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Abstract 

The Uniaxial Compressive Strength (UCS) of intact rocks is an essential index of strength in rock engineering. Laboratory based 
direct compressive strength estimation may be problematic, as obtaining fresh samples is not always feasible. Thus, the aim of 
indirect methods index test such as point load index test, and empirical correlations with UCS of indexes like the Brazilian 
indirect tensile strength test, serve as an alternative for many geotechnical engineering projects. The aim of this paper is to 
propose a relationship between UCS and indirect tests or indexes for some sedimentary and igneous rocks in KwaZulu-Natal 
using the technology of artificial intelligence. These tests include the point load index (Is (50)) test and Brazilian Tensile 
Strength (σt), test. Block samples were collected in KwaZulu Natal, among these include sedimentary rocks (sandstones, 
siltstone, tillite) and igneous rocks (granitoids and dolerite). A back propagation artificial neural network was developed and 
trained in order to predict UCS. The input parameters were unit weight γ, (Is (50)), (σt), and lithology. The lithology was 
introduced in the neural network as a qualitative input parameter, in order to indirectly incorporate in the model the mineralogical 
content. Training results returned, R value of 0.99% for the training set, and R = 0.92% for the test set, which is conveying to 
the conclusion that the approach is valid and could be used, as an alternative indirect approach to UCS estimation. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of EUROCK 2017. 
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1. Introduction 

Geotechnical design requires the estimation of intact rock properties. Strength of intact rock is a key parameter 
required in rock mass classification systems (RMR) [1], Q-system [2], and Hoek – Brown criterion [3]. Typically, 
the strength and the modulus of elasticity of intact rock can be determined by the unconfined compression test. This 
test is standardized by the International society for Rock Mechanics (ISRM 2007) [4]. Direct determination of these 
properties in the laboratory are complicated and often time consuming [5, 6]. Hence, the indirect estimation of UCS 
using rock index tests is of interest. The aim of this paper is the assessment of a relationship between UCS and 
indirect tests or indexes used to estimate the value of UCS based on data from sedimentary and igneous rocks in 
KwaZulu-Natal. These tests include the point load index (Is (50)) test and the Brazilian Tensile Strength test. 
An artificial neural network was developed to predict a reliable UCS value. A back propagation ANN was developed 
and trained in order to predict UCS value based on  blocks sample data from the (29) sedimentary and (14) igneous 
rocks. Among these 43 rock blocks samples were cored for the UCS, test, 129 for the point load test and 258 for 
the Brazilian test. The input parameters were unit weight γ, (Is (50)), (σt), and lithology. The lithologies that are 
abundant in the KwaZulu-Natal province and were available for this study, are granitoid rocks, dolerite, sandstone, 
and tillite.  

1.1. Previous studies 

Point load index has long been regarded as the best intermediary for the UCS. It is relatively easy to conduct and 
economical, and thus widely applied both in the field and laboratory. Several authors have conducted (Is (50)) and 
UCS tests for various lithologies to determine the most effective conversion factor which converts the (Is (50)) to 
the representative UCS value [7–9]. It is evident from literature that the equations published exhibit a wide range, 
varying from linear to quadratic, and power laws. One of the problems commonly encountered is with the vast range 
of correlation equations offered in literature, there is often no agreement between authors on a specific conversion 
factor. Given the great variability of rock properties, even within the same lithology, it is consequently difficult, and 
often not very meaningful, to site specific values for specific rocks [10]. 

The Brazilian tensile strength has been widely used as an indirect test to measure tensile strength (σt). It has also 
been employed to produce estimates of UCS strength as these two parameters are commonly required and 
determined in most geotechnical projects [11]. As σt can be easily determined from the Brazilian tensile strength, it 
is useful to find strong conversion factors between these two parameters.  

Generally these correlations give good results only in similar rocks [12]. According to [13] and later [14], 
the implementation of statistical prediction methods is not reliable if new available data are different from 
the original as the form of the obtained equation needs to be updated. According to Cilliers [15], the importance of 
the modeling complex systems through the use of ANN can be summarized in the ability to conserve the complexity 
of the systems they model because they have complex structures themselves. They also encode information about 
their environment in a distributed form and are capable to self-organize their internal structure. The application of 
artificial neural networks (ANN) techniques into the prediction of UCS, has been widely used in rock mechanics and 
in particular in the prediction of rock properties [16] and [17].  

