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ABSTRACT

In the setting of competing risks, the marginal survival functions of the latent failure

times are nonidentifiable without making further assumptions about the joint distribution,

the majority of which are untestable. One exception is the random signs censoring assump-

tion which assumes the main event time is independent of the indicator that the main event

preceded the competing event. Few methods exist to formally test this assumption, and

none consider a stratified test, which detects whether random signs censoring is met within

subgroups of a categorical covariate. We develop a nonparametric stratified test for random

signs censoring that is easy to implement. In addition, it is often of interest to model the

effects of several covariates in relation to the cause of interest. Thus, as an extension of the

stratified test, we also propose a test for conditional random signs censoring, which allows

for the random signs censoring assumption to be met after adjusting for categorical and/or

continuous covariates.

Through Monte Carlo simulations, we show our proposed test statistics have empirical

levels close to the nominal level and maintain adequate power even with relatively small

sample sizes and random right censoring. Compared to the standard test, both of our

proposed tests have nearly equivalent power under random signs censoring and are superior

in situations of stratified or conditional random signs censoring, where the standard test

fails to detect random signs censoring within subgroups or after adjusting for covariates,

respectively. Their ease of implementation and utility are illustrated through an application

to liver transplant data from the United Network for Organ Sharing.
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Public Health Significance: Clinicians must make decisions affecting patients lives using

the information available to them. Relying on research results based on models that use

unverifiable assumptions can lead to inaccurate conclusions. The methods proposed here

offer a solution to allow for more accurate modeling of marginal survival functions with

competing risk data. Through use of these new methods, patient outcomes can be improved

over time.

Keywords: Survival analysis, competing risks, random signs censoring, marginal survival

function, nonparametric test, cumulative incidence function.
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1.0 INTRODUCTION

Survival analysis is generally defined as a set of methods for analyzing data where the

outcome variable is the time until the occurrence of an event of interest. The event of interest

can be death, occurrence of a disease, transplant, etc. The time-to-event or survival time can

be measured in days, weeks, years, etc. Typically, survival data are not fully observed, but

rather are censored. If a patient does not experience the event of interest during the duration

of the study, then the subject is “censored” at their last follow-up time, i.e. the last time they

were known to be event-free. Censoring can complicate analyses, but standard methods exist

for dealing with censored data [Cheng et al., 1998]. Censored observations can be thought of

as a form of missing data, and like missing data, they can be non-informative or informative.

Non-informative censoring occurs when censoring is independent of the event time, such as

when a study participant drops out for non-study related reasons. Censoring can also be

dependent or informative, as in the setting of competing risks, where the occurrence of a

competing event censors the main event informatively.

A competing risk can be defined as an event whose occurrence either precludes the

occurrence of another event under examination or fundamentally alters the probability of

occurrence of this other event Gooley et al. [1999]. A classic example of competing risks

is found in cancer studies, where disease relapse and death in remission are considered

competing events. The occurrence of either event, relapse or death, would prevent the other

from happening. A cancer patient could die in remission from a cause entirely unrelated to

cancer, such as a motor vehicle accident, and is therefore no longer at risk of relapse. Another

example can be found in the analysis of transplantation data. Consider patients in need of

a liver transplants who are placed on the waiting list. The transplantation community has

attempted to develop an algorithm to prioritize patients for liver allocation by identifying risk
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factors associated with pre-transplant mortality. However, while on the list patients could

experience competing events, such as receiving a transplant or removal from the list due

to deteriorating health, preventing researchers from analyzing the true underlying mortality

process.

Competing events complicate research when interest lies in estimating the marginal sur-

vival function. The marginal survival function is defined as the probability of a specific event

occurring if all other causes of failure were suppressed. However, it is well known that with-

out making further assumptions on the dependence structure between the potential failure

times, these quantities are non-identifiable and non-estimable [Tsiatis, 1975].

Conventional methods for survival analysis, such as the Kaplan-Meier estimator or Cox

proportional hazards regression, essentially ignore the presence of competing risks by assum-

ing independence between the competing events. This assumption is often not reasonable

and can lead to biased results. In particular, the Kaplan-Meier method overestimates the

marginal survival function in the presence of positive dependence [Klein et al., 2001]. Over-

estimation occurs because subjects who fail from a competing risk and thus are no longer at

risk for the main event are treated the same as independent censored observations who are

still at risk of failing from the main event [Gooley et al., 1999]. Hence, in situations with

dependent risks, alternative methods are necessary.

One option is the random signs censoring model introduced by Cooke [1993, 1996], which

assumes that the main event time distribution is independent from the indicator that main

event has occurred. Random signs censoring is desirable because if the assumption is satis-

fied, it can be shown that the marginal survival of the main event of interest is identifiable

[Lindqvist and Skogsrud, 2008]. It is also verifiable using only the observed data, graph-

ically and via formal testing methods. Cooke [1993] showed that a joint distribution of

two competing event times will satisfy the random signs censoring assumption if and only

if the normalized subsurvival curve of the main event stochastically dominates that of the

competing event. Thus, the random signs censoring assumption can be verified by graphing

the normalized subsurvival functions and seeing if they demonstrate the stochastic ordering.

This dominance relation is also used in the more recently developed formal testing methods

[Dewan et al., 2004, Dauxois et al., 2014]. However, the current tests available are limited in
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that they do not allow for the possibility of covariate effects. They have not considered test-

ing if a sample follows stratified random signs censoring, which allows for the possibility that

random signs censoring may only be met within one or some covariate groups and not the

overall sample. They also cannot test for conditional random signs censoring, which allows

for random signs censoring to be met after conditioning on multiple covariates, categorical

and/or continuous.

Thus, the aim of this dissertation is to develop two new tests for random signs censoring:

stratified and conditional. Chapter 2 focuses on the development of a test for the stratified

random signs censoring assumption, while Chapter 3 proposes a test for the conditional

random signs censoring assumption. Final conclusions and areas for future research are

discussed in Chapter 4.
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2.0 TEST FOR STRATIFIED RANDOM SIGNS CENSORING

2.1 INTRODUCTION

Based on Organ Procurement and Transplantation Network (OPTN) data as of May 20,

2016, there are currently over 15,000 adults and children in the United States who have

been medically approved for liver transplants and are waiting for donated livers to become

available, with more added to the list each day. Around 6000 transplants are performed

every year, yet more than 1500 candidates die each year while still on the waiting list. In

2015, a record high of 7127 liver transplants were performed; however, waitlist mortality

remains a concern as 1420 candidates on the list died waiting and an additional 1473 were

removed as a result of being too sick to undergo transplant.

As part of an ongoing effort to improve liver allocation and decrease deaths on the waiting

list, the United Network for Organ Sharing (UNOS), a nonprofit charitable organization,

developed a new system for prioritizing candidates waiting for liver transplants based on

statistical formulas that predict who needs a liver transplant most urgently. Implemented in

February 2002, the model for end-stage liver disease (MELD) and its pediatric counterpart,

pediatric end-stage liver disease (PELD), give patients a continuous severity score ranging

from less ill to gravely ill based on routine lab test results [Sharing, 2008]. Higher transplant

priority is given to patients with higher scores.

Research has shown that MELD and PELD accurately predict most liver patients short-

term risk of death without a transplant; however, it has been argued that PELD is less

accurate in its ability to predict pre-transplant mortality than MELD [Barshes et al., 2006,

Olthoff et al., 2004]. PELD has been criticized for underestimating the severity of illness

in pediatric patients leading to increased waiting time and increased patient morbidity.
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The PELD score currently uses a Cox proportional hazards model to predict pre-transplant

mortality, which treats transplants as non-informative censored events instead of competing

events. This is problematic because non-informative censored events are considered indepen-

dent from the event of interest (pre-transplant death in this case); whereas competing events

fundamentally alter the probability of the occurrence of the main event [Gooley et al., 1999].

Because those who receive a transplant tend to be sicker, there is a positive correlation with

the underlying mortality process. Therefore, it is not reasonable to assume independence

between pre-transplant death and receiving a transplant. In cases of dependence such as

this, it is necessary to consider models that do not assume independent competing risks.

Extensive research has been done on analyzing competing risks data. Modern literature

has focused on the crude incidence approach, which includes analyses of the cause-specific

hazards and cumulative incidence functions. The Cox proportional hazards model [Cox,

1972] has been one of the most commonly used approaches for modeling cause-specific haz-

ards for all causes [Prentice et al., 1978]. In more recent years, an emphasis has been placed

on modeling covariate effects on the cumulative incidence function directly [Zhang et al.,

2008]. One of the first approaches, a Cox-type proportional hazards model for the subdis-

tribution hazard function, was proposed by Fine and Gray [1999]. Another approach using

pseudo-values was developed by Klein and Andersen [2005], while Scheike et al. [2008] sug-

gested an alternative using a direct binomial regression. These, among many other proposed

methods, may be useful for modeling the cumulative incidence function, but they do not

allow estimation of the marginal survival function.

Fortunately, Cooke [1993]’s Random Signs Censoring assumption, operating under the

latent failure time approach, offers an alternative solution. Random signs censoring assumes

that the main event time distribution is independent from the indicator of whether the

main event would occur or not (in relation to other competing events). Cooke showed that

this assumption is verifiable from the observed data. Under this assumption, the marginal

distribution of the main event is identifiable. While random signs censoring was introduced

more than two decades ago, there was no established test for it until very recently. Dewan

et al. [2004] introduced a test, but it did not consider additional independent censoring.

Dauxois et al. [2014] introduced a test that accounts for right censoring, but it does not allow
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for the possibility of random signs censoring occurring within covariate groups. However, past

research has shown that survival may vary among different groups of people, such as males

versus females [Cox, 1972]. For this reason, it is necessary to examine censoring and survival

patterns within covariate groups. In these situations, the overall sample may not satisfy

the random signs censoring assumption, but it is possible that the random signs censoring

assumption is met when stratified by a covariate. This is the basic idea of stratified random

signs censoring. The stratified random signs censoring assumption is slightly more relaxed

than the random signs censoring assumption in that it checks for random signs censoring

overall and within a specified covariate. Hence, the aim of this paper is to introduce a test for

the random signs censoring assumption that will also allow us to test for stratified random

signs censoring, based on a categorical covariate. To the best of our knowledge, our work is

the first to propose a test for stratified random signs censoring on a categorical covariate.

This chapter is organized as follows. Section 2.2 introduces some basic notation and

reviews the identifiable functions within the competing risks framework. Sections 2.3 and

2.4 discuss the properties and assumptions of specific classes of models relevant to this work.

