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1 Introduction

Robots and other complex autonomous systems offer potential benefits through
assisting humans in accomplishing their tasks. These beneficial effects, however,
may not be realized due to maladaptive forms of interaction. While robots are
only now being fielded in appreciable numbers, a substantial body of experi-
ence and research already exists characterizing human interactions with more
conventional forms of automation in aviation and process industries.

In human interaction with automation, it has been observed that the hu-
man may fail to use the system when it would be advantageous to do so. This
has been called disuse (underutilization or under-reliance) of the automation
[1]. People also have been observed to fail to monitor automation properly (e.g.
turning off alarms) when automation is in use, or they accept the automation’s
recommendations and actions when inappropriate [2, 1]. This has been called
misuse, complacency, or over-reliance. Disuse can decrease automation benefits
and lead to accidents if, for instance, safety systems and alarms are not consulted
when needed. Another maladaptive attitude is automation bias [3–7], a user ten-
dency to ascribe greater power and authority to automated decision aids than to
other sources of advice (e.g. humans). When the decision aid’s recommendations
are incorrect, automation bias may have dire consequences [8–11] (e.g. errors
of omission, where the user does not respond to a critical situation, or errors
of commission, where the user does not analyze all available information but
follows the advice of the automation).

Both näıve and expert users show these tendencies. In [12], it was found that
skilled subject matter experts had misplaced trust in the accuracy of diagnos-
tic expert systems. (see also [13]). Additionally the Aviation Safety Reporting
System contains many reports from pilots that link their failure to monitor to
excessive trust in automated systems such as autopilots or FMS [14, 15]. On the
other hand, when corporate policy or federal regulations mandate the use of
automation that is not trusted, operators may “creatively disable” the device
[16]. In other words: disuse the automation.

Studies have shown [17, 18] that trust towards automation affects reliance
(i.e. people tend to rely on automation they trust and not use automation they
do not trust). For example, trust has frequently been cited [19, 20] as a con-
tributor to human decisions about monitoring and using automation. Indeed,
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within the literature on trust in automation, complacency is conceptualized in-
terchangeably as the overuse of automation, the failure to monitor automation,
and lack of vigilance [21–23]. For optimal performance of a human-automation
system, human trust in automation should be well-calibrated. Both disuse and
misuse of the automation has resulted from improper calibration of trust, which
has also led to accidents [1, 24].

In [25], trust is conceived to be an “attitude that an agent (automation or an-
other person) will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability.” A majority of research in trust in automation
has focused on the relation between automation reliability and operator usage of-
ten without measuring the intervening variable, trust. The utility of introducing
an intervening variable between automation performance and operator usage,
however, lies in the ability to make more precise or accurate predictions with
the intervening variable than without it. This requires that trust in automation
be influenced by factors in addition to automation reliability/performance. The
three dimensional (Purpose, Process, & Performance) model proposed by Lee &
See [25], for example, presumes that trust (and indirectly, propensity to use) is
influenced by a person’s knowledge of what the automation is supposed to do
(purpose), how it functions (process), and its actual performance. While such
models seem plausible, support for the contribution of factors other than perfor-
mance has typically been limited to correlation between questionnaire responses
and automation use. Despite multiple studies in trust in automation, the con-
ceptualization of trust and how it can be reliably modeled and measured is still
a challenging problem.

In contrast to automation where system behavior has been pre-programmed
and the system performance is limited to the specific actions it has been designed
to perform, autonomous systems/robots have been defined as having intelligence-
based capabilities that would allow them to have a degree of self governance,
which enables them to respond to situations that were not pre-programmed or
anticipated in the design. Therefore, the role of trust in interactions between
humans and robots is more complex and difficult to understand.

In this chapter, we present the conceptual underpinnings of trust in Section
2, and then discuss models of, and the factors that affect, trust in automation
in Sections 3 and 4, respectively. Next, we will discuss instruments of measuring
trust in Section 5, before moving on to trust in the context of human-robot
interaction (HRI) in Section 6 both in how humans influence robots, and vice
versa. We conclude in Section 7 with open questions and areas of future work.

2 Conceptualization of Trust

Trust has been studied in a variety of disciplines (including social psychology,
human factors, and industrial organization) for understanding relationships be-
tween humans or between human and machine. The wide variety of contexts
within which trust has been studied leads to various definitions and theories
of trust. The different context within which trust has been studied has led to



definitions of trust as an attitude, an intention, or a behavior [26–28]. Both
within the inter-personal literature and human-automation trust literature, a
widely accepted definition of trust is lacking [29]. However, it is generally agreed
that trust is best conceptualized as a multidimensional psychological attitude
involving beliefs and expectations about the trustee’s trustworthiness derived
from experience and interactions with the trustee in situations involving uncer-
tainty and risk [30]. Trust has also been said to have both cognitive and affective
features. In the interpersonal literature, trust is also seen involving affective pro-
cesses, since trust development requires seeing others as personally motivated
by care and concern to protect the trustor’s interests [31]. In the automation
literature, cognitive (rather than affective) processes may play a dominant role
in the determination of trustworthiness, i.e., the extent to which automation is
expected to do the task that it was designed to do [32]. In the trust in automation
literature, it has been argued that trust is best conceptualized as an attitude [25]
and a relatively well accepted definition of trust is: “...an attitude which includes
the belief that the collaborator will perform as expected, and can, within the
limits of the designer’s intentions, be relied on to achieve the design goals” [33].

