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Übersicht

Die Received Signal Strength Indicator (RSSI) -basierte Innenraumlokaliserung

und Verfolgung (L&T, englisch für Location and Tracking) ist eine vielver-

sprechende und anspruchsvolle Technologie, die es mobilen Nutzerin bzw.

Knoten ermöglicht, ihre Position zu ermitteln. Die vorliegende Arbeit konzen-

triert sich auf die Herausforderungen sowie die Verbesserung der Positionier-

genauigkeit RSSI-basierter L&T. Der Autor schlägt zur Lösung des Problems 4

Ansätze vor.

Im ersten Ansatz entwickelt der Autor eine L&T-Lösung durch die Verwendung

eines linearen Kalman Filters (KF). Die erforderlichen Gleichungen zur Beschrei-

bung des Kalman Filters wurden problemorientiert hergeleitet und präsentiert.

Im zweiten Ansatz schlägt der Autor eine L&T Lösung auf Basis des iterativen,

erweiterten Kalman Filters (IEKF) vor, um die Genauigkeit des Extended Kalman

Filter (EKF) zu verbessern. Im dritten Ansatz überwindet der Autor die beson-

deren Implementierungsherausforderungen des EKF durch eine L&T Lösung

basierend auf der Grundlage der Scaled Unscented Transformation (SUT). Der

Autor nennt das resultierende Filter Scaled Unscented Kalman Filter (SUKF). Im

vierten Ansatz, überwindet der Autor die Schwierigkeiten bei der Umsetzung

des EKF durch eine L&T Lösung, die auf der Umsetzung der Spherical Simplex

Unscented Transformation (SSUT) auf das KF basiert. Der Autor nennt das resul-

tierende Filter Spherical Simplex Unscented Kalman-Filter (SSUKF).

Die vorgeschlagenen Lösungen mit den verbessern die Möglichkeit, RSSI L&T

in drahtlosen Ortungssystemen zu etabieren. Die Beiträge führten zu einer
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signifikanten Verbesserung der Positionierungsgenauigkeit, Zuverlässigkeit und

Einfachheit der Implementierung.
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Abstract

Received Signal Strength Indicator (RSSI)-based indoor Location and Track-

ing (L&T) is a promising and challenging technology that enables mobile

users/nodes to obtain their location information. This dissertation focuses on

overcoming the challenges as well as improving the positioning accuracy for the

RSSI-based L&T. In particular, the author considers 4 L&T solutions.

In the first, the author develops a L&T solution by designing the Kalman Filter

(KF) to work linearly within the positioning framework. To elaborate on this im-

plementation, the equations of the KF are presented in a consistent manner with

the implementation. In the second, the author designs a L&T solution based on

the Iterated Extended Kalman Filter (IEKF) to improve the accuracy compared

with the popular Extended Kalman Filter (EKF). In the third, the author over-

comes the particular implementation challenges of the EKF by designing a L&T

solution based on the implementation of the Scaled Unscented Transformation

(SUT) to the KF. The author calls the resulting filter Scaled Unscented Kalman

Filter (SUKF). In the forth, the author overcomes the implementation difficul-

ties of the EKF by designing a L&T solution based on the implementation of the

Spherical Simplex Unscented Transformation (SSUT) to the KF. The author calls

the resulting filter the Spherical Simplex Unscented Kalman Filter (SSUKF).

The proposed solutions with their corresponding achievements enhance the role

of RSSI-based L&T in wireless positioning systems. The contributions led to sig-

nificant improvement in the positioning accuracy, reliability and the ease of im-

plementation.
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1 Introduction to the Positioning

and Tracking Problem

1.1 Location Information for Wireless Systems

Wireless communications is rapidly growing in all fields around the world and

this trend is likely to continue in the future also [13b]. The communication in-

frastructure that provides the wireless services has been developed enormously

towards higher capacity, higher range, higher flexibility and more advanced ser-

vices [FF11]. The mobility that characterizes wireless communication users opens

demands for location information in different fields such as rescue, emergency,

automotive application, monitoring, and navigation [FF11]. The continuous de-

mand for location information massively creates opportunities for business and

encourage for new ideas and innovations for developing and providing new ser-

vices and applications [FF11]. Moreover, the raising of the smart devices (smart-

phones, tablets, computers, etc.) and mobile context-aware programs put chal-

lenges and demands for location information [KJ15b].

The demand for location information has boosted research and development for

both industry and academia towards positioning solutions for wireless commu-

nication technologies that can be integrated with the deployed, under deploy-

ment and next generation wireless communication infrastructure [FF11; KJ15a].

The result is a wide variety of integrated and built-in solutions that can combine
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1 Introduction to the Positioning and Tracking Problem

and interoperate with communication and location information [FF11]. Innova-

tions involve proposing Location and Tracking (L&T) algorithms which can be im-

plemented in dedicated or integrated communication protocols, error mitigation

and cooperative positioning [FF11].

Historically, the wireless positioning is dated back to the year 1999, when the

Federal Communication Commission (FCC) passed a mandate requiring cellular

providers to generate accurate location estimates in order to improve the quality

and reliability services and the implementation of Enhanced 911 (E911) [Com+99;

Com+01]. A similar mandate is issued by the European Union (EU), to help emer-

gency services locating people who call them using the pan-European emergency

number 112 that can be dialled in all EU member states [03].

Today, the number of L&T applications is covering a wide range of different

fields. Successful systems in various fields exist and are dealing with L&T such as

the Curiosity robotic rover on Mars [Wal12; Gre15], and autonomous cars which

are self driving vehicles that have the ability to perceive the surrounding environ-

ment and navigate themselves without human intervention [Jo+14]. Moreover,

companies like Facebook, Twitter and Google integrate location information ser-

vices for understanding user needs [Des12]. Furthermore, market analysts fore-

cast that the revenues from the Location Based Services (LBSs) market worldwide

will grow from 10.3 billion Euro in 2014 to about 34.8 billion Euro in 2020 [14].

In future, it is expected that location information will be one of the great demand-

ing innovations with the coming internet-of-things, machine-to-machine and sen-

sor network technologies to optimize the networking and enable smart, person-

alized and pervasive services [Des12; VF13]. By the year 2024, over 3.4 billion de-

vices will be interconnected using machine-to-machine connections [Mac14]. The

integration of Near Field Communication (NFC), which has L&T applications, in

the world of mobile communications is foreseen within the year 2020 [Des12].

From all of the above, it is clear that location information becomes crucial in dif-

ferent applications for both academia and industry.
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1.2 Motivation

1.2 Motivation

In order to deliver adequate L&T services, real-time and accurate user’s locations

must be obtained. Hence, a growing interest in developing effective L&T solu-

tions and systems is exist.

Global Navigation Satellite System (GNSS) like Global Positioning System (GPS),

GLObal Navigation Satellite System (GLONASS), or soon Galileo brought new

applications to mankind in variety of location based services such as car navi-

gation, high precision street construction, and finding services and shops in un-

known areas [HLW07; HH13]. For instance, explicit positioning sensors based

on the GPS and cellular network based systems can work worldwide for L&T

and achieve relatively good accuracy [Sun+05]. Recent trails have been reported

that the GPS achieves average errors between 10 m and 67 m depending on fac-

tors such as topology [MKH06]. Unfortunately, these techniques cannot be used

directly indoors, as the signals are usually too weak to be used for localiza-

tion purposes [Ots+05]. Moreover, GPS requires a direct view of several satel-

lites to provide the location information, which is impossible for indoor environ-

ment [PW09].

A number of commercial systems and prototypes have been developed for in-

door localization to act as the counterpart of GNSS. Those systems use Infrared

(IR) [M+09; Tao+15], Radio Frequency Identification (RFID) [BP00; Yan+13],

Ultra-Wideband (UWB) [Kuh+10], ultrasound [Bar+08] and optical position-

ing [TM10; TM11]. Besides the expensive deployment costs of those systems,

each system has further limitations.

Positioning techniques that rely on the existing signals and hardware as well as

the deployed communication networks have advantages over developing new

positioning systems. One major advantage is the lower investment cost where no

new communication networks need to be implemented on a large scale. More-

over, mobile users will not have to replace their devices due to the compatibility

issue with the new deployed hardware.
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1 Introduction to the Positioning and Tracking Problem

To develop an indoor localization system with relatively low implementation

costs and software complexity, WLAN has been widely investigated to act as

the replacement of GPS within indoor environments. The main operation of the

WLAN positioning systems is to detect and analyse the signals of the widely de-

ployed signals of the WLAN access points at the integrated WLAN cards in most

recent mobile phones [Sor+15]. Although the main application of WLAN is to

provide internet access, using those networks for L&T is promising due to the

wide deployment [Hon+09; Sor+15].

In WLAN, wireless routers which are known also as access points are used to

provide internet access to WLAN enabled devices. In addition to the internet ac-

cess, the access points are configured to broadcast beacon packets which contain

different types of information [AH15]. Those packets are received by wireless

enabled devices and the information is extracted using Network Interface Cards

(NICs) [AH15]. A WLAN enabled device can measure the Received Signal Strength

Indicator (RSSI), called also as Received Signal Strength (RSS), from the access points

surrounding it as a part of the NICs operation [Kha+14; Sor+15]. These systems

do not require investments in their deployment or providing them with addi-

tional hardware. This makes it very appealing for commercialization over other

measurement based localization approaches such as the Time of Arrival (TOA) or

Angle of Arrival (AOA) approaches [Sor+15]. However, the RSSI-based L&T sys-

tems have relatively low accuracy.

The low investment costs and the relative low localization accuracy of the

WLAN-based L&T systems motivate this work for proposing algorithms and

techniques to improve the localization accuracy.

1.3 Criticism on the State of the Art

Two popular approaches to deal with the RSSI-based L&T systems within indoor

environment are location fingerprinting and Extended Kalman Filter (EKF). Finger-
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1.3 Criticism on the State of the Art

printing uses the obtained channel measurements to obtain the location based on

pre-recorded radio map that associates the locations with the measurements. Lo-

cation fingerprinting will be presented in section 2.4.1. The EKF approach uses

the measurements obtained from path loss models to obtain the position depend-

ing on an approximation solution for the non-linearity which exists in the rela-

tionship between the measurements and the position. The EKF will be given in

more details in section 4.4. In this section, the criticism of both location finger-

printing and EKF are introduced.

1.3.1 Criticism on Fingerprinting

Fingerprinting is a group of techniques that performs localization of a mobile

node based on the received information from the surroundings of the mobile

node [FF11]. Fingerprinting associates Location information in an environment

with values of received signal parameters. Therefore, it is important to have good

knowledge about the surroundings in order to obtain location information dur-

ing the localization process [FF11].

Although fingerprinting is the most accurate positioning technique, it has seri-

ous shortcomings. That is, the site survey to collect the signal measurements

is extremely time consuming, the required recalibration upon any changes that

may influence the propagation conditions [FF11], and the exhaustive matching

between the obtained measurements and the pre-stored information to find a best

match.

1.3.2 Criticism on Extended Kalman Filter

The Extended Kalman Filter (EKF) has been introduced to variety of non-linear

application including navigation for estimating the position, attitude and velocity

of mobile targets. Examples of those applications are the navigation of aircrafts
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(manned and unmanned) [MLV10; Leu+14], mobile robots [LTC12], satellite ob-

servation system [Li+09] and spacecraft navigation [Cha+15]. Historically, one

of the first successful real-world application was in the navigation of the Apollo

mission to the moon and back [Hoa63].

The EKF approximates the non-linearity using the first order term of the Taylor

series expansion. These approximations are valid only if the higher order terms

of the derivatives of the Taylor series expansion are very small that can be ne-

glected. If this condition is violated, i.e., the higher order terms are not small

to be neglected, the filter might become unstable [JU97; BH12]. Furthermore, if

the current state estimate is poor, further errors in the following estimates are ex-

pected. This in turn causes further errors in the updated estimate, and so on and

so forth, leading to filter divergence [BH12]. As a result, EKF is more likely to

diverge in some situations [BH12].

In addition, the approximation involves calculating the derivation of the Jacobian

matrices that is not a trivial task and sometimes the derivation is very difficult to

be implemented [JUD95]. Moreover, the EKF ignores the “probabilistic uncer-

tainty” of the system state , the state covariance, the system noise variable into

consideration [Van04]. In other words, the linearization of the EKF does not use

or benefit from the probability distribution information of the state and the co-

variance of the system.

1.4 Objectives and Contributions of the Dissertation

This dissertation is motivated by the demand of improving different aspects of

positioning and tracking of a mobile node within indoor environments. The main

objective of this dissertation is to propose techniques, design digital signal pro-

cessing algorithms and test them to improve positioning accuracy and/or ease of

implementation to enable a mobile node from locating and tracking itself using
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1.4 Objectives and Contributions of the Dissertation

relative information from the surroundings within indoor environment. In par-

ticular, the focus is to propose techniques and algorithms based on the Received

Signal Strength Indicator (RSSI) measurements of the widely deployed WLAN and

the knowledge of location of fixed anchor nodes for indoor positioning and loca-

tion tracking. Recently, most smartphones are equipped with circuitry for mea-

suring the power level of the RSSI which makes the proposed techniques and

algorithm, and the presented implementation of the KF applicable.

In this dissertation, the author focuses on the IEEE 802.11n as the latest off the

shelf WLAN which uses a bandwidth of 40 MHz and exploits diversity from

three antennas yielding a comparable small standard deviation of the path loss.

Older WLAN standards such as 802.11a/b/g may suffer from larger standard

deviations, which yield less accurate positioning results. Furthermore, the IEEE

802.11n supports a range of up to 200 m [09]. The maximum range is reported

to have even longer distance of up to 250 m [12]. However, range will vary

depending on the environment and on the capability of the client and access

point [Bel07]. It is considered that IEEE 802.11n supports better range than the

the most recent WLAN IEEE 802.11ac [13a]. It is reported that the IEEE 802.11 ac

has a maximum indoor range of 35 m [13a].

The complexity of the proposed techniques shall remain the same as the state of

art for better performance-complexity trade-off.

According to the main objective, the following tasks are defined and accom-

plished in the dissertation:

1. A representation of wireless channel model for WLAN 802.11n.

2. A representation of WLAN 802.11n anchor nodes.

3. A representation of a mobile node which gather the RSSI measurements.

4. A representation of evaluation model that has different testing parameters.

5. Design of EKF for performance evaluation.

6. Design of trilateration solution that establish a set of linear equations out of

non-linear equations to be solvable using a LLS approach.
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7. Design new solutions which can be implemented in the mobile node for

positioning and tracking.

The innovative contributions of this dissertation are:

1. Proposing a positioning framework based on novel implementation of the

KF. The KF is designed to work linearly to refine the position estimates. The

estimation performance of this framework is tested by simulation and com-

pared with the state of the art EKF. The contributions of this part originate

in one conference paper:

• Laith Khalil, Andreas Waadt, Guido Bruck and Peter Jung, “Position-

ing Framework for WLAN IEEE 802.11 n Utilizing Kalman Filter on

Received Signal Strength,” in 10th Int. Wireless Communications and Mo-

bile Computing Conference (IWCMC), Aug. 2014, pp. 1172-1176.

2. Proposing a positioning and tracking solution based on the Iterated Extended

Kalman Filter (IEKF). This solution is tested on simulation data and com-

pared with the EKF.

3. Proposing a positioning and tracking solution based on the Scaled Unscented

Kalman Filter (SUKF). Comparative simulation results relative to EKF are

presented. The contributions of this part originate in one conference paper:

• Laith Khalil and Peter Jung,“Scaled Unscented Kalman Filter for RSSI-

Based WLAN IEEE 802.11n Positioning and Tracking,” in 9th Int. Conf.

on Next Generation Mobile Applications, Services and Technologies (NG-

MAST), Sep. 2015, pp. 132-137.

4. Proposing a positioning and tracking solution based on the Spherical Sim-

plex Unscented Kalman Filter (SSUKF). This solution is tested on simulation

data and compared to EKF. The contributions of this part originate in one

conference paper:

• Laith Khalil and Peter Jung, “Spherical Simplex Unscented Kalman

Filter for RSSI-Based WLAN IEEE 802.11n Positioning and Tracking,”
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in IEEE 26th Annual Int. Sym. on Personal Indoor and Mobile Radio Com-

munications (PIMRC), 30 Aug.-2 Sept. 2015, pp. 2284-2288.

1.5 Dissertation Outline

In this dissertation, the author proposes techniques and algorithms in order to

improve the performance for indoor L&T. The main contributions and chapters

organizations of this dissertation are summarized as follows.

• Chapter 2: Positioning background

This chapter starts explaining the most common ranging technique for dis-

tance estimation. Then, identity methods and trilateration are presented

as common positioning techniques. Afterwords, wireless channel mod-

elling for WLAN IEEE 802.11 n is explained for distance estimation. Finally,

the performance evaluation model for positioning and tracking of a mobile

node within WLAN IEEE 802.11 n environment is illustrated in detail.

• Chapter 3: Positioning Framework for RSSI-Based WLAN IEEE 802.11n

Chapter 3 starts with designing a Linear Least-Squares estimator. Then the

state space models are designed to enable the KF to work linearly. The

LLS and the KF work within the proposed positioning framework. The

simulation procedure and the results are presented as well in this chapter.

• Chapter 4: Iterated Extended Kalman Filter for RSSI-based WLAN IEEE

802.11n positioning and tracking

In this chapter, the non-linear dynamic system modelling is designed. For

comparison purpose, the EKF is designed. A new positioning and tracking

solution based on the IEKF is proposed. A performance evaluation model

to validate the proposed solutions throughout this dissertation is presented

in this chapter. The simulation procedure for implementing the IEKF for

performance evaluation is presented. Moreover, simulation results based

on the performance evaluation model are presented.
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• Chapter 5: Sigma Points Kalman Filters for RSSI-based WLAN IEEE

802.11n positioning and tracking

This chapter starts designing the Scaled Unscented Transformation (SUT). The

author proposes a new positioning and tracking solution based on the

SUKF. The SUKF results from application of the SUT to the KF. The de-

sign and the implementation of SUKF is presented. This solution is tested

and implemented using a simulation procedure. Furthermore, simulation

results are presented based on a performance evaluation model.

Moreover in this chapter, the author proposes a L&T solution based on the

Spherical Simplex Unscented Transformation SSUT. The SSUT is designed to

model the positioning problem. A new positioning and tracking solution

based on the SSUKF is presented. The SSUKF results from application of

the SSUT to the KF. The simulation procedure for the implementing and

testing the algorithm is given. An evaluation of the proposed solution is

illustrated using simulation results.

• Chapter 6: Conclusion and Future work

Chapter 6 summarizes the main research challenges and gives recommen-

dations for future expansion of this work
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2 Positioning Background

2.1 Overview

This chapter presents some of the theoretical tools related to the proposed al-

gorithms for indoor tracking applications. First, the problem of positioning

throughout this dissertation is defined. Then, the commonly known techniques

to measure distances from anchor nodes are presented. These techniques are

known as ranging techniques. In addition, the popular positioning algorithms

for estimating the position based on ranging measurements are presented. In

particular they are fingerprinting, trilateration and proximity.

