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ABSTRACT
While numerous studies have linked exposure to ambient fine particulate matter (PMazs) to
adverse health outcomes (e.g., asthma, cardiovascular disease), less is known about which
specific components of PMys drive these associations. Because PMzs composition varies
spatially with sources, characterizing fine-scale variation in constituents is critical to improving
epidemiological studies on health effects of source-specific PM.s. One approach for improving
this characterization may be hybrid models wherein source-specific dispersion covariates are
integrated into land use regression models (LURS).

The objective of this dissertation was to develop hybrid dispersion-LUR models for
PMzs, black carbon (BC), and steel-related PM2s constituents [lead (Pb), manganese (Mn), iron
(Fe), and zinc (Zn)], by combining concentrations data from spatial saturation monitoring with
daily Environmental Protection Agency (EPA) regulatory data. These models were used to
assign residence-based exposure estimates for time windows of interest for two Pittsburgh-area

epidemiological cohorts.



The first epidemiologic study examined associations between one-year pollutant
exposures and levels of both circulating and lipopolysaccharide (LPS)-stimulated inflammatory
mediators in the Adult Health and Behavior 1l (AHAB I1) cohort. We found that exposures to
PM2s and BC were associated with higher LPS-stimulated IL-1p, IL-6, and TNF-a. Pb was
associated with increased stimulated TNF-a (p = 0.02) and IL-1B (p = 0.02), but were
insignificant after adjusting for multiple comparisons (Bonferroni correction). No pollutant
exposures were associated with circulating IL-6 or CRP. The second epidemiological study
explored associations between pollutant exposures and brain morphology indicators (i.e., total
and cortical gray matter volumes, cortical white matter volume, total white matter surface area,
mean cortical thickness) from magnetic resonance images of participants in the AHAB Il and
Pittsburgh Imaging Project Cohorts, finding no significant associations.

These results suggest that, although pollutants were not associated with circulating
inflammatory mediators or brain morphology in these samples of healthy midlife adults, some
chronic air pollution exposures may influence immune responsiveness, influencing risk for future
inflammatory conditions. Taken together, these results indicate the public health importance of
better understanding relationships between long-term source-specific PM2s and component
exposures with functional indicators of immune responsiveness and other processes shaping risk

for future health effects.
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1.0 INTRODUCTION

1.1  DISSERTATION OBJECTIVES

The overall objective of this dissertation was to develop hybrid dispersion-LUR models for
PMzs, black carbon (BC), and steel-related PM2s constituents [lead (Pb), manganese (Mn), iron
(Fe), and zinc (Zn)], by combining concentrations data from spatial saturation monitoring with
daily Environmental Protection Agency (EPA) regulatory data. These models were used to
assign residence-based exposure estimates for time windows of interest for two Pittsburgh-area
epidemiological cohorts. The first epidemiologic study examined associations between one-year
pollutant exposures and levels of both circulating and lipopolysaccharide (LPS)-stimulated
inflammatory mediators in the Adult Health and Behavior Il (AHAB Il1) cohort. The second
epidemiological study explored associations between pollutant exposures and brain morphology
indicators from magnetic resonance images of participants in the AHAB Il and Pittsburgh
Imaging Project Cohorts. Specific goals for each dissertation chapter are as follows:

Chapter 2: Develop hybrid dispersion LUR models for PM.s, BC, and steel-related Pb,
Mn, Fe, and Zn metal constituents for use in epidemiological studies.

Chapter 3: Examine associations between one-year residence-based pollutant exposures

with circulating and LPS-stimulated inflammatory mediators in the AHAB 11 cohort.



Hypothesis: Elevated exposures to PM2s, BC, Pb, Mn, Zn, and Fe will be associated
with higher levels of circulating inflammatory mediators (II-6 and CRP), and LPS-stimulated
production of cytokines (IL-6, IL-1B, and TNF-a).

Chapter 4: Explore the relationship between one-year pollutant exposures with total and
cortical gray matter volumes, cortical white matter volume, total white matter surface area, and
mean cortical thickness measures of brain morphology in AHAB Il and PIP cohorts.

Hypothesis: Higher residence-based exposures to PMzs, BC, Pb, Mn, Zn, and Fe will be
associated with reduced structural integrity of the brain in two Pittsburgh cohorts of health
middle-aged adults.

The remainder of Chapter 1 includes background information pertaining to Chapters 2-4.

1.2 BACKGROUND

1.2.1 Particulate Matter

Particulate matter is composed of solid and/or liquid particles and composition varies depending
on factors including location, temperature and emission sources. Depending on these and other
factors, PM can be composed of acids, metals, and organic compounds including dust and
allergens. Two commonly measured size fractions of PM are PMyg - coarse particles that have a
diameter of 10 micrometers or less and PMzs - fine particles with a diameter of 2.5 um or less.
Examples of PMyo include particles such as pollen and spores while PM2s may include
combustion-related particles such as smoke. (Anderson et al. 2012; Dockery 2009; EPA 2016c).

PM2 5 enters the lungs through normal breathing and smaller size fractions of PM such as PMzs



can penetrate deep into the lung and certain components may enter the blood stream, leading to a
wide range of adverse health effects. For the purposes of this dissertation we focus here on
cardiovascular and central nervous system related effects of PM2s (EPA 2016c¢).

While PM2s composition varies depending on the source, these components may also
differ in toxicity potentially leading to differences in associated health effects (Bell et al. 2014;
Franklin et al. 2008). The work in this dissertation focuses on health impacts associated with
black carbon (BC), lead (Pb), manganese (Mn), iron (Fe), and zinc (Zn), components of PM2s.

Black carbon (BC) is a component of PM formed from incomplete combustion of fuels.
The majority of BC emissions in the United States are from traffic-related sources including
diesel sources. Other sources include biomass burning, residential heating, and industrial
emissions (EPA 2016a). BC, similar to total PM2s, has been associated with numerous health
effects including hospital admissions, cardiovascular mortality and morbidity (Bell et al. 2014;
Grahame et al. 2014; Organization 2012). A review by the World Health Organization in 2012
suggests that BC may be a better indicator of combustion sources compared to PMazs mass
(Organization 2012).

Lead is a toxic metal that has both natural and anthropogenic sources. Some of these
sources include industrial and traffic-related emissions, residual lead from gasoline, and lead
paint in older homes. Lead paint was banned in the United States in 1978 and lead in gasoline
was phased out and banned in 1995 but both persist in the environment. Urban soil may be
contaminated due to paint from older buildings and industrial emissions deposited in soil. Lead
targets the nervous system which can lead to adverse health effects including learning disabilities
and behavioral issues. Lead disproportionately affects children because of their developing

brains (Agency 1996; CDC 2016). In contrast to lead, Mn, Zn, and Fe metal constituents of



PM2s examined in this dissertation are essential nutrients and toxicity depends on the dose of
each metal. Pb, Mn, Zn, and Fe all have sources related to steel production and traffic-related
emissions. In terms of traffic-related sources, Pb, Zn, and Fe had motor vehicle sources, all had
soil, and dust suspension sources and Mn, Zn, and Fe had brake and tire wear related sources
(Tunno et al. 2015a). All four of these metals have also been found to target the central nervous

system (Gorell et al. 1998; Kim et al. 2011; Rouault 2013; Sensi et al. 2009).

1.2.2 PMazs regulation in the United States

The Environmental Protection Agency (EPA) has set limits for exposure to both PM.s and PM1g
as part of the National Ambient Air Quality Standards as part of the Clean Air Act (CAA)
established in 1970 (Anderson et al. 2012). The EPA sets exposure thresholds for six primary air
pollutants: carbon monoxide, lead, nitrogen dioxide, ozone, sulfur dioxide, and PM1o and PM2s.
Primary and secondary standards were developed for each of these pollutants. Primary standards
are in place to protect public health, especially sensitive people like children, people with
asthma, and the elderly. Secondary standards are limits set for protection of public welfare by
managing reduced visibility, monitoring damage to animals, crops, and vegetation, and
regulating buildings. Relevant to the research presented in this dissertation, the EPA sets
exposure thresholds for PM2s and airborne Pb. Current standards limit exposure to PM2s (three
year rolling average) at 12 pg/m? as a primary standard and 15 pg/m? as a secondary standard.
Exposure to airborne Pb is not to exceed 0.15 pg/m® over a three month average as both a

primary and secondary standard (EPA 2016b).



1.2.3 PMazs, cardiovascular disease, and systemic inflammation

Inflammation is an immune response to a biological, physical or chemical stimuli (e.g.,
PM2s) (Germolec et al. 2010). Examples of inflammatory mediators include cytokines and acute-
phase reactants (Pearson et al. 2003). Chronic inflammation may occur due to persistent
exposure to a stimulus and may contribute to diseases including asthma and cardiovascular
disease (Germolec et al. 2010).

Substantial evidence links air pollution, particularly PMgzs to clinical and
preclinical endpoints associated with chronic inflammatory conditions associated with
aging, including cardiovascular morbidity and mortality (Robert D Brook et al. 2010; Dominici
et al. 2006; Eftim et al. 2008; Gill et al. 2011; Halonen et al. 2009; Miller et al. 2007; Peel et al.
2005; Peters et al. 2000; Symons et al. 2006). Systemic inflammation is one possible mediating
pathway (Robert D Brook et al. 2010; Cosselman et al. 2015; Pope et al. 2004; Thurston et
al. 2015). Previous studies have found associations between long term exposure to
PM2s and circulating inflammatory markers in cohort studies with both healthy participants
and potentially vulnerable subpopulations including older, obese, diabetic, and hypertensive
people (Dubowsky et al. 2006; Zeka et al. 2006). For example, Ostro et al (2014)., found that
a 10-pg/m?® increase in annual PM2s more than doubled the risk of CRP greater than 3 mg/l in
women who were older diabetics, or smokers (Ostro et al. 2014). While long-term exposure to
ambient PM2s has been positively associated with circulating inflammatory mediators, some
studies have also found inconsistent or null associations, potentially due to population
differences in susceptibility or differences in PM2scomposition (Robert D Brook et al. 2010;
Roux et al. 2006; Zeka et al. 2006).

Compared to circulating inflammatory mediators, stimulated inflammatory mediators

may capture individual differences in the magnftude of immune response following exposure to



endotoxin [e.g., lipopolysaccharide (LPS), phytohaemagglutinin (PHA)], possibly indicating
immune reactivity (Marsland et al. 2002; Marsland et al. 2017b). In contrast, circulating
cytokines may reflect an individual’s current condition, such as acute infection. In this sense,
stimulated cytokine measures may identify under- or over-responsiveness of the immune system

(Aietal. 2013).

1.2.4 PMzsand the central nervous system

The effects of air pollution on the central nervous system have become an emerging area of
concern and growing evidence suggests a relationship between particulate air pollution
exposures and adverse neurological outcomes (e.g., cognitive decline, ischemic stroke) (Lisabeth
et al. 2008; Maheswaran et al. 2014; Ranft et al. 2009; Stafoggia et al. 2014).

Air pollution may increase risk for early cognitive decline (Calderon-Garciduenas et
al. 2011; Chen and Schwartz 2009; Gatto et al. 2013; Loop et al. 2013; Power et al. 2011;
Ranft et al. 2009; Weuve et al. 2012), possibly through inflammatory mechanisms that may
adversely affect brain circuits for executive control, memory, and processing speed. In
particular, fine particles can be inhaled and deposited into the airways and alveolar surfaces,
entering pulmonary and systemic circulations (R. D. Brook et al. 2010). Second, ensuing
effects may involve 1) the up-regulation of oxidative and inflammatory mediators, 2) direct
suppression of cardiac vagal (parasympathetic) nerve traffic, impacting autonomic control
over the heart, and 3) the down-regulation of nitric oxide synthase, affecting vascular
resistance, compliance, and endothelial circulatory control (R. D. Brook et al. 2010; Gill et
al. 2011). PM2s may also impact CNS through olfaction by translocation across olfactory
mucosa and penetration into olfactory bulb neural projection pathways to medial temporal

6



lobe regions, leading to cognitive decline and dementia (Calderon-Garciduenas et al. 2010;
Donaldson et al. 2005; Elder et al. 2006; Tin Tin Win et al. 2006). PM.s may also disrupt
the Dblood-brain barrier leading to neurotoxicity and neuroinflammation (Calderon-
Garciduenas et al. 2002; Calderon-Garciduenas et al. 2004; Calderon-Garciduenas et al.
2008a; Calderon-Garciduenas et al. 2008b; Calderon-Garciduenas et al. 2010; Calderon-
Garciduenas et al. 2011; Campbell et al. 2009; Gerlofs-Nijland et al. 2010; Levesque et al.

2011; van Berlo et al. 2010).

1.2.5 Air pollution and brain morphology

Fine particle exposure may also impact the central nervous system possibly by
mechanisms involving the effects of PMas-related inflammation on brain tissue integrity
(Ranft et al. 2009). Measures of brain morphology (e.g., cortical thickness, gray matter
volume) have been associated with cognitive decline as well as neurological diseases such as
Alzheimer’s or Parkinson’s disease (Block et al. 2012; Dickerson and Wolk 2012; Ferreira et al.

2014; Marsland et al. 2015; Whitwell et al. 2008).

Most of the epidemiologic literature linking air pollution and brain morphology has
been performed in children or older adults. For example, some recent studies have
examined associations between children’s exposure to air pollution at schools with structural
and functional brain changes from MRI scans. In one study of 263 children in Barcelona, a
composite air pollution indicator combining indoor and outdoor elemental carbon and NO:
at schools was developed indicative of traffic-related pollution; no significant associations
were found with brain structure, however, children with higher pollution exposures had

lower functional integration and segregation in certain brain networks (Pujol et al. 2016b).



Another study in the same cohort examined associations between copper (Cu) in PM2.5
measured in school courtyards with structural and functional brain measures obtained from
anatomical MRI, diffusion tensor imaging, and functional MRI. Associations were found
between higher exposures to Cu and poorer motor performance and alterations in basal

ganglia structure and function (Pujol et al. 2016a).

A few epidemiological studies have explored relationships between ambient outdoor
PM_s and measures of brain structure in older adults. Wilker et al. (2015), found that a 2-pg/m?®
increase in one-year annual average PM2s was associated with a 0.32% decrease in cerebral brain
volume and 46% higher odds of covert brain infarcts but did not see any associations with
hippocampal volume or white matter hyperintensity volume (Wilker et al. 2015). Participants in
this study were in the Framingham Offspring Cohort (n = 943). A long running cohort study
composed of community dwelling adults in the New England area with no history of dementia or

stroke.

Chen et al. (2015) found significant associations between exposure to ambient PM.s and
decreased white matter volume in frontal and temporal lobes and in the corpus callosum of older
women (Chen et al. 2015). They examined associations between long term exposure to PM2sand
brain volume, using volumetric measures of gray matter and normal-appearing white matter
in MRI results from participants in the Women’s Health Initiative Memory Cohort (n = 1403).
All participants were free of dementia. They found that for each inter-quartile range (3.49
ug/md) increase in PM2s, mean white matter volume decreased by 6.23 (+ 1.28) cm?® for
total brain volume. Significant associations were also found between increased PM2s with
decreases in frontal, parietal, and temporal and corpus callosum white matter volume. No

associations were found with gray matter or hippocampal volume (Chen et al. 2015).