Section 2.3 reviews some of the classical models used in competing risks, while Section 2.4

presents the Random Signs Censoring models, stratified and unstratified. Sections 2.5 and

2.6 are devoted to the development and asymptotic theory of the unstratified and stratified

random signs censoring tests. Section 2.7 studies the finite-sample properties of our proposed

test statistic through numerical simulations, and an application to the liver transplant data

is given in Section 2.8. Concluding remarks and ideas for future work are given in Section

2.9.

2.2 COMPETING RISKS FRAMEWORK

2.2.1 Notation

Suppose an individual is subject to two failure types. Without loss of generality, let T1

denote the failure time of the event of interest corresponding to the first failure type, and let
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T2 denote the failure time of the competing event corresponding to the second failure type.

Later we will introduce the additional possibility of random right censoring, i.e. independent

censoring, but for now we discuss the case in which there is no additional censoring.

In the competing risks setting we can only observe the first failure time, T = min(T1, T2),

and the indicator of the failure type, δ = j, j = 1 or 2 indicating the main event or competing

event, respectively. The overall survival function is given by S(t) = pr(T > t).

2.2.2 Identifiable Functions

Unfortunately, due to the problem of non-identifiability, the marginal survival functions of

the random variables T1 and T2, defined as pr(T1 > t) and pr(T2 > t) respectively, are not

estimable. However, the probability that an event of type j occurs before time t, or the

cumulative incidence function for the jth cause-specific event, is estimable. The cumulative

incidence functions, also known as the cumulative subdistribution functions, for main and

competing events are given by:

Fj(t) = pr(T ≤ t, δ = j), j = 1, 2; t > 0.

The sum of these subdistributions is equal to the cumulative distribution function of T ,

F (t) = pr(T ≤ t) = F1(t) + F2(t) = 1 − S(t). Similar to how the cumulative distribution

function is the sum of the cumulative incidence functions, the overall survival function can

be written as a sum of subsurvival functions, such that S(t) = S1(t) + S2(t), where Sj(t) is

the subsurvival function for the jth event:

Sj(t) = pr(T > t, δ = j) = pr(Tj > t, Tj < Tj′ , j
′ 6= j), j = 1, 2; j

′
= 1, 2.

Together, the subsurvival functions S1(t) and S2(t) make up the overall survival and form a

subsurvival pair, the formal definition of which is given below.

Definition 1. Functions S1(t) and S2(t) form a continuous subsurvival pair if:

1. S1(t) and S2(t) are non-negative non-increasing continuous real functions on [0,∞) with

S1(0) ≤ 1 and S2(0) ≤ 1,

2. limt→∞ S1(t) = limt→∞ S2(t) = 0, and
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3. S1(0) + S2(0) = 1.

Note that Sj(0) = pr(δ = j), j = 1, 2. Later we will use the notation pr(δ = 1) = γ

and pr(δ = 2) = (1 − γ) for the probability of having an event of type 1 and type 2,

respectively. Any function of the data can be written in terms of the subsurvival functions

S1(t) and S2(t) because they contain all of the information which can be extracted from

observing T . Moreover, under certain additional assumptions on the dependence structure

between T1 and T2, the subsurvival functions can be used to define a unique set of marginals

[Balakrishnan, 1995]. (Details of specific models and their corresponding assumptions are

discussed in Sections 2.3 and 2.4.)

Conditioning the subsurvival functions on the occurrence of the corresponding event

type, we can obtain the normalized (or conditional) subsurvival functions:

S∗j (t) = pr(T > t | δ = j) = pr(Tj > t | Tj < Tj′ , j
′ 6= j) =

Sj(t)

Sj(0)
, j = 1, 2; j

′
= 1, 2,

which are also estimable. The functions S∗1(.) and S∗2(.) portray particular behaviors under

different models in the competing risks setting, ultimately giving insight into the dependence

structure between T1 and T2. For this reason, the properties of S∗1(.) and S∗2(.) under the

various models are discussed in the following sections and later are used to develop the test

statistic.

2.3 COMMONLY USED MODELS

This section provides a basic summary of some specific models commonly used, or rather

misused, in the modeling of competing risks. In particular, we review the Independent Com-

peting Risks Model (2.3.1) and the Delay Time Model (2.3.2). When estimating the marginal

survival function of latent failure times, both of these models make certain assumptions in

order to allow for the identifiability of these quantities.
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2.3.1 Independent Competing Risks

This model assumes that the main event time T1 is independent of the competing event time

T2. Assuming independence between the competing events allows one to uniquely determine

the marginal survival functions of T1 and T2 from the joint survival function of (T, δ), such

that:

S(t) = S(t1, t2) = pr(T1 > t1, T2 > t2) = pr(T1 > t1)pr(T2 > t2).

Many conventional methods for survival analysis, such as the Kaplan-Meier estimator and

Cox proportional hazards model, follow this assumption by treating T2 as non-informative

censoring. Though widely used, this is a strong, untestable hypothesis.

In a standard survival setting, these methods assume independence between the event

of interest and censoring, but this independence assumption is reasonable because subjects

who are censored at a specific time point should still be representative of those still at risk.

In the setting of competing risks, these methods treat both censoring times and compet-

ing event times as independent from the main event time T1. However, competing events are

in clear violation of this independence assumption as by definition they alter one’s probability

of experiencing the main event. Consequently, conventional methods like the Kaplan-Meier

estimator produce bias results.

For instance, in the liver transplant data example, candidates who receive transplants

are typically sicker and at a higher risk of pre-transplant death than other candidates on

the waiting list. Yet, the Kaplan-Meier estimator ignores this positive correlation between

the competing events and treats them as independent. Thus, those candidates who receive

transplants are considered the same as those who are censored and still at risk of failing

from the main event. As a result, the Kaplan-Meier estimator inflates the probability of

pre-transplant survival, thereby underestimating the risk of pre-transplant mortality.

In addition, there is no general result on the behavior of the normalized subsurvival

functions S∗1(t) and S∗2(t) as they vary based on the given distributions to T1 and T2. If,

however, T1 and T2 have exponential distributions, Cooke [1993] established that S∗1(t) =

S∗2(t) for all t > 0. In this case, it would technically be possible to verify that they are

independent, but verification is limited to this extremely restrictive situation.
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2.3.2 Delay Time

Another model whose assumptions allow us to identify marginal distributions is the delay

time model, also known as the conditional independence model, introduced by Christer and

Waller [1984]. The delay time model is typically used in reliability and maintenance due

the nature of its applicability. The model defines failure of a component as a two-stage

process, where the first stage represents the time when a system crosses some threshold and

the second stage represents the remaining time before failure Wang et al. [2011].

We could also apply this model to a clinical setting. For instance, consider the liver

transplant data example again. Hypothetically, say there exists a known health status that

when detected indicates that a patient needs to have a liver transplant. There should be some

time after this initial defect during which the transplantation surgery should be performed

to prevent failure. However, if the transplant is not performed, the person could continue

to worsen, resulting in death. The time lapse between the health status indicator and

death is referred to as the delay time, hence the name of the model. In this model T1 and

T2 are dependent sharing a common quantity U but independent when conditioned on U .

Specifically, the model assumes:

T1 = U + V

T2 = U +W

where U , V , and W are mutually independent random variables. In this case, the random

variable U represents the degradation time of person until a defect arises, i.e. the health

status indicator, and the remaining time before failure from death or transplant (event 1

or 2) is represented by V or W , respectively. In reliability settings, event 1 may be func-

tional failure of the machine; whereas, event 2 may not be a failure, but rather preventative

maintenance.

Unfortunately, the likelihood for this model is very complicated, making it difficult to

assess the goodness-of-fit of the model Baker and Wang [1993]. Some extensions of the

model have been proposed but are computationally intensive and still lack diagnostic plots

Baker and Wang [1991], Wang et al. [2011]. In the case when U , V , and W are exponentially
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distributed, Hokstadt and Jensen [1998] proved the probability of the main event occurring is

constant over time resulting in equal normalized survival functions S∗1(t) = S∗2(t) for all t > 0.

Thus, similar to the independent risks with exponential distributions scenario discussed in

2.3.1, we have a case that is verifiable but is extremely restrictive.

2.4 RANDOM SIGNS CENSORING MODELS

The problem with using the models discussed in Sections 2.3.1 and 2.3.2 is that the as-

sumptions cannot be verified, and as a result, the models cannot be validated. In cases of

dependent events, such as in the setting of competing risks, these models yield biased results.

In this section, we formally define and discuss the properties of the random signs censoring

model and the conditional random signs censoring model. Like the previous models, these

models also introduce assumptions on the dependence structure between T1 and T2, but

unlike the previous models, these assumptions are verifiable.

2.4.1 Random Signs Censoring

2.4.1.1 Concept The random signs censoring model was first introduced by Cooke [1993]

and is perhaps the simplest dependent competing risk model. As defined in Section 2.1,

random signs censoring assumes that the main event time T1 is independent of the event

indicator δ or equivalently, T1 is independent of the sign of (T2− T1), hence the name of the

model. Because of this independence, under the random signs censoring assumption:

S∗1(t) = pr(T > t|δ = 1) =
pr(T1 > t, δ = 1)

pr(δ = 1)
=
pr(T1 > t)pr(δ = 1)

pr(δ = 1)
= pr(T1 > t).

This somewhat surprising result states that under the random signs censoring assump-

tion, the survival function containing only the observed occurrences of T1 is the same as

the marginal survival function of T1. This simplification under the random signs censoring

assumption points to one of its advantages. Marginal survival estimates can be calculated

by removing those subjects who experience failure from the competing event. The subjects
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who fail from the competing event are not treated as censored observations but rather are

excluded from the analysis entirely. After obtaining the subset, standard survival methods

can be used to carry out the rest of the analyses and produce consistent, unbiased results.

The random signs censoring model allows us to accurately estimate the marginal survival be-

cause unlike the other models that make assumptions on the dependency structure between

competing events, the random signs censoring assumption is verifiable.

2.4.1.2 Verification Verifying the random signs censoring assumption stems from a the-

orem established by Cooke [1993], which we restate below:

Theorem 1. Survival pairs (T1, T2) follow random signs censoring if and only if S∗1(t) >

S∗2(t) for all t > 0.

This theorem implies that the random signs censoring assumption T1 independent of δ

is satisfied if and only if the condition S∗1(t) > S∗2(t) for all t > 0 is also satisfied. This result

is of special interest because it provides the foundation for testing the random signs cen-

soring assumption as the normalized subsurvival functions are estimable. If the normalized

subsurvival curve of the main event dominates that of the competing event, then a random

signs censoring model may be a good fit for the data. Dauxois et al. [2014] used this result

to develop a test statistic for testing random signs censoring.