Moreover in this chapter, a review of the data fusion and estimation techniques

are presented. Then, wireless channel modelling for obtaining distance estimates

out of the measurements are given. In addition, state space models are presented

which model the dynamics and measurements of a L&T system. Designing these

models allow for implementation of different variations of the KF. Finally, the

derivation of the KF is presented in a consistent matter with the implementation

carried out in this dissertation.

11



2 Positioning Background

2.2 Positioning Problem

The location estimation problem for a moving object in 2−D plane can be con-

ceived by referring to Fig. 2.1.

In this figure, the mobile node is following a trajectory (with or without prior

knowledge), and this node tries to locate itself by using the received measured

signals from a number of surrounding reference points or anchor nodes.

The mobile node continuously collects the RSSI measurements r ∈ RN from a

number of anchor nodes surrounding it at certain time intervals, where

r =
[
r(1) r(2) . . . r(N)

]T
, (2.1)

where N is the number of anchor nodes. The mobile node converts the RSSI mea-

surements into distance measurements z ∈ RN using a path loss model, where

z =
[
z(1) z(2) . . . z(N)

]T
. (2.2)

The mobile node uses the distance measurements with the knowledge of anchor

nodes’ positions to locate itself. The red dashed line in Fig 2.1 refers to the maxi-

mum circle of trust. If the mobile node moves outside the circle of trust, it may lose

at least one of the received signals from the anchor nodes due to different param-

eters such as the noise shadowing. As such, the mobile node loses the ability to

locate itself.

Then the task is to find the location information estimation p̂ for the mobile node

in movement which is written as

p̂ = [x̂, ŷ], (2.3)

where x̂ and ŷ are the estimated position coordinates, note that the superscript

“hat” denotes estimation. The corresponding position estimation error is written

12
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x

y

Mobile node

Anchor node

Anchor node

Figure 2.1: Position estimation problem for a moving device that is surrounded
with a number of anchor nodes.

as

e = [p− p̂], (2.4)

where

p = [x, y], (2.5)

is the real position. The estimation error comes from the fact that the measure-

ments are corrupted by factors like noise and device inaccuracy.

2.3 Ranging

All the methods used to measure distances from anchor nodes to a mobile node

can be referred to as ranging techniques. The most commonly used ranging tech-

niques are the Received Signal Strength Indicator (RSSI), the Time of Arrival (Time of

Arrival), and the Angle of Arrival (Angle of Arrival).
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2 Positioning Background

2.3.1 Received Signal Strength

The RSS or the RSSI is the measure of the magnitude voltage at receiver termi-

nal [MR07]. It can be equivalently represented as squared magnitude of the signal

strength, i.e., the measured power. The RSSI of Radio Frequency (RF) signals can

be estimated by each receiver during normal communication. As such, the mea-

surements do not require additional hardware or dedicated bandwidth [MR07].

These features make this technique relatively inexpensive and easy to be im-

plemented and therefore it appeals researchers for distance estimation [MR07].

However, RSSI is a subject to noise and different propagation effects like the sig-

nal attenuation, scattering, multipath, shadowing and diffraction [Gol05].

The relation between the RSSI at the receiver and the signal strength at the trans-

mitter can be modelled using a propagation model with propagation effects that

depend on the propagation environment. Theoretical and empirical models are

used to translate this relation into a distance estimate [Liu+07]. Examples of the

propagation effects are the signal attenuation, scattering, diffraction and multi-

path effects [Gol05].

The propagation model in general, which is also called the path loss model, can

be modelled using white Gaussian noise with standard deviation of σ as given,

from [Gol05], as

pPL = αPL − βPL log(
d
d0
) + η, η ∼ N (0, σ) (2.6)

where pPL is the received signal strength (e.g. measured in dBm), αPL is a param-

eter that related to the transmitter signal strength, βPL is path loss exponent, d is

the distance separation between the sender and the receiver, and η is a Gaussian

random variable with zero mean and σ standard deviation.
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2.3.2 Time of Arrival

The TOA is a measurement of the time at which a signal arrives at the receiver

side [MR07]. Two common approaches to the TOA are the one-way propaga-

tion time method and the round-trip propagation time method [MFA07]. The

one-way propagation time measures the difference between the sending time of

a signal at the transmitter and the receiving time of the signal at the receiver. This

requires that both the sender and the receiver to be accurately synchronized, i.e.,

having the same local time [FF11]. In addition, a time stamp must be added by

the sender to the signal in order to discern the distance by the receiver [MFA07].

These requirements add additional cost especially for a sophisticated synchro-

nization mechanism [MFA07].

The time measured of the received signal trx can be modelled as the sum of the

transmission time ttx, the propagation delay and the synchronization error εsync

as given [FF11]

trx = ttx +
d
c
+ εsync, (2.7)

where d is the distance between the sender and the receiver, c is the medium

propagation speed. A major issue with this technique is to know the synchro-

nization error which is often not possible to obtain. This can be considered as the

major disadvantage of the TOA method [FF11].

For an asynchronous network, it is common to use the round-trip technique or the

Time Difference of Arrival (TDOA) [MFA07; McC+00]. Round-trip propagation

time measures the time difference between the time at which a signal is sent and

the time at which the signal is returned from a receiver. The major error source is

the time required from the receiver to process and send back the received signal.

A more in depth study is provided in [McC+00]. Nevertheless, the TDOA will be

presented in the following section.
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2.3.3 Time Difference of Arrival

The TDOA is similar to TOA but is based on processing signals transmitted si-

multaneously by different terminals. The TDOA aims to get rid of the clock

synchronization between the transmitter and the receiver [FF11]. As such, the

TDOA aims to get rid of the clock synchronization error. For instance, if two Base

Stations (BSs) BS1 and BS2 transmit two signals at the same time ttx to a mobile

station that has the distance d1 to BS1 and the distance d2 to BS2, then the TDOA

t at the mobile station is [FF11]

trx = (ttx +
d1

c
+ εsync)− (ttx +

d2

c
+ εsync) =

d1 − d2

c
, (2.8)

where c is the medium propagation speed and εsync is the synchronization error.

Although the BSs and the MS do not need to be synchronized, the BSs need to be

clock synchronized [FF11].

2.3.4 Angle of Arrival

The AOA is the measurement of angle of the signal arriving at the receiver rather

than the distances in order to know the direction of transmission. This kind of in-

formation is complementary to RSSI and TOA [MR07]. The AOA can be divided

into two subclasses [MFA07]: those making use of the receiver antenna’s ampli-

tude response and those making use of the receiver antenna’s phase response.

The first category of measurement techniques use antenna anisotropy to derive

the AOA measurements. A widely used approach is to use at least four station-

ary antennas with known anisotropic antenna patterns. By overlapping these

patterns and comparing the received signal strength from each antenna yields

the transmitter direction even when the signal strength changes.

The second category of measurement techniques derives the AOA measurements

from the phase difference measurement of the arrival of signals. It requires an
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antenna array or large receiver antenna relative to the wave length of the trans-

mitted signal.

Both of the above categories require hardware that substantially increases the

device cost and size. The accuracy of AOA is limited by the directivity of the

antenna, shadowing and multipath reflections [MFA07].

2.4 Positioning Techniques

Based on different measurements in wireless communications, algorithms and

techniques are used in order to estimate the mobile position from the obtained

measurements. It has been discussed earlier, that the wireless channel measure-

ments for position estimation are corrupted by noise. Various types of noise

sources causing the channel measurements to present statistical behaviours that

in some cases are difficult to model [FF11]. This will have an impact on the ac-

curacy of any positioning system. Detailed error sources in wireless positioning

can be found in [FF11].

In general, positioning techniques can be grouped into three categories based on

the technique used to obtain the location information.

The first category is the location fingerprinting approach. This category is intro-

duced in section 2.4.1.

The second category is called triangulation which includes techniques that use

measurement techniques which are TOA, AOA and RSSI to estimate the position

of a mobile node. These methods use trigonometry in order to combine data from

several sources [FF11]. Trilateration is an example of this category which uses the

ranging techniques for position estimation.

The third category is based on proximity-sensing. One popular example of

this type is the Cell-ID [Liu+07]. This category will be introduced later in sec-

tion 2.4.3.
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2.4.1 Fingerprinting

Fingerprinting is considered the most accurate method to use the RSSI measure-

ments for location estimation. Different techniques are developed to perform

Fingerprinting. These techniques model the RSSI in areas of interest. This can be

done by gathering RSSI measurements at reference grid points [FF11; AH15]. The

vector of RSSI measurement values at a point is called the location fingerprinting

of the point [AH15]. The gathered RSSI measurements are used to construct a

propagation model, which is known as the radio map [AH15].

Fingerprinting is performed on two phases, an off-line phase and an on-line

phase [FF11; AH15] as depicted in Fig. 2.2. The author follows [AH15] to give

a simple explanation of the procedure.

During the off-line phase, an m × n radio map for the area of interest is con-

structed. The RSSI value RSSIij received from m surrounding anchor nodes are

collected at n grid points pi, where

i = {1, . . . , n},

and

j = {1, . . . , m}.

The radio map is saved to a database to be used later during the on-line phase.

In on-line phase, a matching algorithm is used to compare RSSI measurements

done by a mobile object at the present moment with pre-stored values in the radio

map to find the grid point with minimum matching error.

The database can contain as much variety of measurements as possible from

several systems such as GSM and WLAN if they are enabled at the mobile

node [FF11]. Examples of the measurements variety are the RSSI, TOA and AOA.
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y

x

Figure 2.2: Fingerprinting method with two phases of operation. The off-line
phase is on the left while the on-line phase is on the right. Inspired
by [FF11].

The greater amount of information in the database requires more complex algo-

rithms to manage the organization of those information as well as localization

process [FF11].

Fingerprinting techniques are very dependent on the scenario [FF11]. If some-

thing that may influence the propagation conditions changes, for example a door

opening in an indoor scenario, a re-calibration process (the off-line phase) must

be done all over again [FF11].
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2.4.2 Trilateration

Trilateration or lateration [FF11; RH05; MLM13] is the term used to describe the

positioning technique that is based on the use of measured distances between

the anchor nodes and a mobile station to determine it’s absolute or relative posi-

tion.

In order to enable 2-D positioning using this technique, distance measurements

must be made with respect to received signals from at least three reference points

or so-called anchor nodes [Fan90]. Similarly for 3-D positioning, 4 anchor nodes

having non coplanar points are the minimum number of BSs to locate a mobile

node [MH95].

In this method, each anchor node calculates the distances to the mobile nodes

in interest according to the ranging techniques. The anchor node draws a circle

around itself for each mobile node where the anchor node assumes that each mo-

bile node should be at one of the points on the circumference of the correspond-

ing circle [MR07]. The exact distances di, for i = {1, 2, . . . , N}, between the n

anchor nodes of locations pBSi and the mobile node are the radii of the individual

circles [MH99]. If the locations of the anchor nodes are defined as

pBSi = [xBSi , yBSi ]
T i = {1, 2, . . . , N}, (2.9)

then the equation of any of these circles is written, from [MH99], as

di
2 = (xBSi − x)2 + (yBSi − y)2 i = {1, . . . , N}. (2.10)

The point of intersection of the circles is obtained by letting i = {1, 2, . . . , N}
and solving for N non-linear equations [MH99]. In particular, the mobile node

coordinates

p = [x, y]T, (2.11)

is the point of intersection of several circles whose centers are the locations of N

anchor nodes.
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Figure 2.3: Positioning estimation using trilateration.

If the measurements are exact, i.e. without noise, it is possible to intersect the

distances resulting in one point which the position of the mobile node [MR07].

However, due to the noisy behaviour of the measurements, it is not possible to

determine a single estimate for the mobile node using this method [MR07]. In

particular, the estimated distances are corrupted by noise and consequently do

not intersect in one point as depicted in Fig. 2.3.

A simple approach to the non-intersecting circles problem is by intersecting of

two circles and produce two points of interest then using the third one to select

among two points [FF11]. More accuracy would be achieved if the three or more

measurements are taken into consideration [FF11].

2.4.3 Proximity

The proximity techniques, not like other positioning techniques, do not rely on

the distance or the angle of the communications link and present relative posi-
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tion information. As such, the mobile position is identified according to the base

station position once the mobile node is within the range of the base station.

This method is relatively easy for implementation where it can be implemented

for different types of physical media [Liu+07]. This method is common in RFID

and Infrared Radiation (IR) [Liu+07]. Another example is the Cell Identification

(Cell-ID) or Cell Of Origin (COO) in cellular systems where the mobile cellular

networks can identify the approximate position of a mobile handset by knowing

which cell site the device is using at a given time [Liu+07; FF11]. In addition,

these techniques can be used in hybrid solutions as well as for determining ge-

ographical constrains in positioning estimation [FF11]. However, this method is

considered the least accurate among the positioning methods [FF11].

A simple algorithm for estimating the position of a mobile node based on the

locations of all the BSs that the mobile can communicate with is the centroid

method [FF11]. In this algorithm, the estimated position is the arithmetic mean

of the coordinates of all the BSs detected by the mobile station. By assuming that

the base stations are located at positions

pBSi = [xBSi , yBSi ] for i = {1, 2, . . . , N}, (2.12)

where N is the number of base stations. Then, the position of the mobile station

p = [x, y], (2.13)

can be simply calculated from

p =
1
N

N

∑
1

pBSi . (2.14)
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2.5 Date Fusion and Estimation

In estimation theory and statistical inference, there are a number of approaches

for estimating the parameter out of the observation. These approaches are cate-

gorized as Bayesian or non-Bayesian, depending on whether or not we consider

the unknown parameter x from an observation z [WLW09].

In general, those approaches are categorized as non-Bayesian or Bayesian

depending on how the unknown is treated form the existing measure-

ments [WLW09].

The non-Bayesian approach treats the unknown x deterministically [WLW09].

In the context of L&T, this approach estimates the position of a MS by mini-

mizing the resulting squared error between the actual measurements observed

in the wireless channel and the expected measurements resulting from the es-

timated position [FF11]. Two common non-Bayesian estimators are the Least-

Squares Methods (LS) estimator and the maximum likelihood estimator. The LS

includes linear and non-linear estimations. While the Linear Least-Squares (LLS)

presents closed form solution to the estimation problem, the Non Linear Least-

Squares (NLLS) may not be solvable and therefore numerical optimization solu-

tions must be provided [FF11].

In Bayesian estimation, statistical models for both x and z are used with the

conditional density function p(x|z) to infer x. The KF is an example of the

Bayesian estimation. In the context of L&T, the position is determined as an

estimator that minimizes the mean squared error between the actual measure-

ments and the expected measurements [FF11]. The closed-form solution to the

Bayesian framework is only possible with the assumption of Gaussian probabilis-

tic models and the imposition of linearity to both the process and the measure-

ment models [Cho14]. With these assumptions, the Bayesian solution is optimal,

tractable and results in the Kalman Filter (KF) [Gel74]. However, the solution to

the Bayesian framework with other assumptions (non-linear, non Gaussian) is
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hard to obtain analytically [Cho14]. This can make the estimation process in-

tractable [RAG04].

It should be mentioned here that the KF is an estimator for the problem of estimat-

ing the instantaneous state of a linear dynamic system by using measurements

that are related linearly to the system state. Both the linear dynamic system and

the measurements are corrupted by white noise [GA11]. The KF uses the knowl-

edge about the system and measuring devices with a combination of all available

measurements to produce an estimate of the desired variables in a way that the

error is minimized statistically [May82]. Therefore, this filter is considered as

optimal recursive filter [May82; GA11].

In the case of KF, the “filter” comes from the fact that the KF has a solution to

the problem of inferring variables of interest that can not be determined directly

out of the noisy measurements [May82]. In addition, the term “filter” in Kalman

filtering means the separation of the variables of interest given by the system state

from noise [GA11].

In L&T, the term “location”, which is similar to “position”, refers to the source

of information that contains the 2 D or 3 D coordinates of a mobile node relative

to its environment [FF11]. The process of obtaining the position information is

called “localization” or “positioning”. If the positioning process is related to time

information, this process is referred to as “tracking” [FF11]. Relating position

information to time information allows to obtain the mobile position at specific

time [FF11]. In addition, this relationship allows for deriving other information

such as speed and acceleration [FF11]. For instance, a moving object’s average

speed during an interval of time is found by dividing the distance by the time

elapsed and the corresponding unit is the length per time unit such as meter per

second [WHT10]. “Navigation” is a tracking solution that uses a map information

to help users reaching their desired destinations [FF11].

For most general real-world systems (non-linear, non-Gaussian), the general form
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of the recursive Bayesian filter is not tractable and therefore approximation solu-

tions must be used [Hau05].

Numerous approximation solutions to the Bayesian estimation problem have

been proposed over the last couple of decades in different fields. These solu-

tions can be loosely grouped into the following main categories depending on

the approach to approximate the integration [Van04; Mac12], some of them will

be introduced in more details later in this dissertation:

1. Analytic approximations: To this group belong all the solutions that solve

the filtering problem by linearization [Mac12].

• Extended Kalman Filter (EKF) [WB; GA11]: The EKF applies the KF to

the non-linear Gaussian systems by linearizing the system models us-

ing a first-order truncated Taylor series expansion around the current

estimates. Due to it’s good performance and relatively low complexity,

this filter is still applied to a number of real world applications includ-

ing L&T [Pet08; LH13; Hel+13; Ati+15]. The EKF will be given in detail

in section 4.4.

• Formulations of the KF that involve second order or higher order rela-

tionships in the non-linear process and/or measurement functions do

exist [Ben81; Dau95] with extra implementation complexity [BH12].

2. Gaussian Sum Filters (GSF) [AS72]: The GSF approximate the a posteriori

PDF by a weighted sum of Gaussian density functions, i.e., Gaussian mix-

ture of densities (GM). EKF and other non-linear methods are then applied

to each of those densities. Although GM solutions were applied to the L&T

problems, those solutions require frequently reinitialization in high noise

environment of each non-linear filter corresponding to each separate Gaus-

sian density to minimize the conditional error covariance [AM79]. Novel

techniques are still subject to research to reduce the computational burden,

especially the weights and moments computations [BT10; CKV11; ZJ14].

3. Sequential Monte Carlo methods which are also known as “Particle Filters”:

These filters are popular to offer approximations to the non-linear/non-
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Gaussian filter, and particularly multi-modal density function instead of

uni-model ones [BH12]. The filters approximate the continuous probability

function with discrete weights at sample points that are generally unevenly

spaced [BH12]. These samples can be viewed as “particles” carried by the

non-linear system dynamics. This is how the word “particles” is associated

with the name of the filter [GA11]. Different variations of the particle filters

exit and whole books are devoted to those variations [RAG04; Smi+13].

4. Deterministic sampling or so-called sigma-point approaches: This class of

methods is based on sampling techniques for propagation of random vari-

ables through non-linear systems. This can be done by selecting a determin-

istic set of points that capture the moments of the density function while at

the same time allow for direct transformation through the non-linear func-

tions. The Unscented Transformation (UT) [JU97] and Stirling’s interpolation

approach to state estimation for non-linear systems [NPR00] are examples

of this approach [PW09]. This recent and unfamiliar approach to the KF re-

sults in limited implementations such as to the outdoor location and track-

ing [PW08; PW09], and to underwater navigation [Sta10].