1.2.6 Exposure Modeling

In large cohort studies where personal exposure monitoring is often not possible due to
financial and time constraints, other methods have been used to predict and assign pollutant
exposures. Examples include proximity based measurements (e.g., distance to road) (Baccarelli
et al. 2009; Gauderman et al. 2005) and interpolation (e.g., inverse distance weighting,
kriging) (Jerrett et al. 2001; Kinzli et al. 2005; Stacy et al. 2015). Land use regression (LUR)
modeling has become a common method for predicting pollutant concentrations. LUR
models use observed associations between monitored pollution concentrations and GIS-
based pollution source indicators, such as industrial emissions and land use zoning, to
predict pollutant concentrations at unmonitored locations. LUR models have been widely
used to identify key pollution sources, to predict pollutant concentrations, and to assign
exposure estimates for epidemiological cohorts (Hoek et al. 2008; Jerrett et al. 2005). For
cohort exposure estimates that are accurate in space and time, the spatial surfaces produced
by LUR modeling are often combined with temporally-dense concentration measures, such as
those provided by the EPA air quality system (AQS) monitors (Johnson et al. 2013; Ross
et al. 2013). These approaches represent a great improvement over exposure assignments that

rely solely on the nearest EPA air AQS monitor(s).

Although many studies have developed land use regression (LUR) models for PMas
(Jerrett et al. 2005), relatively few have developed LURSs to examine specific constituents. The
European Study of Cohorts for Air Pollution Effects (ESCAPE) modeled eight components of
PM25, the New York City Community Air Survey (NYCCAS) modeled 15 components of PMzs,

and Brokamp et al., developed LUR models for 11 metals in Cincinnati, Ohio (Brokamp et al.



2016; de Hoogh et al. 2013; Ito et al. 2016). Several LUR models have also been made for

constituents of different PM fractions (Zhang et al. 2015; Zhang et al. 2014).

Adding pollutant dispersion covariates into LUR models may improve models by
incorporating source-specific emissions data particularly relevant for metals components of PM,
increasing accuracy of exposure estimates near sources. Two spatial models for elemental
components have incorporated dispersion parameters in a hybrid LUR approach. The Multi-
Ethnic Study of Atherosclerosis modeled four constituents of PMio2s5 and included the
CALINES3 line dispersion model as a traffic-related covariate (Zhang et al. 2014). The NYCCAS
developed a commercial charbroiling variable using the AERMOD dispersion model in
elemental component models (Ito et al. 2016). To our knowledge, LUR elemental components
models developed in the ESCAPE study are the only constituent LUR models that have been
applied to epidemiological health studies to examine potential associations of long term
elemental components with adverse health effects (e.g., pneumonia and cardiovascular mortality)
(Fuertes et al. 2014; Hampel et al. 2015; Pedersen et al. 2016; Wang et al. 2014).

The work presented in this dissertation builds on this literature by developing hybrid
dispersion LUR models for PM2s and BC, Pb, Mn, Fe, and Zn metal constituents in the
Pittsburgh region. These models were then applied to estimate pollutant exposures at geocoded
addresses of participants in two retrospective cohorts. Epidemiological studies were done to
examine associations between one-year pollutant exposures with circulating and LPS-stimulated

inflammatory mediators and measures of brain morphology.
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2.0 HYBRID LAND USE REGRESSION MODELS FOR ESTIMATING

EXPOSURES TO AIRBORNE METALS ACROSS PITTSBURGH

21 ABSTRACT

Land use regression (LUR) modeling has become a common method for predicting pollutant
concentrations and assigning exposure estimates in epidemiological studies. However, few LUR
models have been developed for metal constituents of fine particulate matter (PM.5) or have
incorporated source-specific dispersion covariates. We developed hybrid AERMOD LUR
models for PM2s, black carbon (BC), and steel-related PM2 s constituents lead (Pb), manganese
(Mn), iron (Fe), and zinc (Zn), using fine-scale air pollution data from 36 sites across the
Pittsburgh area. Models were designed for application to future epidemiological studies, by
combining spatially saturated monitoring data with daily pollutant concentrations from an
Environmental Protection Agency (EPA) regulatory monitor. We found that the hybrid LURs
explained greater variability in PM.s (R? = 0.79) compared to BC (R? = 0.59) and metal
constituents (R? = 0.34 - 0.56). Approximately 70% of variation in PMzs was attributable to
temporal variance, compared to 36% for BC, and 17 - 26% for metals. An AERMOD dispersion
covariate developed with industrial emissions data for 207 sources was significant in PMas and
BC models; all metals models contained a steel mill-specific AERMOD term. Other significant

covariates included industrial land use, commercial and industrial land use, percent impervious
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surface, and summed railroad length. These models will be used to develop exposure estimates

for relevant time points of interest in epidemiology studies.

2.2 INTRODUCTION

While numerous studies have linked exposure to ambient fine particulate matter (PMazs) to
adverse health outcomes (e.g., asthma, cardiovascular disease) (Robert D Brook et al. 2010;
Guarnieri and Balmes 2014), less is known about which specific components of PM2s drive
these associations. Because PM2s composition varies across space, characterizing fine-scale
intra-urban variation in constituents is critical to improving epidemiological studies aimed
towards better understanding health effects of key emissions sources (Bell et al. 2007). Although
many studies have developed land use regression (LUR) models for PMas, relatively few have
developed LURs to examine specific constituents. Because a greater proportion of spatial
variation in metal constituents may be attributable to a few specific sources than is the case for
total PM, emissions from these sources may need to be characterized with greater precision. One
promising approach for improving this characterization may be hybrid models, where source-
specific dispersion covariates are integrated into LURS.

LUR models have been widely used to identify key sources, to predict pollutant
concentrations at unmonitored locations, and to assign exposure estimates for epidemiological
cohorts (Hoek et al. 2008; Jerrett et al. 2005). For cohort exposure estimates that are accurate in
space and time, the spatial surfaces produced by LUR modeling are often combined with

temporally-dense concentration measures, such as those provided by the EPA air quality system
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(AQS) monitors (Johnson et al. 2013; Ross et al. 2013). These approaches represent a great
improvement over exposure assignments that rely solely on the nearest EPA AQS monitor(s).

Few previous studies have developed elemental LUR models for PM2s components. The
European Study of Cohorts for Air Pollution Effects (ESCAPE) modeled eight components of
PM25, the New York City Community Air Survey (NYCCAS) modeled 15 components of PM2s,
and Brokamp et al., developed LUR models for 11 metals in Cincinnati, Ohio (Brokamp et al.
2016; de Hoogh et al. 2013; Ito et al. 2016). Several LUR models have also been made for
constituents of different PM fractions (Zhang et al. 2015; Zhang et al. 2014).

Despite the greater influence that one or a few key sources will have on spatial patterns
when modeling constituents rather than total PM, only two spatial models for elemental
components have incorporated dispersion parameters in a hybrid LUR approach. The Multi-
Ethnic Study of Atherosclerosis modeled four constituents of PMig2s5 and included the
CALINES line dispersion model as a traffic-related covariate (Zhang et al. 2014). The NYCCAS
developed a commercial charbroiling variable using the AERMOD dispersion model in
elemental component models (Ito et al. 2016). Adding pollutant dispersion covariates into LUR
models may further improve models by incorporating source-specific emissions data particularly
relevant for metals components of PM, increasing accuracy of exposure estimates near sources.

To our knowledge, LUR elemental components models developed in the ESCAPE study
are the only constituent LUR models that have been applied to epidemiological health studies to
examine potential associations of long term elemental components with adverse health effects
(e.g., pneumonia and cardiovascular mortality) (Fuertes et al. 2014; Hampel et al. 2015; Pedersen

et al. 2016; Wang et al. 2014).
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We previously found that legacy industrial sources (e.g., Edgar Thomson Steel Works
and Clairton Coke Works) substantially contribute to spatial variability in both PM2s and metal
constituent concentrations across the Pittsburgh area (ACHD 2011; EPA 2009; Kelly 2007;
Michanowicz et al. 2016; Shmool et al. 2014; Tunno et al. 2015c¢). In this study, we developed
AERMOD hybrid LUR models for PM2s, black carbon (BC), and lead (Pb), manganese (Mn),
zinc (Zn), and iron (Fe), metal constituents to develop spatial and temporal exposure estimates
for retroactive and prospective cohort studies in the greater Pittsburgh area. We created two
AERMOD Industrial PM2 s dispersion covariates to develop hybrid models. One was built using
emissions profiles for 207 sources and the second was created using sources associated with
Edgar Thomson Steel Works. We then used concentrations from a centrally-located EPA AQS
monitor to temporally adjust pollutant concentrations to develop exposure estimates that can be
modified for relevant time points of interest in epidemiology studies. These models will be used

in future epidemiological studies examining chronic pollutant exposures and health effects.

23 METHODS

2.3.1 Air Pollution Data

PM25s samples were collected during a spatial-saturation monitoring campaign with 36 sites
monitored in both summer (June 5 to July 26, 2012) and winter (January 8 to March 10, 2013) as
detailed previously (Shmool et al. 2014; Tunno et al. 2015c). Briefly, a sampling domain of
approximately 388 km? was identified to include urban and rural areas in the greater Pittsburgh

region, and included major industrial sources in Allegheny County (e.g., steel mill, two coke
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(coal) works). A stratified random sampling approach was used to systematically choose
monitoring sites based on cross-stratifications of elevation gradient, traffic density and industrial
emissions using geographic information systems (GIS) (ArcMap 10.0-10.3, Redlands). A
background reference site was chosen in Settler’s Cabin Park, west of the city, due to its location
in the lowest strata classes (high elevation, far from industry, and low traffic density) and

location upwind in the predominant wind direction (Fig. 1).

Monitoring Sites across Source Indicators
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Figure 1. Monitoring locations and site selection strata
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One-week integrated PM2s samples were collected using Harvard Impactors (Air
Diagnostics and Engineering Inc.) programmed to sample at a rate of 4.0 liters per minute.
Integrated PM> s concentrations were obtained at each site for the first 15 minutes of every hour
for seven days, and eight sites were sampled per session. The reference site was monitored every
session, to enable temporal adjustment across sessions. Pollutant concentrations were temporally
adjusted to account for sampling sites across multiple weeks by dividing the raw concentration
by the session-specific reference site concentration and then multiplying the result by the average
concentration for the entire season (Shmool et al. 2014; Tunno et al. 2015c¢).

PM25s concentrations were calculated from pre- and post-sampling Teflon filter weights and
black carbon was measured using an EEL43M Smokestain Reflectometer (Diffusion Systems).
Filters were then analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to

determine elemental concentrations for 25 elements (Wisconsin State Laboratory of Hygiene).

2.3.2 Factor Analysis and Source Apportionment

We used factor analysis to identify spatially correlated suites of constituents associated with key
urban sources, such as traffic, industry, and long-range transport. Unconstrained factor analysis
with varimax rotation was performed on 25 PM:s elemental constituents plus BC, and a
previously-developed literature review on source tracers was used to interpret resulting factor
sources (Tunno et al. 2015a). Temporally-adjusted metal concentrations for summer and winter
were combined, and analysis was performed using PROC FACTOR in SAS 9.3 (Cary, NC,
USA) per methods used by Tunno et al., and Clougherty et al (Clougherty et al. 2009; Tunno et
al. 2015a). Factors explaining at least 5% of the total variance, and constituents with loadings
greater than or equal to 0.60 on those factors were retained. Factor 3, which included barium
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(Ba), cesium (Cs), Fe, lanthanum (La), Mn, and Zn, was of particular interest because it
contained three metals (Fe, Mn, and Zn) previously associated with steel mill emissions
(Almeida et al. 2015; Pancras et al. 2013; Tunno et al. 2015a). While Pb, also previously
associated with steel emissions (Almeida et al. 2015; Pancras et al. 2013), did not meet the 0.60

threshold for any factor, its highest loading was 0.57, also on factor 3.

2.3.3 GIS-based Covariates

A wide range of covariates were developed using GIS to capture multiple source categories.
Methods for covariate creation are described elsewhere (Tunno et al. 2015c). Table 1 includes all
covariates created and examined in LUR models. Source categories included traffic density
indicators, transportation indicators, road-specific measures, land use/ built environment,
industrial emissions, population, and truck, bus, and diesel indicators. Several new covariates
were also created in addition to covariates developed by Tunno et al (Tunno et al. 2015c). Under
the industrial emissions source category, mean density of total Pb and Mn emitted per meter
were developed from EPA National Emissions Inventory (NEI) data (EPA 2011). Three
covariates were created using data from the 2011 National Land Cover Database (NLCD)
including percent developed imperviousness, percent medium development, and percent high
development ((USGS) 2011). Variables were created for varying buffer sizes around monitoring

sites, ranging from 50-1000 meters.
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Table 1. Covariates for LUR modeling

Source category for LUR modeling

Covariates examined (50m to 1000m buffers)

Data source

Traffic density indicators

Mean density traffic (primary roads)
Mean density traffic (primary and secondary roads)
Number of signaled intersections

Pennsylvania Department of Transportation (PADOT)

Southwestern Pennsylvania Commission (SPC, 2011)

Road-specific measures

Average daily traffic on nearest primary road
Distance to nearest major road

Summed length of primary roadways

Summed length of primary and secondary roads

PADOT

Truck, Bus, and Diesel

Mean bus traffic density

Distance to nearest bus route

Outbound and inbound trip frequency per week
summed by route

Mean density of heavy truck traffic on nearest
primary roadway

Google Transit (11/11 -3/12)

PADOT

Population

Census population density (blockgroup)

US Census Bureau (2010)

Land Use / Built Environment

Total area of industrial parcels

Total area of commercial parcels

Total area of industrial and commercial parcels
Percent developed imperviousness

Percent medium development

Percent high development

Allegheny County Assessment Data, by parcel (2011)

National Land Cover Dataset (NLCD, 2011)

Industrial emissions

Mean density of total PM, ; emitted per meter
Mean density of total SO, emitted per meter
Mean density of total Pb emitted per meter
Mean density of total Mn emitted per meter
AERMOD-predicted steel mill PM, ; emissions
AERMOD-predicted industrial emissions

National Emissions Inventory (NEI, 2011)

Transportation Facilities

Distance to nearest active railroad
Summed line length of active railroads
Distance to nearest bus depot

Southwestern Pennsylvania Commission (SPC, 2011)

Adapted from Tunno et al 2015.

