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Ubersicht

Im Bereich der elektronischen Musik hat die Frequenzmodulation (FM) als eine
effiziente Methode zur Klangsynthese in jiingster Zeit enorm an Bedeutung gewon-
nen. In der vorliegenden Arbeit werden Methoden zur Grundfrequenzschétzung und
zur FM-Synthese fiir Musikinstrumentenkldnge untersucht, bewertet und optimiert.
Dazu wurde im Rahmen dieser Arbeit eine FM Analyse- und Syntheseumgebung
entwickelt, in welcher die hier betrachteten Verfahren implementiert wurden.

Zur Grundfrequenzschéatzung in Musiksignalen wurde ein neuartiges Verfahren auf
Basis von Harmonic Pattern Match (HPM) entwickelt, welches eine héhere Schétzungs-
genauigkeit als bisher verwendete Verfahren bietet. Hierzu wird nach Festlegung
einer geeigneten Teilmenge der Spektraldaten die Autokorrelation sowohl im Zeit-
als auch im Frequenzbereich analysiert, um Kandidaten fiir die Grundfrequenz des
Signals zu bestimmen. Anschliefend wird die Ubereinstimmung jedes dieser Kan-
didaten mit dem Profil der Harmonischen des Musiksignals nach einem effizienten
Verfahren analysiert. Das vorgeschlagene Verfahren wurde analysiert und im Kon-
text mit anderen Verfahren zur Grundfrequenzschatzung bewertet. Die praktische
Anwendbarkeit des HPM Verfahrens konnte gezeigt werden.

Zur Implementierung einer FM Synthese wird ein Verfahren zur Approximation
eines Spektrums auf Basis Genetischer Algorithmen (GA) vorgestellt. Die Prob-
lemstellung des GA einschlieflich eines Verfahrens zur Bestimmung optimaler FM-
Parameter wird beschrieben. Des Weiteren wurden im Hinblick auf eine optimierte
FM-Synthese die Anforderungen an das Triagersignal sowie an den Modulator un-
tersucht, mit dem Ziel einer Vorab-Festlegung des Parameterraums fiir akkurate
Syntheseresultate. Mit dem Ziel einer Datenreduktion bei der FM-Synthese wurde
eine stiickweise lineare Approximation der Einhiillenden des Tragersignals entwick-
elt.

Einen weiteren Aspekt der Optimierung stellt die Verkniipfung von Formanten in der
Matching-Prozedur dar, wobei die Harmonischen der Formanten mit entsprechen-
den Faktoren gewichtet werden. Auf diese Weise wird eine deutlich genauere Ap-
proximation des Timbres des zu synthetisierenden Klangs erreicht. Hierzu wur-
den die Schétzung der spektralen Einhiillenden und die Extraktion der Formanten
analysiert und implementiert. Die im Rahmen dieser Arbeit entwickelte Testumge-
bung ermoglicht die Schatzung der Parameter und die Analyse und Bewertung der
so erzeugten FM-Syntheseresultate.






Abstract

Frequency modulation (FM) as an efficient method to synthesize musical sounds is
of great importance in the area of computer music. In this thesis, the estimation
of fundamental frequency, the FM synthesis procedure of musical instrument tones
and the optimization on FM synthesis were analysed, evaluated, improved and im-
plemented. A FM analysis and synthesis environment was developed, in which the
presented work in this thesis were implemented.

For the estimation of fundamental frequency of music signals, an algorithm based on
harmonic pattern match (HPM) was designed to achieve more reliable estimation
accuracy. After defining the spectrum subset, the autocorrelation was applied on the
spectrum subset to exploiting candidates of fundamental frequency, and an efficient
mechanism to evaluate the match between each candidate and the harmonic pattern
of the musical signal was designed. Evaluation of the proposed algorithm and several
other estimation algorithms was performed.

For the implementation of FM synthesis, the matching procedure of spectra using
genetic algorithm (GA) was described, including the definition of the task in GA
and the searching procedure of optimized FM parameters through GA. For the opti-
mization on FM synthesis, the requirements of carrier and modulator were analysed
and the parameter space was examined, based on which a method for the predeter-
mination of parameter space was designed to achieve accurate synthesis results. For
data reduction in FM synthesis, the piecewise linear approximation of the carrier
amplitude envelope was designed.

Further step on the FM synthesis optimization was implemented by the combina-
tion of formants in the spectra matching procedure, in which the formant harmonics
were emphasized by the weighting coefficients to achieve more accurate timbre of
the synthesized sounds. The spectral envelope estimation and the formant extrac-
tion were analysed and implemented. For the analysis and implementation of FM
synthesis, a testing environment program was developed, offering the functionality
of parameter estimation and performance evaluation in FM synthesis.
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Chapter 1

Introduction

1.1 Fundamental Concepts in Musical Sounds

1.1.1 The Physics of Sound

1.1.1.1 Waves and sound

A sound, what we hear, is actually a type of wave caused by vibrations that travels
through the medium, like air, to our ears and causes vibrations of the eardrum
[Spe92]. So we can state that a sound is generated by the vibration of objects, such
as the vocal cord of a singer, the strings and sound board of a violin or the prongs
of a tuning fork [Muel5|. These vibrations cause displacements and oscillations of
the air molecules, resulting in local air moving back and forth and the varying air
pressure travels as a wave [Muelb|. When it reaches to the ear, it vibrates the
eardrum according to the oscillation frequency and this vibration is sent into the
brain to cause the hearing sensation [Muel5]. If the values of a vibration in a spatial
position are registered as a function of time, the result is a sound signal [PK15|. This
operation is usually performed by a microphone, which results in an electrical signal
or the often known audio signal to be further processed and this audio signal can
be converted to sound, what we can hear, by a loudspeaker [PK15].

A simple example to understand the generation mechanism of sounds is the vibration
of a tuning fork. Striking the tuning fork causes it to move back and forth to try to
move back to its original position [Lap|. Since the movement of the fork is too small,
we cannot observe it. When the fork moves back and forth, it causes the surrounding
air to move in the same way, which creates the change of the air pressure travelling
as a wave |Lap|.

In general, there are two basic types of waves, transverse wave and longitudinal
wave, depending on the type of vibration [Set99; Spe92; WWS80|. A transverse wave
is one in which the medium vibrates at right angles (90°) to the direction of the
wave that is propagated through the medium [Spe92|. Instead, the longitudinal
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wave occurs when the medium vibrates in the same direction as the direction of the
wave propagation [Spe92|. The sound waves in air are the longitudinal waves, as
the direction of air particle movement is the same with the direction of the wave
movement [Spe92|.

high

[<5)

2 =

4 normal

:5_ ]

< low

t/s

Tuning fork ) .
oscillates, Air molecules close Air molecules far
disturbing the together = region of apart = region of
nearby air high pressure low pressure

Figure 1.1: Sound as a longitudinal wave ([Set99])

Figure 1.1 shows an example of longitudinal wave caused by a tuning fork. The
top figure shows the electrical sound signal corresponding to the longitudinal wave
caused by an oscillating tuning fork. The bottom figure shows the states of the air
molecules when the tuning fork disturbs its nearby air to cause the air vibration
[Set99]. In the sound signal, the peak values represent times when air molecules are
clustered together and cause high air pressure, and the valley values represent times
when air molecules are far apart with each other and cause low air pressure, which
is lower than the normal level [Set99]. Such push and pull motions in the air cause
the eardrum to vibrate [Set99].

For a continuous-time sound signal x(t), after sampling, its discrete-time version is
defined as the value of x(t) taken at time n7} and is denoted by x(n) as [Pro07|

z(n) :=z(t =nTy),n=0+1,£2,..., (1.1)

where n denotes the sample index, and T} is the sampling period, i.e., Ty = 1/ f;, with
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Figure 1.2: Samples of a sound signal from a tuba with sampling frequency f; =
44.1 kHz, which is played with note A3 (simulated by the author of
this thesis)

fs is the sampling frequency. Figure 1.2 shows the samples of a sound signal x(t),
which is produced by a tuba with note A3. The upper envelope and lower envelope
are outlined by red dashed lines. It can be seen that this sound signal varies slowly in
time. This sound signal reaches its maximal amplitude in a short while at 0.2 s, then
decreases very slowly until the sound fades away. A short-time frame is shown in the
bottom figure, from 0.8 s to 0.9 s. It seems that in this short-time frame, there are
no changes in the amplitudes. Actually, in the sound signal analysis, the short-time
analysis is based on such observations, where a sound signal is taken as constant or
stable in a short-time frame to be analysed. In Figure 1.2, the amplitude envelope
reflects the variation of the extremes in amplitude over time and contributes to our
perception of sounds [Muel5|, which will be discussed in details in the following
sections. All the sound recordings in this thesis are taken from Electronic Music
Studio in the University of Iowa [UOI|. The recording microphone was 5 feet away
from the instrument, the sampling frequency was 44.1 kHz and 16-bit coding was
used for the analog-to-digital converter [UOI].
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1.1.1.2 Frequency and pitch

In a sound wave, if the points of high and low air pressure repeat in an alternating
and regular fashion, the resulting sound signal is periodic, and the period of the
signal is defined as the time required to complete one cycle [Muel5|. The frequency,
measured in Hertz (Hz), is the reciprocal of the period and is used to describe how
many cycles a wave can finish in one second [Muel5|. Except for frequency, another
two important parameters of a sinusoidal are amplitude and phase. The amplitude
indicates the peak deviation of the sinusoid from its mean and the phase determines
the start point in a cycle of a sinusoid at the beginning time [Muel5|. In a sound
wave, the amplitude is the distance from the rest position to either the crest or the
trough, so it is related to the energy of the sound wave and determines the loudness
of the sound [Lap|.

Normally, the frequencies, which locate in the human hearing range, are called the
audible frequencies. The generally accepted standard range of audible frequencies
is 20 to 20,000 Hz [RH91|. The sounds below 20 Hz are referred to as subsonic, and
the sounds above 20,000 Hz are ultrasonic [Lap|. The best hearing range for human
is about 2000 Hz to 4000 Hz, while the hearing sensitivity decreases gradually to
the up and down direction from this optimal interval [HHO7].

The frequency in physics describes the speed of the vibration of a sound wave, and
the higher frequency results in a higher sound [Muel5|. To describe how we perceive
the frequency of a played music note, it is convenient to use the term pitch. Pitch is
a subjective feature of a sound and mostly be used by the musicians to arrange the
note from low to high on a music frequency scale [Muel5|. In the simplest situation, a
sinusoid will generate a pure tone and for each pure tone, there is a precise frequency
corresponding to it [Muel5|. For example, a sinusoid with a frequency of 220 Hz
corresponds to the pitch A3 and 440 Hz corresponds to the pitch A4.

Another concept related to frequency is octave. By American National Standards
Institute (ANSI), the octave is defined that, in music, an octave or perfect octave is
the interval between one musical pitch and another with half or double its frequency
[ANS13]. In human perception, two sounds with frequencies of octave relation will be
perceived as similar and the perceived distance of frequencies is logarithmic [Muel5].
For instance, in the 12-tone equal tempered scale (12-tet), one octave is divided into

12 intervals, and the frequency ratio between the adjacent pitch is constant and
equal to [WD13]

r =212 ~ 1.059463, (1.2)
and this is named as minor frequency ratio, r* is named as major frequency ratio
[WD13]. Commonly, the twelve steps are called the semitones, which are labelled
from A to G with the symbol # and b together to name the pitch of notes [WD13;
Set99]. In order to compare different intervals, one convenient way is to measure
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each interval in cents, which divide each semitone into 100 equal parts, and therefore
the octave into 1200 parts [Set99]. Figure 1.3 depicts one octave of a keyboard and
shows the note names together with the intervals in cents and frequency ratios for
each key. From this figure, it can be seen that the interval of each semitone has
the minor frequency ratio relationship and the interval of each tone has the major
frequency ratio relationship.

Note Cents Ratio
c 0 10
—— C/D, 100 1.0595
5 200 1189
—— DY/E, 300 1.1225
E 400 1.260
500 1.335
F [FIG, 600 14142
700 1.498
G GA, 800 15874
900  1.682
A TA%B, 1000 17818
B 1100  1.888
1200 2.0
c

Figure 1.3: The 12-tone equal tempered scale ([Set99])

In addition to 12-tet scale, there exist several other musical scales, such as just
intonation, Pythagorean tuning, well temperaments, etc [Set99]. In just intonation
tuning, the frequency ratios of the various interval are associated with small inte-
ger numbers and the intervals between the pitched notes are defined based on the
harmonics. For example, one octave is the interval between the first and the sec-
ond harmonic, with the frequency ratio 1:2; the fifth (denotes the difference of 7
semitones) is the interval between the second and the third harmonics, with the
frequency ratio 2:3 and so forth [Set99; Muel5].

The Pythagorean tuning system is based only on the octave and the fifth, i.e., the
frequency ratio of 1:2 and 2:3 [Set99]. All other intervals are accomplished by adding
or subtracting an octave or fifth interval. Figure 1.4 depicts the frequency ratios
of the various intervals for each key in the just intonation and Pythagorean tuning
system, respectively. For further details of various musical scales one can refer to
[Set99; Cha92|.

The sounds in the real life are actually more complex than the pure tones. Usually
a tone from a played musical instrument can be described as a superposition of pure
tones or sinusoids, with different frequencies, amplitudes and phases [Muel5]. A
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Note Just intqnation Pythag_orean
ratio ratio
11 11
< [, 16/15 2561243
o/ o8
2 o, 6/5 32027
E 5/4 81/64
413 413
F [FG, 43/32 729/512
312 312
& IGA, 8/5 128/81
5/3 27/16
A [A7B, 16/9 16/9
B 15/8 243/128
211 21
C4|

Figure 1.4: Frequency ratios of just intonation scale and Pythagorean scale

([Set99])

partial, is any of the sinusoids which are made up of a musical tone; the frequency
of the lowest partial is called the fundamental frequency of the sound and the other
partial, whose frequency is integer multiple of the fundamental frequency is called
the harmonic partial or harmonic. Moreover, the fundamental frequency can also
be taken as the inverse of the period of a periodic signal and the pitch of a periodic
sound is determined by its fundamental frequency [Muel5]. When playing a note
on an instrument with a specific fundamental frequency, it is usually related to a
specific pitch. To this degree, each fundamental frequency can be mapped into a
clearly perceived pitch [Muel5|. Another term in musical theory is overtone, which

is any partial except the lowest, so the second harmonic is also the first overtone
[Muel5].

1.1.1.3 Loudness and intensity

The loudness, as an important characteristic of a sound, is essentially a perceptual
attribute of the perceived sound and related to the amplitude of a sound [Lap|. The
loudness allows for the ordering of a sound on a logarithmic scale extending from
quiet to loud by the listeners [ANS73]. Similar to the relation between pitch and
fundamental frequency, there exists as well objective measures related to loudness,
which are called sound power and sound intensity.
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Sound intensity

A sound is a form of wave motion through some medium and the energy of the
sound is transferred through the medium as the wave moves [Spe92|. Sound power
is then used to describe how much energy per unit time is emitted by a sound source
passing in all directions through the air, with the measure unit Watt (W) [Spe92].

Sound intensity is used to indicate the sound power per unit area, i.e., per square
meter, and then the unit of measure of intensity should be W/m? [Spe92|. Normally,
the value of some specific sound intensity, e.g., 1077 W/m?, is the absolute intensity
of a sound. However, it is frequently to use relative intensity or the level of intensity
of a sound. In this case, the absolute intensity of a sound is compared with the
absolute intensity of another reference sound and the two absolute sound intensities
form a ratio, which is taken as the relative intensity [Spe92|. The relative sound
intensity is expressed as the level of sound intensity by specifying the reference sound
intensity as [Spe92|

~

==, (1.3)
where [ represents the value of the level of sound intensity, I, is the absolute sound

intensity of the sound in question and I, is the absolute sound intensity of the
reference sound [Spe92].

In general, the measurement of loudness uses the logarithmical scale, because the
human ears do not hear linearly, for instance, if the sound intensity doubles, it does
not sound twice as loud [Spe92|. For the logarithmical measure of sound intensity
with the unit decibel (dB), Equation (1.3) can be rewritten as [Spe92]

I,
1= 10logyg - (1.4)

T

When the loudness is measured by sound intensity level with unit dB, the human
hearing range of loudness can span from 0 dB to 140 dB [Lap|. It is worth noticing
that in the decibel scale, every 10 dB increase in the level of sound intensity means
that a tenfold increase in the sound intensity. For example, the sound loudness
increase from 10 dB to 20 dB corresponds to a 10 times increase in the absolute
sound intensity with referring to the same reference absolute sound intensity [Lap].
Doubling the sound intensity accounts for about 3 dB increase in the level of sound
intensity.
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Sound intensity level

Normally, as expressed in Equation (1.4), any sound intensity can be used as the
reference sound intensity, I,. But when the reference is the value of threshold of
hearing (TOH), the ratio between two sound intensities is called the intensity level,
l; [Spe92]. The threshold of hearing is the minimum sound intensity of a pure tone
that a human can hear and its value is [Muel5|

Iton = 1072 W/m?. (1.5)

So when we calculate Itog from Equation (1.4), it is equal to 0 dB. When the refer-
ence sound intensity is Itop, the intensity level of a sound in question is [Spe92|

I
l; = 10log ——. (1.6)
TOH

Besides sound intensity, sound intensity level, loudness is also affected by many
other factors, including the duration of a sound, the frequency of a sound and
individual ages [Muel5|. Because the sensitivity of the human ears changes with the
frequencies, two sounds with the same intensity level are perceived having different
loudness if they have different frequencies [Muel5|. This implies that the ear does
not respond equally to all frequencies.

Equal loudness curve

The sound intensity, [, and intensity level, [;, are objective measures of the energy
in a sound wave. However, the loudness is much more subjective and two tones
with different frequencies but the same [; value will be perceived differently loud.
Thus, the tones in different frequencies need different [; to be heard equally loud
[Rig77]. In practice, a subjective-based measure of the loudness can be established
by determining the [; of different frequencies in the audio frequency range by a
number of individuals to be equally loud [Rig77|. The experiments on measuring
the loudness proceed as follows [Rig77]:

e Firstly, listen a 1000 Hz tone of some intensity level, for instance, 40 dB.
Because the human auditory system is sensitive to the 1000 Hz, then it is
taken as a reference frequency;

e Secondly, listen to a second tone with some specific frequency, for instance,
100 Hz, and then adjust the loudness to be the same as the loudness of the
1000 Hz, 40 dB tone. After that measure the sound intensity level of tested
100 Hz tone, one can get the result of 62 dB;
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Figure 1.5: Equal loudness curves according to ISO 226:2003 ([ISO03|)

e Thirdly, repeat the second step for another tone with different frequency and
measure the sound intensity level of this tone in the condition of the same
loudness as the 1000 Hz, 40 dB tone. When the second step repeats for a
number of frequencies, one can obtain an equal-loudness curve [; vs f, which
represents that under the same loudness, the value of sound intensity level
corresponding to various frequencies.

The loudness level is commonly labelled as [} with the unit of Phon. The [, of a tone
with frequency f is equal to the [; (in dB) of a 1000 Hz tone judged to be equally
loud [Rig77]|. Thus, the /; and [; have the following relationship [Rig77]:

e For a tone of f = 1000 Hz: [; in Phon = [; in dB;

e For a tone of frequency f: [ in Phon = [; of 1000 Hz tone judged to be of the
same loudness.

With above steps of measurements, one can get the measurement of the loudness
with relationship between the sound intensity levels and frequencies in human au-
ditory system given in equal-loudness curves. The first measure of equal-loudness
curves were given by Fletcher and Munson using headphones [FM33|. After that,
the definitive curves of the equal-loudness are also defined in the international stan-
dard ISO 226:2003 [ISO03], which is believed more accuracy. Figure 1.5 shows the
equal-loudness curves defined in ISO 226:2003. In this figure, it contains equal-
loudness curves of various loudness levels over the frequencies. Each curve specifies
a fixed loudness level given in unit Phon related to the sound intensity level over a
logarithmical frequency scale.
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In Figure 1.5, the bottom curve with /; = 0 Phon is the threshold of hearing at
various frequencies. On this threshold curve, we can find that, for a 100 Hz tone
to be audible, it must have a sound intensity level of 20 dB while a 1000 Hz tone
with 0 dB, that means, if it is to be audible, a 100 Hz tone must have a sound
intensity 100 times greater than a 1000 Hz tone [Rig77]. With the help of such
equal-loudness curves, we can know that how much sound intensity level are needed
for two tones with different frequencies to be equally loud. In addition, we notice
that the sensitivity of our ears drops off as the frequencies is decreased, which means
that it requires more energy to make low-frequency tones subjectively as loud as the
tones with higher frequency [Rig77|. Moreover, this figure also shows that the human
are most sensitive to the sounds around 2 - 4 kHz, with sensitivity declining to either
lower or higher frequency side of this range [Muel5|.

1.1.1.4 Timbre

Timbre is an important aspect of the perceived sound quality. As describes in
|Lap]:

The difference in intensities of the various overtones produced gives each in-
strument a characteristic sound quality or timbre, even when they play the
same note.

This suggests that the amplitudes of the overtones that occurring in a sound con-
tributes to the timbre, but it does not give a clear definition to timbre. A sound,
what we hear from a musical instrument, consists of many overtones, and our per-
ception of this sound is the combination of those overtones together [Rig77|. Each
overtone here is a pure tone with their own frequency, amplitude and phase. Most
definitions of timbre describes it in an indirectly way as [PD76]:

Timbre is that attribute of auditory sensation whereby a listener can judge
that two sounds are dissimilar using any criterion other than pitch, loudness
and duration.

This definition indicates that, for example, the timbre can let the listeners to distin-
guish the sounds produced by an oboe, a violin or a trumpet, even though they are
played with the same pith and loudness [Muel5|. In general, the timbre varies from
instrument to instrument and also varies from note to note of the same instrument
and even on the same note that due to the individual players [Lap|. Since timbre
cannot be directly described as the physical characteristics of a sound, it is often
described subjectively and be taken as the perceptual attribute of a sound. For
example, we can describe the sound using the words like dull, sharp, cold, warm,
soft, hard, full, empty and so on [Set99]. Even though, there are many physical
measurable properties relating to the timbre. In the following, we will explore those
related aspects.

10
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ADSR envelope

As it mentioned in section 1.1.1.2, the total overtones contribute to the quality of
a sound. For instance, the less power of the overtones generates a pure sound and
the significant power of the overtones produces a complex sound [Set99; Muel5|.
Furthermore, except the various intensities of the overtones, the amplitude envelope
as well as the attack transients do really contribute to the timbre [Set99; Muel5].
The sounds from the musical instruments are more complex rather than a superpo-
sition of pure tones. The characteristics of a musical tone vary usually over time.
For a sound signal, the envelope outlines the temporal variations of the amplitudes
of the sound [Set99]. The envelope can be identified by plotting the instantaneous
amplitude against time, as illustrated in Figure 1.2 and Figure 1.6. In general, we
talk about only the upper envelope, since the lower envelope is the inversion of the
upper envelope for the sound signal.
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0 0.5 1 1.5 2 2.5 3
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Figure 1.6: Illustration of envelope of a signal (simulated by the author of this
thesis)

For the musical instrument tones, it is often to use the Attack-Decay-Sustain-Release
(ADSR) four-stage to describe the amplitude change profile [Set99; Muel5|. Figure
1.7 shows a schematic model of a typical ADSR envelope for piano sounds.

The features of the four stages are described as follows:

e In an ADSR amplitude envelope, the attack phase is triggered by the key on,
i.e., the key is pressed at the beginning time, ¢, = 0 s, and the generated
sound will reach to its maximal volume (1 in this illustration Figure 1.7) at
time instant t5. The attack phase contains rapid changes that are difficult
to model and especially frequency partials spread the whole frequency ranges,
which is similar to the property of noise [Muel5|. When a piano’s key is
pressed, for example, the key triggers the mechanical chain of actions before

11
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Figure 1.7: Schematic plot of ADSR envelope ([Set99])

the hammer hits the string. In such a process, a noise-like sound is produced
and is a typical attack phase [Muel|.

e After the attack phase, the sound begins to decays to a steady stage during
the time period tp. The decay period, tp, describes how quickly the sound
drops to the sustain level after the attack phase [Set99].

e After the decay phase, the sound comes into the sustain phase, where the
energy of the sound remains more or less the same, and will keep this sustain
level as long as the key pressed. Thus, the time of the sustain level is variable
until the key is released [Set99].

e When the key is released, the sound dies away at a specific rate during a time
period tg, this is the final stage, release [Set99].

The ADSR envelope is only an approximation of the amplitude envelope of sounds
generated by some specific musical instruments [Muel5|. As an example, we illus-
trate the amplitude of a piano F4 note in Figure 1.8. The corresponding ADSR
phases are labelled in Figure 1.9. There we can see that this piano note has a
clearly ADSR envelope. Even though ADSR envelope is a convenient descriptor
for the envelope change, it is not always suitable for all musical instrument tones
and varies from instrument to instrument [Muel5|. Only some certain instrument
tones’ envelopes contain all four-phases, for example, the piano. Other instrument
families, such as string instruments, may consist of only attack, sustain and release
phases, but without obvious decay [Muel5|.

In general, the ADSR envelope is a good approximation of the extreme amplitude
of the sound signal and has been used to many different synthesizer to control the

12
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Figure 1.8: Samples and amplitude envelope of a note F4 played by a piano with

fs = 44.1 kHz (simulated by the author of this thesis)
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Figure 1.9: The ADSR envelope of a note F4 played by a piano, displayed in Figure

1.8 (simulated by the author of this thesis)

parameters [Set99]. The important application of ADSR envelope was on Chowing’s
work of spectra modelling using frequency modulation [Cho73|, where the ADSR
envelope was used to control both the modulation intensity and carrier amplitude.

Time-frequency representation

As discussed in section 1.1.1.2, a musical sound consists of many frequency partials
and the relationship among these partials is either harmonic or inharmonic. For
harmonic sounds, their harmonic frequencies can deviate from the ideal harmonic

13
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frequencies, i.e., the integer multiplies of the fundamental frequency. For analysis of
frequency partials of a sound, we need to apply Fourier transform, through which
a signal can be described as functions of frequency, instead of time. The Fourier
transform of a continuous-time signal z(t) is expressed as [Pro07]

+o00
X(Q)=F{z(t)} = / x(t) exp(—jQt)dt, (1.7)

where F{-} represents the Fourier transform operator, X () is the result of Fourier
transform at radian frequency €2, and the corresponding linear frequency f = Q /2.
j is the imaginary unit, j = v/ —1.

For the discrete-time signal x(n), its Fourier transform can be computed by discrete
Fourier transform (DFT), Fp{-}, as [Pro07]

=

-1

X(K) = Fola(n)} = 3 a(n) exp( 2™

N

) (1.8)

i
=)

and it can be computed efficiently using the fast Fourier transform (FFT) of length
N. The frequency bin k corresponds to the radian frequency w = 27k/N, and the
corresponding physical frequency given in Hz is

k fs
N’

f(k) = (1.9)

where f; is sampling frequency.

The result of Fourier transform is complex-valued and can be expressed with the
real part, Xg(k), and imaginary part, Xi(k), as [PK15]

X (k) = Xg(k) + j X (k). (1.10)

According to the result of Fourier transform, we can obtain the magnitude spectrum
as [PK15; Pro07]

X ()| = /X2 (k) + XP(R)), (L.11)

and phase spectrum as [PK15]

o(k) = ZX (k) = arctan(X;(k)/ Xr(k)), (1.12)

where | - | means absolute value or magnitude and £ means the phase.
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In practice, the spectrum analysis for an audio signal must use the short-time anal-
ysis, in which the spectral properties of the audio signal is analysed in short-time
frames, because the audio signals typically vary over time and usually are assumed
be stable in a short-time frame (i.e., 10-50 ms) [PK15]. Windowing is the common
way used to implement the segmentation of signals into frames by multiplying the
analysed signal with a window function. In general, we apply the window function
to one part of a sound signal and then moving to the next part of the signal, with a
short step size, typically, 10 ms. For each window portion using Fourier transform,
we can obtain the spectrum of the sound signal frame by frame [PK15]. Then the

spectral analysis is implemented by short-time Fourier transform (STFT) as [PK15;
SS89]

i

—jork
ST =0, (1.13)

Xi(k) = w(n)x(n + iH) exp( N ), 1

3
I
o

where w(n) is a window function that is non-zero only in the time span denoted
by the limits of the summation and zero elsewhere [PK15]|, i indicates the frame
number and H is the hop-size of the window function in samples. This equation
represents that the STFT is the Fourier transform of a signal z(n), truncated by
the window w(n) at the frame i. When the time domain sample n is represented by
the time instant as

t(n) = nTy,

and frequency value

f(k) = kfs/N,

we can obtain X (¢, f), which is convenient to analyse the time resolution in second
and frequency resolution in Hz of STFT results. The frequently used window func-
tions are Hamming, Hanning, Rectangular, and Blackman windows, which will be
introduced in Chapter 3 in details.