2.6 WLAN Channel Models

Wireless channel models which are also called propagation models have traditionally

focused on predicting the average received signal strength at given distance from

the transmitter, as well as the variability of the signal strength in close spatial

proximity to a particular location [Rap02]. For instance, propagation models are

used to estimate the radio coverage area of given transmitter [Rap02].

In channel models, the variation of the received signal strength over distance

is due to path loss and shadowing [Gol05]. Path loss model is the average re-

duction of the signal power of an electromagnetic wave as it travels through

space [Gol05]. Shadowing is caused by obstacles in the transmission path be-

tween the transmitter and the receiver that attenuate the received signal through
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absorption, scattering, diffraction, signal reflection, as well as the location, mo-

tion, and material composition of surrounding objects [Gol05]. Some of these

factors can vary in an unpredictable manner over time due to environmental dy-

namics and user movement [Gol05]. For instance, the travel of signals can have a

Line Of Sight (LOS) transmission path as well as a path that is blocked by obsta-

cles such as walls and furnitures.

In contrast to the wired channels which are predictable, radio channels are ex-

tremely random and do not offer easy analysis [Vij10]. As a result, determining

deterministic propagation models can become rather complex by considering vari-

ous propagation effects of the electromagnetic waves [Rap02]. Typically, wireless

channel modelling is done statistically using measurements [Rap02].

The propagation models that predict the mean signal strength for an arbitrary

transmitter-receiver separation distance are called large-scale propagation mod-

els [Rap02]. These models describe the signal strength over large transmitter-

receiver separation distances. On the contrary, propagation models that describe

the rapid changes of the received signal over very short distances are called small-

scale fading models.

In the context of positioning, the channel models are used to estimate the dis-

tance at the receiver from the transmitter. For this purpose, a set of channel mod-

els is proposed by the High Throughput Task Group (TGn) [Erc04], to provide

sufficient channel models for WLAN IEEE 802.11n. These models are consis-

tent with numerous experimentally determined results as well as published re-

sults reported in the literature and are usable for both 2 GHz and 5 GHz [Erc04].

Furthermore, the models are advanced Multiple-Input Multiple-Output (MIMO)

models that describe the LOS and Non Line Of Sight (NLOS) components of a

MIMO channel, the effect of the Doppler components of the channel as well as

the expected signal correlation across the antenna arrays [PO08].

The TGn channel models consist of six channel models that were proposed for

different environments (Models A-F). The channel models A to C represent small

27



2 Positioning Background

Table 2.1: Path loss model parameters, reconstructed from [Erc04].
Model dBP (m) Slope Slope Shadow fading Shadow fading

before dBP after dBP before dBP after dBP
A 5 2 3.5 3 4
B 5 2 3.5 3 4
C 5 2 3.5 3 5
D 10 2 3.5 3 5
E 20 2 3.5 3 6
F 30 2 3.5 3 6

environments, while the models D to F represent larger environments [PO08].

These models are given, from [Erc04], as

L(d) = LFS(d) d ≤ dBP

L(d) = LFS(dBP) + 35 log10(
d

dBP
) d > dBP

, (2.15)

where the first equation gives the free space path loss for distances less than dBP,

which is known as the breakpoint and d is the transmitter receiver separation

distance. The second equation gives the path loss for distances larger than dBP.

Both equations are expressed in decibels, or dB. The term LFS(.) refers to the free

space path loss model which is given, from [Pro98], as

LFS(d) = −10 log10 GtGr(
c

4πd f
)2, (2.16)

where Gt and Gr are the transmit and receive antenna gains respectively, c is the

speed of light, and f is the carrier frequency in Hz. For unity antenna gains (Gt =

Gr = 1) and frequency of 2.4 GHz, equation (2.16) can be written, from [PO08],

as

LFS(d) = 40.04 dB + 2 · 10 log10
d
m

. (2.17)

Note that the slope is 2 for the path loss expression in (2.17). For distances larger

than dBP, the path loss expression has a slop of 3.5 as can be seen from (2.15).

Table 2.1 contains model mapping to a particular environment. In this table, the
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shadow fading values show that for any transmitter/receiver configuration, the

propagation environment can differ resulting that the received signal having an

average strength differing from (2.15) [PO08].

With shadow fading added to (2.15), the equations can be written, from [PO08],

as
L(d) = LFS(d) + nσ d ≤ dBP

L(d) = LFS(dBP) + 35 log10(
d

dBP
) + nσ d > dBP

, (2.18)

where nσ is the random noise mentioned above. Note that the value for σ differs

before and after the breaking point as shown in Table 2.1.

Small-scale fading are caused fluctuations of the received signal in amplitude,

phase or delays of multipath signals [Rap02]. In WLAN 802.11n which uses

Orthogonal Frequency-Division Multiplexing (OFDM), the small-scale fading re-

sults in flat fading over all the subcariers of the signal [PO08]. The author of

this dissertation ignores the small-scale fading by assuming that the OFDM band

is sufficiently large that the overall power average regarding frequency selective

fluctuation is unaffected to a large extent.

2.7 State-Space Models

In order to allow a system to use the noisy measurements for location estima-

tion, those noisy (uncertain) measurements need to be represented. Probability

theory provides representation for the uncertain measurements and can manip-

ulate these measurements in a consistent manner [Van04; Gil+09]. In general,

the measurement data can be either a time-series or a sequence generated by 1-

dimensional spatial process [Mur02].

According to [Mur02], different “classical” approaches to time-series prediction

are available which use linear models [Ham94] or non-linear models such as de-
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cision trees [MCH02]. For discrete date, n-gram models [Jel97] or variable-length

Markov models [RST96; McC96] are used widely [Mur02].

According to [Mur02], the state-space models are better than time-series mod-

eling approach where the state-space models do not suffer from finite-window

effects, can easily handle discrete and multi-variate inputs and outputs, and they

can easily incorporate prior knowledge compared to the classical modeling ap-

proaches.

Moreover, the most common used probabilistic models of time-series prediction

are the Hidden Markov Models (HMMs) and the Kalman Filter Models (KFMs)

[GH00; Mur02]. HMMs represent information about the past through a single

discrete random variable which is the hidden state [GH00; Mur02]. If there are

n possible states, then xk ∈ {1, . . . , o} [Mur02]. On the other side, KFMs repre-

sent information about the past through a real-valued hidden state vector [GH00;

Mur02], where the state xk are continuous random variables xk ∈ Rn [Mur02].

Note that the term “state-space models” is used widely in literature to describe

the KFMs [GH00; Mur02; Van04; Cho14]. In this dissertation however, the author

uses the term as well to express the KFMs.

From L&T prospective, it is found by the author that the KFMs fit well into the

problem of estimating the location information over the HMMs. This is due to

the fact that a KFM holds in its state all the possible values that the mobile object,

which needs to be tracked, can take. Therefore, solving for the system state will

lead to predict the set of all values for the system of interest.

The state-space models [Mur02; WB] can be written as a set of state and observa-

tion models. The dependency between the predicted state (future state) and the

present state is specified through the dynamic equations of the system and the

noise model. In particular, the dynamic nature of xk ∈ Rn is written as

xk+1 = f(xk, uk, wk), (2.19)
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Delay

Figure 2.4: State dynamics of a discrete time system.

which is called also the system process model [Mur02]. k is the time index of the

samples. The function f, possibly non-linear, relates the previous state xk−1 ∈ Rn

to the current state xk. The vector uk ∈ Rl is an optional deterministic control

input. For instance in the context of L&T, this optional vector is the acceleration

update. The vector of random variables wk ∈ Rn represents the process uncer-

tainty that derives the dynamic system through the function f. For instance, the

acceleration is considered as a control input in a L&T problem. Nevertheless, the

state dynamics are depicted in Fig. 2.4. In the observation model, the observation

zk is related to the system state xk and the measurement noise vk as given

zk = h(xk, vk), (2.20)

where the function h, possibly non-linear, relates the state space to the measure-

ments zk ∈ Rm. The measurements space is the set of all possible observations.

The vector of random variables vk ∈ Rm represents the observation or measure-

ment noise corrupting the state through the function f. Note that the functions

f(·) and h(·), as well as the value of n and m will be defined later in the disserta-

tion according to the design of the state-space models.

The models presented here will be designed to work linearly as will be presented

later in section 3.5. Moreover, the models will be designed to work in a non-linear

fashion as will be presented later in section 4.2.

31



2 Positioning Background

In the context of L&T, the state-space approach to model a moving object involves

the state of the object like position, speed and acceleration [FF11; Cho14]. This

state is a numerical quantity which is represented by a vector [Cho14]. The state

includes the complete information about the object in its space where the state x

is defined on the set of all values the object can take [Cho14].

By considering the positioning problem presented in section 2.2, the state xk ∈ R4

of the mobile node can be expressed, from [FF11; Cho14], as

xk = [xk, yk, vx,k, vy,k]
T, (2.21)

where the xk and vx,k are the position and velocity along the x-axis, yk and vy,k

are the position and velocity along the y-axis, and the superscript T denotes the

transpose of the vector. The state xk may also be expressed as

xk = [xk, yk]
T, (2.22)

where the speed components can be derived from the position if needed.

2.8 The Discrete Kalman Filter

The KF is an estimator for estimating the state of a linear dynamic system that is

corrupted by white noise by using measurements that are linearly related to the

state and corrupted by white noise [GA11]. The KF is considered as optimal

recursive filter [May82; BH12].

While the term “filter” in the context of KF is introduced earlier in chapter 1,

the word Optimal means that the filter minimizes error by some mean and usu-

ally there are many ways of defining optimal, depending on the criteria chosen to

evaluate the performance [May82; BH12]. One aspect of this optimality is that the

KF incorporates all available measurements that can be provided to it regardless

of their precision, to estimate the current value of the variables of interest, with
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Observed

measurement 
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of system state
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Figure 2.5: Typical Kalman Filter application, inspired by [Rib04].

use of: 1) Knowledge of the system and measurement device dynamics, 2) The

statistical description of the system noises, measurement errors, and uncertainty

in the dynamic models, and 3) Information about the initial conditions for the

variables of interest [May82].

If KF is applied to a system dynamic with non-Gaussian noise and the

measurements-to-system function having non-Gaussian noise, the KF can be

shown to be the best minimum error variance filter out of the class of linear un-

biased filters [May82].

The word “recursive” in the previous description is a mode of operation, in which

the results of the previous step are used to help obtaining the desired current step

results [May82].

A typical situation in which the KF can be used is depicted in Fig. 2.5, where a

system is driven by some known controls, and measuring devices provide the

measurements.
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In what follows, the computational origins of the KF are presented. This will

be done by presenting a re-ordered set of equations that is consistent with their

implementation. The equations and their derivation that are presented in this

section are based on the literature in [Lac; WB; BH12]. However, the equations

presented in this section are rearranged. This filter targets systems that have lin-

ear state dynamic and linear relationship between the measurements and the sys-

tem state. Therefore, the system state dynamic of (2.19) is written in linear form

as

xk = Axk−1 + Buk−1 + wk−1, (2.23)

where Ak−1 ∈ Rn×n is the time-variant matrix which relates the current state

xk ∈ Rn to the previous state xk−1 ∈ Rn and B ∈ Rn×l relates the optional control

u ∈ Rl to the state x. The measurement function of (2.20) is written in linear form

as

zk = Hxk + vk, (2.24)

where H ∈ Rm×n is the matrix which relates the measurements zk to the state

xk.

It is assumed that an initial estimate of the state is known at time tk and this

estimate is based on all the knowledge about the process prior to tk. This prior, or

so called a priori, estimate will be denoted as x̂−k where the “hat” denotes estimate

and the minus points out that the estimate is the “best” estimate prior to the

cooperation with the measurements at tk. The time tk is obtained as

tk = k · Ts, k = {0, 1, 2, . . . } (2.25)

where k is an integer and Ts is the sampling period. The a priori estimation error

is

e−k ≡ xk − x̂−k . (2.26)

The estimate of the a priori state is obtained from (2.23) as

x̂−k = Akx̂k−1 + Buk−1. (2.27)
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noting that the noise wk−1 has zero mean. x̂k−1 represents the a posteriori state

estimate which was updated based on the measurements obtained at tk−1.

The a priori estimate error covariance matrix is then obtained from

P−k = E[(e−k e−k
T
]

= E[xk − x̂−k )(xk − x̂−k )
T]. (2.28)

The estimated a posteriori error corresponding to the a posteriori (updated) esti-

mate can be defined as

ek−1 ≡ xk−1 − x̂k−1, (2.29)

and the associated a posteriori error covariance matrix is defined as

Pk−1 = E[ek−1eT
k−1]

= E[(xk−1 − x̂k−1)(xk−1 − x̂k−1)
T]. (2.30)

In order to predict the a priori error covariance matrix P−k from the a posteriori error

covariance matrix Pk−1, the expression for the a priori error e−k of (2.26) is written

by substituting the values of xk and x̂k from (2.23) and (2.27) respectively as

e−k = Ak−1xk−1 + wk−1 −Ak−1x̂k−1

= Ak−1ek−1 + wk−1, (2.31)

and the resulting of (2.31) is substituted in ( 2.28) which results in

P−k = E[(Ak−1ek−1 + wk−1)(Ak−1ek−1 + wk−1)
T]

= Ak−1Pk−1AT
k−1 + Qk−1, (2.32)

where

Qk−1 = E[wk−1wT
k−1], (2.33)

and noting that wk−1 and ek have zero cross correlation.
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The next step in deriving the equations of the KF is to improve the a priori estimate

by finding an equation that computes the a posteriori state estimate x̂k as a linear

function of the a priori state estimate x̂−k and a weighted difference between the

exact measurement zk and the measurement prediction Hkx̂−k as given

x̂k = x̂−k + Kk(zk −Hkx̂−k ), (2.34)

where Kk is chosen to be the gain, which will be derived later, and the term (zk −
Hkx̂−k ) is called the measurement innovation [WB].

The n × m matrix Kk is chosen to produce optimal estimate update. The opti-

mization can be done by finding the expression for the error covariance matrix

associated with the a posteriori estimate, differentiating with respect to Kk, setting

the result equal to zero and solving for Kk.

The optimization approach minimizes the individual terms of the diagonal of Pk

which represents the estimation error variances for the elements of the state be-

ing estimated. To clarify the optimization problem of the error estimation, equa-

tion (2.30) is written as

Pk =


E[e1k eT

1k
] E[e1k eT

2k
] . . . E[e1k eT

nk
]

E[e2k eT
1k
] E[e2k eT

2k
] . . . E[e2k eT

nk
]

...
... . . . ...

E[enk eT
1k
] E[enk eT

2k
] . . . E[enk eT

nk
]

 , (2.35)

note that the subscript numbers represent the element numbers of the estimation

error vector ek. In the above representation, the sum of the diagonal elements of

the matrix is the trace of a matrix. In this case, the trace is the sum of the mean

square errors. Therefore, minimizing the trace will minimize the mean square

estimation error of the state variable xk.

To get into the optimization process, equation (2.29) is considered for time index

k as

ek ≡ xk − x̂k. (2.36)
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By substituting (2.34) into (2.36), then the result into (2.30), it yields

Pk = E{[xk − x̂−k −Kk(zk −Hkx̂−k )][xk − x̂−k −Kk(zk −Hkx̂−k )]
T}. (2.37)

Substitute for zk from (2.24) into (2.37) results

Pk = E{[(xk − x̂−k )−Kk(Hkxk + vk −Hkx̂−k )]

[(xk − x̂−k )−Kk(Hkxk + vk −Hkx̂−k )]
T}. (2.38)

Taking expectation of the above expression and noting that

E[vk] = 0,

E[vkvT
k ] = Rk,

E{[xk − x−k ][xk − x−k ]
T} = P−k ,

result in

Pk = (I−KkHk)P−k (I−KkHk)
T + KkRkKT

k . (2.39)

Here equation (2.39) is a general expression for the error covariance matrix, and

it applies for any gain Kk whether it is optimal or otherwise.

To proceed further in finding the particular Kk that minimizes the estimation er-

ror, we need to recall two matrix differentiation formulas that are needed for the

differential approach. They are

d[trace(AB)]
dA

= BT, (2.40)

d[trace(ACA)]

dA
= 2AC. (2.41)

Expanding the general form for Pk, equation (2.39), results

Pk = P−k −KkHkP−k − P−k HT
k KT

k + Kk(HkP−k HT
k + Rk)KT

k . (2.42)
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Differentiating the trace of Pk with respect to Kk, noting that the trace of PkHT
k KT

k

is equal to the trace of KkHkP−k , it yields

d(trace Pk)

dKk
= −2(KkP−k )

T + 2Kk(HkP−k HT
k + Rk). (2.43)

Setting the derivative to zero and solving for optimal gain, yields

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1. (2.44)

The particular Kk that minimizes the mean square estimation error is called the

Kalman gain.

The covariance matrix associated with the optimal estimation can now be com-

puted by substituting the optimal gain expression, that is (2.44), into the general

expression for the error covariance matrix given in (2.42). Three different equa-

tions yield the same results and can be obtained from this substitution. After

some simplification, the result is

Pk = P−k − P−k HT
k (HkP−k HT + Rk)

−1HkP−k

= P−k −KkHkP−k

= (I−KkHk)P−k , (2.45)

which updates the error covariance matrix. Equations (2.27), (2.32), (2.44), (2.34),

and (2.45) represent the KF recursive equations. The block diagram that illus-

trates the relationship of the KF to a system with its measurements model is de-

picted in Fig. 2.6.

Based on all previous information, the operation of the KF can be divided into

two modes which are prediction and correction [WB].

In prediction mode, the KF estimates the state of the system and obtains noisy

measurements as a form of feedback. The equations that perform prediction are

called time update equations [WB], i.e., equations (2.27) and (2.32). These equations
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Delay

Discrete Kalman filterSystem dynamics Measurement dynamics

Delay

Figure 2.6: Block diagram represents the relationship of a discrete-time system to
a discrete-time Kalman Filter, inspired by [GA11].

are responsible for time forwarding of the a posteriori state estimate x̂k−1 to obtain

the a priori state estimate x̂−k , and forwarding the a posteriori error covariance es-

timate Pk−1 to obtain the a priori error covariance estimate P−k for the next time

step.

In correction mode of operation, the new obtained measurements are incor-

porated with the a priori estimate to obtain an improved a posteriori estimate.

The equations that perform correction are called also measurements update equa-

tions [WB]. Those equations are: 2.34, 2.44 and 2.45.
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3 Positioning Framework for

RSSI-Based WLAN IEEE

802.11n

3.1 Overview

In this chapter, a positioning framework for RSSI-Based WLAN IEEE 802.11n

L&T is designed. In the beginning, a simulation model for validating the pro-

posed L&T solutions through this dissertation is presented. Then, a Linear Least-

Squares estimator is developed for positioning purposes. The positioning frame-

work for RSSI-Based WLAN IEEE 802.11n L&T is then designed which is ex-

tended to accuracy improvement technologies and is applicable to smartphones

and similar devices. Furthermore, a KF implementation is presented which

brings advantages over the most common approach “Extended Kalman Filter”

in terms of several aspects. The implementation includes the desig of the Kalman

Filter models and initializing. The main advantage of this technique is the ability

to work on the position estimates to improve their accuracy. This approach is

helpful in systems that provide only position estimates where channel measure-

ments are not available for developers.