3 Modeling Trust

The basis of trust can be considered as a set of attributional abstractions (trust
dimensions) that range from the trustee’s competence to its intentions. [32] com-
bined the dimensions of trust from two works ([34] and [35]). Barber’s model [34]
is in terms of human expectations that form the basis of trust between human and
machine. These expectations are persistence, technical competency, and fiduciary
responsibility. Although in the subsequent literature, the number and concepts
in the trust dimensions vary [25], there seems to be a convergence on the three
dimensions—Purpose, Process, and Performance [25]—mentioned earlier, along
with correspondences of those to earlier concepts, such as the dimensions in [34],
and those of Ability, Integrity, and Benevolence [26]. Ability is the trustee com-
petence in performing expected actions, benevolence is the trustee intrinsic and
positive intentions towards the trustor, and integrity is trustee’s adherence to a
set of principles that are acceptable to the trustor. [26].

Both trust in automation [17] and interpersonal relations literature [36–39]
agree that trust relations are dynamic and varying over time. There are three
phases that characterize trust over time: trust formation, where trustors choose
to trust trustees and potentially increase their trust over time, trust dissolution,
where trustors decide to lower their trust in trustees after a trust violation has
occurred, and trust restoration where trust stops decreasing after a trust viola-
tion and gets restored (although potentially not to the same level as before the
trust violation). Early in the relationship, the trust in the system is based on the
predictability of the system’s behavior. Work in the literature has shown shifts
in trust in response to changes in properties and performance of the automation
[32, 19]. When the automation performed reliably, operator trust increased over
time and vice versa. Varying levels of trust were also positively correlated with



the varying levels of automation use. As trust decreased, for instance, manual
control became more frequent. As the operator interacts with the system, he/she
attributes dependability to the automation. Prolonged interaction with the au-
tomation leads the operator to make generalizations about the automation and
broader attributions about his belief in the future behavior of the system (faith).
There is some difference in the literature as to when exactly faith develops in
the dynamic process of trust development. Whereas [35] argue that interpersonal
trust progresses from predictability to dependability to faith, [17] suggest that
for trust in automation, faith is a better predictor of trust early rather than late
in the relationship.

Some previous work has explored trust with respect to automation vs. human
trustee [18]. Their results indicate (a) the dynamics of trust are similar, in that
faults diminish trust both towards automation or another human, (b) the sole
predictor of reliance on automation was the difference between trust and self-
confidence, and (c) participants, in human-human experiments, were more likely
to delegate a task to a human when the human was thought to have a low
opinion of their own trustworthiness. In other words, when participants thought
their own trustworthiness in the eyes of others was high, they were more likely
to retain control over a task. However, trustworthiness played no role when
the collaborative partner was an automated controller, i.e. only participants’
own confidence in their performance determined their decision to retain/obtain
control. Other work on trust in humans vs. trust in automation [40] explored the
extent to which participants trusted identical advice given by an expert system
under the belief that it was given by a human or a computer. The results of these
studies were somewhat contradictory however. In one study, participants were
more confident in the advice of the human (though their agreement with the
human advice did not vary vs. their agreement on the expert system’s advice),
while in the second study, participants agreed more with the advice of the expert
system, but had less confidence in the expert system. Similar contradictory results
have been shown in HRI studies, where work indicated that errors by a robot
did not affect participants’ decisions of whether or not to follow the advice of
a robot [41], yet did affect their subjective reports of the robot’s reliability and
trustworthiness [42]. Study results by [2], however, indicated that reliance on a
human aid was reduced in situations of higher risk.

4 Factors Affecting Trust

The factors that are likely to affect trust in automation have generally been cat-
egorized as those pertaining to automation, the operator, and the environment.
Most work on factors that have been empirically researched pertains to charac-
teristics of the automation. Here we briefly present relevant work on the most
important of these factors.



4.1 System Properties

The most important correlates of use of automation have been system reliabil-
ity and effects of system faults. Reliability typically refers to automation that
has some error rate—for example, misclassifying targets. Typically this rate is
constant and data is analyzed using session means. Faults are typically more
drastic, such as controller that fails making the whole system behave erratically.
Faults are typically single events and studied as time series.

System reliability: Prior literature has provided empirical evidence that there
is a relationship between trust in automation and the automation’s reliability
[33, 43, 23, 1, 44]. Research shows [27] that declining system reliability can lead
to systematic decline in trust and trust expectations, and most crucially, these
changes can be measured over time. There is also some evidence that only the
most recent experiences with the automation affect trust judgments [19, 24].

System faults: System faults are a form of system reliability, but are treated
separately because they concern discrete system events and involve different
experimental designs. Different aspects of faults influence the relation between
trust and automation. Lee and Moray [19] showed that in the presence of con-
tinual system faults, trust in the automation reached its lowest point only after
six trials, but trust did recover gradually even as faults continued. The magni-
tude of system faults has differential effects on trust (smaller faults had minimal
effect on trust while large faults negatively affected trust and were slower to
recover the trust). Another finding [17] showed that faults of varying magnitude
diminished trust more than large constant faults. Additionally, it was found that
when faults occurred in a particular subsystem, the corresponding distrust did
spread to other functions controlled by the same subsystem. The distrust did
not, however, spread to independent or similar subsystems.