2.3.4 AERMOD Dispersion Covariates

Two industrial PM2s dispersion covariates were developed using AERMOD, a Gaussian plume

atmospheric dispersion model. These variables were developed with the goal of providing more

accurate, source-specific emission profiles to explain greater variability in monitored

concentrations. AERMOD is currently used for regulatory purposes by the EPA to assess

NAAQS pollutants under the Clean Air Act (EPA 2016b). Both variables were developed using

emissions data from the Allegheny County Health Department (ACHD) Air Quality/ Pollution
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Control Program Division emissions inventory, meteorological data (e.g., wind speed,
temperature) and elevation. Meteorological data used in AERMOD was averaged for 2012 to
develop an annual average dispersion covariate. Emissions data was used for 207 individual
point, volume, and area sources. Model processing was done using Lakes Environmental (Lakes
Environmental Software, Waterloo, ON) version 7.3.0, corresponding to AERMOD version
11103. More information about this process is detailed by Michanowicz et al (Michanowicz et al.
2016). Two covariates were developed as follows: 1) AERMOD predicted industrial PM2s
emissions using all 207 sources, 2) AERMOD predicted steel mill PM2s emissions using 14
sources from the Edgar Thomson Steel Works. Using AERMOD, PM2s concentrations were
predicted directly at monitoring locations as well as at each centroid of a 100 m? Cartesian
receptor grid covering Allegheny County. Average concentrations were determined at

monitoring point locations and for buffers 50 m-1000 m around sites.

2.3.5 Reference Site and Temporal Adjustment

While the Settler’s Park background reference site was used as a temporal component in
previously developed seasonal LUR models, an alternative method was needed that used data
available for the entire sampling year (summer 2012 to spring 2013) to develop annual models.
To accomplish this, an EPA AQS monitor maintained by the ACHD was used to adjust for
temporal variation across sampling weeks. This particular AQS site was chosen for three main
reasons: 1) its central location within the sampling domain (Fig. 1), 2) quality of data and
comparable model agreement with the Settler’s reference site, and 3) availability of data
matching the time period cohort data was collected. Daily PM2s data from all PM2s reference
monitors in Allegheny County were downloaded from the EPA air data website (Agency 2017).
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We chose Allegheny monitor site 420030008 located in Lawrenceville, PA for 2003-2013 based
on the criteria mentioned above. Preference was given to data from National Ambient Air
Quality Standard (NAAQS) compliant monitors. One daily monitor in particular was used with
only 176 missing days over the 10-year period. Concentrations for 141 additional missing days
were filled with data from other monitors (e.g., speciation monitors) leaving a remaining 35 days
with missing data. These 35 concentrations were imputed using PROC GLM with daily PM2s
concentrations as the dependent variable and year, month, and day of the week as categorical

variables in SAS v. 9.3 (Cary, NC).

2.3.6 Land Use Regression Models

Prior to modeling, pollutant distributions were examined through scatter plots and histograms
then tested for normality. Pb, Mn, Fe, and Zn concentrations were transformed using the natural

logarithm due to right-skewed distributions.

LUR models use observed associations between monitored pollution concentrations and
GIS-based pollution source indicators, such as industrial emissions and land use zoning, to
predict pollutant concentrations at unmonitored locations. Pollutant concentrations collected
from summer 2012 and winter 2013 were combined to create merged mixed models accounting
for season as a random factor. Modeling was done using SAS v. 9.3 and Snijders/Bosker R?
values were computed in STATA v. 13. We used GIS-based source indicators and LUR models
built using a manual forward step-wise process to predict fine-scale PM2s, BC, Pb, Mn, Fe, and
Zn concentration estimates with methods adapted from Tunno et al. and Clougherty et al

(Clougherty et al. 2013; Tunno et al. 2015c).
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Correlations were first tested for non-temporally adjusted metal concentrations versus
covariates in each source group. The two highest covariates in each source group were retained.
Scatter plots of these covariates versus pollutant concentrations were examined to make sure that
predictors captured variability across the entire concentration range. Based on these scatter plots
several covariates were natural log transformed to improve linearity in metal models, including
the Lawrenceville temporal term and AERMOD-predicted steel-mill PM2 s emissions. Covariates
were then grouped together and run using a random forest automation to determine a covariate
ranking order using R version 3.1.0 (The R Foundation). Next, LUR models were built starting
with the temporal covariate built using session specific concentrations from the AQS monitor
described above. Covariates were then sequentially tested starting with the highest ranked
covariate from the random forest analysis. The coefficient of determination (R?) was used to
retain covariates. Covariates with a p-value <.1 were removed at each stage. Next, modification
of covariates by elevation was tested by examining interaction terms using a binary indicator for
elevation (low, high, 50%) multiplied by source covariates. Models were then examined for
collinearity by removing covariates with variance inflation factors greater than 2.0. PM2s and
BC models were built following the methods from Tunno et al. (Tunno et al. 2015c) but tested
all new covariates built for metal models as well. Spatial R? values were determined by taking
out the temporal term and predicting temporally adjusted concentrations using only spatial
covariates. Using a 100 m grid spread across the sampling domain, pollutant concentrations were
predicted at the centroid of each grid cell by applying LUR models to the spatial covariate values
in each grid cell. Concentrations were then smoothed with inverse distance weighting with 100

nearest neighboring grid cells. Centroids with metal concentrations greater than the highest
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temporally adjusted concentration measured during the monitoring campaign were capped at this

concentration.

2.3.7 Sensitivity Analyses

Model residuals were assessed using scatter plots and examined for normality and
heteroskedasticity. Residuals were also mapped using GIS to examine spatial patterns in model
performance. In order to produce semivariograms and determine any additional spatial trends,
residuals were mapped against the latitude and longitude of monitoring sites. Twenty percent of
sites (n=14) were selected randomly in SAS and removed. The LUR model was then tested using
the remaining sites. All four metal models were also built without natural log transformations to
compare covariates with In transformed models. Sensitivity analyses were done with temporal
data. ACHD data for Pb, Mn, Fe, and Zn (concentrations collected every three days) was tested

by replacing the PM2 s temporal term.

2.3.8 Exposure Assignment for Cohort Participants

Pollutant exposures will be assigned within a 300 m buffer of each participant’s address by
computing the mean centroid concentration within each buffer. These exposures will then be
temporally extrapolated to relevant time points (e.g., 1 year, or 5 years before the date of the
health outcome of interest). The same reference monitor that was used to temporally adjust the
LUR models will also be used to develop residence-specific cohort participant exposure

estimates as follows in Equation 2.1:

22



pollution; = pollution (300 m buffer) - g1* (mean EPA concentration during sampling

year) + p1* (mean EPA concentration during time point of interest).
(2.1)
Where pollution; is the LUR-derived pollutant-specific exposure estimate corresponding

to participant i’s address and temporally adjusted to the time point of interest.

S1 corresponds to the temporal term from the corresponding LUR model. Mean pollutant

concentrations will be assigned to each participant within a 300 m radial buffer surrounding each

participant’s geocoded residential location.

24  RESULTS

2.4.1 Summary Statistics

Descriptive statistics for temporally adjusted concentrations of monitored PMzs, BC, Pb, Mn,

Zn and Fe are shown in Table 2.
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Table 2. Descriptive statistics for temporally adjusted citywide air sampling concentrations

Summer 2012 Winter 2013

Pollutant Mean (SD) Min Max | Mean (SD) Min | Max
PM2s (ug/m?)" | 13.9 (2.01) 1126 | 226 |11.3(2.01) 8.01 |[18.9
BC (abs) 1.06 (0.36) 0.61 |2.47 [0.93(0.35) 050 |[2.15
Pb (ng/md) 3.87 (2.20) 011 |10.4 |[4.21(5.43) 0.56 |26.4
Mn (ng/m3® | 5.00 (5.42) 0.17 |29.4 [9.08(22.0) 0.40 |96.3
Zn (ng/m3) 23.8 (15.0) 522 | 75.4 [39.0(84.1) 0.71 [391.9
Fe (ng/m?) 110.8 (86.3) 3.41 |515.6 | 260.0 (675.8) 6.03 |3661.3

Adapted from Tunno et al 2015.

2.4.2 Factor Analysis

Five distinct factors resulted from this analysis (Fig. 2). Factor 1 includes metals related to
traffic. Metals aluminum (Al), potassium (K), molybdenum (Mo), antimony (Sb), and strontium
(Sr) loaded onto this factor. Copper (Cu) almost loaded onto this factor (0.59). Each of these
metals have been linked to traffic sources. Mo, Sh, Sr, and Cu have been linked more specifically
to brake and tire wear as well. Factor 2 also consists of components mainly linked to traffic
sources. Calcium (Ca), cadmium (Cd), cerium (Ce), chromium (Cr), vanadium (V), and
magnesium (Mg, 0.59) loaded onto factor 2. Ca, Cd, and Mg have been linked to traffic in
general, Cr to brake/tire wear, and V to fuel and oil sources. Barium (Ba), cesium (Cs), Fe,

lanthanum (La), Mn, Zn, and Pb (0.57) loaded on factor 3. Fe, Zn, Mn, and Pb have all been
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linked to steel mill emissions. Factor 4 included arsenic (As) and thallium (TI) and factor 5 had

selenium (Se). All of these metals have been associated with coal sources (Tunno et al. 2015a).
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Figure 2. Factor loadings of PM2s elemental constituents and BC
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2.4.3 LUR Models

Most of the variability in the metal models was explained by spatial covariates. The temporal
reference contributed to 17-26% of the total variance in metal models compared to 70% in PMas
and 36% in BC as shown in Table 3. All models contained AERMOD covariates. PM2s and BC
models incorporated the AERMOD predicted industrial PM2s emissions covariate while the
metal models included the steel mill specific AERMOD term in every model. Zn, Fe, and Mn
models all included percent impervious surface within a 500 m buffer. Summed railroad length
within a 300 m buffer was in Pb, Mn, and Fe models. In addition to the AERMOD covariate, the
PM25s model also included industrial land use within a 500 m buffer and percent impervious
surface within a 200 m buffer. Commercial and industrial land use within a 200 m buffer was
found in the BC model. Spatial R? values were 0.33 for PMs, 0.32 for BC, 0.25 for Pb, 0.47 for
Mn, 0.36 for Fe, and 0.32 for Zn. Spatial surfaces developed from these models are shown in

Figure 3.
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Table 3. LUR model results

LUR Models
Seq.
Pollutant Covariates B R?

PMeas (Mg/M?) | |ntercept -2.53 (1.14) -
Reference PMa5s 1.08 (0.08)** 0.70
Industrial land use 500 m 7.40x10° (2.45x10%)* 0.75
Percent Impervious surface 200 m 0.03 (0.01)* 0.77
AERMOD predicted industrial PM.s emissions 0.50 (0.20)* 0.79

Pb (Ng/m°) | |ntercept -2.84 (1.11) -
Reference PMas 1.65 (0.43)* 0.18
AERMOD steel mill PM25 emissions 1000 m 0.26 (0.09)* 0.26
Sum rail length 300 m 0.00011 (0.000036)* 0.35

Mn (ng/m®) | |ntercept -4.42 (1.22) --
Reference PMas 2.16 (0.47)** 0.20
AERMOD steel mill PM2s emissions 1000 m 0.38 (0.10)** 0.34
Sum rail length 300m 0.00016 (0.00005)* 0.52
Percent Impervious surface 500 m 0.01 (0.005)* 0.55

Fe (ng/m°) | |ntercept 2.21 (1.21) --
Reference PMa5s 2.50 (0.47)** 0.26
AERMOD steel mill PM25 emissions 1000 m 0.32 (0.10)* 0.36
Sum rail length 300 m 0.00015 (0.000044)* 0.52
Percent impervious surface 500 m 0.01 (0.005)* 0.55

Zn (ng/m®) | |ntercept -1.81 (1.34) -
Reference PMa5s 1.71 (0.52)* 0.17
AERMOD steel mill PM2s emissions 1000 m 0.24 (0.11)** 0.26
Percent impervious surface 500 m 0.02 (0.005)* 0.37

BC (abs) | Intercept -0.55 (0.17) -
Reference PMa5s 0.10 (0.01)** 0.36
Commercial and industrial land use 200 m 7.31x10° (1.41 x10%*  0.54
AERMOD predicted industrial PM. s emissions 0.11 (0.04)** 0.59

(*p-value <.05, **p-value<.0001).
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2.4.4 Sensitivity Analyses

After reviewing semivariograms of model residuals, no additional spatial patterns were found for
any of the pollutants. When models were re-fit after deleting 20% of sites, all covariates were
retained with a p-value less than 0.1.

Compared to the models developed using In transformed concentrations, models built
with non-transformed concentrations had considerably higher R? values. However, the
distribution of residuals for all non-transformed models were heteroskedastic compared to
transformed models. All non-transformed models contained the AERMOD-predicted steel mill

PM2 5 emissions covariate. The Mn and Fe models also included percent impervious surface and
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industrial land use within a 500 m buffer. Pb and Zn both had industrial land use at 500 m and
percent of medium developed land within a 500 m buffer.
Using daily PM2s from the AQS monitor performed better in models compared to using

speciation data collected once every 3 days from the same site (higher R?, lower p-value).

2.5 DISCUSSION

Hybrid AERMOD LUR models were developed for PM2s BC, Pb, Mn, Zn, and Fe metal
constituents by combining spatial source-based covariates developed in GIS with industry
specific PM2 s dispersion covariates developed using AERMOD. These models were specifically
designed to assign exposure estimates to participants in cohort studies in Allegheny County
using an EPA AQS monitor to temporally extrapolate LUR spatial surfaces to cohort specific
time points.

Significant covariates found in the metal models were mostly consistent with known Pb,
Mn, Zn, and Fe sources. All metal models included AERMOD-predicted steel mill PMas
emissions compared to PM2s and BC models which incorporated the AERMOD-predicted
industrial emissions variable containing 207 sources. This corroborates our factor analysis and
source apportionment results which grouped these metals together and pointed to a “steel
making” source in the literature. The NYCCAS also included industry (industrial land use) as a
covariate in their Mn, Fe, and Pb LUR models (Ito et al. 2016).

Our seasonal models for PM2s and BC previously contained a covariate developed from
inverse distance weighted NEI PM> s emissions instead of AERMOD-predicted PM2 s emissions.

We found in our seasonal PM2s models that AERMOD-predicted industrial PM2s emissions
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increased the accuracy of exposure estimates compared to IDW emissions by incorporating wind
speed/direction and detailed emission profiles of local industries. This was found near specific
industrial sources where wind direction and elevation may play a role in transport of pollutants
from a point source, which is particularly important for the metal models that were heavily
influenced by specific industrial sources (Michanowicz et al. 2016). AERMOD covariates
contributed more variability to the metal models compared to PM2sand BC. However, PM2s and
BC models also contained industrial land use. Inclusion of the steel-mill related AERMOD
covariate in all metal models demonstrates the importance of developing accurate source-specific
covariates for modeling metal constituents.

Summed railroad length was a significant covariate for Pb, Fe and Mn models.
Buikowieki et al., found Mn and Fe were emitted from railways in Zurich, Switzerland
(Bukowiecki et al. 2007). Brokamp et al. found that summed railroad length within a 1000 m
buffer was significant in their Mn LUR model. Percent impervious surface within a 500 m buffer
developed from the NLCD (2011) were also significant for Mn, Zn, and Fe models. Brokamp et
al., included Developed High Intensity area which is an NLCD variable including 80-100%
impervious surface in Mn and Fe models (Brokamp et al. 2016).