2.4.2 Stratified Random Signs Censoring

2.4.2.1 Concept In this paper we consider and develop a test statistic to test the strati-

fied random signs censoring model. Consider the categorical covariate Z with possible values

k = 1, .., K where K is the total number of strata in Z. The stratified random signs censoring

model assumes that the main event failure time and event indicator within the kth stratum,

T1k and δ1k respectively, are independent for at least one k. Based on this assumption, we

obtain the following result:

S∗1k(t) = pr(Tk > t | δk = 1) =
pr(T1k > t, δk = 1)

pr(δk = 1)
=
pr(T1k > t)pr(δk = 1)

pr(δk = 1)
= pr(T1k > t)
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for at least one k. This result states that stratified by the categorical covariate Z, the

normalized subsurvival function of T1 is equivalent to the marginal survival function T1 for

at least one stratum k. This result is an extension of the random signs censoring assumption

because it accommodates the case where random signs censoring is satisfied within some

subgroups, although the assumption is violated overall. Clinical trials and research studies

can find this result particularly useful when trying find which subgroups to analyze and

compare.

2.4.2.2 Verification In addition, the stratified random signs censoring assumption is

just as easy to verify as the random signs censoring assumption. Stratifying by Z, Cooke’s

random signs censoring theorem can be updated to illustrate the stratified random signs

censoring assumption as follows:

Theorem 2. Let S1k and S2k be a subsurvival pair, and let Z be a categorical covariate with

K strata. Then the following are equivalent:

1. There exists a survival pair (T1, T2) such that T2 is a stratified random signs censoring

of T1 and:

S∗jk(t) =
Sjk(t)

Sjk(0)
, for j = 1, 2, k = 1, ..., K, and all t ≥ 0.

2.

S∗1k(t) > S∗2k(t) for at least one k and all t > 0.

This theorem implies that the stratified random signs censoring assumption T1k indepen-

dent of δk for at least one stratum k is satisfied if and only if the condition S∗1k(t) > S∗2k(t)

for at least one k and all t > 0 is also satisfied. The proof follows directly from that of Cooke

[1993]’s Theorem 2 by conditioning quantities on each of the K strata.

Similar to the random signs censoring result, this stratified random signs censoring result

is of special interest because the normalized subsurvival curves stratified by Z are estimable.

Hence, if competing event data exhibit this dominance relationship within at least one sub-

group, a stratified random signs censoring model may be appropriate and advantageous to

accurately model the data.
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2.5 DEVELOPMENT OF THE STRATIFIED TEST

As mentioned, we are interested in testing whether or not the stratified random signs censor-

ing assumption holds. Based on the stratified extension of Cooke’s theorem (2), testing the

stratified random signs censoring assumption that T1k and δk are independent for at least

one of the K strata is equivalent to testing whether S∗1k(t) dominates S∗2k(t) for at least one

k. Thus, if the stratified random signs censoring assumption does not hold, T1k and δk are

dependent for all k, which is equivalent to testing whether S∗1k(t) is equivalent to S∗2k(t) for

all k. Using this relationship, we obtain the null hypothesis:

H0 : S∗1k(t) = S∗2k(t), for all k and all t > 0 ,

against the stratified random signs censoring alternative hypothesis:

H1 : S∗1k(t) > S∗2k(t), for at least one k and all t > 0 ,

where the normalized subsurvival functions are stratified by the categorical covariate Z.

Dauxois et al. [2014] developed a test for the random signs censoring assumption with

null hypothesis:

H∗0 : S∗1(t) = S∗2(t), for all t > 0

and alternative hypothesis:

H∗1 : S∗1(t) > S∗2(t), for all t > 0.

Using equivalent representations of the normalized subsurvival functions, they formulated a

test statistic whose numerator is an estimate of the following quantity:

ψ∗ =

∫ τ

0

{γF2(t)− (1− γ)F1(t)} dt.

To test our hypothesis, we can also develop the test statistic using equivalent representations

of the normalized subsurvival functions, but we will use the functions in terms of multiple

strata, as in H0 and H1, instead of for a single stratum.
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Under H0, we find the functions S1k(.) and Sk(.) are proportional from the following

equivalences fulfilled for all k = 1, ..., K and for all t > 0:

S∗1k(t) = S∗2k(t)

⇐⇒ S1k(t)

S1k(0)
=
S2k(t)

S2k(0)

⇐⇒ (1− γk)S1k(t) = γkS2k(t)

⇐⇒ S1k(t) = γkSk(t)

⇐⇒ γkF2k(t)− (1− γk)F1k(t) = 0,

where γk = pr(δk = 1). Similarly, under H1 the following equivalent properties are fulfilled

for at least one k and for all t > 0:

S∗1k(t) > S∗2k(t) (2.1)

⇐⇒ γkF2k(t)− (1− γk)F1k(t) > 0. (2.2)

Using equivalence (2.2), a measure in favor of the alternative is given by summing across all

time-points such that:

ψk =

∫ τk

0

{γkF2k(t)− (1− γk)F1k(t)} dt,

where τk is the right endpoint of the support of Fk. Letting pk = nk/n denote the proportion

of the total sample within stratum k, we propose the following weighted average:

ψ =
K∑
k=1

pk

∫ τk

0

{γkF2k(t)− (1− γk)F1k(t)} dt,

which is null under H0 and positive under H1.

To allow for the possibility of independent right censoring, let C denote the censoring

random variable, independent from the random variable T , with survival distribution H(.).

Now, one observes either the failure time or censoring time, so let us define X = min(T,C)

and ε = δI(T ≤ C) where I(.) is an indicator function. Therefore, for i = 1, ..., n individuals

we observe (Xi, εi, Zi), where at time Xi the indicator εi is equal to 0 when a censoring time

has been observed, to 1 when a main event has occurred, and to 2 when a competing event
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has occurred. Again, let Zi represent the categorical covariate, indicating which of the K

strata the ith individual is from. For all t > 0, we define the following counting processes:

Njk(t) =
n∑
i=1

I(Xi ≤ t, εi = j, Zi = k), j = 1, 2, k = 1, ..., K,

where Njk(t) is the number of subjects failing from event type j in stratum k during the

interval [0, t]. Thus, the number of subjects in stratum k failing from either event type 1 or

2 can be denoted as:

Nk(.) =
2∑
j=1

Njk(.).

The number of individuals at risk in stratum k is defined by the process:

Yk(t) =
n∑
i=1

I(Xi ≥ t, Zi = k)

which counts the number of subjects who have not experienced any event or are uncensored

at time t. The Kaplan-Meier estimator of the survival function S(.) of T for stratum k is

given by:

Ŝk(t) =
∏
i:xi≤t

(
1− ∆Nk(xi)

Yk(xi)

)
,

where xi are the ordered event times associated with the sample and ∆Nk(xi) = Nk(t) −

Nk(t
−). The Aalen-Johansen estimators of the CIFs for the kth stratum are then given by:

F̂jk(t) =

t∫
0

Ŝk(u
−)
dNjk(u)

Yk(u)
, for j = 1, 2, k = 1, ..., K.

In order to construct consistent estimates in the presence of censoring, we apply an inverse

probability of censoring weight [Robins and Rotnitzky, 1992] denoted by:

Wc(t) =
1

H(t)
,

where H(t) = pr(C > t) is the censoring survival distribution. Thus, for large n, γk can be

consistently estimated by:

γ̂k =

∫ τk
0
Wc(t)dN1k(t)∫ τk

0
Wc(t)dNk(t)

.
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Using these quantities, an estimate of ψ becomes:

ψ̂ =
K∑
k=1

pk

∫ τk

0

{
γ̂kF̂2k(t)− (1− γ̂k)F̂1k(t)

}
dt.

Hence, the test statistic for the stratified test takes the form
√
nψ̂/σ̂0, where σ̂0 is a consistent

estimator of σ0, the standard deviation of ψ under H0, whose details are discussed in Section

2.6.

To construct the test statistic for detecting random signs censoring only (unstratified),

the above quantities can be applied to the function ψ∗ in a similar manner except that one

would ignore the stratification covariate Z when calculating all quantities to obtain:

ψ̂∗ =

∫ τ

0

{
γ̂F̂2(t)− (1− γ̂)F̂1(t)

}
dt.

Letting σ̂∗0 denote a consistent estimator of σ∗0, the standard deviation of ψ∗ under H0, the

unstratified test statistic can be written as
√
nψ̂∗/σ̂∗0. Note that this unstratified test is

similar to the one presented by Dauxois et al. [2014] with the weight function equal to one.

It is null under H0 and positive under H∗1 but cannot test H1.

2.6 ASYMPTOTIC PROPERTIES

In this section, we will discuss the asymptotic properties of our test statistic. The asymptotic

distribution of our test statistic is based on the following theorem:

Theorem 3. Let us suppose that:∫ τk

0

Wc(u)dFk(u) <∞, k = 1, ..., K. (2.3)

Then
√
n(ψ̂ − ψ) converges weakly to a mean zero normal random variable Z, with finite

variance σ2. Under H0 the limiting variance can be expressed in the form of:

σ2
0 =

K∑
k=1

(nk
n

)2

σ2
0k,
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where σ2
0k is given by:

σ2
0k = γk

∫ τk

0

∫ τk

0

∫ min(s,t)

0

Wc(u)dF2k(u)dtds

+
γk

(1− γk)2

{∫ τk

0

F2k(t)dt

}2 ∫ τk

0

Wc(u)dF2k(u)

− 2γk
(1− γk)

{∫ τk

0

F2k(t)dt

}∫ τk

0

∫ t

0

Wc(u)dF2k(u)dt.

Proof of Theorem 3. Dauxois and Guilloux [2008] proved the following weak convergence

result for a single stratum. Because the strata are independent, this result can also be

applied to the within strata quantities such that under assumption (2.3), the following weak

convergence holds in D3[0,∞]:

Ĝk =


Ĝ0k

Ĝ1k

Ĝ2k

 =
√
n


Ŝk − Sk
F̂1k − F1k

F̂2k − F2k

 D−→ Gk =


G0k

G1k

G2k

 , as n→∞, (2.4)

where Gk is a mean zero Gaussian process defined by:

G0k(·) = Sk(·)U0k(·),

Gjk(·) =

∫ .

0

{Fjk(·)− Fjk(u)} dU0k(u) +

∫ .