The graphical representation of the short-time magnitude spectra from STFT is
called spectrogram |PK15]. As examples, we analysed one short-time (50 ms) mag-
nitude spectrum and the spectrogram of a flute C4 note and a saxophone C4 note, to
compare their harmonic content and time-varying spectra with Hamming window.
In the calculation of the magnitude spectrum, we use the logarithmic decibel scale
as

[ X(f)las = 201og,o | X (f)]- (1.14)
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Figure 1.10: Sample of a flute note C4 with f, = 44.1 kHz (simulated by the author
of this thesis)

Figure 1.10 shows the analysed flute C4 note, with a fundamental frequency of 263.8
Hz. The sound samples of selected short-time frame, from 0.5-0.55 s is shown in the
bottom sub figure. From the sub figure we can see that there is only very slowly and
small changes of its amplitude envelope, thus, this flute sound is stable in short-time
frame.

The detail of the harmonic partials, including their frequency values and magnitude
values of the selected short-time frame is given in Table 1.1 and the corresponding
magnitude spectrum is shown in Figure 1.11, which are returned by FFT with ham-
ming window. It can be seen that each harmonic partial has a specific magnitude
value differing from others. For instance, some partials have relative higher magni-
tudes and some have very lower magnitudes. In addition, in Table 1.1 we can find
that the harmonics are not located in the ideal harmonic positions, but with a little
deviation from the ideal positions.

When we listen the same notes played by different musical instruments, we can
perceive that they have different timbre, thus, the magnitude spectrum of the same
note from different instrument should have different strength over various harmonic
partials. In order to compare the difference of the spectra between the same note
played by different instruments, we analysed another saxophone C4 note, with a
duration of 1.71 s and fundamental frequency of 263.8 Hz as shown in Figure 1.12.

16
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Table 1.1: Frequency partials of a short-times frame in a flute C4 note (derived by
the author of this thesis)

Frequency partial Frequency/Hz Magnitude/dB
1 (fundamental frequency) 263.8 11.5
2 (1st overtone) 523.5 28.1
3 (2nd overtone) 783.3 20.8
4 (3rd overtone) 1045.7 16.6
5 (4th overtone) 1306.8 20.8
6 (bth overtone) 1567.9 1.1
7 (6th overtone) 1829.0 1.5
8 (7th overtone) 2092.8 8.2
9 (8th overtone) 2353.8 10.9
10 (9th overtone) 2616.3 4.2

T T T T

*  harmonic partials

X()|fan

1 1 1 1
0 500 1000 1500 2000 2500 3000
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Figure 1.11: Magnitude spectrum of the selected analysis frame of a flute C4 note,
as displayed in Figure 1.10 (simulated by the author of this thesis)

Again one 50 ms (0.5-0.55 s) short-time frame is selected to analyse its magnitude
spectrum.

We analysed the frequency feature of this selected short-time frame signal using
Fourier transform and the harmonic frequencies and their corresponding magnitudes
are listed in detail in Table 1.2 and the magnitude spectrum is shown in Figure 1.13.
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Figure 1.12: Sample of a saxophone note C4 with f; = 44.1 kHz (simulated by the
author of this thesis)

Table 1.2: Frequency partials of a short-times frame in a saxophone C4 note (de-
rived by the author of this thesis)

Frequency partial Frequency /Hz Magnitude/dB
1 (fundamental frequency) 263.8 31.65
2 (1st overtone) 523.5 31.5
3 (2nd overtone) 783.3 16.2
4 (3rd overtone) 1045.7 24.7
5 (4th overtone) 1306.8 -2.8
6 (5th overtone) 1567.9 21.3
7 (6th overtone) 1829.0 9.3

8 (Tth overtone) 2092.8 9.6

9 (8th overtone) 2353.8 -1.3
10 (9th overtone) 2616.3 6.7

From the harmonic contents of flute C4 and saxophone C4 in Table 1.1 and 1.2, we
can see that the magnitude value of each harmonic partial is different between the
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Figure 1.13: Magnitude spectrum of the selected analysis frame in the sound signal
displayed in Figure 1.12 (simulated by the author of this thesis)

two notes. From Figure 1.11 and Figure 1.13 we can see that the spectrum of the two
signals are different indicated by the different spectral shape and the magnitude of
individual frequency components. For instance, in Figure 1.11, the second harmonic
is most significant in the magnitude spectrum with the highest magnitude value,
while in the magnitude spectrum of saxophone displayed in Figure 1.13, the first two
harmonics are most important. The difference of the harmonic contents indicates
that the sound of flute and saxophone are different in timbre.

Figure 1.14 shows the spectrograms of the note C4 played by a flute and a saxophone,
corresponding to the sound signal in Figure 1.10 and Figure 1.12, respectively, to
show the intensity changes of their harmonic partials over time. The intensity of
each partial is reflected by the shade of gray, so the darker the more power. The
horizontal axis indicates the time and the vertical axis indicate the frequency. The
intensity changes of the fundamental frequency of the note C4 as well as its harmonic
partials over time can be seen clearly from the spectrograms. For these two tones,
the intensities of the higher frequencies are much smaller than that of the lower
frequencies, which indicated by the brighter lines of the higher frequencies and darker
lines of the lower frequencies in the spectrogram. The intensities of the fundamental
frequency partial and each higher order harmonic partials can be detected and all
the relative prominent partials can be readily observed from the spectrogram.
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Figure 1.14:
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Spectrogram of a flute C4 note (top) a saxophone C4 note (bottom).
The intensity of each harmonic partial is reflected by the shade of
grey, and he reference values of the grey lines representing | X (¢, f)|an
are listed in the right side of the spectrogram, with unit dB (simulated
by the author of this thesis)
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1.1.2 Production of Musical Instrument Tones

The first and major role of acoustics is to try to understand the details of sound
production by traditional instruments [FR91|. In order to achieve this goal, it is
necessary to go deep into the physics of the musical instruments to understand how
they produce the musical tones.

The sources or excitations of sounds in musical instruments are various vibrations,
including mechanical, acoustical or electrical vibrations [FR91|. These vibrations
can be seen in most traditional musical instruments, such as the vibrations of strings
happened in string instruments, like violin, guitar, piano, etc., and these vibrations
are caused by the plucking of strings or pressing the keys in the keyboard; the
vibrations of bars or rods happened in xylophone, chimes, clarinet; the vibrations
of plates or shells happened in cymbal, gong and bell; the vibrations of membranes
happened in drum and banjo; the vibrations of air in a tube happened in organ pipe,
bras and woodwind instruments [FRI1].

Vibrations are the excitations of the musical instrument tones, however, only the
simple vibrations cannot produce sounds with musical quality, but only ‘dull” sounds.
Together with vibrations of instruments, another important phenomenon, resonance
or filtering, is needed to reinforce or transform the sound waves generated by the
vibrators to form the sounds with different timbres [Spe92|. For example, the sounds
produced by the string instruments need to be enhanced rather than rely simply on
the vibrating strings alone to generate the desired sounds [Spe92]. The resonance
of a sound is accomplished by the use of a resonator, such as a sounding board, to
reinforce the sound waves from the vibrating strings [Spe92].

From the view of physics, the creation of large amplitude vibrations in an object by
an applied periodic force, whose frequency equals the natural frequency of the object,
is called resonance |[Rig77]. The nature frequency of a system is the frequency of
the free vibration [Mor01]. Therefore, when a periodical vibrating force is applied
to an elastic system, the elastic system will be forced to vibrate with the frequency
of the applied force [Spe92|. Furthermore, the nearer the frequency of the applied
force to the nature frequency of the elastic system, the greater will be the resulting
amplitude of vibration [Spe92|. Figure 1.15 shows an example of the resonance curve
of a resonator, which represents the magnitude response, |H(f)|, of the resonator.
The magnitude response changes with frequencies, and the peak in this curve refers
to the maximal emphasis of amplitude of the corresponding frequency partial, i.e.,
when the frequency of the applied vibration is equal to the natural frequency.

A good example of resonance is striking a tuning fork and put it on a hollow wooden
box. A tuning forking along sounds much feeble [Rig77|. If the air inside the hollow
wooden box has a nature oscillation frequency equal to the tuning forking, a much
louder sound is heard [Rig77|. That is because the tuning fork acts as the periodic
force and it forces the air in the box to vibrate, which quickly responds with large
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[H(f)|/dB

Figure 1.15: A resonance curve. The curve shows the magnitude response as a
function of frequency for a resonator (inspired by [Spe92|)

amplitude oscillation, so the box here is the resonator [Rig77|. For a violin, its body
acts as the resonator. [Rig77]. When a string of a violin is bowed, it oscillates. The
string oscillation drives the bridge to oscillate, and the bridge drives the body of
the violin, which in turn drives the air inside the body to oscillate [Rig77]. The air
inside the body of the violin and the body itself have many nature frequencies, so
when the bridge oscillates at the nature frequency of the enclosed air and the body
of the violin, the two will resonate [Rig77].

The shape and construction of a resonator is of great importance for the natural
frequency [Rig77|. For example, the length of the string of a violin, the length of
the tube of a flute and the shape of the membrane of a drum can influence the
resonance frequencies [Rig77]. From the physics of the musical instruments, when
they are forced to vibrate, many of them (like guitar, violin, piano, etc.) can vibrate
with several of its harmonic frequencies simultaneously to produce the overtones
simultaneously [Rig77]. Then through the resonance of the instrument, the special
sound quality of each instrument is formed [Rig77]. For more details about the
physics of the musical instrument, one can refer to [Rig77; Spe92; FRI1|.

1.1.3 Musical Instrument Families

According to the differences on excitations and resonators, the musical instruments
can be categorized into several families, with each family having the similarity in
the mechanism of sound production. However, such classifications can be fuzzy
around the edges. In the following, we will examine some selected western musical
instrument families, which are included in an orchestra.

e String family

22



1.2 Overview of Computer Music and Digital Sound Synthesis

A string instrument is played by plucking, striking, picking, or bowing the
strings and produces sounds by the vibrating strings. Usually, such a vibration
can be transmitted to the body of the instrument to cause the resonance
[FRO1].

e Wind family

A wind instrument is designed to produce sounds by blowing a jet of air across
some sort of opening, as in whistles, flutes or by buzzing together the lips or
a thin reed and its support, as in trumpets [FR91].

e Percussion family

A percussion instrument generates sounds by a resonating surface of the in-
strument that is struck by the player, either by hand or by some form of stick
[FRO1].

Table 1.3 lists the often used instruments in each above instrument family.

Table 1.3: Classification of musical instruments (according to [FR91])

Instrument Family Examples of Instruments

String guitar, violin, viola, cello, double bass, harps,
harpsichord, clavichord, piano
Wind trumpet, saxophone, oboe, flute, organ pipe,

clarinet, cornett, serpent, tenor trombone,
frech horn, bassoon, panpipes, shakuhachi,
recoder

Percussion drums (bass drums, side drums), tuba phone,
gamelan chime, chinese gong, bell

1.2 Overview of Computer Music and Digital
Sound Synthesis

Computer music known as a relatively young research field has attracted both sci-
entific researchers and musicians to contribute [Mir02]. On one hand, the composers
and musicians can have more freedom in composition process with the use of com-
puter technology, and on the other hand, the researchers at the field of computer
technique and digital signal processing are ever making efforts to improve the per-
formance of digital music techniques [Mir02; Bil09]. The essence of computer music
is applying modern computer and digital signal processing techniques to facilitate
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the composition, production and processing of musical sounds [Roa96]. Through
the use of computer techniques to the generation and transformation of music, the
scientific ideas and musical ideas are connected together [Roa96|. One of the great
contributions of computer to the music is its programmability and thus the pro-
gramming language, which allows the attention to the details of composition with
programming skills [Roa96]. Because of the attractive features of computer systems,
such as robustness, controllability, flexibility, programmability, etc., there are two
main reasons that makes the computer music very popular among both the scientists
and musicians: (1) the generality of sound synthesis by computer, and (2) the power
of programming in relation to the musical structure and the process of composition
[Roa96]. Moreover, since the computer is capable of ‘microsurgery’ on the sound
structure down to the level of sample, more accurate controls in the composition
process can be realized [Moo77|. As the development of computer music, different
research areas having been arisen, including music synthesis, music genre recog-
nition, music source separation, music synchronization, music structure analysis,
chord recognition, tempo and beat tracking and contend-based audio retrieval, etc.,
in which the digital computer is an necessary tool for their development [Muel5].
In turn, those research activities could also promote the development of computer
music.

Digital sound synthesis as one promising research branch of computer music aims at
the production and modelling of sounds [Rus09]. Even though with the wide variety
of traditional musical instruments, an extensive different sounds can be generated,
there are still some constraints for the musicians to express their musical imagina-
tion with the existing instruments and it is also difficult to duplicate the natural
instrument sounds with the widely used electronic instruments [Rus09; Bil09]. How-
ever, with the use of digital synthesizers, the traditional instrument sounds can be
reproduced and an infinite number of sounds can be generated, where the computer
sound synthesis can be thought as the bridge between the imagination and realiza-
tion of sounds [Roa96]. The computer sound synthesis has made the composition
and transformation of musical sounds much easier [Roa96].

Digital synthesis of musical instrument tones as the favourite of many musicians
can gain advantages from the computer technologies, in which the constrains of real
physical musical instrument can be diminished [Moo77|. On one side, a creative
musician can use the powerful synthesizer to create expressive music productions by
taking the various instrument tones available of the synthesizer [Moo77]. With the
help of digital synthesizer, the music composition can gain more flexibility by precise
control, for instance, to accurate control the fundamental frequency as well as to
change the parameters to generate desired perceptual quality of the sound [Moo77].
On the other side, the digital synthesizer can efficiently save the storing space for so
many various instrument tones by storing only the sets of corresponding parameters

[Moo77].
In digital sound synthesis, the synthesis of the sounds is implemented by the syn-
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Figure 1.16: Diagram of a general synthesizer (|[Rus09])

thesizer. A synthesizer has two basic functional elements: a control interface, which
is used to set the parameters that define the output waveform of the sound, and a
synthesis engine, which interprets the parameters and output the sounds [Rus09].
Between the control interface and the synthesis engine there is a necessary abstrac-
tion, because of the high level complexity of the synthesis process [Rus09]|. By using
some simpler conceptual model, it is benefit for the users of the synthesizers without
requiring the technical knowledge of the workings of the synthesizers [Rus09]. The
abstract model of a synthesizer is illustrated in Figure 1.16. By using a metaphor,
the user can access the functions of the synthesizer [Rus09]. The synthesizer pro-
vides a model to the user so that the user can define the parameters of the model
for generating sounds [Rus09]. And the synthesizer will also maps the model to the
internal functionality to drive the synthesizer to output the sounds [Rus09]. The
idea of providing a control interface to the user is widely used in the modern digital
synthesizers [Rus09].

The purpose of the sound synthesis is to produce the sound samples that, when
they are played back, have the desired sound quality [De 83; Moo77|. In the digital
sound synthesis, a sound is represented by a sequence of numbers (samples), so a
digital sound synthesis technique consists of a computer procedure or mathemati-
cal formula to generate the value of each sample [De 83]. Over the development of
sound synthesis, there exist various different synthesis techniques, where each can be
expressed as the evaluation of a mathematical expression for produced sound signals
[Moo77|. The mathematical expression contains the features of the sound signals,
such as pitch, amplitude, duration, start time, sustain time, etc., and they are usu-
ally represented with a set of adjustable variables or the normally named parameters
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[Moo77]. Thus the goal of sound synthesis techniques is to give proper parameter
values in a valid mathematical model to generate the sound signals [Moo77|. A
general form of a fundamental synthesis technique as described in [Moo77] is shown
in Figure 1.17. The synthesis model is the underlying mathematical expression to
describe the synthesis technique, and is controlled by a set of parameters [Moo77].
The control functions are used to change the value of the parameters slowly with
time, and each control function corresponds to each parameter. So one set of control
function could generate a sound with specific timbre [Moo77]. In the simplest case,
the control functions can also only be constant single numbers, however, this will
generate the sound without musical quality [Moo77].

Control Synthesis Output
functions expression sound
signal

RN
ﬁ/

(more....)

Synthesis | Sound
model signal

Figure 1.17: General form of a fundamental synthesis technique ([Moo77])

1.3 Development of Sound Synthesis Techniques

1.3.1 Historic Development of Sound Synthesis

In the past decades, many sound synthesis techniques have been arisen and available
for sound generation. As the development and evolution of computer techniques,
the computation ability of modern computers has been greatly improved and brings
new chance for the researchers to design more efficient synthesis methods to achieve
better sound quality [Bil09]. Before the introduction of the several synthesis meth-
ods, it is helpful to get an overview of the history of the development of the sound
synthesis through a timeline as illustrated in Figure 1.18 [Bil09], although not a com-
plete description for all appeared methods. In this figure, sound synthesis techniques
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1.3 Development of Sound Synthesis Techniques

are indicated by solid black lines, and the antecedents from outside of correspond-
ing synthesis techniques are indicated with solid grey lines and the relation among
these given methods are noted by dashed grey lines. The inventor of each method
are given in parenthesis and the appeared year is approximate [Bil09].
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Figure 1.18: Historical timeline for sound synthesis methods (|Bil09])

In addition, this historical timeline shows that the appeared various techniques are
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not independent, rather have more or less connections with each other. However,
their goals are almost the same: to design a robust, accurate and efficient sound
synthesis system for desired sounds [Bil09]. The basic elements and mathematical
models for the several popular sound synthesis techniques will be explored in detail
in the following section.

1.3.2 Abstract Digital Sound Synthesis

1.3.2.1 Basic concepts of abstract digital synthesis

Among the so many available sound synthesis techniques, they can be classified
into different groups according to the kind of processing, such as direct synthesis,
analysis-based synthesis, musique concrete or according to their turn-around time,
such as off-line synthesis, interactive synthesis, and real-time synthesis [Moo77|.
From the view of underlying model of these methods, they can be roughly grouped
into two main classes: abstract digital sound synthesis and physical modeling [Bil09].
Abstract sound synthesis does not posses a physical principle to generate sounds,
rather uses the perceptual knowledge and mathematics for synthesis, and involves
many typical basic components from digital signal processing, including digital os-
cillators, filters and ‘lookup’ tables [Bil09]; while the physical modeling uses the
mathematical equation to interpret the physical features of the musical acoustic
entity, such as a string, drum head, xylophone bar, etc [Bil09].

In abstractive synthesis, there is no consideration of physical features, but applica-
tion of various analysis methods in digital signal processing to the existing sounds
to construct the synthesis models, which are usually inspired by the knowledge of
musical acoustic perception [Bil09]. So the abstractive synthesis methods are also
often taken as the so-called analysis-synthesis methods [Bil09]. The analysis process
is the important basis of the final synthesis in such analysis-based synthesis meth-
ods, and the whole process can be viewed in Figure 1.19 [De 83; Mas96; Bil09]|. The
analysis is the process of the feature extraction from the original sounds, and then
the features will be represented with a series of parameters, whose values determine
the sound quality [Bil09]. In order to achieve the satisfied quality, the parame-
ter optimization is often necessary |Bil09]. Finally, through the suitable synthesis
methods, the duplicating of the sounds is possible by using the parameters directly
estimated from the original sounds or generating the new sounds by using the modi-
fied parameters [De 83; Mas96; Bil09]. The essence in the analysis-synthesis system
is the analytical and experimental selection and estimation of the parameters and
the underlying synthesis model [Bil09].

The abstract sound synthesis techniques have been as the core of many developed

popular sound synthesis software for convenient access of both researchers and mu-
sicians, such as Pd [Puc+96|, Csound [Bou01; BCO00|, SuperCollider [McC96|, STK
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Figure 1.19: Diagram of a general analysis-synthesis system (conceptual represen-
tation of resources in [De 83; Mas96; Bil09])

[CS99; SCO5], CSL [PRO3], etc. It is worth noting that those software are either an
kind of combination of the available synthesis techniques or a refinement of them

[Bil09).

1.3.2.2 Additive synthesis

The additive synthesis as an analysis-synthesis technique can be dated back to the
investigation by Rissset with trumpet sounds |Ris65] and the work of Freedman
[Fre67]. The elaborate introduction of this method can be found in [Roa96; Moo77;
Bil09; Rus09]. Based on the Fourier Series theory, the real-valued continuous or
discrete signals may be decomposed into an integral of a set of sinusoids [Pro07].
If the signal is a continuous-time periodic signal with period T, then an infinite
number of frequency components, where the frequency of each component is an
integer multiples of 1/7", can be summed together to describe the signal completely
[Pro07]. For a discrete-time signal of fundamental period, 2N, a finite collection of
N frequency components can be used to describe the characteristics of the signal
[Bil09]. Hence, in additive synthesis, a discrete-time sound signal is represented in
samples as [Moo77; Bil09)

x(n) = Z Ak(n) sin(27 fyn Ty + o), (1.15)

k=1

where z(n) is the time-varying signal at time nT}, and T} is the sampling period, n is
the time index. fy is the instantaneous frequency of k-th sinusoid of the signal, Ax(n)
is the instantaneous amplitude of k-th sinusoid at time nT}, which is assumed to be
slowly time varying, IV is the total number of frequency partials and ¢y, is the initial
phase of k-th frequency partial. If the frequencies f; are harmonically related, i.e.,
are the multiple integers of a fundamental frequency, fy, then a tone at the pitch of f
can be generated using Equation(1.15). The unpitched inharmonic sounds may also
be generated using the chosen sinusoids without harmonically related frequencies
[Bil09].
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Figure 1.20: General form of additive synthesis technique [Moo77]

Figure 1.20 shows a general model of additive synthesis [Moo77|. The sound signal is
here represented as a superposition of some sinusoids with time-varying amplitudes
and frequencies. The amplitude control function, AMP, frequency control function,
FRQ), and initial phase of each sinusoidal, PHA, function as parameters to control the
output of each sinusoidal oscillator [Moo77|. With the input amplitude, frequency
and initial phase, the sinusoidal oscillator can output the corresponding sine signal.
The output of all oscillators are added up together to produce the final synthesized
sound signal [Moo77].

The crucial importance of additive synthesis is to estimate these time-varying am-
plitudes and frequencies for each sinusoid to accurate reproduce the original sounds.
From the view of analysis, Equation (1.15) indicates that the sound waveform can be
decomposed into N harmonic signals, and as the basis of synthesis, it says that the
signal x(n) is the sum of all the sinusoids’ output at each time index n [Moo77|. In
order to estimate the synthesis parameters, Fourier transform is utilized to analyse
the spectra of the original sounds [Moo77|. By STFT we can track the amplitude
envelope and frequency of each frequency partial within each short-time frame, and
the corresponding details of this is given by Serra [SS89]. While amplitudes esti-
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mation are mostly done by pick peaking in the spectra, much research work are
given to the frequency estimation [Nol67; Son68|. Through modifying those values
of amplitudes and frequencies one can obtain the new sounds.

In additive synthesis, specifying the time-varying amplitudes and frequencies with
enough frequency partials, we can synthesize the sound closest to the original sound
[Moo77]|. However, one obvious shortcoming of additive synthesis is the consider-
able computational expense, where a large number of parameters are required to
reproduce realistic sounds, and the time-varying amplitudes and frequencies will
consume large storage space [Moo77|. For example, for a note consists of 30 har-
monic partials, each short-time frame needs 60 parameters (for both amplitudes and
frequencies), which will even be more than thousand parameter numbers just for a
note with duration of 1 s.

Since it is intuitive to implement additive synthesis, in order to avoid the large pa-
rameter sets, data reduction is another research point in additive synthesis [Moo77].
One data reduction technique is piecewise-linear approximation [Gre75|. With the
piecewise segments approximations of both amplitude and frequency functions, how-
ever, one cannot synthesize the closest sounds to the original ones.

1.3.2.3 Subtractive synthesis

Subtractive synthesis is another kind of abstract synthesis method. In subtractive
synthesis, the sound production is simulated by an excitation-resonance model or
source-filter model, in which the resonator or the filter shapes the spectrum of the
input excitation signal, for example, defining the spectral envelope through designing
suitable filter to match the spectrum of the expected signal [Moo77]. It is based on
the idea that the sounds can be generated by subtracting (filtering out) spectrum
from the spectral rich source signals, i.e., white noise, plus trains or square waves
[Bil09]. In this sense, subtractive synthesis is essentially the reverse process when
compared with additive synthesis, in which many individual sinusoids are combined
to produce the output signal [Moo77|. Figure 1.21 shows the general diagram of
a simplified subtractive synthesis system [Bil09]. The rich spectral source signal
as the system excitation is sent into the time-varying filter. There are two main
parameters to control the character of the source signal: the amplitude and frequency
[Moo77|. The time-varying filter is described usually by its frequency response,
which emphasizes the desired frequency components and suppresses the undesired
components [Bil09]. Within the filter block, many different kinds of filters, such as
low-pass, high-pass, band-pass, etc., can be applied to change the character of the
spectrum of the source signal [Bil09]. After the filtering process, addition effects will
further modify the character of the output sounds, for example, an amplifier used
to give specified gain of the output sounds [Moo77].
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Figure 1.21: Block diagram of a simplified subtractive synthesis (|Bil09])

The subtractive synthesis has been widely used in the field of speech synthesis [AS70;
Mak75; MG74; MGS83], in which case the glottis is assumed to generate a wide-band
signal (i.e., a signal somewhat like the impulse train to generate the voiced speeches,
such as vowels, and white noise to generate the unvoiced speeches), which is filtered
by the vocal tract to yield the formants of the spectrum [Moo77; Bil09|. In the
speech synthesis, the filter functions as the vocal tract to simulate the time-varying
resonance along with the different positions in the vocal tract [Moo77]. The following
equation is usually used to represent the synthesis model for the discrete-time speech
signals in samples as [Moo77|

P R
x(n) = Z an,x(n —np) + G Z b, u(n —n,), (1.16)
np=1 ny=0

where x(n) is the output signal defined in samples, a,, b, are the coefficients for
designed filter, and in general by is equal to 1, G is the overall gain factor, u(n) is
the input excitation signal as described above, P, R indicate the orders of the filter,
n, and n, are the delay of samples of z(n) and u(n), respectively [Moo77].

In order to synthesize the speech signal, it is necessary to choose the excitation
source either to be a periodic pulse train or white noise for each time point in
the output speech, as well as the filter coefficients [Moo77|. This can be done by
analysing the original speech signals and many research work have been voted into
them, including the pitch estimation [GR69; Nol67; Son68|, voiced /unvoiced decision
[AR76; MGS83| and filter design [Moo77|. Figure 1.22 shows a schematic model for
speech generation. This model divides speech production into two parts: a source
function and a filter function [Moo77]. The source signal could be either periodic
impulse train or white noise. A switch is linked to the filter to choose the right
excitation source along the time instants [Moo77|. The filter describes the desired
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Figure 1.22: General model used for speech synthesis ([Moo77])

property of the signal to produce the speech waveform with certain spectrum shape

[MooT77].

For speech synthesis, it is common that the filter is all-pole and the filter coefficients
can be computed by linear predictive analysis [Moo77|. One major advantage of
subtractive synthesis is that it models the signal spectrum using the excitations and
a time-varying filter and it decouples the effect of pitch and spectrum, that is to say,
one can change the pitch of the sources without change the shape of the spectrum
[Moo77|. Except the impulse trains as the excitations, one can also synthesize
the signal using a complex signal to explore more new sounds [Moo77|. Another
advantage of subtractive synthesis is that it can compute a filter which matches
the spectrum of an inharmonic signal as well as a perfectly periodic signal, because
when using linear prediction, it is not sensitive that the spectrum it is matching is
harmonic or inharmonic. So that means it can also be used to match the signal which
has an inharmonic nature [Moo77|. However, from the various research results, it is
difficult to find a good method to model the excitation function to obtain the high
quality sounds [Moo77].

1.3.2.4 Wavetable synthesis

Wavetable synthesis is maybe the oldest computer technique used to generate music
sounds, dating back to the work of Mathews in the late 1950s [Bil09]. It uses the
circular buffer to store only a single period of a signal in a table of the system and
a read pointer to read the values in the table with specified speed circularly, so that
the output signal can be of different frequencies [Bil09]. An example to explain the
concept of wavetable is to consider the generation of the sine function. The most
common computer implementation of generation of a sine function is through using
a stored table containing values of one period of a sinusoidal signal, rather than
direct computation of the samples one by one [Bil09]. If the table for a sinusoidal
signal contains N values and the sampling frequency is fs , then the generation of
a sinusoidal signal at frequency f will require the step size of the read pointer to
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be fs/fN, so the jump of the read pointer among the table values is f;/fN over
the sample period and using some form of interpolation [Bil09]. Figure 1.23 shows
an example of a wavetable for a sine wave, where the read pointer will read the
table values in a certain speed repeatedly as many times as necessary to produce
the sound with the desired duration [Mir02].

Wavetable

12 3 4 5 6 7 8 9 10 11 1213 14
Index value —‘

Figure 1.23: Example of a wavetable for storing a sinusoidal signal (|Mir02])

It is obvious that the more samples in a table to represent a signal the more accuracy
can be obtained for the output signal [Mir02]. At a certain time instant, the synthesis
system requires the sample value at that instant. However, most of the time, the
system can only search the nearest points in the table of the required one [De 83|. In
these cases, the interpolation is necessary to produce the more approximate samples
to the required one [De 83].

