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Singulaarse spektraalanalüüsi meetod aegridade prognoosimiseks 
 

Lühikokkuvõte. Singulaarse spektraalanalüüsi meetod (SSA) on suhteliselt uus 

mitteparameetrilne andmepõhine meetod aegridade analüüsiks, aga see on rakendust 

leidnud ka muude ülesannete korral eri valdkondades, üldisemalt – algülesande 

dimensioonide vähendamiseks. Käesolevas magistritöös antakse ülevaade SSA 

põhiskeemist ja prognoosimismeetodist aegridade korral. SSA põhialgoritm koosneb 

erinevatest etappidest: dekompositsioon, rekonstruktsioon ja prognoosimine. Töö on 

jaotatud viieks peatükiks,  sisaldades kirjanduse loetelu ja lisad. Peatükis 4 esitatakse 

autori poolt rakenduspaketiga Matlab tehtud arvutuseksperimentide tulemused 

finantsturu ühe aegrea jaoks. Tööle on lisatud programmide tekstid, algandmed ja 

arvutustulemused. 

Märksõnad: Singulaarse spektraalanalüüsi meetod (SSA), finantsaegread, 

prognoosimine, sulgemishinnad. 

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeerimine, finants- 

ja kindlustusmatemaatika. 

 

 

Singular spectrum analysis forecasting for financial time series 
 

Abstract. SSA is a relatively new non-parametric data-driven technique in time series 

analysis, has been developed and applied to many practical problems across different 

fields. This paper focuses on the technique of Singular Spectrum Analysis (SSA), its 

application for financial time series, and also represents results of numerical experiments 

done by author. The main algorithm of SSA consists of two complementary stages: 

decomposition and reconstruction; both stages include two separate steps. The 

performance of the SSA technique is assessed by applying it to the close prices of “AS 

Tallink Grupp” stock. Results in this work are obtained from creation trajectory matrix 

of given time series and finding eigenvalues and eigenvectors; construction of the 

principal and reconstructed components of the time series; applying forecasting algorithm 

to the time series; interpretation of obtained results. In this thesis for numerical 

experiments we use the software Matlab. 

Keywords: Singular Spectrum Analysis, Financial Time Series, Forecasting, Close 

Prices. 

CERCS research specialisation: P160 Statistics, operations research, programming, 

actuarial mathematics.   
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1. INTRODUCTION 
 

A time series insures information about the physical, biological, socioeconomic or 

financial systems that produced it. The purpose time series analysis based the pattern of 

time series, to determine some of the main properties, to understand how the time series 

has behaved in the past. It can then help to understand and predict the system’s future 

behaviour [15]. There are many well-known decomposition methods which is used in 

time series analysis. In this paper we study Singular Spectrum Analysis and it's 

application in financial time series. 

In recent years SSA, a comparatively new but powerful technique in time series analysis, 

has been researched and applied to many practical problems in different fields. SSA is 

non-parametric time series method which decomposes, reconstructs and forecasts time 

series. It incorporates tools from time series analysis, multivariate statistics, dynamical 

systems and signal processing [17]. The basic SSA method primarily involves two stages: 

decomposition and reconstruction and both stages contain two separate steps. The 

decomposition stage consists two steps: embedding and singular value decomposition 

(SVD); the reconstruction stage: grouping and diagonal averaging. These two stages 

make up the basic SSA algorithm [16]. The structure of SSA algorithm is as follows. 

First, a one-dimensional time series is converted into a higher dimension matrix is called 

the trajectory matrix. The dimension of the trajectory matrix is called the window length. 

In the second step SVD is applied to the trajectory matrix and eigenvalues and 

eigenvectors are found. The next step is the grouping step which involves splitting the 

elementary matrices into several groups and summing the matrices in each group. By 

taking the average along the diagonals of each group we get reconstructed components 

and combining them into one time series we obtain the approximated time series of the 

initial series [16]. Additionally to these stages, an important advantage of SSA is that it 

allows, after reconstruction of the time series under study, to produce forecasts for the 

reconstructed components which is called SSA forecasting algorithm.  

The purpose of this work is to study and understand the SSA method, SSA forecasting 

algorithm, to make numerical experiments on financial time series and to compare its 

performance with different sampling SSA parameters. 

The work is made up of five main sections including the introduction and conclusion. In 

section 2, we provide a review of the main linear algebra tools and brief summary of LU 

decomposition, eigenvalues and eigenvectors, spectral and singular decomposition. 

Section 3, involves theoretical study about time series, basic SSA method, forecasting 

algorithm, choice of SSA parameters and forecast accuracy. In section 4, we apply SSA 

to a financial time series- the close prices of “AS Tallink Grupp” stock taken from Yahoo! 

Finance and make numerical experiments on chosen data. In this section first 

reconstructed components are built and shown that sum all reconstructed components 

gives initial time series. Next we use the reconstructed components for forecasting new 

data points. One of main tasks in this experiments to compare forecasting results which 
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is obtained with different window length and number of components and to determine a 

suitable sampling for them. We discuss the conclusion and future work in sections 5. The 

numerical experiments in this study were done with Matlab which has been studied during 

this work. 
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2. LINEAR ALGEBRA TOOLS 
 

2.1. LU Decomposition  
 

LU decomposition is a method of factorization of square matrix 𝐴. It will yield a product 

of a lower triangular matrix (𝐿) and an upper triangular matrix (𝑈). For example, given 

𝑛 ⨯ 𝑛 matrix 𝐴 the decomposition is [13, 14] 

[

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

] = [

𝑙11 0 … 0
𝑙21 𝑙22 … 0
⋮ ⋮ ⋱ ⋮
𝑙𝑛1 𝑙𝑛2 … 𝑙𝑛𝑛

] [

𝑢11 𝑢12 … 𝑢1𝑛
0 𝑢22 … 𝑢2𝑛
⋮ ⋮ ⋱ ⋮
0 0 … 𝑢𝑛𝑛

] . 

Let us consider the LU factorization for 3 ⨯ 3 matrix: 

[
1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

] [

𝑢11 𝑢12 𝑢13
0 𝑢22 𝑢23
0 0 𝑢33

] = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] . 

Calculation on the left side give us [8]: 

[

𝑢11 𝑢12 𝑢13
𝑙21𝑢11 𝑙21𝑢12 + 𝑢22 𝑙21𝑢13 + 𝑢23
𝑙31𝑢11 𝑙31𝑢12 + 𝑙32𝑢22 𝑙31𝑢13 + 𝑙32𝑢23 + 𝑢33

] = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

]. 

 

The main idea of the LU decomposition is to record the steps used in Gaussian elimination 

on 𝐴 in the places where the zero is produced [22].  

Example 2.1: Consider the matrix  

𝐴 = [
7 6 10
3 8 7
3 5 5

] , 

 

where 𝐿 = [
1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

] and 𝑈 = [

𝑢11 𝑢12 𝑢13
0 𝑢22 𝑢23
0 0 𝑢33

] . 

Multiplication 𝐿𝑈 and setting the answer equal to 𝐴 gives, 

[

𝑢11 𝑢12 𝑢13
𝑙21𝑢11 𝑙21𝑢12 + 𝑢22 𝑙21𝑢13 + 𝑢23
𝑙31𝑢11 𝑙31𝑢12 + 𝑙32𝑢22 𝑙31𝑢13 + 𝑙32𝑢23 + 𝑢33

] = [
7 6 10
3 8 7
3 5 5

] . 

Now we have to use this to find the entries in 𝐿 and 𝑈. We begin by running along the 

top row to see that 

𝑢11 = 7;  𝑢12 = 6  ; 𝑢13 = 10 . 

Now consider the second row 
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𝑙21𝑢11 = 3 ⟹ 𝑙21 ⨯ 7 = 3 ⟹ 𝑙21 = 0.4286 ; 

𝑙21𝑢12 + 𝑢22 = 8 ⟹ 0.4286 ⨯ 6 + 𝑢22 = 8  ⟹ 𝑢22 = 5.4286 ; 

𝑙21𝑢13 + 𝑢23 = 7 ⟹ 0.4286 ⨯ 10 + 𝑢23 = 7 ⟹ 𝑢23 = 2.7143 . 