The validation of the proposed L&T solution is done using a simulation proce-

dure that is presented as well. The simulation is done using Monte Carlo sim-
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ulation. Finally, comparative results are presented and discussed. This chapter

encompasses the research published in [Kha+14].

3.2 Performance Evaluation Model

For performance evaluation, the author defines a test model for L&T of a mobile

node within the WLAN IEEE 802.11n environment. This model is used for testing

and evaluating the proposed L&T algorithms throughout this dissertation.

In this model, it is assumed that the mobile node locates itself using information

provided by a number of surrounding anchor nodes. The mobile node contin-

uously collects the RSSI measurements rk from a number of anchor nodes sur-

rounding it at certain time intervals, where

rk =
[
rk(1) rk(2) . . . rk(N)

]T
, (3.1)

and N ∈ {3, 4, 6} is the number of anchor nodes with coordinates

pBSi =

xBSi

yBSi

 , for i = {1, 2, . . . , N}. (3.2)

The anchor nodes are equally spaced and located on a circle of a radius of 70 m

as shown basically in Fig 3.1. This selection comes from the fact that the WLAN

IEEE 802.11n is expected to support distances up to 200 m [09] or even longer

distances of up to 250 m [12]. It is reported that it can support distances greater

than 90 m within an indoor environment [Low11]. The author selects the circle of

trust to have a diameter of 150 m. A mobile station that moves outside this circle

is expected to drop the connection to at least one of the surrounding anchor nodes

and will therefore lose the ability to estimate its position as explained earlier in

sec. 2.7.

The coordinates of the anchor nodes are given in table 3.1.
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BS 1

BS 2

Mobile

Node

Signal 2 

Signal 1 

Signal 3 
BS 3

Figure 3.1: Positioning based on distance measurements.

Table 3.1: Anchor nodes coordinates.
3 Anchor Nodes 4 Anchor Nodes 6 Anchor Nodes

x y x y x y
-60.62 -35.00 -70.00 0.00 -60.62 35.00
60.62 -35.00 0.00 -70.00 -60.626 -35.00
0.00 70.00 70.00 -0.00 0.00 -70.00

0.00 70.00 60.62 -35.00
60.62 35.00
0.00 70.00
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The measurement vector rk is converted to a distance vector, denoted as

zk =
[
zk(1) zk(2) . . . zk(N)

]T
, (3.3)

based on one of the High Throughput Task Group (TGn) channel models [Erc04].

TGn proposed sufficient channel models for WLAN IEEE 802.11 n that can be

used in both small and large indoor environments. These models are presented

in section 2.6.

The proposed positioning algorithms are implemented in the mobile node to use

the distances vector zk and the anchor nodes’ coordinates panci , where i is an

element of {1, . . . , N}, in different ways accordingly to locate and track the mobile

node.

In order to evaluate the proposed L&T algorithms and to define the movement

patterns of a mobile node, a motion model is needed for these purposes. In gen-

eral, pedestrian motion models are rather complex and governed by decision

models, choice of destination, and interaction with other people [Ant05; KPV10].

In this dissertation, the pedestrian motion model is described by linear differ-

ential equations, to be followed, in which the acceleration u is random and uni-

formly distributed, i.e.

f (u) =


1

0.5−(−0.5) −0.5 m
s2 ≤ u ≤ 0.5 m

s2

0 otherwise
(3.4)

In the above equation, the interval [−0.5 m
s2 , 0.5 m

s2 ] is selected to ensure that the

speed is mostly not exceeding 1.5 m/s which is assumed to be the maximum

pedestrian speed.

By knowing that the acceleration ux
k−1 of the x coordinate at time index k − 1 is

the change of velocity with time [WHT10], i.e.

ux
k−1 =

∆v
∆t

=
vx

k − vx
k−1

tk − tk−1
, (3.5)
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the speed vx
k of x coordinate at time index k can be obtained from the speed vx

k−1

of x coordinate at time index k− 1 by writing (3.5) as which results in

vx
k = vx

k−1 + Tux
k−1, (3.6)

where

T = tk − tk−1, (3.7)

the displacement of the x coordinate, i.e. xk − xk−1, is then calculated from the

area of a trapezoid [Mor14] between the speed vk−1 at time tk−1 and the speed vk

at time tk, i.e.

xk − xk−1 =
1
2

T(vx
k + vx

k−1). (3.8)

Substituting (3.6) into (3.8) yields

xk = xk−1 + Tvx
k−1 +

1
2

T2ux
k−1. (3.9)

A similar formula for the speed vy
k of the y coordinate can be written as

vy
k = vy

k−1 + Tuy
k−1, (3.10)

with similar formula of the position yk of the y coordinate as

yk = yk−1 + Tvy
k−1 +

1
2

T2uy
k−1. (3.11)

In the motion model, the mobile node starts to move from the center of simulation

area (0, 0) driven by the random acceleration which leads to random velocity

and position at each time instant of the mobile node. For performance evaluation

purpose, 100 random traces are adopted in which each trace is repeated 100 times

to have different measurement noise conditions so that a total of 10000 random

traces are generated. All the generated traces end before exceeding the circle of

75 m which is the circle of trust.

To demonstrate how the mobile node moves according to the proposed motion
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Figure 3.2: Three movement traces of a mobile node surrounded with four anchor
nodes.

model, Figure 3.2 is given. In this figure, three different traces are generated

according to the proposed model.

3.3 Linear Least-Square Estimator Design

In the context of wireless positioning, LS can be used to approximate a set of

wireless channel measurements in order to estimate the position of a certain

MS [FF11]. The estimated position is obtained through minimizing the sum of

the squares of the errors between a model that relates the position to the wireless

measurements and the actual wireless channel measurements [FF11]. In the be-

ginning, the equations of the LLS estimator [FF11] is presented with respect to a

model. To obtain the model, the author proposes trilateration and a linearized

system of equations [Waa+10a]. Once the model is known, the position can be

estimated using LLS method.
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By considering the positioning problem of section 2.2, the mobile node with co-

ordinates

x = [x, y]T, (3.12)

receives the distance measurements

z = [z1, z2, . . . , zN]
T, (3.13)

from N BSs. Let hi(x) be the model that relates the position coordinates x to the

distance measurement zi obtained from the ith BS such that

zi = hi(x) + ηi, i = {1, 2, . . . , N} (3.14)

where ηi is ith measurement noise component added to the model. Equa-

tion (3.14) can be rewritten in matrix formulation as follows

z = H(x) + η, (3.15)

where

H(x) =


h1(x)

h2(x)

. . .

hN(x)

 , η =


η1

η2

. . .

ηN

 . (3.16)

Now the goal is to find an estimate of the unknown x, which is denoted by x̂.

According to LS, this estimation is done by minimizing the sum of squares of zi−
hi(x) such that the cost function c(x) is minimized. The cost function is written

as

c(x) =
N

∑
i=1

η2
i =

N

∑
i=1

[zi − hi(x)]2 = [z−H(x)]T[z−H(x)]. (3.17)

The estimated position x is determined as argument that minimize the cost func-

tion c(x), i.e.,

x̂ = arg min
x
{c(x)}. (3.18)

The solution to (3.18) can be obtained by letting the cost function c(x) achieve its
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minimum value which is done when its derivatives with respect to x are equal to

zero as given

dc(x)
dx

=
d
dx

[(z1 − h1(x))2 + (z2 − h2(x))2 + · · ·+ (zn − hn(x))2] = 0, (3.19)

with further manipulation

dc(x)
dx

= −2[(z1 − h1(x))
dh1(x)

dx
+ (z2 − h2(x))

dh2(x)
dx

+ · · ·+ (zn − hn(x))
dhn(x)

dx
] = 0. (3.20)

Equation (3.20) can be written in matrix formulation as

dc(x)
dx

= −2[zT −H(x)T]
dH(x)

dx
= 0. (3.21)

If the model is non-linear, numerical optimization might be required [FF11] to get

a solution for x. The Linear Least-Squares (LLS) assumes that the model of (3.14)

or (3.15) is linear, i.e.,


z1

z2
...

zN

 =


h11 h12

h21 h22
...

...

hN1 h2N


x

y

+


η1

η2
...

ηN

 , (3.22)

or

z = Hx + η. (3.23)

The linearity simplifies the mathematical formulation of the LS, which is given

in (3.21), in the sense that it is possible to get a closed-form solutions for the

parameters that minimizes the cost function c(x). By comparing (3.15) and (3.23),

we have

H(x) = Hx. (3.24)
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Substituting (3.24) into (3.21) results

dc(x)
dx

= −2[zT − xTHT]
dHx
dx

= 0, (3.25)

with further manipulation

zTH = xTHTH. (3.26)

Transposing both sides of (3.26), we have

HTHx = HTz, (3.27)

with further manipulation, the x can be obtained as

x = (HTH)−1HTz (3.28)

In order to define the model, the trilateration technique which is introduced in

section 2.4.2 is considered for this purpose.

Trilateration establishes a set of N non-linear equations. Several solution methods

are proposed to deal with the non-linear equations such as the minimum path

discovery [Mas06] and the linearized system of equations [MH95; Waa+10a]. The

later establishes a set of linear equations out of the non-linear equations obtained

from (2.10).

By considering section 2.4.2, the following equation

di
2 = (xBSi − x)2 + (yBSi − y)2 i = {1, . . . , N}, (3.29)

is constructed for each surrounding anchor node. As a result, N non-linear equa-

tions are generated which need to be solved for location estimation.

Due to the noise, every ranging result is the estimation d̂i of the exact distance di

between the mobile node and the ith anchor node. The estimation d̂i is generally

error prone. The ranging error of the distance between the mobile node and the
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ith anchor node can be given as

ndi = d̂i − di. (3.30)

The author proposes the linearized system of equations solution which is first

presented as ideal case, i.e. without noise, in [MH95] and later presented with

noise in [Waa+10a] to establish a set of linear equations that can be solved using

LLS.

This solution can be obtained by subtracting (3.29) for BSi from the adjacent

equivalent expression for BSi+1. By rewriting (3.29) in matrix vector form and

introducing ranging error ndi which is defined in (3.30), we have

d̂2
i − 2ndi d̂i + ndi

2 = |x− pBSi |
2. (3.31)

Subtracting adjacent quadratic equations (i) and (i + 1) yields N equations

d̂2
i+1 − d̂2

i − n∆d2,i,i+1 = |x− pBSi+1 |
2 − |x− pBSi |

2, (3.32)

which are linear with the unknown variable x. The term n∆d2,i,i+1 contains the

noise differences as given

n∆d2,i,i+1 = −2ndi+1
d̂i+1 + 2ndi d̂i + n2

di+1
− n2

di
. (3.33)

The set of N equations of (3.32) can be written as follows

H · x = b− n∆d2 , (3.34)

where

H =


xBS2 − xBS1 yBS2 − yBS1

...
...

xBSN − xBSN−1 yBSN − yBSN−1

xBS1 − xBSN xBS1 − xBSN

 , (3.35)
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the b vector

bi =


d2

i+1 − d2
i − x2

BSi+1
+ x2

BSi
− y2

BSi+1
+ y2

BSi

2
i < N

d2
1 − d2

N − x2
BS1

+ x2
BSN
− y2

BS1
+ y2

BSN

2
i = N

, (3.36)

and the noise vector

n∆d2 =


−2ndi+1

d̂i+1 + 2ndi d̂i + n2
di+1
− n2

di
, i < N

−2nd1 d̂1 + 2ndi d̂i + n2
d1
− n2

di
, i = N

. (3.37)

A solution to (3.34) can be done by neglecting the error component and solving

for the position. This equation can be solved using the LLS method which is

presented in section 3.3 as given

x̂ = (HTH)−1HTb. (3.38)

Here, the LS method will produce identical results with the maximum likelihood

estimator if the measurements have a Gaussian distribution which is the case in

our assumptions. The position estimation using trilateration which is formulated

using linearized system of equation is summarized in Algorithm 3.1.

Algorithm 3.1 Position estimation using trilateration and linearized system of
equation.

1: procedure LINEARIZED SYSTEM OF EQUATION FORMULATION
2: Obtain the measurements d;
3: Formulate (3.35) and (3.36);
4: end procedure
5: procedure LINEAR LEAST-SQUARES IMPLEMENTATION
6: Obtain the estimated position x̂ from (3.38).
7: end procedure
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3.4 Framework Structure

The positioning framework for IEEE 802.11n is designed and implemented in

MATLAB. The functional architecture of the framework is shown in Fig. 3.3

which consists of 4 layers as given

1. Measurement layer

The measurement layer contains the operations needed to measure the RSSI

values r ∈ RN. These values are expressed in Decibel (dB). In the design, a

set of 200 values is chosen to represent different RSSI values. After mea-

surements, the RSSI values go to the quantization layer. A large set of mea-

surements had been taken into consideration due to the measurement errors

which in turns produce estimated position errors.

2. Quantization layer

This layer converts the RSSI measurements r to quantized values r̂ ∈ RN

after receiving these values from the measurement layer. In the design, a set

of 200 values is defined to represent the quantized values with quantization

level of 1 dB.

3. Estimation

As depicted in Fig. 3.3, the estimation layer consists of further two subfunc-

tions for converting the received power to distance estimates and to convert

those estimates into position estimates.

The quantized RSSI measurements r̂ are converted to distance estimates

d̂ ∈ RN according to a channel model proposed by the High Throughput Task

Group (TGn) [Erc04]. Six models have been proposed for different environ-

ments. The TGn models are presented in section 2.6. The author chooses

the model F out of the six channel models. This model is intended for in-

door large environment and has the biggest shadow noise of 6 dB standard
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Refinement

Estimation

Quantization

Measurement

Utilizing Kalman filter

Measuring RSSI values

Converting RSSI values to Rx 

power level

Converting Rx power levels to 

distance estimates

Converting distance estimates to 

position estimates

Figure 3.3: Positioning framework for IEEE 802.11 n system, inspired by [Kot+03].

deviation among other models. This noise influences the RSSI and hence

the position estimates.

Generally, propagation model is a result of reflections, diffractions, and

multi-path effects. In addition, other parameters such as walls, building

structure, obstacles and moving objects have influence on the propagation

model. These factors make using of propagation model for localization al-

most impossible. Figure 3.4 compares measurements having 6 dB standard

deviation noise with the path loss model F in its ideal case, i.e. without

noise.

The LLS estimator, which is presented in section 3.3, is used to convert dis-

tance estimates d̂ into position estimates x̂ based on the knowledge of the

locations of the surrounding anchor nodes.

4. Refinement

This layer enables refinement of the position estimates. In this layer, the KF

which is designed in section 3.6 is implemented so that the position mea-
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Figure 3.4: WLAN IEEE 802.11n propagation model with measurements having
6 dB standard deviation noise.

surements are combined with expected estimates for better results. The KF

is implemented to work with the position estimates in order to obtain im-

proved position estimates. As such, this layer does not rely directly on the

distance estimates in the estimation layer. Therefore, further data fusion, re-

placing, and removing or changing the KF can be done without additional

setup to the KF. In addition, different position accuracy improvement tech-

niques intended for linear systems can be used in this layer as alternative to

the designed KF without further changing in other layers.

3.5 Linear State Space Models Design

By referring to positioning problem given in section 2.2, it is desired to design the

state-space models that are presented in section 2.7.
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Based on the proposed motion model of section 3.2, it is possible to write the

system state dynamics equation for the state to be estimated. More specifically,

the equations (3.6), (3.9), (3.10), and (3.11) are used to design the state dynamics

in matrix form as
xk

yk

vx
k

vy
k

 =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




xk−1

yk−1

vx
k−1

vy
k−1

+


1
2 T2 0 0 0

0 1
2 T2 0 0

0 0 T 0

0 0 0 T




ux

k−1

uy
k−1

ux
k−1

uy
k−1

+


w1

k−1

w2
k−1

w3
k−1

w4
k−1

 , (3.39)

or

xk = Axk−1 + Buk−1 + wk−1, (3.40)

where xk ∈ R4 is the process state vector at time tk. A ∈ R4x4 is the matrix relating

the state xk−1 ∈ R4 of the previous time step tk−1 to the state xk of the current time

state k which is written as

A =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 . (3.41)

B ∈ R4×4 is the matrix relating the acceleration vector uk−1 ∈ R4 of the previous

time step tk−1 to the state xk of the current time state k which is written as

B =


1
2 T2 0 0 0

0 1
2 T2 0 0

0 0 T 0

0 0 0 T

 , (3.42)

and uk−1 ∈ R4 is the acceleration vector which is randomly generated according
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to section 3.2 and is written as

uk−1 =


ux

k−1

uy
k−1

ux
k−1

uy
k−1

 . (3.43)

wk−1 ∈ R4 is the process uncertainty vector with covariance matrix Qk−1 that has

the following structure

E[wk−1wi−1
T] =

Qk−1, i = k

0, i 6= k
(3.44)

where the covariance matrix Qk−1 is obtained from the calculated variances of the

state xk−1 after operating the KF. Nevertheless, determining the matrix will fol-

low in section 3.6. The measurements are assumed to hold the position estimate

x̂trk ∈ R2 which are obtained from Algorithm 3.1, i.e,z1
k

z2
k

 =

x̂trk

ŷtrk

 (3.45)

or

zk = x̂trk , (3.46)

where zk ∈ R2 is the measurement vector at time tk and the subscript “tr” denotes

to trilateration. The state to measurement equation is then written asz1
k

z2
k

 =

1 0

0 1

xk

yk

+

v1
k

v2
k

 , (3.47)

or

zk = H

xk−1

yk−1

+ vk, (3.48)

where H ∈ R2×2 is the matrix relates the measurements zk to the state xk which
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is written as

H =

1 0

0 1

 . (3.49)

vk ∈ R2 is the measurements state noise vector which has known covariance

matrix Rk with the following structure

E[vkvi
T] =

Rk, i = k

0, i 6= k
, (3.50)

However, the determining of the matrix will follow in section 3.6. The random

noise variables wk and vk have zero mean and are independent of each other,

i.e.

E[wk−1vi
T] = 0, for all k and i. (3.51)

3.6 Kalman Filter Implementation Design

The models given in (3.40) and (3.48) form the fundamental of the KF design.

In addition, the covariance matrix Q of the model of (3.40) and the covariance

matrix R of (3.48) are essential to be declared. Moreover, the error covariance

matrix P0 and the zeroth state x̂0 need to be initialized. Then, an update of the

position estimate can be done based on the information provided to the filter.

The author assumes that the covariances Q and R are not changing throughout

the operation of the KF and therefore the subscript “k” is dropped from both

matrices. For convenience, the calculation process of the measurement noise co-

variance R is proceeding the calculation of the state uncertainty covariance Q.

The measurement noise covariance is associated with the noisy measurements of

the position,i.e.

