer � ∈ �� , �� ⊂ � with iHES 91 

device and DEG; and PHEVs
 ∈ �, where �	 = �
 ∪ �� ∪ �� ∪ �. 92 

 93 

 94 



2017, 8,xFOR PEER  3 of 15 

 95 

    96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

Figure 1.   Proposed grid-connected smart microgrid architecture 106 

These consumers’ categories are chosen to reflect the possible different types of consumers that 107 

can exist in a smart grid or smart microgrid. An active consumer meets its local demand at every 108 

time � ∈ � from the energy generated by its local DEG and/or DES, utility grid or MES device 109 

depending on energy prices from these sources at the time that the energy is needed. If the active 110 

consumer demand is greater than the amount of energy available locally from its DEG and/or DES, 111 

then it purchases the difference from the cheaper seller between the grid and MES device. This can 112 

in a way reduce the need for investment on peaker plants by the utilities  113 

3. MEM-DOA Problem Formulation 114 

The proposed model will be made up of appliance consumption scheduling and dissatisfaction 115 

models for all residential consumers belonging to set � = �� ∪ �
 ∪ �� ∪ �� ; energy storage 116 

models for active consumers �
 ∪ �� , PHEVs 
 and the microgrid �; and energy production 117 

models for active consumers �� ∪ �� and the grid �. Each model is mathematically formulated 118 

and presented in this section. A distributed optimisation approach is observed in this work so that 119 

each smart consumer can autonomously optimize its energy consumption and expenditure. 120 

Sub-sections 3.1, 3.2, and 3.3 in this section are adapted from our previous work in [7]. 121 

3.1. Appliance Energy Consumption Scheduling Model 122 

The consumer’s load is categorized into non-shiftable, flexible, interruptible deferrable and 123 

uninterruptible deferrable smart appliances. Let every smart consumer � ∈ �, �����	� = �� ∪124 �
 ∪ �� ∪ ��  in the smart microgrid, have non-shiftable appliances (e.g. lighting, cooking) � ∈ �, 125 

flexible appliances (e.g. air-conditioner) � ∈ � , uninterruptible deferrable appliances (e.g. dish 126 

washer) � ∈ �and interruptible deferrable appliances (e.g. pool pump) � ∈  . The flexible and 127 

deferrable appliances would have their consumption shifted in power and time respectively. 128 

Therefore, all the smart appliances in a consumer premise belong to the set, ! = � ∪ � ∪ � ∪  = 	� ∪129 
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ℍ, where ℍ = � ∪ � ∪  . The total appliance load #$,% of consumer � at any time � ∈ �, where 130 � = [1, 2, … , ȶ]is given by [7]: 131 

#$,% = ∑ #$,-,%-∈� + ∑ #$,/,%/∈�		 + ∑ #$,0,%0∈� + ∑ #$,1,%1∈ 	 .           132 

(1) 133 

The daily load vector for each consumer � ∈ �is 3$ = [#$,4, #$,5, … , #$,ȶ]6, while its total daily 134 

load #$ is given as:  135 

#$ =	∑ #$,% .%∈�                  136 

(2) 137 

If the feasible period of operation 7$,8 of any appliance 9 in the household has a start time 138 �$,8:  and end time �$,8; , where 7$,8 = {�|�$,8: ≤ � ≤ �$,8; } ; and 9 = {�, �, �, �} , ∀9 ∈ ! . Then, total 139 

energy �$,8 consumed by any appliance 9 in the smart home is given by: 140 

   �$,8 =	 A∑ #$,8,%%B,CD%B,CE ,			∀� ∈ �, 9 = {�, �, �, �}, ∀9 ∈ !	
0,									∀� ∈ �\7$,8, 9 = {�, �, �, �}, ∀9 ∈ !  .          141 

(3) 142 

A power level constraint is set for each appliance such that: 143 

      #$,8H-I ≤ #$,8,% ≤ #$,8H$J , 9 = {�, �, �, �}, ∀9 ∈ !,∀� ∈ 7$,8.      (4) 144 

where #$,8H-I ≥ 0, #$,8H-I and #$,8H$J are the minimum power level (OFF or standby mode) and 145 

maximum power level of each smart appliance respectively. The total energy #% consumed by all 146 

smart appliances owned by all the consumers in the smart microgrid at a time � is given by: 147 

  #% =	∑ ∑ �$,88∈!$∈� , 9 = {�, �, �, �}, ∀� ∈ �.       (5) 148 

3.2. Appliance Scheduling Dissatisfaction Model 149 

The dissatisfaction associated with appliance scheduling is modeled in this sub-section for the 150 

schedulable appliances.  151 

3.2.1. Power Shiftable (Flexible) Appliances 152 

The dissatisfaction cost due to scheduling flexible smart appliances in a consumer’s premise 153 

from its nominal load L$,/,%  to an actual load #$,/,% with respect to energy tariff and given as [7]: 154 