1.3.2.5 Formant synthesis

In general, the term ‘formant’ is used in speeches, where the formants correspond to
acoustic resonances of the vocal tract [Mor01; Fan71|. In acoustic research, a much
widely used definition refers to a formant as a range of frequencies in which there is
a relative maximum amplitude in the sound spectrum and shapes as a peak in the
spectrum |[Rus09]. The human voice is a typical example to explain the formant.
The mouth, nose and throat together act as a complicated tube-like arrangement,
where particular frequencies are emphasized whilst others are suppressed and thus,
the resulting frequency response is a series of peaks [Rus09]. It is noteworthy that
the formants of a certain people is fixed, because the physical shape of the tubing
formed by the mouth, nose and throat is tight, hence, the spectrum of the generated
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speech has fixed peaks corresponding to the formant frequencies, regardless of the
pitch of the speech [Rus09].

In the musical instruments, as mentioned in section 1.1.2, the resonance phenomenon
results in formants appeared in the magnitude spectrum of the sound signals. Since
each instrument can have several resonance frequencies, there will be several for-
mants in the spectrum of the sound signal. Figure 1.24 shows an example of the
formants appearing in the spectrum of human singing, where the formants shaped
as the ‘hills’ and ‘valleys’ [Mir02|. In general, the formants can be detected from
the spectral envelope, in which the peaks corresponds to the formants.

|X(f)|/dB

| | | F3

Figure 1.24: Tllustration of formants (conceptual representation of resource in
[Mir02])

From the example of the human voice we can see that the formant model of the
sound can be taken as another type of source-filter model, where the excitation of
the human vocal cords is sent into the filter, which is formed by the mouth, nose
and throat [Rus09]. In order to model the different formant ranges in the frequency
scale, each formant is associated with the response of a band-pass filter (BPF)
[Rus09]. Actually, the instruments exhibit the same kind of formant structure, and
as discussed in section 1.1.2, the instruments have the resonance frequencies, which
will result the formants in the spectrum of the produced sound. So in the formant
synthesis, the main task is to model the spectrum, which has the desired formant
peaks [Mir(2].

The formant synthesis has been extensively applied to synthesize speech or singing
voices [Mir02]. The text-to-speech is the most popular example of formant synthesis
[K1a87; KK90|. One of the most successful formant generators is a named FOF
method [Rod84; Mir02|, in which the sound signal is modelled as an excitation-
filter pairs. In FOF method, a number of parameters is used to control the formant
generator, including amplitude, frequency and local envelope [Mir02]. Details of the
parameters are [Mir02]:
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Formant centre frequency, frc

Formant amplitude

Rise time of the local envelope

Decay time of the local envelope

Figure 1.25 labels the parameters used to generate the formants in the FOF system.
The decay time of the local envelope defines the bandwidth of the formant at -6 dB,
and the rise time defines the bandwidth of the formant at -40 dB [Mir02].

4 Formant
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-6 dB
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>
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Figure 1.25: Illustration of the formant parameters in FOF (conceptual represen-
tation of resource in [Mir02])

1.3.2.6 Frequency modulation synthesis

Frequency modulation (FM), which is extensively applied in radio transmission,
was discovered by Chowning as an efficient method in musical instrument tone
synthesis [Cho73]. In the additive synthesis, the expensive computation of each
involved harmonic component is unavoidable, because the amplitude function and
frequency function of each harmonic component is calculated independently. In
contrast, only few parameters in frequency modulation are needed to generate rich
side-band frequency components [Cho73].

In FM, the instantaneous frequency of the carrier signal varies with the modulating
signal, at the rate of the frequency of the modulating signal [Cho73]. The extent of
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the carrier’s frequency deviation is proportional to the amplitude of the modulating
signal, which is also called modulation index [Cho73]. The resulting FM signal can
be expressed as [Cho73; Moo77|

xrm(n) = A(n) sin(2w fon Ty + I(n) sin(27 frunTy)), (1.17)

where zpp(n) is the modulated signal at time nTy, A(n) is the carrier’s time-varying
amplitude, f. is the carrier’s frequency in Hz, I(n) is the time-varying modulating
amplitude, or modulation index, and f, is the modulation frequency in Hz [Cho73].
Both A(n) and I(n) is slowly time-varying. When both the carrier’s frequency and
modulation frequency are in the audio range, the resulted signal is perceived as a
audio tone and either of these parameters changes will produce a different-sounding
tone [Cho73|.

FM synthesis as an efficient synthesis approach to generate complex spectrum have
been successfully applied on commercial digital synthesizer DX7, which was devel-
oped by Yamaha [Cho77]. The implementation of Yamaha DX7 is described in
[Cho77], in which actually the phase modulation was used. Other models based on
FM synthesis are also investigated to implement more accurate spectra modelling
[Moo77| and will be introduced in chapter 4.

1.3.3 Physical Modelling Synthesis

1.3.3.1 Basic concepts of physical modelling synthesis

The abstract synthesis described above are inherently subjective, that means they
analyse the factors, which contribute to the timbre or the sound quality, i.e., the
spectrum and use the various techniques to regenerate the similar spectrum to re-
produce the sound [Bil09]. However, such techniques have the issues that the sound
quality is lack of natural characteristic, but sounds synthetic [Bil09]. Many efforts
of the abstract synthesis, like FM synthesis, are toward emulating the acoustic in-
strument sounds with refinements of the tone quality [Mor77; Sch77].

Physical modelling synthesis, which appeared later than abstract synthesis, applies
a physical description of the musical instrument as the starting point for algorithm
design [Bil09]. For most instruments, the physical modelling uses a set of mathemat-
ical equations to simulate the physical behavior of musical instruments, for instance,
the laws of physic to produce the sound, the physical properties of the materials and
dimensions of the instruments, the displacement of a string, membrane, bar or plate,
or the motion of the air in a tube, and the player’s interaction with the instruments,
such as plucking a string or striking a drumhead, etc [Bil09; Mir02|. The idea of
physical modelling is to solve the set of equations to yield an output sound signal
[Bil09].
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In physical modelling, because there is a virtual copy of the musical instrument, it
is intuitively to control the sound and obtain better sound quality [Bil09]. An ex-
ample of physical modelling is the modelling of the sound of a guitar. The plucking
of a guitar string at a given location can be modelled by sending an input signal
to the appropriate location in computer memory, corresponding to an actual loca-
tion on the string model; plucking it strongly corresponding to an intensive input
signal [Bil09]. However, the main shortcoming of physical modelling synthesis is its
expensive computation cost [Bil09].

Since physical modelling synthesis emerged, many research work have been imple-
mented to synthesize the precise instrument tones [Bil09]. As an example of physical
modelling of musical instrument, Cordis system [CLF84] made an initial attempt
to synthesize the instrument tones. In the proposed instrumental model, there are
two major components: input devices and sound synthesis [CLF84|. The research
of Cordis system provides a basic theory of the relationship between gestures and
instruments. However, because of the complex computations, the Cordis system is
not widely applied in instrument synthesis [Bil09]. Other implementation of physical
modelling synthesis can be found in Hiller and Ruiz’s work [HR71|, Karplus-Strong
algorithm [KS83| and the waveguide synthesis algorithm by Smith [Smi].

1.3.3.2 Digital waveguide synthesis

In physical modelling synthesis, there exist several different algorithms, such as
lumped network models [CLF84|, modal synthesis [Adr91; AR85]|, digital waveguide
synthesis [Smi92|, etc. Among these methods, digital waveguide synthesis is of
great importance, which offered a convenient solution to the issue of computational
expense for a specific group of musical instrument, such as the stringed instruments,
woodwind instruments and brass instruments [Bil09].

The essence of digital waveguide synthesis is simple: the wave equation is first solved
in a general way to obtain travelling waves in the medium, and the travelling waves
are simulated in the waveguide model [Smi92|. In the digital simulation, a travelling
wave between two points in the medium can be simulated using nothing but a digital
delay line and the physical output signal is the summation of the travelling waves
[Smi92|. A digital waveguide is usually a mathematical model for the physic media
through which the sound waves propagate [Smi92|. Typically, a digital waveguide
model is made up of digital delay lines to represent the geometry of the waveguide,
the digital filters to represent the frequency-dependent energy losses and non-linear
elements [Smi].

In practice, the digital waveguide modelling techniques can follow a different ways to
model the sound production [Bil09]. The most important idea is to approximate the
travelling wave solutions of the one-dimensional wave equation as the superposition
of two opposite directional waves: a right-going wave and a left-going wave[Smi92|.
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A bidirectional delay line and the output of the digital waveguide model are illus-
trated in Figure 1.26. This structure is a simplified digital waveguide and it shows
that the output along the waveguide is the summation of the two travelling waves
with opposite directions [Smi92|. To model different musical instruments, other
necessary elements are needed to reflect the specific character of that instrument

[Smi92)].

——»z_l =Z_1 Vz_l—>——
Physical
output
-1 -1 -1
— —- 7 = Z |a—s Z |t— —

Figure 1.26: Simulation of a simple digital waveguide with bidirectional delay lines
([Smi92])

The main feature of waveguide synthesis framework is computational economy to
model a true physical instrument [Bil09]. Since Smith first introduced the term
‘digital waveguide synthesis’, then he developed the technology into the commercial
synthesizer, which was released by Yamaha [Bil09]. A more detailed description of
the architecture of digital waveguide synthesizer for musical instruments is given in
[Smi08]. Furthermore, the other related research about waveguide synthesis, like
commuted waveguide synthesis, of musical instruments are introduced in [VS95;
JS95].

Physical modelling synthesis can produce sound with relatively high sound quality,
however, it is not a general model for all instruments, that means, for each instru-
ment family, one model is needed to simulate the corresponding kind of sound, and
there is no guarantee that good models exist for all instruments [Smi92).

1.4 Motivation and Objectives

1.4.1 Open Issues in Musical Sounds Synthesis

The principle feature of digital sound synthesis is its precise control of pitch, accurate
modelling of timbre, significant reduction of data and simplicity of implementation
[Bil09; Roa96; Rus09]. Most previous research work focus on the modelling of certain
kind instruments, such as wind instruments, trumpet, cornet and so on, and for each
kind of musical instrument, a lot of efforts are given to analyse the characteristics
of them [BG68; BHT71; Bea75h; Bea79; Bea80]. Even though they can generate very
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close sounds for each kind of instrument tones, they are limited on the flexibility
and generality to synthesize various musical tones. In order to accurate model the
timbre, the spectral characteristics are taken into consideration. It is best to use
the important features to describe the timbre and exclude the unimportant aspects
to obtain an efficient representation of timbre. Moreover, with the development
of computer technology, the desire of minimum parameters in synthesis model is
required to achieve data reduction [Bil09; Rus09|. Therefore, the main challenges of
musical sound synthesis can be summarized as:

e Precise representation of musical timbre;

e Flexible synthesis model with optimized parameters to obtain resynthesized
sounds perceptually close to the original sounds;

e Data reduction technique to achieve minimum parameter set.

Hence, an efficient synthesis system to model the timbre plays an important role in
effective synthesis in terms of accuracy and data reduction. As described in Section
1.1.1.4, timbre is not a strictly defined notation, and it involves several aspects of
the sound’s features, therefore, the analysis and studies on timbre is crucial to the
synthesis results. For example, the accurate estimation of fundamental frequency
is necessary. Because corresponding to pitch, our first impression of a sound is its
relative ‘low sounding’ or ‘high sounding’. In addition, how to describe the shape
of spectrum determines the accuracy of the modelling of timbre. Even though some
relative synthesis methods, i.e., subtractive synthesis and wavetable synthesis try to
model the timbre as accurate as possible, but the computation cost and requirement
of considerable data limit their wide applications.

1.4.2 Objectives and Main Contributions of this Thesis

Following the open issues discussed above, this thesis is motivated by the demand
of an efficient and flexible model to synthesize the musical instrument tones. FM
synthesis is well known as being capable to generate complex spectral with only a
few parameters and is favoured as the synthesis model in this thesis. The main ob-
jective of this thesis is to optimize the FM synthesis model, including the parameter
estimation and the feature extraction, which will be used to synthesize musical in-
strument sounds more accurate and efficient. With several concerned aspects of this
research, three sub-objectives are presented. The first is to design and implement
algorithm to estimate the fundamental frequency of the sound, thus, a synthesized
sound with accurate pitch as the original sound is achieved. The second is to design
and implement algorithm to search the optimized FM parameters for FM synthesis
model and design an algorithm to reduce the data redundancy in the synthesis, e.g.,
reduction of envelope data. The third is to design and implement the FM synthesis
joint formant information to improve the sound quality of the synthesized sounds
by combining the advantages of formant synthesis and FM synthesis.
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According to the discussed objectives, the following tasks are defined and accom-
plished in the presented thesis:

1. A new algorithm to achieve more reliable and accurate estimation on funda-
mental frequency with focus on:

a) design of a new fundamental frequency estimation algorithm based on
the harmonic pattern match (HPM);

b) evaluation of the accuracy and viability of the HPM algorithm over a
musical instruments database.

2. Analysis of FM synthesis models with focus on:

a) analysis of mathematical representations and model structures of two
main FM synthesis models;

b) analysis of the timbre matching process to search the optimal FM syn-
thesis parameters by genetic algorithm.

3. Optimization of FM based musical instrument tone synthesis with focus on:
a) analysis of parameter space of FM synthesis model;

b) analysis of the effect of carrier signal and modulating signal in the FM
synthesis to determine the feasible carrier and modulating signals in FM
synthesis;

c¢) generation of band-limited FM signal according to the bandwidth of orig-
inal sound;

d) piecewise linear approximation of carriers’ amplitude envelopes for data
reduction.

4. A new algorithm of joint formant and FM synthesis of musical instrument tone
with focus on:

a) design of new fitness function in genetic algorithm to find more accurate
FM parameters, which can synthesize the sound with close timbre as the
original sound;

b) analysis and implementation of the algorithm used to estimate the spec-
tral envelope and formant;

c) evaluation of the accuracy and viability of the FM joint formant synthesis
model.

The innovative contributions of this thesis are:

1. The design of new algorithm for accurate and reliable fundamental frequency
estimation;
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2. The determination of FM carrier signal and modulating signal based on the
analysis of Bessel functions and parameter space;

3. The design of generation of band-limited FM signal with the analysis of first
kind of Bessel function;

4. The design of FM synthesis joint formant information.

1.4.3 Structure of this Thesis

This thesis is made up with six chapters. After the introduction chapter, the foun-
dations of FM synthesis are introduced. The features of FM is firstly introduced in
Chapter 2, which is the basis for FM synthesis. It is followed with the analysis of FM
spectra, including the oscillation attribute of Bessel function, the impact of reflected
side frequencies and the dynamic feature in FM generated spectra. This chapter is
concluded with implementation of classical FM synthesis using time-varying param-
eters and the existing problems of time-varying parameters are discussed.

Chapter 3 concerns with accurate estimation of fundamental frequency. A novel
fundamental frequency estimation algorithm based on harmonic pattern match is
described to achieve more reliable estimation accuracy. At first, the algorithm uti-
lizes the autocorrelation both in the time domain and in the frequency domain,
exploiting the spectrum subset to guide the search of fundamental frequency candi-
dates. Then an efficient mechanism to evaluate the match between each candidate
and the harmonic pattern of the sound signal is introduced. Finally the estimated
fundamental frequency selected to best match the sub-pitches under a weighting
strategy is described. Performance over a musical instruments database consisting
of single pitched notes and the viability of the HPM algorithm are demonstrated to
be competitive with several other fundamental frequency estimators.

Chapter 4 begins with the introduction of the classical FM synthesis models, in-
cluding the model structures and mathematical representations. The key point of
the synthesis is the searching of optimal FM parameters, therefore, the genetic al-
gorithm is then introduced as the tool to find the optimal parameters. Afterwards
the whole synthesis process is introduced, and the process consists of the following
steps: computing original spectrum, searching FM parameters and time variant en-
velope computation. The second part of Chapter 4 focuses on the optimization on
FM synthesis. Firstly, the effect of the carrier signal and modulating signal in the
synthesis is analysed, and then the choice of carrier and modulating signal in the
multiple carrier FM synthesis model is determined. Secondly, the parameter spaces
of FM synthesis model are analysed in the terms of error distribution. According
to the analysis results, the optimal method is represented: generating band-limited
FM signal by pre-determined parameter bounds. It is followed by the design of
piecewise linear approximation of carrier’s envelope to achieve data reduction. This
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chapter is concluded with the performance evaluation of the optimization results in
the terms of matching error.

Chapter 5 presents the method to synthesize the musical tones with formant infor-
mation in FM model, taking the advantages of FM that being efficient and formant
being accurate representation of sounds. Formants are of great importance in the
production of sound and an efficient model for representing the characteristic of
formants can generate perceptually close sounds to the original ones. The formants
estimation is at first introduced to analyse the spectral envelope of musical tones.
In order to model the formant using FM, a new fitness function is proposed to
guide the genetic algorithm to search the optimal FM parameters, which can better
represent the formants. Then the implementation of FM synthesis joint formants
is described. This chapter concludes with the performance evaluation with several
musical sound examples to verify the efficiency of the presented FM synthesis joint
formant information.

Chapter 6 concludes the complete thesis and summarizes the main results. In addi-
tion, an outlook of future research and investigations in the field of FM synthesis is
outlined.
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Chapter 2

Fundamentals of Frequency
Modulation Synthesis

2.1 Frequency Modulation Theory

In telecommunications systems, frequency modulation is used to make the frequency
of the sinusoidal carrier wave vary in accordance with the modulating signal, whereas
in amplitude modulation the amplitude of the sinusoidal carrier wave varies in ac-
cordance with the modulating signal [Hay01]. Figure 2.1 displays the signals of
frequency modulation in the case of sinusoidal signal as the carrier and modulating
signal. In analog frequency modulation, a modulating signal, m(t), is applied to con-
trol the frequency of the carrier signal, and the resulted modulated signal, zpnp(t),
is a constant amplitude signal whose frequency is ideally a linear function of the
modulating signal [Hay01|. When the modulating signal is zero, the carrier signal
is at its centre frequency, f.. When the modulating signal exists, the instantaneous
frequency of the modulated signal varies above and below its centre frequency and
is proportional to the amplitude of the modulating signal and is independent of the
modulation frequency [Hay01].

Figure 2.1 (a) and (b) show the sinusoidal carrier and modulating signal, respec-
tively and Figure 2.1 (c) shows the corresponding frequency modulated signal, whose
frequency increases and decreases in the fashion of the oscillation of the modulating
signal.

If the modulating signal is a sinusoidal signal defined by [Hay01]

m(t) = Am(t) cos(2m fut + o), (2.1)

where Ay, (t) is the slow time-varying amplitude of the modulating signal m(t), fu
is the frequency of m(t), ¢ is the initial phase, which depends on the choice of the
time origin. Then the instantaneous frequency fi(¢) of the resulting FM signal is
[Hay01]
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xra(t)

Figure 2.1: Illustration of frequency modulation. (a) Modulating signal m(t); (b)

where

The term f. represents the frequency of the unmodulated carrier, and the constant
k¢ represents the frequency sensitivity of the modulator [Hay01|. The quantity A f(¢)
is the time-varying frequency deviation, representing the maximum departure of the
instantaneous frequency of the FM signal from the carrier frequency f. [HayO1].
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fi(t) = fo + ke An(t) cos(27 fint)
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AF(t) = kA (2).



2.1 Frequency Modulation Theory

So the instantaneous frequency deviation, Af(t), is proportional to the modulating
signal.

According to Equation(2.2), the instantaneous phase, 6;(t), of the modulated signal
is equal to 27 multiplied by the integral of the instantaneous frequency as shown
below [Hay01|

0;(t) = 2w /Ot fi(T)dr
Af(t)
f

m

Ql(t) = 27cht +

sin(27 fint), (2.3)

where the initial phase is assumed simply to be zero.

The ratio of the frequency deviation Af(¢) to the modulation frequency f,, is com-
monly called the modulation index of the FM signal, and is denoted by I(t) as
[Hay01]

I(t) = Af—(t), (2.4)
Jm
and therefore,
0;(t) = 2w fot + I(t) sin(27 fnt). (2.5)

From Equation (2.5) we can see that I(¢) represents the phase deviation of the FM
signal, i.e., the maximum departure of the angle 6;(¢) from the angle 27 f.t of the
unmodulated carrier[Hay01].

When the carrier signal is a cosine wave, A.(t) cos(27f.t), the FM output signal,
xpm(t), is expressed as [HayO1]

xpMm(t) = Ac(t) cos(2m fet + 1(t) sin(27 fnt) + ©0), (2.6)

where A.(t) is the carrier’s instantaneous amplitude. The discrete-time version of
Equation (2.6) is

rpm(n) = Ac(n) cos(2m fonTs 4+ 1(n) sin(27 funTs) + o), (2.7)

where n is the time index of time instant nTj.

47



Chapter 2 Fundamentals of Frequency Modulation Synthesis

2.2 FM Modelling of Complex Music Spectra

2.2.1 Generating Complex Spectra by FM

Frequency modulation, as mentioned in Section 1.3.2.6, is a powerful tool for music
synthesis, due to its ability to generate complex spectra with only few parameters.

Amplitude @
= O{ I Frequency

fe

(b)

f-af,. f, f+4f,
(gi)
=3 |
{ HYEENE RN Y.
f-5f, f+5f

Figure 2.2: Example to show the increasing bandwidth with increasing I (|Cho73])

It is clear that when I(n) is equal to 0, there is no modulation. When I(n) is great
than 0, the energy of the carrier signal will be re-distributed among the resulted side
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band frequency components [Cho73]. With each value of I(n), the energy in each
frequency component changes accordingly and when I(n) increases, the bandwidth
will also increase as I(n) [Cho73]. Figure 2.2 shows an example of the increasing
bandwidth as I(n) increases from 0 to 4, where the upper and lower side frequencies
are at interval of the modulation frequency, f.,, and are symmetrical around the
carrier frequency, f. [Cho73|. Since the I(n) here is time-invariant, it is simply
labelled as I. It is also shown that as the modulation index varies, the amplitude
or intensity of each frequency partial varies as well.

The frequency components in FM signal can be harmonically related with suitable
ratio of the carrier frequency to modulation frequency, like the integer ratios [Cho73].
And when I(n) varies, a different tone can be produced due to the change of spec-
trum. As discussed in Section 1.1.1.4, the amplitude of each frequency component
is an important factor in the perception of timbre and is determined by the first
kind Bessel functions J,,(-), where m is the m-th order [Hay01l|. Because of the
important role of Bessel functions in the generated FM spectrum, it is interesting to
see how the Bessel functions influence the characteristic of the generated spectrum.
To determine the spectrum, it is necessary to do some tedious mathematics of the
first kind Bessel functions. According to the generating function of Bessel functions,
Jm (), described in [Kre|, we have

ez =)= S Jula)e" (28)

m=—0oQ

i.c., exp(%(z — 1)) is the generating function of J,(z).

If we let z = exp(j¢), with ¢ is the angle of the exponential function, then we can
obtain |[Kre]

Lo, 1y _ epid) = exp(—jo)
. _

z 2
= jsin ¢. (2.9)

Combining Equation (2.8) and (2.9) we can write [Kre]
T 1 —
exp(2(z — 1)) = expl(jrsing)

= Z I () exp(jme). (2.10)

m=—00

49



Chapter 2 Fundamentals of Frequency Modulation Synthesis

Now considering again the trigonometric identity as blow [Kre|

cos(a + I(n)sinb) = Re{exp(j(a + I(n)sinb))}
= Re{exp(ja) - exp(jl( )sinbd)}

= Re{exp(ja) Z Jm(I1(n))exp(ymb)}
= Re{ Z Jm(I(n))exp(j(a+mb))}
Z Jm(I(n)) cos(a + mb), (2.11)

where the operator Re{-} takes the real part of a complex value.

Thus, similarly, with the trigonometric expansion, Equation (2.7) can be written as
a sum of sine waves spaced at the modulation frequency from the carrier frequency
as [Cho73|

zpm(n) = Ac(n) cos(2m fonTs + 1(n) sin(27 frynTy))

n) Z I (I(n)) cos(2m(fe + mfm)nTy), (2.12)

m=—0oQ

where J_,,,(+) = (—=1)"J(+), and m is the integer number to indicate the side band
number, the initial phase of the FM signal is assumed simply to be zero. Finally, a
spectrum consisting of a carrier at f. and symmetrically placed side band frequency
partials separated by f,, is generated. Their amplitudes follow Bessel functions.

The Bessel functions oscillate up and down as the order m increases. Figure 2.3
shows the first six Bessel functions of the first kind, Jy to Js. Jo(I) can generate
an amplitude scaling factor to the carrier frequency, Ji(I) generates an amplitude
scaling factor for the first upper-side and lower-side frequency components, J5(1)
is responsible for the 2nd upper-side and lower-side frequency components and so
forth [Cho73]. From Figure 2.3, it can be seen that the Bessel functions do not
varies monotonically, rather oscillates between both positive values and negative
values and tail off as a sort of damped sinusoid [Cho73|. With the negative scal-
ing factor, it means that there is a phase inversion of the corresponding frequency
component, because — sin(f) = sin(—#) [Cho73|. This property plays a crucial role
in the synthesis of musical timbre and will be discussed in details in the following
sections.

In addition, because of the oscillation decreasing of Bessel functions, the higher order
frequency components the larger value of modulation index is needed to generate
significant amplitude scaling factors [Cho73]. According to Mr Carson’s rule [Car22]
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Figure 2.3: Bessel functions of first kind from order 0 to order 5, with I varies from
0 to 10 (|[ChoT73; Hay01])

, the bandwidth (BW) of the simple FM signal as expressed in Equation (2.6) can
be estimated as [Cho73; Hay01|

BW = 2(I + 1) fu, (2.13)

which means that there are about (I + 1) significant side bands on each side of the
carrier frequency, which spaced at the modulation frequency, f.

In Table 2.1 the most used Bessel functions, and the side bands whose values are
greater than 0.01 are displayed. It shows a clear rising trend of the bandwidth as the
increase of modulation index. The important thing got from the Bessel functions is
that the larger the index, the more dispersed the spectral energy, corresponding to
a brighter timbre [Sch].
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Table 2.1: Reference values of Bessel functions of the first kind (according to [PS05])

Side band
Modulation
index
Carrier 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.00 1.00
0.25 0.98 0.12
0.50 0.94 0.24 | 0.03
1.00 0.77 0.44 | 0.11 | 0.02
1.50 0.51 0.56 | 0.23 | 0.06 | 0.01
2.00 0.22 0.58 | 0.35 | 0.13 | 0.03
2.41 0 0.52 | 0.43 | 0.20 | 0.06 | 0.02
2.50 -0.05 0.50 | 0.45 | 0.22 | 0.07 | 0.02 | 0.01
3.00 -0.26 0.34 | 0.49 | 0.31 | 0.13 | 0.04 | 0.01
4.00 -0.40 -0.07 ] 0.36 | 0.43 | 0.28 | 0.13 | 0.05 | 0.02
5.00 -0.18 -0.33 | 0.05 | 0.36 | 0.39 | 0.26 | 0.13 | 0.05 | 0.02
5.53 0 -0.34 | -0.13 | 0.25 | 0.40 | 0.32 | 0.19 | 0.09 | 0.03 | 0.01
6.00 0.15 -0.28 | -0.24 | 0.11 | 0.36 | 0.36 | 0.25 | 0.13 | 0.06 | 0.02
7.00 0.30 0.00 | -0.30 | -0.17 | 0.16 | 0.35 | 0.34 | 0.23 | 0.13 | 0.06 | 0.02
8.00 0.17 0.23 | -0.11 | -0.29 | -0.10 | 0.19 | 0.34 [ 0.32 | 0.22 | 0.13 | 0.06 | 0.03
8.65 0 0.27 | 0.06 |-0.24 | -0.23 | 0.03 | 0.26 | 0.34 | 0.28 | 0.18 | 0.10 | 0.05 | 0.02
9.00 -0.09 0.25 | 0.14 | -0.18 | -0.27 | -0.06 | 0.20 | 0.33 | 0.31 [ 0.21 | 0.12 | 0.06 | 0.03 | 0.01
10.00 -0.25 0.04 | 0.25 | 0.06 | -0.22 |-0.23 | -0.01 | 0.22 |1 0.32]0.29 | 0.21 | 0.12 | 0.06 | 0.03 | 0.01

Chapter 2 Fundamentals of Frequency Modulation Synthesis
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2.2 FM Modelling of Complex Music Spectra

2.2.2 Reflected Side Frequency Components

Due to the negative coefficients generated by Bessel functions, the resulted ampli-
tudes of side band frequencies would have an inverted phase, therefore, the frequency
with negative amplitude is 180° phase differ [Cho73|. To illustrate this important
property, the positive amplitude can be represented by a upward bar, while the
negative amplitude can be represented by a downward bar [Cho73|. As an example,
the amplitude for each side band frequency component with I = 4 can be calculated
by Bessel functions as follows:

Jo(4) = —0.3971,

Ji(4) = (=1)J_1(4) = —0.0660,
Jo(4) = (=1)2J_5(4) =0.3641,
Js(4) = (=1)%J_3(4) =0.4302,
J(4) = (=1)%J_4(4) =0.2811,
Js(4) = (—=1)%J_5(4) =0.1321.