System predictability: Although system faults affect the trust in the automa-
tion, this happens when the human has little a priori knowledge about the faults.
Research has shown that when people have prior knowledge of faults, these faults
do not necessarily diminish trust in the system [43, 18]. A plausible explanation
is that knowing that the automation may fail reduces the uncertainty and conse-
quent risk associated with use of the automation. In other words, predictability
may be as (or more) important as reliability.

System intelligibility and transparency: Systems that can explain their rea-
soning will be more likely to be trusted, since they would be more easily un-
derstood by their users [45–48]. Such explanatory facility may also allow the
operator to query the system in periods of low system operation in order to
incrementally acquire and increase trust.

Level of Automation: Another factor that may affect trust in the system is
its level of automation (i.e. the level of functional allocation between the human
and the system). It has been suggested [20, 32] that system understandability is
an important factor for trust development. In their seminal work on the subject
[49], Sheridan and Verplank propose a scale for assessing the level of automa-
tion in a system from 0-10, with 0 being no autonomy and 10 being fully au-
tonomous. Since higher levels of automation are more complex, thus potentially



more opaque to the operator, higher levels of automation may engender less
trust. Some limited empirical work suggests that different levels of automation
may have different implications for trust [27]. Their work based on Level 3 [49]
automation did not show same results when conducted with Level 7 (higher)
automation.

4.2 Properties of the Operator

Propensity to trust: In the sociology literature [50] it has been suggested that
people have different propensity to trust others and it has been hypothesized
that this is a stable personality trait. In the trust in automation literature,
there is very limited empirical work on the propensity to trust. Some evidence
is provided in [1] suggests that operator’s overall propensity to trust is distinct
from trust towards a specific automated system. In other words, it may be the
case that an operator has high propensity to trust in automation in general, but
faced with a specific automated system, their trust may be very low.

Self Confidence: Self-confidence is a factor of individual difference and one
of the few operator characteristics that has been studied in the trust in au-
tomation literature. Work in [51] suggested that when trust was higher than
self-confidence, automation, rather than manual control would be used and vice
versa when trust was lower than self-confidence. However, later work [27], which
was conducted with a higher level of automation than [51], did not obtain similar
results. It was instead found that trust was influenced by properties of the sys-
tem (e.g., real or apparent false diagnoses) while self-confidence was influenced
by operator traits and experiences (e.g. whether they had been responsible for
accidents). Furthermore, it was also found that self-confidence was not affected
by system reliability. This last finding was also suggested in the work of [18]
which found that self-confidence was not lowered by shifts in automation relia-
bility.

Individual Differences and Culture: It has been hypothesized, and supported
by various studies, that individual differences [15, 51–53] and culture [54] affect
the trust behavior of people. The interpersonal relations literature has identi-
fied many different personal characteristics of a trustor, such as self-esteem [50,
55], secure attachment [56], and motivational factors [57] that contribute to the
different stages in the dynamics of trust. Besides individual characteristics, socio-
cultural factors that contribute to differences in trust decisions in these different
trust phases have also been identified [58–60, 39]. For example, combinations of
socio-cultural factors that may result in quick trust formation (also called “swift
trust” formation in temporary teams [61]) are time pressure [62] and high power
distance with authority [63]. People in high power distance (PD) societies expect
authority figures to be benign, competent and of high integrity. Thus people in
high power distance societies will engage in less vigilance and monitoring for
possible violations by authority figures. To the extent then that people of high
PD cultures perceive the automation as authoritative, they should be quick to
form trust. On the other hand, when violations occur, people in high PD cultures
should be slow to restore trust once violations have occurred [64]. Additionally,



it has been shown [65] via replication of Hofstede’s [66] cultural dimensions for a
very large-scale sample of pilots, that even in such a highly specialized and reg-
ulated profession, national culture still exerts a meaningful influence on attitude
and behavior over and above the occupational context.

To date, only a handful of studies consider cultural factors and potential
differences in the context of trust in automation, with [67] [68] and [69] being
exceptions. As the use of automation gets increasingly globalized, it is imperative
that we gain an understanding on how trust in automation is conceptualized
across cultures and how it influences operator reliance and use of automation,
and overall human-system performance.

4.3 Environmental Factors

In terms of environmental factors that influence trust in automation, risk seems
most important. Research in trust in automation suggests that reliance on au-
tomation is modulated by the risk present in the decision to use the automation
[70]. People are more averse to using the automation if negative consequences
are more probable and, once trust has been lowered, it takes people longer to re-
engage the automation in high-risk vs. low risk situations [43]. However, knowing
the failure behavior of the automation in advance may modify the perception of
risk, in that people’s trust in the system does not decrease [70].

5 Instruments for Measuring Trust

While a large body of work on trust in automation and robots has developed over
the past two decades, standardized measures have remained elusive with many
researchers continuing to rely on short idiosyncratically worded questionnaires.
Trust (in automation) refers to a cognitive state or attitude, yet it has most often
been studied indirectly through its purported influence on behavior often without
any direct cognitive measure. The nature and complexity of the tasks and fail-
ures studied has varied greatly ranging from simple automatic target recognition
(ATR) classification [4], to erratic responses of a controller embedded within a
complex automated system [51] to robots misreading QR codes [71]. The vari-
ety of reported effects (automation bias, complacency, reliance, compliance, etc.)
mirror these differences in tasks and scenarios. [72] and [73] have criticized the
very construct of trust in automation on the basis of this diversity as an unfalsi-
fiable “folk model” without clear empirical grounding. Although the work cited
in the reply to these criticism in [44] as well as the large body of work cited in
the review by [23] have begun to examine the interrelations and commonalities
of concepts involving trust in automation, empirical research is needed to inte-
grate divergent manifestations of trust within a single task/test population so
that common and comparable measures can be developed.