At each step, the equation has only one unknown in it, and other quantities that we have 

already found. This pattern continues on the last row 

𝑙31𝑢11 = 3 ⟹ 𝑙31 ⨯ 7 = 3 ⟹ 𝑙31 = 0.4286 ; 

𝑙31𝑢12 + 𝑙32𝑢22 = 8 ⟹ 0.4286 ⨯ 6 + 𝑙32 ⨯ 5.4286 = 5  ⟹ 𝑙32 = 0.4474 ; 

𝑙31𝑢13 + 𝑙32𝑢23 + 𝑢33 = 5 ⟹ 0.4286 ⨯ 10 + 0.4474 ⨯ 2.7143+𝑢33 = 5 ⟹ 

 ⟹ 𝑢33 = −0.5 . 

We have shown that 

𝐴 = [
7 6 10
3 8 7
3 5 5

] = [
1 0 0

0.4286 1 0
0.4286 0.4474 15

] [
7 6 10
0 5.4286 2.7143
0 0 −0.5

]. 

 

2.2. Eigenvalues and Eigenvectors 
 

Let 𝐴 be an 𝑛 ⨯ 𝑛 matrix. A scalar 𝜆 is an eigenvalue of 𝐴 if there exists a non-zero vector 

𝑉, such that [23] 

𝐴𝑉 =  𝜆𝑉. 

In this case, vector 𝑉 is called an eigenvector of 𝐴 corresponding to 𝜆. 

Letting 𝐴 be a 𝑛 ⨯ 𝑛 square matrix  

[

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

] 

with eigenvalue 𝜆, then the corresponding eigenvectors satisfy [1, 10] 

[

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

] [

𝑣1
𝑣2
⋮
𝑣𝑛

] = 𝜆 [

𝑣1
𝑣2
⋮
𝑣𝑛

]. 

One can rewrite it in the form:  

http://mathworld.wolfram.com/Eigenvector.html
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|

𝑎11 − 𝜆 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 − 𝜆 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛 − 𝜆

| |

𝑣1
𝑣2
⋮
𝑣𝑛

| = |

0
0
⋮
0

|, 

or compactly : 

(𝐴 − 𝜆𝐼)𝑉 = 0 , 

where 𝐼 is the identity matrix. So the eigenvalue of 𝐴 are computed as solutions of 

equation [23]: 

 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 . 

This equation (2.1) is known as the characteristic equation of 𝐴. 

Example 2.2 : Find eigenvalues and eigenvectors of a 2 ⨯ 2 Matrix. 

𝐴 = [
0 1
−2 −3

]. 

The characteristic equation is  

|𝐴 − 𝜆𝐼| = |[
0 1
−2 −3

] − [
𝜆 0
0 𝜆

]| = 0 , 

|[
−𝜆 1
−2 −3 − 𝜆

]| = 𝜆2 + 3𝜆 + 2 = 0 . 

Two eigenvalues are 

𝜆1 = −1; 𝜆2 = −2 . 

Let's find the eigenvector 𝑉1, which is associated the eigenvalue, 𝜆1 = −1. 

𝐴𝑉1 = 𝜆1𝑉1 ; 

(𝐴 − 𝜆1)𝑉1 = 0 ; 

[
−𝜆 1
−2 −3 − 𝜆

]𝑉1 = 0 ; 

[
1 1
−2 −2

]𝑉1 = [
1 1
−2 −2

] [
𝑣1,1
𝑣1,2

] = 0 . 

From the top row of the equations we get 

𝑣1,2 + 𝑣1,2 = 0, 

𝑣1,1 = −𝑣1,2. 

Note that if we took the second row we would get 

−2𝑣1,1 +−2𝑣1,2 = 0, 

(2.1) 

http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/CharacteristicEquation.html
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𝑣1,1 = −𝑣1,2. 

In any case we find that the first eigenvector is any two element column vector where the 

two elements have equal magnitude and opposite sign, 

𝑉1 = 𝑘1 [
+1
−1
]. 

Considering the same procedure for the second eigenvalue: 

𝐴𝑉2 = 𝜆2𝑉2; 

(𝐴 − 𝜆2)𝑉2 = [
−𝜆2 1
−2 −3 − 𝜆2

] ; 

[
2 1
−2 −1

] 𝑣2 = [
2 1
−2 −1

] [
𝑣2,1
𝑣2,2

] = 0; 

2𝑣2,1 + 1𝑣2,2 = 0; 

2𝑣2,1 = −𝑣2,2; 

𝑉2 = 𝑘2 [
+1
−2
]. 

Again, the choice of +1 and −2 for the eigenvector was random; only their ratio is 

important. 

In Matlab this would work as follows: 

 

 

 

>> A=[0 1;-2 -3] 

A = 

     0     1 

    -2    -3 

>> [v,lambda]=eig(A) 

v = 

    0.7071   -0.4472 

   -0.7071    0.8944 

lambda = 

    -1     0 

     0    -2 
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2.3. Spectral Decomposition   
 

Let 𝐴 be a regular 𝑛 ⨯ 𝑛 matrix, 𝐶 be the 𝑛×𝑛 matrix formed by by the orthonormal 

eigenvectors of 𝐴.  

An 𝑛 ⨯ 𝑛 matrix 𝐴 is diagonalizable if there is an invertible 𝑛 ⨯ 𝑛 matrix 𝐶 such that 

𝐶−1𝐴𝐶 is a diagonal matrix. The matrix 𝐶 is said to diagonalize 𝐴. Here 𝐶−1 is inverse 

matrix of 𝐶 [4]. 

Assume 𝐴 has eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 and corresponding linearly 

independent eigenvectors 𝑉1, 𝑉2, … , 𝑉𝑛 which can be denoted [24] 

[

𝑣11
𝑣12
⋮
𝑣1𝑛

] , [

𝑣21
𝑣22
⋮
𝑣2𝑛

] , … , [

𝑣𝑛1
𝑣𝑛2
⋮
𝑣𝑛𝑛

]. 

Define the matrices 𝐶 and 𝐷 composed of corresponding eigenvectors and eigenvalues: 

𝐶 = [

𝑣11 𝑣21 … 𝑣𝑛1
𝑣12 𝑣22 … 𝑣𝑛2
⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 … 𝑣𝑛𝑛

] ;  𝐷 = [

𝝀1 0 … 0
0 𝝀2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝝀𝑛

]. 

 

Here 𝐷 is a diagonal matrix. Then [24]. 

𝐴𝐶 = 𝐴[𝑉1 𝑉2  … 𝑉𝑛] = [𝐴𝑉1 𝐴𝑉2  …  𝐴𝑉𝑛] = [𝜆1𝑉1 𝜆2𝑉2  … 𝜆𝑛𝑉𝑛] = 

= [

𝜆1𝑣11 𝜆2𝑣21 … 𝜆1𝑣𝑛1
𝜆1𝑣12 𝜆2𝑣22 … 𝜆2𝑣𝑛2
⋮ ⋮ ⋱ ⋮

𝜆1𝑣1𝑛 𝜆2𝑣2𝑛 … 𝜆𝑛𝑣𝑛𝑛

] = [

𝑣11 𝑣21 … 𝑣𝑛1
𝑣12 𝑣22 … 𝑣𝑛2
⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 … 𝑣𝑛𝑛

] [

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

] = 𝐶𝐷. 

Next formula gives decomposition of 𝐴 with a similarity 

transformation involving 𝐶 and 𝐷 [24]. 

𝐴 = 𝐶𝐷𝐶−1. 

Example 2.2 : Find the matrix that diagonalizes 

𝐴 = [
1 2 0
0 3 0
2 −4 2

]. 

First we’ll find the eigenvalues and eigenvectors of 𝐴. This matrix has 3 eigenvalues 

𝜆1 = 3, 𝜆2 = 2,  𝜆3 = 1. 

http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/DiagonalMatrix.html
http://mathworld.wolfram.com/SimilarityTransformation.html
http://mathworld.wolfram.com/SimilarityTransformation.html
https://en.wikipedia.org/wiki/Eigenvalues
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𝐴 is a 3 ⨯ 3 matrix with three different eigenvalues; therefore, it is diagonalizable. Note 

that if there are exactly 𝑛 different eigenvalues in an 𝑛 ⨯ 𝑛 matrix then this matrix is 

diagonalizable. 

The eigenvectors of 𝐴 are 

𝑣1 = [
−1
−1
2
] , 𝑣2 = [

0
0
1
] , 𝑣3 = [

−1
0
2
]. 

Now, let 𝐶 be the matrix with these eigenvectors as its columns: 

[
−1 0 −1
−1 0 0
2 1 2

]. 