Figure 2.4 displays the phase inversion, where the phase information is included
in the directional bars. It reflects that for the odd upper- and down-side frequency
partials, there amplitudes have inverse signs with each other and for the even upper-
and down-side frequency partials, their amplitudes have the same signs [Cho73].

f(‘,+2.f!n T =
f(‘ +4,flll

04 fc - 2fm
fc 74fm

0.2r fC+5fm_

fo+ fum T
fc T 5fm

021 B

jL T fm

) f

Amplitude

\4 X
fc T 3fm fc

-0.6

Figure 2.4: Illustration of phase inversion by 180° with modulation index I = 4
(|ChoT73])
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With the relative ratio of carrier frequency to modulation frequency and the mod-
ulation index, FM can generate frequency components that fall in the negative
frequency domain. These negative frequency components actually reflect around 0
Hz and will be algebraically added to the positive frequency components [Cho73].
For example, the frequency components in the negative domain need to change the
signs of their amplitudes in order to be correctly added to the frequency components
in the positive domain [Cho73|.

Figure 2.5 illustrates the reflection of negative frequencies, where each negative
frequency can either increase the magnitude of the corresponding positive frequency
or decrease it [Cho73|, and the reflection direction of the negative frequencies into
positive frequencies is indicated by the red dotted arrow lines. For example, the
frequency at 0 Hz has only its own energy, and no energy from other frequency
components will be added to it. The amplitude of frequency component at 100
Hz can get an increase in energy due to the amplitude of the -100 Hz frequency
component will be added to it with the same sign, whereas the amplitude of -200
Hz frequency component will be subtracted from the amplitude of 200 Hz frequency
component with the inverse sign of amplitude, resulting a decrease in energy. Figure
2.6 shows the magnitude of the mixed side band frequencies after the algebraically
addition, which is the same as the magnitude spectrum returned by FFT. Then
the final spectrum is perceived by the human ears. It needs to point out that the
change from the original symmetrical spectrum to the final mixed spectrum brings
a great advantage to produce the complex music spectra, and any little change of
the parameters can result a totally different spectrum [ChoT73].

Figure 2.7 and Figure 2.8 show the additional two spectra generated by FM with [ =
3 and I = 5, respectively. Together with Figure 2.6, they demonstrate that all the
three spectra have different relative strength among the frequency components due
to different modulation index I, which correspond to different timbre even though
with the same carrier frequency and modulation frequency. For instance, when
the modulation index [ increases from 3 (as shown in Figure 2.7) to 5 (as shown in
Figure 2.8), the higher frequencies obtain more energy, such as the 600 Hz frequency
component, whereas the energy of lower frequencies decreases, such as the 100 Hz
and 200 Hz frequency component. Moreover, even the modulation index is linear
increase in the three spectra, there is no regular rules for the energy distribution
among the frequency components, therefore, from the Bessel functions with the
given modulation index value, it is difficult to predict the spectrum.
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Figure 2.5: Illustration of frequencies reflection, f. = 100 Hz, f,, = 100 Hz, I =4
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Figure 2.7: FM spectrum with f. = 100 Hz, f,, = 100 Hz, I = 3 (simulated by the
author of this thesis)
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2.2.3 Generation of Harmonic Spectra

The timbre of a harmonic musical tone consists of all the harmonic components,
which includes in detail the distribution of the individual frequency components
and the amplitude, i.e., the strength or intensity, of each frequency. While the
modulation index determines the energy distribution among all the frequency com-
ponents, the ratio of the carrier frequency to modulation frequency determines the
frequency components appearing in the spectrum [Cho73|. For instance, the ratio
in Figure 2.5-2.8 is 1/1, which is the simplest case. In general, this ratio can be
expressed as [Cho73]

fc/fm:Nc/Nm7 (214)

where N. and N,, are integers. With the integer ratio, FM can generate harmonic
spectrum, which is the case in most musical instrument tones. The fundamental
frequency, fo, can be determined by [Cho73]

fOZfC/Nc:fm/Nm' (215)

The existing frequency components in the FM signal can be determined from the
following relationship [Cho73|

k = |N, £ mNy|, m=0,1,23,..., (2.16)

where k is the harmonic number and m is the order of side band frequency. When
m = 0, then the k indicates the harmonic position of carrier frequency. When m # 0,
there are two values for k£ to indicate the harmonic number of the mth upper- and
lower-side frequency [Cho73|.

Figure 2.9 shows the spectra generated by FM with three different N./N, ratios.
Figure 2.9 (a) contains all the harmonic frequency components for N./Ny,, = 2/1,
(b) only contains the odd number harmonics because of N./N,, = 1/2, and in (c)
every 3rd harmonics misses because of N./N,, = 1/3. Therefore, when using FM to
synthesize the musical tones, the carefully settings to the ratio of carrier frequency to
modulation frequency and the modulation index is needed to produce the expected
spectra.
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2.3 Implementation of Chowing’s FM Synthesis

2.3.1 Classical FM Structure in Music Synthesis

In Chowing’s paper, he presented not only the theory of FM synthesis of complex
audio spectra, but also gave the implementation of the classical FM synthesis of
several typical musical instruments, such as brass-like tones, woodwind-like tones,
bell-like tones, and drum-like tones [Cho73]. In those proposed methods, he pointed
out that by studying the timbre of each instrument family, one can set the optimal
parameters to the pre-defined FM synthesis structure to produce the corresponding
musical tones [Cho73]. As the initial attempt to use FM synthesis as well as to de-
velop FM algorithms to synthesize the musical sound, it is interesting and necessary
to look deep into his recipe of the implementation of FM synthesis.

In Chowing’s recipe, the musical instruments can be represented by a FM structure,
as shown in Figure 2.10 [Cho73]. For different instrument, the parameters are set
accordingly to generate tone quality sounds. This structure consists of a series of
basic elements, which serve together to control the output sound and each has their
specific task [Cho73; Cho77|:

e The sine wave oscillator takes two inputs: frequency and amplitude, and then
output the sine wave oscillating with the input frequency and evolving with
the specified amplitude envelope.

e The adder adds two inputs, for example, the phase of carrier signal and
the modulating signal together to achieve frequency modulation (actually the
phase modulation).

e The envelope generator generates the amplitude envelope to make the output
of the sine oscillator varies in coordination with it. So its output is connected
to the sine oscillator as the amplitude input.

In Figure 2.10 there are two sine oscillators, Oscillatorl and Oscillator2, that are
responsible for the generation of carrier signal and modulating signal, respectively
[Cho73]. Two adders, adderl and adder2, control the carrier frequency and modu-
lation frequency [Cho73|. The specific parameters are explained as follows [Cho73;
Cho77]:

A Amplitude of the output wave.

Ty : Duration of the tone.

fe + Carrier frequency.

fm : Modulation frequency.

I; : Modulation index 1.

I, : Modulation index 2.
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Figure 2.10: Chowing’s FM structure for musical tone synthesis (|[Cho73])

2.3.2 Synthesis of Brass-like Tones

According to Chowning’s research, the synthesis of timbre of the brass family is
based on the following parameters [Cho73|:

A = 2,

Ty = 2 seconds,
fe = 440 Hz,
fm = 440 Hz,
Il — O,

I, = 5.

Since N./Ny, = 1/1, the resulted spectrum owns the frequency components that are
harmonically related. Figure 2.11 (a) shows the amplitude envelope function used
for brass-like tones used in [Cho73|. Because the modulation index changes over
time and the oscillation of Bessel functions, the discontinuity occur in the obtained
spectrogram, as shown in Figure 2.11 (b). Figure 2.11 (b) is the spectrogram of a

60



2.3 Implementation of Chowing’s FM Synthesis

(@)

0.8

= 0.6

0.4

0.2

5000

4000

3000

f/Hz

2000

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50

40

Figure 2.11: Envelope function and Spectrogram for brass-like tones. (a) shows

the envelope function (|Cho73]) and (b) is the spectrogram of the
FM signal. The intensity of each frequency partial is reflected by the
shade of grey. The reference values of the grey lines are listed in the
right side of the spectrogram, with unit dB (simulated by the author
of this thesis)
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1 s brass tone generated by the above given parameters and the modulation index
changes directly proportional to the carrier amplitude as in Figure 2.11 (a).

The discontinuity can be clearly observed at the attack phase and decay phase, with
the sudden change of the intensity of the gray lines for the frequency components
shown in Figure 2.11 (b). At the transition point, some harmonics even disappeared
temporally. In the attack phase (0-0.33 s), the slope of the envelope is large, which
results in a strong amplitude oscillation of the harmonic partials, and especially for
the higher order harmonics. As the intensity of the amplitude increase, the higher
order harmonics begin to appear gradually. And as envelope begins to decay, the
higher order harmonics begin to die away, which are indicated with the lighter lines
in the spectrogram. However, the strong oscillation of the partials’ amplitudes result
in a synthetic sound, rather than the nature instrument sound.

2.3.3 Synthesis of Woodwind-like Tones

The properties of woodwind family instruments are that the higher order harmonics
are prominent in the attack phase, and the lower order harmonics become promi-
nent during the sustain phase whereas the energy of the higher harmonics decrease
[Cho73|. The parameters for the woodwind-like tone are [Cho73|

A = 2

Ty = 2 seconds,
fe = 900 Hz,
fm = 300 Hz,
L = 0,

I, = 2.

where N, /N, = 3/1, then the 3rd harmonic becomes prominent at the onset instant
(the beginning of the attack) when the modulation index increase from 0 [Cho73].
The envelope function for carrier amplitude and modulation index is given in Figure
2.12 (a). At the attack phase of the tone, the 3rd harmonic frequency component
(corresponding to the carrier frequency) has most dark line, which means it has the
most energy at this phase. In the sustain phase all the harmonics keep constant
amplitude because of the consistent modulation index. In the release phase, since
the modulation index changes inversely to the attack phase, then the trend of the
harmonics evolution is also inverse from the attack phase [Cho73| as shown in the
spectrogram of the woonwind-like tone in Figure 2.12 (b). In addition, as same to
the brass-like tone, at the transition point of the envelope, the discontinuity occurs
at the amplitude of the harmonics, as indicated by the discontinuity of the intensity
of the lines for the harmonic partials in the spectrogram.
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Figure 2.12: Envelope function and Spectrogram for Woodwind-like tones. (a)
shows the envelope function (|[Cho73|) and (b) is the spectrogram of
the FM signal. The intensity of each frequency partial is reflected by
the shade of grey. The reference values of the grey lines are listed
in the right side of the spectrogram, with unit dB (simulated by the
author of this thesis)
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In order to see the discontinuity in the spectrogram of each frequency component
with the varying modulation index, we can sweep the modulation index in the FM
signal. For example, the Figure 2.13 illustrates the discontinuity of the spectrogram
in the FM signal with time-varying modulation index, where f. = 1000 Hz, f,,, = 100
Hz and the modulation index sweeps from 0 to 10 in a duration of 3 s. The step
size between the adjacent modulation index is in the order of 10~°. It is shown that
when the modulation index becomes larger, the more band side frequency compo-
nents appear. However, the discontinuity happens in each frequency component and
the time instant for these discontinuities are different, due to the independent am-
plitude oscillation of individual frequency. This discontinuity in the spectra of the
synthesized musical tones makes the sound quality like electronic synthetic rather
than natural sounds.

2000

1000

f/Hz

Figure 2.13: Spectrogram for sweeping modulation index signal. The intensity of
each frequency partial is reflected by the shade of grey. The reference
values of the grey lines are listed in the right side of the spectrogram,
with unit dB (inspired by [Sch])

2.4 Summary

The technique of FM brought a very simple but powerful tool to generate the spec-
trum. The bandwidth, the relationship between frequency components and the

64



2.4 Summary

general character of the frequency components can be controlled without expensive
parameters, especially compared with additive synthesis and subtractive synthesis.
Many of its features, such as the simplicity of design, the reduced number of param-
eters, the flexibility to generate the harmonic structure of spectra, etc., facilitate
the application of FM in music synthesis.

However, FM synthesis is not the perfect one. In order to produce the nature spectra
of the real instruments, several problems are needed to be taken into consideration.
Normally the spectra of the real instruments are not always steady, thus the match-
ing of dynamic spectrum is needed to be considered. Because the Bessel functions
oscillate, it is difficult to predict the suitable value of the modulation index to gen-
erate the expected spectrum. Furthermore, because the relative strength among the
harmonic partials are important to the quality of the sound, it cannot cover all the
instrument spectra with the Chowing’s synthesis structure. Another aspect of the
generated spectra using Chowing’s classic FM recipe, as shown above, is the dis-
continuity occurring in the partials’ energy and cannot generate natural instrument
sounds. FM synthesis as a promising approach still attract a lot of researchers, and
much related work trying to take the advantage of FM are presented. Its application
in the musical instruments synthesis and the music composition is of great interest
to both the scientific researchers and the musicians.

65






Chapter 3

Fundamental Frequency Estimator
Based on Harmonic Pattern Match

3.1 Introduction

3.1.1 Motivation

The fundamental frequency, fy, plays a vital role in the perception of the music
sounds and it is our first impression of the listened sound, like lower sounding or
higher sounding. As mentioned in Section 1.1.1.2, each f; can be mapped into
a clearly perceived pitch. In the re-synthesis of a musical tone, it is necessary
to estimate the fundamental frequency as accurate as possible to guarantee the
perceived pitch the same as the original one. Thus, a robust f, estimator is crucial
to the synthesis system. In order to simplify the introduction of various estimation
techniques from different transform domains, the term ‘pitch’ and ‘fundamental
frequency’ will be used interchangeably in the following description.

Except for being used in music synthesis, fundamental frequency has a wide range
of applications in acoustic signal processing. In music, fy is used for music re-
synthesis [Mar+03|, music information retrieval, multiple music sources separation,
onsets detection, chord recognition, pitch tracking [Mue+11] and automatic music
transcription [Kla04|. In speech analysis, fy can help to identify the gender of
speakers [GMO5|, speech synthesis, as well as to distinguish the emotion of speakers
[BLNO9].

The problem of fy estimation is a topic of research during all the evolution of audio
signal processing. However, due to the non-stationary noise, undesired physical vi-
bration from the musical instruments, the robust estimation of f; remains a main
challenge [Hes83; Kla00|. In this chapter, a fundamental frequency estimation al-
gorithm of music signals based on harmonic pattern match is proposed to achieve
more reliable estimation accuracy. The algorithm utilizes the autocorrelation both
in the time domain and in the frequency domain, exploiting the spectrum subset to
guide the search of fy candidates (FCs), and an efficient mechanism to evaluate the
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match between each FC and the harmonic pattern of the input signal. The harmonic
pattern of the measured spectrum is presented by sub-pitch in each segmented sub-
band. Finally, the estimated fo is selected to match the sub-pitches best under a
weighting strategy.

3.1.2 A Survey of Related Algorithms

There have been several different approaches for f, estimation. In general, the es-
timation algorithms depend mainly on the analysis of waveform, spectra, psychoa-
coustic model of human hearing or the appropriate combinations of them. Com-
parative studies of several typical algorithms are given by Hess [Hes83|, Klapuri
|K1a00], Rabiner [Rab+76] and Camacho [CHO7|, who compared the methodology
and performance of each algorithm.

In the time domain in particular, two classic algorithms that utilize a highly cor-
related relationship between one period signal and the next period signal are au-
tocorrelation function (ACF) and average magnitude difference function (AMDF).
Specifically, ACF aims to identify the location of the maximum peak as the expected
pitch, and if several maximums exist, it takes the shortest one [Rab77|. Given a dis-
crete time signal x(n) in samples, the autocorrelation function ¢(-) is defined as

[Rab77]

> wn)a(n+7),7=0,£1,£2, ... (3.1)

o(7)

= lim
N—oo 2N+1n

where 7 indicates the time lag in samples.

For fy detection, if we assume z(n) is periodic with the period p in samples, i.e.,
x(n) = x(n + p), then it can be derived that [Rab77; Pro07]

¢(1) = &(7 + p), (3.2)

so the autocorrelation is also periodic with the same period p. Therefore, the period-
icity in the ACF can indicate the same periodicity in the original signal [Rab77].

For the non-stationary signals, we need to analysis those signals in the short-time
frames. Thus, the autocorrelation on the short-time segmented frame, ¢,(7), is
needed and it can be defined as [Rab77|
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(3.3)

where ¢ is the start sample of the analysis short-time frame, N is the short-time
frame length in samples, thus only N samples are calculated in the autocorrelation

of each frame [Rab77]|.

Figure 3.1 shows an example of ACF of a periodic signal with f, = 200 Hz, the
sampling frequency f; = 44.1 kHz. From Figure 3.1(b) we can see that the auto-
correlation is clearly periodic and just with the declining amplitude because of the

decreasing samples involved in the calculation, as shown in Equation (3.3).
the pitch of this sound signal is 200 Hz, the period is about 220 samples or 5 ms.
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Figure 3.1: Autocorrelation of one frame of a periodic sound signal. (a) shows one
segment of a discrete-time domain signal z(n) and (b) is the ACF ¢,(7)
(simulated by the author of this thesis)
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The fy detection algorithms based on ACF technologies are presented in [BZ91;
HDWO06; Rab77; DSR76]. Another relevant variation, for instance, the method
proposed by Cheveigné [DKO02|, applies the modified autocorrelation to analyse the
signal and invokes further processing techniques, i.e., cumulative mean normalization
and parabolic interpolation, to reduce estimation error rate.

Compared with ACF, instead of multiplication, the operation of subtraction is used
in AMDF, therefore, it needs relatively lower computation cost. Given a periodic
discrete time signal x(n) with period p, the average magnitude difference function
of one frame is defined as [Ros+74]

N—-1—1
1
d(r) = + Y et e47) —a(n+ ),
-7 n=0
t=1,N+1,2N+1,...,7=0,1,2,.... (3.4)
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Figure 3.2: Average magnitude difference function of one frame of a periodic sound
signal. (a) shows the discrete-time domain signal xz(n) and (b) is the
result of AMDF d,(7) (simulated by the author of this thesis)
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The Equation (3.4) is approximately zero for 7 = +p, 7 = £2p, 7 = £3p and so
on and all the symbols have the same notations as in Equation (3.3). For strictly
periodic signal, d,(7) has the minimum value at the position of period p. So it is
readily to show the period from the obtained AMDF. The AMDEF values of one
short-time frame of a periodic sound signal with fundamental frequency of 200 Hz
is shown in Figure 3.2, in which the distance between the minimum point and the
original point is equal to the period p = 220 samples and it indicates that the AMDF
is also periodic with p. The fj estimators based on AMDF are presented in [Ros+74;
HDWO06|.

Under ideal situation, the minimum of AMDF is expected to be the position of
the pitch period of a strict periodic signal. However, due to the existing amplitude
evolution, predominant harmonics, noise, etc., ACF and AMDFEF are prone to identify
the two times of true period as the estimated pitch period, which is referred as a
‘subharmonic’ error [Kla00; CHO7|.

The frequency domain algorithms mainly take advantage of the supposed harmonic
structure of the spectra. A method most frequently used is cepstrum [AS99; Nol67;
SR70|, which uses the inverse Fourier transform (IFT) of the logarithm of the short-
time magnitude spectrum and high-time liftering to estimate the pitch as [Kla00]

c(n) = IDFT[log(| X (k)|)], (3.5)

where c¢(n) is the cepstrum of a discrete-time sound signal z(n), X (k) is the short-
time discrete Fourier transform at frequency bin (sample in the frequency domain)
k, | X (k)| is the magnitude, and I DFT[] indicates the inverse discrete Fourier trans-
form. The cepstrum approach works efficiently by implementing FFT. One limita-
tion of this approach, however, is that it assigns the same weight to all harmonic
frequencies, which will be prone to ‘subharmonic’ error or ‘twice too low’ octave er-
ror [Kla00]. The algorithms based on spectrum autocorrelation have been suggested
in several research work, such as spectrum autocorrelation |[LNK87| and logarithmic
spectrum autocorrelation [KSS96|. These estimators are based on the assumption
that the spectrum of pitched signal exhibits periodicity in the frequency domain,
and the sequence of harmonics appear as displaced spikes with almost constant in-
terval, while the period equal to fy [Kla00]. Unfortunately, a major drawback of
these algorithms is that they will result in ‘twice too high’ octave error when pre-
dominant harmonics exist, which will take the 2nd harmonic of the true f, as the
estimated result [Kla00]. Algorithm based on the product of harmonics takes the
frequency that maximizes the product of the magnitudes over £ harmonics at that
frequency as expected fy [Sch68|. A variation of it is the summation of the logarith-
mic magnitude on harmonics, which uses addition instead of multiplication, thus,
less computationally demanding [CHOT7|. The underlying model of the latter can be
described as |[CHO7|
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f = argmax y (log(|X(k)]) }_ ok — k")), (3.6)

=1

where f is the estimated fundamental frequency, k is the frequency bin correspond-
ing to some frequency, k' is the trial frequency bin, K determines the number of
frequency bins and [ is a positive integer, £ indicates the total number of harmon-
ics involved in this computation, and §(-) is the unit impulse function [CH07|. On
the downside, however, the proposed model cannot be applied when harmonics are
absent, as the logarithm turns into a negative infinite (log(|X (k)|) = —oc) [CHOT].
Another algorithm calculating ACF in the frequency domain takes the product be-
tween the power spectrum and a cosine as [Kla00|

B(n) = 2= S (X () cos(

), (3.7)

where noT} is taken as the estimated pitch period when ¢(ng) achieves the maximum
[K1a00]. When using this model one might face the difficulty of a ‘subharmonic’
error, as it assigns equal weights to all harmonics and the multiples of the correct
pitch ng also assign same positive weighs as nyT;, indicating that subharmonics
will be possible to obtain a high score in the summation and be regarded as the
estimated pitch [Kla00]. As the above mentioned algorithms deal with harmonic
positions, we call them harmonic position detection type estimators. Examples
of other harmonic position detection type estimators are subharmonic-to-harmonic
ratio (SHR) [Sun00], smooth harmonic average peak-to-valley envelop (SHAPE)
[CHO7| and sawtooth waveform inspired method [CHOS|.

To summarize, the missing harmonics, presence of salient harmonics, and other var-
ious challenges encountered in of music signals render the reliable and fully accurate
estimation of fy very difficult. Furthermore, the above described algorithms are not
able to detect fy of imperfect harmonic sounds because of the fact that due to phys-
ical vibration, the harmonics of the sound generated from the musical instrument
cannot be spaced with exactly equal interval, but slightly shift from ideal positions
i.e., multiples of fy [FM33]. To this end, this chapter presents a novel algorithm
for fy estimation in music signals based on harmonics pattern match (HPM), with
main contributions including;:

1) anew idea of a spectrum subset is proposed to achieve efficient implementation;

2) a novel way of searching FCs based on ACF is presented to diminish the
estimation error;

3) a new concept of sub-pitch is introduced to estimate the harmonic pattern of
spectrum while concerning on the imperfect harmonic spectrum;
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4) the match measurement between FCs and sub-pitch can reduce the error rate
of estimation caused by missing harmonics and noise perturbation.

3.2 Analysis Window

3.2.1 Windowing

Because of the time-varying characteristic of acoustic signals, in order to imple-
ment STFT, the input musical sound is segmented into successive short-time frames
by sliding window (e.g., Rectangular window, Hamming window, Hanning window,
Blackman window, etc.) with a hop-size. e.g., 10 ms, to get stable duration, which
is slowly varying in frequency and amplitude [PK15]. Such a window function is
normally represented by a mathematical function that is non-zero valued of some
chosen interval. For instance, the function whose values in the interval are constant
and elsewhere zeros is called Rectangular window [Kon04]. Particularly in spectra
analysis, the selection of suitable window function is important to detect the fre-
quency peaks of the analysed signal and the smoothness of the spectrum [SS89].

The windowing operation is the multiplying of the signal by a window function, so
only the signal part that is overlapped with the window function can be analysed,
as the part outside the window interval is non-zero valued, like we observe the signal
‘from the window’ [SS89; Kon04].

In the spectral analysis, after windowing, the spectrum of the analysed signal is
the shape of the window function’s spectrum [SS89|. For instance, for a simple
sinusoidal signal x(n) = A cos(w,n), after windowing with a N-length window w(n),
its Fourier transform is [SS89|

X(k) =Y z(n)w(n)exp(—jwn)
= 2 A cos(2rw,n)w(n) exp(—jwn)

n
N—

I
- o

(]

A5 (exp(jesn) + exp(—jiwan))u(n) exp(—jun)

- g Z_ w(n) exp(—j(w — wy)n) + g - w(n) exp(—j(w + wy)n)
- g(W(w —wp) + W(w+w,)) (3.8)
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where w is the radian frequency in rad, A is the amplitude, j = v/—1 is the imagi-
nary unit, w(n) is the analysis window, N is the length of the window, and W (w)
represents the Fourier transform of the analysis window. Thus, the Fourier trans-
form of the analysed signal is the Fourier transform of the window function scaled by
the amplitude of the signal and centred at the frequency components of the signal

SS89].

Windowing of a signal, for example, x(n) = A cos(w,n), causes spectral leakage in
the Fourier transform, which is the non-zero values at the frequencies other than w,
[SS89]. If the signal under analysis consists of more than one sinusoidal waveforms,
the spectral leakage can interfere the ability to distinguish the different frequency
component in the spectrum [SS89]. In general, there are two main characteristics of
the window’s spectrum to determine our choice of the window function [SS89]:

1) the width of the main lobe: that is the distance between the adjacent two zero
crossings, e.g., the frequency samples between two zero crossings;

2) the highest side lobe level: which is the measurement of distance in dB from
the main lobe peak to the highest side lobe level.

The ability to distinguish the frequency components increases as the main lobe of the
window becomes narrower [SS89|. Therefore, the width of the main lobe determines
the frequency resolution of the spectrum. The side lobes of a stronger signal can
overlap the main lobe of a weaker signal, thus ideally we would like a narrow main
lobe and no side lobes [Kon04|. However, in practice this is impossible, hence, a
compromise is used according to the needs of specific applications [Kon04].

There are many windows for short-time analysis, and the simplest one is the Rectan-
gular window [Kon04|. The general used analysis windows have the sinc-like shape,
but the different main lobe width and highest side lobe level [SS89]. The Rectangu-
lar window is defined that it has the constant value 1 in the duration of the window
and elsewhere 0 |[Kon04]. It has the narrowest main lobe, 2 bins (= 2f;/N Hz),
but a very high first side lobe of -13 dB [SS89|. Except for Rectangular window,
Hanning window, Hamming window and Blackman window are three other mainly
used windows, which will be introduced in the following section. More details of the
other windows are discussed in [Har78; Nut81].

3.2.2 Types of Analysis Window

Hanning window

Hanning window has a similar shape to the half cycle of a cosine wave, and is defined
as [Kon04|
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N-1

. (3.9)
0, otherwise,

{0.5 —0.5c0s (2152), 0<n<N-—1
w(n) =

where N is the length of the window. Hanning window has a main lobe of 4 bins
(=4fs/N Hz), and the highest side lobe level is -32 dB [SS89].

Hamming window

The Hamming window is actually a modification of Hanning window and thus has
the similar wave shape. It is defined as [Kon04]

N-1
0, otherwise.

b4 —04 2m = <n<N-1
w(n):{05 0.46cos (27725), 0<n < (3.10)

The Hamming window has a main lobe of 4 bins (= 4f;/N Hz), and a relative lower
highest side lobe level of -43 dB [SS89).

Blackman window

The Blackman window is defined as [Kon04]

(3.11)

w(n) = 0.42 — 0.5cos (2m 2 — 0.08cosdr %), 0<n< N -1
0, otherwise.
The Blackman window has a wider main lobe of 6 bins (= 6f;/N Hz), and a much
lower highest side lobe level of -58 dB.