 M̅$,/% = O$,/ PL$,/,%Q% R1 − PJB,T,UVB,T,UW
XUYW, 0 ≤ O$,/ ≤ 1,           (6) 155 

where Z% < 1, Z%Q% < 0, Z% , Q% ∈ ℝand O$,/ is the degree of dissatisfaction of a flexible load 156 

that is tolerable to the consumer. The first and second derivatives of (6) show results that are similar 157 

to satisfaction conditions in [11] and utility conditions in [12]. 158 

3.2.2. Time Shiftable Appliances 159 

The dissatisfaction cost incurred by shifting a consumers’ load from its nominal usage period 160 

to an actual period in response to energy price is considered for deferrable loads.  161 

Uninterruptible deferrable appliances can have their start times shifted although same 162 

duration of operation is maintained in the actual time. Hence, dissatisfaction in the start time of the 163 

operation is considered. The dissatisfaction cost function M̅$,0%  for an uninterruptible deferrable 164 

load is: 165 

M̅$,0% =	O$,0]�$,0:,: − �$,0: ], 0 ≤ O$,0 ≤ 1, ∀� ∈ �,       (7) 166 
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where �$,0:,:  and �$,0:  are the actual and nominal start times of the uninterruptible deferrable 167 

appliance � ∈ � respectively and O$,0  is the measure of tolerance of such delay/haste to the 168 

consumer by shifting the start time of task. Let the feasible operation period for schedulable 169 

uninterruptible deferrable appliances be 7$,0: = {�|�$,0:,: ≤ � ≤ �$,0;,: }.To ensure that the operation of an 170 

uninterruptible deferrable smart appliance continues once it starts without interruption, then the 171 

end time �$,0;,:  for the actual task is constrained as: 172 

�$,0;,: ≥ �$,0:,: + ^$,0 , ∀� ∈ �, ∀� ∈ �, ∀� ∈ �.       (8) 173 

where nominal task duration ^$,0 = �$,0; − �$,0: .  174 

The interruptible deferrable appliances can have their task being interrupted during operation 175 

and continued at a later time within the actual feasible period 7$,1: = {�|�$,1:,: ≤ � ≤ �$,1;,:} and 7$,1:_ +176 

7$,1:` +	…+	7$,1:a = 7$,1: , where 7$,1:_ , 7$,1:` , … , 7$,1:a  are possible operation periods of q number of 177 

scheduled sub-tasks within the actual feasible period, 7$,1: . The dissatisfaction cost of an 178 

interruptible deferrable appliance M̅$,1%  is measured as a function of difference between the nominal 179 

duration ^$,1  and the actual duration ^$,1:  taken to complete the entire task and is given as: 180 

M̅$,1% = O$,1	|^$,1 − ^$,1: |,			0 ≤ O$,1	 ≤ 1, ∀� ∈  .             (9) 181 

whereO$,1	is the tolerance factor to measure the degree to which the consumer can tolerate changes 182 

in the duration taken to complete a task, ^$,1 = |�$,1; − �$,1: |, ^$,1: = |�$,1;,: − �$,1:,:|, ∀� ∈ � . Therefore, 183 

applying (6), (7) and (9), the total dissatisfaction cost M$bbb in a consumer’s premise, can be defined as 184 

the summation of the load dissatisfaction costs of all shiftable appliances and is given as [7]:  185 

M$bbb = ∑ M̅$,/%/∈�,%∈� + ∑ M̅$,0%0∈�,%∈� + ∑ M̅$,1%1∈ ,%∈� , ∀�.      (10) 186 

The values of O$,/ , O$,0 , O$,1	, Z% and Q% can be varied to model different levels of consumer 187 

dissatisfaction. 188 

3.3. Local Distributed Energy Storage Model 189 

The local DES (e.g. battery) model as in [7] applies only to Type-B active consumer � ∈190 �
 , �
 ⊂ � and Type-D active consumer � ∈ �� , �� ⊂ � in this smart microgrid model. If c$,% is 191 

the energy stored in the battery at time � ∈ �for consumer � ∈ {�
 , ��},	 then, the battery daily 192 

energy storage scheduling vector d$ = [c$,4, c$,5, … , c$,% , … , c$,ȶ]6. Therefore, c$,% can be expressed 193 

in terms of the energy charging profile c$,%e  and energy discharging profile c$,%f  as c$,% = c$,%e −194 c$,%f , where c$,%e , c$,%f ≥ 0 . The charging efficiency g$e  and discharging efficiency g$f  fulfil 195 