We found lower R? values for metal constituent models compared to total PMzs. One
reason for this could be because less variability was explained by the temporal term in the metal
models. Another possibility could be due to our monitoring design which included sites “near” or
“far” from industry based on IDW NEI pollutant emissions but did not include a range of

distances from industrial locations.
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2.5.1 Limitations

While we developed annual average models, sampling was not completed in fall or spring
seasons. However, many of the spatial covariates were developed from source data averaged
over one or several years. Spatial surfaces were also temporally adjusted using data for the entire
monitoring year from the EPA AQS monitor. Models will be temporally extrapolated for use in
cohort studies using this same AQS site. A limitation of LUR models is that the analysis is based
on associations and LUR model results cannot establish causation between source covariates and

pollutants.

2.5.2 Strengths

The PM2s concentrations used for this analysis were obtained from two seasons of data from 36
sites and modeled to generate concentrations for every 100 m grid cell within the sampling
domain. This provided a much higher spatial resolution compared to the established EPA AQS
monitoring network locations within the county. In addition, our hybrid AERMOD LUR models
may be more accurate by incorporating meteorology and topography into AERMOD covariates.
The AQS monitor used to adjust the models also contributed to high temporal resolution

providing daily concentrations.
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3.0 LONG-TERM AMBIENT AIR POLLUTION EXPOSURES AND CIRCULATING
AND STIMULATED INFLAMMATORY MEDIATORS IN A COHORT OF MIDLIFE

ADULTS

3.1 ABSTRACT

While long term exposure to ambient air pollution has been found to impact the immune system
through systemic inflammation, it is unclear whether chronic pollutant exposures are associated
with endotoxin stimulated inflammatory mediators. We examined associations between chronic
exposures to outdoor air pollution and levels of both circulating and lipopolysaccharide (LPS)
stimulated inflammatory mediators in a cohort of healthy adults. Circulating levels of
Interleukin-6 (IL-6), C-reactive protein (CRP) (n=392), and LPS-stimulated production of
Interleukin-1p (IL-1p), IL-6, and Tumor Necrosis Factor-a (TNF-a) were measured in blood
samples collected from 379 participants in the Adult Health and Behavior Il cohort. Spatial air
pollution exposure models developed for fine particulate matter (PM2.s), black carbon (BC), and
lead (Pb), manganese (Mn), zinc (Zn), and iron (Fe) metal constituents of PMa s were used to
assign pollutant exposures at participant’s geocoded addresses. Associations between pollutant
exposures with circulating and stimulated inflammatory mediators were examined using linear
regression models adjusting for age, sex, race, smoking status, body mass index (BMI), and

years of education. Exposure to PM2s and BC were associated with higher LPS-stimulated IL-
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1B, IL-6, and TNF-a. Pb was associated with increased stimulated TNF-a (p=0.02) and IL-1f
(p=0.02), but were insignificant after applying a Bonferroni correction for multiple comparisons.
No pollutant exposures were associated with circulating levels of I1L-6 or CRP. Exposure to
PM2s and BC was associated with increased LPS-stimulated pro-inflammatory cytokine
production in a cohort of middle-aged adults. These results suggest that some chronic air
pollution exposures may influence the responsiveness of the immune system, possibly increasing

risk for future inflammatory conditions.

3.2 INTRODUCTION

Exposure to fine particulate matter (PM2s) has been consistently associated with increased
cardiovascular morbidity and mortality and systemic inflammation is one possible mediating
pathway (Robert D Brook et al. 2010; Cosselman et al. 2015; Pope et al. 2004; Thurston et al.
2015). While studies have found associations between long term exposure to PM2s and
circulating inflammatory markers [e.g., Interleukin-6 (IL-6), C-reactive protein (CRP)]
(Dubowsky et al. 2006; Hampel et al. 2015; Hoffmann et al. 2009; Ostro et al. 2014), little is
known about how chronic PMa s exposures may impact immune competence. While long-term
exposure to ambient PM2s has been positively associated with circulating inflammatory
mediators, some studies have also found inconsistent or null associations, potentially due to
population differences in susceptibility or differences in PM.s composition (Robert D Brook et
al. 2010; Roux et al. 2006; Zeka et al. 2006). These results indicate the need for more research
examining associations between long-term PMas exposures with cohorts of different ages and

health status.
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Compared to circulating inflammatory mediators, stimulated inflammatory mediators
may provide an indicator of immune response, as they capture individual differences in the
magnitude of immune response following exposure to endotoxin [e.g., lipopolysaccharide (LPS),
phytohaemagglutinin (PHA)], possibly indicating immune reactivity (Marsland et al. 2002;
Marsland et al. 2017b). Circulating cytokines may reflect an individual’s current condition, such
as acute infection. In this sense, stimulated cytokine measures may identify under- or over-
responsiveness of the immune system (Ai et al. 2013). Better understanding how chronic PMzs
exposures relate to stimulated cytokine levels may indicate whether and how air pollution
exposures may be associated immune response.

Only a few studies have explored the association of environmental pollutants with
stimulated cytokine production. To date, results have been mixed. For example, Grosse et al.
found that induced iron oxide nanoparticles suppressed the ability of LPS to induce a stimulated
inflammatory response in monocytes, while Kronborg et al., found that exposing isolated human
cells to polybrominated diphenyl ether (DE-71) flame retardants in vitro, followed by LPS
stimulation, exhibited increased production of cytokines including IL-6, IL-1p and TNF-a
(Grosse et al. 2016; Kronborg et al. 2016).

PM2 5 constituents may differ in toxicity (Bell et al. 2014; Franklin et al. 2008), and some
prior studies have identified a heightened effect of steel-related metals components on
inflammation (Ghio and Devlin 2001). In Pittsburgh, we previously identified elevated
concentrations of Pb, Mn, Fe, and Zn related to steel mill emissions, and developed hybrid land
use regression models predicting concentrations of each across the urban area (Tripathy et al.
2017). Here, we associate annual-average residence-based exposures to ambient PM.s and

metals components with circulating and stimulated levels of proinflammatory mediators among
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middle-aged adults in the AHAB-II cohort. We hypothesized that elevated exposures to PMzs,
BC, Pb, Mn, Zn, and Fe would be associated with higher levels of circulating inflammatory

mediators (11-6 and CRP), and LPS-stimulated production of cytokines (IL-6, IL-1B, and TNF-a).

3.3 METHODS

3.3.1 AHAB-II Cohort

AHAB-II is a cohort study of healthy middle-aged adults in Western Pennsylvania. It was
developed to identify neural and bio-behavioral correlates of physical and mental health in
midlife. Cohort participants were recruited between March 2008 and October 2011 through mass
mailings of invitation letters to individuals randomly selected from voter registration and other
public domain lists. Individuals eligible for AHAB-II were aged 30-54 years, were working at
least 25 h per week outside of the home, and spoke English as their first language. Individuals
were further excluded if they: (a) had a history of cardiovascular disease, schizophrenia or
bipolar disorder, chronic hepatitis, renal failure, major neurological disorder, chronic lung
disease, or stage 2 hypertension (SBP/DBP > 160/100); (b) consumed > 5 alcoholic drinks 3-4
times (> approximately 201 g of alcohol) per week; (c) took fish-oil supplements, took
prescribed insulin or glucocorticoid, anti-arrhythmic, antihypertensive, lipid-lowering,
psychotropic, or prescription weight-loss medications; (e) were pregnant; (f) had less than 8th
grade reading skills; or (g) were shift workers. Finally, all participants were screened for prior
and current DSM-IV Axis-I disorders using the Mini International Neuropsychiatric Interview

(MINI) (Sheehan et al. 1998). The University of Pittsburgh Institutional Board approved the
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study; all participants provided informed consent in accordance with its regulations and were

remunerated for their participation (Marsland et al. 2017a).

3.3.2 Circulating Inflammatory Mediators

Blood samples were taken from participants to determine levels of circulating IL-6 and C-
reactive protein from 2008-2011. Plasma levels of IL-6 and CRP were assessed from blood
samples drawn between 7:30AM and 12:35PM (M = 9:16 + 0:54 min). Prior to the blood draw,
participants were asked to fast for 8 h, avoid vigorous exercise for 12 h and alcohol for 24 h, and
refrain from using tobacco products that morning. The blood draw was rescheduled if the
participant reported symptoms of acute infection or use of antibiotics or antivirals in the previous
2 weeks. At the blood draw visit, a registered nurse completed a medical history and medication
use interview and obtained measurements of height and weight to determine body mass index
(BMI in kg/m?). The nurse also drew a 40 cc blood sample. Plasma samples were collected from
citrated tubes, frozen at —80 °C until analysis in batches. IL-6 levels were determined in
duplicate by high sensitivity quantitative sandwich enzyme immunoassay kit (R & D Systems,
Minneapolis, MN, standard range = 0.156-10 pg/mL) run per manufacturer’s directions. CRP
was measured at the University of Vermont’s Laboratory of Clinical Biochemistry Research with
the BNII nephelometer from Dade Behring utilizing a particle enhanced immunonephelometric
assay. Average inter- and intra-assay coefficients of variation were <10% for both IL-6 and CRP

(Marsland et al. 2017a).
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3.3.3 Stimulated Cytokines

Whole blood was collected in citrate-treated vacutainer tubes and stimulated with LPS (serotype
026:B6, Sigma) at a final concentration of 2.5 ug/ml under sterile conditions and incubated at
37°C with 5.0% CO> for 24 hours. The tubes were then centrifuged at 1000g for 10 minutes and
the plasma was frozen at -80°C until the completion of the study.

Samples were assayed in one batch using a multiplex analysis system. Multiplex bead
kits (Biosource, Camarillo, CA), based on the principle of solid phase sandwich immunoassays,
were employed and stimulated levels of IL-6, IL-1B, and TNF-a were determined using Bio-Plex
Manager Software (Bio-rad Corporation, Hercules, CA), interpolating from the standard curve
(Logisitc-5PL curve fit). Pooled plasma controls were included on all plates to determine assay
reliability. Inter- and intra- assay coefficients of variability were less than 10%. Stimulated
cytokine production was quantified by subtracting cytokine levels in unstimulated samples from

the stimulated levels (Prather et al. 2007).

3.3.4 Air Pollution Data

Pollutant concentrations were measured during a multi-pollutant monitoring campaign in
Allegheny County previously described (Shmool et al. 2014; Tunno et al. 2015c). Our sampling
domain, including both urban and suburban areas in the greater Pittsburgh region, was
determined using geographic information systems (GIS) (ArcMap 10.0-10.3, Redlands), to
capture major industrial sources in Allegheny county (e.g., steel mill, coke works). A stratified
random sampling design was used to select 36 monitoring sites based on cross-stratified classes

of elevation, traffic density, and industrial emissions. Monitoring was completed during summer
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(June-July) 2012, and the same sites were repeated in winter (January-March) 2013. PMa2s
samples were collected using Harvard Impactors (Air Diagnostics and Engineering Inc.) at 4.0
liters per minute. Integrated PM2s concentrations were obtained at each site for the first 15
minutes of every hour for 7 days. Eight sites were sampled per session. PM2s concentrations
were calculated based on gravimetric analysis of Teflon filters before and after sampling, and
black carbon was measured using an EEL43M Smokestain Reflectometer (Diffusion Systems).
Elemental concentrations were determined using inductively-coupled plasma mass spectrometry

(ICP-MS) (Wisconsin State Laboratory of Hygiene) (Shmool et al. 2014; Tunno et al. 2015c).

3.3.5 Hybrid LUR Models

To estimate average one-year air pollution exposures at the homes of each AHAB 11 participant,
we used previously-developed hybrid LUR models for PMs, BC, Pb, Mn, Fe, and Zn. Model
development is detailed elsewhere (Tripathy et al. 2017; Tunno et al. 2015c). Briefly, covariates
were created using GIS to capture a variety of potential pollutant sources - including traffic
density indicators, transportation indicators, road-specific measures, land use/built environment,
industrial emissions, population, and truck, bus, and diesel indicators (Tunno et al. 2015c) -
across locations.  Following our hybrid AERMOD-LUR modeling approach, detailed in
Michanowicz et al. 2016 (Michanowicz et al. 2016), two additional covariates were developed
using the AERMOD atmospheric dispersion model. One dispersion variable was built using
emissions profiles for 207 sources (AERMOD-predicted industrial PM..s emissions), A second
was developed using only the 14 point source profiles associated with the Edgar Thomson Steel

Works (AERMOD-predicted steel mill PM2s emissions).
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Hybrid LUR models were built using a manual forward step-wise approach combined
with random forest analyses using SAS version 9.3 (Cary, NC) and R version 3.1.0 to select
covariates that contributed the most to variability in pollutant concentrations. In addition to
spatial covariates, a temporal term was incorporated into models using daily concentrations from
an Environmental Protection Agency (EPA) Air Quality System (AQS) maintained by the
Allegheny County Health Department (ACHD) centrally located within the sampling domain.
These models were used to predict pollutant concentrations across the monitoring domain using
source layers in GIS. Model predictions were then spatially extrapolated outside of the original
sampling domain to include all of Allegheny County where most AHAB-II participants lived

(Tripathy et al. 2017).

3.3.6 Geocoding

AHAB-I1I participant addresses were geocoded using a three-tiered system in GIS, following
methods we have used successfully in other cities as shown in Figure 1 (Shmool et al. 2016).
Briefly, addresses were first run through a U.S. Postal Service reference dataset using ZP4™
address standardization software (Semaphore Corporation, Monterey, CA). Incomplete
addresses, P.O. Box numbers, and addresses outside of Allegheny County were excluded. We
first attempted to match addresses using an address point based locator, unmatched addresses
were then matched via a parcel centroid locator. Finally, any remaining addresses were matched
using a street network locator. Buffers were created 300 m around geocoded addresses in
preparation for exposure assignment. Participants with unmatched addresses or 300 m buffers

that were not completely contained within the Allegheny County boundary were excluded.

40



3.3.7 Exposure Assignment

PM2s, BC, Pb, Mn, Fe, and Zn exposure estimates were assigned using pollutant LUR surfaces.
Mean concentration estimates were assigned within a 300 m buffer of geocoded addresses. These
exposures were then temporally extrapolated to a 1 year average predicted concentration prior to
the date of participant blood draw. This was done using the same AQS monitoring data used
during the LUR modeling process using the procedure by Tripathy et al. 2017 (Tripathy et al.

2017).