0

Sk(u)dUjk(u), j = 1, 2, k = 1, ..., K,

and U1k and U2k are mean zero Gaussian, square integrable and orthogonal local martingales

with covariance function:

〈Ujk(s), Ujk(t)〉 =

∫ min(s,t)

0

Wc(u)dFjk(u)

S2
k(u)

, j = 1, 2, and k = 1, ..., K

and U0k = −(U1k + U2k). We can write:

√
nk(ψ̂k − ψk) =

√
nk

{
Ψ(F̂1k, F̂2k)−Ψ(F1k, F2k)

}
,

where

Ψ(F1k, F2k) =

∫ τk

0

{γkF2k(t)− (1− γk)F1k(t)} dt
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and γk = F1k(τk). The function Ψ(F1k, F2k) is Hadamard-differentiable (see e.g. Van

Der Vaart and Wellner [1996]); hence, we have the derivative:

DF1k,F2k

Ψ (α1k, α2k) =

∫ τk

0

[F1k(τk)α2k(t) + α1k(τk)F2k(t)− {1− F1k(τk)}α1k(t) + α1k(τk)F1k(t)] dt.

The Hadamard differentiability of the function and convergence result (2.4) allow us to apply

the functional delta method as described in Theorem 3.9.5 of Van Der Vaart and Wellner

[1996] so that we have:

√
nk(ψ̂k − ψk)

D−→ DF1k,F2k

Ψ (G1k, G2k) as nk →∞,

where

DF1k,F2k

Ψ (G1k, G2k) =

∫ τk

0

{γkG2k(t)− (1− γk)G1k(t)} dt−G1k(τk)

∫ τk

0

Fk(t)dt.

The limiting distribution of the random variable is Gaussian with mean zero and variance

function:

σ2
k = var

[∫ τk

0

{γkG2k(t)− (1− γk)G1k(t)} dt−G1k(τk)

∫ τk

0

Fk(t)dt

]
= var

[∫ τk

0

{γkG2k(t)− (1− γk)G1k(t)} dt
]

+ var {G1k(τk)}
{∫ τk

0

Fk(t)dt

}2

− 2

[∫ τk

0

{γk〈G2k(t), G1k(τk)〉 − (1− γk)〈G1k(t), G1k(τk)〉} dt
] ∫ τk

0

Fk(t)dt

The covariance structure of Gjk for j = 1, 2 and k = 1, ..., K, is given by:

〈Gik(s), Gjk(t)〉 =

∫ s

0

∫ t

0

{Fik(s)− Fik(u)} {Fjk(t)− Fjk(v)} d〈U0k(u), U0k(v)〉

+

∫ s

0

∫ t

0

{Fik(s)− Fik(u)}Sk(v)d〈U0k(u), Ujk(v)〉

+

∫ s

0

∫ t

0

Sk(u) {Fjk(t)− Fjk(v)} d〈Uik(u), U0k(v)〉

+

∫ s

0

∫ t

0

Sk(u)Sk(v)d〈Uik(u), Ujk(v)〉.
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However, due to the orthogonality of U1k and U2k, we have:

〈U0k(u), U0k(v)〉 = 〈U1k(u), U1k(v)〉+ 〈U2k(u), U2k(v)〉 =

∫ min(u,v)

0

Wc(w)dF (w)

S2(w)
,

〈U0k(u), Ujk(v)〉 = −〈Ujk(u), Ujk(v)〉 = −
∫ min(u,v)

0

Wc(w)dFj(w)

S2(w)
(j = 1, 2),

and 〈Uik(u), Ujk(v)〉 = δijk

∫ min(u,v)

0

Wc(w)dFi(w)

S2(w)
,

where δijk is the Kronecker delta. Therefore, we can write the covariance function of G as:

〈Gik(s), Gjk(t)〉 =

∫ min(s,t)

0

{Fik(s)− Fik(u)} {Fjk(t)− Fjk(u)}Wc(u)dFk(u)

S2
k(u)

−
∫ min(s,t)

0

{Fik(s)− Fik(u)}Wc(u)dFjk(u)

Sk(u)

−
∫ min(s,t)

0

{Fjk(t)− Fjk(u)}Wc(u)dFik(u)

Sk(u)
+ δijk

∫ min(s,t)

0

Wc(u)dFik(u).

Furthermore, we can write:

var

[∫ τk

0

{γkG2k(t)− (1− γk)G1k(t)} dt
]

=

∫ τk

0

∫ τk

0

{
γ2
k〈G2k(t), G2k(s)〉 − 2γk(1− γk)〈G1k(t), G2k(s)〉+ (1− γk)2〈G1k(t), G1k(s)〉

}
dsdt.

Hence, we have:

σ2
k =

∫ τk

0

∫ τk

0

{
γ2
k〈G2k(t), G2k(s)〉 − 2γk(1− γk)〈G1k(t), G2k(s)〉+ (1− γk)2〈G1k(t), G1k(s)〉

}
dsdt

+ 〈G1k(τk), G1k(τk)〉
{∫ τk

0

Fk(t)dt

}2

− 2

[∫ τk

0

{γk〈G2k(t), G1k(τk)〉 − (1− γk)〈G1k(t), G1k(τk)〉} dt
] ∫ τk

0

Fk(t)dt.

Under H0, the equation:

F1k(.) =
γk

(1− γk)
F2k(.)
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is true and can be used to simplify the expression of the variance σ2
k. After some tedious

algebra, the variance expression reduces to:

σ2
0k = γk

∫ τk

0

∫ τk

0

∫ min(s,t)

0

Wc(u)dF2k(u)dtds

+
γk

(1− γk)2

{∫ τk

0

F2k(t)dt

}2 ∫ τk

0

Wc(u)dF2k(u)

− 2γk
(1− γk)

{∫ τk

0

F2k(t)dt

}∫ τk

0

∫ t

0

Wc(u)dF2k(u)dt.

2.7 SIMULATION STUDIES

2.7.1 Data Generation

To evaluate the performance of our test statistic in various scenarios, we conducted a series

of Monte Carlo simulations under the null and alternative hypotheses. We were interested in

the finite sample properties of our proposed stratified random signs censoring test statistic

as well as how it compared to the unstratified random signs censoring test statistic. Thus,

we assessed the type I error rate under the null hypothesis and the power under the random

signs censoring and stratified random signs censoring alternative hypotheses for both test

statistics.

In all simulations, datasets of sample sizes n = 500, 1000 and 1500 were generated

under different censoring, competing event, and covariate group proportions and replicated

1000 times. The non-informative censoring time C was generated independently from an

exponential distribution with parameter η which was varied to produce censoring rates of

0%, 10%, 25%, and 50%. The covariate of interest Z is a binary variable in all scenarios

generated from a Bernoulli distribution, where the probability of success parameter q indi-

cated the probability of being in group B versus group A. We present the simulation results

for q = 1/2; though not shown, various values of q were assessed.
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Generation of event times vary for the different hypotheses; thus, in addition to the

simulation results, the remaining data generation methods are discussed individually in the

following subsections.

2.7.2 Simulation under the Null Hypothesis

In order to generate data under the null hypothesis, we used the Delay Time model whose

properties are discussed in Section 2.3.2, or for greater detail one can refer to Baker and Wang

[1993] or Hokstadt and Jensen [1998]. Recall that in this model, T1 and T2 are generated

from a sum of exponentially distributed variables U , V , and W , such that:

T1 = U + V

T2 = U +W

The random variable U was generated from an exponential distribution with rate equal to 1,

while the rates of V and W , were set to either 1 or 2 to create different proportions of main

event occurrences. We produced proportions equal to about 1/3, 1/2, and 2/3 to represent

situations where there are few main events, an equal number of main and competing events,

and a large number of main events, respectively.

Table 1 shows the Monte Carlo estimates of the empirical levels under each design with

varying the censoring percentages and sample sizes. We considered a nominal level of 5% in

all three scenarios.

Under each design, the results for the stratified test are very similar to those of the

unstratified test. In addition, there is little variation between the results from each design,

indicating that changing the proportion of main events has minimal effect on the estimates.

The empirical levels do seem to be closest to the nominal level when the percentage of

main events is highest, but they are still close to the nominal levels in the other scenarios.

Increases in sample size have little effect, and even sample sizes where n = 500 have fairly

stable estimates. The largest fluctuations in the estimates are seen by changes in the number

of censored observations. At high rates of censoring, such as 50%, the estimates begin to

move farther away from nominal level, which is to be expected when the outcomes of the

majority of the sample are not observed.

22



2.7.3 Simulation under Random Signs Censoring

For the random signs censoring alternative hypothesis H∗1 , we generated data that follow the

random signs censoring assumption overall, and thereby follow the stratified random signs

censoring assumption as well. To simulate this data, we generated T1 from an exponential

distribution with rate equal to 1. We then generated a random variable, ξ, from a uniform

distribution from 0 to T1. We also generated a random variable, π, from a Bernoulli distri-

bution with parameter, p, which sets the probability of having a main event. The competing

event time distribution, T2, was then formed by using the following expression:

T2 = T1 − {(2π − 1)ξ} .

This formulation ensures the dominance relation between T1 and T2 necessary for the random

signs censoring assumption to be met. Similar to the null scenario, we considered situations

with various amounts of main events by letting p = 0.25, 0.50, or 0.75. Table 2 compares

the power levels of the random signs censoring test statistic to our stratified random signs

censoring test statistic under the various H∗1 scenarios.

One can note that the power of the stratified test is nearly equal to, if not higher than,

that of the random signs censoring test. Similar to the simulation results under the null

hypothesis, the proportion of main events has minimal effect, but there is a slight improve-

ment with a higher main event rate. Increases in sample size have little to no gain in power

until the rate of censoring is greater than 10%. Noticeable losses in power are not apparent

until the percent of censored observations reaches 50%. However, even at the high censoring

rates, the power levels are still reasonable.

2.7.4 Simulation under Stratified Random Signs Censoring

We also considered the stratified random signs censoring situation, H1, where both covari-

ate groups satisfy random signs censoring individually but not as an overall sample. This

situation is of particular interest because the former random signs censoring test was not

developed to handle such a situation. To create this scenario, we generated T1 from a Cox

proportional hazards model with a baseline exponential distribution and conditional on fixed
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categorical covariate Z. By varying the β coefficient corresponding to covariate Z, we were

able to change the range of times within the groups. The probability of having a main event

p also needs to be conditional on the group; thus, we generated p from a logistic model with

covariate Z. The value of the coefficient α in this case altered the probability of having a

main event within in each. For the first group, group A, we set the probability of having

a main event to 50%, and for group B, we varied the probability of having a main event

between very low and high percentages, i.e. about 10% to 90%, for the different scenarios.