conditions 0 < g$e ≤ 1 and g$f ≥ 1 respectively. Therefore, the battery is only effectively charged 196 

and discharged with g$ec$,%e  and g$fc$,%f  amount of energy respectively. The charging and 197 

discharging efficiency vector h$ 	= [g$	e, −g$f]6  and per-timeslot storage scheduling vector is 198 d$,% = [c$,%e , c$,%f ]6. This implies that h$6 d$,% is the energy charged/discharged at time � ∈ �. Since the 199 

maximum charging/discharging rate c$H$J  of the battery cannot be exceeded at any 200 

charging/discharging time then, the constraint (11) is introduced: 201 h$6 d$,% ≤ c$H$J , � ∈ {�
 , ��}, ∀� ∈ �.        (11) 202 

The energy leakage rate i$ of the battery is constrained as 0 < i$ ≤ 1. If j$,%f4 is the charge 203 

level of the battery at time � − 1, which was reduced at i$ leakage rate then, the present time 204 �charge level can be expressed as: j$,% = j$,%f4(1 − i$) + h$6 d$,% , � ∈ {�
 , ��}, ∀� ∈ � . Also, the 205 

charge level j$,% of the battery is bounded as 0 ≤ j$,% ≤ c$,m$n, where c$,m$n is the battery capacity. 206 

Therefore, for every � ∈ {�
 , ��},	 smart consumer [7]:  207 

−j$,%f4(1 − i$) ≤ h$6 d$,% ≤ c$,m$n − j$,%f4(1 − i$).       (12) 208 

Also, j$,% and initial charge level j$,%o are related by: 209 

j$,% = j$,%o(1 − i$,%) + ∑ i$,%f%oh$6 d$,%%%p%o , � ∈ {�
 , ��}	.     (13) 210 
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The storage device can go through integer number of charging and discharging cycles, which 211 

oppose fluctuations in the daily energy demand of the consumer. Therefore, j$,%o and daily final 212 

charge level j$,%ȶ can be related by:   213 

|j$,%ȶ − j$,%o| ≤ Ʊ$, Ʊ$ ∈ ℝe, � ∈ {�
 , ��}, , ∀� ∈ �,      (14) 214 

whereƱ$ is sufficiently a small positive constant. Each battery is assumed to be sufficiently 215 

small compared to the aggregate load so as not to influence tariffs during charging and discharging 216 

periods. Examples of possible local DES devices include lithium-ion batteries, lead-acid batteries 217 

etc. 218 

3.4. Consumer Distributed Energy Generation Model 219 

A consumer’s DEG can be either dispatchable or non-dispatchable energy generator. 220 

Dispatchable generators include micro-turbines, internal combustion engines etc., while 221 

non-dispatchable generators include solar panels, wind turbines etc. Only non-dispatchable 222 

generators are considered in this work due to their associated environmental friendliness and ease 223 

of deployment.  224 

For a non-dispatchable generator owned by consumers � ∈ {�� , ��}, the DEG production at 225 

time � is r$,%. The non-dispatchable generators produce energy based on available intermittent 226 

resources e.g. solar radiation. A consumer can sell its excess local generation to the grid or MES 227 

device and buy back later again at periods when these resources are naturally not available or less 228 

than the quantity required to meet consumer’s demand. 229 

3.5. Microgrid Energy Storage Model 230 

The MES device is modelled similarly to consumers’ DES devices and applies same 231 

explanations and formulations. Therefore, if daily energy storage scheduling vector ds =232 [cs,4, cs,5, … , cs,% , … , cs,ȶ] for the MES device then, (11) – (13) can be adopted and re-written for the 233 

MES device as follows: 234 

hs6 ds,% ≤ csH$J , 0 < gse ≤ 1, gsf ≥ 1, cs,%e , cs,%f ≥ 0, ∀�,	      (15) 235 

−js,%f4(1 − is) ≤ hs6 ds,% ≤ cs,m$n − js,%f4(1 − is),      (16) 236 

js,% = js,%o(1 − is,%) + ∑ is,%f%ohs6 ds,%%%p%o , ∀� ∈ �,      (17) 237 

The energy charged/discharged by the MES device ts6 us,% at time � is further simplified as: 238 

ts6 us,% = (ts6 us,%)v + (ts6 us,%)�w + (ts6 fus,%f)�x , �	 = {�
 , �� , �� , �},     (18) 239 

where(ts6 us,%)v  and (ts6 us,%)�w  are the charged/discharged energy by the grid and active 240 

consumers respectively, and (ts6 fus,%f)�x is the MES discharging profile towards consumer ��, 241 (us,%e)�x = 0 since consumer � ∈ ��  does not sell energy to the MES device. The quantity of 242 

charge js,% in the MES device at any time � is the aggregate of the charges stored in it by the grid 243 

and active consumers and is given as: 244 

js,% = js,%v + js,%�y + js,%�z + js,%�{ + js,%| ,       (19) 245 

where js,%v , js,%�y, js,%�z, js,%�{  and js,%|  are the quantities of charge stored in the MES device by 246 

the grid, consumers � ∈ �
, � ∈ ��  and � ∈ �� , and PHEVs respectively. 247 

Some storage devices that can serve as MES devices include Compressed-Air Energy Storage 248 