R =

E[v1v1] E[v1v2]

E[v2v1] E[v2v2]

 . (3.52)
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Assuming that the individual noises v1 and v2 are uncorrelated, the variances σ2
v1

and σ2
v2

of the relating coordinates x and y respectively can be calculated from the

estimated position using the developed Algorithm 3.1, resulting as

R =

σ2
v1

0

0 σ2
v2

 . (3.53)

Based on the simulation results of xk and yk, both σ2
v1

and σ2
v2

are found to be

equal to 1558 m2.

The state uncertainty covariance matrix Q is impossible to be determined prior to

the operation of the KF since there is no prior knowledge available of the process

output. Therefore, the Q is approximately initialized so that the KF can work in

an off-line mode of operation. In this mode, the main and the only concern is to

measure the matrix Q for an on-line mode of operation of the KF.

The covariance matrix Q is associated with the state uncertainty, i.e.

Q =


E[w1w1] E[w1w2] E[w1w3] E[w1w4]

E[w2w1] E[w2w2] E[w2w3] E[w2w4]

E[w3w1] E[w3w2] E[w3w3] E[w3w4]

E[w4w1] E[w4w2] E[w4w3] E[w4w4]

 . (3.54)

During the offline-mode, the variance σ2
w1

for the position’s coordinate x, the vari-

ance σ2
w2

for the position’s coordinate y, the variance σ2
w3

for the velocity of the x

coordinate and the variance σ2
w4

for the velocity of the y coordinate are initialized,

resulting in

Q =


σ2

w1
0 0 0

0 σ2
w2

0 0

0 0 σ2
w3

0

0 0 0 σ2
w4

 . (3.55)

From the off-line mode, new variances σ2
w1

, σ2
w2

, σ2
w3

and σ2
w4

can be obtained. These

variances used to update the covariance matrix Q for the on-line mode of oper-
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ation for the KF. According to simulations, the values of the off-line mode and

the on-line have similar output results of the KF. Nevertheless, the values of the

off-line mode as well as the on-line mode are given in Table 3.2.

Table 3.2: Process noise covariance values.
off-line mode on-line mode

Sigma Value Sigma Value
σ2

w1
366.5 m2 σ2

w1
196 m2

σ2
w2

366.5 m2 σ2
w2

196 m2

σ2
w3

366.5 m2

s2 σ2
w3

35 m2

s2

σ2
w4

366.5 m2

s2 σ2
w4

35 m2

s2

To complete initializing the KF, the error covariance matrix Pk−1 can be initialized

for k = 1 as

Pk−1 = Q, (3.56)

and the zeroth state x̂0 is initialized. The initial value for x̂0 can be obtained from

the LLS presented in Algorithm 3.1 as

x̂0 =


x̂tr0

0

0

 , (3.57)

where the subscript “tr” refers to trilateration and the velocities vx
k and vy

k of the

zeroth state x̂0 are initialized to zero.

After completing the inizialization of the KF, the equations of the KF [GA11;

BH12] can be implemented. By referring to the system dynamic model given

in (3.40), the a priori estimation of the state is obtained as

x̂−k = x̂k−1 + Buk−1, (3.58)

where x̂−k refers to the state prediction estimate at time t1 based on the measure-

ments obtained at previous time t0.
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The measurements zk which are obtained from (3.46) are then used to correct the

prediction of (3.58) to produce the a posteriori state estimate as

x̂k = x̂−k + Kk[zk −H(x̂−k )], (3.59)

where Kk is the Kalman gain which is calculated as

Kk = P−k HT(HP−k HT + R)−1, (3.60)

where P−k is the a priori estimation error covariance matrix which is calculated

as

P−k = Ak−1Pk−1AT
k−1 + Q (3.61)

where Pk is the a posteriori estimation error covariance matrix. The a posteriori

estimation error covariance is then updated using the following

Pk = (I−KkH)P−k . (3.62)

The equations (3.58), (3.61), (3.60), (3.59) and (3.62) are repeated once new mea-

surements z are obtained. Repeating the calculation ensures the expected preci-

sion and the real time operation of the system. The KF implementation is sum-

marized in Algorithm 3.2.

3.7 Simulation Procedure

The simulations, which are based on the model presented in section 3.2, are

carried out according the steps that follow. Note that steps 1-5 are inspired by

[Waa+10b]. Nevertheless, the simulation steps are:

1. The distances di between the mobile node and ith anchor node are calcu-

lated for i = 1, . . . , N.
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Algorithm 3.2 Kalman Filter Implementation Design Algorithm for the position-
ing problem

1: Initialize the A matrix as in (3.41).
2: Initialize the H matrix as in (3.49).
3: Initialize the measurement noise matrix R as in (3.53).
4: Initialize and update the process noise matrix Q as in (3.55).
5: Initialize the error estimation covariance P0 as in (3.56).
6: Initialize the system state x̂0 as in (3.57) based on Algorithm 3.1.
7: for k = 1 to ∞ do
8: Obtain the measurements zk from Algorithm 3.1 as in (3.46);
9: Compute the a priori state x̂−k as in (3.58);

10: Calculate the a priori estimation error matrix P−k as in (3.61);
11: Calculate the Kalman gain Kk as in (3.60);
12: Calculate the a posteriori state x̂k as in (3.59);
13: Calculate the a posteriori estimation error covariance matrix Pk as in (3.62);
14: Extract the position information x̂k,ŷk from the state x̂k;
15: end for

2. According to the distance, the RSSI vector rk is calculated in the mobile node

for the anchor nodes.

3. A zero mean Gaussian random variable η(0, σ2) is generated and added to

the RSSI value according to the model F of the TGn channel models. In this

model, the Gaussian random variable η is added only to the RSSI measure-

ments for distances larger than the breakpoint distance dBP as presented in

section 2.6. As a result, the error prone vector rk ∈ RN is generated from

r̂k = rk + η(0, σ2) (3.63)

where r̂k is defined in (3.1).

4. The error prone measurement r̂k is quantized, yielding the quantized mea-

sured r̂k,q.

5. The estimated distance d̂i is extracted from r̂k,q according to the model F of

the TGn channel models presented in section 2.6.

6. Trilateration is used to formulate a set of equations of circles out of the es-

timated distances and the locations of the anchor nodes. The equation of

circles is given in section 2.4.2.
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7. The linearized system of equations is used to formulate the equation of cir-

cles into one equation which is solvable using the LLS method. That is, to

formulate (3.35) and (3.36).

8. The LLS method is used to estimate the mobile position x̂tr.

9. KF is used for position accuracy improvement. Here, the system measure-

ments hold the estimated position x̂tr and the system state holds the position

refinement p̂.

10. The position coordinates x̂ and ŷ are extracted from the system state x̂.

11. The distance error ρ is calculated as

ρ = |p̂− p| , (3.64)

where p is the real mobile node position.

12. The simulation steps 3-11 are carried out for different traces according to the

performance evaluation model. A detailed explanation for the this model is

given in section 3.2.

13. The simulation steps 3-12 are repeated for 100 iterations to simulate differ-

ent noise conditions.

14. The mean distance error E(∆ρ) is conducted by averaging all the obtained

values of the distance error ρ.

15. The simulation steps 3-14 are carried out for different numbers of anchor

nodes N ∈ {3, 4, 6}.

3.8 Results

In this section, the simulation results for the proposed algorithm are presented.

The results are obtained according to the evaluation performance model which is

presented in section 3.2 and the simulation procedure of section 3.7.

Figures 3.5, 3.6, and 3.7 depict the error distance ρ for 3, 4 and 6 anchor nodes

respectively according to different distances d to the network’s center of coordi-
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nate (0, 0) for the proposed KF implementation compared with the LLS estima-

tor. The KF is implemented in the refinement layer of the framework presented

in Fig. 3.3 while the LLS estimator is implemented in the estimation layer of the

framework.

The error distance ρ is obtained according to section 3.2, where 100 random traces

representing different traces in which each is repeated 100 times to represent dif-

ferent noise condition resulting in 10000 random traces. Each trace contains a

number of positions that the mobile node is following during its movement. The

error distance ρ is then obtained by measuring the distance between the estimated

position p̂ with the real position p of the mobile node. As such, ρ can be defined

to be the distance estimation error as

ρk =
√
(xk − x̂k)2 + (yk − ŷk)2, (3.65)

where xk and yk are the real coordinates of the mobile node at time index k and x̂k

and ŷk are the estimated coordinates at time index k. The distance d is measured

from the network’s center of coordinates (0, 0) and has the maximum value of

75 m in order not to exceed the diameter of the circle of trust of 150 m described

earlier in section 2.2.

The estimated mean error distance values E[∆ρ] for 3, 4 and 6 anchor nodes are

calculated for each technique. In case of the LLS estimator, the mean error dis-

tance values are 29.48 m, 26.56 m and 22.11 m for 3, 4 and 6 anchor node respec-

tively. Compared with the LLS estimator, the KF showed significant improve-

ment of the mean error distance of 19.01 m with 35.51 % improvement, 17.28 m

with 34, 93 % improvement and 14.40 m with 34, 87 % improvement for 3, 4 and

6 anchor nodes respectively. The mean error distance values are summarized in

Table 3.3.

From Figs. 3.5, 3.6, 3.7, and the comparative values of the mean error distance,

it is clear that the KF implementation reduces the estimation error considerably

compared with the LLS estimator.

63



3 Positioning Framework for RSSI-Based WLAN IEEE 802.11n

0 10 20 30 40 50 60 70
0

15

30

45

60

75

90

Distance from center d (m)

D
is

ta
n
c
e
 e

rr
o
r 

ρ
 (

m
)

 

 

N=3 anchors LLS

N=3 anchors KF

Figure 3.5: Error distance ρ for distances d that shows the advantages of the pro-
posed KF implementation compared to the LLS using 3 anchor nodes.
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Figure 3.6: Error distance ρ for distances d that shows the advantages of the pro-
posed KF implementation compared to the LLS using 4 anchor nodes.
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Figure 3.7: Error distance ρ for distances d that shows the advantages of the pro-
posed KF implementation compared to the LLS using 6 anchor nodes.

To compare the proposed KF implementation with the EKF, figures 3.8, 3.9 and

3.10 are given. The EKF is considered as a popular technique as pointed out in

section 1.3.2. However, the EKF will be presented in details in section 4.4. Never-

theless, the results of the EKF are based on the performance evaluation model of

section 3.2 and the simulation procedure that will be presented in section 4.5.2.

The estimated mean error distance E[∆ρ] values for 3, 4 and 6 anchor nodes of the

EKF are calculated for performance comparison. The values are 21.91 m, 20.21 m

and 16.57 m for 3, 4 and 6 anchor node respectively. The obtained error values

can be found in Table 3.3 for convenience. Based on these results, the proposed

KF implementation has 13.23 %, 14.49 %, 13.09 % improvement for 3, 4, 6 anchor

nodes respectively compared with the EKF.

To show the distribution of the error distance of the KF over the distance d, fig-

ures 3.11, 3.12, and 3.13 are given. From Fig. 3.11 which has 65 % of the error

distance values below 20 m for the case of 3 anchor nodes, it can be seen that the
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Figure 3.8: Error distance ρ for distances d for the KF implementation compared
to the EKF using 3 anchor nodes.
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Figure 3.9: Error distance ρ for distances d for the KF implementation compared
to the EKF using 4 anchor nodes.
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Figure 3.10: Error distance ρ for distances d for the KF implementation compared
to the EKF using 6 anchor nodes.

largest probability occurs at the distance of 12 m. Larger distance error are ob-

tained in larger distances from the network center. By considering Fig. 3.12 which

shows the results for 4 anchor nodes with a probability of 70 % for distances be-

low 20 m. The largest probability occurs at a distance error of 8 m. Figure 3.13

shows the results for 6 anchor nodes with a probability of 79 % for distance errors

below 20 m. The largest probability occurs at the distance of 6 m. For com-

parison purpose, the error distribution of the popular EKF will be presented in

Figs. 4.9, 4.10 and 4.11 of chapter 4.

From the simulation results above, it can be concluded that the proposed KF im-

plementation has better estimation accuracy than the EKF in all the testing con-

ditions.
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Table 3.3: Mean error distance E[∆ρ] for each test case.
Method Mean error distance E[∆ρ] (m)

3 Anchor nodes 4 Anchor nodes 6 Anchor nodes
LLS 29.48 26.56 22.11
EKF 21.915 20.21 16.57
KF 19.01 17.28 14.40
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Figure 3.11: Error distance ρ distribution for distances d in the case of 3 anchor
nodes for the proposed KF implementation.
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Figure 3.12: Error distance ρ distribution for distances d in the case of 4 anchor
nodes for the proposed KF implementation.
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Figure 3.13: Error distance ρ distribution for distances d in the case of 6 anchor
nodes for the proposed KF implementation.
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IEEE 802.11n Positioning and

Tracking

4.1 Overview

Some of the successful applications of the KF are with the non-linear dynamics

and (or) the non-linear measurements [BH12]. In particular when the evolving

state has a non-linear relationship with the previous state and (or) the measure-

ments have a non-linear relationship with the system state. A block diagram that

illustrates the application of the non-linearity of the system dynamics function

and the measurements function to the KF is depicted in Fig. 4.1.

In this chapter, the state-space models are designed according to the positioning

problem given in section 2.2. One of the solutions for solving the non-linearity

in the designed models is linearization. In general, these non-linear models are

only solvable using the KF [GA11].

The most popular linearization approach to approximate the non-linearity so that

the non-linearity becomes solvable with the KF is the EKF. The EKF is designed

for L&T based on the designed models. The EKF is then used for comparative
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Delay

Discrete Kalman filterSystem dynamics Measurement dynamics

Delay

Figure 4.1: Non linear Kalman Filter.

evaluation with all the proposed techniques through this dissertation. An algo-

rithmic implementation of the EKF for L&T is proposed.

In addition in this chapter, the author proposes the IEKF for L&T application. Un-

like the EKF which linearizes about the a priori state estimate, the IEKF linearizes

about the most recent a posteriori state estimate. The algorithmic implementation

of this filter is proposed. In addition, the simulation environment for testing the

proposed filter is explained. Finally in this chapter, comparative results of the

filter implementation are illustrated.

4.2 Non-Linear State-Space Models Design

By considering the positioning problem presented in section 2.2, it is desired to

design the state-space models that are introduced earlier in section 2.7.

By referring to the proposed motion model of section 3.2, it is possible to write the

system state dynamics equation in which the state is desired to be estimated. In

particular, the equations (3.6), (3.9), (3.10) and (3.11) are used to design the state
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dynamics in matrix form as


xk

yk

vx
k

vy
k

 =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




xk−1

yk−1

vx
k−1

vy
k−1

+


1
2 T2 0 0 0

0 1
2 T2 0 0

0 0 T 0

0 0 0 T




ux

k−1

uy
k−1

ux
k−1

uy
k−1

+


w1

k−1

w2
k−1

w3
k−1

w4
k−1

 , (4.1)

or

xk = Axk−1 + Buk−1 + wk−1, (4.2)

where xk ∈ R4 is the process state vector at time tk. A ∈ R4×4 is the matrix

relating the state xk−1 ∈ R4 of the previous time step tk−1 to the state xk of the

current time state k which is written as

A =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , (4.3)

B ∈ R4×4 is the matrix relating the control vector uk−1 ∈ R4 of the previous time

step tk−1 to the state xk of the current time state k which is written as

B =


1
2 T2 0 0 0

0 1
2 T2 0 0

0 0 T 0

0 0 0 T

 , (4.4)

and uk−1 ∈ R4 is the acceleration vector which is randomly generated as pre-

sented in section 3.2 and is written as

uk−1 =


ux

k−1

uy
k−1

ux
k−1

uy
k−1

 . (4.5)
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wk−1 ∈ R4 is the state process uncertainty vector with known covariance matrix

Qk with the following structure

E[wk−1wi−1
T] =

Qk−1, i = k

0, i 6= k
(4.6)

However, the procedure of determining the matrix Qk will be followed in sec-

tion 4.3.

The measurements zk ∈ RN at time tk are the distances dk ∈ RN measured from

the mobile node to the surrounding anchor nodes which are expressed as


z1

k
...

zN
k

 =


d1

k
...

dN
k

 . (4.7)

The state to measurement function (2.20) is then given by


z1

k
...

zN
k

 =


√
(xBS1 − xk)2 + (yBS1 − yk)2

...√
(xBSN − xk)2 + (yBSN − yk)2

+


v1

k
...

vN
k

 , (4.8)

or

zk = h(xk) + vk, (4.9)

where vk ∈ RN is the measurements state noise vector with known covariance

matrix Rk that has the following structure

E[vkvi
T] =

Rk, i = k

0, i 6= k
, (4.10)
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Discrete Kalman filterSystem dynamics Measurement dynamics

DelayDelay

Figure 4.2: The designed state-space models application to the Kalman Filter
application.

The noise components of wk−1 and vk are independent of each other, i.e.

E[wk−1vi] = 0, for all k and i. (4.11)

Nevertheless, the procedure for determining the matrix Rk will be followed in

section 3.2. A block diagram that illustrates the application of the designed state-

space models to the KF is depicted in Fig. 4.2.

4.3 Noise Covariance Matrices Calculation

To proceed with the design process of the EKF, the uncertainty covariance matrix

Q of the model of (4.1) and the noise covariance R of the model of (4.9) need to

be determined.

The author assumes that the matrices Q and R are not changing during the op-

eration of the EKF and therefore the subscript “k” is dropped from both matri-

ces. For the sake of simplicity, the calculation process of the measurement noise
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covariance matrix R will proceed the calculation of the uncertainty covariance

matrix Q.

The measurement noise covariance matrix R is associated with the noisy sensor

measurements, that is

R =


E[v1v1] E[v1v2] . . . E[v1vN]

E[v2v1] E[v2v2] . . . E[v2vN]
...

... . . . ...

E[vNv1] E[vNv2] . . . E[vNvN]

 . (4.12)

By assuming no bias in the sensors, the variance σ2
vi

of the measurement noise

of the sensors i = 1, 2, . . . , N can be calculated from the obtained measurement

data prior to the working of the EKF. As such, the state noise covariance can be

written as

R =


σ2

v1
0 . . . 0

0 σ2
v2

. . . 0
...

... . . . ...

0 0 . . . σ2
vN

 . (4.13)

Based on the simulation results, the sigmas σ2
v1

, σ2
v2

, . . . , σ2
vN

are found to be equal

to 358.779 m2.

The covariance matrix Q is associated with the state uncertainty, i.e.

Q =


E[w1w1] E[w1w2] E[w1w3] E[w1w4]

E[w2w1] E[w2w2] E[w2w3] E[w2w4]

E[w3w1] E[w3w2] E[w3w3] E[w3w4]

E[w4w1] E[w4w2] E[w4w3] E[w4w4]

 . (4.14)

Assuming that the individual uncertainties w1, w2, w3 and w4 are not correlated,
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the state uncertainty covariance matrix can be written as

Q =


σ2

w1
0 0 0

0 σ2
w2

0 0

0 0 σ2
w3

0

0 0 0 σ2
w4

 . (4.15)

The state uncertainty covariance matrix Q is impossible to be calculated prior to

the operation of the EKF since there is no prior knowledge of the output of the

filter. As such, the matrix Q is approximately initialized to let the EKF work in

the off-line mode of operation. In this mode, the main target is to measure the

matrix Q for the on-line mode of operation for the EKF.