Most “measures” of trust in automation since the original study [17] have
been created for individual studies based on face validity and have not in general



benefited from the same rigor in development and validation that has character-
ized measures of interpersonal trust. “Trust in automation” has been primarily
understood through its analogy to interpersonal trust and more sophisticated
measures of trust in automation have largely depended on rationales and di-
mensions developed for interpersonal relations, such as ability, benevolence, and
integrity.

Three measures of trust in automation, Empirically Derived (ED), Human-
Computer Trust (HTC), and SHAPE Automation Trust Index (SATI) have ben-
efited from systematic development and validation. The Empirically Derived 12
item scale developed by [74] was systematically developed, subjected to a val-
idation study [75] and used in other studies [76]. In [74], they developed their
scale in three phases beginning with a word elicitation task. They extracted a 12-
factor structure used to develop a 12-item scale based on examination of clusters
of words. The twelve items roughly correspond to the classic three dimensions:
benevolence (purpose), integrity (process), and ability (performance).

The Human-Computer Trust (HTC) instrument developed in [28] demon-
strated construct validity and high reliability within their validation sample and
has subsequently been used to assess automation in air traffic control (ATC)
simulations, most recently in [77]. Subjects initially identified constructs that
they believed would affect their level of trust in a decision aid. Following refine-
ment and modification of the constructs and potential items, the instrument was
reduced to five constructs (reliability, technical competence, understandability,
faith, and personal attachment). A subsequent principal components analysis
limited to five factors found most scale items related to these factors.

The SHAPE Automation Trust Index, SATI, [78] developed by the European
Organization for the Safety of Air Navigation is the most pragmatically oriented
of the three measures. Preliminary measures of trust in ATC systems were con-
structed based on literature review and a model of the task. This resulted in
a seven dimensional scale (reliability, accuracy, understanding, faith, liking, fa-
miliarity, and robustness). The measure was then refined in focus groups with
air traffic controllers from different cultures rating two ATC simulations. Scale
usability evaluations, and construct validity judgments were also collected. The
instrument/items have reported reliabilities in the high 80’s but its constructs
have not been empirically validated.

All three scales have benefited from empirical study and systematic develop-
ment yet each has its flaws. The ED instrument in [74], for instance, addresses
trust in automation in the abstract without reference to an actual system and
as a consequence appears to be more a measure of propensity to trust than trust
in a specific system. A recent study [79] found scores on the ED instrument to
be unaffected by reliability manipulations that produced significant changes in
ratings of trust on other instruments. The HTC was developed from a model
of trust and demonstrated agreement between items and target dimensions but
stopped short of confirmatory factor analysis. Development of the SATI involved
the most extensive pragmatic effort to adapt items so they made sense to users



and captured aspects of what users believed contributed to trust. However, SATI
development neglected psychometric tests of construct and content validity.

A recent effort [80, 81] has led to a general measure of trust in automation
validated across large populations in three diverse cultures, US, Taiwan and
Turkey, as representative of Dignity, Face, and Honor cultures [82]. The Cross-
cultural measure of trust is consistent with the three (performance, purpose,
process) dimensions of [83, 25] and contains two 9 item scales, one measuring
the propensity to trust as in [74] and the other measuring trust in a specific
system. The second scale is designed to be administered repeatedly to measure
the effects of manipulations expected to affect trust while the propensity scale is
administered once at the start of an experiment. The scales have been developed
and validated for US, Taiwanese, and Turkish samples and are based on 773
responses (propensity scale) and 1673 responses (specific scale).

The Trust Perception Scale-HRI [84, 79] is a psychometrically-developed 40
item instrument intended to measure human trust in robots. Items are based
on data collected identifying robot features from pictures and their perceived
functional characteristics. While development was guided by the triadic (hu-
man, robot, environment) model of trust inspired by the meta-analysis in [85],
a factor analysis of the resulting scale found four components corresponding
roughly to capability, behavior, task, and appearance. Capability and behavior
correspond to two of the dimensions commonly found in interpersonal trust [83]
and trust in automation [25], while appearance may have a special significance
for trust in robots. The instrument was validated in same-trait and multi-trait
analyses producing changes in rated trust associated with manipulation of robot
reliability. The scale was developed based on 580 responses and 21 validation
participants.

The HRI Trust Scale [86] was developed from items based on five dimensions
(team configuration, team process, context, task, and system) identified by 11
subject matter experts (SMEs) as likely to affect trust. A 100 participant Me-
chanical Turk sample was used to select 37 items representing these dimensions.
The HRI Trust Scale is incomplete as a sole measure of trust and is intended
to be paired with Rotter’s [50] interpersonal trust inventory when administered.
While Lee & See’s dimensions [25] other than “process” are missing from the
HRI scale, they are represented in Rotter’s instrument.

Because trust in automation or robots is an attitude, self-report through
psychometric instruments such as these provides the most direct measurement.
Questionnaires, however, suffer from a number of weaknesses. Because they are
intrusive, measurements cannot be conveniently taken during the course of a task
but only after the task is completed. This may suffice for automation such as ATR
where targets are missed at a fixed rate and the experimenter is investigating
the effect of that rate on trust [4], but it does not work in measuring moment
to moment trust in a robot reading QR codes to get its directions [71].