1.2. Artificial neural networks references from geotechnical applications of ANNs 

Neural networks are one of the methods by which machines can learn. These machines are in general called as 
stimulus-response machines because of their fundamental operation: they can learn through exposure to a set of 
samples of inputs paired with the action that would be appropriate for each input. The perceptron was first 
conceived by Rosenblatt in (1958) [18], and is considered to be the ancestor of multi-layer perceptron. In multi-layer 
perceptron learning is achieved by adjusting weights in the network until its action-computing performance is 
acceptable, so that after the completion of the training procedure a particular input leads to a specific target output. 
Backpropagation Back – propagation algorithm (BP) is a non-linear extension of the least mean squares (LMS) 
algorithm for multilayer perceptron (MLP). It is the most widely used of the neural network paradigms and has been 
successfully applied in many fields of model free function estimation problems.  
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Success of artificial neural networks in various geotechnical engineering applications and in particular rock 
engineering, has already proven through the literature [19, 25].  

Properly trained BP-ANN tend to produce reasonable results when presented with new data set inputs. BP-ANN 
is usually layered, with each layer fully connected to the layers below and above. The first layer is the input layer, 
the only layer in the network that can receive external input. The second layer is the hidden layer in which 
the processing units are interconnected to layers below and above. The third layer is the output layer. In Figure 1, 
the typical BP-ANN architecture is presented. Each interconnection has associative connection strength, given as 
weight. Weights are adjusted during training of the network. In BN-ANN training is supervised, in which case 
the network is presented with target, values for each pattern that are input. Input space is considered to be linearly 
separable. Transfer function is applied in order to find the best input output relation. 

The equation of the transfer function, is given below: 

)(exp1

1
)(

ax
xf   (1) 

where a is a slope parameter. 

 

Fig. 1. A typical back-propagation network. 

2. Data acquisition  

Large blocks were collected from different localities within KwaZulu-Natal, South Africa. This allowed for 
reasonable spatial distribution as to provide representative samples. The granitoids and dolerite in this area are 
intrusive igneous rocks and form part of the Natal Metamorphic Province. The sandstones belong to the Newspaper 
Member and Kranskloof Member of the Mariannhill Formation, Natal Group. The upper portion of the Dwyka 
Group was also sampled. Two block samples of coarse grained sandstone from the Elliot Formation and fine grained 
sandstone from the Molteno Formation, were collected, (Appendix A.) 
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2.1. Laboratory tests 

Coring and cutting of samples took place, and flattening of the ends of each sample perpendicular to the sample 
axis. The sides were checked and smoothed and polished. The samples were checked to ensure that there were free 
of cracks, fissures, and other discontinuities. Cylindrical cores were produced by coring using the Rothenberger 
Rodiadrill 1800 DWS. The cores were cut and grinded according to specifications for the different tests. Core 
samples were used to determine the unit weight (γ) as the intact strength of the core samples by performing (UCS), 
Point load test and Brazilian disc test. All tests were carried out according to the ISRM suggested guidelines [4]. 

UCS tests were conducted by means of the Servo-controlled compression testing machine, which has a load 
capacity of 2000 kN. The machine can apply compressive load at a constant strain rate on the specimen. In this 
study, all compression tests were conducted at strain rate equal to 0.5 mm/s. The 43 samples were prepared with 
a 2:1 L: D ratio.  

The point load index test was conducted on 129 NX-size cores as well as block/irregular lumps of the rock 
samples using a point load testing machine in accordance to [4]. Three different tests were conducted to determine 
the PLI: axial, diametral and block/irregular lump, with samples being prepared according to [4] suggested methods 
for each type of point load test. The corrected index, (Is (50)), is applied to obtain the unique Point Load Strength 
Index (PLI).  

Brazilian test apparatus, which is equipped with a digital gauge unit, for displaying maximum load. A number 
of 258 test were performed were samples were taped and were placed on a specially fabricated steel cradle, and then 
mounted in between the loading platens. The procedure was repeated for all samples and the pressure at which 
the samples failed were recorded once failure occurred. Having the sample thickness (L) diameter (D) and 
maximum tensile load at failure (F), the Brazilian tensile strength (σt) is obtained by using the following equation by 
Gokhale (1960) [26], where (F) is the total force at failure, (D) the diameter of the core sample or the distance 
between conical heads of the testing machine, (L), Length or thickness of the rock specimen. 