The trade-off between the width of main lobe and the highest side lobe level changes
with the choice of the analysis window [SS89]. The time domain plots of the above
mentioned window functions are shown in Figure 3.3. When we compare the fre-
quency response of these windows, we can obtain Figure 3.4. It indicates both the
width of the main lobe and the distance between the highest side lobe and the main
lobe of each window function. From the figure we can see that compared with oth-
ers, Hamming window has the best trade-off, which has the relative narrow main
lobe and lower side lobe.
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Figure 3.3: Plots of various window functions ([Kon04|)
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Figure 3.4: Frequency responses of various window functions (|Kon04|)
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3.2.3 Length of Analysis Window

In spectral analysis, in order to distinguish the harmonic frequency components, the
choice of the length of the analysis window is important. According to the analysis
given in [SS89|, the length of the analysis window can affect the detectability of
the frequency peaks. As an example, we illustrate this effect in Figure 3.5. If a
signal z(n) contains two frequency partials at fp and fyyq, i.e., the sum of two
sinusoidal signals consist of z(n). In order to separate the frequency peaks of these
two frequency partials in the spectrum | X (f)| after STFT with an analysis window
function, the main lobe of the added window function should be no larger than the
distance of the detected frequencies [SS89|. Otherwise, with too wide main lobe,
the two frequency partials would be overlapped in the spectrum, which makes it
difficult to resolve them.

| X(f)|/dB

o f/Hz

Figure 3.5: Illustration of the detectability of window function for harmonic peaks
(according to [SS89])

If the main lobe width of the analysis window in Hz is B¢, then we require that
[SS89|

B < A, (3.12)

and A indicates the difference between the two adjacent frequency components that
are needed to be detected. Moreover, the B; of the analysis window is associated
with its length as [SS89)

(3.13)
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where By is the main lobe width in samples, f; is the sampling frequency, and N is
the length of the window function in samples. In the analysis of harmonic signal,
we have [SS89|

A= fir1— fe = fo, (3.14)

where fr,1 and f; are the two adjacent harmonic frequency components in a har-
monic signal, i.e., fr = kfy, and the distance between them is equal to the funda-
mental frequency fy. Thus, we can rewrite Equation (3.12) as [SS89|

fs
B2 <
N — Jo
s
= N > B,=*
~  fo

= N > B[, (3.15)

where T}, is the period (in samples) of the signal. So the analysis window should be
at least B multiple of the signal’s period in samples.

According to the above discussion, the Hamming window has the relative good
trade-off of main lobe and side lobe level, we would like to use it to analyse the
musical spectra in this thesis. Since the main lobe of Hamming window has a width
of By = 4 bins, in order to distinguish the harmonics of f, in a sound’s spectrum, it
is necessary that the frequency interval between adjacent harmonics should be as

fo=(frr1 — fr) 24%, (3.16)
Since the typical value of f; is 44.1kHz, with a 2028 length (in samples) window
(corresponding to 46 ms), the proposed algorithm can recognize the fundamental
frequencies above approximately 87 Hz. With the task of estimation frequency
explicitly lower than 87 Hz, one straightforward way is increasing the frame length.

3.3 Harmonic Pattern Match Algorithm

3.3.1 Spectrum Subset

The idea behind the proposed algorithm is that the quasi-harmonic music signals
exhibit harmonic pattern with quasi-evenly spacing peaks in spectrum. However,
it is difficult to determine the correct peak as fy due to the noise, vibration and
other troubles encountered in practical signal processing may also generate peaks.
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In order to solve the existing problems and diminish the error rate, we designed the
HPM procedure to estimate f, which depends on the comparison between each f
candidate and the actual measured spectrum harmonic pattern.

The common spectrum based methods for estimating f, perform specified operations
over the whole spectrum. Conversely, the use of spectrum subset in HPM is derived
from the observation that an appropriate subset of harmonic structured spectrum
possesses fp and harmonic partials. To improve the computation efficiency, a subset
of measured spectrum is chosen for the estimation of expected fy, without losing
important information.

In particular, musical instruments can resonate to generate tones, which results in
formant frequencies of the instruments getting significant gain in amplitude, appear-
ing as several formants in spectrum. Thus, the principle to choose spectrum subset
is to select frequency partials which are located in the neighbour of the maximum
frequency partial, as they contain relatively more signal energy, which is beneficial
to robust estimation of fy with a high signal-to-noise ratio (SNR). Without except
noted, the spectrum in the presented work refers to the magnitude spectrum. The
selection procedure encompasses two steps:

1) The position kp.x (in bins, i.e., the samples in spectrum) in the spectrum of
current processed frame, which has maximal magnitude | X (knax)|, is located
by peak picking;

2) The spectrum subset is supposed to ranges from origin to the position at
(akmax + B), where «v is a parameter with positive integer and 3 corresponds
to the appended width in samples. The choice of them is given in details
below.

Theoretically, a > 1, because ky., is corresponding to frequency fy or harmonic
component fr is unknown. When k., is corresponding to fundamental frequency
fo, then @ = 1 means no harmonics will be included in the spectrum subset, thus,
it requires that a > 1. We explored possible values of @ and found that a = 3 gives
the optimal result, and larger values of & may not improve the performance of the
algorithm.

The reason to use appended width ( is because of the applying of window function
before Fourier transform. As it is known that, the spectrum of a windowed signal
can be seen as the spectrum of window function placed at each position of analysed
frequency. Subsequently, the main lobe of each frequency partial contains the most
energy, except the possible harmonics at position aky.y, all the other harmonics
before it include their main lobe, so it is necessary to compensate it for the last
selected possible harmonic with an appended width £ (in bins). Since akyay locates
at the peak position of the last selected frequency partial, f = B/2 can guarantee
that the whole main lobe of it will be contained in the spectrum subset.
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The employment of spectrum subset brings the advantage that undesired noise dis-
turbance over the whole spectrum is allayed. As an example, Figure 3.6 illustrates
spectrum subset selection. Figure 3.6(a) shows the signal samples x(n) of a piano
note C3, with fy = 130.8 Hz, f; = 44.1 kHz. We segment the signal using Hamming
window with frame length of 46 ms (2028 samples), as shown in Figure 3.6(b). After
FFT, we obtained the magnitude spectrum, | X (k)|, of the selected frame, as shown
in Figure 3.6(c). From the magnitude spectrum, according to the selection principle
of spectrum subset, we can find the position k.. to identify the spectrum subset.

005 T T T T

_005 1 1 1 1

0 500 1000 1500 2000 2500
n/samples
c
20____————————| T © T
_ I5F : 7
I |
fi 10 L | | i
| |
- | |
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0 k/‘ma_ akmax + ﬂ 50 100 140
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Figure 3.6: Process of subspectrum selection. (a) Sample sequence z(n) of a piano
note C3, fy = 130.8 Hz, f; = 44.1 kHz; (b) One 46 ms frame of (a),
windowed by Hamming window; (¢) Magnitude spectrum |X (k)| of
the selected frame and its spectrum subset, which is labelled by black
dashed line (simulated by the author of this thesis)
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3.3.2 Fundamental Frequency Candidates

The fy candidates are calculated by ACF both in the frequency domain and time
domain over the spectrum subset.

The ACF of magnitude spectrum, ¢5(7), is defined as:

K—1

$S(r) = - S OIXBIX(k+7)T=12,.. K-1, (3.17)

k=1

where k is the bins in spectrum, K indicates the number of frequency bins in the
spectrum subset, and 7 is the frequency lag in bins.

In ideal case, the position of the maximum peak in the ACF of the spectrum could be
fo. However, in real measured spectrum, it is hard to detect the correct position of
fo among appeared peaks in ACF, due to envelop evolution and noise. Nevertheless,
there is a high possibility that the correct fy locates at the position, which is before
or equal to the maximum peak. Consequently, the positions of the peaks existing
in ACF from beginning to the maximum peak are chosen as the positions of the fy
candidates, and the corresponding frequencies are taken as spectrum f; candidates

(SFCs), denoted by {f} .

An example of {f°} by peak picking can be seen from Figure 3.7, in which the
frequency bin k is converted to its corresponding frequency, e.g., f = kfs/Nppr,
where Nppr is the FF'T size in samples, and the time domain sample n is converted
into time instant ¢ in second, e.g., t = n/fs. Figure 3.7(a) and (b) show the original
magnitude spectrum and its spectrum subset, respectively. Figure 3.7 (c) is the ACF
of the spectrum subset. There are 5 detectable peaks in ACF, and the maximum is
the last one, which means f ~ f2 are SFCs.

On the other side, the ACF in the time domain is also a way to guide the searching of
fo candidates. Since the ACF of signal z(n) in the time domain is a sample sequence,
the position of the existing peaks from origin to maximum will be regarded as the
candidates of period in samples, whose corresponding period in second is denoted
by {T,}. As a consequence, the corresponding time domain fy candidates (TFCs),
denoted by {fJ'}, can be expressed as

f = (3.18)

1
T,

Moreover, in practice, we compute ACF in the time domain, ¢*(7) , by FFT. This
is possible thanks to the fact that the autocorrelation can be obtained by computing
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Figure 3.7: Computation of fundamental frequency candidates. (a) Original spec-
trum of one frame of a viola note B3, fo = 240 Hz; (b) Spectrum
subset of (a); (c) Autocorrelation of spectrum subset (b) and the SFCs
of fois {126, 242, 366, 484, 614} Hz; (d) Autocorrelation in the time
domain calculated by FFT, the TFCs is {4.2, 8.4} ms, corresponding
to {238, 119} Hz (simulated by the author of this thesis)

the inverse Fourier transform of the power spectrum as [Boe93]

K-1

ot (1) = = (| X (k)22 ™ )+ =1,2,.. . K — 1, (3.19)

where K is the length of the spectrum X (k) in samples. In the HPM method,
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only the spectrum subset is used to compute ¢*(7), which is capable not only of
generating {7, }, but also reducing the noise compared with the computing over the
whole spectrum.

An example of {7} is illustrated in Figure 3.7(d), which includes two candidates
of period T'. Finally, the FCs, denoted by {f\}, consist of the candidates common
in {f} and {f]}, with 8% tolerance difference. For instance, f’ € {f\} when
|f? = f] < 0.08fF, which effectively reduces the spurious candidates either in {f7}
or in {f1}. It can be seen that {fy} = {126,242} Hz of Figure 3.7.

3.3.3 Peak Refinement

During the process of peak picking, the detected peaks in SFCs and in TFCs may
slightly shift from the true values if the period of the signal is not integer multiple
of the sampling period. Actually, the degree of incorrect can be up to a half sample
[SS89|. Under the consideration of this fact, the refinement of each detectable peak
is necessary. The effective implementation to do this is parabolic interpolation on
each peak [SS89]. After the peak picking, each peak and both the left and right
neighbours are fit by a parabola. Then the highest point of the fitted parabola will
be regarded as the refined peaks and severed in the SFCs and TFCs.

The general form of a parabola is defined as [SS89|

y(x) = a(z —p)* +0, (3.20)

where p is the center of the parabola, a is a measure of the concavity, and b is
the offset [SS89|. In our problem, for example, in the interpolation of a spectrum
peak, if we have the a local maximal at position kg, where kg is the bin number of
a magnitude spectrum, and the other two highest samples are located at kg — 1 and

ko + 1. Then we assume that our desired parabola goes through these three points
[SS89|

) = |X(
y3 =y(1) = |X (ko + 1), (3.21)

After solving the above equations, we can obtain the parameter values of a, b and
p. The height of the estimated peak is then y(p) and the estimate of the true peak
location is kg + p [SS89|. Fig.3.8 illustrates the parabolic interpolation of the peak
refinement according to the above definition.
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Figure 3.8: The illustration of parabolic interpolation (conceptual representation
of the resource in [SS89])

3.3.4 Determination of Fundamental Frequency

Based upon f; candidates, FCs, finding some way to determine f; is desirable. An
intuitive way is to compare the measured harmonics, which exist as a sequence of
peaks, and the predicted harmonics generated by each fy, and select the one, which
makes the match between measured spectrum and trial harmonics best, as fy. Yet,
this method will not always succeed due to the following reasons:

1) The spectra generated by the musical instruments miss some harmonics from
time to time, which leads to the matching score of the true fy, to be very low;

2) The perturbation of noise or instrumental vibrato generate spurious peaks,
which ‘deceives’ the matching;

3) The high order harmonics shift towards the higher frequency, and the shift
degree is difficult to measure, which give a difficulty to the matching between
exactly equally distributed harmonics and practical measured harmonics.

To avoid above mentioned issues as well as the imperfect harmonic structure of the
spectra of real music signals, the HPM utilizes the following three properties for
harmonic pattern match:

1) The harmonics of quasi-harmonic structured signal are spaced by almost con-
stant interval, approximation to fy, with a slightly shift upward high har-
monics. Assuming that the spectrum would be segmented into successive
sub-bands (frequency frames) of length (fy + B¢) in Hz, where By = 4f;/N
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corresponds to the main lobe of Hamming window (N samples long), with
overlapping of B;. The overlapping of By width can bring two advantages:

i) each sub-band have a tolerant width to contain the slightly shifting har-
monics;

ii) the sub-band can contain full information of each harmonic, which is
the main lobe of the applied Hamming window shifted to the harmonic
position. As a result, each sub-band can include two adjacent harmonics
except the first sub-band.

With each candidate f,, the spectrum subset can be segmented into sub-bands
with length (f\+ Br). When f) being the fundamental frequency, the sub-pitch
in each sub-band should be matched with fy. Figure 3.9 shows an example of
the segment of successive sub-bands from spectrum subset, which correspond
to f1 = 126 Hz and f, = 242 Hz in Figure 3.7, respectively.

The ACF defined in ¢-th sub-band as following can reach local maximum in
position of fy within each sub-band.

W—r
- S IXR) Xk + 7)) T =1,2,... W -1, (3.22)
k=1

1
W —

9 (1) =

where ¢7(7) is the result of ACF in (-th sub-band, |X,(k)| is the magnitude
of k-th bin in ¢-th sub-band, W is the length of /-th sub-band in bins, and 7
is the lag in bins.

The sub-pitch P, is defined as the frequency distance between the regularly
repetitive peaks in /-th sub-band. Thus, the maximal peak of ¢7(7) is taken
as the estimation of P, by peak picking.

Based on the above considerations, the spectrum subset is segmented into successive
sub-bands according to each fy. The fj is estimated as f) that has the highest match
score by matching with sub-pitches generated in sub-bands. The following three-
step match strategy is designed to compare various f, candidates and estimate f
using a matching score:

e Stepl: For each f), segment the spectrum subset into sub-bands with length

(fr + Br); in each sub-band, calculate P, using ¢3(7);

e Step 2: Compare f, with all of the generated sub-pitches. The sub-pitch P, is

regarded as matched with f\ when |f\ — Py|/fx < T'. The compared result is
©(¢), and defined in ¢-th sub-band as

(3.23)

o) = 1, if|fi—Pl/fL<T
0, others.
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fr = 242 Hz of Figure 3.7(b) (simulated by the author of this thesis)
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The match score of fy is calculated by employing the following formulas;

S(f) :FZQ(E),A: 1,2,...7 (3.24)

where S(f)) is the match score of candidate fy, Z determines the number of
candidates in {f)}, and p is the number of sub-bands generated according to
fr. T' indicates the tolerance difference between f) and Py, referred to as the
tolerant window. The size of I" is chosen to be 10%.

e Step 3: Compute maximum of S(fy) across all fy candidate, and the corre-
sponding fy is chosen as the estimated f

fo=arg H}?X{S(f)\)}- (3.25)

Table 3.1: Match score of FCs (derived by the author of this thesis)

Sub-pitch P, (Hz)

fA(HZ) P1 P2 P3 P4 P5 P6 S

126 0 142.6 105 220.7  220.7 O 0

242 148 250 261 1

Table 3.1 lists the match score of each f) generated of one short-time frame of a
violin note, as shown in Figures 3.7. The sub-pitches can be calculated using the
sub-bands as shown in from Figure 3.9. From the match score of the two candidate,
126 Hz and 242 Hz, we can see that 242 Hz is the estimated fo according to the
match scores, deviating only 2 Hz from the ground-truth f, = 240 Hz. The HPM
procedure is described in Figure 3.10.
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Figure 3.10: HPM procedure (defined by the author of this thesis)
3.4 Experiments and Evaluations

3.4.1 Gross Error Rate

We evaluated the effectiveness and performance of HPM. HPM was compared against
other fy estimation algorithms in terms of gross error rate (GER), which has been
used in several fy estimation algorithms [DKO02; Sun00; CHOS8|, over a musical in-
struments database. The gross error rate is defined as [DK02; Sun00; CHOS]

(3.26)
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where N, is the number of estimated fundamental frequencies with gross error in
frames, occurring when the estimated fy deviates from ground-truth f; more than
20%; Niotar 1s the total number of estimated fundamental frequencies in frames.

3.4.2 Dataset

The musical instrument excerpts are taken from the dataset of the University of
Iowa Electronic Music Studios, where the instrument sounds were sampled at 44.1
kHz [UOI]. This dataset consists of several instruments with different generation
mechanisms, such as strings, woodwinds and brass, and they are publicly available
at the website [UOI|. The details of the dataset is listed in Table 3.

Table 3.2: Dataset details (according to [UOI|)

Family Instruments

woodwinds Bass Clarinet, Flute, Oboe, Soprano Saxophone

String Cello, Viola, Violin
Brass Bass Trombone, Horn, Trumpet, Tuba
Others Piano, Guitar

3.4.3 Reference Algorithms

Six compared algorithms, which were used as the baseline in the simulation, are
briefly described as following:

e SWIPE [CHO8|: estimates f; as the fundamental frequency of the sawtooth
waveform whose spectrum best matches the spectrum of the input signal.

e YIN [DKO02|: estimates fy based on ACF in the time domain with a number
of modifications.

e SHS [Her88|: uses sub-harmonic summation to estimate fy, which is publicly
available in the Praat system with the function shs.

e AC-P [Boe93|: performs estimation of fy based on an accurate autocorrelation
method, which is more accurate and robust than the original autocorrelation
algorithm. This algorithm is also available at Praat system with the function
ac.
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CC [Boe93]: performs estimation of fy based on an cross-correlation method,
this algorithm is also available at Praat system with the function cc.

SHR [Sun00]: employs the logarithmic frequency scale and the spectrum
shifting technique to obtain the amplitude summation of harmonics and sub-
harmonics for each trial fundamental frequency, and the estimated f, depends
on amplitude ratio of sub-harmonics and harmonics.

The parameters of each algorithms are set as below according to [CH08; DKO02;
Her88; Boe93; Sun00]:

SWIPE. [p,t] = swipe(wavin, 44100, [87 6000], 0.01, [ ], 1/96, 0.5, -Inf).

YIN. p.minfy = 87; p.max fy = 6000; p.sr = 44100; p.hop = 441; r = yin(wavin,
p).

SHS. To pitch(shs)... Time step (s) = 0.01; Minimum pitch (Hz) = 87;
Max.number of candidates(Hz) = 15; Maximum frequency component (Hz)
= 7000; Max.number of sub-harmonics = 15; Compression factor = 0.84; Ceil-
ing (Hz) = 6000; Number of points per octave = 48.

AC-P. To pitch(ac)... Time step (s) = 0.01; Pitch floor (Hz) = 87; Max.number
of candidates (Hz) = 15; Silence threshold = 0; Voicing threshold = 0; Octave
cost = 0.01; Octave jump cost = 0.35; Voiced/unvoiced cost = 0.14; Pitch
ceiling (Hz) = 6000.

CC. To pitch(cc)... Time step (s) = 0.01; Pitch floor (Hz) = 87; Max.number
of candidates (Hz) = 15; Silence threshold = 0; Voicing threshold = 0; Octave
cost = 0.01; Octave jump cost = 0.35; Voiced/unvoiced cost = 0.14; Pitch
ceiling (Hz) = 6000.

SHR. [t,p] = shrp(wavin, 44100, [87 6000], 40, 10, 0.4, 6000, 0, 0).

HPM. f; = 44100 Hz; |minimum maximum|= [87 20000]; windowsize (s) =
0.046; stephop (s) = 0.01; p = hpm(wavin, fs, [minimum maximum|, window-
size, stephop).

wawvin is the input monophonic music signal. SWIPE, YIN and SHR are Matlab
codes, which are described in detail using comments in programs used. They are
not listed here, as one needs to refer to the comments in the program itself in order
to understand them. Praat has a Graphical user interface (GUI), the parameters
can be set through GUI easily.

While HPM does not set any upper limitation on frequency, other algorithms do
have their individual search upper bound of fy. Therefore, all the tested notes were
selected in the available estimate frequency ranges of all algorithms. The fact that
HPM, comprises only three parameters, namely minimum frequency, window size
and step hop, greatly facilitates its implementation.
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3.4.4 Experimental Results

Table 3.3 illustrates the GERs by musical instrument family. The experimental
results are sorted by the average GERs (the lowest to the highest). It shows that
the best algorithm for each instrument is HPM, which generates the GER for each
instrument family no more than 0.5%. It is followed by AC-P and SWIPE, in which
GERs for all instruments are lower than 3.0%. The instrument type with best
performance of HPM, AC-P, SWIPE and YIN is brass, where they can achieve their
almost best performance. CC can achieve its best performance on the woodwind
family and for SHS is the string instruments. Comparatively, SHR has the lowest
performance among the tested algorithms.

Table 3.3: GERs of musical instruments (derived by the author of this thesis)

GER (%)

Algorithm WoodwindsStrings Brass Piano & Average

Guitar
HPM 0.14 0.20 0.00 0.42 0.19
AC-P 0.12 2.85 0.12 0.64 0.93
SWIPE 0.53 1.80 0.06 1.61 1.00
CcC 0.30 3.15 0.73 0.88 1.27
YIN 1.34 2.42 0.10 5.05 2.23
SHS 4.55 1.25 7.57 12.01 6.35
Average 1.16 1.95 1.43 3.44 2.00
SHR 51.71 11.82 26.59 22.73 38.65
Average 8.38 3.36 5.02 6.19 4.96

Table 3.4 illustrates the GERs of under estimation and over estimation of the musical
instruments, which has been used as an evaluation criteria in [CHO8|. It is shown
that HPM has the lowest GERs in both ‘Under estimation’ and ‘Over estimation’.
AC-P and SWIPE perform better than CC, YIN, and SHS, while SHR generates
the largest GER over the whole database. In general, except HPM and YIN, all
the other five algorithms are prone to ‘Under estimation’ error. This comparison
can be taken as a guide to find the solutions to improve the performance of the
estimators.

All above presented results reveal that the HPM achieves the highest overall accu-
racy when compared with other algorithms. In addition, other algorithms have the
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Table 3.4: GERs of under estimation and over estimation (derived by the author
of this thesis)

GER (%)

Algorithm Under estimation Over estimation Total
HPM 0.05 0.11 0.16
AC-P 0.60 0.23 0.83
SWIPE 0.55 0.29 0.84
cC 0.71 0.49 1.20
YIN 0.45 1.31 1.76
SHS 3.80 0.61 4.41
SHR 26.91 2.72 29.63
Average 4.60 0.87 5.47

estimated upper limitation for input signals or are sensitive to high fundamental
frequencies.

3.5 Summary

The proposed HPM algorithm estimates the f; in music signals by exploiting spec-
trum subset principle and comparing the match between sub-pitches and fy can-
didates. An efficient strategy is introduced to calculate the match score among f
candidates. The HPM utilizes the harmonics of quasi-periodical music signals and
harmonic pattern match to obtain f;. Experiments demonstrate the capability of
HPM to estimate the f, with high accuracy. Another advantage of the proposed
work is the absence of upper frequency limitation for the estimation procedure,
ensuring good performance of high-pitched sounds.

In the proposed approach, however, we focus mainly on design of an algorithm for the
single fy estimation, such as the fy estimation of pure tones. Music signals, on the
other side, usually contain simultaneous sounds, (e.g., polyphonic sounds) including
several different fys at the same time, which is a more challenging and complicated
task. Future work may address the need of bringing multi- f into research focus.

92



Chapter 4

Implementation and Optimization on
FM Synthesis of Musical Instrument
Tones

4.1 Introduction

FM synthesis is an efficient method to model the musical instrument tones, how-
ever, the suitable FM parameters are the key to the success of synthesis [HBH93|.
In order to utilize the power of FM synthesis, a lot of work have already been
done to try to effectively search the optimized parameters, such as the synthesis
of trumpet tones [Mor77|, which needs the detail knowledge of the instruments;
analytic FM matching, which uses discrete Hilbert transform to analyse the signal
and find the parameters corresponding to the single modulator/carrier FM model
[Jus79; DGK90; Pay87| and genetic algorithm-based FM matching of musical tones
[Bea82|. In classical FM synthesis method presented in Chowing’s original work on
complex spectra modelling of musical instrument tones using FM, through the study
of properties of various musical instruments, the parameters for synthesis of several
instruments are carefully selected [Cho73|. However, the automated FM matching
of an arbitrary musical instrument tone is not easy with Chowning’s method, which
needs a lot of prior knowledge of the behaviours of the instruments. In contrast to
this method, a systematic way can bring a great convenience to search the optimal
parameters for synthesis [HBH93|.

In addition, Chowning’s recipe is not a generalized method for synthesis of some
sounds with special effects due to the specific play styles and only one modula-
tor/carrier model, which was used in Chowning’s recipe, makes it difficult to model
various instrument tones.

The initial investigation of using genetic algorithm (GA) to find the optimized pa-
rameters for FM synthesis is of great importance to achieve the systematic recon-
struction of an arbitrary musical tone [HBH93|. In the work of Horner et al, they
proposed a genetic algorithm based FM synthesis, which determines the optimized
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FM parameters by genetic algorithm [HBH93|. There the multiple parallel modu-
lator/carrier pairs were utilized to obtain the synthesis results [HBH93]. This work
is the basis for the extent application of FM synthesis for a wide variety instrument
tones and after that several efficient variant FM models also apply the multiple
modulator/carrier pairs to implement FM synthesis [Hor96; Hor98].

GA is a traditional technique used to the optimization problems, and have already
been applied to music compositions [Gol89; Dav91]. One major advantage of genetic
algorithm is that they do not depend on a particular problem, but can be easily
implemented to solve the common optimization problems [HBH93|. Hence, the
effectiveness and flexibility of GA make it very suitable to the task of searching the
optimal FM synthesis parameters [HBH93|.

This Chapter describes one mainly used FM synthesis model, including the math-
ematical expressions and the structures, and then the searching process using GA
to find the optimal parameters is introduced. According to the analysis of existing
FM model, the optimal method is represented to obtain more accurate parameters
in synthesis. The suitable signals used as the carrier and modulator in FM synthesis
are analysed. The way that generating the band-limited FM signals is proposed. Af-
terwards the design of piecewise linear approximation of carrier’s envelope to achieve
data reduction is described. Finally, performance evaluation of the optimized results
in the terms of matching error is given.

4.2 FM Synthesis Models

4.2.1 Formant FM Model

The general single modulator/carrier FM model can generate the spectrum centred
around the carrier frequency, like a formant, thus, it is often referred as formant
synthesis [HBH93|. A general synthesis equation for the formant FM synthesis can
be written as [HBH93|

zpm(n) = A(n) sin (27 fonTy + I(n) sin(27 frunTy)) , (4.1)

where A(n) is the instantaneous amplitude of the carrier signal, f. is the carrier
frequency, f, is the modulation frequency, I(n) is the time-varying modulation
index [HBH93|.

According to the first kind of Bessel function introduced in chapter 2, the expansion
of Equation (4.1) can be written as [HBH93|

o0

rpv(n) = A(n) Y Je(I(n))sin(2r fonT + k funT), (4.2)

k=—o0
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where the instantaneous amplitude for the k-th side band frequency component is
A(n)Jy(1(n)).

As mentioned in chapter 2, when the ratio of f./f, is an integer number, the re-
sulted spectrum is harmonic. Moreover, if f. is the integer multiplier of f,,, i.e.,
fe = N¢fm, the spectrum consists of all harmonics and the fundamental frequency
fo = fm [HBH93|. So by setting the value of f,,, we can obtain the desired funda-
mental frequency of the synthesized sound. Then Equation (4.2) can be written as
[HBH93|

o0

wpv(n) = A(n) Y Jp(I(n))sin(2r(k + N,) fonT,)

k=—o00

= A(n) Y ex(I(n)) sin(2mk fonTy), (4.3)

where ¢, is the amplitude of the k-th harmonic partial. From Equation (4.3) we can
see that the amplitude of each harmonic is the difference of two Bessel functions of
the same modulation index [HBH93|.

In [HBH93|, the multiple modulator/carrier pairs in formant FM synthesis model
was proposed. When multiple FM signals are added together, the amplitudes of
some frequency components would be increased, whereas others would be decrease
[HBH93|. Based on this fact, we can use multiple FM signals to add together to em-
ulate the complex spectra of musical instrument tones, with each modulator/carrier
pair having individual parameters [HBH93|. Figure 4.1 shows the diagram of such
a formant FM synthesis model consisting of multiple modulator /carrier pairs.

According to the multiple Formant FM model as shown in Figure 4.1, the combina-
tion output for the final synthesized sound signal is [HBH93|

Necars o8]
ey (n Z Ai(n Z Cral ) sin(27k fonTy), (4.4)
=1 k=1

where A;(n) is the instantaneous amplitude of the i-th carrier, ¢k ;(1;(n)) is the in-
stantaneous amplitude of the k-th harmonic of the i-th FM signal, where ¢ ;(1;(n)) =
Jk—ne) (Li(n)) = J_(esn.) (Li(n)) and Ne; = fei/ fmi is the ratio between the i-th car-
rier frequency and the i-th modulation frequency, N..s indicates the number of mod-
ulator /carrier pairs. In this case, the Equation (4.4) can be written as [HBH93]
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Figure 4.1: Formant FM synthesis model [HBH93|
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where the amplitude of the k-th harmonic is calculated as [HBH93|

NC&TS

by(n) = Z Ai(n)erq(Li(n)), (4.6)

therefore, with the A;(n) and I;(n), we can determine the amplitude of each har-
monic partial.