(CAES), Pumped-Storage Hydroelectric (PSH) etc. The MES device is a form of large-scale energy 249 

storage that can be owned by a private operator or utility provider.  250 

3.6. Plug-in Hybrid Electric Vehicle Battery Model 251 

The PHEVs in the smart microgrid shall be modeled with respect to its battery characteristics 252 

only, and not driving pattern. Let c|,% be a PHEV charging/discharging profile at time �; then, the 253 
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daily storage vector for every PHEV battery 
 ∈ � can be denoted as u| = [c|,4, c|,5, … , c|,% , … , c|,ȶ]. 254 

Then, storage profile for the PHEV can be modeled as follows: 255 

t|6 u|,% ≤ c|H$J , 
 ∈ �, ∀� ∈ �,        (20) 256 

      j|,% = j|,%f4(1 − i|) + t|6 u|,% , 
 ∈ �, ∀� ∈ �,       (21) 257 

−j|,%f4(1 − i|) ≤ t|6 u|,% ≤ c|,m$n − j|,%f4(1 − i|), ∀
,     (22) 258 

j|,% = j|,%o(1 − i|,%) + ∑ i|,%f%ot|6 u|,%%%p%o , 
 ∈ �, ∀� ∈ �,    (23) 259 

and 260 

|j|,%ȶ − j|,%o| ≤ Ʊ| , 
 ∈ �, ∀� ∈ �,       (24) 261 

In order to prevent the PHEVs from increasing peak demand beyond grid and MES capacities, 262 

their charging/discharging profiles c|,%  and hence the load ℛ|,% = c|,%  are centrally scheduled 263 

within the microgrid and is constrained by: 264 

0 ≤ ∑ ℛ|,%|∈� ≤ cb|,% , ∀
 ∈ �, ∀� ∈ �,      (25) 265 

wherecb|,% = (cb|,%)v + (cb|,%)s is the maximum energy the PHEVs can draw from the utility grid 266 

and MES device at any timeslot respectively. The PHEVs are modeled as separate aggregate load in 267 

the microgrid without attachment to any particular consumer, although they could also play similar 268 

roles as iHES device in consumer premises depending on their configurations.  269 

4. MEM-DOA Optimization Problems 270 

4.1. Microgrid Energy Storage Cost Model 271 

The MES device buys energy from the grid and active consumers during low price periods and 272 

sells energy back to them at a higher price than purchasing price in order to maximize its profit. If 273 

the charging/discharging load of the MES device ℛs,% = cs,% , ∀� ∈ �, then, the MES daily cost 274 

function ~s��s� is given as:  275 

~s��s� = ∑ ��s→�,%�� ds,%f − �s,%
�ds,%e − �s,%� cs,%�%∈� , � = {�, �� , �� , ��}, ∀� ∈ �,		    (26) 276 

where�s,%��  and �s,%
� = ���(�v,%�� , �$,�y,%�� , �$,�z,%�� , �$,�{,%�� )  are the respective selling and buying 277 

prices of the MES and �s,%� cs,% is its charging/discharging operating cost. Type-A consumers are 278 

passive energy generators in the microgrid and hence, would always buy energy from the MES 279 

device with a penalty price. For instance, the selling price of energy from the MES device to any 280 

buyer �s→�,%��  is given by: 281 

�s→�,%�� = ��s,%�s,%
� ,																ifjs,%� ≥ cs→�,%sf , ∀� ∈ �
�s,%�s,%
���,% ,								ifjs,%� < cs→�,%sf , ∀� ∈ �,       (27) 282 

where � = {�, ��, �� , �� , �}, �s,%  is a preset MES provider coefficient of profit in order to 283 

maximize reasonable profit for the MES device provider, ��,% is the buyer’s price penalty for 284 

requesting more energy than contributed to the MES present charge level, js,%�  is the energy 285 

contribution by a buyer � to the MES charge level and cs→�,%sf
 is the amount of energy to be 286 

discharged from the MES device to buyer � at time �. The MES selling price (SP) to the passive 287 

consumers would be the highest at every time � ∈ � since they do not have contribution to the 288 

energy stored in the MES device. Also, �s,%
� = ���(�v,%�� , �$,�y,%�� , �$,�z,%�� , �$,�{,%�� ), where �v,%��,�$,�y,%�� �$,�z,%��  289 