For the off-line mode of operation, the values σ2
w1

, σ2
w2

, σ2
w3

and σ2
w4

can be initial-

ized. The values are calculated based on the expected results of the filter and

they are given in Table 4.1. Then new variances values σ2
w1

, σ2
w2

, σ2
w3

and σ2
w4

are

caluclated for the on-line mode from the simulations and are given in Table 4.1.

Nevertheless, it should be mention that the values of the off-line mode and on-line

mode have similar output results of the filter according to simulations.

Table 4.1: Process noise covariance values.
off-line mode on-line mode

Sigma Value Sigma Value
σ2

w1
366.5 m2 σ2

w1
95 m2

σ2
w2

366.5 m2 σ2
w2

95 m2

σ2
w3

366.5 m2

s2 σ2
w3

0 m2

s2

σ2
w4

366.5 m2

s2 σ2
w4

0 m2

s2
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4.4 Extended Kalman Filter Design

The Kalman Filter described in section 2.8 has addressed the estimation of the

state x ∈ Rn of a discrete time controlled process which is governed by a linear

stochastic difference equation of a dynamical system and a linear state to mea-

surements relationship. If the state dynamics and (or) the measurement relation-

ship to the process is non-linear, the Kalman Filter in its original form is not be

applicable anymore.

Linearizing the non-linearity in the models is considered as a solution to over-

come this problem. The EKF [Sim96; GA11] linearizes the non-linear models

of (2.19) and (2.20) at each time instant around the most recent state estimate

which is the a priori state estimate x̂−k .

The EKF assumes that the function f(·) and the function h(·) of the state-space

problem presented in section 2.7 are sufficiently differentiable at x̂−k so that they

can be represented by a Taylor series expansion, according to [GA11]

f(xk) ≡ f(x̂−k ) + f′(x̂−k )(xk − x̂−k ) +
f′′(x̂−k )

2!
(xk − x̂−k )

2 + . . . , (4.16)

h(xk) ≡ h(x̂−k ) + h′(x̂−k )(xk − x̂−k ) +
h′′(x̂−k )

2!
(xk − x̂−k )

2 + . . . , (4.17)

where the prime ′ refers to the derivative of a function. Then, the EKF approxi-

mates the non-linearity of the functions f(·) and h(·) into linear equations using

first order Taylor series expansions of (4.16) and (4.17).

By recalling the design of the state-space models in section 4.2, it can be clearly

seen that the function f(·) is linear and therefore no linearization procedure is

required. However, the function h(·) is non-linear.

Linearizing the function h(·) of (4.9) about the a priori x̂−k is done by obtaining the

first order Taylor series expansion, from [GA11], as

h(xk) ' h(x̂−k ) + Hk[xk − x̂−k ], (4.18)
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where Hk is the partial derivative of h with respect to x evaluated at x̂−k as

Hk =
∂h
∂x
|x=x̂−k

=
∂

∂x


√
(xBS1 − xk)2 + (yBS1 − yk)2

...√
(xBSN − xk)2 + (yBSN − yk)2


∣∣∣∣∣∣∣∣∣
x=x̂−k

=


x̂−k −xBS1√

(xBS1
−x̂−k )2+(yBS1

−ŷ−k )2

ŷ−k −yBS1√
(xBS1

−x̂−k )2+(yBS1
−ŷ−k )2

... ...
x̂−k −xBSN√

(xBSN
−x̂−k )2+(yBSN

−ŷ−k )2

ŷ−k −yBSN√
(xBSN

−x̂−k )2+(yBSN
−ŷ−k )2

. (4.19)

Substituting the approximation of (4.19) into the non-linear model of (4.9), ac-

cording to [Sim96], results in

zk ≈ h(x̂−k ) + Hk(xk − x̂−k ) + vk, (4.20)

which can be written as

zk − h(x̂−k ) + Hkx̂−k = Hkxk + vk. (4.21)

By assuming that

z̃k = h(x̂−k ), (4.22)

then (4.21) can be written as

zk − z̃k = Hkxk −Hkx̂−k + vk. (4.23)

By defining the prediction error as

ẽxk = xk − x̂−k , (4.24)
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and the measurement residual as

ẽzk = zk − z̃k, (4.25)

then (4.21) can be written as

ẽzk = Hkẽxk + vk, (4.26)

which is a linear function and can be considered as the measurement function

of (2.24) of the discrete KF [WB].

After linearizing the non-linearity and determining the noise covariances as given

in section 4.3, the EKF can be initialized. In particular, the error covariance matrix

Pk−1 can be initialized for k = 1 as

Pk−1 = Q, (4.27)

and the system state x̂0 is initialized as

x̂0 =


x̂tr

0

0

 , (4.28)

where x̂tr is the estimated position obtained from Algorithm 3.1 and the velocities

vx
k and vy

k of the zeroth state x̂0 are initialized to zero.

Recalling again the design of the system dynamics of (4.1), the a priori state esti-

mation can be obtained as

x̂−k = x̂k−1 + Buk−1. (4.29)

The measurements zk are then used to correct the prediction of (4.29) to produce
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Algorithm 4.1 The Extended Kalman Filter (EKF) Implementation Algorithm
1: Obtain the location of the anchor nodes PBS.
2: Initialize the A matrix as in (4.3).
3: Initialize the measurement noise matrix R as in (4.13).
4: Initialize and then update the process noise matrix Q as in (4.15).
5: Initialize the error estimation covariance P0 as in (4.27).
6: Initialize the system state x̂0 as in (4.28).
7: for i = 1 to i = ∞ do
8: Obtain the measurements zk;
9: Compute the partial derivative Hk as in (4.19);

10: Compute the a priori state estimate x̂−k as in (4.29);
11: Obtain the measurements zk = {z1, z2, . . . , zN};
12: Compute the a priori error estimation P−k from as in (4.32);
13: Compute the Kalman gain Kk as in (4.31);
14: Compute the a posteriori state estimate x̂k as in (4.30);
15: Compute the a posteriori error estimation matrix Pk as in (4.33);
16: end for

the a posteriori state estimate as

x̂k = x̂−k + Kk[zk − h(x̂−k )], (4.30)

where Kk is the Kalman gain which is calculated as

Kk = P−k HT(HP−k HT + Rk)
−1, (4.31)

where P−k is the a priori estimation error covariance matrix which calculated as

P−k = Ak−1Pk−1AT
k−1 + Q. (4.32)

The a posteriori estimation error covariance is then updated using

Pk = (I−KkH)P−k . (4.33)

Once new measurements are obtained, equations (4.19), (4.29), (4.32), (4.31) and

(4.33) are repeated to obtain the position estimate p̂. The EKF implementation is

summarized in Algorithm 4.1.
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4.5 IEKF for RSSI-Based Indoor Positioning and

Tracking

In the context of positioning, the widely used technique for track and estimate the

position out of the RSSI measurements is the EKF. However, the EKF has several

problems discussed in section 1.3.2.

In this section, the author proposes the IEKF to improve the estimation accuracy

over the EKF. The IEKF shall be applied for the WLAN IEEE 802.11 n networks

to exploit the RSSI measurements for L&T of a mobile node.

This section starts by presenting the design of the IEKF and gives the implementa-

tion algorithm. Next the simulation procedure is explained. Finally, comparable

results are illustrated using a Monte-Carlo simulation in MATLAB.

4.5.1 Iterated Extended Kalman Filter Implementation Design

The Iterated Extended Kalman Filter IEKF [GA11] linearizes the non-linearity

of (2.19) and (2.20) at each time instant about the most recent a posteriori state

estimate x̂k.

Based on the design of the state-space models presented in section 4.2, is it noticed

that the function f(·) is linear and therefore no linearization procedure is required.

In contrast, the function h(·) of (4.9) is non-linear and linearization procedure

should be carried out.

Similar to the EKF, the IEKF approximates the non-linearity using the first order

Taylor series expansion

h(xk) ' h(x̂k) + Hk[xk − x̂k], (4.34)
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where Hk is the partial derivative of h with respect to x evaluated at x̂k as

Hk =
∂h
∂x
|x=x̂k =

∂

∂x


√
(xBS1 − xk)2 + (yBS1 − yk)2

...
...√

(xBSN − xk)2 + (yBSN − yk)2


∣∣∣∣∣∣∣∣∣
x=x̂k

=


x̂k−xBS1√

(xBS1
−x̂k)

2+(yBS1
−ŷk)

2

ŷk−yBS1√
(xBS1

−x̂k)
2+(yBS1

−ŷk)
2

... ...
x̂k−xBSN√

(xBSN
−x̂k)

2+(yBSN
−ŷk)

2

ŷk−yBSN√
(xBSN

−x̂k)
2+(yBSN

−ŷk)
2

 (4.35)

Substituting the approximation of (4.35) into the non-linear model of (4.9), results

in

zk ≈ h(x̂k) + Hk(xk − x̂k) + vk, (4.36)

which can be written as

zk − h(x̂k) + Hkx̂k = Hkxk + vk. (4.37)

By assuming that

z̃k = h(x̂k), (4.38)

then (4.37) can be written as

zk − z̃k = Hkxk −Hkx̂k + vk. (4.39)

By defining the prediction error as

ẽxk = xk − x̂k, (4.40)

and the measurement residual as

ẽzk = zk − z̃k, (4.41)
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then (4.21) can be written as

ẽzk = Hkẽxk + vk, (4.42)

which is a linear function and can be considered as the measurement function

of (2.24) of the discrete KF.

At this point, the linearization of the non-linearity is finished. The determination

of the covariances matrices R and Q is done in the same method as presented in

section 4.3.

In order to let the IEKF start working, the error covariance matrix Pk−1 is initial-

ized as

Pk−1 = Q, (4.43)

and the system state x0 is initialized as

x̂0 =


xtr

0

0

 , (4.44)

where xtr is the estimated position from Algorithm 3.1 and the velocities vx
k and

vy
k of the zeroth state x̂0 are initialized to zero.

Based on the initial state estimation x̂0 and by recalling (4.2), the IEKF predict the

estimation as

x̂−k = x̂k−1 + Buk−1, (4.45)

In addition, IEKF uses a recursion algorithm to improve the state estimate x̂k. This

algorithm uses successive evaluation of the partial derivative Hk, the Kalman

Gain Kk, and the state estimate x̂k. In this algorithm, the ith estimate of the state

vector xk is denoted by x̂[i]k , where i = {0, 1, 2, . . . }. Based on simulation, it is

found by the author that the accuarcy is not improving for i > 2 and the best

results are obtained when i = 2. The initial iteration value is the a priori estimate
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x̂−k from (4.45) as

x̂[0]k = x̂−k , (4.46)

which is the zeroth iteration. Iteration proceeds for i = {1, 2} as follows

H[i]
k =

∂h
∂x
|
x=x̂[i−1]

k
, (4.47)

K[i]
k = P−k HT[i]

k (H[i]
k P−k H[i]T

k + Rk)
−1, (4.48)

x̂[i]k = x̂−k + K[i]
k (zk − h(x̂[i]k )), (4.49)

The final a posteriori estimation of the state x̂[i]k for i = 2 is obtained from the

last iteration, and the corresponding a posteriori estimation noise covariance is

calculated using the following formula

Pk = P−k −K[i]
k H[i]

k P−k i = 2. (4.50)

The IEKF equations and their implementation are summarized in algorithm 4.2.

4.5.2 Simulation Procedure

The simulations of the implementation of the IEKF, which are based on the model

presented in section 3.2, are carried out according to the following steps:

1. The simulation steps 1-8 of the simulation procedure given in section 3.7 are

executed to obtain an initial system state x̂0.

2. IEKF or EKF is used for L&T according to section 4.5.1 or section 4.4 respec-

tively. Here, the system measurements hold the estimated distance d̂i and

the system state holds the position estimation p̂.

3. The estimated position p̂ is extracted from the the system state x̂.

4. The distance error ρ is calculated as given in (3.64).
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Algorithm 4.2 Iterated Extended Kalman Filter Implementation Design
Algorithm

1: Obtain the location of the anchor nodes PBS.
2: Initialize the measurement noise matrix R as in (4.13).
3: Initialize and possibly tune the process noise matrix Q as in (4.15).
4: Initialize the error estimation covariance P0 as in (4.43).
5: Initialize the system state x̂0 as in (4.44).
6: for k = 1 to ∞ do
7: Compute the partial derivative Hk as in (4.35);
8: Compute the a priori state estimate x̂−k as in (4.45);
9: Obtain the measurements zk = {z1, z2, . . . , zN};

10: for i = 1 to i = 2 do
11: Compute the partial derivative H[i]

k as in (4.35);

12: Compute the Kalman gain K[i]
k as in (4.48);

13: Compute the a posteriori state estimate x̂[i]k as in (4.49);
14: end for
15: Compute the a posteriori error estimation matrix Pk as in (4.50);
16: Extract the position information x̂k,ŷk from the state x̂[i]k ;
17: end for

5. The simulation steps 1-4 are carried out for different traces according to the

performance evaluation model presented in section 3.2.

6. The simulation steps 1-5 are repeated for 100 iterations.

7. The mean distance error E(∆ρ) is conducted by averaging all the obtained

values of the distance error ρ.

8. The simulation steps 1-7 are executed for different numbers of anchor nodes

N ∈ {3, 4, 6}.

4.5.3 Results

The simulation results for the proposed IEKF are depicted in Figs. 4.3, 4.4, and 4.5.

The results are obtained based on the performance evaluation model which is

presented in section 3.2 and the simulation procedure of section 4.5.2.

In the figures mentioned above, the IEKF is evaluated using the error distance ρ

according to distance d from the network’s center for 3, 4, and 6 anchor nodes in
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Table 4.2: Mean error distance for IEKF compared with EKF.
Method Mean error distance E[∆ρ] (m)

3 Anchor nodes 4 Anchor nodes 6 Anchor nodes
IEKF 16.06 13.44 11.11
EKF 21.915 20.21 16.57

comparison with the widely used method EKF. The error distance ρ is defined to

be the distance estimation error between the estimated position p̂ and the real po-

sition p as expressed in (3.65). The error distance ρ is calculated for the positions

that the mobile node follows in all the traces of the movement schemes presented

in section 3.2. The distance d is the distance from the network’s center to the

radius of the circle of trust that has 150 m diameter as presented in section 2.2.

From Figs. 4.3, 4.4, 4.5, it can be seen that the IEKF did diverge as the EKF result-

ing in lower error distance comparing with the EKF.

In addition to the presented figures, the estimated mean error distance E[∆ρ] val-

ues for the IEKF are calculated by averaging all the obtained error distance ρ

values for 3, 4 and 6 anchor nodes. The obtained values are 16.06 m, 13.44 m,

11.11 m for 3, 4, 6 anchor nodes respectively. The IEKF shows 36, 42 %, 33, 49 %

and 32, 95 % improvement compared to the EKF for 3, 4 and 6 anchor node re-

spectively. Nevertheless, the IEKF mean error distance values are given in Ta-

ble 4.2.

In order to show the distribution of the IEKF error distance values according to

the distances d, figures 4.6, 4.7 and 4.8 are presented. By considering Fig. 4.6

that has 71 % of the error distance values below 20 m for the case of 3 anchor

nodes, the largest probability is obtained at the distance of 10 m. For the case of

4 anchor nodes, Fig. 4.7 with the probability of 82 % at distances lower than 20 m

is presented. The largest error probability occurs at the distance of 9 m. For the

case of 6 anchor nodes, Fig. 4.8 that has a probability of 91 % for distances below

20 m is depicted. The largest error probability occurs in this figure is the distance

of 9 m.
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Figure 4.3: IEKF simulated error distance ρ according to distance d compared to
the EKF using 3 anchor nodes.
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Figure 4.4: IEKF simulated error distance ρ according to distance d compared to
the EKF using 4 anchor nodes.
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Figure 4.5: IEKF simulated error distance ρ according to distance d compared to
the EKF using 6 anchor nodes.
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Figure 4.6: Error distance distribution for the IEKF in case of 3 anchor nodes.
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Figure 4.7: Error distance distribution for the IEKF in case of 4 anchor nodes.
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Figure 4.8: Error distance distribution for the IEKF in case of 6 anchor nodes.
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For comparison purpose, the histogram distributions of the popular EKF are de-

picted in figures 4.9, 4.10, and 4.11. Figure 4.10 shows the results for the case

of 3 anchor nodes with 60 % of the error distance values are below 20 m. The

largest probability is achieved at the distance of 12 m. Figure. 4.11 depects the

distribution with a probability of 67 % for distances below 20 m for the case of 4

anchor nodes. The largest probability exists at the distance of 8 m. Figure 4.10

which shows the results for 6 anchor nodes, achieves the probability of 77 % at

error distance of 20 m. The largest error probability occurs at a distance of error

of 6 m.

From the simulation results above as well as the values of Table 4.2, it can be

seen clearly that the IEKF has substantial improvement in estimation accuracy

compared with the popular EKF approach in all the testing conditions.
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Figure 4.9: EKF error distance distribution for 3 anchor nodes.
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Figure 4.10: EKF error distance distribution for 4 anchor nodes.
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Figure 4.11: EKF error distance distribution for 6 anchor nodes.
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IEEE 802.11n Positioning and

Tracking

5.1 Introduction

The EKF applies the non-linear equations to the KF by linearizing the non-

linearity which exists in the models of (2.19) and (2.20) so that the traditional

KF can be adapted. However, the use of EKF has several drawbacks as pointed

out earlier in section 1.3.2.

To address those drawbacks, several approaches have been developed and pro-

posed to deal with the non-linear system models. Among those approaches is

the sigma-point sampling approach. This approach uses a deterministic sampling

framework to predict the mean and covariance of non-linear models [Van04]. Un-

scented Transformation (UT) techniques are examples of the sigma-point approach.

Unlike the EKF which requires the derivation of particular matrices which are

called the Jacobian derivatives, this approach does not require analytic deriva-

tives of the non-linear system equations [PW09]. The implementation of different

techniques of the sigma-point approach to the KF resulting in what is called the

family of the Sigma Point Kalman Filter (SPKF) [PW09].
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To deal with the non-linearity available in the positioning problem, the author

proposes the Scaled Unscented Transformation (SUT) which can be implemented

with the KF. In the beginning, the SUT is designed to address the positioning

problem. Then, the implementation of this transformation to the KF is given. The

author calls this implementation as the Scaled Unscented Kalman Filter (SUKF). The

algorithmic implementation of this filter is presented. The author proposes the

resulting filter for the positioning and tracking application. Comparative results

of the implementation are illustrated.

Moreover in this chapter, the author proposes the Spherical Simplex Unscented

Transformation (SSUT) treating the non-linearity that exists in the positioning

problem. Accordingly, the SSUT is designed to address the positioning prob-

lem. The implementation of the algorithm to the KF is then given and discussed.

The resulting filter from the implementation is called the Spherical Simplex Un-

scented Kalman Filter (SSUKF) [Loz+08]. The author proposes the resulting filter

for indoor positioning and tracking application. Comparative results of filter im-

plementations are presented. This chapter encompasses the research published

in [KJ15a; KJ15b].