3.3.8 Statistical Analysis

IL-6, CRP, and stimulated IL-6, IL-1B, and TNF-o were tested for normality with PROC
UNIVARIATE and examination of histogram distributions. Each exposure-outcome relationship
was tested for linearity by reviewing scatter plots of exposures versus outcomes. Bivariate linear
regression models were run for each pollutant by each inflammatory marker. Next, pollutants
were tested in a second model adjusting for age, sex, race, smoking status (current, former,
never), body mass index (BMI), and education (years) as potential confounders. Potential
interaction of pollutants by sex was also tested. Statistical analyses were generated using SAS
versions 9.3-9.4 (Cary, NC) and scatter plots were displayed using STATA version 13.0

(StataCorp, TX).
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3.3.9 Sensitivity Analyses

Bivariate linear regression models and linear regression models adjusting for confounders were
run again excluding participants that did not live within the original monitoring domain to ensure
results were not due to misclassification by sources that may not have been represented in the

original sampling domain.

3.4  RESULTS

3.4.1 AHAB Il Sample Size

The original AHAB 1l dataset contained 490 participants. Twenty-nine participants were
excluded due to incomplete addresses, P.O. Box numbers, and addresses outside of Allegheny
County as shown in Figure 4. Remaining addresses were geocoded using the composite locator
resulting in 4 unmatched addresses (n=463) and 2 additional addresses were excluded with 300
m buffers extending outside of Allegheny County. Exposures were assigned at 461 geocoded

locations using our hybrid LUR pollutant exposure surfaces.

A separate sample size was determined for circulating cytokines and stimulated cytokines
due to missing inflammatory outcome data resulting in 393 participants with circulating cytokine
data and 379 with stimulated cytokine data. One additional participant was excluded from the
circulating cytokine sample due to missing data on smoking status. Participant geocoded

addresses are shown in Figure 4.
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Figure 4. Geocoded addresses for AHAB |1 participants with valid circulating IL-6 and CRP
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Figure 5. Geocoded addresses for AHAB |1 participants with valid stimulated cytokines
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3.4.2 Sample Characteristics

As shown in Table 4 and Table 5, sample characteristics were similar for participants with valid

circulating cytokines (n=392) compared to participants with valid stimulated cytokine data

(n=379). AHAB 11 had slightly more women than men and the average age was approximately

43 years. Participants were predominately white and had completed college on average. Most

participants had never smoked.

Table 4. AHAB |1 Participant Characteristics: Circulating Cytokines

Sample characteristics | mean (SD) or % 5% | 95%
Sex (%) 48% male, 52% female
Age (years) 43.1 (7.2) 31 53
Race (%) 81.7% white, 16.3% black, 2.0% other
Education (years) 16.9 (2.9) 12 23
BMI (kg/m2) 27.2(5.1) 19.9 | 36.2
Smoking status 20.4% former, 16.6% current, 63% never

Table 5. AHAB I Participant Characteristics: Stimulated Cytokines
Sample characteristics | mean (SD) or % 5% | 95%
Sex (%) 46.4% male, 53.6% female
Age (years) 42.8 (7.4) 31 53
Race (%) 82.3% white, 15% black, 2.7% other
Education (years) 17.0 (2.9) 12 23
BMI (kg/m2) 26.9 (5.3) 19.9 | 36.7

Smoking status

21.1% former, 14.5% current, 64.4% never

46




3.4.3 Statistical Analysis

Natural-log transformation was applied to all outcome variables to correct skewed distributions.
Scatter plots were made for each pollutant versus outcome to assess linearity (Fig. 5-9). Pb, Mn,

Zn, and Fe exposures were transformed using the natural log to improve linear fit.
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Figure 7. Scatter plots for pollutants versus IL-6
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Figure 8. Scatter plots for pollutants versus CRP
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Pollutant exposures, confounders, and outcomes are summarized in Tables 6-8. Average
pollutant exposures were similar between participants with valid circulating cytokines and

participants with valid stimulated cytokines, as shown in Table 6 and Table 7.

Table 6. AHAB 11 1-year residential pollutant exposure estimates: circulating cytokines (n=392)

Exposure estimates | mean (SD) 5% 95%
PM25 (ug/mq) 13.0 (1.35) 11.3 | 15.7
BC (abs) 0.95 (0.15) 075 |1.23
Pb (ng/m?) 2.84 (0.63) 2.06 |4.06
Mn (ng/m?) 2.95 (1.32) 1.60 |5.00
Fe (ng/m®) 65.3 (26.9) 379 |[110.1
Zn (ng/m?) 17.6 (5.57) 9.81 |27.1

Table 7. AHAB 11 1-year residential pollutant exposure estimates: stimulated cytokines (n=379)

Exposure estimates | mean (SD) 5% 95%

PM2s (ug/m®) 13.1 (1.41) 11.3 | 15.9

BC (abs) 0.97 (0.15) 0.76 | 1.24

Pb (ng/mq) 2.83 (0.63) 2.05 |4.03

Mn (ng/md) 2.95 (1.33) 1.60 |[4.99

Fe (ng/m®) 65.1 (27.0) 37.0 |110.1

Zn (ng/m?®) 17.6 (5.65) 9.71 |27.1

Table 8. AHAB |1 outcomes

Inflammatory marker | n mean (SD) 5% 95%
11-6 (pg/ml) 392 | 1.14 (0.94) 0.39 2.51
CRP (ng/ml) 392 | 1.67 (1.93) 0.21 5.87
stimulated 11-6 (pg/ml) | 379 | 52415.6 (35648.9) | 19371.4 | 116938.1
stimulated 1I-1B (pg/ml) | 379 | 12322.4 (7632.6) |3528.5 |27943.1
stimulated tnf-a (pg/ml) | 379 | 7319.1 (6071.8) 808.3 18570.1
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Results from bivariate linear regression models are shown in Tables 9-10. We found
significant positive associations (p < 0.05) of exposure to PM2s and BC with all stimulated
cytokines. Pb was significantly associated with higher stimulated production of IL-1B and TNF-
a, and Mn with TNF-a production. Associations of Pb with IL-1B and Mn with TNF-a did not
withstand Bonferroni correction for multiple testing (p < 0.008). No significant associations were

found among pollutants with circulating IL-6 or CRP.

Table 9. Bivariate linear regression models for inflammatory markers by pollutant including intercept (p),

standard error (SE) and p-value: circulating cytokines

Table 10. Bivariate linear regression models for inflammatory markers by pollutant including intercept (B),

IL-6 CRP
pollutant B (SE) p-value | B (SE) p-value
PMzs -0.02 (0.02) | 0.36 -0.04 (0.04) |0.27
BC -0.25(0.21) | 0.24 -0.19 (0.34) | 0.57
Mn 0.02 (0.09) | 0.85 0.11(0.14) | 0.41
Pb 0.01 (0.16) |0.93 0.31(0.26) | 0.25
Fe 0.02 (0.09) |0.79 0.15 (0.15) | 0.31
Zn 0.03(0.10) |0.74 0.08 (0.16) | 0.63

standard error (SE) and p-value: stimulated cytokines

IL-1p IL-6 Tnf-a
pollutant B (SE) p-value | B (SE) p-value | B (SE) p-value
PMys 0.16 (0.02) |<.0001™ [0.07(0.02) |0.0007" |0.28 (0.03) | <.0001™
BC 1.18(0.21) |<.0001™ |0.62(0.20) |0.002° |2.21(0.33) | <.0001™
Mn 0.12 (0.09) |0.18 0.003 (0.08) | 0.97 0.30 (0.14) | 0.04"
Pb 0.42(0.17) |0.01" 0.04 (0.16) |0.81 0.75 (0.27) | 0.006
Fe -0.01 (0.10) |0.88 -0.06 (0.09) |0.47 0.08 (0.15) | 0.59
Zn 0.02 (0.10) |0.87 0.008 (0.09) | 0.93 0.13 (0.16) | 0.41

*p<.05 **p<.0001
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Fully-adjusted model results are shown in Tables 11-13. After adjusting for age, sex, race,
smoking status, and BMI, significant positive associations were found for PM2s and BC with all
stimulated cytokine concentrations. Significant associations were also found for Pb with IL-1p
(p=0.02) and TNF-a (p=0.02) in fully-adjusted models, before accounting for multiple
comparison. Applying a Bonferroni correction to account for multiple comparisons produced....

(p<0.008). There were no significant interactions by sex.
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Table 11. Linear regression model results for stimulated cytokines by pollutants adjusting for BMI, education, sex, age, race, and smoking status: IL-1p

PM2s BC Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE) B (SE) B (SE)
Intercept 7.53 (0.44)** | 8.46 (0.39)** | 9.12(0.39)** | 9.41(0.40)** | 9.54 (0.53)** | 9.38 (0.44)**
Pollutant 0.16 (0.02)** | 1.11(0.21)** | 0.4 (0.17)* 0.12 (0.09) -0.004 (0.10) 0.05 (0.10)
BMI 0.001 (0.006) | 0.001 (0.006) | -0.0003 (0.007) | -0.0009 (0.007) | -0.001 (0.01) -0.001 (0.01)
Education 0.008 (0.01) 0.01 (0.010 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)
Age -0.01 (0.004)* | -0.01 (0.005)* | -0.01 (0.005)* | -0.01 (0.005)* | -0.01(0.005)* | -0.01 (0.005)*
Sex -0.02(0.06) | -0.04 (0.07) | -0.04 (0.07) -0.04 (0.07) -0.04 (0.07) -0.04 (0.07)
Race (black) 0.03 (0.09) 0.01 (0.10) 0.03 (0.10) 0.04 (0.10) 0.05 (0.10) 0.05 (0.10)
Race (other) -0.1(0.20) -0.05(0.20) | -0.06 (0.21) -0.01 (0.21) 0.02 (0.21) 0.02 (0.21)
Race (white) 0 0 0 0 0 0
Smoking (former) | 0.01 (0.08) 0.02 (0.08) 0.01 (0.08) 0.02 (0.08) 0.03 (0.09) 0.03 (0.09)
Smoking (current) | 0.06 (0.09) 0.05 (0.10) 0.04 (0.10) 0.05 (0.10) 0.05 (0.10) 0.05 (0.10)
Smoking (never) 0 0 0 0 0 0

*p<.05 **p<.0001
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Table 12. Linear regression model results for stimulated cytokines by pollutants adjusting for BMI, education, sex, age, race, and smoking status: 1L-6

PM2s BC Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE) B (SE) B (SE)
Intercept 9.6 (0.41)** | 9.97 (0.36)** | 10.53(0.35)** | 10.54 (0.32)** | 10.78 (0.47)** | 10.45 (0.39)**
Pollutant 0.08 (0.02)* | 0.61(0.19)* 0.02 (0.15) 0.009 (0.08) -0.06 (0.09) 0.04 (0.09)
BMI 0.009 (0.006) | 0.009 (0.006) | 0.007 (0.006) 0.007 (0.006) 0.007 (0.006) | 0.007 (0.006)
Education 0.004 (0.01) 0.007 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Age -0.008 (0.004) | -0.008 (0.004)* | -0.009 (0.004)* | -0.009 (0.004)* | -0.009 (0.004) | -0.009 (0.004)*
Sex 0.29 (0.06)** | 0.28 (0.06)** | 0.28 (0.06)** | 0.28 (0.06)** 0.28 (0.06)** | 0.28 (0.06)**
Race (black) -0.02 (0.09) | -0.03 (0.09) -0.01 (0.09) -0.01 (0.09) -0.01 (0.09) -0.01 (0.09)
Race (other) -0.12(0.18) | -0.10(0.18) -0.06 (0.19) -0.06 (0.19) -0.04 (0.19) -0.06 (0.19)
Race (white) 0 0 0 0 0 0
Smoking (former) | 0.005 (0.07) 0.009 (0.07) 0.01 (0.08) 0.01 (0.08) 0.01 (0.08) 0.01 (0.08)
Smoking (current) | 0.16(0.09) 0.15 (0.09) 0.16 (0.09) 0.16 (0.09) 0.16 (0.09) 0.16 (0.09)
Smoking (never) 0 0 0 0 0 0

*p<.05 **p<.0001

56




Table 13. Linear regression model results for stimulated cytokines by pollutants adjusting for BMI, education, sex, age, race, and smoking status: TNF-a,

PM2.5 BC Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE) B (SE) B (SE)
Intercept 5.71(0.68)** | 7.25(0.61)** | 8.56 (0.61)** | 8.95(0.56)** | 8.89 (0.83)** | 8.71 (0.69)**
Pollutant 0.28 (0.035)** | 2.06 (0.33)** | 0.65(0.27)* | 0.26 (0.14) 0.08 (0.15) 0.19 (0.16)
BMI -0.01 (0.01) -0.01 (0.01) -0.01 (0.01) -0.02 (0.01) -0.02 (0.01) -0.02 (0.02)
ducation 0.003 (0.02) 0.01 (0.02) 0.02 (0.02) 0.03 (0.02) 0.03 (0.02) 0.03 (0.02)
Age -0.02 (0.007)* | -0.02 (0.007)* | -0.02 (0.007)* | -0.02 (0.007)* | -0.02 (0.007)* | -0.02 (0.007)*
Sex 0.19 (0.10) 0.15 (0.10) 0.14 (0.11) 0.15 (0.11) 0.15 (0.11) 0.15 (0.11)
Race (black) 0.33 (0.14)* 0.30 (0.15)* | 0.33(0.15)* | 0.35(0.15)* | 0.35(0.15)* | 0.35(0.33)*
Race (other) 0.01 (0.31) 0.09 (0.31) 0.10 (0.33) 0.15 (0.33) 0.21 (0.33) 0.23 (0.33)
Race (white) 0 0 0 0 0 0
Smoking (former) | 0.01 (0.12) 0.026 (0.13) 0.02 (0.13) 0.03 (0.13) 0.04 (0.13) 0.04 (0.13)
Smoking (current) | 0.03 (0.14) 0.01 (0.15) 0.009 (0.15) 0.02 (0.15) 0.02 (0.16) 0.03 (0.15)
Smoking (never) 0 0 0 0 0 0

*p<.05 **p<.0001
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3.4.4 Sensitivity Analyses

The bivariate regression association between Mn with TNF-a and the adjusted model association
of Pb with IL-1p and TNF-a did not reach statistical significance after excluding participants that

did not live within the original air pollution monitoring domain.