and �$,�{,%��  are selling prices for grid and active consumers �
 , ��  and �� respectively. The value 290 

of �s,%  is constrained as �s,% > 1  to ensure compliance with rate-of-return on investment 291 

regulations. This would help the MES device provider to set a SP or tariff that is high enough to 292 

attract further capital investment and also low enough so as not to negatively affect customers’ 293 

welfare. In this work, a buyer’s price penalty ��,% is given by:  294 
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��,% = H$J(���,U�� )
H-I(���,U�� ) , js,%� < cs→�,%sf , � = {�, ��, �
 , �� , ��}.      (28) 295 

where�f�,%��  is the SP of other buyers excluding � at time	�. The MEM-DOA for the MES 296 

device is formulated as a linear program and solved using simplex method [14,15]:  297 

�����∈ℝ~s��s� 298 

         �. �.			(15) − (19), (26), (27), (28) 299 

          �s,%
� = ���(�v,%�� , �$,�z,%�� , �$,�{,%�� ), ∀� ∈ �.    (29) 300 

4.2. Utility Cost Model 301 

Let rv,%be the energy generation by the electricity utility provider at time �and bounded by the 302 

utility grid maximum energy production capacity rvH$J be given as: 303 

0 ≤ rv,% ≤ rvH$J , ∀� ∈ �.                            304 

(30) 305 

The constrain in (30) ensures that all the load from all devices connected to the grid does not 306 

exceed grid capacity at any given time. Also, the load balance on the grid at any time � can be 307 

given as: 308 rv,% = ℛ$,�x,% +ℛ$,�y,% + ℛ$,�z,% + ℛ$,�{,% +ℛs,%.               309 

(31) 310 

Where ℛ$,�x,% , ℛ$,�z,%  and ℛ$,�{,%  are the total grid loads from consumers �� , ��  and �� 311 

respectively. The utility cost function, ~%(rv,%) is the cost to the utility for providing rv,%supply and 312 

can be modeled as a non-decreasing convex function using the energy cost function for thermal 313 

generators [3,4,9]: 314 

~%(rv,%) = �4%(rv,%)5 + �5%rv,% + ��% , ∀� ∈ �,       (32) 315 

Where �4% > 0  and �5% , ��% ≥ 0 . Also, in accordance with rate-of-return on investment 316 

regulations, �v,%��and utility buying price �v,%
�is modified from [3] and given as: 317 

�v,%�� = �v,% �U(r�,U)r�,U 	= �v,%�v,%
� , ∀� ∈ �,       (33) 318 

Where �v,% > 1 is a preset utility profit coefficient. This ensures mutual financial benefits 319 

between utility, consumers and MES provider. The total daily cost of electricity vector to the utility 320 �vis the total cost of generation to meet its load and cost of energy purchases from the active 321 

consumers and MES device, and it is given as: 322 

�v = ∑  ~%�rv,%� + �v,%
��c$,�y,% − #$,�y,% − (cs,%e)�y�e + �v,%
��r$,�z,% − #$,�z,% − (cs,%e)�z�e +%∈�323 

�v,%
��r$,�{,% + c$,�{,% − #$,�{,% − (cs,%e)�{�e + �v,%
� ∑ (c|,%f)v|∈� + �v,%
�(cs,%f)v¡ , ∀� ∈ �.    (34) 324 

where(cs,%e)�y , (cs,%e)�z  and (cs,%e)�{ are energy sold to the MES device by consumers ��  325 

and��  respectively and (cs,%f)v  is energy bought from the MES device by the grid. The 326 

MEM-DOA for the utility grid is formulated as a convex programming problem [16] and solved 327 

using interior-point method [17] as follows: 328 

���r�,U∈ℝ 		�v  329 

�. �.					(30) − (34), 330 
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           �v,%
� = ���(�$,�z,%�� , �$,�{,%�� , �s→v,%�� ).   (35) 331 

4.3. Type-A Consumer Cost Model 332 

Since the Type-A consumer is a passive consumer its cost function is basically the cost of 333 

meeting its local demand from the grid or MES device depending on their energy selling prices. 334 

Therefore, the daily cost ~$,�x(¤$,�x) of Type-A smart consumer � ∈ ��, �� ⊂ �, is given as: 335 