Then 𝐶 diagonalizes 𝐴, as a simple computation confirms, having calculated 𝐶−1 using 

any suitable method: 

𝐶−1𝐴𝐶 = [
0 −1 0
2 0 1
−1 1 0

] [
1 2 0
0 3 0
2 −4 2

] [
−1 0 −1
−1 0 0
2 1 2

] = [
3 0 0
0 2 0
0 0 1

] . 

 

2.4. Singular Decomposition 
 

The singular value decomposition of a matrix 𝐴 is the factorization of 𝐴 into the product 

of three matrices  𝐴 = 𝑈∑𝑉𝑇 where the columns of 𝑈 and 𝑉 are orthonormal and the 

matrix ∑ is diagonal with positive real entries [12]. 

Singular value decomposition takes a rectangular matrix 𝐴, where 𝐴 is a 𝑛 ⨯ 𝑘 matrix. 

The SVD theorem states: 

𝐴𝑛𝑥𝑘 = 𝑈𝑛𝑥𝑛∑𝑛𝑥𝑘𝑉𝑘𝑥𝑘
𝑇  , 

where,  

𝑈𝑇𝑈 = 𝐼𝑛𝑥𝑛 ; 

𝑉𝑇𝑉 = 𝐼𝑘𝑥𝑘 . 

Calculating the SVD consists of finding the eigenvalues and eigenvectors of 𝐴𝐴𝑇 and 

𝐴𝑇𝐴 . The eigenvectors of 𝐴𝑇𝐴 make up the columns of V , the eigenvectors of 𝐴𝐴𝑇 make 

up the columns of 𝑈. Also, the singular values in ∑ are square roots of eigenvalues 

from 𝐴𝐴𝑇 or 𝐴𝑇𝐴. The singular values are the diagonal entries of the ∑ matrix and are 

arranged in descending order. The singular values are always real numbers. If the 

matrix 𝐴 is a real matrix, then 𝑈 and 𝑉 are also real. Let 𝜆𝑖 is eigenvalues of 𝑊 =

 𝐴𝐴𝑇  and 𝐿 =  𝐴𝑇𝐴 matrixes and let 𝑢𝑖 and 𝑣𝑖 are corresponding eigenvectors of  𝑊 and 

𝐿. Let’s construct three matrices from these values: the diagonal matrix ∑, which has 𝜎𝑖 =

https://en.wikipedia.org/wiki/Eigenvectors
https://en.wikipedia.org/wiki/Invertible_matrix#Methods_of_matrix_inversion
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√𝜆𝑖 values on the diagonal (padded with zeros if we run out of 𝜎𝑠); the matrix 𝑈 with 𝑢𝑖 

as columns; and the matrix 𝑉 with 𝑣𝑖 as the columns. (As an example, consider an 𝐴 that 

is 2⨯4; then, 𝑈 will be 4x4, ∑ will be 4⨯2, with the rightmost 2 columns being just zeros, 

and 𝑉 will be 2⨯2) [2, 5]. 

Example 2.3 : Let’s look at the example of 4 ⨯ 2 matrix 𝐴 ,and perform 

𝑈∑𝑉𝑇 multiplication step-by-step in matlab [20]. 

𝐴 = [

2 4
1 3
0 0
0 0

]. 

Let’s construct 𝑊 matrix and find the eigenvalues and eigenvectors. 

𝑊 =  𝐴𝐴𝑇 = [

2 4
1 3
0 0
0 0

] [
2 1 0 0
4 3 0 0

] = [

20 14 0 0
14 10 0 0
0 0 0 0
0 0 0 0

]. 

 

 

 

 

 

 

 

 

 

 

 

 

Now that we have a 4 ⨯ 4 matrix we can determine the eigenvalues and eigenvectors of 

the matrix 𝑊. 

[

20 − 𝜆 14 0 0
14 10 − 𝜆 0 0
0 0 −𝜆 0
0 0 0 −𝜆

]𝑈 = (𝑊 − 𝜆𝐼)𝑈 = 0. 

>> A=[2 4;1 3;0 0;0 0] 

A = 

     2     4 

     1     3 

     0     0 

     0     0 

>> W=A*transpose(A) 

W = 

    20    14     0     0 

    14    10     0     0 

     0     0     0     0 

     0     0     0     0 
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Thus from the solution of the characteristic equation |𝑊 − 𝜆𝐼| = 0 we obtain: 𝜆1 =

0.1339,   𝜆2 = 29.8661,  𝜆3 = 0, 𝜆4 = 0. This value can be used to determine the 

eigenvector that can be placed in the columns of 𝑈.  

Combining these we obtain we can construct matrix 𝑈. 

𝑈 = [

−0.8174 −0.5760 0 0
−0.5760 0.8174 0 0

0 0 1 0
0 0 0 1

]. 

Now let’s construct matrix 𝐿 and determine the eigenvalues and eigenvectors. 

𝐿 =  𝐴𝑇𝐴 = [
2 1 0 0
4 3 0 0

] [

2 4
1 3
0 0
0 0

] = [
5 11
11 25

]. 

A similarly, with eigenvectors of 2 ⨯ 2 matrix 𝐿 we can construct 2 ⨯ 2 matrix 𝑉 matrix. 

𝑉 = [
−0.4046 −0.9145
−0.9145 0.4046

]. 

Finally by the square root of the eigenvalues 𝑊 and  𝑉  we can construct 4 ⨯ 2 matrix ∑. 

∑ = [

5.4630 0
0 0.3660
0 0
0 0

]. 

All these processes we can make in matlab and we can get singular the composition of 

given 𝐴 matrix by using simple svd(A) function [20]. 
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3. SINGULAR SPECTRUM ANALYSIS IN THE STUDY 

OF TIME SERIES 
 

Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting 

combining elements of classical time series analysis, multivariate statistics, multivariate 

geometry, dynamical systems and signal processing. SSA seeks to decompose the original 

series into a sum of a small number of interpretable components such as trend, oscillatory 

components and noise. It is based on the singular value decomposition of a specific matrix 

constructed upon the time series [17].  

The basic SSA primarily involves two stages: decomposition and reconstruction. The 

decomposition consists of embedding and singular value decomposition (SVD). The 

>> A=[2 4;1 3;0 0;0 0] 

A = 

     2     4 

     1     3 

     0     0 

     0     0 

>> [U,S,V]=svd(A) 

U = 

   -0.8174   -0.5760         0         0 

   -0.5760    0.8174         0         0 

         0         0    1.0000         0 

         0         0         0    1.0000 

S = 

    5.4650         0 

         0    0.3660 

         0         0 

         0         0 

V = 

   -0.4046   -0.9145 

   -0.9145    0.4046 
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reconstruction stage consists of eigentriple grouping and diagonal average. These two 

stages make up the basic SSA algorithm [16]. 

 

3.1. Time series 
 

Time Series is an ordered sequence of values of a variable at equally spaced time 

intervals. Data that can be classified as time series include annual rainfall, daily or weekly 

closing price of stock, number of death cases in the year and recording of temperature. A 

time series that can be measured as a single variable is termed as univariate. If two or 

more variables are measured then we call it multivariate. When time series is measured 

at discrete or finite steps or points, then it is a discrete time series. The data set used in 

this work is a discrete time series. The mathematical expression for a discrete time series 

is 𝑥𝑡; 𝑡 = 0,1,2, … . In effect, 𝑥𝑡  is considered to be a random variable. However, 

observations which are measured over a specified interval is known as a continuous time 

series [18]. 

Generally speaking, a time series has four major components, namely: seasonal, cyclical, 

trend and irregular . Seasonal variation in time series occurs as a result of changes in the 

weather and climate conditions. For example, the increase in the sales of winter clothes 

is caused by seasonal variation. Repeated patterns or cycles due to medium term changes 

as seen in the financial markets lead to cyclical variation. Eventualities which are not 

repetitive in nature like earthquakes, flood, war and other natural disasters create a 

scenario in time series referred to as irregular or random fluctuations. A trend in time 

series occurs when there is a pattern of continuous increase, decrease or stagnation over 

time. For example, there is an upward trend in the rent of city apartments and a downward 

trend in birth rates [16, 18]. Time series in Figure 3.1 is trend. 
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𝐹𝑖𝑔𝑢𝑟𝑒 3.1. The time series for AS Tallink Grupp stock prices in 2016 year. 