6 Trust in Human Robot Interaction

Robots are envisioned to be able to process many complex inputs from the envi-
ronment and be active participants in many aspects of life, including work envi-
ronments, home assistance, battlefield and crisis response, and others. Therefore,
robots are envisioned to transition from tool to teammate as humans transition
from operator to teammate in an interaction more akin to human-human team-
work. These envisioned transitions raise a number of general questions: How
would human interaction with the robot be affected? How would performance of
the human-robot team be affected? How would human performance or behavior
be affected? Although there are numerous tasks, environments, and situations
of human-robot collaboration, in order to best clarify the role of trust we distin-
guish two general types of interactions of humans and robots: performance-based
interactions, where the focus is on the human influencing/controlling the robot
so it can perform useful tasks for the human, and social-based interactions, where
the focus is on how the robot’s behavior influences human’s beliefs and behav-
ior. In both these cases, the human is the trustor and the robot the trustee. In
particular, in performance based interactions there is a particular task with a
clear performance goal. An example of performance-based interactions is where
human and robot collaborate in manufacturing assembly, or a UAV performing
surveillance and recognition of victims in a search and rescue mission. Here mea-
sures of performance could be accuracy and timing to complete the task. On the
other hand, in social interactions, the performance goal is not as crisply defined.
An example of such a task is the ability of a robot to influence a human to reveal
private knowledge, or how a robot can influence a human to take medicine or do
useful exercises.

6.1 Performance-Based Interaction: Humans Influencing Robots

A large body of HRI research investigating factors thought to affect behavior
via trust, such as reliability, rely strictly on behavioral measures without refer-
ence to trust. Meyer’s [87] expected value (EV) theory of alarms provides one
alternative by describing the human’s choice as one between compliance (re-
sponding to an alarm) and reliance (not responding in the absence of an alarm).
The expected values of these decisions are determined by the utilities associ-
ated with an uncorrected fault, the cost of intervention and the probabilities of
misses (affecting reliance) and false alarms (affecting compliance). Research in
[88], for example, investigated the effects of unmanned aerial vehicle (UAV) false
alarms and misses on operator reliance inferred from longer reaction times for
misses and compliance inferred from shorter reaction times to alarms. While re-
liance/compliance effects were not found, higher false alarm rates correlated with
poorer performance on a monitoring task, while misses correlated with poorer
performance on a parallel inspection task. A similar study by [89] of unmanned
ground vehicle (UGV) control found participants with higher perceived atten-
tional control were more adversely affected by false alarms (under-compliance)
while those with low perceived attentional control were more strongly affected



by misses (over-reliance). Reliance and compliance can be measured in much
the same way for homogeneous teams of robots as illustrated by a follow up
study of teams of UGVs [90] of similar design and results. A similar study [91]
involved multiple UAVs manipulating ATR reliability and administering a trust
questionnaire, again finding that ratings of trust increased with reliability.

Transparency, common ground, or shared mental models involve a second
construct (“process” [25] or “integrity” [26]) believed to affect trust. According
to these models, the extent to which a human can understand the way in which
an autonomous system works and predict its behavior will influence trust in the
system. There is far less research on effects of transparency, with most involving
level of automation manipulations. An early study [92] in which all conditions
received full information found best performance for an intermediate level of
automation that facilitated checks of accuracy (was transparent). Participants,
however, made substantially greater use of a higher level of automation that pro-
vided an opaque recommendation. In this study, ratings of trust were affected by
reliability but not transparency. More recent studies have equated transparency
with additional information providing insight into robot behavior. Researchers
in [93] compared conditions in which participants observed a simulated robot
represented on a map by a status icon (level of transparency 1), overlaid with
environmental information such as terrain (level 2), or with additional uncer-
tainty and projection information (level 3). Note that these levels are distinct
from Sheridan’s Levels of Automation mentioned previously. What might ap-
pear as erratic behavior in level 1, for example, might be “explained”’ by the
terrain being navigated in level 2. Participant’s ratings of trust were higher for
levels 2 and 3. A second study manipulated transparency by comparing mini-
mal (such as static image) contextual (such as video clip) and constant (such as
video) information for a simulated robot team mate with which participants had
intermittent interactions but found no significant differences in trust. In [94], re-
searchers took a different approach to transparency by having a simulated robot
provide “explanations” of its actions. The robot guided by a POMDP model
can make different aspects of its decision making such as beliefs (probability of
dangerous chemicals in building) or capabilities (ATR has 70% reliability) avail-
able to its human partner. Robot reliability affected both performance and trust.
Explanations did not improve performance but did increase trust among those
in the high reliability condition. As these studies suggest, reliability appears to
have a large effect on trust, reliance/compliance, and performance, while trans-
parency about function has a relatively minor one, primarily influencing trust.
The third component of trust in robot’s “purpose” [25] or “benevolence” [26]
has been attributed [95–97] to “transparency” as conveyed by appearance dis-
cussed in 6.2. By this interpretation, matching human expectations aroused by
a robot’s appearance to its purpose and capabilities can make interactions more
transparent by providing a more accurate model to the human.