~$,�x(¤$,�x) = ¥$,�x
� 3$,�x + ¦§$,�x% , � ∈ ��,		       (36) 336 

where ¥$,�x
� = ���(¥v�� , ¥s→�x�� ) = ���([�v,4�� , �v,5�� , … , �v,ȶ��], [�s→�x,4�� , �s→�x,5�� , … , �s→�x,ȶ�� ]) =337 [�$,�x,4
� , �$,�x,5
� , … , �$,�x,ȶ
� ]  is consumer � ∈ ��  purchasing or buying price and 3$,�x =338 [#$,�x,4, #$,�x,5, … , #$,�x,ȶ] is the total appliance load for consumer � ∈ �� at time �. The MEM-DOA 339 

for Type-A passive consumer shall be formulated as a convex programming problem [16] solved 340 

using interior-point method [17] and is given as: 341 

����B,�x , b̈BU∈ℝ
~$,�x(¤$,�x) 342 

�. �.						(1) − (10),	 343 

          ¥$,�x
� = ���(¥v�� , ¥s→�x�� ), � ∈ �� , ∀� ∈ �.   (37)  344 

 345 

4.4. Type-B Consumer Cost Model 346 

The daily cost function ~$,�y��$,�y� for each Type-B consumer is given as: 347 

~$,�y��$,�y� = ∑ �$,�y,%
� �#$,�y,% − c$,�y,%�e%∈� − ∑ �$,�y,%�� �c$,�y,% − #$,�y,%�e%∈� + ∑ M̅$,�y%%∈� , � ∈ �
 , (38) 348 

The MEM-DOA for Type-B active smart consumer is formulated as a convex programming 349 

problem [16] as follows: 350 

����B,�y , b̈BU∈ℝ~$,�y(�$,�y) 351 

s. t.			(1) − (10), (38), 352 

          �$,�y,%
� = ���(�v,%�� , �s,%��), � ∈ �
 , ∀� ∈ �,		 353 

               �$,�y,%�� = ��#(�v,%
� , �s,%
�), � ∈ �
 , ∀� ∈ �, 354 

         ��y,% = H$J(��,U��,	�B,�z,U�� ,	�B,�{,U�� ,	�«,U��)
H-I(��,U��,	�B,�z,U�� ,	�B,�{,U�� ,	�«,U��) , ifjs,%�y < cs→�y,%sf ,  (39)  355 

Solving (39) for each Type-B consumer ensures minimised energy consumption and 356 

expenditure from the utility grid at peak times with accompanying consumer maximised 357 

satisfaction.   358 

4.5. Type-C Consumer Cost Model 359 

A Type-C smart consumer � ∈ ��  possesses non-dispatchable DEG locally. Since the 360 

consumer does not have a storage device, it would have to sell out its excess generation during the 361 

day to the grid or MES device. Therefore, the per timeslot load ℒ$,�z,% and daily cost function 362 ~$,�z�¤$,�z� for Type-C consumer are given by (40) and (41) respectively:  363 

ℒ$,�z,% = #$,�z,% − r$,�z,% , � ∈ �� , �� ⊂ �,					      (40) 364 

~$,�z�¤$,�z� = ∑ �$,�z,%
� �#$,�z,% − r$,�z,%�e%∈� − ∑ �$,�z,%�� �r$,�z,% − #$,�z,%�e%∈� + ∑ M̅$,�z%%∈� , � ∈ �� , (41) 365 

where �$,�z,%
� = ���(�v,%�� , �s,%��)  and �$,�z,%�� = ��#(�v,%
� , �s,%
�)  are buying and selling prices 366 

respectively, #$,�z,% is total appliances demand and r$,�z,% is generation by consumer � ∈ ��  at 367 
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time �. Each Type-C smart consumer also has its MEM-DOA formulated as a convex programming 368 

problem [16] and solved using interior-point method [17] is given as: 369 

����B,�z , b̈BU∈ℝ
~$,�z�¤$,�z� 370 

        �. �.						(1) − (10), (41), 371 

                �$,�z,%
� = ���(�v,%�� , �s→�z,%�� ), � ∈ �� , ∀� ∈ �,	 372 

       �$,�z,%�� = ��#(�v,%
� , �s,%
�), � ∈ �� , ∀� ∈ �.  (42) 373 

4.6. Type-D Consumer Cost Model 374 

The Type-D consumer � ∈ ��is the active consumer that possesses both non-dispatchable 375 

DEG and DES device in its premise. Its total load ℒ$,�{,%at any time � is given by: 376 

ℒ$,�{,% = #$,�{,% + c$,�{,% − r$,�{,% , � ∈ �� , �� ⊂ �,     (43) 377 

where #$,�{,%  is the consumer’s total appliances demand, c$,�{,%  is the energy 378 

charging/discharging profile for its DES device and r$,�{,% is the generation from its DEG at time �. 379 

Therefore, the daily cost function ~$,�{�¤$,�{� for each Type-D consumer is given as: 380 

~$,�{�¤$,�{� = ∑ �$,�{,%
� �#$,�{,% + c$,�{,% − r$,�{,%�e%∈� − ∑ �$,�{,%�� �r$,�{,% − c$,�{,% 	−%∈�381 