5.2 SUKF for RSSI-based WLAN IEEE 802.11n

Positioning and Tracking

In this section, the author proposes the SUKF for indoor positioning and tracking

based on the WLAN IEEE 802.11n to overcome the limitation of the EKF. Unlike

the EKF which uses a first order truncated Taylor series expansion of the non-

linear function, SUT guarantees second order and partially incorporate higher

order terms into the estimates [Jul02]. In addition, SUT does not require the cal-

culation of particular matrices called the Jacobian matrices, which makes SUT

easier to implement compared to EKF [Jul02].
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In the beginning, the SUT is designed according to the positioning problem.

Then, the application of this transformation into the KF is presented. The re-

sulting filter is tested and the simulation procedure of the implementation of the

filter is given. Finally, comparative results and discussion are presented.

5.2.1 The Scaled Unscented Transformation Design

In this section, the SUT [Jul02] is presented in its general form for a general

overview. Then, the SUT is designed to deal with the non-linear measurement

function h(·) of (4.8) for the designed state-space models of the KF.

The SUT is a method for calculating the statistics of a random variable which

undergoes a non-linear transformation instead of linearizing the transformation.

SUT is based on the intuition that “with a fixed number of parameters it should be

easier to approximate a distribution (not necessarily Gaussian) than it is to approximate

an arbitrary non-linear function/transformation” [Jul02].

In this approach, a random variable is specified by a set of deterministically de-

termined sample points. These sample points, or so called sigma points, capture the

mean and the covariance of the random variable and allow direct propagation

of the information through an arbitrary set of non-linear equations. The mean

and covariance of the transformed ensemble can be computed as the estimation

of the non-linear transformation of the original distribution. This method guar-

antees second order accuracy of Taylor series expansion in the mean and covari-

ance. More importantly, this method can partially incorporate higher order term

information into the estimates.

To accomplish the SUT objectives, a discrete distribution having the same first

and second order moments is generated and then scaled, where each point in this

distribution can be directly transformed. The mean and covariance of the trans-

formed information can be computed as the estimate of the non-linear transfor-

mations.
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Given an n-dimensional vector random variable x with mean x̄ and covariance

Px, where

Px = E{(x− x̄)(x− x̄)T}. (5.1)

It is desired to predict the mean ȳ and the covariance Py of a m-dimensional vector

random variable y, where

Py = E{(y− ȳ)(y− ȳ)T}, (5.2)

and y is related to x by the non-linear function

y = g(x). (5.3)

The discrete distribution of the SUT can be obtained by generating a set S of

points and their weights as

S = {χi, Wi; i = 0, 1, . . . , 2n}, (5.4)

where χi is the the i-th sigma point and Wi is i-th associated weight. The gen-

erated sigma points have the same mean and covariance as the random variable

x. The generated sigma points and their weights are then scaled according to a

procedure given in [Jul02].

Combining the sigma points generation and scaling schemes in one step is pre-

sented in [Van04] as an attempt to reduce the number of calculations. According

to this procedure, the sigma points are calculated as

χi = x̄ i =0

χi = x̄ + (
√
(n + λ)Px)i i =1, . . . , n (5.5)

χi = x̄− (
√
(n + λ)Px)i−n i =n + 1, . . . , 2n

where (
√
(n + λ)Px)i is the ith column of the matrix square root

√
(n + λ)Px. λ
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is calculated as

λ = α2(n + κ)− n, (5.6)

where α is a positive scaling parameter which arbitrarily can be chosen as

0 ≤ α ≤ 1, (5.7)

to be small to minimize the higher order effects and κ is selected to guarantee

positive semidefinite covariance matrix according to

κ ≥ 0. (5.8)

However, the κ scales the sigma points from the mean x̄ and the nearest points to

the mean happened when κ = 1 [Van04]. While the n is equal to 4 throughout

this dissertation, the parameters α and κ are selected for tuning purpose and they

will be assigned later in this section. Nevertheless, the selection values for α and

κ that satisfy (5.7) and (5.8) guarantee second order accuracy of Taylor series ex-

pansion in the mean and covariance and incorporate partially higher order terms

information. As such, the tuning affects the incorporation of the higher order

terms information into the estimates. The weights are calculated as

W(m)
0 =

λ

(n + λ)
i =0

W(c)
0 =

λ

n + λ
+ (1− α2 + β) i =0 (5.9)

W(m)
i = Wc

i =
1

2(n + λ)
i =1, 2, . . . , 2n

where the superscripts m and c refer to the weights associated with the mean

and covariance respectively. β is a weighting factor that participate in includ-

ing partial higher order information of the fourth order term in the Taylor series

expansion of the covariance. Under the assumption that x has Gaussian distribu-

tion, error in the forth order term of the Taylor series expansion of the covariance

of x is minimized when β = 2 [Jul02].
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Once the set of the scaled points are obtained, a transformed set of the points is

evaluated by means of the non-linear function of the system

ξ i = g(χi) i = {0, 1, . . . , 2n}. (5.10)

Finally, the predicted mean is calculated and covariance as follows

ȳ =
2n

∑
i=0

W(m)
i ξ i, (5.11)

and the predicted covariance is calculated as follows

Py =
2n

∑
i=0

W(c)
i [ξ i − ȳ][ξ i − ȳ]T. (5.12)

The designing of the SUT starts by assigning the parameters α and κ. The author

of this dissertation assumes

α = 0.1, (5.13)

and

κ = 0, (5.14)

to satisfy (5.7) and (5.8) respectively. The value of κ is chosen here so that the

sigma points stay near the mean as given in [Van04]. The author of this disserta-

tion found through simulations that the SUT is not much sensitive to the selection

of those values. However, the selection of the values α and κ to achieve the best

results is still an open topic and will be left to future work. The author of this

dissertation assumes that the random variable x has a Gaussian distribution and

therefore β is equal to 2.

By considering the measurement function h(·) of (4.9) for the designed state-

space models which is presented in Section 4.2, equation (5.3) is then written
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as

g(x) = h(x̂−k ) =


√
(xBS1 − x̂−k )

2 + (yBS1 − ŷ−k )
2

...√
(xBSN − x̂−k )

2 + (yBSN − ŷ−k )
2

 =


z̃1

k
...

z̃N
k

 , (5.15)

where

x̂−k =


x̂−k
ŷ−k
v̂x−

k

v̂y−
k

 . (5.16)

To select the method to calculate the square root matrix, the selection conditions

of this matrix should be considered. The SUT gives the freedom to select the cal-

culation method of the square roots including selecting non-square matrix roots

calculation methods. Furthermore, the transformation is not restricted to using

orthogonal or symmetric matrix square roots, which have implementation com-

plexity.

A recent study as in [Rhu+12] showed that the Cholesky decomposition method

is considered the best overall matrix square root calculation method for UT in

terms of performance and execution time. Based on that study, the author of this

dissertation proposes the Cholesky decomposition method [GV12] for calculating

the square root matrix. The Cholesky method decomposes a matrix into a product

of a lower triangular matrix L and its transpose [Rhu+12]. As such, the matrix

(n + λ)Pk−1 can be expressed as

(n + λ)Pk−1 = LLT, (5.17)

where L is the square root matrix. By considering that the square root matrix L

of the matrix (n + λ)P−k has the dimension 4× 4 based on the the design of the

state-space models given in section 4.2, the elements of the matrix L can be found
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by solving, from [Rhu+12; GV12], the following:

(n+ κ)P−k =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

 =


L11 0 0 0

L21 L22 0 0

L31 L32 L32 0

L41 L42 L43 L44




L11 0 0 0

L21 L22 0 0

L31 L32 L32 0

L41 L42 L43 L44


T

.

(5.18)

By considering that the noise of (4.9) has zero mean value, the sigma points cal-

culation of (5.5) is then written as

χi = x̂−k i =0

χi = x̂−k + L(:, i) i =1, 2, 3, 4 (5.19)

χi = x̂−k − L(:, i− 4) i =5, 6, 7, 8

The obtained sigma points from the a priori state estimate x̂−k ∈ R4 and the as-

sociated estimation error matrix P−k ∈ R4×4 are then transformed using (5.15) to

produce the approximated measurement z̃k ∈ RN and the associated covariance

matrix Pz ∈ R4×4. As such, equation (5.15) is rewritten as

ξ i = h(χi) =


√
(xBS1 − χi(1))2 + (yBS1 − χi(2))2

...√
(xBSN − χi(1))2 + (yBSN − χi(2))2

 , (5.20)

where

χi =


χi(1)

χi(2)

χi(3)

χi(4)

 . (5.21)

The transformed sigma points are then used to calculate the aproximate measure-

ment z̃k. This can be done by writing (5.11) as

z̃k =
8

∑
i=0

W(m)
i ξ i. (5.22)
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Figure 5.1: Block diagram of the 4-dimensional variable x̂k that undergoes
the SUT to produce the measurement approximation z̃k. Inspired
by [Van04].

Then, the associated covariance matrix Pz can be computed by writing (5.12) as

Pz =
8

∑
i=0

W(c)
i [ξ i − z̃k][ξ i − z̃k]

T. (5.23)

The complete design of the SUT algorithm for measurements to state function of

the designed model of (4.9) of the positioning problem of section 2.2 is summa-

rized in Algorithm 5.1. In addition, a block diagram that summarizes the SUT is

given in Figure 5.1.
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Algorithm 5.1 Scaled Unscented Transformation Algorithm Design for Measure-
ments to State Function

1: Obtain the parameter λ from (5.6);
2: Obtain the weights of the sigma points from (5.9);
3: Compute the square root matrix L of the matrix (n + λ)P−k as in (5.18).;
4: for i = 0 to i = 4 do
5: Compute the Sigma point χi as in (5.19);
6: Obtain the transformed sigma point ξ i as in (5.20);
7: end for
8: Compute the the approximated measurements z̃ as in (5.22).
9: Compute the covariance matrix Pz as in (5.23);

5.2.2 Scaled Unscented Kalman Filter Implementation

The introduction of the SUT to the KF is firstly proposed by [CM03]. The filter is

called unscented filter. A different introduction of the SUT to the KF is proposed

by [V+04]. The resulting filter is called Unscented Kalman Filter (UKF). The au-

thor of this dissertation compares the performance of the Unscented filter and the

UKF with the EKF. Based on this comparison, the UKF showed to lag behind the

EKF.

A different application for the UT techniques to the KF is recently proposed

by [GA11]. Based on the application, the author of this dissertation calls the re-

sulting filter as the Scaled Unscented Kalman Filter (SUKF).

For the operation of the SUKF, the filter noise covariances Q ∈ R4×4 and R ∈
R4×4 need to be determined, which can be done according to the procedure given

in section 4.3. The error covariance matrix Pk−1 can be initialized for k = 1 as

Pk−1 = Q, (5.24)

and the system state x̂k−1 for k = 1 is initialized as

x̂k−1 =


x̂tr

0

0

 , (5.25)
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where x̂tr is the estimated position obtained from Algorithm 3.1 and the velocities

vx
k and vy

k of the zeroth state x̂0 are assumed to be zero.

By recalling the state-space models design given in section 4.2, the a priori state

estimate x̂−k is obtained as

x̂−k = x̂k−1 + Buk−1. (5.26)

The a priori estimation error matrix P−k is obtained from

P−k = Pk−1 + Q. (5.27)

The standard Kalman gain of (2.44) is applied only for linear system. However,

the term P−k HT
k of (2.44) is expressed, from [GA11], as

P−k HT
k ≈ Pxz, (5.28)

where Pxz is the cross covariance matrix which is calculated from

Pxz =
8

∑
i=0

W(m)
i [ξ i − x̂−k ][ξ i − z̃k]

T. (5.29)

In addition, the term HkP−k HT
k of (2.44) can be expressed, from [GA11], as

HkP−k HT
k = Pz, (5.30)

where the matrix Pz is obtained according to Algorithm 5.1. The Kalman gain of

(2.44) is then written as

Kk = Pxz[Pz + R]−1. (5.31)

The measurements z and the approximated measurement z̃, which is obtained from

Algorithm 5.1, are then used to produce the a posteriori state estimation as

x̂k = x̂−k + Kk(zk − z̃k). (5.32)
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Algorithm 5.2 Scaled Unscented Kalman Filter Algorithm
1: procedure INITIALIZATION
2: Obtain the location of the anchor nodes PBSi .
3: Initialize the measurement noise matrix R as in section 4.3.
4: Initialize and tune the process noise matrix Q as in section 4.3.
5: Initialize the error estimation covariance P0 as in (5.24).
6: Initialize the estimated position x̂0 as in (5.25).
7: Initialize κ, α, β;
8: end procedure
9: for k = 1 to ∞ do

10: Obtain the measurements zk;
11: Obtain the a priori state estimate x̂−k as in (5.26).
12: Compute the a priori estimation error matrix P−k as in (5.27);
13: Obtain z̃k and Pz from Algorithm 5.1;
14: Compute the cross covariance matrix Pxz as in (5.29);
15: Compute the Kalman gain Kk from (5.31);
16: Compute a posteriori state estimate x̂k from (5.32);
17: Compute the a posteriori estimation error covariance Pk from (5.33);
18: Obtain the estimated position p̂k = x̂k;
19: end for

The a posteriori estimation error covariance matrix is then obtained as

Pk = P−k −KkPT
xz. (5.33)

The position coordinates x̂k and ŷk are then extracted from (5.32). Once new mea-

surements are available, the SUKF is implemented for an update position p̂k. The

complete implementation algorithm of the SUKF to the L&T problem is presented

in Algorithm 5.2.

5.2.3 Simulation Procedure

The SUKF is tested based on the model presented in section 3.2. The simulation

steps are carried out according to the following

1. The simulation steps 1-8 of the simulation procedure given in section 3.7 are

implemented to obtain an initial system state x̂0.
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2. SUKF is used for location estimation and tracking. Here, the system mea-

surements hold the estimated distance d̂i and the system state holds the

position estimation p̂.

3. The estimated position p̂ is extracted from the the system state x̂.

4. The distance error ρ is calculated as given in (3.64).

5. The simulation steps 1-4 are conducted for different traces according to the

performance evaluation model presented in section 3.2.

6. The simulation steps 1-5 are repeated for 100 iterations to simulate different

noise conditions.

7. The mean distance error E(∆ρ) is conducted by averaging all the obtained

values of the distance error ρ.

8. The simulation steps 1-7 are repeated for different anchor node numbers

N ∈ {3, 4, 6}.

5.2.4 Results

In this section, the results are obtained based on the performance evaluation

model of section 3.2 and the simulation procedure of section 5.2.3.

The error distance ρ for distance d form the network center of coordinate (0, 0)

are depicted in Figs 5.2, 5.3, and 5.4 using 3, 4 and 6 anchor nodes respectively.

In the figures, the SUKF results are presented in comparison with the EKF. The

error distance ρ is obtained using the difference between the estimated position

p̂ and the real position p of the mobile node as given in (3.65). The error distance

ρ is calculated for all the positions of the movement traces generated according

to section 3.2. The distance d is the measurement between the network’s center

of coordinate (0, 0) and the maximum radius of 75 m which represent the half of

the diameter of the circle of trust which explained in earlier section 2.2.

Unlike the EKF which shows divergence in in some cases, the SUKF did not show

the divergences resulting in lower error distance estimation compared with the

EKF as depicted in Figs 5.2, 5.3, 5.4.
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Figure 5.2: Error distance ρ according to distances d for the SUKF compared with
the EKF using 3 anchor nodes.

In order to compare the SUKF with other techniques, the estimated mean error

distanceE[∆ρ] values of the SUKF are calculated by averaging all the obtained er-

ror distance ρ values for 3, 4 and 6 anchor nodes. The resulting values are 18.00 m,

15.52 m, 12.66 m for 3, 4, 6 anchor nodes respectively. Compared with the EKF,

the SUKF shows 17, 84 %, 23, 20 %, 23, 59 % improvement for 3, 4, 6 anchor nodes

respectively.

The distribution of error distance values of the SUKF over the distance d is de-

picted in figures 5.5, 5.6 and 5.7. Figure 5.5 depicts the distribution with 67 %

of the error distance values are below 20 m for the case of 3 anchor nodes. The

largest probability occurs at the error distance of 11 m. By considering Fig. 5.6

in which distances below 20 m has a probability of 76 % for the case of 4 anchor

nodes, the largest probability occurs at the error distance of 10 m. Figure 5.7

which shows the results for 6 anchor nodes and has a probability of 84 % for dis-

tances below 20 m, the largest probability occurs at the distance of 7 m. Based

on the presented results of Figs. 5.2, 5.3, 5.4, and the mean error distance val-
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Figure 5.3: Error distance ρ according to distances d for the SUKF compared with
the EKF using 4 anchor nodes.
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Figure 5.4: Error distance ρ according to distances d for the SUKF compared with
the EKF using 6 anchor nodes.
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Figure 5.5: SUKF error distance ρ distribution for distances d using 3 anchor
nodes.
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Figure 5.6: SUKF error distance ρ distribution for distances d using 4 anchor
nodes.
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Figure 5.7: SUKF error distance ρ distribution for distances d using 6 anchor
nodes.

Table 5.1: Mean error distance for SUKF compared with EKF.
Method Mean error distance E[∆ρ] (m)

3 Anchor nodes 4 Anchor nodes 6 Anchor nodes
SUKF 18.00 15.52 12.66
EKF 21.915 20.21 16.57

ues of Table 5.1, it can be concluded that the SUKF has substantial better results

compared to the EKF in all of the testing conditions.

5.3 SSUT for RSSI-Based WLAN IEEE 802.11n

Positioning and Tracking

In this section, the author proposes the SSUKF for indoor positioning and track-

ing by utilizing the widly deployed WLAN IEEE 802.11n to overcome the limita-
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tion of the EKF. Unlike the EKF which uses a first order truncated Taylor series

expansion of the non-linear function, SSUT guarantees second order in the mean

and covariance [Jul03] of the estimates. Unlike the EKF, the SSUT does not re-

quire the calculation of particular matrices such as the Jacobian matrices which

makes SUT easier to implement compared to the non-linear approach used by the

EKF [Jul03] .

In what follows in this section, the SUT is designed according to the positioning

problem. Then, the application of this transformation into the KF is presented.

The testing scenario of this filter including the simulation procedure is given.

Finally, comparative results and discussion are presented.

5.3.1 The Spherical Simplex Unscented Transformation Design

The SSUT [Jul03] is a method for calculating the mean and covariance of a ran-

dom variable that undergoes a non-linear function instead of linearizing that

function. Similar to the SUT which is presented in section 5.2.1, the SSUT is

based on the intuition that “it is easier to approximate a distribution (not necessar-

ily Gaussian) than it is to approximate an arbitrary non-linear function or transforma-

tion” [Jul03].

This method is proposed in an attempt to minimize the number of sigma points

used by the SUT. Instead of 2n + 1 points used by the SUT, the SSUT uses a set of

a reduced number of n+ 2 sigma points for an n-dimensional state. This selection

strategy defines a simplex of points that lie on hypersphere. In particular, n + 1

of the points lie on a hypersphere whose radius is proportional to
√

n. The radius

which bounds the points is proportional to
√

n and the weight applied to each

point is proportional to 1/n.