Studies discussed to this point have treated trust as a dependent variable
to be measured at the end of a trial and have investigated whether or not it
had been affected by characteristics of the robot or situation. If trust of a robot



is modified through a process of interaction, however, it must be continuously
varying as evidence accumulates of its trustworthiness or untrustworthiness. This
was precisely the conception of trust investigated by Lee and Moray [19] in their
seminal study but has been infrequently employed since. An recent example of
such a study is reported in [98] where a series of experiments addressing tempo-
ral aspects of trust involving levels of automation and robot reliability have been
conducted using a robot navigation and barriers task. In that task, a robot nav-
igates through a course of boxes with labels that the operator can read through
the robot’s camera and QR codes presumed readable by the robot. The labels
contain directions such as “turn right” or “U turn”. In automation modes, robots
follow a predetermined course with “failures” appearing to be misread QR codes.
Operators can choose either the automation mode or a manual mode in which
they determine the direction the robot takes. An initial experiment [98] investi-
gated the effects of reliability drops at different intervals across a trial, finding
that decline in trust as measured by post trial survey was greatest if the reliabil-
ity decline occurred in the middle or final segments. In subsequent experiments,
trust ratings were collected continuously by periodic button presses indicating in-
crease or decrease in trust. These studies [99, 71] confirmed the primacy-recency
bias in episodes of unreliability and the contribution of transparency in the form
of confidence feedback from the robot.

Work in [100] collected similar periodic measures of trust using brief period-
ically presented questionnaires to participants performing a multi-UAV super-
vision task to test effects of priming on trust. These same data were used to
fit a model similar to that formalized by [101] using decision field theory to ad-
dress the decision to rely on the automation/robot’s capabilities or to manually
intervene based on the balance between the operator’s self-confidence and her
trust in the automation/robot. The model contains parameters characterizing
information conveyed to operator, inertia in changing beliefs, noise, uncertainty,
growth-decay rates for trust and self-confidence, and an inhibitory threshold for
shifting between responses. By fitting these parameters to human subject data,
the time course of trust (as defined by the model) can be inferred. An additional
study of UAV control [102] has also demonstrated good fits for dynamic trust
models with matches within 2.3% for control over teams of UGVs. By predicting
effects of reliability and initial trust on system performance, such models might
be used to select appropriate levels of automation or provide feedback to human
operators. In another study involving assisted driving [103], the researchers use
both objective (car position, velocity, acceleration, and lane marking scanners)
and subjective (gaze detection and foot location) to train a mathematical model
to recognize and diagnose over-reliance on the automation. The authors show
that their models can be applied to other domains outside automation-assisted
driving as well.

Willingness to rely on the automation has been found in the automation
literature to correlate with user’s self-confidence in their ability to perform the
task [51]. It has been found that if a user is more confident in their own ability
to perform the task, they will take control of the automation more frequently



if they perceive that the automation does not perform well. However, as robots
are envisioned to be deployed in increasingly risky situations, it may be the case
that a user (e.g. a soldier) may elect to use a robot for bomb disposal irrespective
of his confidence in performing the task. Another factor that has considerably
influenced use of automation is user workload. It has been found in the literature
that users exhibit over-reliance [104, 105] on the automation in high workload
conditions.

Experiments in [42] show that people over-trusted a robot in fire emergency
evacuation scenarios conducted with a real robot in a campus building, although
the robot was shown to be defective in various ways (e.g. taking a circuitous route
rather then the efficient route in guiding the participant in a waiting room be-
fore the emergency started). It was hypothesized by the experimenters that the
participants, having experienced an interaction with a defective robot, would
decrease their trust (as opposed to a non-defective robot), and also that partic-
ipants’ self-reported trust would correlate with their behavior (i.e their decision
to follow the robot or not). The results showed that, in general, participants did
not rate the non-efficient robot as a bad guide, and even the ones that rated it
poorly still followed it during the emergency. In other words, trust rating and
trust behavior were not correlated. Interestingly enough, participants in a pre-
vious study with similar scenarios of emergency evacuation in simulation by the
same researchers [106] behaved differently, namely participants rated less reliant
simulated robots as less trustworthy and were less prone to follow them in the
evacuation. The results from the simulation studies of emergency evacuation,
namely positive correlation between participants’ trust assessment and behav-
ior, are similar to results in low risk studies [71]. These contradictory results
point strongly that more research needs to be done to refine robot, operator and
task-context variables and relations that would lead to correct trust calibration,
and better understanding of the relationship between trust and performance in
human robot interaction.

One important issue is how an agent forms trust on agents it has not encoun-
tered before. One approach from the literature in multiagent systems (MAS)
investigates how trust forms in ad hoc groups, where agents that had not inter-
acted before come together for short periods of time to interact and achieve a
goal, after which they disband. In such scenarios, a decision tree model based
on both trust and other factors (such as incentives and reputation) can be used
[107]. A significant problem in such systems, known as the cold start problem, is
that when such groups form there is little to no prior information on which to
base trust assessments. In other words, how does an agent choose who to trust
and interact with when they have no information on any agent? Recent work has
focused on bootstrapping such trust assessments by using stereotypes [108]. Sim-
ilar to stereotypes used in interpersonal interactions among humans, stereotypes
in MAS are quick judgements based on easily observable features of the other
agent. However, whereby human judgements are often clouded by cultural or
societal biases, stereotypes in MAS can be constructed in a way that maximizes
the accuracy. Further work by the researchers in [109] shows how stereotypes in



MAS can be spread throughout the group to improve others’ trust assessments,
and can be used by agents to detect unwanted biases received from others in the
group. In [110], the authors show how this work can be used by organizations
to create decision models based on trust assessments from stereotypes and other
historical information about the other agents.