#$,�{,%�e + ∑ M̅$,�{%%∈� .                       382 

(44) 383 

Where �$,�{,%
� = ���(�v,%�� , �s,%��) and �$,�{,%�� = ��#(�v,%
� , �s,%
�) are consumer � ∈ �� buying and 384 

selling prices respectively at time �.  Finally, the MEM-DOA for Type-D active smart consumer is 385 

formulated as a convex programming problem [16] and solved using interior-point method [17] as 386 

follows: 387 

����B,�{ , b̈BU ∈ℝ~$,�{(¤$,�{) 388 

         �. �.				(1) − (10), (44),	 389 

                                  �$,�{,%
� = ���(�v,%�� , �s→�{,%�� ), � ∈ �� , ∀� ∈ �,	 390 

           �$,�{,%�� = ��#(�v,%
� , �s,%
�), � ∈ �� , ∀� ∈ �.   (45) 391 

The solutions to (37), (39), (42) and (45) offer the smart consumers optimized satisfaction, 392 

energy consumption and expenditure with financial savings. 393 

4.7. Plug-in Hybrid Electric Vehicle Battery Storage Cost Model 394 

The MEM-DOA for the PHEVs is centralised within the PHEVs community network, but 395 

distributed in relation with other smart entities in the smart microgrid and is formulated as a linear 396 

programming problem which can be solved using simplex method [14,15]: 397 

����­∈ℝ~|(�|) 398 

      s. t.		(20) − (25), 399 

           ℛ|,% = c|,% , ∀� ∈ �, 400 

           �|,% = H$J(��,U��,�B,�y,U�� ,�B,�z,U�� ,�B,�{,U�� )
H-I(��,U��,�B,�y,U�� ,�B,�z,U�� ,�B,�{,U�� ) , ifjs,%| < cs→|,%sf , 401 

    c|,% ≤ cb|,% , cb|,% = (cb|,%)v + (cb|,%)s , 0 ≤ ∑ ℛ|,%|∈� ≤ ∑ cb|,%|∈� , ∀�.  (46) 402 

Peak-to-Average-Ratio (PAR) demand from the grid can be found using (46) and solved using 403 

simplex method [14,15]: 404 
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�®¯ = �;$°	¨;H$I¨
�|;v$8;	¨;H$I¨ = H$JU∈� ∑ ±B,�UB∈�_ȶ ∑ ±B,�UB∈�,U∈�  .     (47) 405 

5. Numerical Results and Discussions 406 

The MEM-DOA simulation was considered for three hundred consumers (one hundred 407 

households in each category of consumer) with residential data obtained from [18] and Time-of-Use 408 

(TOU) pricing tariffs in South Africa adopted [19].  409 

The results of the simulations are presented in Figure 2 (for Type-A and Type-B smart 410 

consumers) and Figure 3 (for Type-C and Type-D smart consumers). Since Type-A smart 411 

consumers are passive smart consumers their MEM-DOA optimises the source of energy supply in 412 

consumer premises, energy consumption and expenditure. For Type-B smart consumers with an 413 

iHES device, consumer load, battery charging/discharging and energy expenditure were optimised. 414 

Type-B MEM-DOA ensures that the battery is only charged at low price/off-peak periods, but 415 

discharged primarily to meet consumer demand at peak/high price periods. 416 

Active smart Type-C and Type-D consumers have their respective local generations and 417 

storage sources of power supply prioritized in the consumer premises. However, since solar 418 

resource is only available in the day and the generation mostly exceeded consumer demand, then 419 

the excess generation was sold mostly to the MES device due to the incentive on energy price 420 

available to it from the MES provider when it wanted to purchase energy from it in the future. 421 

 422 

Figure 2.  Average load profiles for Type-A and Type-B smart consumers 423 

 424 
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 425 

Figure 3.   Average load profiles for Type-C and Type-D smart consumers 426 

Type-D smart consumers could store their excess electrical energy generation in their iHES and 427 

use the stored charge at peak times and only energy request from the MES or utility when their 428 

demand exceeds their total local generation and storage levels. The iHES device could be charged 429 

from either the solar panel locally or externally from the grid or MES device and hence offer 430 

consumers more satisfaction and financial savings. The MEM-DOA model has shown to offer 431 

reduction in grid peak demand in all considered scenarios with increasing penetration of DES and 432 