3.5 DISCUSSIONS

We found that chronic air pollution exposures were associated with higher production of pro-
inflammatory cytokines in response to ex vivo stimulation with endotoxin. In contrast, there was
no association of pollutant exposures with circulating levels of inflammatory mediators. PMzs,
and BC exposure associated positively with LPS-stimulated IL-6, IL-1p3, and TNF-a among a
cohort of adults living in Allegheny County, PA. Pb was associated with stimulated TNF-a, and
IL-1B, although neither association was significant after adjustment for multiple comparisons.
Our results suggest that chronic air pollution exposures may influence the magnitude of
inflammatory response to endotoxin. While stimulated cytokine measures are in direct response
to endotoxin, individual differences in the magnitude of response may also predict future
cardiovascular risk (Marsland et al. 2017b). For example, Brydon et al., found that the magnitude
of stimulated 11-6 predicted ambulatory blood pressure three years after measurement (Brydon
and Steptoe 2005). Individuals with larger increases in LPS-stimulated inflammatory mediators

may also be prone to increases in mediators of systemic inflammation (Lockwood et al. 2016).
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We did not find significant associations between pollutant exposures with IL-6 or CRP.
Several factors may have influenced these results. While we examined associations not only with
PM2 s but also with BC, Pb, Mn, Zn, and Fe components, a different source of PM2s could be
associated with systemic inflammation. For example, Zeka et al., (2006) found significant
positive associations between traffic-related particles with inflammatory markers but not with
PM2s or sulphates (Zeka et al. 2006). Duration of the pollutant exposures and population
susceptibility may also influence associations (Robert D Brook et al. 2010). While positive
associations have been found between pollutant exposures with markers of systemic
inflammation in healthy cohorts, studies have also found associations in potentially vulnerable
subpopulations including older, obese, diabetic, and hypertensive people (Dubowsky et al. 2006;
Zeka et al. 2006). For example, Ostro et al (2014)., found that a 10-pug/m?® increase in annual
PM2s more than doubled the risk of CRP greater than 3 mg/l in women who were older
diabetics, or smokers (Ostro et al. 2014). One reason for the lack of association between
pollutants with circulating inflammatory mediators in this study, could be because AHAB II is
composed of relatively healthy, middle-aged participants, with no history of clinical

cardiovascular disease, angina, or claudication, and taking no cardiovascular medications

3.5.1 Strengths and Limitations

A clear limitation of this study is its cross-sectional design. Having inflammatory mediator data
at multiple time points would allow us to disentangle relevant exposure windows, and to
examine changes in both pollutant exposures and cytokine levels over time, within and between

participants.
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Another limitation was that we needed to spatially extrapolate predicted pollutant
concentrations outside of the original monitoring domain to include all of Allegheny County.
Sensitivity analyses including only those participants within the original sampling domain,
however, revealed comparable results, with the exception that associations for Pb with stimulated
cytokines became non-significant after adjusting for multiple comparisons.

In addition, we also needed to temporally adjust predicted pollutant concentrations,
because our air monitoring campaign and participant blood draws were performed at two
different points in time. However, using regulatory data from the ACHD AQS monitor provided
daily temporal resolution, improving the accuracy of spatio-temporal exposure estimates. While
associations with inflammatory markers were tested using only one-year exposure estimates,
correlations between 1- and 5-year participant-specific pollutant exposure estimates were highly
correlated (r > 0.90 for all pollutants), indicating stable exposure contrast across the cohort over
time.

Though PM2s and BC exposures were significantly associated with all stimulated
cytokine concentrations, metal constituent exposures were either insignificant or became
insignificant after adjusting for multiple comparisons. One explanation could be that relatively
few AHAB Il participants lived in close proximity to the Edgar Thomson Steel Works (one
participant lived within a mile of it), and thus more participants may have been exposed to other
sources of PM2 s, such as traffic-related sources.

AHAB-I1I was a predominately white, relatively healthy, and well-educated cohort, and
thus results may not be generalizable to other populations. There is a need for future studies

examining the impact of pollutants on stimulated cytokines among more diverse populations
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from a variety of different locations in order to assess generalizability, particularly among

vulnerable subgroups including older populations.

3.6 CONCLUSIONS

The goal of this study was to examine whether chronic exposure to ambient outdoor air pollution
altered systemic inflammation and/ or magnitude of inflammatory response to endotoxin. We
found that one-year outdoor residential exposures to PM.s and BC were associated with
significant increases in concentrations of LPS-stimulated production of IL-6, IL-1pB, and TNF-a,
in a cohort of healthy middle-aged adults living in the Pittsburgh area. We found no significant
associations between pollutant concentrations and circulating IL-6 or CRP. Results of this study
suggest that chronic exposure to pollution may prime the innate immune system to be more
reactive, increasing inflammatory responses to immune stimulation. It is possible that this
provides a pathway connecting exposure to pollution to increased risk for inflammatory diseases,
including allergies, asthma and CVD. Further research is needed, using longitudinal cohorts, and
examining associations across more diverse populations, geographic locations, and source

mixtures.
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40 OUTDOOR AIR POLLUTION AND BRAIN MORPHOLOGY IN THE ADULT

HEALTH BEHAVIOR Il AND PITTSBURGH IMAGING PROJECT COHORTS

41  ABSTRACT

Exposure to ambient fine particulate matter (PM2s) has been associated with adverse
neurological outcomes (e.g., cognitive decline), possibly mediated through systemic
inflammation, disruption of the blood brain barrier, or translocation via olfactory mucosa. A few
recent studies have also linked PM2 s to indicators of brain morphology, although little is known
about which components of PM2s may drive these associations. We examined relationships
between ambient exposures to PM2 s and multiple components [i.e., black carbon (BC), lead (Pb),
manganese (Mn), iron (Fe), zinc (Zn)] with measures of brain morphology [i.e., total and cortical
gray matter volumes, cortical white matter volume, total white matter surface area, mean cortical
thickness] from magnetic resonance images (MRIs) of participants in the Adult Health Behavior
Il and Pittsburgh Imaging Project Cohorts (n = 702). Annual average pollutant exposure
estimates were assigned for the 300 m buffer around each participant’s address using hybrid land
use regression models. Linear regression models were developed to examine associations
between pollutant exposures and brain morphology measures, adjusting for intracranial volume,
age, sex, race, education, and smoking status. No significant associations were found between

PM2s, BC, or metal constituent exposures with any of the brain morphology outcomes. Both
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AHAB Il and PIP cohorts include relatively healthy middle aged participants. While we did not
find associations between pollutant exposures and measures of brain morphology, examining
associations in these same adults later in life, in older cohorts, or using more refined measures of

brain morphology (e.g., voxel analysis) may provide greater insights into potential associations.

4.2 INTRODUCTION

Growing evidence suggests a relationship between particulate air pollution exposures and
adverse neurological outcomes (e.g., cognitive decline, ischemic stroke) (Lisabeth et al. 2008;
Maheswaran et al. 2014; Ranft et al. 2009; Stafoggia et al. 2014), potentially mediated through
systemic inflammation, disruption of the blood-brain barrier (Calderon-Garciduenas et al.
2008a; Calderon-Garciduenas et al. 2008b), translocation via olfactory mucosa (Ajmani et
al. 2016; Maher et al. 2016), or other mechanisms (Robert D Brook et al. 2010; Calderdn-
Garciduenias et al. 2010; Costa et al. 2014; Genc et al. 2012; Peters et al. 2006). These effects
likely vary by PMys composition, and the literature linking metals exposures to adverse
neurological outcomes suggests that urban airborne metals [e.g., lead (Pb), manganese (Mn), iron
(Fe), zinc (Zn)] may be critical components of PM2s impacting this effect (Finkelstein and Jerrett
2007; Lucchini et al. 2012; White et al. 2007).

Fine particle exposure may engender early cognitive decline, possibly by mechanisms
involving the effects of PM2s-related inflammation on brain tissue integrity (Ranft et al. 2009).
Measures of brain morphology (e.g., cortical thickness, gray matter volume) have been
associated with cognitive decline as well as neurological diseases such as Alzheimer’s or

Parkinson’s disease (Block et al. 2012; Dickerson and Wolk 2012; Ferreira et al. 2014; Marsland
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et al. 2015; Whitwell et al. 2008). Although the relationship between brain morphology and
neurological outcomes is complex, better understanding potential effects of air pollution on brain
morphology may help to elucidate pollutant impacts on neurological outcomes, and suggest

opportunities for intervention towards preventing neurocognitive decline (Genc et al. 2012).

In occupational settings, high airborne metals concentrations have been associated with
brain structure; for example, welders chronically exposed to Mn have shown significantly
decreased globus pallidus and cerebellar brain regions, compared to age-matched controls
(Chang et al. 2013). In animal models, exposures to individual metals (e.g., Fe, Pb, Mn, Zn) and
metals mixtures (Wright and Baccarelli 2007) have been shown to induce neurotoxic effects,
including impacts on specific brain regions (Lucchini et al. 2012). For example, Pb exposures

have been linked to altered hippocampal morphology in mice (Verina et al. 2007).

To date, most of the epidemiologic literature linking air pollution and brain morphology
has been performed in children or older adults. For example, some recent studies have examined
associations between children’s exposure to air pollution at schools with structural and functional
brain changes from MRI scans. In one study of 263 children in Barcelona, a composite air
pollution indicator combining indoor and outdoor elemental carbon and NO; at schools was
developed indicative of traffic-related pollution; no significant associations were found with
brain structure, however, children with higher pollution exposures had lower functional
integration and segregation in certain brain networks (Pujol et al. 2016b). Another study in the
same cohort examined associations between copper (Cu) in PM2s measured in school courtyards
with structural and functional brain measures obtained from anatomical MRI, diffusion tensor

imaging, and functional MRI. Associations were found between higher exposures to Cu and
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poorer motor performance and alterations in basal ganglia structure and function (Pujol et al.

2016a).

A few epidemiological studies have explored relationships between ambient outdoor
PM_s and measures of brain structure in older adults. Wilker et al. (2015), found that a 2-pg/m?®
increase in one-year annual average PM2s was associated with a 0.32% decrease in cerebral
brain volume and 46% higher odds of covert brain infarcts (Wilker et al. 2015). Chen et al.
(2015) found significant associations between exposure to ambient PM.s and decreased white
matter volume in frontal and temporal lobes and in the corpus callosum of older women (Chen et

al. 2015).

PM25s composition varies by pollutant source, and therefore epidemiologic studies of
metals components may require finer-scale source-specific exposure assessment than is needed
for PM. Previous studies have developed land use regression (LUR) models for metal
constituents of PM2 s from multi-pollutant monitoring campaigns (de Hoogh et al. 2013; Zhang et
al. 2015), though few have yet applied these metals LURs in epidemiological studies (Fuertes et

al. 2014; Wang et al. 2014).

We aimed to contribute to this literature by applying fine-scale spatial models for PM2s
and metals constituents to examine associations between spatially-varying airborne metals and
measures of brain structure in healthy adults. Pittsburgh, PA is a city with legacy industry (e.g.,
steel mills, coke works) and, consequently, relatively high airborne metals concentrations with
substantial intra-urban variation (Tunno et al. 2015a). We applied previously-developed hybrid
LUR models (Tripathy et al. 2017), to distinguish associations between multiple source-specific
airborne metals and a broad suite of brain morphology measures. We hypothesized that higher

residence-based exposures to PM2s, BC, Pb, Mn, Zn, and Fe would be associated with reduced
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structural integrity of the brain in two Pittsburgh cohorts of health middle-aged adults. Observed
associations may have implications for pollution effects on brain-based functional outcomes

including early cognitive decline and neurological disorders.

43 METHODS

43.1 AHAB-II and PIP Cohorts

AHAB-II and PIP are prospective cohorts of healthy middle-aged adults in Western
Pennsylvania, developed to identify neural and bio-behavioral predictors of physical and mental
health in midlife. AHAB Il Participants were recruited between March 2008 and October 2011
through mass mailings of invitation letters to individuals randomly selected from voter
registration and other public domain lists. Individuals eligible for AHAB-II were aged 30-
54 years, were working at least 25 h per week outside of the home, and spoke English as their
first language. Individuals were further excluded if they: (a) had a history of cardiovascular
disease, schizophrenia or bipolar disorder, chronic hepatitis, renal failure, major neurological
disorder, chronic lung disease, or stage 2 hypertension (SBP/DBP > 160/100); (b) consumed > 5
alcoholic drinks 3-4 times (> approximately 201 g of alcohol) per week; (c) took fish-oil
supplements, took prescribed insulin or glucocorticoid, anti-arrhythmic, antihypertensive, lipid-
lowering, psychotropic, or prescription weight-loss medications; (e) were pregnant; (f) had less
than 8th grade reading skills; or (g) were shift workers. Finally, all participants were screened for
prior and current DSM-IV Axis-1 disorders using the Mini International Neuropsychiatric

Interview (MINI) (Sheehan et al. 1998). The University of Pittsburgh Institutional Board
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approved the study; all participants provided informed consent in accordance with its regulations

and were remunerated for their participation (Marsland et al. 2017a). PIP had comparable

requirements, except for the employment, fish oil, and shift work criteria (Jennings et al. 2015).

Here, data was combined from both cohorts to increase sample size, and participant

characteristics in Table 14 indicate similar characteristics.

Table 14. Cohort participant characteristics

AHABII (n=394) PIP (n=308)
mean (SD) or % 5th 95th mean (SD) or % 5th 95th
Percentile | Percentile Percentile | Percentile

Sex (%) 47.2% male 51.6% male

52.8% female 48.4% female
Race (%) 82.5% white 68.5% white

15.0% black 24.5% black

2.5% other 6.8% other
Age 42.9 (7.4) 31 53 40.5 (6.3) 31 49
(years)
Education | 16.9 (2.8) 12 22 16.6 (3.4) 12 24
(years)
Smoking 63.5% never 61.7% never
status 21.1% former 20.1% former

15.5% current

18.2% current

MRIs were performed for AHAB-II participants from 2008-2011, and for PIP

participants from 2011-2014, to assess cortical and subcortical brain morphology.

4.3.2 MR Image Acquisition and Processing

MRI scans were collected on a 3T Trio TIM whole-body scanner. FreeSurfer software version

5.3.0 (http://surfer.nmr.mgh.harvard.edu) was used to compute cortical and subcortical

volumetric data, total cortical surface area, and mean cortical thickness (Fischl and Dale 2000).
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4.3.3 Air Pollution Data

Pollutant concentrations were measured during a previously-described multi-pollutant
monitoring campaign in Allegheny County (Shmool et al. 2014; Tunno et al. 2015c). Our
sampling domain, including both urban and suburban areas in greater Pittsburgh, was identified
using geographic information systems (GIS) ESRI ArcMap software version10.3 (Redlands,
CA), to capture the urban area and major industrial sources in Allegheny county (e.g., steel mill,
coke works). Cross-stratified random sampling was used to select 36 monitoring sites based on
elevation, traffic density, and emissions-weighted inverse distance to industry. The same sites
were monitored during summer (June-July) 2012 and winter (January-March) 2013. PMas
samples were collected using Harvard Impactors (Air Diagnostics and Engineering Inc.) at 4.0
liters per minute. Integrated PM2s samples were obtained at each site for the first 15 minutes of
every hour for 7 days. Eight sites were sampled per session. PM. s concentrations were calculated
based on gravimetric analysis of Teflon filters before and after sampling, and black carbon
estimated using an EEL43M Smokestain Reflectometer (Diffusion Systems). Elemental
concentrations were determined using inductively-coupled plasma mass spectrometry (ICP-MS)

(Wisconsin State Laboratory of Hygiene) (Shmool et al. 2014; Tunno et al. 2015c).