4.3 Theory of Genetic Algorithm

4.3.1 Background of Genetic Algorithm

In general, the above mentioned FM model can generate a wide range of sounds,
and the tool that used to find the optimized parameters for the FM synthesis of the
original sound is genetic algorithm, which is a systematic way to search the suitable
FM parameters.
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4.3 Theory of Genetic Algorithm

The genetic algorithm is one study branch of the evolutoinary algorithms (EAs),
which model the biological process of reproduction and natural selection of living
beings to solve the difficult problems [Dav91]. The features of natural evolution
intrigued John Holland in the early 1970’s to apply the natural evolution process
in the computer algorithm to find the solution of some complex problems [Hol84].
The basic principle of GA is that the optimal solution can be found following the
evolution process among a number of generations, which consist of different solutions
to one problem [MTK12]|.

In general, genetic algorithm uses three main principles of the natural evolution,
selection, mating and reproduction, as its basic operators [Dav91|. By working with
a set of individuals, genetic algorithm can generate a variety of possible solutions of
the given task [Dav91]. Then the selection process uses an evaluation criterion for
each individual in the current population with respect to the expected solution to
choose the best individuals, which are used to create the next generation [Dav9l].
With crossover and mutation, the diversity of the generation is maintained and they
can increase the possibility to find the optimal solution [Dav9l].

4.3.2 Main Components of GA

In biology, the evolution takes place on chromosomes, which are the organic devices
for encoding the structure of living beings and in contrast, a living beings is created
through the process of decoding the chromosomes [Dav91]|. Similarly, in the mech-
anisms that connect the genetic algorithm to the problem it is solving, it needs a
way of encoding the solutions on the chromosomes [Dav91|. In GA, it presumes that
the potential solution to a problem in a chromosome can be represented by a set of
parameters [MTK12|. The common components applied in GA are [Dav91]:

e a population of chromosomes (or individuals);

a fitness function for evaluation of each chromosome in the population;
e selection of chromosomes as parents for the next generation;

e mating of current chromosomes to create new chromosomes; apply crossover
in the mating of parent chromosomes;

e mutation among the new generations and again evaluate the chromosomes in
the new generations.

A genetic algorithm begins with an initial population, which form the first gener-
ation and each individual in the generation is evaluated with the fitness function
[Dav9l|. The individuals or the chromosomes are the candidate solutions for the
solving problems and each individual or chromosome represents a potential solution
[Dav9l]. A chromosome is defined by a set of parameters to the solving problem. If
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the problem is a Np,, parameters optimization problem, then each chromosome is
represented as a Np,,-element array as [HH9S]

chromosome = [p1,p2; - - ., PNpar» (4.7)

where p; is the value represents the i-th parameter. In general, the GA works with
binary encodings, so each parameter value is converted into a bit string, then the
bit strings for all parameters are concatenated end-to-end to create the chromosome
[HHO8|. For integer parameters, the suitable length of bit string is required to
capture the range of the parameter’s space. For real numbers, a scaling factor is
multiplied in decoding to get the desired values [HBH93|. With binary encoding
the GA can apply the genetic operators on the binary vector without necessary to
find the boundary of each parameter, which makes it to freely mix the different
individuals to search the optimal solution [HBH93|.

The fitness function is the objective function that the GA tries to optimize, e.g., to
find the maximum or the minimum of the objective function [HH98|. The fitness
function evaluates all the chromosomes in each generation and to see how well each
candidate solution fitting the solved problem [HH98|. Each chromosome has a fitness
value found by evaluating the fitness function, Fj(-), with the input parameters

p17p27 R 7prar [HH98]
Fyi(chromosome) = Fy(p1,P2, - - -+ PNpar)- (4.8)

The genetic algorithm selects the chromosomes as the parents to create the offspring
based on the fitness value, the fitter a chromosomes is, the higher possibility it is to
be selected |[HH98|.

Based on fitness function, there exist several selection schemes, however, the tourna-
ment selection is the most effective one [HBH93|. The tournament selection chooses
the best chromosome by holding a tournament competition among randomly com-
bination pair of chromosomes [HBH93|. Normally, each pair consists of two chro-
mosomes. The best chromosome from the tournament is the one with the highest
fitness value, which is the winner of the tournament [HBH93]. Then a second round
of such a selection again among all the old chromosomes is implemented to choose
the left 50% individuals in the new generation [HBH93|.

An example of tournament selection scheme is shown in Figure 4.2. One generation
includes four chromosome encoded in binary string, and every two chromosomes
pairs randomly combined together as a group. In this example, the first and third
chromosomes are in the same group and the second and fourth chromosomes are in
another group. In the first group, the third individual has a higher fitness of 35, so
it is selected and the same that the fourth individual in the second group is selected.
Such a selection is implemented once again, so the same number of chromosomes
are in the next generation.
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Chromosomes Selected
chromosomes
(fitness value)
20
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2 1001001101
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Figure 4.2: Tllustration of tournament selection scheme (Conceptual representation
of resources in [Hor98|)

After the selection process, the selected chromosomes will be propagated into the
mating pool for mating to generate offspring. These chromosomes can mate via
crossover to produce offspring in the new generation [HH98|. The crossover operation
resembles the two chromosome parents and recombines chromosomes during mating
[HH98|. A crossover point is selected between the first bit and the last bit of the
parents’ chromosomes. Then the crossover operator simply swaps a subsequence of
chosen chromosomes to breed two new offspring [HH98|. Consequently, the offspring
contain portions of the binary code of both parents [HH98]. As an example, the one-
point crossover is illustrated in Figure 4.3. The parent 1 and parent 2 are 10 bit
binary strings, and the crossover point is at the 5th point, so the two chromosomes
swap their bit sequences after 5-th bit to obtain two new offspring. This is called
the signle-point crossover, more complicated scheme for crossover is discussed in

[HHOS|.

Parent 1: 01010‘10101 Child1: 0101011011

Parent 2: 11001‘1 1011 Child2: 1100110101

Figure 4.3: Illustration of one-point crossover (Conceptual representation of re-
sources in [Dav9l]))

The mutation operation randomly flips individual bits in the chromosomes (i.e. a
0 into 1 and vice versa) to explore the local fitness landscape around a candidate
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solution and can keep the genetic algorithm from converging too fast [HH98|. As an
example, Figure 4.4 shows the mutation process where the fifth bit get the chance
to change. Typically, the mutation happens with a very low possibility, however, it
plays an important role to explore the outside of the current parameter space and
brings the possibility to search the potential global optimum by locally changing the
genetic information among the individuals [HH9S|.

Old chromosome New chromosome

1001001101 —— 1001101101
Figure 4.4: Illustration of mutation (|[HH9S8|)

Selection, crossover and mutation work together in GA to search the optimized
solution for the given problem.

Define: parameters
fitness function

|

Represent parameters

l

Create initial
population(chromosomes)

Evaluate individuals
with fitness function

Select individuals for mating

Reproduce with cross/mutate
to form new generation

no

Reached maximum generation ?

lyes

Stop
Figure 4.5: GA working flow chart (|[HH9S8])

A whole process of its working flow is shown in Figure 4.5. At first the users define
the parameters of the optimized problem and the fitness function according to the
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objective of the problem, then the parameters are encoded into the binary strings. In
the initial population, the random individuals are generated in the first generation,
among them the fitter individuals will be selected according to their fitness values
as the parents for the next generation. After mating and mutation the offspring are
reproduced to form the new generation and the process iterates until the maximum
generation is reached [HH98|.

4.4 FM Synthesis Procedure

4.4.1 Introduction of the Matching Procedure

In the spectra matching procedure in FM synthesis, the beginning is to calculate the
time-varying short-time spectra frame by frame of the original sounds using short-
time Fourier transform [HBH93; Hor98|. Taking the original short-time spectra as
references, the genetic algorithm is implemented to find the optimized FM parame-
ters, which can synthesize the sound as close as possible to the original one [HBH93;
Hor98|.

In the matching procedure using GA, we can find the optimal FM parameters to
generate the static spectrum, because all the parameters obtained from GA are
time-invariant, also the modulation indices [HBH93]. In Chowing’s original work of
synthesis of musical tones, the time-varying modulation index was utilized, which
is proportional to the carrier amplitude envelope |[Cho73|. However, as discussed
in Chapter 2, the time-varying modulation index might induce the discontinuity in
the spectrogram of the synthesized sound, therefore, the non-natural sound might
be generated. On the other side, using genetic algorithm to optimize time-varying
modulation indices is computationally expensive [HBH93]. According to the work
described in [HBH93], using nested genetic algorithm to find the time-varying indices
would produce discontinuous index functions and thus results in great changes in the
spectra, as unpleasant sounds. In order to avoid these problems, fixed modulation
indices are taken to be optimized using GA in our synthesis procedure.

In order to emulate the dynamic spectra of the instrument tone, the amplitude en-
velopes for the static spectra are necessary. One simple way to get such an envelope
is using the least mean square solution [HBH93]. Once the basic static spectra are
determined, the least square can calculate the suitable amplitude envelopes for each

spectrum to make the error between the original spectra and the synthesized spectral
smallest [HBH93].

The matching procedure in the FM synthesis with GA involves a lot of details,
which can be described in Figure 4.6. Firstly, the GA creates an initial population
of specified size, where each individual can generate a set of unique basic static
spectrum for each carrier in the multiple modulator/carrier FM synthesis model
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Time-varying spectra B

Generate initial population

Caculate static spectrum of each
carrier using initial population

Calculate harmonic matrix C of
each individual

Use least square to determine
carrier amplitude matrix A, so
CA=B

Calculate fitness of each
individual using B and CA

Implement GA operations

Ending condition reached?

no

yes

Ouput optimized FM parameters

Figure 4.6: FM matching Procedure ([HBH93; Hor98]|)

[HBH93; Hor98|. We can extract the harmonic amplitudes from the static spectra
in each basic FM signal and construct these harmonic amplitudes to a matrix C.
The harmonic spectra of the original sound are stored in the matrix B. So the
least square mean method is implemented to calculate the amplitude matrix A to
make CA ~ B [HBH93; Hor98|. The synthesized successive discrete-time spectra is
obtained by multiplying the basic spectra and the amplitude as B = CA [HBH93;
Hor98|. Then the fitness value of each individual (a set of parameters) is calculated
using the original spectra and the synthesized spectra. The GA takes these fitness
values for each individuals to implement the corresponding operations: selection,
crossover and mutation, to construct a new generation [HBH93; Hor98]. Once the
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termination condition is reached, the best individual among all the generations will
be taken as the final optimal result, otherwise the whole process repeats again
[HBH93; Hor98|.

4.4.2 Representation Matrix

4.4.2.1 Original Discrete-Time Spectra Matrix

In general, a discrete-time sound signal, x(n), which we take into analysis is under
the assumption that it can be represented by a sum of sine signals that with dynamic
amplitudes and/or frequencies as [HBH93|

Nhars

z(n) = Z bi(n) sin(27 frnTy + ¢dx), (4.9)
k=1

where bi(n), fr are the instantaneous amplitude, frequency at sample n of the k-th
sine signal (or harmonic), respectively, ¢y is the initial phase. By the calculation
of spectra, we concern about the magnitude spectra and ignore the phase spectra,
because it has little affection on the perception of musical sounds [HBH93].

The STFT is applied to obtain the successive short-time spectra with frame length
of 46 ms, windowed by hamming window. As described in Equation (4.9), we
only consider the amplitudes of the occurring frequency components of the signal.
Because of the leakage affection on the short-time spectra, the peak picking operation
is taken to detect the amplitudes of each harmonic component, where we consider
only the harmonic musical sounds in the synthesis. In the peak picking process,
the fundamental frequency f, of the original signal is estimated, and then the k-th
harmonic, f, is located in the neighbourhood of k f,. Since the harmonics are not in
the ideal locations at k fy, but shifts upwards to the higher frequencies, thus, at the
neighbourhood [k fo — Af, kfo + Af], the highest peak is chosen as the amplitude of
the k-th harmonic and then stored in a matrix B as [HBH93|

bii b BN
B — b2‘71 b‘272 T b2aNf'rameS 7 (410)
bNharsal bNharsv2 e bNharstfrarnes

where by, ,, is the k-th harmonic amplitude in m-th frame, Ny,,s indicates the number
of harmonics and Ngames is the number frames involved in the synthesis.
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4.4.2.2 Basic Static Spectra Matrix

For a N-carrier FM model, each individual in the GA optimization procedure rep-
resents one FM parameter sets, which can generate a basic static spectrum for each
modulator/carrier pair. The harmonic amplitudes of the basic static spectrum will
be stored in a matrix C as [HBH93|

€11 €2 " O Nears
C21 C2.2 e €2, Nears
cC =| _ , (4.11)
CNhar571 CNhaer U CNharsaNcars

where the ¢, represents the amplitude of the k-th harmonic of the i-th carrier,
Nears indicates the number of modulator/carrier pairs. For the calculation of ¢,
we can at first use the decoded FM parameters from GA to generate a period of
FM synthesized signal for each modulator/carrier, and then utilize FFT to obtain
the spectra [HBH93|. Unlike the calculation of the harmonic amplitudes of the
original spectra by peak picking, once the basic static spectra and the fundamental
frequency fy of the original sound are obtained, each harmonic will locate exactly
at the position of multiple of fy, since there is no physical oscillation to cause the
harmonic deviation in the synthesized sound.

4.4.2.3 Amplitude Matrix

Even though we obtain the basic static spectra matrix, it is not enough to represent
the characteristic of the spectra of the musical instrument tones. As discussed in
Section 1.1.1.4, the musical signals are dynamic, the amplitudes are changing with
time, correspondingly, in the frequency domain, the short-time spectra of a sound
signal cannot be constant, but changes with time. So a time-varying amplitude
is necessary to function with the basic static spectra together to model the time-
varying spectra of the musical sounds.

The time-varying amplitude for each carrier can be stored in a matrix A as [HBH93]|

a’].,]. a]_72 e a']-aNframes
az a2 2 ce A2 Nty ames
A — ‘ ' ‘rames ’ (412)
a’Ncars,l aNcar572 T a’NcarS)Nframes

where each a; ,,, is the the amplitude of the i-th carrier in the m-th frame. So when
multiply the basic static spectra matrix C with the amplitude matrix A, the spectra
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of the synthesized musical sound B is obtained as [HBH93]

~

CA =B~ B, (4.13)

Hence, the objective of the GA matching procedure is to try to find the optimal
parameters to make B as close as possible to B [HBH93|. In the determination of
a;m, & good solution is to use least square that minimize [HBH93]

Nhars Nears

Z Z (Chyiim — brm)” (4.14)

k=1 =1

for each time frame m.

4.4.2.4 Sign Matrix

In the FM synthesis model, the matrix equation
CA~B (4.15)

is used to represent the matching of the original spectra and the synthesized spectra.
However, the discussion in [HBH93| reminds us that this equation might lead to
large matching error between the original spectra and synthesized spectra. In the
synthesized spectra generated by FM, the amplitude of each frequency partials could
be positive and negative whereas the amplitudes of each partial in original spectra
extracted by FFT are all positive values. Since our ear is impervious to the phase
inversion due to the negative amplitude, one possible way to solve the sign problem
existing in FM spectra is to allow the original spectra amplitude be either positive
or negative [HBH93|. Therefore, one can construct a diagonal square sign matrix,
where each dimension is equal to the number of harmonics and the element in the
diagonal could be 1 or —1 [HBH93|. If the sign matrix is denoted by D, then
Equation (4.15) is rewritten as [HBH93]

CA ~ DB. (4.16)

In order to determine the element in matrix D, we can use genetic algorithm to
search the optimal values from {—1,1} [HBH93].

4.4.3 Definition of Fitness Function and Parameters

According to the proposed algorithm in [HBH93|, the relative difference of the har-
monic amplitudes between the original spectrum and synthesized spectrum is taken
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as the fitness function and is expressed as [HBH93|

Nframes Nhars / 2

Nhars 2
m=1 Zkzl bk,m

Fr = (4.17)

N; frames

where m indicates the selected frame used to compute the fitness value, Ny is
the total number of harmonics in the computation of fitness value, Npames 18 the
number of selected frames involved in the matching, by, and b, is the original
spectra amplitude and synthesized spectra amplitude, respectively, where b?c,m =

N,
D it Chilim.

One notable point in the calculation of fitness function is the selection of represen-
tative frames in the duration of the sound. Because all frames are computed in
the fitness function is radically expensive in time consumption, thus, the proposed
method in [HBH93| is to use the 10 equally spaced short-time spectra in the attack
phase of the sound and other 10 equally space short-time spectra in the left duration
of the sound.

Before starting the matching procedure using genetic algorithm, the parameters that
needed to be optimized are encoded into binary strings as the initial chromosome
in the initial population. Taken the formant FM synthesis model in section 4.2.1 as
an example, for each carrier, a carrier frequency to modulating frequency ratio N,
a modulation index I; for each modulator/carrier pair are needed to be determined.
Finally, the parameter s; in the sign matrix D must be determined. The bits needed
to represent each parameter are illustrated in Figure 4.7. With 4 bits to encode N,
it allows for the maximum value of N; to be 15 [HBH93|. If the modulation index is
in the range of [0.0,10.0], with 7 bits encoding, the scaling factor 0.08 is used in the
decoding process of I; [HBH93|. For each s, only 1 bit is necessary to represent the
the values in {—1, 1} with bit 0 simply represents -1 and bit 1 represents 1 [HBH93].
For the parameters involved in other FM synthesis models, the similar way can be
utilized to encode the parameters.

Ncl I 1 Nc2 |2 e NcN

Nhars

cars Ncars

Figure 4.7: Binary encoding for FM parameters (|HBH93|)
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4.5 Optimization on FM Synthesis of Musical
Instrument Tones

4.5.1 Determination of Carrier Signal and Modulating Signal

In general, the carrier signal and modulating signal in FM synthesis models could
be either sine wave or cosine wave. However, in the multi-carrier FM models, it is
necessary to consider the effect of the choice on the carrier and modulating signals,
which would bring great influence on the synthesis results.

In multi-carrier FM synthesis models, we assume that the summation of spectra
amplitudes of all modulator/carrier pairs approximate the spectra amplitude of the
original sounds, as described in Equation (4.16). According to the linearity of Fourier
transform [Pro07],
if
z1(n) <— X1(k) and xo(n) +— Xo(k),

then

alxl(l’) + (IQ%Q(TL) — ale(k) + CLQXQ(k‘),

where X (k) is the Fourier transform of z(n). In general, the Fourier transform X (k)
is complex valued and consists of two parts, the real parts, Xg(k), and the imaginary
part, Xi(k). Based on this assumption, the multi-carrier FM synthesis models are
established, in which the final synthesis sound is the summation of the output of each
modulator/carrier pair. Since the matrix B consists of the magnitudes in original
spectra, so it is real valued. In order to match the FM spectra with B, we require
that the amplitude of the FM spectra consists of either Xg(k) or Xi(k) as

X(k) = Xg(k) or X(k) = Xi(k).

With the limitation of X (k), on one side, we can avoid the calculation of square to
compute the magnitude spectra, which would make the optimization of FM param-
eters complex, and on the other side, we only need the algebraical addition of the
spectra of each FM signal to approximate the original spectra.

According to the properties of Fourier transform [Pro07],

e if the signal x(n) is real and even, i.e., z(—n) = x(n), then X (k) is real, even
and X (k) = Xg(k);

e if the signal x(n) is real and odd, i.e., z(—n) = —z(n), then X (k) is imaginary,
odd and X (k) = Xi(k).
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Therefore, each FM signal generated by the modulator/carrier pair in the multi-
carrier FM synthesis models should be either a real, even signal or a real odd signal.

As example, we take the modulator/carrier pair in the formant FM synthesis model
to analyse. In general, we can have four different modulator/carrier signal with each
be either sine wave or cosine wave as:

xpm(n) = Asin(2r fonTy + I sin(27 fianTy)), (4.18a)
xpm(n) = Acos(2m fonTy + I sin(27 frunTy)), (4.18Db)
xpm(n) = Asin(2n fonTy + I cos(2m frunTy)), (4.18c¢)
xpm(n) = Acos(2m fonTy + 1 cos(2m funTy)). (4.18d)

According to above analysis, only the first two zpy(n) signals can be used to in
the synthesis model, which are the real odd signal and real even signal, respectively.
Correspondingly, their Fourier transform have only imaginary part and real part, re-
spectively. The last two xpy(t) signals have both the real part and imaginary part in
the Fourier transform, thus, they are not suitable in the multiple modulator /carrier
FM synthesis model.

In order to state the influence of the carrier signal and modulating signal clearly,
Figure 4.8 - 4.11 show the results of Fourier transform of each corresponding xpy(n)
in Equation (4.18a) -(4.18d). In the simulation, the modulating frequency fn,, = 200
Hz, carrier frequency f. = 1600 Hz, modulation index I = 6. In each figure, the
X (k) is converted into the X (f), with f = kfs;/N. The magnitude spectrum, | X (f)|,
the real part, Xg(f), and the imaginary part, X(f), are plotted, respectively.

From Figure 4.8, it can be seen that Xg(f) is almost zero, thus only the imaginary
part Xi(f) contributes to |X(f)|. One point needs to be noticed that, here, the
Xgr(f) is not exactly equal to zero, but when compared with Xi(f), its order of
magnitude is too small and approximates to zero, so we take them to be zero.

In Figure 4.9, we can analyse it similarly that only the real part, Xg(f) contributes
to | X (f)|, and Xi(f) ~ 0. However, in Figure 4.10 and 4.11, it can be found that
both Xgr(f) and X;(f) have significant values, thus, they together contribute to

X(f),ie.,

)l = VXr(f)> + X1(f)% (4.19)

Therefore, in order to model the original spectra using FM synthesis, the equation
CA =~ DB is impossible, since matrix C is complex-valued, and B is real-valued.

In summary, we can conclude that according to Equation (4.18a - 4.18d) and Figure
4.8 - 4.11, the carrier signal allows for being either sine wave or cosine wave, and
the modulator can only be sine wave.
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Figure 4.8: Fourier transform of xpy(¢) in Equation (4.18a). Both the carrier and

modulator are sine waves (simulated by the author of this thesis)
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Figure 4.9: Fourier transform of zpy(t) in Equation (4.18b). The carrier is a cosine
wave and modulator is a sine wave (simulated by the author of this
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Figure 4.10: Fourier transform of xpy(¢) in Equation (4.18¢c). The carrier is a sine
wave and modulator is a cosine wave (simulated by the author of this
thesis)
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Figure 4.11: Fourier transform of zpy(t) in Equation (4.18d). The carrier is a
cosine wave and modulator is also a cosine wave (simulated by the
author of this thesis)
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4.5.2 Generation of Band-limited FM Signals

4.5.2.1 The effect of band-unlimited FM signals

In FM synthesis, the parameter ranges are set at the beginning of the synthesis
procedure, i.e., the user should set a search range for each parameter, and then the
genetic algorithm will search the optimized parameters automatically in the pre-
determined range. In FM matching procedure, as described in section 4.4.1, the
genetic algorithm compares the harmonic amplitudes, between the original spectra
and the synthesized spectra. However, even though when the matching error is
very low, it has high possibility that the synthesized sound signal has wider band-
width than the original sound signal, which results in great difference between the
synthesized sound and the original sound.

As an example, a note E4 played by a Horn, with f; = 331 Hz, is taken to be as an
original sound. We used the first 6 harmonic partials in the original sound, which
contain 98% total power of all harmonic power in this sound and the magnitudes of
higher order harmonic are too small and thus have little contribution to the timbre of
the sound. Figure 4.12 shows the magnitude spectrum of the 50th short-time frame
of note E4, which is in the sustain stage of the sound, and the first 6 harmonic
amplitudes are labelled by black circles.

8 [0) T T T T

7 J
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Figure 4.12: Magnitude spectrum of the 50th short-time frame of note E4 played
by a Horn. The first 6 harmonic amplitudes are labelled by black
circles (simulated by the author of this thesis)

If the effective bandwidth is taken as the 98% of the total power, then the bandwidth
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of the original sound signal is

BW =331 x6=1986 Hz

In the evaluation experiment, the genetic algorithm tried to search the optimal
parameters in a formant FM synthesis model, which consists of 5 modulator /carrier
pairs. We set f,, = fo = 331 Hz, and both the carrier and modulator are sine wave.
In this case, the parameters are:

e the ratio of carrier frequency to modulation frequency, N, 1 = 1,2,3,4, 5,
e modulation index, I;, for each modulator/carrier pair, i = 1,2,3,4,5,
e s for sign matrix D, k=1,2,3,...,6.

We set the parameter range to be the range indicated in [HBH93|, e.g., N,; is in
the range of [0, 15] and [; is in the range of [0.0, 10.0]. After the matching proce-
dure through genetic algorithm, the basic static spectrum of each modulator /carrier
pair is obtained. With the amplitudes envelope calculated using least mean square
method, we obtained the FM synthesized sound. In the evaluation, we computed
the matching error using the fitness value as

Nframes Nhars / 2

Nhars 2

N; frames

The matching error of the 5 modulator/carrier formant FM synthesis model calcu-
lated as above is only 0.3%. However, in the real listen test, we found that it sounds
far away from the original sound. When we examine the magnitude spectrum of the
synthesized sound, it gave us the clear explanation to this problem.

Figure 4.13 shows the spectrum of the 5 modulator/carrier formant FM synthesized
sound signal, which are generated using the GA optimized FM parameters mentioned
above, in which the first 6 harmonics are labelled by the black circles. It shows that
in the synthesized spectrum there are more than 6 significant harmonic components.
Moreover, the 9th-13th harmonics contain more energy than the first 6 harmonics,
thus, the FM synthesized spectra is of great difference from the original spectra, even
though the first 6 harmonics matched very well with that in the original spectra.

In general, in the matching procedure, the genetic algorithm concerns only the
selected harmonic components set by the user, rather than all harmonics. As a
result, the re-synthesized sound has low matching error when concerning the selected
harmonics, but it has a wider bandwidth, i.e., more significant higher order harmonic
components, which do not appear in the original sound. Hence, even though the
optimized parameter can generate very low matching error, the quality of synthesized
sound is out of desire.

114



4.5 Optimization on FM Synthesis of Musical Instrument Tones

120 T T T T

100

60 - .

[ X (/)]

40

20 .

O WAAI\I\’\/\/\I\I\A ) L 1

0 0.5 1 1.5 2 2.5
f/HZ x10*

Figure 4.13: Magnitude spectrum of the formant FM synthesized sound signal.
The first 6 harmonic amplitudes are labelled by black circles (simu-
lated by the author of this thesis)

In order to prevent the unlimited higher order harmonics occurring in the synthesized
sound, we proposed one effective method to generate band-limited FM signal through
the pre-determination of the parameter ranges in the matching procedure, in which
the properties of the first Bessel functions play a great role. Combination with
the analysis of the bandwidth of the original sound signal, we can get the optimal
parameter ranges for GA to search the optimized FM parameters, which can generate
both low matching error and band-limited synthesized signal.

4.5.2.2 Analysis of FM parameter space

In the matching procedure, since GA searches the optimized parameters in a relative
large space to minimize the fitness function, there is no guarantee that the obtained
parameters are good enough or close to the best parameters. Normally, one way
to address this problem is to run GA several times with different random seeds,
then select the best matching as the final optimized parameters [HBH93|. However,
through the analysis of parameter space, we found that, there exists the optimal
subspace for the parameters to achieve lower fitness errors. Predetermination of the
parameter space can increase the possibility that the parameters returned by GA
close to the best ones.

If a FM synthesis model includes N parameters, all the possible values for each
parameter can be combined to form a N-dimensional space. However, this -
dimensional space is difficult to visualize when N > 3 [Hor97]. In order to solve
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this problem, we can measure the error distribution of synthesized sounds for the
same original reference sound with different FM parameters, so that we can get the
knowledge of what is the possibility that the good parameters can be found with GA
and how the matching error distributed in a synthesis model within its parameter
space |[Hor97].

In the evaluation of FM parameter space, the similar procedure as described in
Figure 4.6 are applied with a little modification. In the FM matching procedure,
the task of GA is to search the optimized FM parameters. However, in the evaluation
of FM parameter space, the GA is not necessary, because the randomly generated
parameters are given next by next to the FM synthesis procedure, that means, every
time, we use one random parameter set in the parameter space to synthesize a sound
and compare it with the original sound to compute its matching error [Hor97].

Since we are more interested in the formant FM synthesis, in the following we will
describe the evaluation of formant FM synthesis parameter space with two different
instrument tones. In general, the parameter space is too big to allow enumeration
of all possible parameter combinations and instead we use random sampling in the
parameter space to get the FM parameters [Hor97]. Then following the FM matching
procedure, each randomly sampled parameter is sent into the formant FM model
and generate the corresponding synthesized sound.

The matching error and its distribution are calculated. We use 10000 randomly
generated parameters to synthesize two musical instrument sounds using formant
FM synthesis model with various number of modulator/carrier pairs. The carrier to
modulation frequency ratio, IV, is selected in the range of [0, 15], and modulation
index, I, is selected in the range of [0.0, 10.0] with increment of 0.1. In the calculation
of error distribution, we discretize the error range with increment of 0.01, so there
are total 100 intervals in the error range between 0.0 to 1.0 [Hor97].