 

The usage of time series models is twofold: 

• Obtain an understanding of the underlying forces and structure that produced the 

observed data; 

• Fit a model and proceed to forecasting, monitoring or even feedback and 

feedforward control. 

Time Series Analysis is used for many applications such as: Economic Forecasting, Sales 

Forecasting, Budgetary Analysis, Stock Market Analysis, Census Analysis, Yield 

Projections, Process and Quality Control, Inventory Studies, Utility Studies, Workload 

Projections, and etc. [11].  

One of the main problems related time series is time series forecasting. Time series 

forecasting uses information regarding historical values and associated patterns to predict 

future activity. Most often, this refers to trend analysis, cyclical fluctuation analysis and 

issues of seasonality [21]. 
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3.2. Singular Value Decomposition of Time Series  
 

1st step: Embedding 

The purpose of the first step is mapping the original time series into the trajectory matrix. 

Consider 𝑋 = (𝑥1, … , 𝑥𝑁), the time series of length 𝑁, where 𝑁 is greater than 2 and 𝑋 is 

a nonzero series; that is there exists at least one 𝑖 such that 𝑥𝑖 ≠ 0. Let 𝐿, be some integer 

called the window length, which is 1 < 𝐿 < 𝑁. Then let  𝐾 =  𝑁 −  𝐿 + 1. To perform 

the embedding we map the initial time series into a sequence of lagged vectors of size 𝐿 

by forming 𝐾 = 𝑁 − 𝐿 + 1 lagged vectors  

𝑋𝑖 = (𝑥𝑖, … , 𝑥𝑖+𝐿−1)
𝑇 (1 ≤ 𝑖 ≤ 𝐾) 

of size 𝐿. The trajectory matrix of the series 𝑋 is 

𝐗 = [𝑋1, … , 𝑋𝑁] = (𝑥𝑖𝑗)𝑖,𝑗=1
𝐿,𝐾 =

(

 
 

𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝐾
𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝐾+1
𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝐾+2
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1 𝑥𝐿+2 ⋮ 𝑥𝑁 )

 
 
. 

 

The rows and columns of trajectory matrix 𝐗 are subseries of the original series. The 

matrix X is Hankel matrix which mean that the (𝑖, 𝑗)th component of the matrix is 𝐗 is 

𝑥𝑖𝑗 = 𝑥𝑖+𝑗−1 and 𝐗  takes the same value for a constant value of 𝑖 + 𝑗 =const [17].  

2nd step: Singular Value Decomposition (SVD) 

SVD is applied to the trajectory matrix 𝐗 at this step. Let 𝑆 = 𝐗𝐗𝐓 and denote by 

𝜆1, 𝜆2, … , 𝜆𝐿 the eigenvalues of 𝑆 in decreasing order, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿 ≥0. Let 

𝑈1, 𝑈2, … , 𝑈𝐿 be the orthonormal eigenvectors of the matrix 𝑆 corresponding to those 

eigenvalues. 

Let 𝑉𝑖 =
𝐗𝐓𝑈𝑖

√𝜆𝑖
(𝑖 = 1,2, … , 𝑑), where d equal to the rank of the matrix 𝐗 is the maximum 

of 𝑖 such  𝜆𝑖 > 0. In real-life series usually 𝑑 = min {𝐿, 𝐾}.  

The triple (√𝜆𝑖, 𝑉𝑖, 𝑈𝑖) is called as 𝑖th 𝑒𝑖𝑔𝑒𝑛𝑡𝑟𝑖𝑝𝑙𝑒 of the SVD [17]. 
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3.3. Reconstruction 
 

1st step: Eigentriple Grouping 

The eigentriple grouping step corresponds to splitting the elementary matrices 𝐗𝐢 into 

several groups and summing the matrices in each group. Let 𝐼 = {𝐼1, … , 𝐼𝑚}, where each 

𝐼𝑗  contains several 𝐗𝐢’s, where 𝐗𝐢 = √𝜆𝑖𝑉𝑖
𝑇
𝑈𝑖.  

𝐗̃ = 𝐗𝐼1 + 𝐗𝐼2 +⋯+ 𝐗𝐼𝑚 .   

The procedure of the set 𝐼1, … , 𝐼𝑚 is called the eigentriple grouping. If 𝑚 = 𝑑 with 𝐼𝑗 =

{𝑗},  𝑗 = 1, … , 𝑑, then the procedure is called elementary grouping [17]. 

2nd step: Diagonal Averaging    

At diagonal averaging step each matrix 𝐗𝐼𝑗 is going to be transformed into a new series 

with length 𝑁 . Let Y be an 𝐿x𝐾 matrix 𝑦𝑖𝑗 is element of 𝐘. 𝐘 can be transferred to series 

𝑦1, 𝑦2, … , 𝑦𝑁 by  

𝑦𝑘 =

{
 
 
 
 

 
 
 
 1

𝑘
∑ 𝑦𝑚,𝑘−𝑚+1

∗                                              𝑓𝑜𝑟 1 ≤ 𝑘 < 𝐿∗
𝑘

𝑚=1

;

1

𝐿∗
∑ 𝑦𝑚,𝑘−𝑚+1

∗                                              𝑓𝑜𝑟 𝐿∗ ≤ 𝑘 ≤ 𝐾∗;

𝐿∗

𝑚=1

1

𝑁 − 𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+1

∗                𝑓𝑜𝑟 𝐾∗ < 𝑘 ≤ 𝑁

𝑁−𝐾∗+1

𝑚=𝑘−𝐾∗+1

.

 

 

Here 1 ≤ 𝑖 ≤ 𝐿 , 1 ≤ 𝑗 ≤ 𝐾 and 𝐿∗ = min(𝐿, 𝐾),𝐾∗ = max(𝐿, 𝐾), 𝑁 = 𝐿 + 𝐾 − 1, 𝑖 +

𝑗 = 𝑘 + 1.  For example, the choice 𝑘 = 1 gives 𝑦1 = 𝑦1,1; for 𝑘 = 2 we have 𝑦2 =

(𝑦1,2 + 𝑦2,1)/2; for 𝑘 = 3 𝑦3 = (𝑦1,3 + 𝑦3,1 + 𝑦2,2)/3. 

Diagonal averaging applied to a resultant matrix 𝐗𝐼𝑘, it produces 𝑋̃(𝑘) =

(𝑥̃1
(𝑘), 𝑥̃2

(𝑘), … , 𝑥̃𝑁
(𝑘)), where 𝑋̃(𝑘) is reconstructed series. The original series 𝑋 is 

decomposed into the sum of reconstructed series [17] 

𝑥𝑛 =∑𝑥̃𝑛
(𝑘) (𝑛 = 1,2, …𝑁)

𝑚

𝑘=1

. 

 

This decomposition is the main result of the SSA algorithm [17]. 
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3.4. Forecasting Algorithm 
 

Let us describe the SSA forecasting algorithm [6, 17, 25]: 

- Consider the initial time series 𝑋 = (𝑥1, … , 𝑥𝑁)  with length 𝑁, where  𝑁 > 2. 

- Fix the window length 𝐿, 1 < 𝐿 < 𝑁. 

- Construct the trajectory matrix 𝐗 = [𝑋1, … , 𝑋𝐾] of the time series 𝑋. 

- Construct orthonormal system of eigenvectors 𝑈1, … , 𝑈𝐿 form the SVD of 𝐗.  

- Estimate matrix 𝐗̂ = [𝑋̂1: … : 𝑋̂𝐾] = ∑ 𝑈𝑖𝑈𝑖
𝑇𝐿

𝑖=1 𝐗. 

- Construct matrix 𝑿̃ = ℋ𝐗̂=[𝑋̃1, … , 𝑋̃𝐾]. Here  𝑿̃ is the result of the Hankellization 

of the matrix 𝐗̂. 

- Set 𝑣2 = 𝜋1
2 +⋯+ 𝜋𝐿

2 where 𝜋𝑖 is the last component of the vector 𝑈𝑖  (i =
1, … , L). It comes out that 𝑣2 < 1. 

- Determine vector 𝐴 = (𝛼1, … , 𝛼𝐿−1): 
 

𝐴 =
1

1 − 𝑣2
∑𝜋𝑖𝑈𝑖

𝐿

𝑖=1

. 

It can be proved that in the nptations above, the last component 𝑥𝐿 of any vector 𝑋 =

(𝑥1, … , 𝑥𝐿)
𝑇 is a linear combination of the first components (𝑥1, … , 𝑥𝐿−1): 

  

𝑥𝐿 = 𝛼1𝑥𝐿−1 +⋯+ 𝛼𝐿−1𝑥1. 