DEG in consumer premises as shown in Figures 2 and 3. There was a lower reduction in grid peak 433 

demand for Type-B than for Type-C smart consumers because Type-C smart consumers do not 434 

have local storage for their excess generation during the day and would have to purchase from the 435 

grid or MES device at peak periods.  436 

Also, the centralised MEM-DOA for the PHEVs ensured that only limited PHEVs were 437 

scheduled to be charged from the grid and MES device at peak periods, while most of the PHEV 438 

loads were scheduled for charging at night (low price period). The aggregate battery 439 

charging/discharging load profile for the hundred PHEVs considered is presented in Figure 4. The 440 

load profile had more consumption at non-peak periods than peak periods as compared to the 441 

nominal (No DSM) scenario where individual PHEVs owner could decide to charge its PHEV in the 442 

evenings especially, upon arrival at home. This MEM-DOA load profile offers the PHEV owners an 443 

average of 18% savings on energy expenditure.  444 
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 445 

Figure 4. PHEV aggregate load profile 446 

Also, box plots are presented in Figure 5 for smart residential consumers Types A to D and 447 

aggregate energy consumption (including PHEV demand) respectively in the smart microgrid 448 

showing the relationship in the consumption distribution between its average and peak values. The 449 

MEM-DOA plots are seen to be better that the initial unscheduled consumption.   450 

It can also be noticed that the aggregate peak demand in the MEM-DOA reduced by 68% 451 

compared to the traditional peak demand. The utility and MES device providers also benefitted 452 

from the proposed MEM-DOA technique by 28% and 33% increase in revenue respectively. The 453 

higher increase in revenue by the MES provider could be due to the consumers preferring most 454 

times to buy from the MES device than the grid due to the price incentive received. Also, the 455 

aggregate PAR demand reduced by 46% from 2.9 to 1.56. 456 

The negative dissatisfaction experienced by all the active consumers (Type-B, Type-C and 457 

Type-D) showed that integration of DES and DEG into consumer premises with centralised energy 458 

storage would offer satisfaction to consumers. The financial savings can also serve as a form of 459 

compensation for the initial investments incurred by the active consumers on DEG and DES 460 

devices. All the passive consumers (Type-A) would be slightly dissatisfied by an average of 0.121 461 

kWh energy consumption daily, but can reduce their dissatisfaction by trading off financial savings. 462 

However, the financial savings observed by all consumers as enhanced by the presence of the 463 

centralised MES, DES and DEG devices in the smart microgrid. For instance, the dissatisfaction for 464 

Type-B consumers is less than for ESDS consumers in [7] due to the inclusion of the MES device 465 

and arbitrage opportunities in this model, although both consumers possess only iHES devices 466 

locally. Active consumers can through financial savings obtain a pay-back in the long-run on their 467 

investments on DES devices and DEG. Consumer dissatisfaction was not considered for the PHEVs 468 

however, their charging/discharging profile can affect the residential consumers dissatisfaction in 469 

amount of energy to be purchased from the MES device, energy prices from grid and MES device, 470 

and price penalties. 471 
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 472 

Figure 5. Comparison of consumer type consumption and aggregate grid load 473 

Table 1. Average financial savings and dissatisfaction for the MEM-DOA smart residential consumers 474 

Consumer Type Average Financial Savings Average Dissatisfaction 

Consumer Type-A 18% 0.121 kWh 

Consumer Type-B 35% -1.289 kWh 

Consumer Type-C 32% -0.874 kWh 

Consumer Type-D 56% -2.935 kWh 

 475 

The utility and MES device providers also benefitted from the proposed DSM technique with 476 

MEM-DOA by 34% and 37% increases in revenue respectively. The higher increase in revenue by 477 

the MES provider could be due to consumers preferring at most times to buy from the MES device 478 

rather than the grid because of the price incentive received from contributed storage. In a 479 

competitive energy market that the smart grid would become, more incentives are likely to be 480 

experienced, which could lead to lower tariffs from electricity utility providers. 481 

6. Conclusion 482 

In this work, a DSM technique employing a price-incentivized energy trading in a 483 

grid-connected smart microgrid among smart consumers, a centralized MES and utility grid was 484 

presented. The smart consumers were either passive (no local DEG or DES) or active (with at least 485 

one of DEG and DES locally) consumers. Distributed optimization algorithm was employed to 486 

enhance scalability, consumer privacy and security. The proposed distributed algorithm called 487 

MEM-DOA for each type of participating smart entity resides within consumers’ smart meters, and 488 

EMC for utility and MES providers. The results of the simulations showed financial savings for all 489 

participating entities. It further offered a reduced PAR demand and peak demand when compared 490 

with the traditional aggregate residential load profile. This algorithm ensures that the active 491 

consumers benefit more from the energy trading than passive consumers so they could have faster 492 

returns on investment. This consequentially would encourage the DES and DEG manufacturing 493 
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industry as more consumers will become willing to partronise them. Commercial and industrial 494 

consumers can be included in future work. 495 
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