In the evaluation, we calculated the error distribution of formant FM matching for
a horn E4 note and a violin G3 note. For the horn note E4, we use 14 harmonics
for matching, and for violin note G3, we use 40 harmonics for matching. The
large number of harmonics used in matching procedure guarantee that the FM
synthesized sounds are band-limited, since GA needs to find the parameters to
match all harmonics occurring in the original sounds. In this case, because normally
the magnitudes of higher order harmonics are very low, in order to match with them,
GA cannot generate the parameters, which will generate high magnitude for high
order harmonics. However, this method is not a good choice in the implementation
of synthesis to generate band-limited signals. The computation of more harmonics
needs more computation time to match all involved harmonics in the GA matching
procedure, even though they contribute little to the sound timbre and secondly,
since the 98% bandwidth contains already the significant energy and information of
the sound signal, using more unimportant harmonics could make GA try to find the
parameters to match them as well, which can miss the best parameters to generate
the significant harmonics.
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Figure 4.15: Error distribution of a violin note G3 in formant FM synthesis model
using un-optimized parameter ranges (simulated by the author of this
thesis)

The error distributions ¥ (egy) of the synthesized sounds for the horn and violin
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notes are plotted in Figure 4.14 and Figure 4.15. For each sound, we calculated
the error distribution of the synthesized sounds using one to five modulator /carrier
pairs in the formant FM synthesis model. In Figure 4.14, the error distribution
curves show that the matching of horn E4 note has both good spectral matching
errors, corresponding to very small error values, and bad spectral matching errors,
corresponding to very high error values. With more modulator/carrier pairs, the
average matching error goes towards lower errors, and it means that the synthesis
method has the possibility to achieve lower matching error. The curves can reach
the much lower error, i.e., <0.1, but they are overwhelmingly outnumbered by bad
possibilities.

In Figure 4.15, it shows that there are both good errors and bad errors for the
matching of violin note G3, and with more modulator/carrier pairs, the average of
errors is towards to lower errors. But when we compare the error distribution of
horn and violin, we can find that the average matching error for violin G3 is much
higher than that for horn E4, because most of the matching errors of violin G3 are
located at the high error range, e.g., 0.5-1, while the matching errors of horn E4
are distributed in the range 0.1-1. Recall our setting of parameter ranges can give
us reasonable explanation. Horn locates in the wind instrument family and violin
locates in the string instrument family, thus they have different bandwidth. Using
the same parameter rang settings for both is not suitable. However, through the
analysis of these example sounds, it indicates that by carefully settings of parameter
ranges, we can guide GA to search the optimized parameters for different sounds
with low matching errors.

4.5.2.3 Pre-determination of FM parameter ranges

Since the parameter ranges are important for generation of band-limited FM signal
and to achieve good spectral matching results, we proposed one method to set the
parameter searching ranges according to the bandwidth of original sound and the
property of the first kind of Bessel functions.

For the bandwidth in original sound, we concern the number of harmonics, which
contains 98% of the total power. In the FM signal, as discussed in Chapter 2, the
carrier frequency to modulation frequency ratio determines the position of the carrier
frequency when the modulation frequency is equal to the fundamental frequency,
ie.,

fC/fm:Nc/Nmu and N, = 1.

If the bandwidth containing 98% total power of the original sound is represented by
the number of harmonics, N34, we have

N. < Ngi.. (4.21)
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In the GA searching procedure, we use the binary encoding for the parameters, and
if Xn¢ bits are used to encode the range of N, it can represent the number in the
range [0, 2N¢ — 1], thus, for a Xxc bit binary string representing N, we need that

B _
oo _ 1 < N

= Ane < logy (NG, + 1), (4.22)

where Xn¢ is the integer number. For simplicity, we allow Xxc to be the largest
integer number less than log, (Ng, + 1), i.e.,

Xve = [logy (NG +1)]. (4.23)

Table 4.1: Table of the first kind of Bessel function values. The rectangular boxes
indicate the number of side bands containing 98% of total power ([PS05])

n 1 2 3 4 5 6 7 8 9 10

0 0.765 0224 -0.260 -0.397 -0.178 0.151 0.300 0.172 -0.090 -0.246
1 0440 0577 0.339 -0.066 -0.328 -0.277 -0.005 0.235 0.245 0.043
2 0.353 0.486 0.36  0.047 -0.243 -0.301 -0.113 0.145 0.255
3 0.020 0.309 0.430 0.365 0.115 -0.168 -0.291 -0.181 0.058
4 0.002 0.034 0281 0.391 0.358 0.158 -0.105 -0.265 -0.220
5 0.007  0.043 0.261 0.362 0.348 0.186 -0.055 -0.234
6 0.001  0.011  0.049 0.246  0.339 0.338 0.204 -0.014
7 0.003 0.015 0.053 0.234 0.321 0.327 0.217
8 0.004 0.018 0.057 [0.128] 0.223 0.305 0.318
9 0.001  0.006 0.021  0.059 0.215  0.292
10 0.001  0.007 0.024 0.061 0.207
11 0.002 0.008 0.026 0.062 [0.123
12 0.003 0.010 0.027 0.063
13 0.001  0.003 0.011  0.029
14 0.001  0.004 0.012

After determination of the range of N., we would like to discuss the determination of
the range for modulation index I. As discussed in Chapter 2, when the modulation
index [ increases, the bandwidth of FM signal will increase, i.e., the number of side
bands in both sides of carrier will increase. Table 4.1 lists the values of the first
kind of Bessel functions with the modulation index I ranges from 0 to 10, with n
indicating the number of side bands. In the table, the rectangular boxes indicate
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the number of side bands that contains 98% of the total power, and more interesting
is that those significant side bands increase as the modulation index increases and
the relationship between them can be expressed by a simple mathematical function
as

Nsig({) =1 + 1, (4.24)

where ng, is the number of side bands that contains 98% total power. With the
ratio N, and modulation index I together we can estimate the bandwidth of the
FM signal. For example, the bandwidth of FM signal represented by the number of
harmonics that contain 98% total power is

Nigw = N + ngg(I). (4.25)

Because N, determines the position of carrier frequency, I determines the number
of side bands spread in the both sides of the carrier frequency, Equation (4.25) can
estimate the bandwidth of the FM signal.

With the help of the bandwidth in the original sound, we can determine the maximal
value of N, = 2*~¢ —1. The next question is how to determine the range of modula-
tion index, I. In order to control the bandwidth in FM signal to be coincidence with
the bandwidth of original sound, we limit that when N, takes its maximal values,
the bandwidth of FM signal is equal to the bandwidth of the original signal, Ngi,
thus, the corresponding value of I is decided by Equation (4.24) and (4.25) as

I=Ng — N, —1,

and the allowed maximal value of I is obtained when N, takes the maximal value,
ie.,
Tnax = NG, — 2°ve, (4.26)

In that case, all possible combinations of N, and I can generate the band-limited
FM signals within the bandwidth Ng4 .

4.5.2.4 Performance evaluation

After analysis of parameter space and the discussion of feasible way to generate band-
limited FM signals, we would like to compare the performance of the optimized FM
parameter ranges and un-optimized parameter ranges in terms of matching error.

In the evaluation experiments, GA searched the optimized FM parameters in the
un-optimized parameter ranges and optimized parameter ranges, respectively, and
then the matching error of the synthesized sounds, epy, is calculated using GA
determined FM parameters. The number of modulator/carrier pairs, Nea.s, used in
the experiments expanded from 1 to 7. The tested sounds are the notes from violin,
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horn and saxophone, which belongs to the string, brass and woodwind instrument
family, respectively, and are taken from the database in [UOI]. One short-time
spectrum in the sustain phase of each original sound is analysed to calculate the
bandwidth. The reason to take the frame in the sustain is because all the harmonics
appeared in the signal are included in the sustain stage of the signal. In this case,
the bandwidth calculated there can contain all harmonics occurring in the sound.
The test sound signals are shown in figure 4.16.
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Figure 4.16: Sound signals from violin, horn and saxophone. (a) Samples of a
violin note G3, with f, = 196 Hz; (b) Samples of a horn note E4,
with fo = 331 Hz and (c¢) Samples of a saxophone note E6, with
fo = 1267 Hz (simulated by the author of this thesis)
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The parameter settings for the different sound signals are listed in Table 4.2.

Table 4.2: Table of parameter settings for different sound signals (derived by the
author of this thesis)

Parameter settings

Sound signals  fo (Hz) Npw N, I N} I*

violin 196 17 0,15)  [0,15  [0,15]  [0,2]
horn 331 6 0,15]  [0,10]  [0,3] [0, 3]
saxophone 1267 4 0,15 [0,10]  [0,3] 0, 1]

a) N, represents the un-optimized range of N
b) I represents the un-optimized range of I
¢) IN* represents the optimized range of N,

[¢]

d) I* represents the optimized range of I

The un-optimized parameter ranges for N, and I of the horn and saxophone sounds
are the same as in [HBH93|, which are [0, 15] and [0, 10], respectively. However, for
violin sound, we chose the range of I to be [0, 15], because the proposed range of N,
for violin sound in [HBH93| is the same with the optimized range in the experiments,
thus we would like to expand the range of I to example how it will influence the
performance of the synthesis. The optimized parameter ranges for N, and I are
calculated according to Equation (4.23) and (4.26), respectively.

The matching error using the un-optimized parameter ranges and optimized pa-
rameter ranges are displayed in Figure 4.17-4.19. When the bandwidth of the FM
synthesized sound, N5, is larger than the original bandwidth, N, the matching
error is referred to as 1 in the evaluations, because in this case, the matching error is
not meaningful any more. Figure 4.17 shows the matching errors for the violin note
G3. It reflects that even though the optimized ranges of N, and I become smaller
than the un-optimized ranges, which would limit the GA to search more possible
FM parameter candidates, it will not influence the performance of the FM synthesis.
In the optimized smaller parameter ranges, GA can still find the optimized FM pa-
rameters without increase in the matching error, when compared with the matching
error using un-optimized parameter ranges. However, in the un-optimized parame-
ter ranges, with 4 and 7 modulator/carrier pairs the generated FM sounds are out
of expectation, which have larger bandwidth than the original sound, indicated by
ECFM — 1.

Figure 4.18 shows the matching results for the horn note E4. It indicts as well
that with the optimized parameter ranges, the FM synthesized sound performs bet-
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Figure 4.17: Matching error of the formant FM synthesis for violin note G3 (sim-
ulated by the author of this thesis)
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Figure 4.18: Matching error of the formant FM synthesis for horn note E4 (simu-
lated by the author of this thesis)
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Figure 4.19: Matching error of the formant FM synthesis for saxophone note E6
(simulated by the author of this thesis)

ter than that with the un-optimized parameter ranges, since it can generate the
sounds much closer to the original one with lower matching error. In addition, using
the optimized parameter ranges can prevent FM synthesis from generating wider
bandwidth signals, whereas with the un-optimized ranges, in the case of 2 and 3
modulator/carrier pairs, FM synthesized sounds have wider bandwidth than the
original sound.

For the matching errors of the saxophone note E6 displayed in Figure 4.19, we
found that using un-optimized parameter ranges all the generated FM sounds have
wider bandwidth than the original sound, e.g., epy = 1, when the modulator /carrier
pair increases from 1 to 7. In this example, the bandwidth of the original sound
includes only 4 harmonic components, therefore, both the un-optimized ranges of
N, and [ are too large for GA to optimize. However, if we can properly choose the
parameter ranges, GA can explore its ability to find the optimized solution with
the desired bandwidth, as indicated by the lower matching errors of the optimized
parameter ranges. Furthermore, these three figures reflect that the matching error
decreases as the modulator/carrier pairs increasing in the formant FM synthesis
model. Actually, this conclusion is suited for all FM synthesis models, since more
modulator /carrier pairs can generate more basic FM spectra to match the original
spectra more accurately.

Turn to the parameter space again, we found that the formant FM synthesis model
has higher possibility to achieve lower matching error with the optimized parameter
ranges as shown in Figure 4.20 and Figure 4.21, which display the error distribution
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Figure 4.20: Matching error distribution of a horn note 4 in formant FM synthesis
using optimized parameter ranges (simulated by the author of this

thesis)
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Figure 4.21: Matching error distribution of a violin note G3 in formant FM syn-

thesis using optimized parameter ranges (simulated by the author of
this thesis)
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of a synthesized horn E4 note and a violin G3 note, respectively. The matching error,
erm, and its distribution, 1 (epy), are calculated using the same way as described
before. We still use 10000 randomly generated parameters to synthesize the the
horn E4 note and violin G3 note using formant FM synthesis model with 1 to 5
modulator/carrier pairs. N. and I are selected in the optimized ranges illustrated
in Table 4.2 for the horn and violin note. Compared with Figure 4.14 and Figure
4.15, in which the matching error distributions of horn note E4 and violin note G3
using un-optimized parameter ranges are displayed, we can find that the average
errors become smaller when using the optimized parameter ranges.

Figure 4.20 shows that with the optimized parameter ranges, the formant FM syn-
thesis of the horn E4 note has higher possibility to achieve the ‘good spectra’ than
that with the un-optimized ranges, indicated by the high value of ¥ (epy) in the
lower error interval, e.g., 0-0.2. In addition, the average matching error shift to
lower values as the modulator/carrier pairs increases and especially for the 5 mod-
ulator/carrier pairs, almost all matching errors are smaller than 0.1.

Figure 4.21 shows that with 2 and more modulator/carrier pairs, the matching er-
ror with optimized parameter ranges of the violin G3 note has higher possibility to
achieve much smaller error than that with un-optimized parameter ranges. Further-
more, for the error distribution with un-optimized ranges as shown Figure 4.15, the
matching errors are concentrated in the range between 0.4-0.9, whereas in Figure
4.21, the error distribution in the interval 0.2-0.4 increased, which means that the
carefully selected parameter ranges can help GA to find the optimized solution to
achieve lower matching error.

4.5.3 Piecewise-Linear Approximation of Amplitude
Envelopes

4.5.3.1 Introduction of piecewise-linear approximation

The instantaneous amplitude of each FM signal from each modulator/carrier pair
in FM synthesis can be calculated using the least mean square method as described
in section 4.4.2.3. However, in this case, for a 2 s musical tone we need at least
200 values to represent the temporal amplitude envelope of each basic FM signal,
when the step size between the adjacent short-time frame is 10 ms. In general, in
order to accurately resynthesize the musical instrument tones, a requirement of 5 or
more modulator /carrier pairs is necessary, which means thousand amplitude values
are needed. Therefore, the piecewise-linear (straight-line segment) approximation of
amplitude envelope used for data-reduction is a favourite solution in sound synthesis
[HBIG6|.

The piecewise-linear approximation (PLA) uses a prescribed number of straight-
lines to achieve the best line-segment approximation of the amplitude envelopes
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[HB96]. In additive synthesis, the piecewise-linear approximation of amplitude and
frequency envelopes is the most used method for data-reduction. According to the
concept of PLA [HB96], in the simplest case, in order to approximate the amplitude
envelope of each FM carrier, we can use piecewise-linear approximation with a set of
breakpoint times that are common to all FM carriers, and sample amplitude values
from the original envelopes of each FM carrier at the breakpoint times. Hence, the
problem of PLA is to find the best set of amplitude {¢;,,a;,} coordinates, where
tin is the n-th breakpoint time of the i-th FM carrier, a;, is the amplitude of the
i-th FM carrier at the n-th breakpoint time [HB96].

To evaluate how well an approximation matches the original signal, a relative error
measure can be defined as [HB96|

1 Niframes ZZ].V:CTS (ai,m - (I{L',m)Q

Nears 2 )
m=1 > i @m

EPLA — (427)

N; tframes

where a;, is the piecewise-linear approximation to the i-th FM carrier amplitude
at the m-th frame, and it can be obtained by the linear interpolation among the
breakpoint coordinates. a;,, is the corresponding amplitude of the FM carrier,
Niframes 18 the number of short-time frames of the musical tone, and N, is the
number of the modulator/carrier pairs used in FM synthesis.

4.5.3.2 Various breakpoint determination methods

There are a number of simple strategies to determine the breakpoints in the piecewise-
linear approximation, such as equal time spaced breakpoints [HB96|. An extension
of equal time spaced breakpoints in the amplitude envelope is the use of half number
of breakpoints equally spaced in the attack phase of the amplitude envelope and half
number of breakpoints equally spaced in the rest duration of the tone [HBH93|.

The simple equal space breakpoints work well when the amplitude envelope changes
slowly and smoothly. However, this is not always the situation for all musical tones,
whose envelopes vary sometimes with strong dynamic due to the playing styles. Con-
sidering this fact, an automated way that can search the breakpoints systematically
according to the temporal characteristic of the amplitude envelops is desirable.

Since genetic algorithm is an optimization method to find a optimized solution for
the given task, it is also suitable for the searching of a set of breakpoints, which
can minimize the relative error in Equation (4.27) [HB96]. The advantages of GA
are already discussed in the section of searching the FM parameters. Similarly, GA
can also provide good solution to the piecewise-linear approximation to amplitude
envelope, especially when a relative fewer number of line-segments are required in
the sound synthesis [HB96].
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In GA, the objective fitness function for the determination of breakpoints is the
same as the relative error in Equation (4.27) and a binary encoding is used to
encode the breakpoints. In the implementation of GA, we set the first frame and
the last frame of the sound are two determined breakpoints, so the task of GA is
to search the breakpoints between them. In this case, if a set of N line-segments
are required, then N — 1 breakpoints will be selected by GA. The same as the
GA searching procedure of optimized FM parameters described in Section 4.4, the
tournament selection, one point crossover are utilized. The evaluation of the simple
equal spaced breakpoints and the GA selection of breakpoints of several musical
instrument tones are given in the following section.

4.5.3.3 Performance evaluation

In order to validate the flexibility and robustness of the GA selected piecewise-linear
segments, we compares the piecewise-linear approximation to amplitude envelope of
applying the simple equal spaced breakpoints, and GA selected breakpoints. The
test tones include a violin note G3, a horn note E4 and a saxophone note EG6, as
shown in Figure 4.16. In the evaluation, for each tone, we use 7 modulator /carrier
pairs in the formant synthesis model to reproduce the violin tone, and 4 modu-
lator/carrier pairs to reproduce the horn tone and saxophone tone. The specified
number of modulator /carrier pairs can obtain the synthesized sounds with matching
error less than 10%. Hence, there are 7 amplitude envelopes for violin tone and 4
amplitude envelopes for horn and saxophone tones involved in the calculation of
epr.a. The number of harmonics used for each tone are decided by the bandwidth
of the original tones, as discussed in Section 4.5.2, therefore, according to Table
4.2, 17 harmonics are used for violin note G3, 6 harmonics for horn note E4 and
4 harmonics for saxophone note E6. For each test tone, we compare the relative
error of envelope using PLA, eppa, with the number of breakpoints, Ny, spans from
2 to 20. We plot the original envelopes of each basic FM signals and the relative
matching error with different number of breakpoints.

Violin

The first test sound is a violin note G3 at 196 Hz with a duration of 2.1 s. Figure
4.22 and Figure 4.23 show the original envelopes of the total 7 FM carriers, which
are used to synthesize the violin tone in the formant FM synthesis model. It can
be seen that the evolution trends are synchronized for all amplitude envelopes, for
example, all envelopes reach to their maximal absolute values at about 0.8 s and
then begin to fade away.

Figure 4.24 compares the relative envelope errors of piecewise-linear approxima-
tion, epra, using several breakpoint selection methods, with the number of break-
points spans from 2 to 20. The evaluated methods include simple equally spaced
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Figure 4.22: Amplitude envelopes of the first 4 FM carriers for formant synthesized
violin note G3 (simulated by the author of this thesis)
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Figure 4.23: Amplitude envelopes of the rest 3 FM carriers for formant synthesized
violin note G3 (simulated by the author of this thesis)
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Figure 4.24: Envelope matching error of piecewise linear approximation of violin
note G3 (simulated by the author of this thesis)

breakpoints, equally spaced breakpoints with half number breakpoints in the attack
phase and GA returned breakpoints. It shows that the error curve of GA method
decreases monotonically and quickly as the number of breakpoints increases. The
error curves with equally spaced breakpoints (half in attack) performs better than
the simple equally spaced breakpoints up to 11 breakpoints, and after that simple
equally spaced breakpoints can generate relatively smaller error than equally space
breakpoints (half in attack). The error curve of simple equally spaced breakpoints
decrease as well monotonically while there is fluctuation on the equally spaced (half
in attack) breakpoints. It is clear that the GA method outperforms the other two
methods. For example, with 6 breakpoints selected by GA, we need 14 breakpoints
determined by simple equally spaced method and even 17 breakpoints in equally
spaced (half in attack) method to achieve the same good approximations, i.e., the
same eppp. The point of convergence, beyond which there is no obvious improve-
ment of approximation, happens after about 18 breakpoints for all methods. That is
to say, 18 breakpoints can cover the temporal evolutions of the amplitude envelopes.

Horn

The test sound played by a horn is a E4 note at 331 Hz with a duration of 2.6 s.
Figure 4.25 displays the amplitude envelopes of the 4 FM carriers in the formant
synthesis model used to reproduce this tone. We can see that there is no great
fluctuations in the amplitude envelopes, thus it is should be easy for all methods to
find the breakpoints to achieve good approximations of the amplitude envelopes.
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Figure 4.25: Amplitude envelopes of 4 FM carriers for formant synthesized horn
note E4 (simulated by the author of this thesis)
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Figure 4.26: Envelope matching error of piecewise linear approximation of horn
note E4 (simulated by the author of this thesis)
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Figure 4.26 compares the relative envelope errors using different breakpoints selec-
tion methods with various specified number of breakpoints. Because of the stability
of the amplitudes, all methods can achieve the relative error smaller than 30% us-
ing only 2 breakpoints. The GA method consistently yields the best performance,
which at the beginning has the relative error smaller than 10%. Since the ampli-
tude envelopes are smooth, the two equally spaced methods performs almost same
good over different number of breakpoints. Note that for 2 to 10 breakpoints, the
GA method performs much better than the other two methods, with lower value
of eppa. With the increasing number of breakpoints, the difference between them
becomes consistently smaller. For all methods, 6 breakpoints can already achieve
good approximations to the amplitude envelopes, with epy,a smaller than 10%, thus,
for the relatively smoothing envelopes, the simple equally spaced method is enough
to yield satisfied approximations.

Saxophone

Finally, we evaluate the performance of all methods with a saxophone tone at 1267
Hz with a duration of 2.8 s. Figure 4.27 shows the total 4 amplitude envelopes for
the 4 FM carriers. Obviously, there are big fluctuations in the amplitude envelopes.
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Figure 4.27: Amplitude envelopes of 4 FM carriers for formant synthesized saxo-
phone note E6 (simulated by the author of this thesis)
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Figure 4.28: Envelope matching error of piecewise linear approximation of saxo-
phone note E6 (simulated by the author of this thesis)

Figure 4.28 displays the relative error under various number of breakpoints for each
method. The GA still generates the best results and begins to converge after 12
breakpoints. The simple equally spaced method performs a bit better than equally
spaced (half in attack) up to 6 breakpoints, and for more breakpoints, the perfor-
mance of the two methods fluctuates. But the GA method outperforms greatly than
those two methods over the range from 2 to 20 breakpoints. As discussed above,
the GA method indeed can find an optimized solution with fewer breakpoints than
the other methods and it can manage to handle various shapes of the amplitude
envelopes to return a reasonable result.

4.6 Summary

This chapter introduces two typical FM synthesis models, including the model struc-
tures and mathematical representations. The key point of the success to synthesis
is the searching of optimized FM parameters, therefore, the genetic algorithm is
utilized as the tool to find the optimal parameters.

We concerns on the optimization of the FM synthesis and take the first appeared
formant FM synthesis as the synthesis model. Based on the analysis results of
parameter space for formant FM synthesis, it shows that the good parameter sub-
space existing for FM synthesis to obtain the optimal results. Thus, the second
part of this chapter proposed the methods to realize optimization on FM synthesis.
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Firstly, how to choose the suitable carrier and modulator is analysed to achieve
the successful sound synthesis. After that, the parameter spaces of formant FM
synthesis model is analysed in the terms of error distribution and the existing prob-
lem with un-optimized parameter ranges are analysed. According to the analysis
results, the optimal method is represented: generating band-limited FM signal by
pre-determined parameter ranges. It is followed by the design of piecewise-linear
approximations of carrier’s envelopes to achieve data reduction. The performance
evaluations show that the GA can always manage to find the specified optimal Ny
breakpoints to achieve the best line-segment approximation of carrier’s amplitude
envelope.
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Chapter 5

FM Joint Formants Synthesis for
Musical Instrument Tones

5.1 Introduction

Spectra information, e.g., the harmonic components and inharmonic components
occurring in a sound, spectral envelope, and the evolution of spectral envelope play
a vital role in the perception of a sound. In classic Chowing’s FM synthesis and
FM synthesis using genetic algorithm, they both attempt to emulate the sound
by modelling its spectra, i.e., the amplitudes of individual harmonics occurring in
the sound. However, one important point we found in the implementation of FM
synthesis, which uses the harmonic amplitudes as the reference of the original sound,
is that, not all harmonics have the same significance in a sound’s spectra.

In general, what we found is not surprise when considering the phenomenon ‘res-
onance’ of a musical instrument and the resulting peaks in the spectra, which is
referred to as ‘formants’ [Rus09]. In acoustic research, a much widely used def-
inition refers to a formant as a range of frequencies in which there is a relative
maximum amplitude in the sound spectrum and shapes as a peak in the spectrum
[Rus09]. The formants appeared in the spectrum of a sound reflect the resonance
response of the instrument, therefore, in order to obtain the good sound quality of
the synthesized sounds, we need to take use of the formants in the synthesis.

Since formants can reflect the characteristics of the frequency response of a singer
or a speaker, they’ve already been used to synthesize the singing voice and speeches.
In the formant synthesis, the main task is to model the spectrum, which has the
desired formant peaks [Mir02]. One of the most successful formant generators is a
named FOF method [Rod84; Mir02], in which the sound signal is modelled as an
excitation-filter pairs.

In the previous chapter, we described the FM synthesis using genetic algorithm
to find the optimized FM parameters to resynthesize the original sounds. However,
most of the time, we found that even though the matching error between the original
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sound and the synthesized sound is very low, there is still great difference between
the two sounds when listening. Taking into consideration of formants, we proposed
to use formant information to construct a new fitness function for the genetic algo-
rithm in the searching of optimized FM parameters. In the new fitness function, we
particularly emphasized the significance of formants to obtain more reasonable and
accurate synthesis results.

The following sections will at first analyse the formants appeared in the sound spec-
tra, and then describe the method used to identify the formant locations, involving
the introduction of spectral envelope and linear prediction analysis. Afterwards the
FM synthesis joint formant information will be introduced, where the formant infor-
mation is combined into the fitness function of the generic algorithm, and for each
formant we emphasize it in the fitness function using a weighting coefficient. Finally,
we evaluate the performance of proposed synthesis method using the matching error
across all harmonic components in a sound and the matching error for each formant
component.

5.2 Formant Analysis

5.2.1 Spectral Envelope

In general, spectra reflects the characteristics of a sound signal in the frequency
domain, and as well provides a convenient way to analyse sound signals to extract
more information, like frequency, phase, formant, which is difficult to identify in
the time domain. Normally, spectra can be shown as vertical lines, which identify
the individual harmonics and in connected lines, which can show the overall shape
of spectrum [BeaO7|. In order to describe the overall shape of spectrum, spectral
envelope provides an easy way.

A spectral envelope is a curve in the frequency-magnitude plane using Fourier trans-
form [Sch98]. On one hand, an envelope curve should describe an envelope of the
spectrum, i.e., wraps tightly around the magnitude spectrum, linking the peaks
[Sch98]. On the other hand, a spectral envelope should have a certain smooth-
ness to give a general idea of the distribution of the signal’s energy over frequency
[Schog].

Figure 5.1-5.3 show the examples of spectral envelopes of different musical instru-
ment sounds, for example, the sounds from violin, horn and piano. From these
spectral envelops, we can see that each spectral envelope has its own way to evolve,
but not identify with each other. Therefore, the characteristics of different musical
instruments result in different spectral envelopes and the spectral envelopes reflect
the features of various musical instruments.
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Figure 5.1: Spectrum and spectral envelope of a violin note G3 (simulated by the
author of this thesis)

40 T T T T T T T T T
magnitude spectrum
! % partial peaks

20 \ak — — —spectral envelope |

| X(f)|/dB
3
=—

-60

_80 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

f/Hz

Figure 5.2: Spectrum and spectral envelope of a horn note E4 (simulated by the
author of this thesis)
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Figure 5.3: Spectrum and spectral envelope of a piano note Eb3 (simulated by the
author of this thesis)

5.2.2 Formants

As formants are the emphasized magnitudes of resonance frequencies of a musical
instrument and appeared as peaks in the spectrum, it can be detected in the spec-
tral envelope, and in turn, formants is a compact representation of spectral envelope
[Sch98]. Since each instrument can have several resonance frequencies, there will be
several formants appeared in the spectrum of the sound signal. The centre frequen-
cies of formants or the formant locations largely determines the musical sounds that
are heard [Sch98|. For example, in Figure 5.4, which shows the spectrum of a pi-
ano note, we can see 4 obvious formants and each of them locates in the different
frequency ranges. In general, a formant can be described normally using the centre
frequency and the bandwidth for the specific amplitude level, for example, 3 dB
bandwidth or 6 dB bandwidth.