 

- The last step is forecasting procedure. Define the time series 𝑋𝑁+ℎ = (𝑥1, … , 𝑥𝑁+ℎ) 
by the formulas. 

 

𝑥𝑖 = {

𝑥̃𝑖            𝑓𝑜𝑟 𝑖 = 1,… ,𝑁  ;

∑𝛼𝑗𝑥𝑖−𝑗

𝐿−1

𝑗=1

           𝑓𝑜𝑟  𝑖 = 𝑁 + 1,… ,𝑁 + ℎ.
     

 

Here 𝑥̃𝑖  (𝑖 = 1, … , 𝑁) are the components of reconstructed series. The numbers 

𝑥𝑁+1, … , 𝑥𝑁+ℎ form the ℎ terms of the SSA recurrent forecast. 

 

3.5.  Choice of SSA parameters 
 

The choice of parameters depends on the data we have and the analysis we have to 

perform [16]. We discuss the selection of SSA parameters separately for all the main 

problems of time series analysis. 
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There are two parameters in Basic SSA: the first is the window length 𝐿 and the second 

parameter is the number of components 𝑟  for reconstruction [9]. Values for 𝐿 and 𝑟 could 

be defined using information provided by the time series under study or through 

additional indices: 

Selection of the window length 𝐿: The window length 𝐿 is the only parameter in the 

decomposition stage. Selection of the proper window length depends on the problem in 

hand and on preliminarily information about the time series [7]. Knowing that the time 

series may have a periodic component with an integer period, to get a better separability 

of this components it is recommended to choose the window length proportional to that 

period. Theoretical results show that 𝐿 should be large enough but not greater than 𝑁 /2  
[6].  

The number of components r:  The theory of separability, that is how well the components 

can be separated, is the basis for the definition of 𝑟. A main criterion is based on the 

contribution of each component to the variance of 𝑋, evaluated as 𝜆𝑖/Γ (Γ = ∑ 𝜆𝑖
𝑑
𝑖=1 ) . 

Select 𝑟 out of the components so that the sum of their contributions is at least a 

predetermined threshold, for example ≥  90 % [9].  

 

3.6. Forecast accuracy  
 

There are three main approaches to evaluate the accuracy and reliability of forecasts in 

time series [19].  

• construction of confidence intervals;  

• assessment of retrospective forecasts; 

• checking the stability of forecasts.  

Although the combination of the mentioned three approaches are used in practice, in this 

section the second approach (assessment of retrospective forecasts) is researched. 

Retrospective forecasts are usually performed by truncating the time series and by 

obtaining forecasts for points temporarily removed. These forecasts can then be compared 

with the observed values of the time series to assess their quality and reliability.  Let 

𝑒𝑇,ℎ(𝑥) = 𝑦𝑇+ℎ(𝑥) − 𝑦̂𝑇,ℎ(𝑥) denote the forecast error. Here 𝑦̂𝑇,ℎ(𝑥) are the forecast for 

𝑦𝑇+ℎ(𝑥). Then, a measure of accuracy define by the following formula [19]  

𝐼𝑆𝐸𝑇,ℎ =∑𝑒𝑇,ℎ
2

𝑥

(𝑥). 
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4. NUMERICAL EXPERIMENTS: DATA AND RESULTS 
 

This chapter involves the numerical experiments on the SSA algorithm for a given data. 

The idea of the experiment is to do the calculations step by step, using a short time series. 

The experiment relies on elementary linear algebra tools that given in section 1: a basic 

understanding of concepts such as matrix-vector products, eigenvalues and eigenvectors. 

Experiment is applied to the close prices of “AS Tallink Grupp” stock taken from Yahoo! 

Finance for period from January 1, 2016 to December 30, 2016 (See Appendix D). 

Experiment consist of four main parts: calculation of eigenvalues and eigenvectors; 

construction of the principal components of the time series; reconstruction and 

forecasting; results of the experiment. For experiment we use the software Matlab. Codes 

see in Appendix A, B, C. 

 

 

4.1. Calculation of eigenvalues and eigenvectors  
 

Consider the time series taken as a close prices of “AS Tallink Grupp” stock, stored in 

the vector 𝑋 where 𝑋 is called initial data. Initial data consist of 𝑁 = 261 data points 

which means that length of the initial data equal 261. The graph of the time series given 

in Figure 4.1. 

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 4.1. The time series of AS Tallink Grupp stock prices in 2016 year. 
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First need to calculate the 𝐿 ⨯ 𝐿 matrix 𝑆 of  𝑋(𝑡) (𝑡 = 1,… ,𝑁). This matrix can 

computed by creating the 𝐿 ⨯ (𝑁 − 𝐿 + 1) "trajectory matrix" that is formed by 𝐿 lag-

shifted copies of 𝑋(𝑡), which are 𝑁 − 𝐿 + 1 long. Figure 5.2 shows trajectory matrix of 

the time series 𝑋(𝑡). 
 

 
 

𝐹𝑖𝑔𝑢𝑟𝑒 4.2. The trajectory matrix of the time series 𝑋(𝑡). 
 

So refer section 3.5 the matrix 𝑆 is computed for 𝐿 = 110. Figure 4.3 and Figure 4.4 

reveal corresponding eigenvalues and first eight eigenvectors of the matrix 𝑆. 
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𝐹𝑖𝑔𝑢𝑟𝑒 4.3. Eigenvalues of the matrix 𝑆. 

 

𝐹𝑖𝑔𝑢𝑟𝑒 4.4. Eigenvectors of the matrix 𝑆. 
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4.2. Principal components 
 

In theory of SSA are important also so called principal components of the time series 

𝑋(𝑡).  

An oscillation is characterized by a pair of almost equal SSA eigenvalues and related PCs 

that are in approximate phase quadrature. Such a pair can represent a nonlinear, a 

harmonic fluctuation, the principal components are again time series, of the same length 

as the trajectory matrix [15].  

In Matlab, the principal components are computed by linear combination of the trajectory 

matrix 𝐗 and the matrix of eigenvectors 𝑉 (each column is one eigenvector) [3] what 

yields a matrix of size (𝑁 − 𝐿 + 1) ⨯ 𝐿. 

𝑃𝐶 = 𝐗′ ⨯ 𝑉. 

The columns of matrix 𝑃𝐶 are principal components of the initial time series. To refer 

this formula we can say that “the trajectory matrix is projected onto the eigenvectors”. 

Figure 4.5 and Figure 4.6 show first and last four Principal Components of the time series. 

 

 
𝐹𝑖𝑔𝑢𝑟𝑒 4.5. Principal Components of the time series. 
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𝐹𝑖𝑔𝑢𝑟𝑒 4.6. Principal Components of the time series. 
  

 

4.3. Reconstruction of the time series 
 

In order to determine the reconstructed components first we need to create (𝑁 − 𝐿 + 1) ⨯

𝐿  matrix by invert projection of the PC and the matrix of eigenvectors  𝑉. Then averaging 

along anti-diagonals of this matrix gives the reconstructed components for the initial time 

series. The reconstructed components contain a matrix size of (𝑁 ⨯ 𝐿). Figure 4.7 and 

Figure 4.8 illustrate first and last four reconstructed components of the time series.  
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𝐹𝑖𝑔𝑢𝑟𝑒 4.7. The reconstructed components of the time series. 

 
𝐹𝑖𝑔𝑢𝑟𝑒 4.8. The reconstructed components of the time series. 

 

 

According to the Figure 4.7 the first two reconstructed components contain practically all 

trends of the time series. 
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The following Figure 4.9 shows a comparison of initial time series and sum of 𝑁 

reconstructed components and also a comparison of initial time series and the sum of the 

first two reconstructed components. It is noticeable that the sum of 𝑁 reconstructed 

components give initial time series. 

 
𝐹𝑖𝑔𝑢𝑟𝑒 4.9. Comparison initial time series and reconstructed components. 

 

 

4.4.  Forecasting Method 
 

In section 4.1-4.3 we applied main algorithm of SSA to the financial time series- the close 

prices of “AS Tallink Grupp” stock taken from Yahoo! Finance. First, we created 

trajectory matrix and found eigenvalues and eigenvectors. Then constructed principal and 

reconstructed components. 