    (2) 

3. Data analysis using artificial neural network 

The training dataset contains data for forty-six 43 full records. The lithology was introduced in the neural 
network as a categorical input parameter, in order for the model to incorporate the mineralogical content on 
the strength of the intact rock. A script was written in Matlab for the design of the architecture and training and of 
the artificial neural network. The data were normalized with respect to their maximum and minimum values. Trying 
to achieve the best network's performance, several networks with different architectures were developed. 
The number of hidden layers varied, the number of neurons both in the input and output layers changed, the training 
function and the training parameters have been altered. The final network architecture for the prediction of UCS 
consists of one input layer with 4 neurons one for each input parameter, one hidden layer consisting of 10 neurons 
and one output layer with a single neuron. The learning rate was set to lr = 0.02 and the error goal was set to  
eg = 0.01. In Figure 2 output values versus target values are presented. Whereas in Figure 3 the results of the ANN 
training for the training, validation and test set are presented, and network performance in Figure 4. Training results 
returned, R value of 0.99% for the training set, and R = 0.96% for the validation set, which is conveying to 
the conclusion that the approach is valid and could be used, as an alternative indirect approach to UCS estimation. 
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Fig. 2. Output values with (green-diamond) symbol, versus target values with (red-cross) symbol. 

 

 

Fig. 3. Results of ANN training for the training, validation and test set. 
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Fig. 4. ANN performance.  

5. Discussion and conclusion  

The main conclusions arising from the current study, is that the developed ANN allow for an initial reliable 
estimation of UCS. The proposed model using unit weight γ, point load index test (Is (50)), tensile strength, and 
lithology to estimate UCS, suggests that could serve as a tool of reliable UCS prediction at the level of a feasibility 
study. The range of values measured under point load index tests and UCS present a correlation index of R2 = 0.70. 

Further systematic sampling from various other areas would allow for conducting of a greater programme of 
laboratory tests to increase the confidence in the proposed model and been able to generalise. Important parameters 
for rock engineering design such as Poisson ratio, Modulus of Elasticity, and others such as P wave velocity, and 
Schmidt hammer rebound number, could be measured in order to allow for the development of a complete database 
which would enable for further correlations among indexes and reliable estimations of UCS.  
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Appendix A.  

Table 1. Results of Laboratory tests conducted in this study. 