Since magnitude of frequency partials under the formant frequency ranges are em-
phasized, that means they are more important than other partials. In this case, for
the sound synthesis, the similarity of the formants largely determines the quality of
re-synthesized sound. Therefore, in order to achieve high similarity of the formants
in sound synthesis, we first need to estimate the formant locations. The following
section will introduce the method used to estimate the formant locations from the
spectral envelope.
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Figure 5.4: Spectrum and spectral envelope of a piano note (simulated by the
author of this thesis)

5.2.3 Linear Predictive Spectral Envelope

Since formants are the peaks in spectrum, it is convenient to estimate the formants
in the spectral envelope. Linear predictive coding (LPC) (|[MG83; Rob|), which is
originally developed for speech signal processing [Sch98|, has been used widely to
estimate spectral envelope [Sch98|.

In general, the term linear prediction (LP)is used in signal analysis, and the LPC is
used only for coding purposes [PK15|. The basis of linear prediction is the source-
filter model of speech production [Kon04|. In LP analysis, the signal is assumed to
be generated by an infinite impulse response (IIR) filter [PK15] and it is usual to be
an all-pole linear IIR filter [PK15]. Based on this assumption, the linear prediction
of the next sample of a signal z(n) in the time domain is a linear combination of
the ¢ preceding values z(n — ¢ — 1) through z(n — 1) [Sch98|. The estimated value
Z(n) is calculated using the g preceding values and the ¢ prediction coefficients a;
as follows [Sch98|

z(n) = Z a;x(n —1). (5.1)

139



Chapter 5 FM Joint Formants Synthesis for Musical Instrument Tones

The prediction error e(n) is [Sch9§|

e(n) = x(n) — (n). (5.2)

Thus, the problem in LP analysis is: given the measurements of the signal, z(n),
determine the parameters, a;,i = 1,2, ..., ¢, which minimize e(n) [Sch98|. Let

(n)

= z(n) — Z a;z(n — i), (5.3)

q
=1

y(n) =

if the Z transform of signal x(n) and y(n) are denoted by
X(z) = Z{z(n)},
Y(2) = Z{y(n)}, (5.4)

and assume that the signal z(n) is sent into an analysis filter, whose transfer function
is A(z), then we have [Kon04|

Y(2) = X(2)A(2). (5.5)

Al) =1=) aiz ™, (5.6)

that is to say, the predictive coefficients are assumed to be the parameters of the
system transfer function A(z) [Sch98; Kon04].

If the residual signal e(n) acts as the excitation signal for a synthesis filter, the
original signal z(n) can be obtained, and the transfer function of the synthesis filter
is [Sch98; PK15]

(5.7)

- Do @iz

From Equation (5.7) we can see that the synthesis filter is an all-pole filter and tries
to amplify the frequencies that have been attenuated by the analysis filter [Sch98|.
The transfer function H(z) has ¢ zeros in the denominator A(z), and these zero
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points are from the complex-conjugate pairs, thus, the magnitude spectrum of H(z)
owns ¢/2 poles or peaks [Sch98; Pro07|.

Since the analysis filter is to flatten the spectrum of the original signal, the synthesis
filter is assumed to describe the spectral envelope of the signal, which can remove
the spectral fine structure of a spectrum [PK15]. According to above analysis, the
synthesis filter is suitable to describe the spectral envelope and the goal to obtain the
transfer function of the synthesis filter is to estimate the linear prediction coefficients.
In Figure 5.5, the LP analysis and synthesis is simply illustrated.

Aﬂ)—» Analysis filter A(z) |------- em....... » Synthesis filter H(z) —X(ﬂ)—>

Figure 5.5: LPC analysis and synthesis block diagram ([Sch98])

As example, Figure 5.8-5.10 illustrate the LP spectral envelope, S(f), computed
from a violin tone, as shown in Figure 5.6 and its corresponding Fourier spectrum is
given in Figure 5.7. It can be seen that, for the lower order LP analysis, the spectral
envelope is roughly coarse, however, it can still reflect the general distribution of the
energy among the frequency partials, which can be see from Figure 5.9 and Figure
5.10, as the LP order increases, more details of the spectral envelope can be shown.
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Figure 5.6: Samples of a violin G3 note (simulated by the author of this thesis)
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Figure 5.7: The spectrum of the violin G3 note, as displayed in Figure 5.6 (simu-
lated by the author of this thesis)

20+ J

25+ J

S(f)/dB

230 - LP4 .

35F 4

_45 I I I I I I
0 1000 2000 3000 4000 5000 6000 7000

f/Hz

Figure 5.8: The linear prediction spectral envelope of a violin spectrum displayed
in Figure 5.7, with LP orders of 4 (simulated by the author of this
thesis)
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Figure 5.9: The linear prediction spectral envelope of a violin spectrum displayed
in Figure 5.7, with LP orders of 8 (simulated by the author of this
thesis)
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Figure 5.10: The linear prediction spectral envelope of a violin spectrum displayed
in Figure 5.7, with LP orders of 16 (simulated by the author of this
thesis)
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For the estimation of LP coefficients, there are generally two methods: the Auto-
correlation method and Covariance method [RS78; Kon04]. The autocorrelation
method is widely used in the estimation of LP coefficients and can be implemented
by the Matlab function ‘Ipc’. In this thesis, we will not describe the both algorithms
for the estimation of the LP coefficient, since they both are described elaborately in
the literatures [RS78; Kon04; SN85; Stro0].

Since the formants appear as peaks in the spectral envelope, we are interested in the
estimation of formants from the spectral envelope, or from the synthesis filter whose
transfer function can be expressed as H(z) using Equation (5.7). By factoring the
denominator of the transfer function, H(z) can be written as [Pro07]

1
H(Z) =
2) 1=
Zq
e 5.8
i (z =) (58)
where v; is a set of complex numbers defining the g poles at z = v;, v, ...,v4. The

pole-zero locations and frequency response has following relationship [Pro07|:

e If the transfer function H(z) has a zero near the unit circle at angular frequency
wy, then the frequency response (magnitude spectrum) has a dip at wy;

e If the transfer function H(z) has a pole near the unit circle at angular frequency
wo, then the frequency response (magnitude spectrum) has a peak at wo;

e The closer the pole to the unit circle, the sharper the peak is.

Therefore, the pole near the unit circle corresponds to a formant in the magnitude
spectrum. The complex number v;, which defines the poles, can provide a solution
to the estimation of formants in the magnitude spectrum by checking their position
in the Z-plane.

Each v; can correspond to a phase 6; as [Pro07]

0, — tan-! (Eﬁﬁ) , (5.9)

where Im{-} represents for the imaginary part of complex number v; and Re{-}
represents for the real part of v;. The magnitude of v; is

lv;| = /Re{v;}2 + Im{v; }2. (5.10)
Thus, if |v;] is close to 1, then we can identify a formant in the magnitude spectrum.

Figure 5.11 shows a LP spectral envelope of a violin sound with note G3, as displayed
in Figure 5.7, with a LP order of 15. All poles resolved from the roots of the
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denominator of the transfer function H(z) in Equation (5.7) are labelled by the
marks ‘*’; and the mark ‘o’ labelled the pole, who is far away from the unit circle in
the Z-plane, hence, there is no obvious peak in its corresponding location but quite
flat.
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Figure 5.11: The linear prediction spectral envelope of a violin spectrum displayed
in Figure 5.7, with LP orders of 15 (simulated by the author of this
thesis)

5.3 FM Synthesis Joint Formant Information

5.3.1 The Effect of Fitness Function

In chapter 4, we described the FM synthesis procedure using genetic algorithm
to find the optimized FM parameters, in order to reproduce the original sounds.
There, the genetic algorithm as a tool to search the optimized solution needs an
objective function, i.e., a fitness function, which should represent the given task as
a mathematical function.

In the original work of FM synthesis using genetic algorithm by Andrew [HBH93]|,
they used the genetic algorithm to search the parameters which can generate the
synthesis sound with a similar spectrum of the original sound. In that case, they
focus on the amplitude of individual harmonic partials, try to minimize the mean
square error of the signal’s energy across harmonic partials. The fitness function is
then expressed as [HBH93]
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Ntrames Nhars / 2

Fﬁt =
Nhars 2
Nframes m=1 Zk:l bk,m

(5.11)

where m indicates the selected frame used to compute the fitness value, Ny is
the number of harmonics in the computation of fitness value, Ngames is the number
of selected frames involved in the matching, by, and b, are the amplitude of
harmonics in the original sound and the synthesized sound, respectively.

With this fitness function, the genetic algorithm always at first tries to match the
harmonic partial, which has the maximal magnitude in the spectrum, and then
matched the harmonic, whose magnitude is secondly maximal and so on. That
means the genetic algorithm searches the FM parameters according to the decreasing
magnitude across all harmonics to minimize Equation (5.11), but ignore the different
significance of individual partials. Thus, all the harmonic partials have the same
weights in the fitness function. However, according to the analysis of formants
appeared in the spectrum and the shape of the spectral envelope, the equal treatment
of all partials is not suitable to model the formants and the spectral envelope, which
indicate the spectral properties of the specific musical instrument sounds.

In order to observe how the fitness function affecting the synthesized spectrum,
i.e.; the individual harmonic partials, we can evaluate the matching error of each
harmonic partial as

Ntrames b _ b/ 2
e = 2=t (im = bim) : (5.12)

ZNframes b2
m=1 k,m

where the variables have the same meanings as those in Equation (5.11).

As an example, we evaluated the matching error of each harmonic, e, of a violin
G3 note, in which the genetic algorithm used Equation (5.11) to search FM pa-
rameters. Figure 5.12 and 5.13 show the matching error of each harmonic with 4
and 5 modulator /carrier pairs in the formant FM synthesis, respectively. These two
curves show that for some harmonic partials, e.g., 1st, 2nd, 3th, 4th, 6th and 10th,
the harmonic matching error e, is much lower than the errors for other harmonics.
This indicates that the genetic algorithm tries to minimize the error of some selected
harmonics, but not minimize the error of each harmonic in the order of harmonic
order. When comparing the energy of each harmonic in the sound signal, it shows
that the energy of those priori harmonics are relative higher than the others, as
shown in Figure 5.14.

Therefore, we can conclude that the harmonics which has higher energy will have
relative lower matching error, since they have the priority in the matching procedure
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: Harmonic matching error, e, of a violin note G3 using the formant
FM synthesis with 4 modulator/carrier pairs, and k indicates the
harmonic number (simulated by the author of this thesis)
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: Harmonic matching error, e, of a violin note G3 using the formant
FM synthesis with 5 modulator/carrier pairs, and k indicates the
harmonic number (simulated by the author of this thesis)
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Figure 5.14: Harmonic energy, E}, of a violin note G3, and k indicates the har-
monic number (simulated by the author of this thesis)

using genetic algorithm. However, the fitness function in Equation (5.11) ignores
the importance of formants in the spectrum.

5.4 FM Synthesis Joint Formant Information

5.4.1 Weighted Harmonic Partials

Based on the analysis of the behaviour of the fitness function, we proposed a new
fitness function to represent the comparison between the original spectrum and syn-
thesized spectrum more accurately, which takes the formants into consideration.

In the new designed fitness function we would like to emphasize the formant har-
monic partials. For the formant harmonic partials, it means that the harmonic
partials under the formant bandwidth, where we take the -6 dB bandwidth. Figure
5.15 illustrates the related parameters of a formant. In the estimation of formant,
we utilize the LP analysis to locate the centre frequency of each formant, frc. For
example, we can detect 5 formants of the violin G3 note, as displayed in Figure 5.11.
If in the matching process, we only concern the harmonics having 98% energy of the
whole signal, we will have the first 3 formants in the significant bandwidth, which
contains 14 harmonics of the violin note.
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Figure 5.15: Illustration of the formant parameter in FOF (conceptual represen-
tation of resource in [Mir02])

Since formants can determine the evolutionary shape of the spectral envelope, which
is of great importance of the sound timbre, we make all formant harmonic partials
same significant in the synthesis process and guide the genetic algorithm to minimize
the matching error of formant harmonic partials priorly. However, the magnitudes of
the harmonics are not the same in the original sound, therefore, the fitness function
in Equation (5.11) cannot satisfy our requirement. One scheme is to weight the
formant harmonic partials to have the equal magnitude in the fitness function.

The harmonics under formant bandwidth is represented by { f;}, and their corre-
sponding amplitudes in the original spectrum and synthesized spectrum are repre-
sented by {brr} and {bf;}, respectively. The weighting coefficients of i-th formant
harmonic is calculated as

max{b%,}
b2,
Fi

(5.13)

ap; =

where max{-} operator calculate the maximal br; among the formant harmonics.
The coefficient ap; can guarantee that all formant harmonics having the equal power.
Then for each harmonic we can obtain a weighting coefficient as

(5.14)

¢ {ozpi, when k-th harmonic is i-th formant harmonic,
k pr—

1, when k-th harmonic is not formant harmonic.

In this case, the genetic algorithm treats the formant harmonics equally important.
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Then the fitness function can be rewritten as

1 Ntrames iviairs £k<bk,m _ b;c7m)2

Fl, =
fit — Nha,rs 2
Nframos m=1 E k=1 bk,m

(5.15)

This fitness function can guide the genetic algorithm firstly to match the formant as
close as possible in the spectrum matching procedure, and then the genetic algorithm
tries to match the other harmonic partials to minimize the matching error. Thus,
the harmonic error of the formant harmonic partials would be much lower than
others.

5.4.2 Performance Evaluation

To evaluate the performance of our proposed fitness function, Fj,, we compare
mainly three measurements:

® c..e: the average matching error of FM synthesized sound as

Nallframes Nhars MW 2
- 1 k=1 (bkvm bk,m) (5 16)
Cave = N Nhars 2 ’ '
allframes —1 k=1 bk m

where Naiframes 18 the number of frames of the sound signal after short-time
segmentation.

e 17: mean of harmonic matching error, e, over formant harmonic partials. It
measures the average matching error over the formant harmonics and can
indicate at which extent the synthesized formants matched with the original
formants.

e o: standard deviation of harmonic error, e, over formant harmonic partials. It
measures the amount of variation or dispersion of matching error over formant
harmonics. A low standard deviation indicates that the matching error of each
formant harmonic tend to be close to the mean value, while a high standard
deviation indicates that the matching error of each formant harmonic is spread
out over a wider range of values.

Only the average energy error e, cannot represent the synthesized sound quality,
because the formant information determines the sound genres, e.g., the sound is
generated by violins, saxophones or flutes. Therefore, when the formants matching
error, 1, is low, then it can generate the similar formants as the original sound.

In the evaluation of the performance of fitness functions, Fg; and Fj,, we tested a
violin G3 note and a saxophone A3 note. For the violin G3 note, its fundamental
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frequency fo = 196 Hz. Its 98% power bandwidth has 14 harmonics, and the
corresponding parameter ranges are set according to the principles given in section
4.5.2.3. Within these 14 harmonics, we can detect 3 formants and the contained -6
dB formant harmonic partials is stored using the harmonic number as a vector, i.e.,
2,3,4,5,6,7,11,12]. In the experiments, we synthesized this violin G3 note using
the fitness function Fy, and Fj, in Equation (5.11) and (5.15), respectively.

0.9

0.7 :

0.6 [ :
5051 1
)

04F .

03r N 5

02 = 1

0.1 el 1

NC'rlI‘S

Figure 5.16: e, of the synthesized violin note G3 using two different fitness func-
tions. (simulated by the author of this thesis)

Figure 5.16 shows the e, of the synthesized violin note G3, using fitness function Fg;
and F{,. The number of modulator/carrier pairs, Neas, in the formant FM synthesis
varies from 1 to 10. It shows that when the number of modulator/carrier pairs is
fewer than 4, the synthesized sound has much lower average energy error with fitness
function Fy; than that with Ff,. When using 4 and more modulator/carrier pairs,
the difference of average matching error between the two fitness functions becomes
smaller and even with more than 8 modulator/carrier pairs, their errors are almost
the same and tend to converge to a much lower value, e.g., 2.5%. That means with
enough modulator/carrier pairs, the two fitness functions can generate the same
relative lower matching error.

Figure 5.17 and 5.18 show the mean of harmonic matching error, n, and the standard
deviation of the harmonic matching error, o, over formant harmonics to examine the
matching situation of the formant harmonics. In Figure 5.17, for the fitness function
Fi,, it is clearly shown that the mean of formant matching error, 7, decreases with
the increasing number of modulator/carrier pairs in the synthesis process, which
means that the formants can be better synthesized with more modulator/carrier
pairs. However, for the synthesized sound using fitness function Fgs, the value of n
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Figure 5.17: The mean of harmonic error, n, over formant harmonic partials of
the synthesized violin note G3, using two different fitness functions
(simulated by the author of this thesis)
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Figure 5.18: The standard deviation of harmonic error, o, over formant harmonic
partials of the synthesized violin note G3, using two different fitness
functions (simulated by the author of this thesis)

is much larger than that of using fitness function £, under the same Nc,s. When the
number of modulator/carrier pairs is fewer than 7, the difference of 1 between the
two synthesized sound reached more than 20%. In Figure 5.16, we can see that with
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7 modulator /carrier pairs, the average matching error of the two synthesized sounds
with different fitness functions are less than 10%, which means in average there is less
than 10% matching error of each frame. However, in Figure 5.17, it shows that the
corresponding average matching error of formant harmonics can reach about 30%
with 7 modulator/carrier pairs for the synthesized sound using Fj, which indicates
that the formants are not good matched with the original formants. Compared with
the synthesized sound using fitness function Fj,, it has relative lower matching error
for formant harmonics, e.g., just 10% with 7 modulator /carrier pairs.

In Figure 5.18, we compared the standard deviation of matching error for formant
harmonics. For the sound synthesized with FY,, it shows that with the increasing
number of modulator/carrier pairs, the value of o decreases, thus, the formants
can be gradually equally good matched with formants in original sound when the
FM carriers increase. However, this phenomenon cannot be seen in the synthesized
sound using Fji, where there is no monotonically decreasing trend of o.

Figure 5.19-5.21 give the experiment results of a saxophone note A3, with funda-
mental frequency fy = 220 Hz. The number of modulator/carrier pairs, N, varies
from 1 to 13. Its 98% power bandwidth has 17 harmonics, and the correspond-
ing parameter ranges are set according to the principles given in section 4.5.2.3.
Within these 17 harmonics, we can detect 3 formants and the contained -6 dB

formant harmonic partials is stored using the harmonic number as a vector, i.e.,
[1,2,4,8,9,13,14,15,16, 17].

N cars

Figure 5.19: e,,. of the synthesized saxophone note A3 using two different fitness
functions (simulated by the author of this thesis)
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Figure 5.20: The mean of harmonic error, n, over formant harmonic partials of the
synthesized saxophone note A3, using two different fitness functions
(simulated by the author of this thesis)
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Figure 5.21: The standard deviation of harmonic error, e, over formant harmonic
partials of the synthesized saxophone note A3, using two different
fitness functions (simulated by the author of this thesis)

In Figure 5.19 we can see that, similar with the violin note G3, the synthesized sound
using fitness function Fj; generated lower average matching error than the synthe-
sized sound using F¥,. With more than 4 modulator/carrier pairs, the difference of

154



5.4 FM Synthesis Joint Formant Information

eave between the two sounds becomes smaller.

In Figure 5.20, the average matching error over formant harmonics, 7, of the synthe-
sized sound generated with fitness function Fj, is much lower than that of the sound
generated with Fg;. Comparably, the value of n of F}, decreases faster than that of
Fi¢, while at some points, there is almost no changes of n generated by Fg;. The
difference of 7 between the two fitness functions becomes smaller as N, increasing.
However, the n generated by Fy; is about 10% larger than that generated by F,
even when there are more than 10 modulator/carrier pairs in the FM synthesis.

In Figure 5.21, the standard deviation, o, is compared between the synthesized
sounds with two different fitness functions. From this figure, we can see that, the o
of the synthesized sounds generated by the fitness function F, oscillates to decrease
over the increasing number of N, which means that as more modulator/carrier
pairs involved in the synthesis process, the FM synthesis model can better match
the formants and balance the error between various formant harmonics. However,
there is no predictive changing trend of o of the synthesized sounds produced by Fg;.
In addition, at some points with large N...s, the corresponding o of the synthesized
sound with F§; is much higher, which means that not every formants can be equally
well matched.

According to the evaluations of the tested sounds, it is shown that the fitness func-
tion Fj, outperforms the fitness function Fg; to generated more reliable sounds,
whose formants can be matched very well with the original formants when enough
modulator/carrier pairs are used. The system which we used to analyse and synthe-
size the musical sounds is illustrated in Figure 5.22. This FM analysis and synthesis
system is implemented by MATLAB and all the functions are integrated in this
MATLAB GUL

5.4.3 Summary

In this chapter, we introduced formants appeared in the spectrum of sound signal,
afterwards described the mostly used method to detect the formant centre frequency
and its bandwidth, involving the estimation of spectral envelope utilizing linear pre-
dictive analysis. Then the effect of the classic fitness function used in the genetic
algorithm to find the optimal FM parameters is analysed and evaluated, and a new
fitness function joint formant information is proposed, in which the formant harmon-
ics are weighted according to their strength, to make the formant harmonics to be
same significant in the fitness function. By weighting the formant harmonics, we can
guarantee that the formants can be almost equally synthesized to approximate the
timbre as close as the original sound. Finally, we evaluated the performance of the
classic fitness function and the proposed new fitness function in terms of the aver-
age matching error, the average formant harmonic matching error and its standard
deviation. The experiment results showed that our proposed fitness function can
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Figure 5.22: MATLAB GUI for FM analysis and synthesis (designed by the author of this thesis)
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guide the genetic algorithm to find the optimized FM parameters, which can better
match the formant harmonics when compared with the classic fitness function.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

Frequency modulation as an efficient tool to synthesize musical sounds is of great
importance in the research of sound synthesis. FM can model the complex sound
spectra with fewer parameters when compared with additive synthesis, which is a
good way to achieve data reduction in sound synthesis. The study of this thesis fo-
cuses on the implementation and optimization of FM synthesis to model the spectra
of musical tones more accurate and reliable, in which a closer timbre to the original
sound can be achieved. Since the musical sounds what we hear have several typ-
ical characteristics, which make the sounds different from the noise or pure tones,
the physical features and subjective features of musical sounds were introduced in
chapterl. Furthermore, the production scheme of musical tones from musical in-
struments can provide useful information in the synthesis of musical tones, thus,
the mechanism of production of musical instrument tones was introduced in this
thesis.

Regarding the theory of FM synthesis, the spectrum of FM signal is the success
to the modelling of the sound spectrum. In the construction of FM spectrum,
it involves the oscillation of the first kind of Bessel functions, reflection of side
frequency components in the FM spectrum, and the ratio of carrier frequency to
modulation frequency. Therefore, the details of them were investigated in chapter
2. The goal of the musical synthesis is to find an automatic and systematic way to
synthesize the desired sounds. However, the method in Chowning’s work to find the
suitable parameters for sound synthesis needs a detail knowledge of the sounds, and
through the experiments to find the FM parameters, which might limit the wide
application of FM synthesis. Moreover, the discontinuity existing in Chowning’s
work is out of desire in the synthesized spectrum, which was analysed in chapter 2,
with the analysis of spectrogram of different instrument tones.

Since the pitch or fundamental frequency, fy, is the first impression of the perceived
sounds, the accurate estimation of the fundamental frequency is of great importance
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in the success of sound synthesis. After the study of several algorithms of fundamen-
tal frequency estimation, a harmonic pattern matching based algorithm to estimate
fo was proposed in chapter 3. Considering the noise and vibration appeared in the
sound spectrum, the idea of utilizing spectrum subset was presented here to find the
fo candidates. In the process to search the f, candidates, the autocorrelation of the
spectrum subset was calculated both in the time domain signal and spectrum, which
can guarantee that the candidates are more reliable. Taking into consideration of
the non-ideal positions of harmonics, the spectrum was segmented into sub bands,
in which the autocorrelation was implemented again to calculate the sub-pitch. Af-
terwards, the matching score of the fy candidates and the sub-pitches are computed
to select the best one as estimated fy;. According to the performance evaluation
of several fy estimators, the proposed algorithm can achieve less gross error than
others and can achieve the desired accuracy improvement in fy estimation and is
flexible to all sounds without upper estimation limit.

Following the estimation of fundamental frequency, the details of FM synthesis of
musical tones using genetic algorithm were described in chapter 4. The multi-carrier
FM synthesis model of formant FM synthesis and double-modulator FM synthesis
were introduced, including the mathematical expressions and their structures. Com-
pared with the formant FM synthesis, double-modulator FM synthesis uses two
modulators, which can generate more complex spectrum. Regarding the matching
process, compared with the method of FM synthesis in Chowning’s work, the uti-
lization of GA to search the optimized FM parameter is a systematic and automatic
way to obtain the FM parameters. Make use of the advantages of genetic algo-
rithm, the matching procedure of the original spectrum was described in chapter
4. Since the carrier and modulator are the two main components in FM synthe-
sis, the analysis of the choice of carrier and modulator was investigated to make
the FM synthesis feasible. During the synthesis procedure, with the un-optimized
parameter ranges, it is easy to generate more undesirable harmonics in the synthe-
sized spectrum. In order to prevent the band-unlimited FM signal, the generation
of band-limited FM signal was designed through the predetermination of the FM
parameter ranges. The predetermined parameter ranges were set according to the
bandwidth of the original sounds and they can provide an optimal parameter space
for GA to search the optimized parameters, thus, an improvement of synthesis was
achieved. Furthermore, the data reduction of the carrier amplitude envelope was
designed using the piecewise-linear approximation, in which the linear segments are
used to represent the carriers’ amplitude envelopes. The breakpoints of the linear
segments were obtained by GA, which outperformed the equally spaced breakpoints
method in the performance evaluation.

In addition to the optimization on the parameter space, the study on the timbre
told us the formants play a vital role in the sound perception and the formants in-
formation determines the spectra evolution. According to the spectral envelope and
the appeared formants, all the harmonics occurred in the spectrum are not same
important in the sound’s timbre. The classic fitness function in the GA to match
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the synthesized spectrum with the original spectrum treats all harmonics the same,
which ignores the formants. Therefore, the proposed new fitness function treats the
formant harmonics more important than other harmonics, using the different weight-
ing coefficients to harmonics. In this case the formant harmonics have the priority
in the matching procedure and can be matched very well using the GA searched FM
parameters. Therefore, the synthesized spectral envelope owns the similar evolution
trend as the spectral envelope of the original sound. The performance evaluation
showed that the proposed fitness function with weighted harmonics can guide the
GA to search the FM parameters better and efficient to synthesize the sound more
closer to the original sound, indicated by the lower average matching error of formant
harmonics.

6.2 Outlook

The main work of this thesis are the estimation of the fundamental frequency and
the optimization of the FM synthesis of musical tones using genetic algorithm. Both
of them have been investigated in the presented research work and the improvements
have been demonstrated in the experiments. In the fundamental frequency estima-
tion, however, we focus mainly on designing an algorithm for a single f; estimation,
such as the fy estimation of pure tones. Music signals, on the other hand, usually
contain simultaneous sounds, e.g., polyphonic sounds, including several different
fundamental frequencies at the same time, which is a more challenging and compli-
cated task. Thus, multi-fy estimation can be as a further research direction in the
fundamental frequency estimation.

In the implementation of FM synthesis, we focus on the formant FM synthesis to
analyse its synthesis model, including the mathematical equation and structure. In
addition, there are several other extension of the formant FM synthesis, which are
more complicated than it, but can generate more complex spectra. Since various
musical instruments have different spectral shapes, the study of other FM synthesis
models to find the suitable and efficient synthesis models for different instrument
families can be as a next step for sound synthesis. Through the large experiments,
the best model for each instrument family can be found. On the optimization side,
we focus on the spectra modelling using the FM generated static spectra and the
dynamic carrier amplitude envelopes. However, this method has the difficulty in the
modelling of spectrum in the attack phase. The attack phase of the musical tones
is much complex and the spectrum at attack phase is like the white noise spectrum,
including almost all frequencies. Thus, how to accurately match the spectrum in
the attack phase is needed to be considered in the further research work.

The great advantage of FM synthesis is that it can synthesize the sounds efficiently
with only fewer parameters. However, it is difficult to control, since a little change of
the parameters can generate a great different sound. Because of the oscillation of the
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Bessel functions, we cannot predict the behaviour of the changes of parameters in FM
synthesis. The modification of the Bessel functions to predict the result of changing
parameters can extend the applications of FM synthesis. With the predictive FM
synthesis, the synthesis of new sounds with desirable spectral envelope or spectra
features can be achieved with carefully designed FM parameters.
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