4.3.4 Hybrid LUR models

To estimate one-year average air pollution exposures at the homes of each cohort participant, we
used previously-developed hybrid LUR models for PM.s, BC, Pb, Mn, Fe, and Zn. Model
development is detailed elsewhere (Tripathy et al. 2017; Tunno et al. 2015c). Briefly, covariates

were created using GIS to capture a variety of potential pollutant sources - including traffic
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density indicators, transportation indicators, road-specific measures, land use/ built environment
characteristics, industrial emissions, population, and truck, bus, and diesel indicators (Tunno et
al. 2015c) - across locations. Following our hybrid AERMOD-LUR modeling approach,
detailed in Michanowicz et al. (2016) (Michanowicz et al. 2016), two additional covariates were
developed using the AERMOD atmospheric dispersion model; one dispersion variable was built
using emissions profiles for 207 sources (AERMOD-predicted industrial PM2s emissions). A
second was developed using only the 14 point source profiles located within Edgar Thomson
Steel Works (AERMOD-predicted steel mill PM2.s emissions). Both of these covariates included

additional temporal components (e.g., meteorology, wind speed) averaged for 2012.

Hybrid LUR models were built using a manual forward step-wise approach combined
with random forest analyses to determine covariate ranking order. This method was implemented
to select covariates that most strongly correlated with variability in pollutant concentrations. A
temporal term was incorporated into models using daily concentrations from an Environmental
Protection Agency (EPA) Air Quality System (AQS) maintained by the Allegheny County
Health Department (ACHD) centrally located within the sampling domain. These models were
used to predict pollutant concentrations across the monitoring domain using source layers in GIS.
Model predictions were then spatially extrapolated outside of the original sampling domain to
include all of Allegheny County, and the majority of cohort participants lived (Tripathy et al.

2017). Analyses were implemented in SAS version 9.3 (Cary, NC) and R version 3.1.0.

4.3.5 Geocoding

Cohort participant addresses were geocoded using a three-tiered system in GIS, following

methods we have previously developed and validated (Fig. 10-11) (Shmool et al. 2016). Briefly,
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we standardized addresses using the U.S. Postal Service reference dataset in ZP4™ software
(Semaphore Corporation, Monterey, CA). Incomplete addresses, P.O. Box numbers, and
addresses outside of Allegheny County were excluded. We first attempted to match addresses
using 2015 Allegheny County address points, unmatched addresses were then matched via
Allegheny County 2014 tax parcel centroids. Finally, any remaining addresses were matched
using Streetmap for ArcPad 10.2 (North America Tom Tom 2013). Participants with unmatched
addresses, or for whom a 300 m buffer around residence was not completely contained within

Allegheny County, were excluded.
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AHAB Il Addresses 2008-2011
n =490

Step 1: Exclude
incomplete addresses,
PO boxes, undomiciled

n =486

l

Step 2: Standardize address
to USPS format and exclude those outside Allegheny County

n =467
Step 3A: Geocode addresses
using address point locator

n=438 Step 3B: Geocode
unmatched in 3A using
parcel layer locator
> n=10 Step 3C: Geocode
unmatched in 3B using

street network locator
» n=13

—

v

Successfully geocoded addresses

n=463

v

Addresses with 300 m buffer completely within Allegheny County

boundary
n=461

v

Addresses after omitting 39 participants from AHAB Il that are also in PIP

n=422

v

Addresses after excluding participants with missing outcomes or

confounders
n=394

Figure 12. AHAB |1 cohort participant exclusions and geocoding methodology
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PIP Addresses 2011-2014
n=331

Step 1: Exclude
—» incomplete addresses,

PO boxes, undomiciled
n=311

to USPS format and exclude those outside Allegheny County

Step 2: Standardize address

n=311

i

Step 3A: Geocode addresses
using address point locator
n =298
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unmatched in 3A using
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Successfully geocoded addresses
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boundary
n=311

!

Addresses after excluding participants with missing outcomes

n =308

Figure 13. PIP cohort participant exclusions and geocoding methodology
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4.3.6 Exposure Assignment

PM2s, BC, Pb, Mn, Fe, and Zn spatial exposure estimates were assigned by averaging
concentrations from the pollutant LUR surfaces within the 300 m buffer around each geocoded
address. We have found this buffer distance effective in our prior work and validated elsewhere
(Ross et al. 2013). Hybrid LUR exposure estimates were then temporally extrapolated to produce
exposure estimates for one year prior to MRI date for each participant. The AQS regulatory
monitoring data, to create average exposure estimates for one year prior to the date of each

participant MRI, using the procedure we have previously developed (Tripathy et al. 2017).

4.3.7 Statistical Analysis

Brain morphology measures were tested for normality using histograms, and scatter plots and
raw correlations for each combination of exposures and outcomes were tested for significance
and linearity. Linear regression models were developed for each outcome-exposure relationship
adjusting only for intracranial volume (Whitwell et al. 2001). Multivariable regression models
were then developed also adjusting for age, sex, race, smoking status (former, current, never) and
education attainment (years). Statistics were generated using SAS 9.4 (Cary, NC). Two
additional analyses were performed using fully adjust models: 1) stratifying by sex and 2)

dichotomizing by median age (43 years).
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44  RESULTS

4.4.1 Sample Size

The original AHAB 1l dataset contained 490 participants. Twenty-nine participants were
excluded due to incomplete addresses, P.O. Box numbers, and addresses outside of Allegheny
County as shown in Figure 10. Remaining addresses were geocoded using the composite locator,
resulting in four unmatched addresses (n = 463). Two addresses were excluded with 300 m
buffers extending outside of Allegheny County. Exposures were assigned for 461 geocoded
locations using our hybrid LUR pollutant exposure surfaces. An additional 39 participants who
had participated in both studies were excluded from the AHAB Il cohort only. Twenty-seven
participants were excluded for missing MRI data, and one participant was excluded lacking
information on smoking status, resulting in a final AHAB Il dataset of 394 participants. The PIP
dataset originally included 331 participants; 311 were successfully geocoded, and three
participants were excluded due to lacking MRI data (n = 308). Geocoded addresses for our final

dataset of 702 cohort participants are shown in Figure 12.
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Figure 14. Cohort participant geocoded addresses
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4.4.2 Statistical Analysis
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Scatter plots were made for each pollutant versus outcome to assess linearity (Figures 13-17).
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Figure 15. Scatter plots for pollutants versus total gray matter volume
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Figure 16. Scatter plots for pollutants versus cortical gray matter volume
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Cortical White Matter Volume
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Figure 17. Scatter plots for pollutants versus cortical white matter volume
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Figure 18. Scatter plots for pollutants versus total white surface area
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Pb, Mn, Zn, and Fe exposures were transformed using the natural logarithm to improve linear fit.

Pollutant exposures, confounders, and outcomes are summarized in Tables 14-16.

Table 15. Cohort exposures

Pollutant mean (SD) | 5% 95%

PM25 (ug/m3) 12.2 (1.5) 9.0| 15.0
Pb (ng/m°) 2.8 (0.69) 20| 41
Mn (ng/m?3) 2.9 (1.49) 14 5.0
Fe (ng/m®) 66.5(28.4) | 37.7| 1129
Zn (ng/m3) 17.7 (5.7) 9.7 27.1

Table 16. Cohort outcomes

mean (SD) 5% 95%
Total Gray Matter Volume (mm?) 654,051.3 (69,965.9) | 540,234.0 | 764,941.0
Cortical Gray Matter Volume (mm?) 467,109.2 (52,792.7) | 380,168.0 | 554,544.0
Cortical White Matter Volume (mm?) 485,852.8 (59,491.5) | 390,608.0 | 589,199.0
Total White Matter Surface Area (mm?) 169,628.9 (17,344.5) | 142,241.0 | 199,873.0
Mean Cortical Thickness (mm) 2.5(0.1) 2.3 2.7
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The mean participant PM_s exposure estimate (12.2 pg/m®) was at the EPA National Ambient
Air Quality Standard (NAAQS) threshold of 12 pg/m? for annual average exposure (based on a
three year average) (EPA 2016b). Table 17 shows Pearson correlations between pollutants. PM2 s
and BC were highly correlated (0.85) and correlations between PM2s with the metals ranged

from 0.30 — 0.45.

Table 17. Pearson correlations between pollutant exposures

PM2s BC Pb Mn Zn Fe
PM2s 1.00 0.85 0.40 0.43 0.45 0.30
BC 0.85 1.00 0.42 0.42 0.45 0.32
Pb 0.40 0.42 1.00 0.91 0.45 0.85
Mn 0.43 0.42 0.91 1.00 0.67 0.98
Zn 0.45 0.45 0.45 0.67 1.00 0.69
Fe 0.30 0.32 0.85 0.98 0.69 1.00

Results from linear regression models adjusting for intracranial volume are shown in
Table 18. We found no significant associations between any of the pollutants and brain outcomes

(p < 0.05).
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Table 18. Linear regression models adjusting for ICV: exposures vs. outcomes

Brain Morphology Outcomes

Pollutant

PM; s

BC

Mn

Pb

Fe

Zn

Total Gray Matter Volume

B (SE) 1018.4 (1055.9) -14.7 (9494.7) -3184.5(3932.5) | -5618.1(7427.2) | -5200.7 (4594.4) | -8160.5 (4853.6)
p-value 0.34 0.99 0.42 0.45 0.26 0.09

Cortical Gray Matter Volume

B (SE) 234.3 (848.5) -6589.0 (7620.7) | -2966.0 (3157.5) | -4960.7 (5963.9) | -4373.2(3689.2) | -6938.5(3896.8)
p-value 0.78 0.39 0.35 0.41 0.24 0.08

Cortical White Matter Volume

B (SE) 1047.9 (986.6) 4341.9 (8870.9) -243.7 (3676.4) -3861.6 (6941.7) | -2064.8 (4296.5) | 327.3 (4544.7)
p-value 0.29 0.62 0.95 0.58 0.63 0.94

Total White Surface Area

B (SE) 11.6 (298.7) -406.1 (2683.9) -826.9 (1111.7) -2611.4 (2098.1) | -1138.9(1299.2) | -643.4 (1374.6)
p-value 0.97 0.88 0.46 0.21 0.38 0.64

Mean Cortical Thickness

B (SE) 0.0005 (0.002) -0.03 (0.02) -0.002 (0.009) 0.01(0.02) -0.004 (0.01) -0.02 (0.01)
p-value 0.84 0.20 0.81 0.55 0.71 0.06
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Fully-adjusted model results are shown in Tables 19-23. After adjusting for intracranial
volume, age, sex, race, and smoking status. No significant associations were found between any
pollutants with brain morphology measures. No significant results were found after stratifying by

sex or stratifying by median age.
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Table 19. Fully adjusted linear regression model results for total gray matter volume

PM;s BC

Parameter B (SE) B (SE)

Intercept 478761.1 (17967.7)** 533279.5 (19892.2)**
Pollutant 651.9 (914.0) -920.2 (8156.9)
Age -2047.3 (200.4)** -2047.6 (200.5)**
Sex 23681.9 (4008.3)** -23439.0 (4001.7)**
Education 987.6 (505.9) 1044.3 (504.6)*
ICV 0.17 (0.008)** 0.17 (0.008)**

Race (black)

-26493.7 (3783.5)**

-26535.3 (3786.1)**

Race (other)

-21561.2 (6906.9)*

-21619.8 (6909.6)*

Race (white)

0

0

Smoking (former)

229.6 (3564.9)

330.6 (3565.1)

Smoking (current)

-13372.9 (4023.4)*

-13320.1 (4025.2)*

*p<.05 **p<.0001

Smoking (never) 0 0
Pb Mn Fe Zn

Parameter B (SE) B (SE) B (SE) B (SE)

Intercept 486376.2 (16129.8)** 486095.90 (15375.10)** 492305.4 (22308.7)** 494112.8 (18939.9)**
Pollutant -748.9 (6369.3) -453.64 (3388.38) -1594.9 (3970.9) -3085.8 (4200.1)
Age -2047.6 (200.5)** -2048.41 (200.64)** -2051.3 (200.7)** -2051.8 (200.5)**
Sex 23444.7 (3999.2)** 23443.76 (3999.35)** 23438.9 (3997.5)** 23406.9 (3996.7)**
Education 1040.1 (501.5)* 1040.40 (501.54)* 1038.9 (501.1)* 1048.6 (501.2)*
ICV 0.17 (0.008)** 0.17 (0.008)** 0.17 (0.008)** 0.17 (0.008)**

Race (black)

-26523.5 (3790.3)**

-26504.12 (3798.95)**

-26390.7 (3804.2)**

-26181.3 (3815.6)**

Race (other)

-21576.6 (6914.9)*

-21547.60 (6924.83)*

-21378.6 (6932.4)*

-21287.0 (6920.4)*

Race (white) 0 0 0 0
Smoking (former) 346.7 (3571.0) 346.48 (3569.34) 382.2 (3566.9) 372.6 (3563.3)
Smoking (current) -13305.8 (4029.2)* -13292.40 (4033.64)* -13219.9 (4033.1)* -13153.5 (4029.9)*
Smoking (never) 0 0 0 0
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Table 20. Fully adjusted linear regression model results for cortical gray matter volume

PM2s BC
Parameter B (SE) B (SE)
Intercept 346864.8 (14779.6)** 375006.3 (16341.2)**
Pollutant -192.8 (751.8) -7867.6 (6700.8)
Age -1593.4 (164.9)** -1595.2 (164.7)**
Sex 12253.1 (3297.1)* -12143.8 (3287.4)*
Education 797.9 (416.1) 840.0 (414.5)*
ICV 0.13 (0.007)** 0.13 (0.006)**
Race (black) -22128.1 (3112.2)** -21993.9 (3110.2)**
Race (other) -15081.2 (5681.4)* -15148.8 (5676.1)*
Race (white) 0 0
Smoking (former) 87.4 (2932.4) 149.6 (2928.7)
Smok!ng (current) -9579.7 (3309.5)* -9517.2 (3306.6)* *p<.05 **p<.0001
Smoking (never) 0 0

Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE)
Intercept 346057.8 (13262.9)** 345585.3 (12642.1)** 351070.5 (18343.7)** 352744.8 (15572.3)**
Pollutant -1403.9 (5237.2) -912.7 (2786.1) -1514.1 (3265.2) -2914.3 (3453.3)
Age -1593.7 (164.9)** -1595.4 (164.9)** -1597.1 (165.0)** -1597.5 (164.9)**
Sex 12291.1 (3288.7)* 12287.2 (3288.4)* 12299.3 (3287.03)* 12269.3 (3286.1)*
Education 787.5 (412.4) 788.5 (412.4) 784.3 (412.0) 793.3 (412.1)
ICV 0.13 (0.007)** 0.13 (0.006)** 0.13 (0.006)** 0.13 (0.006)**
Race (black) -22063.8 (3116.6)** -22021.3 (3123.7)** -21961.4 (3128.04)** -21764.3 (3137.2)**
Race (other) -15003.8 (5685.9)* -14940.7 (5693.9)* -14846.8 (5700.2)* -14761.5 (5689.9)*
Race (white) 0 0 0 0
Smoking (former) 110.2 (2936.3) 113.5 (2934.9) 119.4 (2932.9) 110.2 (2929.7)
Smoking (current) -9549.5 (3313.1)* -9519.2 (3316.6)* -9489.3 (3316.3)* -9427.1 (3313.4)*
Smoking (never) 0 0 0 0
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Table 21. Fully adjusted linear regression model results for cortical white matter volume