In this section the goal is to predict the next days close price by applying forecasting 

algorithm given in section 3.4. We continue by developing forecasts for the initial time 

series of “AS Tallink Grupp” stock prices in 2016 year shown in Figure 4.1. We begin by 

developing forecasting for points  𝑁 + 1,𝑁 + 2,… ,𝑁 + ℎ. First of all we determine ℎ. In 

this study we predict next 33 days. So we take ℎ = 33 points. Then vector 𝐴 =

(𝛼1, … , 𝛼𝐿−1) is determined by given formula in section 3.4: 

𝐴 =
1

1 − 𝑣2
∑𝜋𝑖𝑈𝑖

𝑟

𝑖=1

. 
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Here 𝑣2 is calculated by sum squares of the last component of the eigenvector (section 

3.4). In the last step define the time series 𝑋𝑁+ℎ = (𝑥1, … , 𝑥𝑁+ℎ) by the formula (section 

3.4) 

𝑥𝑖 = {

𝑥̃𝑖            𝑓𝑜𝑟 𝑖 = 1,… ,𝑁  ;

∑𝛼𝑗𝑥𝑖−𝑗

𝐿−1

𝑗=1

           𝑓𝑜𝑟  𝑖 = 𝑁 + 1,… ,𝑁 + ℎ.
     

The following Figure 4.10 compares the original time series where last 33 points are 

predicted by SSA forecasting algorithm and complete reconstructed components for (𝑁 +

33) points where last 33 points calculated by steps given in section 3.4. 

 

𝐹𝑖𝑔𝑢𝑟𝑒 4.10. Comparison of original time series and complete reconstruction with forecasting. 

 

4.5. Interpretation of results 
. 

Before numerical experiments on the SSA algorithm, the window length and number of 

components 𝑟 need to be decided. Our next task in this research is to find a suitable 

sampling for window length L and number of components 𝑟. 

Influence of the window length L on forecasting. According to section 3.5, window length 

should be large enough but not greater than 𝑁 /2. So in experiments in section 4.1-4.4 as 

window length we chose 𝐿 = 110 and got forecasting shown in Figure 4.10.  Figure 4.11 
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illustrate comparison of the observed value of the time series and forecast for next (𝑁 +

33) points. The task is conducted for different window length (𝐿 = 10. 40. 70, 110). 

 

 
           (𝑎) 𝐿 = 10                      (𝑏) 𝐿 = 40 
 

 
                             (𝑐)  𝐿 = 70                                                   (𝑑)  𝐿 = 110 

 

𝐹𝑖𝑔𝑢𝑟𝑒 4.11. Comparison of the observed value of the time series and forecast. 

 

For each forecast we can measure accuracy by the formula given in section 3.6:  

𝐼𝑆𝐸𝑇,ℎ =∑𝑒𝑇,ℎ
2

𝑥

(𝑥). 

𝑒𝑇,ℎ(𝑥) is forecast error and calculated by next formula: 

𝑒𝑇,ℎ(𝑥) = 𝑦𝑇+ℎ(𝑥) − 𝑦̂𝑇,ℎ(𝑥). 

So, from calculation of forecast accuracy we get next results: 

𝐼𝑆𝐸𝑇,ℎ,1 = 1570 , when 𝐿 = 10; 

𝐼𝑆𝐸𝑇,ℎ,2 = 1456,8 , when 𝐿 = 40; 



31 

 

𝐼𝑆𝐸𝑇,ℎ,3 = 19,8920, when 𝐿 = 70; 

𝐼𝑆𝐸𝑇,ℎ,3 = 1,0936 , when 𝐿 = 110. 

From calculations it is clear that,  

max (𝐼𝑆𝐸𝑇,ℎ,1, 𝐼𝑆𝐸𝑇,ℎ,2, 𝐼𝑆𝐸𝑇,ℎ,3, 𝐼𝑆𝐸𝑇,ℎ,3 =  1570 

and 

min (𝐼𝑆𝐸𝑇,ℎ,1, 𝐼𝑆𝐸𝑇,ℎ,2, 𝐼𝑆𝐸𝑇,ℎ,3, 𝐼𝑆𝐸𝑇,ℎ,3 = 1,0936. 

It mean when 𝐿 is increased the forecast accuracy gets smaller and the forecast is more 

exact. Therefore, it would be better to work with window length 𝐿 = 110.  

Influence of the number of components r on forecasting. For preferable results, the choice 

of s 𝑟 should be made accordingly to initial data and intended experiments. In the 

literatures several ways shown to determine r. One of them is based on the contribution 

of each component to the variance of 𝑋, evaluated as 𝜆𝑖/Γ (Γ = ∑ 𝜆𝑖
𝑑
𝑖=1 ). In experiment 

which is conducted in section 4.4, we used the sum of all reconstruction components and 

got result shown in Figure 4.10. Figure 4.12 illustrate comparison of the observed value 

of the time series and forecast for next (𝑁 + 33) points with different selection of 𝑟. 

 

 

                                 (𝑎)                                                                  (𝑏) 
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                                      (𝑐)                                                                             (𝑑) 

𝐹𝑖𝑔𝑢𝑟𝑒 4.12. Comparison of the observed value of the time series and forecast. 

        (𝑎) 𝑟 = 2, 𝑓𝑖𝑟𝑠𝑡 𝑡𝑤𝑜 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠; 

        (𝑏) 𝑟 = 𝐿 = 110, 𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠; 

        (𝑐) 𝑟 = 55, 𝑎𝑙𝑙 𝑜𝑑𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠; 

        (𝑑) 𝑟 = 55, 𝑎𝑙𝑙 𝑒𝑣𝑒𝑛 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠. 

 

𝐼𝑆𝐸𝑇,ℎ,1 = 1,0936 , when 𝑟 = 2 (sum of first two reconstructed components); 

𝐼𝑆𝐸𝑇,ℎ,2 = 1,0005 , when 𝑟 = 55 (sum of odd indices reconstructed components); 

𝐼𝑆𝐸𝑇,ℎ,3 = 31,5650, when 𝑟 = 55 (sum of even indices reconstructed components); 

𝐼𝑆𝐸𝑇,ℎ,3 = 1,1533 , when 𝑟 = 𝐿 = 110 (sum of all reconstructed components). 

From calculations it is clear that,  

max (𝐼𝑆𝐸𝑇,ℎ,1, 𝐼𝑆𝐸𝑇,ℎ,2, 𝐼𝑆𝐸𝑇,ℎ,3, 𝐼𝑆𝐸𝑇,ℎ,3 =  31,5650 

and 

min (𝐼𝑆𝐸𝑇,ℎ,1, 𝐼𝑆𝐸𝑇,ℎ,2, 𝐼𝑆𝐸𝑇,ℎ,3, 𝐼𝑆𝐸𝑇,ℎ,3 = 1,0005 . 

The calculations above show that by using even indices reconstructed components we get 

high forecast accuracy. All others case forecast accuracy doesn’t change significantly. 

Comparison of some results see in Appendix E. 
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5. CONCLUSION 
 

Singular Spectrum Analysis (SSA) has appeared over the past 20 years and considered 

one of the powerful technique for analysing a variety of time series. Although its origins 

lie in the natural sciences, and the series arisen from such processes, it can be applied in 

several different fields [6]. 

Studying master of financial mathematics, financial time series drive my attention 

continually. The financial world is developing and many of its institutions are studying 

the analysis of financial time series data. For years different kinds of financial time-series 

have practically and also theoretically interest for making inferences and predictions. It 

is desirable to monitor behaviour of stock price and to try to understand the probable 

development of the prices in the future. Thus, in this paper we have described the 

methodology of SSA in the context of financial time series and also represented some 

results of numerical experiments. 

Singular Spectrum analysis (SSA) is non-parametric method of time series analysis that 

decomposes time series into trend and built reconstructed components which upon used 

for forecasting, It uses linear algebra tools such as eigenvalues and eigenvectors, singular 

decomposition by creating the trajectory matrix from a time series. In this work we 

analysed and presented theoretical results on SSA applied to financial time series; applied 

forecasting method for observation of future behaviour of the initial time series; showed 

influence of selection of the window length and number of components to forecasting; 

compared observed value of time series with forecast and illustrated results of numerical 

experiments by figures. By carrying out experiment with different window lengths we 

observed that by increasing window length the forecast accuracy gets smaller and the 

forecast is more exact. On the other hand, we got different forecasting results by changing 

the number of components. It is observed that, by using sum of even indices reconstructed 

components we obtain high accuracy with negative value which can’t be “good” selection 

for forecasting algorithm. However, by using first two reconstructed components, odd 

indices reconstructed components and sum of all reconstructed components we got more 

exact forecasting.The comparison of forecasting results showed that there is a big 

influence of selection SSA parameters to forecasting.  