Towards Co-adaptive Trust In other studies [111, 112], Xu and Dudek cre-
ate an online trust model to allow a robot or other automation to assess the
operator’s trust in the system while a mission is ongoing, using the results of
the model to adjust the automation behavior on the fly to adapt to the esti-
mated trust level. Their end goal is trust-seeking adaptive robots, which seek to
actively monitor and adapt to the estimated trust of the user to allow for greater
efficiency in human-robot interactions. Importantly, the authors combined com-
mon objective, yet indirect, measures of trust (such as quantity and type of user
interaction), with a subjective measure in the form of periodical queries to the
operator about their current degree of trust.

In an attempt to develop an objective and direct measure of trust the human
has in the system, the authors of [113] use a mathematical decision model to
estimate trust by determining the expected value of decisions a trusting operator
would make, and then evaluate the user’s decisions in relation to this model. In
other words, if the operator deviates largely from the expected value of their
decisions, they are said to be less trusting, and vice versa. In another study
[114], the authors use two-way trust to adjust the relative contribution of the
human input to that of the autonomous controller, as well as the haptic feedback
provided to the human operator. They model both robot-to-human and human-
to-robot trust, with lower values of the former triggering higher levels of force
feedback, and lower values of the latter triggering a higher degree of human
control over that of the autonomous robot controller. The authors demonstrate
their model can significantly improve performance and lower the workload of
operators when compared to previous models and manual control only.

These studies help introduce the idea of “inverse trust”. The inverse trust
problem is defined in [115] as determining how “an autonomous agent can modify
it’s behavior in an attempt to increase the trust a human operator will have in
it”. In this paper, the authors base this measure largely on the number of times
the automation is interrupted by a human operator, and uses this to evaluate the
autonomous agent’s assessment of change in the operator’s trust level. Instead
of determining an absolute numerical value of trust, the authors choose to have
the automation estimate changes in the human’s trust level. This is followed in
[116] by studies in simulation validating their inverse trust model.

6.2 Social-Based Interactions: Robots Influencing Humans

Social robotics deals with humans and robots interacting in ways humans typ-
ically interact with each other. In most of these studies, the robot—either by
its appearance or its behavior—influences the human’s beliefs about trustwor-
thiness, feelings of companionship, comfort, feelings of connectedness with the



robot, or behavior (such as whether the human discloses secrets to the robot or
follows the robot’s recommendations). This is distinct from the prior work dis-
cussed, such as ATR, where a robot’s actions are not typically meant to influence
the feelings or behaviors of its operator. These social human-robot interactions
contain affective elements that are closer to human-human interactions. There
is a body of literature that looked at how robot characteristics affected rat-
ings of animacy and other human-like characteristics, as well as trust in the
robot, without explicitly naming a performance or social goal that the robot
would perform. It has been consistently found in the social robotics literature
that people tend to judge robot characteristics, such as reliability and intelli-
gence, based on robot appearance. For example, people ascribe human qualities
to robots that look more anthropomorphic. Another result of people’s tendency
to anthropomorphize robots is that they tend to ascribe animacy and intent to
robots. This finding has not been reported just for robots [117] but even for sim-
ple moving shapes [118, 119]. Kiesler and Goetz [120] found that people rated
more anthropomorphic looking robots as more reliable. Castro-Gonzalez et al.
[121] investigated how the combination of movement characteristics with body
appearance can influence people’s attributions of animacy, liekeability, trustwor-
thiness, and unpleasantness. They found that naturalistic motion was judged
to be more animate, but only if the robot had a human appearance. Moreover,
naturalistic motion improved ratings of likeability irrespective of the robot’s ap-
pearance. More interestingly, a robot with human-like appearance was rated as
more disturbing when its movements were more naturalistic. Participants also
ascribe personality traits to robots based on appearance. For instance, in [122],
robots with spider legs were rated as more aggressive whereas robots with arms
rated as more intelligent than those without arms. Physical appearance is not
the only attribute that influences human judgment about robot intelligence and
knowledge. For example, [123] found that robots that spoke a particular lan-
guage (e.g. Chinese) were rated higher in their purported knowledge of Chinese
landmarks than robots that spoke English.

Robot appearance, physical presence [124], and matched speech [125] are
likely to engender trust in the robot. [126] found that empathetic language and
physical expression elicits higher trust. [127] found that highly expressive ped-
agogical interfaces engender more trust. A recent meta-analysis by Hancock et
al. [85] found that robot characteristics such as reliability, behaviors and trans-
parency influenced people’s rating of trust in a robot. Besides these characteris-
tics, the researchers in [85] also found that anthropomorphic qualities also had
a strong influence on ratings of trust, and that trust in robots is influenced by
experience with the robot.

Martelato et al. [128] found that if the robot is more expressive, this encour-
ages participants to disclose information about themselves. However, counter
to their hypotheses, disclosure of private information by the robot, a behavior
that the authors labelled as making the robot more vulnerable, did not engender
increased willingness to disclose on the part of the participants. In a study on
willingness of children to disclose secrets, Bethel et al. [129] found in a qualita-



tive study that preschool children were found to be as likely to share a secret
with an adult as with a humanoid robot.