PM2s BC
Parameter B (SE) B (SE)
Intercept 271078.6 (19409.8)** 286706.5 (21487.1)**
Pollutant 692.3 (987.4) 2776.9 (8810.9)
Age -570.2 (216.5)* -569.7 (216.6)*
Sex 5341.9 (4330.1) -5167.6 (4322.6)
Education 824.9 (546.5) 857.9 (545.1)
ICV 0.16 (0.009)** 0.16 (0.009)**
Race (black) -10129.4 (4087.2)* -10229.8 (4089.6)*
Race (other) -7425.7 (7461.3) -7448.7 (7463.6)
Race (white) 0 0
Smoking (former) 2578.9 (3851.0) 2643.7 (3850.9)
Smok?ng (current) -5240.8 (4346.4) -5220.7 (4347.9) *0<.05 **p<.0001
Smoking (never) 0 0

Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE)
Intercept 280749.6 (17422.6)** 277841.5 (16608.6)** 280501.8 (24101.5)** 271722.0 (20463.3)**
Pollutant -2578.2 (6879.8) 724.2 (3660.2) -494.5 (4290.1) 2473.5 (4537.9)
Age -570.9 (216.6)* -568.7 (216.7)* -571.5 (216.8)* -566.8 (216.6)*
Sex 5054.6 (4320.2) 5130.9 (4320.2) 5099.3 (4318.8) 5147.9 (4318.2)
Education 886.3 (541.7) 873.8 (541.8) 878.5 (541.4) 869.4 (541.5)
ICV 0.16 (0.009)** 0.16 (0.009)** 0.16 (0.009)** 0.16 (0.009)**
Race (black) -10100.2 (4094.1)* -10260.0 (4103.7)* -10139.1 (4109.9)* -10483.1 (4122.5)*
Race (other) -7362.2 (7469.1) -7577.7 (7480.4) -7405.9 (7489.4) -7736.8 (7477.1)
Race (white) 0 0 0 0
Smoking (former) 2766.3 (3857.3) 2633.1 (3855.7) 2694.4 (3853.5) 2633.1 (3849.9)
Smoking (current) -5114.6 (4352.1) -5252.4 (4357.3) -5160.3 (4357.2) -5334.7 (4354.1)
Smoking (never) 0 0 0 0
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Table 22. Fully adjusted linear regression model results for total white surface area

PM2s BC
Parameter B (SE) B (SE)
Intercept 128049.0 (5623.4)** 136820.4 (6223.4)**
Pollutant -52.7 (286.1) -583.5 (2551.9)
Age -405.3 (62.7)** -405.4 (62.7)**
Sex 4442 5 (1254.5)* -4447 .4 (1251.9)*
Education 205.9 (158.3) 206.2 (157.9)
ICV 0.04 (0.002)** 0.04 (0.002)**
Race (black) -4867.9 (1184.1)** -4854.7 (1184.5)**
Race (other) -3695.2 (2161.7) -3697.3 (2161.7)
Race (white) 0 0
Smoking (former) 835.7 (1115.7) 834.9 (1115.4)
Smok?ng (current) -837.5 (1259.2) -835.5 (1259.3) *0<.05 **p<.0001
Smoking (never) 0 0

Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE)
Intercept 129189.1 (5043.2)** 127889.5 (4809.7)** 130265.1 (6978.9)** 127077.5 (5927.9)**
Pollutant -1913.9 (1991.4) -473.1 (1059.9) -671.8 (1242.3) 150.5 (1314.6)
Age -405.7 (62.7)** -406.3 (62.8)** -406.9 (62.8)** -405.1 (62.8)**
Sex 4422.5 (1250.5)* 44439 (1251.1)* 4451.7 (1250.6)* 4463.0 (1250.9)*
Education 208.1 (156.8) 204.8 (156.9) 202.5 (156.8) 201.4 (156.9)
ICV 0.04 (0.002)** 0.04 (0.002)** 0.04 (0.002)** 0.04 (0.002)**
Race (black) -4798.1 (1185.1)** -4816.6 (1188.4)** -4796.8 (1190.1)** -4881.4 (1194.2)**
Race (other) -3605.4 (2162.0) -3625.9 (2166.3) -3593.6 (2168.7) -3706.9 (2165.9)
Race (white) 0 0 0 0
Smoking (former) 896.0 (1116.5) 855.8 (1116.6) 854.5 (1115.9) 825.8 (1115.3)
Smoking (current) -782.1 (1259.8) -802.9 (1261.8) -795.2 (1261.7) -849.6 (1261.3)
Smoking (never) 0 0 0 0
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Table 23. Fully adjusted linear regression model results for mean cortical thickness

PM_s BC
Parameter B (SE) B (SE)
Intercept 2.5 (0.05)** 2.5 (0.05)**
Pollutant -0.0005 (0.002) -0.03(0.02)
Age -0.003 (0.0005)** -0.003 (0.0005)**
Sex 0.001 (0.01) -0.0007 (0.01)
Education 0.0009 (0.001) 0.001 (0.001)
ICV 8.3E-08 (2E-08)** 8.4E-08 (2E-08)**
Race (black) -0.03 (0.01)* -0.03 (0.01)*
Race (other) -0.02 (0.02) -0.02 (0.02)
Race (white) 0 0
Smoking (former) -0.008 (0.009) -0.008 (0.009)
Smok?ng (current) -0.03 (0.01)* -0.03(0.01)* *p<.05 **p<.0001
Smoking (never) 0 0

Pb Mn Fe Zn
Parameter B (SE) B (SE) B (SE) B (SE)
Intercept 2.5 (0.04)** 2.5 (0.04)** 2.5 (0.06)** 2.5 (0.05)**
Pollutant 0.02 (0.02) 0.001 (0.009) 0.001 (0.01) -0.01 (0.01)
Age -0.003 (0.0005)** -0.003 (0.0005)** -0.003 (0.0005)** -0.003 (0.0005)**
Sex 0.002 (0.01) 0.001 (0.01) 0.001 (0.01) 0.001 (0.01)
Education 0.0008 (0.001) 0.0009 (0.001) 0.0009 (0.001) 0.0009 (0.001)
ICV 8.3E-08 (2E-08)** 8.3E-08 (2E-08)** 8.3E-08 (2E-08)** 8.4E-08 (2E-08)**
Race (black) -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)*
Race (other) -0.02 (0.02) -0.02 (0.02) -0.02 (0.02) -0.01 (0.02)
Race (white) 0 0 0 0
Smoking (former) -0.009 (0.009) -0.008 (0.009) -0.008 (0.009) -0.008 (0.009)
Smoking (current) -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)*
Smoking (never) 0 0 0 0
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45  DISCUSSION

We found no significant associations between annual average PM.s, BC, Pb, Mn, Fe, or Zn
exposures with participant brain morphology measures of total gray matter volume, cortical gray

matter volume, total white matter surface area, and mean cortical thickness.

Some of these results are consistent with prior studies. The two previous studies that
found significant associations between predicted PM.s exposures with indicators of brain
morphology. Wilker et al., studied participants in the Framingham Offspring Cohort (n = 943) -
composed of community dwelling adults in the New England area with no history of dementia or
stroke. The age of participants at the time of MRIs was higher in their study than ours [median =
68 years vs. 43 years in our study]. (They considered total cerebral brain volume, hippocampal
volume, white matter hyperintensity volume, and covert brain infarcts, and hypothesized that
higher long-term exposure to ambient air pollution would be associated with subclinical damage
as indicated by smaller total cerebral brain volume and hippocampal volume , larger white matter
hyperintensity volume, and higher odds of covert brain infarcts While they found that a 2-
ng/m?® increase in PM,s was associated with 0.32% smaller total cerebral brain volume and 46%
higher odds of having covert brain infarcts, they did not see any associations for hippocampal

volume or white matter hyperintensity volume (Wilker et al. 2015).

Chen et al. (2015) examined associations between long term exposure to PM2 5 and brain
volume, using volumetric measures of gray matter and normal-appearing white matter in MRI
results from participants in the Women’s Health Initiative Memory Cohort (n = 1403). All
participants we free of dementia, but this was also a much older cohort than ours (range = 71 to
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89 years). They found that for each inter-quartile range (3.49 pg/m?®) increase in PM2s, mean
white matter volume decreased by 6.23 (+ 1.28) cm?® for total brain volume. Significant
associations were also found between increased PMzs with decreases in frontal, parietal, and
temporal and corpus callosum white matter volume. No associations were found with gray matter

or hippocampal volume (Chen et al. 2015).

In comparison to these two studies, our cohort participants were much younger (mean =
43 years (range = 30 to 54). As a result, it is highly possible that our participants have not yet
developed the premature aging or damage to brain structures that may be associated with longer-
term exposures to airborne metals. Following up with participants later in life may be beneficial

to examine potential changes in brain morphology measures across the lifespan.

45.1 Strengths and Limitations

While this was a cross-sectional study, we were able to assign retrospective pollutant exposure
estimates for one year prior to participant MRIs. Having MRI data at multiple time points would
allow us to further examine relationships between long term pollutant exposure estimates with
changes in brain morphology measures. In addition, we only had addresses for participants at the
time of each study, so we were not able to account for participants that moved during that year.
Along with temporally adjusting models using regulatory monitoring data, they were also
spatially extrapolated outside of the sampling domain to encompass all of Allegheny County.
This assumes stationary spatial surfaces/covariates. There may be different source-concentration
relationships outside of this domain that we were unable to capture in our monitoring campaign
resulting in exposure misclassification. One of the key covariates in our hybrid metal LUR

models was AERMOD-predicted PM>.s emissions from the Edgar Thomson Steel Works within
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our sampling domain. While cohort addresses appear to be well distributed spatially (Figure 12),

only two participants lived within a one-mile radius of the steel mill.

46  CONCLUSIONS

We explored associations between annual-average ambient PMzs, BC, and Pb, Mn, Fe, and Zn
metal constituent exposures with brain morphology measures of total and cortical gray matter
volume, cortical white matter volume, total white matter surface area, and mean cortical
thickness from MRIs of 702 participants in two Pittsburgh-based cohorts of mid-life adults. We
found no significant associations between pollutant exposures and any of the brain morphology
indicators. Further study is needed to examine effects of chronic air pollution and airborne

metals exposures in older or more vulnerable populations.
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5.0 OVERALL SUMMARY AND PUBLIC HEALTH SIGNIFICANCE

We developed hybrid dispersion-LUR models for PM2s, black carbon (BC), and steel-related
PM_ s constituents [lead (Pb), manganese (Mn), iron (Fe), and zinc (Zn)] and applied them to
assign residence-based exposure estimates for time windows of interest for two Pittsburgh-area
epidemiological cohorts. Specific objectives, hypotheses, and conclusions are listed below
followed by public health significance, strengths and limitations.

Chapter 2: Develop hybrid dispersion LUR models for PM.s, BC, and steel-related Pb,
Mn, Fe, and Zn metal constituents for use in epidemiological studies.

Conclusions: We found that the hybrid LURs explained greater variability in PMs (R =
0.79) compared to BC (R?= 0.59) and metal constituents (R? = 0.34 - 0.56). Approximately 70%
of variation in PM2s was attributable to temporal variance, compared to 36% for BC, and 17 -
26% for metals. Dispersion covariates were included in all models. A dispersion covariate
developed with PM2 s industrial emissions data for 207 sources was significant in PM2s and BC
models while all metals models contained a steel mill-specific PM. s emissions term.

Chapter 3: Examine associations between one-year residence-based pollutant exposures
with circulating and LPS-stimulated inflammatory mediators in the AHAB 11 cohort.

Hypothesis: Elevated exposures to PM2s, BC, Pb, Mn, Zn, and Fe will be associated
with higher levels of circulating inflammatory mediators (II-6 and CRP), and LPS-stimulated

production of cytokines (IL-6, IL-1B, and TNF-a).
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Conclusions: Exposure to PM2s and BC was associated with increased LPS-stimulated
pro-inflammatory cytokine production in a cohort of middle-aged adults. These results suggest
that some chronic air pollution exposures may influence the responsiveness of the immune
system, possibly increasing risk for future inflammatory conditions.

Chapter 4: Explore the relationship between one-year pollutant exposures with total and
cortical gray matter volumes, cortical white matter volume, total white matter surface area, and
mean cortical thickness measures of brain morphology in AHAB Il and PIP cohorts.

Hypothesis: Higher residence-based exposures to PMzs, BC, Pb, Mn, Zn, and Fe will be
associated with reduced structural integrity of the brain in two Pittsburgh cohorts of health
middle-aged adults.

Conclusions: No significant associations were found between PM2s, BC, or metal

constituent exposures with any of the brain morphology outcomes.

Overall, the results of this dissertation indicate the public health importance of better
understanding relationships between long-term source-specific PM2s and component exposures
with health outcomes including associations with circulating and stimulated inflammatory

mediators and measures of brain morphology.

5.1.1 Strengths and Limitations

Using hybrid LUR models to assign pollutant exposures in cohort studies offers an
improvement over exposure assignments that rely solely on the nearest EPA air quality system
(AQS) monitor(s) and are more cost effective compared to personal monitoring. One limitation
of LUR models is that the analysis is based on associations and LUR model results cannot
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establish causation between source covariates and pollutants. The PM. s concentrations used for
this analysis were obtained from two seasons of data from 36 sites in the greater Pittsburgh
region. This provided a much higher spatial resolution compared to the established EPA AQS
monitoring network locations within the county. In addition, our hybrid LUR models may have
improved accuracy by incorporating meteorology and topography into AERMOD covariates.
The AQS monitor used to temporally adjust the models also contributed to high temporal
resolution providing daily concentrations.

While both epidemiological studies presented in Chapter 3 and 4 used a cross-sectional
study design, we were able to assign retrospective pollutant exposure estimates for one year prior
to participant blood draws or MRIs. Having outcome data at multiple time points would allow us
to further examine relationships between long term pollutant exposure estimates with circulating
and stimulated inflammatory mediators and brain morphology measures. In addition, we only
had addresses for participants at the time of each study, so we were not able to account for
participants that moved during that year. Along with temporally adjusting models using
regulatory monitoring data, they were also spatially extrapolated outside of the sampling domain
to encompass all of Allegheny County. This assumes stationary spatial surfaces/covariates. There
may be different source-concentration relationships outside of this domain that we were unable
to capture in our monitoring campaign resulting in exposure misclassification. Using data
collected in AHAB 11 and PIP cohorts provided the unique opportunity to study relatively
healthy middle-aged adults in Allegheny County and allowed us to study emerging health

outcomes of interest with predicted air pollutant exposures.
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The hybrid LUR models developed for to PM.s, BC, Pb, Mn, Zn, and Fe described in
this dissertation will continue to be used in prospective and retrospective cohort studies in

Allegheny County.
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APPENDIX: MISSING PM25 CONCENTRATIONS ACHD AQS LAWRENCEVILLE

MONITOR
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Figure 20. Missing daily PM2s concentrations from ACHD Lawrenceville AQS station from 2003-2013
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