It should be mentioned that application of the SSA forecasting algorithm in financial time 

series has given us some very expected results but has not showed yet its full potential. 

In the future, work it is important to study forecasting accuracy with even indices 

reconstructed components. Furthermore, in the future I would like apply of SSA 

forecasting algorithm different financial time series such as currency changes and 

compare results with other methods forecasting methods.  
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Appendix A 
 

The Matlab script for SSA algorithm used in this study. Results are illustrated in section 

4.1-4.3. 

 

%SSA algorithm  
%Code was used and edited by Aytan Osmanzade for results of the master 

thesis 
%"Singular spectrum analysis forecasting for financial time series". 

  
%Copyright (c) 2013-2016, Andreas Groth, University of California, Los 

Angeles. 
%https://se.mathworks.com/matlabcentral/fileexchange/58967-singular-

spectrum-analysis-beginners-guide 

  
% Read Initial data 
y=xlsread('tallink2016.xlsx'); 
X=flipud(y(:,4)); % Initial Data 
N=length (X);  %length of Initial Data 
L=110;   %window length 
t=(1:N); %Initial time period 

  
%Plot Initial data 
figure; 
plot(t,X); 
xlabel('Date') 
ylabel('Stock price,EUR') 
title('Daily Closing Stock Prices AS Tallink Grupp for 2016 year ') 

  
%Construction of trajectory matrix of the time series 
Y=zeros(L,N-L+1); %trajectory matrix 
for m=1:N-L+1 
  Y(:,m) = X((1:L)+m-1); 
end; 
figure ; 
set(gcf,'name','Trajectory matrix of the time series'); 
clf; 
imagesc(Y); %trajectory matrix 
title('Trajectory matrix of time series') 
axis square 
colorbar 

  
%Calculation of eigenvalues LAMBDA and eigenvectors V of the matrix S 
S=Y*Y'/ (N-L+1) ;%calculation of matrix S 
[V,LAMBDA] = eig(S); 
LAMBDA = diag(LAMBDA); % extract the diagonal elements 
[LAMBDA,ind]=sort(LAMBDA,'descend'); % sort eigenvalues 
V = V(:,ind);   % V is matrix of eigenvectors (each column is one 

eigenvector) 

  
% Plot eigenvalues of the matrix S 
figure; 
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set(gcf,'name','Eigenvalues of the matrix S') 
clf; 
plot(LAMBDA,'o-'); 
title('Eigenvalues of the the matrix S') 

  
%Plot first eight eigenvectors of the matrix S 
figure; 
set(gcf,'name','Eigenvectors of the matrix ') 
clf; 
subplot(4,1,1);  
plot(V(:,1:2), '-'); 
legend('1', '2'); 
subplot(4,1,2); 
plot(V(:,3:4), '-'); 
legend('3', '4'); 
subplot(4,1,3); 
plot(V(:,5:6), '-'); 
legend('5', '6'); 
subplot(4,1,4); 
plot(V(:,7:8), '-'); 
legend('7', '8'); 

  
% Construction of the Principal Components of the time series  
PC = Y'*V; %Principal Components of the time series 

  
%Plot first four principal components 
figure; 
set(gcf,'name','Principal components ') 
clf; 

  
subplot(4,1,1); 
plot(PC(:,1),'.-'); 
ylabel(sprintf('PC %d',1)); 

  
subplot(4,1,2); 
plot(PC(:,2),'.-'); 
ylabel(sprintf('PC %d',2)); 

  
subplot(4,1,3); 
plot(PC(:,3),'.-'); 
ylabel(sprintf('PC %d',3)); 

  
subplot(4,1,4); 
plot(PC(:,4),'.-'); 
ylabel(sprintf('PC %d',4)); 

  
%Plot last four principal components 
figure; 
set(gcf,'name','Principal components ') 
clf; 

  
subplot(4,1,1); 
plot(PC(:,107),'.-'); 
ylabel(sprintf('PC %d',107)); 

  
subplot(4,1,2); 
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plot(PC(:,108),'.-'); 
ylabel(sprintf('PC %d',108)); 

  
subplot(4,1,3); 
plot(PC(:,109),'.-'); 
ylabel(sprintf('PC %d',109)); 

  
subplot(4,1,4); 
plot(PC(:,110),'.-'); 
ylabel(sprintf('PC %d',110)); 

  
%Construction of Reconstructed Components  
R=zeros(N,L); 
for m=1:L 
  inp=PC(:,m)*V(:,m)'; %invert projection 
  inp=inp(end:-1:1,:); 
  for n=1:N % anti-diagonal averaging 
    R(n,m)=mean( diag(inp,-(N-L+1)+n) );   
  end 
end; 

  
%Plot first four reconstructed components 
figure; 
set(gcf,'name','Reconstructed components') 
clf; 

  
subplot(4,1,1); 
plot(t,R(1:N,1),'r-'); 
ylabel(sprintf('R %d',1)); 

  
subplot(4,1,2); 
plot(t,R(1:N,2),'r-'); 
ylabel(sprintf('R %d',2)); 

  
subplot(4,1,3); 
plot(t,R(1:N,3),'r-'); 
ylabel(sprintf('R %d',3)); 

  
subplot(4,1,4); 
plot(t,R(1:N,4),'r-'); 
ylabel(sprintf('R %d',4)); 

  
%Plot last four reconstructed components 
figure; 
set(gcf,'name','Reconstructed components') 
clf; 

  
subplot(4,1,1); 
plot(t,R(1:N,107),'r-'); 
ylabel(sprintf('R %d',107)); 

  
subplot(4,1,2); 
plot(t,R(1:N,108),'r-'); 
ylabel(sprintf('R %d',108)); 
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subplot(4,1,3); 
plot(t,R(1:N,109),'r-'); 
ylabel(sprintf('R %d',109)); 

  
subplot(4,1,4); 
plot(t,R(1:N,110),'r-'); 
ylabel(sprintf('R %d',110)); 

  
%% Compare initial time series and reconstructed components  
figure; 
set(gcf,'name','Initial time serie X and Reconstruction R') 
clf; 
subplot(3,1,1) 
plot(t(1:N),X,'b-'); 
legend('Initial time series'); 
subplot(3,1,2) 
plot(t,sum(R(:,:),2),'r-'); 
legend('Complete reconstruction'); %sum of all reconstructed 

components 
subplot(3,1,3) 
plot(t(1:N),X,'b-',t,sum(R(:,1:2),2),'r-'); 
legend('Initial time series','Reconstruction with Rs 1-2'); 

%comparison time series with sum of first two reconstructed components 
 

 

Appendix B 
 

The Matlab script for SSA forecasting algorithm used in this study. Results are illustrated 

in section 4.4. 

 

% SSA forecasting algorithm  
% Author: Aytan Osmanzade 

  
%Calculation of vector v^2. 
kk = find(LAMBDA,1,'last'); % the last non-zero eigenvalues. 
v2=sum(V(L,1:kk).^2); % v^2 is calculated by sum squares of the last 

components of the eigenvectors. 

  
%Creation of the vector A. 
A=zeros(L-1,1); 
for k=1:L 
    A=A+(V(L,k))*V(1:L-1,k)/(1-v2); %the vector A is calculated by the 

formula given in section 3.4 
end 

  
%Determine forecasting length 
h=Nnew-N;  

  
%Calculaton of the time series F(N+h) 
F=sum(R(:, 1:2),2); % the reconstructed time series of the first two 

components 
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% F=sum(R(:, 1:2:end),2) %calculation for odd indices reconctructed 

components  
% F=sum(R(:, 2:2:end),2) %calculation for even indices reconctructed 

components  
for k=1:h %the calculations are made by the formula given in section 

3.4 
    uu=F(N-L+k+1:N+k-1);  
    uuu=sum(A.*uu);  
    F=[F; uuu];  
end 

  
%Plot the time series F 
figure; 
plot(F); 
title('The time series F ') 

 

 

Appendix C 
 

The Matlab script evaluate the SSA forecast accuracy and compare forecast with 

observed value of the initial time series Results are illustrated in section 4.4-4.5. 