Similar to the random signs censoring simulation, we generated a random variable, ξ, but

here we used a triangle distribution from 0 to T1 with mode equal to 0. We then generated

the random variable, π, from a Bernoulli distribution with parameter p that was produced

from the logistic distribution. The competing event time distribution, T2, was then formed

by using the following expression:

T2 = T1 − {(2π − 1)ξ} .

Generating the data in this manner creates the stratified random signs censoring situation

where stratified by the covariate Z, the data follow random signs censoring, but overall

(unstratified), they do not.

Table 3 shows the power of our stratified random signs censoring test statistic as well as

the probability of the unstratified test statistic detecting random signs censoring under the

different H1 scenarios. The difference between the two tests is quite notable. The stratified

test has high power in both scenarios, especially when the rate of censoring is not too high.

There are some small decreases in power as censoring reaches 25%, and power noticeably

drops when the censoring rate reaches 50%. The power of the test improves with sample

size, the largest increases from which are seen at the higher rates of censoring. In addition,

the stratified test seems to have slightly better power in the second scenario, where there is

a higher percentage of main events in both groups.

On the other hand, the unstratified test has a small chance of detecting a random signs

censoring under either scenario. Even with no addition right-censoring and a large sample

size of n = 1500, there is only a slightly less than 40% chance the unstratified test will reject

the null hypothesis. In smaller sample sizes or higher rates or censoring, the probability
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of rejecting diminishes to less than 10%. One could conduct the unstratified test on each

subgroup individually; however, there would be a loss in power due to the smaller sample

sizes of each subgroup and type I error would be inflated due to the multiple comparisons.

Hence, in scenarios such as these, there is a clear advantage to using the stratified random

signs censoring test over the unstratified test.

2.8 APPLICATION

We applied the random signs censoring tests, stratified and unstratified, to data extracted

from the United Network for Organ Sharing liver transplant waiting list. The aim of our

analysis was to estimate the marginal survival distribution of death without liver transplan-

tation, i.e. pre-transplant mortality, by treating the competing event, liver transplantation,

as a random signs censoring.

The final cohort consisted of 2006 pediatric patients who were on the list February 27,

2002 through June 25, 2010, also referred to as the PELD era. Patients were excluded if they

had living donors and a PELD score greater than or equal to 18. The sample consisted of

nearly equal representations of the sexes, 52% females (n = 1046) and 48% males (n = 960).

The average PELD score of the sample was about 5. Of the possible event outcomes, 73.1%

were transplantations (n = 1467), 6.3% were deaths (n = 146), and 20.6% were right-

censored (n = 413). To account for non-informative censoring, we used inverse probability

censoring weight product-limit type estimators to estimate the normalized subsurvival curves

of the main and competing events, death and transplant respectively.

We first considered the sample as a whole to see if it followed the random signs censoring

assumption. In Figure 2.8, the estimated normalized subsurvival curves of competing events

death and transplant are plotted for the unstratified sample. The graph leads to the conjec-

ture that the overall sample may follow random signs censoring; however, the test was not

statistically significant (p = 0.216). The graph fails to illustrate some of the characteristics

of the data, such as the proportion of people with main versus competing events.
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The numerical test accounts for these differences and concludes the unstratified data do 

not follow the assumption.

We then stratified the sample based on each patient’s serum total bilirubin level, a factor 

known to be associated with liver health [Freeman et al., 2006, Wiesner et al., 2001, 2003]. 

The median bilirubin level of the sample, 3.7mg/dL, was used as a cutpoint, such that those 

patients with a bilirubin level below 3.7mg/dL were considered the “Low Bilirubin” group 

while those with a level greater than or equal to 3.7mg/dL were named “High Bilirubin”.

Figure 2.8 shows the estimated normalized subsurvival curves for the stratified sample. 

Based on the graph, it appears the Low Bilirubin group demonstrates the random signs 

censoring relationship while the High Bilirubin group does not. In fact, the dominance 

relationships between the normalized subsurvival curves of death and transplant are nearly 

opposite for the Low versus High Bilirubin groups, illustrating why treating the sample as a 

whole is insufficient.

The test for stratified random signs censoring was statistically significant (p = 0.039) at 

the 5% level, confirming the graphical findings. The unstratified test was unable to detect 

a random signs censoring relationship, likely because it was masked by the lack there of 

in the High Bilirubin group. One of the advantages to the stratified test is its ability to 

detect random signs censoring within strata, as demonstrated in this liver transplantation 

data application.

2.9 DISCUSSION    /TABLES AND FIGURES

Competing risks are commonly encountered in statistical analyses, yet there are few existing 

methods that are appropriate for analyzing these data. In particular, there is a lack of 

methods to allow one to accurately estimate the marginal survival function of the latent 

failure times. Using the random signs censoring model is one solution to handle dependent 

risks that allows identifiability of the marginal distribution. Other assumptions on the 

dependence structure, such as independence, may allow for identifiability of the marginal 

survival function, but these assumptions are strong and untestable. We developed a test for
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the stratified random signs censoring assumption that provides a test to detect presence of

random signs censoring after stratifying by a categorical covariate.

We have also shown through simulation studies that our test is as powerful as the (un-

stratified) random signs censoring test when testing random signs censoring and is superior

in stratified random signs censoring scenarios, where the unstratified test is not applicable.

Moreover, the stratified random signs censoring test behaves well even with small sample

sizes and fairly high rates of censoring. Though, one limitation of the test is its use with

censoring rates close to 50% or higher, as these rates can lead to inflated type I error and

low power levels. Another limitation of this test is that it is only applicable to categorical

covariates. Indeed, it would be of interest to test for stratified random signs censoring in

data containing continuous covariates. In addition, it has currently only been used with

a single covariate of interest. In Chapter 3, we will consider a conditional random signs

censoring test which can be used with multiple covariates, discrete or continuous. Overall,

the stratified random signs censoring test is widely applicable in research settings and easy

to implement, making it an ideal model candidate to improve the accuracy of current and

future statistical models.
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Table 1: Monte Carlo estimates of the type I error level of the stratified and unstratified

random signs censoring tests under the null hypothesis, H0

N=500 N=1000 N=1500

%T1 %C Stratified Unstratified Stratified Unstratified Stratified Unstratified

33% 0% 0.048 0.050 0.053 0.053 0.055 0.055

10% 0.057 0.059 0.045 0.043 0.043 0.044

25% 0.064 0.060 0.048 0.049 0.047 0.043

50% 0.056 0.050 0.066 0.057 0.059 0.053

50% 0% 0.048 0.046 0.049 0.047 0.060 0.059

10% 0.050 0.058 0.051 0.052 0.041 0.041

25% 0.048 0.050 0.049 0.053 0.045 0.046

50% 0.065 0.058 0.060 0.057 0.052 0.051

67% 0% 0.061 0.061 0.054 0.054 0.051 0.050

10% 0.064 0.065 0.055 0.052 0.053 0.059

25% 0.065 0.065 0.054 0.051 0.051 0.051

50% 0.093 0.093 0.073 0.073 0.065 0.065

%T1 denoting % main events and %C denoting % censored.
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Table 2: Monte Carlo estimates of the power of the tests under random signs censoring, H∗1

N=500 N=1000 N=1500

%T1 %C Stratified Unstratified Stratified Unstratified Stratified Unstratified

25% 0% 1.00 1.00 1.00 1.00 1.00 1.00

10% 1.00 1.00 1.00 1.00 1.00 1.00

25% 0.92 0.90 0.99 0.98 1.00 0.99

50% 0.45 0.44 0.59 0.57 0.60 0.57

50% 0% 1.00 1.00 1.00 1.00 1.00 1.00

10% 1.00 1.00 1.00 1.00 1.00 1.00

25% 0.98 0.97 1.00 0.99 1.00 1.00

50% 0.67 0.64 0.80 0.77 0.82 0.80

75% 0% 1.00 1.00 1.00 1.00 1.00 1.00

10% 1.00 1.00 1.00 1.00 1.00 1.00

25% 0.96 0.96 0.99 0.99 1.00 1.00

50% 0.75 0.74 0.82 0.80 0.86 0.84

%T1 denoting % main events and %C denoting % censored.
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Table 3: Monte Carlo estimates of the power of the tests under stratified random signs

censoring, H1, with different proportions of main events in Groups A and B

N=500 N=1000 N=1500

%T1A, T1B %C Stratified Unstratified Stratified Unstratified Stratified Unstratified

50%, 18% 0% 0.99 0.22 1.00 0.31 1.00 0.39

10% 0.89 0.14 0.99 0.16 1.00 0.21

25% 0.59 0.08 0.74 0.10 0.87 0.10

50% 0.20 0.08 0.23 0.08 0.29 0.07

50%, 92% 0% 0.96 0.21 1.00 0.27 1.00 0.38

10% 0.91 0.18 0.99 0.18 1.00 0.21

25% 0.77 0.12 0.88 0.10 0.95 0.12

50% 0.41 0.12 0.45 0.10 0.53 0.09

%T1A, T1B denoting % main events in Groups A and B respectively, and %C denoting % censored.
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Figure 1: Normalized subsurvival curves of competing events death and transplant, overall
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Figure 2: Normalized subsurvival curves of competing events death and transplant stratified

by bilirubin level
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3.0 TEST FOR CONDITIONAL RANDOM SIGNS CENSORING

3.1 INTRODUCTION

In the setting of competing risks, researchers often want to examine and model the effects of

several covariates for a specific cause of failure [Zhang et al., 2008]. Therefore, in addition to

testing stratified random signs censoring under the competing risks setting, we would like to

test another extension of random signs censoring which adjusts for multiple types of covariate

effects. Random signs censoring is useful; however it does not take into account covariate

effects. We developed a test for stratified random signs censoring in Chapter 2, but it is

only applicable with one categorical covariate. In practice we will more often encounter the

situation with one or more covariates, some of which continuous. Thus, in order to account for

these types of competing risk regression analyses, we need to look at an extension of both the

random signs censoring and stratified random signs censoring. Specifically, we are interested

in conditional random signs censoring, which allows for random signs censoring to be met

after adjusting for covariates. These covariates could be categorical, continuous, or both.

After conditioning on potential confounders, we would like to test whether the event indicator

is independent of the main event conditional on a set of covariates. In other words, the main

event time distribution and event type indicator are only dependent through a common set

of covariates. If this assumption is satisfied, the marginal distribution of the latent failure

time for the event of interest, T1, can be modeled with the specified covariates. Modeling the

marginal distribution of latent failure time T1 allows one to assess the relationship between

covariate effects and the associated risks specific to the individual event of interest in the

absence of the other competing event.
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Typical competing risk regression analyses concentrate on the crude incidence approach.