An interesting study is reported in [41], where the authors studied how er-
rors performed by the robot affect human trustworthiness and willingness of the
human to subsequently comply with the robot’s (somewhat unusual) requests.
Participants interacted with a home companion robot, in the experimental room
that was the pretend home of the robot’s human owner in two conditions, (a)
where the robot did not make mistakes and (b) where the robot made mis-
takes. The study found that the participants’ assessment of robot reliability and
trustworthiness was decreased significantly in the faulty robot condition; nev-
ertheless, the participants were not substantially influence in their decisions to
comply with the robot’s unusual requests. It was further found that the nature
of the request (revocable vs. irrevocable) influenced the participants’ decisions
on compliance. Interestingly, the results in this study also show that participants
attributed less anthropomorphism when the robot made errors, which contradict
those found by an earlier study the same authors had performed [130].

7 Conclusions and Recommendations

In this chapter we briefly reviewed the role of trust in human-robot interaction.
We draw several conclusions, the first of which is that there is no accepted defini-
tion of what “trust” is in the context of trust in automation. Furthermore, when
participants are asked to answer questions as to their level of trust in a robot or
software automation, they are almost never given a definition of trust, leaving
open the possibility that different participants are viewing the question of trust
differently. From a review of the literature, it is apparent that robots still have
not achieved full autonomy, and still lack the attributes that would allow them
to be considered true teammates by their human counterparts. This is especially
true because the literature is largely limited to simulation, or to specific, scripted
interactions in the real world. Indeed, in [131], the authors argue that without
human-like mental models and a sense of agency, robots will never be consid-
ered equal teammates within a mixed human-robot team. They argue that the
reason researchers include robots in common HRI tasks is due to their ability to
complement the skills of humans. Yet, because of the tendency of humans to an-
thropomorphize things they interact with, the controlled interactions researchers
develop for HRI studies are more characteristic of human-human interactions.
While this tendency to anthropomorphize can be helpful in some cases, it poses
a serious risk if this naturally gives humans a higher degree of trust in robots
than is warranted. The question of how a robot’s performance influences anthro-
pomorphization is also unclear—with recent studies finding conflicting results
([41] and [130]).

There is a general agreement that the notion of trust involves vulnerability
of the trustor to the trustee in circumstances of risk and uncertainty. In the
performance-based literature, where the human is relying on the robot to do
the whole task or part of the task, it is clear that the participant is vulnerable



to the robot with respect to the participant’s performance in the experimental
task. In most of the studies in social robotics, however, where the robot is trying
to get the participant to do something (e.g. comply with instructions to throw
away someone else’s mail, or disclose a secret) it is not clear that the participant
is truly vulnerable to the robot (unless we regard breaking a social convention
as making oneself vulnerable), merely enjoying the novelty of robots, or feeling
pressure to follow experimental procedure. Therefore, the notion that was mea-
sured in those studies may not have been trust in the sense that the term is
defined in the trust literature. For example in [42], where participants showed
compliance with a robot guide even when reliability was ranked lower after an
error, the researchers admit several confounding factors (e.g., participants did
not have enough time to deliberate). The findings on human tendencies to as-
cribe reliability, trustworthiness, intelligence and other positive characteristics
to robots may prohibit correct estimation of robot’s abilities and prevent correct
trust calibration. This is dangerous especially since the use of robots is envi-
sioned to increase, especially in high risk situations such as emergency response
and the military.

This overview enables us to provide several recommendations for how future
work investigating trust in human-autonomy and human-robot interaction would
proceed. First, it would be useful for the community to have a clear definition in
each study as to what autonomy and what teammate characteristics the robot
in the study possesses. Second, it would be useful for each study to define the
notion of trust the author’s espouse, as well as which dimensions of the notion of
trust they believe are relevant to the task being investigated. The experimenters
should also try to understand, via surveys or other means, what definition of
trust the participants have in their heads. A possible idea is that experimenters
could even give their definition of trust to the participants and see how this may
affect the participants’ answers.

Another recommendation is that, given the novelty of robots for the majority
of the population, along with the well-known fact from in-group/out-group stud-
ies that people seem to be influenced very easily and for trivial reasons, it would
be useful to perform longer duration studies to investigate the transient nature
of trust assessments. In other words, how does trust in automation change as
a function of how familiar users are with the automation and how much they
interact with it over time? One could imaging someone unfamiliar with automa-
tion or robots placing a high degree of trust in them due to prior beliefs (which
may be incorrect). Over time, this implicit trust may fade as they work more
with automation and realize that it is not perfect.

Furthermore, we believe in a need to increase research in the multi-robot
systems area, as well as the area of robots helping human teams. As the number
of robots increase and hardware and operation costs decrease, it is inevitable that
humans will be interacting with larger numbers of robots to perform increasingly
complex tasks. Furthermore, trust in larger groups and collectives of robots is
no doubt influenced by different factors—specifically those regarding the robots’
behaviors—in addition to single robot control. Similarly, there is little work



investigating how multiple humans working together with robots affect each
others’ trust levels, which needs to be addressed.

Finally, it would be helpful for the community to define a set of task cate-
gories of human-robot interaction with characteristics that involve specific dif-
fering dimensions of trust. Such characteristics could be the degree of risk to
the trustor, the degree of uncertainty, the degree of potential gain, whether the
trustor’s vulnerability is to the reliability of the robot, or the robot’s integrity
or benevolence. Other studies should expand on the notion of co-adaptive trust
to improve how robots assess their own behavior and how it affects the trust in
them by their operator. As communication is key to any collaborative interac-
tion, research should not focus merely on how the human sees the robot, but
also how the robot sees the human.
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