 
% Evaluation of the SSA forecast accuracy and comparison forecast with 

observed value of the initial time series 
% Author: Aytan Osmanzade 

  
% Read the the iniial time series(with observed value) 
ynew=xlsread('tallink2016-2017.xlsx'); 
Xnew=ynew(:,4); % Initial Data 
Nnew=length (Xnew);  %length of Initial Data 

  
% Compare Initial time series (with observed value)and Forecasting 
figure; 
set(gcf,'name','Initial time series and Forecast') 
clf; 
subplot(2,1,1) 
plot(tnew,Xnew,'b-'); 
legend('Original time series'); 
subplot(2,1,2) 
plot(tnew,F,'r-'); 
legend('Complete Reconstruction and Forecast'); 

  
% Compare the observed value of the initial time series with Forecast 

  
figure; 
set(gcf,'name','The observed value of the initial time series and 

Forecast') 
clf; 
subplot(2,1,1) 
plot(tnew(:,261:294),Xnew(261:294,:),'b-'); 
legend('The observed value of the time series'); 
subplot(2,1,2) 
plot(tnew(:,261:294),F(261:294,:),'r-'); 
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legend('Forecasting with L=110'); 

  
%Calculation of the forecast error and forecast accuracy 
e=Xnew(261:294,:)-F(261:294,:);  %forecast error 
ISE=sum(e.^2); %forecast accuracy, for L=110; r=2. 
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Appendix D 
 

Close prices (EUR) of “AS Tallink Grupp” stock for 2016 year. 
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Appendix E 
  

 

Forecast results of the close prices of “AS Tallink Grupp” stock with different SSA 

parameters. 

 

 

Date
Observed value of the 

Close price 

Forecast 

L=110, r=2 

Forecast error 

e_(T,h) 

Forecast L=110, 

r=L=110 

Forecast error 

e_(T,h) 

03/01/2017 0.919 0.8669 0.0521 0.9060 0.0130

04/01/2017 0.916 0.8671 0.0489 0.9030 0.0130

05/01/2017 0.923 0.8672 0.0558 0.9170 0.0060

06/01/2017 0.922 0.8673 0.0547 0.9170 0.0050

09/01/2017 0.924 0.8674 0.0566 0.9090 0.0150

10/01/2017 0.912 0.8675 0.0445 0.9070 0.0050

11/01/2017 0.92 0.8675 0.0525 0.9100 0.0100

12/01/2017 0.92 0.8676 0.0524 0.9120 0.0080

13/01/2017 0.92 0.8189 0.1011 0.8747 0.0453

16/01/2017 0.915 0.8018 0.1132 0.8579 0.0571

17/01/2017 0.923 0.7832 0.1398 0.8298 0.0932

18/01/2017 0.923 0.7661 0.1569 0.8105 0.1125

19/01/2017 0.926 0.7585 0.1675 0.7915 0.1345

20/01/2017 0.921 0.7485 0.1725 0.7676 0.1534

23/01/2017 0.92 0.7402 0.1798 0.7463 0.1737

24/01/2017 0.92 0.7244 0.1956 0.7319 0.1881

25/01/2017 0.925 0.7173 0.2077 0.7206 0.2044

26/01/2017 0.938 0.7109 0.2271 0.7001 0.2379

27/01/2017 0.939 0.7042 0.2348 0.6865 0.2525

30/01/2017 0.948 0.7087 0.2393 0.6788 0.2692

31/01/2017 0.95 0.7126 0.2374 0.6693 0.2807

01/02/2017 0.957 0.7190 0.2380 0.6748 0.2822

02/02/2017 0.957 0.7282 0.2288 0.6865 0.2705

03/02/2017 0.96 0.7380 0.2220 0.6973 0.2627

06/02/2017 0.96 0.7510 0.2090 0.7097 0.2503

07/02/2017 0.959 0.7632 0.1958 0.7270 0.2320

08/02/2017 0.954 0.7786 0.1754 0.7469 0.2071

09/02/2017 0.963 0.7968 0.1662 0.7710 0.1920

10/02/2017 0.964 0.8136 0.1504 0.7931 0.1709

13/02/2017 0.97 0.8291 0.1409 0.8187 0.1513

14/02/2017 0.975 0.8424 0.1326 0.8373 0.1377

15/02/2017 0.98 0.8490 0.1310 0.8559 0.1241

16/02/2017 0.991 0.8464 0.1446 0.8578 0.1332

17/02/2017 0.976 0.8410 0.1350 0.8622 0.1138

20/02/2017 0.981 0.8350 0.1460 0.8609 0.1201

21/02/2017 0.966 0.8251 0.1409 0.8533 0.1127

22/02/2017 0.977 0.8131 0.1639 0.8370 0.1400

23/02/2017 0.983 0.7994 0.1836 0.8219 0.1611

27/02/2017 0.968 0.7825 0.1855 0.8027 0.1653

28/02/2017 0.957 0.7559 0.2011 0.7710 0.1860

01/03/2017 0.938 0.7375 0.2005 0.7475 0.1905
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Date
Observed value of the 

Close price 

Forecast L=40, 

r=L=110 

Forecast error 

e_(T,h) 

Forecast L=10, 

r=L=110 

Forecast error 

e_(T,h) 

03/01/2017 0.919 0.9060 0.0130 0.9060 0.0130

04/01/2017 0.916 0.9030 0.0130 0.9030 0.0130

05/01/2017 0.923 0.9170 0.0060 0.9170 0.0060

06/01/2017 0.922 0.9170 0.0050 0.9170 0.0050

09/01/2017 0.924 0.9090 0.0150 0.9090 0.0150

10/01/2017 0.912 0.9070 0.0050 0.9070 0.0050

11/01/2017 0.92 0.9100 0.0100 0.9100 0.0100

12/01/2017 0.92 0.9120 0.0080 0.9120 0.0080

13/01/2017 0.92 0.1358 0.7842 1.0037 -0.0837

16/01/2017 0.915 0.2759 0.6391 1.0277 -0.1127

17/01/2017 0.923 0.0663 0.8567 1.0707 -0.1477

18/01/2017 0.923 -0.3353 1.2583 1.1385 -0.2155

19/01/2017 0.926 -0.6977 1.6237 1.2283 -0.3023

20/01/2017 0.921 -1.0502 1.9712 1.3153 -0.3943

23/01/2017 0.92 -1.5281 2.4481 1.4204 -0.5004

24/01/2017 0.92 -2.0773 2.9973 1.5468 -0.6268

25/01/2017 0.925 -2.5365 3.4615 1.6775 -0.7525

26/01/2017 0.938 -3.0983 4.0363 1.8327 -0.8947

27/01/2017 0.939 -3.8802 4.8192 2.0110 -1.0720

30/01/2017 0.948 -4.3120 5.2600 2.2070 -1.2590

31/01/2017 0.95 -5.2036 6.1536 2.4229 -1.4729

01/02/2017 0.957 -5.8108 6.7678 2.6688 -1.7118

02/02/2017 0.957 -6.4120 7.3690 2.9432 -1.9862

03/02/2017 0.96 -6.9164 7.8764 3.2463 -2.2863

06/02/2017 0.96 -7.4248 8.3848 3.5853 -2.6253

07/02/2017 0.959 -7.9249 8.8839 3.9627 -3.0037

08/02/2017 0.954 -8.1219 9.0759 4.3809 -3.4269

09/02/2017 0.963 -8.3550 9.3180 4.8458 -3.8828

10/02/2017 0.964 -8.1947 9.1587 5.3632 -4.3992

13/02/2017 0.97 -7.7807 8.7507 5.9368 -4.9668

14/02/2017 0.975 -7.5134 8.4884 6.5729 -5.5979

15/02/2017 0.98 -6.4902 7.4702 7.2793 -6.2993

16/02/2017 0.991 -5.5779 6.5689 8.0630 -7.0720

17/02/2017 0.976 -4.0351 5.0111 8.9319 -7.9559

20/02/2017 0.981 -2.1444 3.1254 9.8957 -8.9147

21/02/2017 0.966 0.0270 0.9390 10.9647 -9.9987

22/02/2017 0.977 2.6954 -1.7184 12.1497 -11.1727

23/02/2017 0.983 5.5200 -4.5370 13.4637 -12.4807

27/02/2017 0.968 9.0553 -8.0873 14.9207 -13.9527

28/02/2017 0.957 12.5890 -11.6320 16.5360 -15.5790

01/03/2017 0.938 16.8475 -15.9095 18.3266 -17.3886
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