In this setting, competing risks are represented as a bivariate random variable, (T, δ), where

T is the time to first failure and δ indicates the type of failure observed. The joint distri-

bution of (T, δ) can be completely specified through the cause-specific hazards or through

the cumulative incidence functions [Porta Bleda et al., 2007]. These functions represent two

distinct quantities, either of which can be modeled given a set of covariates and can ap-

propriately assess risk in the presence of other competing risks [Klein and Andersen, 2005].

Unfortunately, because these quantities are only related to the joint distribution (T, δ) as

opposed to that of latent failure times (T1, T2), they do not allow estimation of the marginal

distribution of T1. Therefore, they cannot determine if covariate effects are associated with

risks involving one or both competing events Dignam et al. [2012]. As a result, one may

conclude that a particular covariate is related to improving (or worsening) outcomes for the

main event of interest when in reality the opposite is true, and the competing event was

masking the effect.

Currently, the only methods available under the latent failure time approach that allow

for the assessment of categorical and continuous covariate effects make assumptions on the

dependence structure between T1 and T2 that are unverifiable [Pintilie, 2006]. Hence, we

propose a test for conditional random signs censoring to fill this gap in the literature.

The remainder of this paper is structured as follows. Section 3.2 introduces the ob-

servable quantities used in the competing risks regression setting. Section 3.3 describes the

details of the conditional random signs censoring assumption, including overall concept and

verification. Section 3.4 discusses the development of the proposed test statistic, and Section

3.5 presents the corresponding asymptotic theory. In Section 3.6, the performance of the

test is assessed through Monte Carlo simulations. Section 3.7 illustrates the application of

the proposed methods using the liver transplant data. This chapter concludes with a final

discussion given in Section 3.8.
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3.2 COMPETING RISKS REGRESSION QUANTITIES

Compared to standard survival analyses, competing risks analyses are incomplete without

investigating competing risks regression models [Kim, 2007]. They are needed to identify risk

factors for each competing risk. As mentioned in Section 3.1, competing risks probabilities

can be summarized by either the cause-specific (or crude) hazard rate or the cumulative

incidence function. Neither makes any assumptions about the relationship between the com-

peting risks, such as independence), and both are directly estimable from the observed data

(T, δ) [Klein and Andersen, 2005]. Therefore, we now formally define these quantities and

any additional quantities used in the development of the conditional random signs censoring

test.

Let Z be a p-dimensional vector of measured covariates, categorical or continuous. Ad-

justing for Z, we define the cumulative incidence function for the jth cause:

Fj(t|Z) = pr(T ≤ t, δ = j|Z), for j = 1, 2 and t > 0.

The sum of these cumulative incidence functions for the main and competing events gives

the adjusted cumulative distribution function, F (t|Z) = F1(t|Z) + F2(t|Z). We introduce

the cause-specific hazard rate:

λj(t|Z) = lim
t→ 0

pr(t ≤ t+ dt, δ = j|T ≥ t,Z)

t
,

and the cumulative cause-specific hazard rate:

Λj(t|Z) =

t∫
0

λj(u|Z)du.

We also consider the overall hazard rate, λ(t|Z) = λ1(t|Z) + λ2(t|Z), the corresponding

cumulative hazard rate Λ(t|Z) =
t∫

0

λ(u|Z)du, and the overall survival function S(t|Z) =

pr(T > t|Z).

Using these functions, the conditional cumulative incidence function of the jth cause is:

Fj(t|Z) =

t∫
0

S(u−|Z)dΛj(u|Z),
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where

S(t−|Z) =
∏
u<t

{1− dΛ(u|Z)} .

Lastly, we define the probability of a main event, i.e. event type 1, conditional on covariate

vector Z by γ(Z) = pr(δ = 1|Z).

3.3 CONDITIONAL RANDOM SIGNS CENSORING

3.3.1 Concept

The conditional random signs censoring model assumes that the main event time and the

event type indicator are independent after adjusting for covariate effects. In the stratified

random signs censoring setting in Chapter 2, we focused on whether random signs censoring

was met within at least one subgroup of a categorical covariate. Conditional random signs

censoring extends the stratified setting by allowing one to incorporate both categorical and

continuous covariate effects. Instead of verifying whether one or more individual strata of

a covariate follows random signs censoring, we are now considering the overall adjusted

sample. Hence, we can simultaneously control for multiple covariate effects as opposed to

one categorical variable. We now state the conditional random signs censoring assumption

as T1|Z is independent of δ|Z. Based on this assumption, we obtain the following result:

S∗1(t|Z) = pr(T > t|δ = 1,Z) =
pr(T1 > t|Z)pr(δ = 1|Z)

pr(δ = 1|Z)
= pr(T1 > t|Z).

This result states that after conditioning on the continuous covariate Z, the normalized

subsurvival function of T1 is equivalent to the marginal survival function T1.

In practical settings, we are often interested in modeling a regression model that takes

into account covariate effects. The conditional random signs censoring assumption allows

one to incorporate those covariate effects and test whether the adjusted sample satisfies the

properties of random signs censoring. If the conditional random signs censoring assumption

is met, classic survival regression techniques can be used to model the marginal survival

function. Unlike other assumptions used in modeling the marginal survival function, the

conditional random signs censoring assumption is verifiable.

36



3.3.2 Verification

Conditioning on Z, Cooke’s Random Sign Censoring theorem can be updated to illustrate

the conditional random signs censoring assumption as follows:

Theorem 4. Let S1 and S2 be a subsurvival pair, and let Z denote a p-dimensional vector,

consisting of categorical and/or continuous covariates. Then the following are equivalent:

1. There exists a pair (T1, T2) of life variables such that T2|Z is a conditional random signs

censoring of T1|Z, and:

S∗j (t|Z) =
Sj(t|Z)

Sj(0|Z)
,∀ t ≥ 0.

2.

S∗1(t|Z) > S∗2(t|Z), ∀ t > 0.

This theorem implies that the conditional random signs censoring assumption T1|Z inde-

pendent of δ|Z is satisfied if and only if the condition S∗1(t|Z) > S∗2(t|Z) for all t > 0 is also

satisfied. This conditional result is a more general extension of both the random signs censor-

ing and stratified random signs censoring assumption in that it allows for estimation of the

normalized subsurvival curves after adjusting for categorical and/or continuous covariates.

3.4 DEVELOPMENT OF THE CONDITIONAL TEST

Based on the extension of Cooke’s random signs censoring theorem (4), testing the condi-

tional random signs censoring assumption that T1|Z and δ|Z are independent is equivalent

to testing whether S∗1(t|Z) dominates S∗2(t|Z) for all t > 0. Thus, if the conditional random

signs censoring assumption does not hold, T1|Z and δ|Z are dependent even after condition-

ing on Z, which is equivalent to testing whether S∗1(t|Z) is equivalent to S∗2(t|Z) for any Z.

Using this relationship, we obtain the null hypothesis:

H0 : S∗1(t|Z) = S∗2(t|Z), ∀ t > 0,

against the conditional random signs censoring alternative hypothesis:

H2 : S∗1(t|Z) > S∗2(t|Z),∀ t > 0,
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where the normalized subsurvival functions are conditional on the covariate vector Z. While

the unadjusted sample may not meet the requirements of random signs censoring, this test

allows us to check whether the adjusted sample satisfies the conditional random signs cen-

soring assumption.

We can develop the test statistic using equivalent representations of the normalized

subsurvival functions, similiar to how we did for the stratified test in Section 2.5. However,

now we will use the functions in terms of functions conditional on covariate vector Z instead

of in terms of individual strata.

Under H0 and noting that γ(Z) = pr(δ = 1|Z) = S1(0|Z), we can show the functions

S1(.|Z) and S(.|Z) are proportional from the following equivalences:

S∗1(t|Z) = S∗2(t|Z)

⇐⇒ S1(t|Z)

S1(0|Z)
=
S2(t|Z)

S2(0|Z)

⇐⇒ {1− γ(Z)}S1(t|Z) = γ(Z)S2(t|Z)

⇐⇒ S1(t|Z) = γ(Z)S(t|Z)

⇐⇒ γ(Z)F2(t|Z)− {1− γ(Z)}F1(t|Z) = 0,

which are fulfilled for any Z and for all t > 0. Similarly, under H2 the following equivalent

properties are fulfilled for any Z and for all t > 0:

S∗1(t|Z) > S∗2(t|Z) (3.1)

⇐⇒ γ(Z)F2(t|Z)− {1− γ(Z)}F1(t|Z) > 0. (3.2)

Using equivalence (3.2), a measure in favor of the alternative is given by summing across all

time-points such that:

ψ(Z) =

∫ τ

0

[γ(Z)F2(t|Z)− {1− γ(Z)}F1(t|Z)]dt,

where τ is the right endpoint of the support of F (t|Z). The ψ(Z) function is calculated over

the entire sample, but the conditional, or adjusted, values of the functions are plugged into

the formula, similar to the idea of conditioning on covariates in a regression model.
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As in Section 2.5, we want to allow for the possibility of independent right censoring

by letting C denote the censoring random variable, independent from the random variable

T . We also let X = min(T,C) and ε = δI(T ≤ C) again. We now observe for i = 1, ..., n

individuals (Xi, εi,Zi), where Xi denotes the observed time, εi indicates the event, and Zi

gives the vector of covariate values, all specific to the ith individual. The function ψ(Z) can

then be estimated by plugging in estimates of its components. Although other consistent

estimators can be used, we will estimate Fj(t|Z) using a Cox proportional cause-specific

hazards model. That is,

F̂j(t|Z) =

t∫
0

Ŝ(u−|Z)dΛ̂j(u|Z), j = 1, 2,

where

Ŝ(t|Z) = exp

{
−

2∑
j=1

Λ̂0j(t)e
β̂T
j Z

}
,

and

Λ̂j(t|Z) = Λ̂0j(t)e
β̂T
j Z, j = 1, 2.

The vector of regression coefficients βj can be estimated using a partial likelihood approach.

Using counting process notation, the resulting score equation for obtaining β̂j is defined as:

U(βj) =
n∑
i=1

τ∫
0

{
Zi −

∑n
k=1 Yjk(t)e

βT
j ZkZk∑n

k=1 Yjk(t)e
βT
j Zk

}
dNj(t),

where Yji(t) = I(Xi ≥ t, εi = j), Nj(t) =
n∑
i=1

I(Xi ≤ t, εi = j), and τ is a time larger than

any observed death time for the jth event. Given β̂j, the Breslow [1974] estimates for the

baseline cumulative hazard functions are:

Λ̂0j(t) =

τ∫
0

{
n∑
k=1

Yjk(t)e
β̂T
j

}−1

dNj(t), j = 1, 2.