No CODE γ dry σt PLI 
Coded 
Lithology 

Measured 
UCS 

Predicted 
UCS error Formation 

1 P1 26.30 2.86 2.30 2.00 165.00 160.20 4.80 
Kranskloof Member 
sandstone  

2 P2 25.86 2.63 3.10 2.00 164.40 140.43 23.97 
Kranskloof Member 
sandstone  

3 P3 25.63 2.63 4.10 2.00 160.05 142.13 17.92 
Kranskloof Member 
sandstone  

4 P5     3.30 2.00       
Kranskloof Member 
sandstone  

5 CD1 25.41 4.30 5.60 2.00 115.20 126.53 -11.33 
Kranskloof Member 
sandstone  

6 CD2 25.71 6.21 3.10 2.00 164.20 170.46 -6.26 
Kranskloof Member 
sandstone  

7 CD3 25.91 5.93 5.90 2.00 240.50 191.26 49.24 
Kranskloof Member 
sandstone  

8 CD4 25.82 6.20 4.40 2.00 218.20 209.52 8.68 
Kranskloof Member 
sandstone  

9 CD5   5.83 4.30 2.00       
Kranskloof Member 
sandstone  

10 CD6   5.50   2.00       
Kranskloof Member 
sandstone  

11 I1 26.04 4.83 6.00 2.00 172.30 189.91 -17.61 
Newspaper Member 
sandstone 

12 I2 26.15 4.13 3.10 2.00 147.90 172.78 -24.88 
Newspaper Member 
sandstone  

13 I3 26.11 4.75 6.50 2.00 161.40 176.35 -14.95 
Newspaper Member 
sandstone  

14 I4 26.24 4.68 4.20 2.00 193.10 201.94 -8.84 
Newspaper Member 
sandstone  

15 PR1 25.47 2.08 2.50 2.00 146.00 128.81 17.19 
Newspaper Member 
sandstone  

16 PR2 25.25 2.14 2.90 2.00 134.00 129.39 4.61 
Newspaper Member 
sandstone  

17 PR3 25.45 2.97 3.30 2.00 110.00 133.26 -23.26 
Newspaper Member 
sandstone  

18 PR4 25.18 2.50 3.70 2.00 126.50 122.87 3.63 
Newspaper Member 
sandstone  

19 PR5   3.34   2.00       
Newspaper Member 
sandstone  

29 D1 29.09 30.04 11.30 6.00 413.85 428.56 -14.71 Dolerite 

30 D2 29.16 30.72 10.00 6.00 362.93 402.14 -39.21 Dolerite 

31 D3 29.19 30.02 8.90 6.00 378.08 361.76 16.32 Dolerite 

32 D4 29.22 30.09 8.90 6.00 336.64 359.49 -22.85 Dolerite 

        continued on next page 
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Table 1. Results of Laboratory tests conducted in this study (continued from previous page). 

No CODE γ dry σt PLI 
Coded 
Lithology 

Measured 
UCS 

Predicted 
UCS error Formation 

33 D5 29.21 29.93 10.70 6.00 459.17 413.99 45.18 Dolerite 

34 D6 29.21 29.50 9.40 6.00 392.49 377.32 15.17 Dolerite 

35 Q1 25.55 16.19 6.39 2.00 213.89 216.34 -2.45 Natal  

36 Q2 25.79 16.25 8.10 2.00 273.58 256.61 16.97 
Newspaper Member 
sandstone  

37 Q3 25.81 16.17 7.70 2.00 250.66 234.14 16.52 
Newspaper Member 
sandstone  

38 Q4 25.74 16.51 8.10 2.00 244.72 264.07 -19.35 
Newspaper Member 
sandstone  

39 DT1 23.57 15.59 5.70 5.00 210.26 209.30 0.96 
Newspaper Member 
sandstone  

40 DT2 24.95 15.35 5.50 5.00 206.24 203.73 2.51 Dwyka tillite 

41 DT3 24.93 16.03 6.50 5.00 219.96 232.16 -12.20 Dwyka tillite 

42 DT4 24.94 16.17 5.80 5.00 233.58 217.13 16.45 Dwyka tillite 

43 DT5 24.94 16.34 5.84 5.00 179.73 219.87 -40.14 Dwyka tillite 

44 DT6 24.94 16.21 6.10 5.00 244.80 224.80 20.00 Dwyka tillite 

45 CS1 23.63 2.04 4.31 2.00 42.14 71.50 -29.36 
Coarse grained sandstone 
Elliot formation 

46 CS2 23.91 2.02 4.27 2.00 50.96 56.87 -5.91 
Coarse grained sandstone  
Elliot formation 

47 FS1 22.69 2.14 4.69 2.00 170.68 167.08 3.60 
Fine grained sandstone  
Molteno formation 

48 FS2 22.75   3.14 2.00 108.07     
Fine grained sandstone 
Molteno formation 

49 SB1a 24.33 8.22 3.97 3.00 58.41 55.48 2.93 Scotchborought granite 

50 F1a 25.51 10.80 4.22 3.00 64.39 63.23 1.16 Fafa granitoid 

51 F1b 25.60 8.83 4.09 3.00 91.85 30.82 61.03 Fafa granitoid 

52 F1c 26.49 5.31 4.16 3.00 99.71 99.06 0.65 Fafa granitoid 

53 F1d 27.17 5.06 4.34 3.00 134.67 169.68 -35.01 Fafa granitoid 

54 WM1a 27.47 16.63 8.29 3.00 139.40 137.44 1.96 
White Umfulozi 
granitoid 

55 WM1b 27.47 12.90 5.65 3.00 149.74 155.58 -5.84 
White Umfulozi 
granitoid  

56 WM1c 28.74 13.81 4.64 3.00 167.67 165.57 2.10 
White Umfulozi 
granitoid 

 