In this method, a random variable x ∈ Rn with mean x̄ and covariance Px,

where

Px = E{(x− x̄)(x− x̄)T}, (5.34)
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which undergoes the non-linear transformation

y = g(x), (5.35)

is represented by a set of sigma points that are deterministically determined and

capture the mean and the covariance of the random variable. The sigma points

then transform through the non-linear transformation. The mean ȳ ∈ Rm and the

covariance Py, where

Py = E{(y− ȳ)(y− ȳ)T}, (5.36)

of the transformed points represent the estimation of the non-linear transforma-

tion of the original random variable distribution. Similar to the SUT, this method

perceive second order accuracy of Taylor series expansion in the mean and co-

variance.

The distribution of the SSUT is obtained by determining a set S of points and their

associated weights as

S = {χi, Wi; i = 0, . . . , n + 1}, (5.37)

where χi is the i-th sigma point and Wi is the i-th weight. The generated sigma

points have the same mean and the same covariance as the random variable x.

The sigma points selection that meet the objectives of this method is done accord-

ing to the following:

χi = x̄ +
√

PxZi i = 0, . . . , n + 1, (5.38)

where
√

Px is the square root matrix of the covariance matrix Px and Zi is the i-th

column of the spherical simplex sigma point matrix Z ∈ Rn×n+2 which can be

calculated by constructing the one-dimensional vector Zj
i for j = 1 as

Z1
0 =

[
0
]

, Z1
1 =

[
−1√
2W1

]
, Z1

2 =
[

1√
2W1

]
, (5.39)
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and then expand the vector Zj
i for j = 2, . . . , n according to

Zj
i =



Zj−1
0

0

 i = 0

 Zj−1
i

−1√
j(j+1)W1

 i = 1, . . . , j

 0j−1

j√
j(j+1)W1

 i = j + 1

(5.40)

to construct the spherical simplex sigma point matrix Z.

The weights of the sigma points that meet the objectives of this method is calcu-

lated by assigning an arbitrary value, for tuning purpose, for the zeroth weight

W0

0 ≤W0 ≤ 1. (5.41)

It should be mentioned that the selected values for W0 that satisfy (5.41) guarantee

second order accuracy of Taylor series expansion in the mean and covariance. The

tuning affects the incorporation of the forth and higher order terms information

into the estimates. The remaining weight sequence are calculated as follows

Wi = (1−W0)/(n + 1) i = 1, . . . , n + 1. (5.42)

Once the sigma points have been calculated, they are transformed through the

non-linear function g(·) as given

ξ i = g(χi) i = 0, . . . , n + 1. (5.43)

The predicted mean is then calculated as

ȳ =
n+1

∑
i=0

Wiξ i, (5.44)
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and the predicted covariance is calculated as

Py =
n+1

∑
i=0

Wi{ξ i − ȳ}{ξ i − ȳ}T. (5.45)

The design of the SSUT begins by assuming that

W0 = 0.1, (5.46)

to satisfy (5.41). The author of this dissertation found through simulation that the

SSUT is not much sensitive to the selection value of the weight W0. However, the

selection of a value to achieve the optimal results is still an open topic and will be

left to future work.

By referring to the measurement function H(·) of (4.9), equation (5.35) is then

written as

g(x) = h(x̂−k ) =


√
(xBS1 − x̂−k )

2 + (yBS1 − ŷ−k )
2

...√
(xBSN − x̂−k )

2 + (yBSN − ŷ−k )
2

 =


z̃1

k
...

z̃N
k

 , (5.47)

where

x̂−k =


x̂−k
ŷ−k
v̂x−

k

v̂y−
k

 (5.48)

To select the method to calculate the square root matrix needed for this transfor-

mation, the selection conditions of this matrix should be considered. Similar to

the SUT, this transformation gives the freedom to select the method that calcu-

lates the square root matrix.

Based on the recent study presented in [Rhu+12] which showed that the Cholesky

decomposition method is the best overall matrix square root calculation method
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for UT in terms of performance and execution time. Based on the study, the au-

thor of this dissertation proposes the Cholesky decomposition [GV12] method for

calculating the square root matrix.

Based on Cholesky decomposition, a matrix Pk−1 can be decomposed into a prod-

uct of a lower triangular matrix L and its transpose [Rhu+12]. As such, the matrix

Pk−1 can be expressed as

Pk−1 = LLT, (5.49)

where L is the Cholesky decomposition matrix and represents the square root

matrix.

Since the matrix P−k has the dimension 4 × 4 based on the design of the state-

space models given in section 4.2, the elements of the matrix L then can be

found,from [Rhu+12; GV12], by solving

P−k =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

 =


L11 0 0 0

L21 L22 0 0

L31 L32 L32 0

L41 L42 L43 L44




L11 0 0 0

L21 L22 0 0

L31 L32 L32 0

L41 L42 L43 L44


T

.

(5.50)

By considering that the a priori state estimate x̂−k is used to generate the sigma

points, equation (5.38) is then written as

χi = x̂−k + LZi i = 0, . . . , 5, (5.51)

By considering that the obtained sigma points are transferred using (5.47) to ob-

tain the points ξ i, equation (5.47) is then written as

ξ i =


√
(xBS1 − χi(1))2 + (yBS1 − χi(2))2

...√
(xBSN − χi(1))2 + (yBSN − χi(2))2

 i = 0, . . . , 5, (5.52)
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Algorithm 5.3 Spherical Simplex Unscented Transformation Algorithm Design
for Measurement Function h(·) of the Positioning Problem

1: Compute the zeroth weight W0 as in (5.41).
2: for i = 1 to i = 5 do
3: Compute the weight Wi as in (5.42).
4: end for
5: Compute the vector sequence Z as in (5.39) and (5.39);
6: Compute the square root matrix L by solving (5.50) using Cholesky decom-

position;
7: for i = 0 to i = 5 do
8: Calculate the Sigma points χi as in (5.51);
9: Obtain the transformed sigma point ξ i as in (5.52);

10: end for
11: Compute the approximated measurements z̃ as in (5.54).
12: Compute the covariance Pz as in (5.55).

where

χi =


χi(1)

χi(2)

χi(3)

χi(4)

 . (5.53)

The transferred sigma points are then used calculate the approximate measure-

ments z̃. This is done by writing (5.44) as

z̃k =
5

∑
i=0

Wiξ i, (5.54)

and the associated covariance is calculated by writing (5.45) as

Pz =
5

∑
i=0

Wi[ξ i − z̃k][ξ i − z̃k]
T. (5.55)

The complete design of the SSUT for the designed measurement function h(·)
of (4.9) of the positioning problem is summarized in Algorithm 5.3. Furthermore,

a block diagram that depicts the SSUT is given in Fig. 5.8.
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Figure 5.8: Block diagram of the 4-dimensional variable x̂k that undergoes the
SSUT to produce the measurement approximation z̃k.

5.3.2 Spherical Simplex Unscented Kalman Filter Implementation

The SSUT is firstly introduced into KF by [Loz+08] and the resulting filter is called

Spherical Simplex-Unscented Kalman Filter (SS-UKF).

A different application for different UT techniques into the KF is proposed re-

cently by [GA11]. The author of this dissertation calls the application of the SSUT

into the KF as the Spherical Simplex Unscented Kalman Filter (SSUKF) which

performs better than the first implementation by [Loz+08].

The design of the SSUT based to the designed state-space models of section 4.2 is

considered the core of SSUKF.

Determining the noise covariances of designed state-space models of section 4.2

allows the SSUKF to be operable. The determination of the noise covariances can

be done according to the procedure given in section 4.3. By following the section,

the process noise covariance Q ∈ R4×4 and the measurement noise covariance
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R ∈ R4×4 are obtained. The error covariance matrix Pk−1 can be initialized for

k = 1 as

Pk−1 = Q (5.56)

and the system state x̂k−1 is initialized for k = 1 as

x̂k−1 =


x̂tr

0

0

 , (5.57)

where x̂tr is the estimated position obtained from Algorithm 3.1 and the velocities

vx
k and vy

k of the zeroth state x̂0 are assumed to be zero.

Based on the state-space models design given in section 4.2, the a priori state esti-

mate x̂−k is obtained as

x̂−k = x̂k−1 + Buk−1. (5.58)

The a priori error matrix P−k is calculate as

P−k = Pk−1 + Q. (5.59)

The a priori state x̂−k and the error matrix P−k are then used by the designed

algorithm 5.3 of section 5.3.1 to compute the approximated measurements z̃k and

the corresponding matrix Pz.

Based on the the following equivalent, from [GA11]

Pz = HkP−k HT
k , (5.60)

and the approximation presented by [GA11]

Pxz ≈ P−k HT
k , (5.61)
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where Pxz is the cross covariance matrix which can be calculated from

Pxz =
3

∑
i=0

Wi[ξ i − x̂−k ][ξ i − z̃k]
T, (5.62)

the Kalman gain of the standard KF of (2.44) is then computed as

Kk = Pxz[Pz + R]−1. (5.63)

The a posteriori state estimate is computed by using the measurements z and the

approximated measurements z̃ as

x̂k = x̂−k + Kk(zk − z̃k) (5.64)

The a posteriori estimation error covariance is computed as

Pk = P−k −KkPT
xz. (5.65)

The position coordinates x̂k and ŷk are then extracted from (5.64). The SUKF is

implemented for an update position p̂k once new measurements are obtained.

The complete implementation of the SSUKF to the positioning problem is sum-

marized in Algorithm 5.4.

5.3.3 Simulation Procedure

The SSUKF is evaluated based on the model presented in section 3.2. The simu-

lation procedure is carried out according to the following

1. The step 1-8 of the simulation procedure which presented in section 3.7 are

executed for system state x̂0 initialization.

2. SSUKF is used for location estimation and tracking. In this filter, the sys-

tem measurements are the estimated distance d̂i and the system state is the

position estimation p̂.
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Algorithm 5.4 Spherical Simplex Unscented Kalman Filter Algorithm
1: procedure INITIALIZATION
2: Obtain the location of the anchor nodes PBSi .
3: Initialize the measurement noise matrix R as in section 4.3.
4: Initialize and tune the process noise matrix Q as in section 4.3.
5: Initialize the error estimation covariance P0 as in (5.56).
6: Initialize the estimated position x̂0 as in (5.57).
7: end procedure
8: for k = 1 to ∞ do
9: Obtain the measurements zk;

10: Compute the a priori state x−k as in 5.58;
11: Compute the a priori estimation error matrix P−k as in (5.59);
12: Compute the approximated measurements z̃k, the covariance matrix Pz

and the cross covariance matrix Pxz from Algorithm 5.3;
13: Compute the cross covariance Pxz as in (5.62);
14: Compute the Kalman gain Kk as in (5.63);
15: Compute the a posteriori state estimation x̂k as in (5.64);
16: Compute the a posteriori estimation covariance matrix Pk as in (5.65);
17: Obtain the estimated position p̂k = x̂k
18: end for

3. The estimated position p̂ is extracted from the system state x̂.

4. The distance error ρ is calculated according to (3.64).

5. The simulation steps 1-4 are carried out for different traces according to the

performance evaluation model presented in section 3.2.

6. The simulation steps 1-5 are repeated for 100 iterations to have different

noise conditions.

7. The mean distance error E(∆ρ) is calculated by averaging all the obtained

values of the distance error ρ.

8. The simulation steps 1-7 are repeated to test the different anchor nodes val-

ues N ∈ {3, 4, 6}.

5.3.4 Results and Discussion

The results given here in this section are accomplished according to the perfor-

mance evaluation model presented in section 3.2 and the simulation procedure
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presented in section 5.3.3.

Figures 5.9, 5.10, and 5.11 show the error distance ρ based on different distances

d to the network’s center of coordinate (0, 0) for 3, 4 and 6 anchor nodes respec-

tively as a comparison between SSUKF and EKF. The error distance ρ is calculated

according to (3.65), and is obtained based on the performance evaluation model

of section 3.2. In this section, 100 traces are generated from the network’s center

of coordinate (0, 0) towards the maximum radius of the circle of trust. In addition,

each trace is repeated 100 times to simulate different noise conditions on each

trace. As a result, the total traces become 10000. Each estimated position p̂ of all

the traces is recorded in order to obtain the error distance ρ values. The distance

d is calculated from the network’s center to the half of the diameter of the circle of

trust which has 150 m diameter.

As can be seen from Figs. 5.9, 5.10, 5.11, the SSUKF did not diverge as the SSUKF.

This results in lower error distance estimation compared with the EKF.

For comparison purpose, the estimated mean error distance E[∆ρ] values for

3, 4 and 6 anchor nodes are calculated. The SSUKF has mean error distance of

17.62 m, 15.19 m and 12.70 m for 3, 4 and 6 anchor nodes respectively. The mean

error distance for both SSUKF and EKF are given in Table. 5.2. Comparing to

the EKF, the SSUKF performs better with improvement of 19, 58%, 24, 83% and

23, 35% for 3, 4 and 6 anchor nodes respectively.

To demonstrate the distribution of the error distance values of the SSUKF accord-

ing to distance d, figures 5.12, 5.13 and 5.14 are given. Figure 5.12 depicts the

results with a probability of 66 % for distances below 20 m for the case of 3 an-

chor nodes. The largest probability occurs at the distance of 11 m. From Fig. 5.13

that has a probability of 73 % for distances below 20 m for 4 anchor nodes, the

largest error probability occurs at the distance of 10 m. Figure 5.14 which shows

the results for 6 anchor nodes and brings a probability of 85 % for distances below

20 m, achieves the largest probability at the distance of 9 m.
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Figure 5.9: Simulated error distance ρ according to distance d for the SSUKF com-
pared with the EKF using 3 anchor nodes.
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Figure 5.10: Simulated error distance ρ according to distance d for the SSUKF
compared with the EKF using 4 anchor nodes.
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Figure 5.11: Simulated error distance ρ according to distance d for the SSUKF
compared with the EKF using 6 anchor nodes.

Table 5.2: Mean error distance for SSUKF compared with EKF.
Method Mean error distance E[∆ρ] (m)

3 Anchor nodes 4 Anchor nodes 6 Anchor nodes
SSUKF 17.62 15.19 12.70

EKF 21.915 20.21 16.57

Finally, it can be concluded from the presented figures as well as the results of the

mean error values of Table 5.2 that the proposed SSUKF outperforms the popular

EKF in terms of the positioning accuracy.
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Figure 5.12: Error distance distribution for SSUKF in case of 3 anchor nodes.
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Figure 5.13: Error distance distribution for SSUKF in case of 4 anchor nodes.
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Figure 5.14: Error distance distribution for SSUKF in case of 6 anchor nodes.
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6 Conclusion and Future Work

In this chapter, the conclusions achieved throughout this dissertation are summa-

rized as well as the future work.

6.1 Conclusion

In this dissertation, the author deals with the interesting and challenging problem

of indoor positioning and tracking based on RSSI for WLAN IEEE 802.11n. In

particular, the author designs Location and Tracking (L&T) solutions that aim to

overcome the limitations of the state of the art techniques.

The relative high positioning errors are due to the high standard deviation of the

path loss model. The worst case value of 6 dB among other models that pro-

posed by the TGn has been chosen. The selected model is intended for large

environment with the highest standard deviation representing the worst case for

the transmitter/receiver surroundings configuration. Selecting other models in-

tended for large or small environment with smaller standard deviation noise shall

reduce the positioning errors almost to the half according to the simulation. It

is anticipated that the errors can be further reduced upon adapting deterministic

path loss model which is obtained from measurements for a specific environment.

In addition, the wide coverage area which represents a circle of 150 m diameter

contributes to the positioning errors. Despite the positioning errors, the proposed
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solutions brings the advantages: the ease of implementation, reliability and the

improved positioning accuracy compared with the popular approach EKF.

In Chapter 3, the author focuses on designing a positioning framework that is

transparent to accuracy improvement technologies. In addition, the KF is pro-

posed for ease of implementation so that it does not require the calculation of

particular matrices called the Jacobian matrices. The simulation results show that

this implementation improves the accuracy significantly in all areas of the test

scenario.

In Chapter 4, the author proposes a L&T solution based on the IEKF. IEKF is de-

signed to utilize the RSSI measurements and the locations of the anchor nodes for

L&T. The proposed technique is evaluated by numerical simulation under testing

different conditions. The simulation results show that the positioning accuracy is

significantly improved over the EKF for all of the testing conditions.

In Chapter 5, the author considers proposing two L&T solutions that overcome

the limitations of the common non-linear KF known as the EKF. For this purpose,

two non-linear transformations that are applicable to the KF are considered. The

applications of those transformations to the KF results in two different non-linear

filters.

The author calls the first non-linear filter Scaled Unscented Kalman Filter (SUKF).

SUKF is proposed for indoor L&T. The SUKF is designed to exploit the RSSI mea-

surements and the information about the location of the anchor nodes for L&T.

This filter does not require the derivation of the Jacobian matrices and therefore

brings the ease of implementation. In addition, the filter maintains the first two

moments during the non-linear transformation. As such, this filter is more re-

liable compared with the EKF which might be unstable due to the linearizaion

issues. The proposed solution is tested by numerical simulations under different

conditions. The accuracy of the positioning information is significantly improved

over the EKF for all of the testing conditions as the simulation results relieved.
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The author calls the second non-linear filter Spherical Simplex Unscented Kalman

Filter (SSUKF). The author proposes SSUKF for indoor L&T. The SSUKF is de-

signed to exploit the RSSI and the anchor nodes’s locations for L&T. This filter

does not require the calculation of the Jabobian matrices and therefore provides

ease of implementation. Moreover, this filter inherits the properties of the SSUT

so that the mean and covariance of the data undergoes non-linear transformation

are maintained during the transformation. As a result, this filter has more relia-

bility compared with the EKF which linearizes about the first order Taylor series

expansion. Numerical simulation for the purpose of the filter evaluation is used.

The simulation results show that the SSUKF achieves substantially better than the

performance of the EKF.

Based on the results presented in this dissertation, it is recommended to adopt

the IEKF due to the reduced error results compared with other filters presented

in this dissertation if the Jacobian matrices are obtainable from the non-linear

system equation. If the Jacobian matrices are hard to obtain, it is recommended

to adopt either the SUKF or SSUKF since they both have similar results and both

share the second best filter out of this dissertation.

Finally, for systems that do not have access to the distance measurements and

provide only position estimates, the implementation presented in Chapter 3 is

recommended.

6.2 Future Work

This section presents some future research in the following tracks.

1. RSSI-based L&T is only considered through this dissertation. Recent work

on indoor L&T as in [FA13] involve switching between different positioning

technologies upon availability for ubiquitous service. Therefore, extension

to involve different positioning technologies is a promising future research

topic.
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2. Recent work on hybrid localization as in [FKW09] combines measurements

from the cellular radio network and GPS. As such, extension to include the

measurements from the cellular radio network and GPS combined with the

WLAN is a promising future direction for this work.

3. In chapter 5, the scaling and tuning parameters are chosen to meet the cri-

teria of the SUT and the SSUT. As such, it is anticipated that further tuning

of those parameters may increase the accuracy especially in the case of the

SSUKF.
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