The probability of having the main event type, γ(Z), can also be consistently estimated by

γ̂(Z) = Ŝ1(0|Z). Similarly, we can estimate 1−γ(Z), the probability of having the competing

event, by Ŝ2(0|Z) = 1− γ̂(Z). Combining these quantities, an estimate of ψ(Z) becomes:

ψ̂(Z) =

∫ τ

0

[γ̂(Z)F̂2(t|Z)− {1− γ̂(Z)} F̂1(t|Z)]dt.

39



Hence, the test statistic for the stratified test takes the form
√
nψ̂(Z)/θ̂0, where θ̂0 is a

consistent estimator of θ0, the standard deviation of ψ(Z) under H0, whose details are

discussed in the following section (Section 3.5).

3.5 ASYMPTOTIC PROPERTIES

In this section, we will discuss the asymptotic properties of our test statistic. The asymptotic

distribution of our test statistic is based on the following theorem:

Theorem 5. Let us suppose that:

∫ τ

0

Wc(u)dF (u|Z) <∞, (3.3)

where Wc(u) is the inverse probability censoring weight. Then
√
n
{
ψ̂(Z)− ψ(Z)

}
converges

weakly to a mean zero normal random variable G, with finite variance θ2. Under H0 the

limiting variance can be expressed in the form of:

θ2
0 = γ(Z)

∫ τ

0

∫ τ

0

∫ min(s,t)

0

Wc(u)dF2(u|Z)dtds

+
γ(Z)

{1− γ(Z)}2

{∫ τ

0

F2(t|Z)dt

}2 ∫ τ

0

Wc(u)dF2(u|Z)

− 2γ(Z)

1− γ(Z)

{∫ τ

0

F2(t|Z)dt

}∫ τ

0

∫ t

0

Wc(u)dF2(u|Z)dt.

Proof of Theorem 5. The weak convergence of the following quantities was proved for a single

stratum [Dauxois et al., 2014] and multiple strata (Section 2.6, Proof 2.6). The result can

also be applied to the functions after conditioning on the independent covariate vector Z.

Under assumption (3.3), the following weak convergence holds in D3[0,∞]:


Ĝ0(·|Z)

Ĝ1(·|Z)

Ĝ2(·|Z)

 =
√
n


Ŝ(·|Z)− S(·|Z)

F̂1(·|Z)− F1(·|Z)

F̂2(·|Z)− F2(·|Z)

 D−→


G0(·|Z)

G1(·|Z)

G2(·|Z)

 , as n→∞, (3.4)
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where G is a mean zero Gaussian process defined by:

G0(·|Z) = S(·|Z)U0(·|Z),

Gj(·|Z) =

∫ .

0

{Fj(·|Z)− Fj(u|Z)} dU0(u|Z) +

∫ .

0

S(u|Z)dUj(u|Z), j = 1, 2,

and Uj’s are mean zero Gaussian, square integrable and orthogonal local martingales with

covariance function:

〈Uj(s|Z), Uj(t|Z)〉 =

∫ min(s,t)

0

Wc(u)dFj(u|Z)

S2(u|Z)
, j = 1, 2,

and U0 = −(U1 + U2). We can write:

√
n
{
ψ̂(Z)− ψ(Z)

}
=
√
n
{

Ψ(F̂1, F̂2)−Ψ(F1, F2)
}
,

where

Ψ(F1, F2) =

∫ τ

0

[γ(Z)F2(t|Z)− {1− γ(Z)}F1(t|Z)]dt

and γ(Z) = F1(τ |Z). The function Ψ(F1, F2) is Hadamard-differentiable (see e.g. Van

Der Vaart and Wellner [1996]); hence, we have the derivative:

DF1,F2

Ψ (α1, α2) =

∫ τ

0

[F1(τ |Z)α2(t|Z) + α1(τ |Z)F2(t|Z)− {1− F1(τ |Z)}α1(t|Z) + α1(τ |Z)F1(t|Z)] dt.

The Hadamard differentiability of the function and convergence result (2.4) allow us to apply

the functional delta method as described in Theorem 3.9.5 of Van Der Vaart and Wellner

[1996] so that we have:

√
n
{
ψ̂(Z)− ψ(Z)

}
D−→ DF1,F2

Ψ (G1, G2) as n→∞,

where

DF1,F2

Ψ (G1, G2) =

∫ τ

0

[γ(Z)G2(t|Z)− {1− γ(Z)}G1(t|Z)] dt−G1(τ |Z)

∫ τ

0

F (t|Z)dt.
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The limiting distribution of the random variable is Gaussian with mean zero and variance

function:

θ2 = var

(∫ τ

0

[γ(Z)G2(t|Z)− {1− γ(Z)}G1(t|Z)] dt−G1(τ |Z)

∫ τ

0

F (t|Z)dt

)
= var

(∫ τ

0

[γ(Z)G2(t|Z)− {1− γ(Z)}G1(t|Z)] dt

)
+ var {G1(τ |Z)}

{∫ τ

0

F (t|Z)dt

}2

− 2

(∫ τ

0

[γ(Z)〈G2(t|Z), G1(τ |Z)〉 − {1− γ(Z)} 〈G1(t|Z), G1(τ |Z)〉] dt
)∫ τ

0

F (t|Z)dt

The covariance structure of Gj for j = 1, 2 is given by:

〈Gi(s|Z), Gj(t|Z)〉 =

∫ s

0

∫ t

0

{Fi(s|Z)− Fi(u|Z)} {Fj(t|Z)− Fj(v|Z)} d〈U0(|Zu), U0(v|Z)〉

+

∫ s

0

∫ t

0

{Fi(s|Z)− Fi(u|Z)}S(v|Z)d〈U0(u|Z), Uj(v|Z)〉

+

∫ s

0

∫ t

0

S(u|Z) {Fj(t|Z)− Fj(v|Z)} d〈Ui(u|Z), U0(v|Z)〉

+

∫ s

0

∫ t

0

S(u|Z)S(v|Z)d〈Ui(u|Z), Uj(v|Z)〉.

However, due to the orthogonality of U1 and U2, we have:

〈U0(u|Z), U0(v|Z)〉 = 〈U1(u|Z), U1(v|Z)〉+ 〈U2(u|Z), U2(v|Z)〉

=

∫ min(u,v)

0

Wc(w)dF (w|Z)

S2(w|Z)
,

〈U0(u|Z), Uj(v|Z)〉 = −〈Uj(u|Z), Uj(v|Z)〉 = −
∫ min(u,v)

0

Wc(w)dFj(w|Z)

S2(w|Z)
(j = 1, 2),

and 〈Ui(u|Z), Uj(v|Z)〉 = δij

∫ min(u,v)

0

Wc(w)dFi(w|Z)

S2(w|Z)
,

where δij is the Kronecker delta. Therefore, we can write the covariance function of Z as:

〈Gi(s|Z), Gj(t|Z)〉 =

∫ min(s,t)

0

{Fi(s|Z)− Fi(u|Z)} {Fj(t|Z)− Fj(u|Z)}Wc(u)dFk(u|Z)

S2
k(u|Z)

−
∫ min(s,t)

0

{Fi(s|Z)− Fi(u|Z)}Wc(u)dFj(u|Z)

Sk(u|Z)

−
∫ min(s,t)

0

{Fj(t|Z)− Fj(u|Z)}Wc(u)dFi(u|Z)

S(u|Z)
+ δij

∫ min(s,t)

0

Wc(u)dFi(u|Z).
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Furthermore, we can write:

var

(∫ τ

0

[γ(Z)G2(t|Z)− {1− γ(Z)}G1(t|Z)] dt

)
=

∫ τ

0

∫ τ

0

γ(Z)2〈G2(t|Z), G2(s|Z)〉 − 2γ(Z) {1− γ(Z)} 〈G1(t|Z), G2(s|Z)〉

+ {1− γ(Z)}2 〈G1(t|Z), G1(s|Z)〉dsdt.

Hence, we have:

θ2 =

∫ τ

0

∫ τ

0

γ(Z)2〈G2(t|Z), G2(s|Z)〉 − 2γ(Z) {1− γ(Z)} 〈G1(t|Z), G2(s|Z)〉

+ {1− γ(Z)}2 〈G1(t|Z), G1(s|Z)〉dsdt+ var {G1(τ |Z)}
{∫ τ

0

F (t|Z)dt

}2

− 2

(∫ τ

0

[γ(Z)〈G2(t|Z), G1(τ |Z)〉 − {1− γ(Z)} 〈G1(t|Z), G1(τ |Z)〉] dt
)∫ τ

0

F (t|Z)dt.

Under H0, the equation:

F1(·|Z) =
γ(Z)

{1− γ(Z)}
F2(·|Z)

is true and can be used to simplify the expression of the variance θ2. After some tedious

algebra, the variance expression reduces to:

θ2
0 = γ(Z)

∫ τ

0

∫ τ

0

∫ min(s,t)

0

Wc(u)dF2(u|Z)dtds

+
γ(Z)

{1− γ(Z)}2

{∫ τ

0

F2(t|Z)dt

}2 ∫ τ

0

Wc(u)dF2(u|Z)

− 2γ(Z)

1− γ(Z)

{∫ τ

0

F2(t|Z)dt

}∫ τ

0

∫ t

0

Wc(u)dF2(u|Z)dt.
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3.6 SIMULATION STUDIES

We conducted Monte Carlo simulations to evaluate the finite sample properties of our pro-

posed test statistic. We carried out simulations under the null and alternatives hypotheses,

creating various scenarios by differing the sample size, proportion of competing events, and

rate of random right censoring. We report the estimated type I error for simulations under

the null hypothesis and the estimated power for simulations under the alternatives. The

results of the proposed conditional random signs censoring test statistic were then compared

to the standard (unconditional) random signs censoring statistic.

For each scenario, datasets with sample sizes of 500, 1000, and 1500 were generated and

replicated 1000 times. Independent non-informative censoring time C was generated using

an exponential distribution with rate η. Different values of the parameter η were chosen to

produce varying amounts of censoring ranging from 0% to 50%. For simplicity, we considered

a single continuous covariate Z and generated it from a standard normal distribution.

Due to inherent differences of the event times under the null and alternative hypotheses,

further details regarding data generation are discussed in the following subsections.

3.6.1 Simulation under the Null Hypothesis

To investigate the performance of the conditional random signs censoring test statistic under

the null hypothesis, we generated data using the Delay Time model as was done previously

for the stratified random signs censoring test statistic. Please refer to Section 2.7.2 for details

regarding the data generation process of the event times. By varying event time distribution

parameters, we once again produced proportions of main event occurrences equal to about

1/3, 1/2, and 2/3 to create scenarios with a few, an equal, and a large number of main versus

competing events, respectively.

The Monte Carlo estimates of the type I error levels under each design with varying

sample sizes and censoring rates are shown in Table 4. The empirical levels for both test

statistics are very close to the nominal level of 0.05 across all combinations. There are some

observed increases as the percentage of main events gets larger. The type I error rate for the
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conditional test also increases slightly as the rate of censoring increases. On the contrary,

the type I error rate for the overall random signs censoring test tends to decrease as the

censoring rate increases. Specifically, for a sample size of n = 1000 and 33% main events,

the conditional test has a type I error rate of 0.050 with 0% censoring and 0.059 with 25%

censoring, whereas the unadjusted test has levels of 0.052 and 0.039, respectively.

3.6.2 Simulation under Random Signs Censoring

The data generation process of the event times under the random signs censoring alternative

H∗1 is identical to that which is described in Section 2.7.3. The parameter specifications of

p = 0.25, 0.50, or 0.75 were also used again, resulting in the same overall designs. Aside

from the test statistic, the main difference between the set-up for this simulation and the

previous version (presented in Section 2.7.3) is that Z is now a continuous covariate instead

of categorical.

Table 5 presents the power levels under the various H∗1 scenarios for the conditional and

unconditional random signs censoring test statistics. The power levels of both statistics are

high under the random signs censoring alternative for the various scenarios. For larger sample

sizes of n = 1000 and n = 1500, the power levels do not decrease until censoring reaches

50% and even then the loss is minimal. When the sample size only consists of n = 500,

adequate power is still maintained at 50% censoring. Similar to the results under the null

hypothesis, there is little change in the estimates as the percentage of main events change

but small increases are noted as the number of main events increase. While both statistics

have high power estimates for all combinations of censoring, main events, and sample size,

the conditional test actually has higher power than the overall test in every scenario.

3.6.3 Simulation under Conditional Random Signs Censoring

Because the type I error rates were upheld, we explored a variety of scenarios under H2

to investigate the power of the conditional random signs censoring test statistic. Under

this alternative, the data do not satisfy the randoms signs censoring assumption marginally;

however, they do follow it conditionally, after adjusting for covariate Z. Similar to the
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stratified random signs censoring alternative, the standard (unconditional) test was not

developed to handle this type of scenario. To generate the event times, we used an approach

to similar that of H1 (see Section 2.7.4). First, T1 was generated from a Cox proportional

hazards model using a baseline exponential distribution and conditional on fixed continuous

covariate Z with regression coefficient β. The probability of having a main event, p, was

generated from a logistic model with covariate Z and corresponding regression coefficient α.

The random variable π, which determines whether a main or competing event occurred, was

then generated from a Bernoulli distribution using parameter p. Thus, both the main event

time T1 and event indicator π are conditional on continuous covariate Z. The competing

event time T2 is also conditional on Z because it was generated using the following expression:

T2 = T1 − {(2π − 1)ξ} ,

where ξ is a random variable generated from the triangle distribution from 0 to T1. Hence,

this method of data generation creates a random signs censoring relationship between T1

and T2 that is conditional on continuous covariate Z.

We generated data this way under two different parameter designs, A and B, to vary

the distribution of main and competing events in relation to the covariate values. Under

design A, observations with positive covariate values were more likely to have a main event

and observations with negative covariate values were more likely to have a competing event.

The opposite was true for design B, where negative covariate values increased the likelihood

of having a main event and positive values a competing event. Design A also had a larger

difference between the average covariate value for a main event versus competing event. The

average covariate values for main and competing events under design B were both closer to

0, creating a slightly weaker correlation between the covariate value and event outcome.

Table 6 compares the power of the conditional random signs censoring test statistic to

the standard random signs censoring test statistic under this alternative for the different

combinations of design type, sample size, and censoring rate.

The difference in results are quite striking. The conditional test has higher power than

the standard test across all scenarios. The more notable difference is seen under design A,

where the standard random signs censoring test statistic has little to no power regardless
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of sample size. The conditional test, on the other hand, has adequate power for all sample

sizes and censoring up to 25%. There is some loss in power with the smaller sample size of

n = 500 relative to the other sample sizes, especially with additional censoring, but large

decreases in power are not seen until 50% censoring.

Under design B, the superiority of the conditional test is still seen, but the overall test

shows increased power levels compared to the previous levels under design A. This increase

is likely due to the weaker conditional relationship or dependency between the observed

covariate values and main event occurrences. The power estimates for the conditional test

are more stable than the overall test and still larger for every sample size and censoring rate,

particularly for a sample size of n = 500. The power estimates of the overall test fluctuate,

increasing and decreasing as the rate of censoring gets larger. While the overall test may

have improved from design A to B (relative to itself), there is a strong and clear advantage

in using the conditional test.

3.7 APPLICATION

Using the same UNOS liver transplant data from Section 2.8, we applied the conditional

and unconditional random signs censoring tests. Recall the final cohort consisted of 2006

pediatric patients who were on the list during the PELD era, i.e. February 27, 2002 through

June 25, 2010. Exclusions included patients who had living donors or a PELD score greater

than or equal to 18. For more details regarding the final cohort, please refer to Section 2.8.

We first analyzed the overall sample, not adjusting for any covariates, and performed

the random signs censoring test. Because we are using the sample cohort as before and this

overall test does not allow for inclusion of covariates of any kind, the results are the same as

those presented in Section 2.8. Note that the standard random signs censoring test was not

statistically significant (p = 0.216).

We then planned to conduct the conditional random signs censoring adjusting for each pa-

tient’s serum total bilirubin level, a continuous covariate. When we performed the stratified

test, we divided the sample into two groups (Low Bilirubin and High Bilirubin) based on the
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median bilirubin level of the sample. For the conditional test, we can use the original contin-

uous version of bilirubin as the conditional test can adjust for categorical and/or continuous 

covariates. However, because the conditional test uses a Cox proportional hazards model, 

any covariates used must satisfy the proportional hazards assumption. Hence, we tested 

whether the assumption holds for bilirubin and found evidence to contradict proportionality 

(p = 0.033). To correct for this proportional hazards violation, we added an interaction with 

time to the Cox model, which did allow us to satisfy the assumption (p = 0.451). After 

confirming the other model assumptions were met, we were able to implement the test for 

conditional random signs censoring. Figure 3.7 shows the predicted values, after adjust-

ing for serum total bilirubin level, of the normalized subsurvival curves for the competing 

events, death and transplant. The test was statistically significant (p = 0.006) at the 5%

level, indicating that the data follow the conditional random signs censoring assumption 

after adjusting for bilirubin level. This result also verifies that the marginal survival of pre-

transplant mortality can be consistently estimated using only the observed data. For the 

purposes of this demonstration, we only considered adjusting for bilirubin, but future work 

need not be limited to a single predictor.

3.8 DISCUSSION   /TABLES AND FIGURE

Testing the conditional random signs censoring assumption provides a way to detect whether 

the random signs censoring assumption is met after adjusting for categorical and/or con-

tinuous covariates in a competing risks dataset. Data satisfying the conditional random 

signs censoring assumption can then be used to consistently estimate the marginal survival, 

whereas current methods rely on unverifiable assumptions and can lead to biased estimates. 

Moreover, the conditional random signs censoring assumption is verifiable using only the 

observed data and makes estimation of the marginal survival extremely easy and straight-

forward.

In this study, we developed the test statistic for the conditional random signs censoring 

assumption. We derived its asymptotic properties and established asymptotic normality.
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Through simulation studies, we showed that our test statistic maintains type I error rates

close to the nominal level and has greater power than the standard method under random

signs censoring. We also illustrated its dominance over the standard test in cases of con-

ditional random signs censoring, where the standard test fails to detect the random signs

censoring relationship that exists after adjusting for covariates. Finally, we implemented the

test statistic to an example using the liver transplant data. A limitation of this test is its

use in scenarios of high censoring rates of 50% or higher, which can lead to inflated type

I error levels. In addition, like many other survival methods, we assumed censoring to be

non-informative. Thus, this test may not be valid if censoring is informative, and future

research would be needed to incorporate such censoring.
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Table 4: Monte Carlo estimates of the type I error level of the conditional and overall random

signs censoring tests under the null hypothesis, H0

N=500 N=1000 N=1500

%T1 Censoring Conditional Overall Conditional Overall Conditional Overall

33% 0% 0.051 0.053 0.050 0.052 0.058 0.057

10% 0.055 0.046 0.048 0.044 0.060 0.056

25% 0.054 0.041 0.059 0.039 0.060 0.046

50% 0.060 0.048 0.070 0.049 0.054 0.035

50% 0% 0.054 0.060 0.053 0.053 0.058 0.065

10% 0.053 0.050 0.048 0.045 0.065 0.057

25% 0.060 0.050 0.057 0.044 0.055 0.037

50% 0.076 0.053 0.077 0.047 0.058 0.034

67% 0% 0.054 0.060 0.050 0.055 0.064 0.065

10% 0.055 0.063 0.055 0.050 0.059 0.054

25% 0.069 0.060 0.049 0.039 0.066 0.045

50% 0.086 0.059 0.074 0.048 0.082 0.052
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Table 5: Monte Carlo estimates of the power of the conditional and overall tests under

random signs censoring, H∗1

N=500 N=1000 N=1500

%T1 Censoring Conditional Overall Conditional Overall Conditional Overall

25% 0% 1.00 1.00 1.00 1.00 1.00 1.00

10% 1.00 1.00 1.00 1.00 1.00 1.00

25% 0.97 0.93 1.00 0.98 1.00 1.00

50% 0.66 0.53 0.82 0.67 0.90 0.77

50% 0% 1.00 1.00 1.00 1.00 1.00 1.00

10% 1.00 1.00 1.00 1.00 1.00 1.00

25% 1.00 0.97 1.00 0.99 1.00 1.00

50% 0.85 0.75 0.91 0.80 0.97 0.90

75% 0% 1.00 1.00 1.00 1.00 1.00 1.00

10% 1.00 1.00 1.00 1.00 1.00 1.00

25% 0.98 0.96 1.00 0.99 1.00 1.00

50% 0.84 0.77 0.94 0.87 0.97 0.91
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Table 6: Monte Carlo estimates of the power of the tests under conditional random signs

censoring, H2

N=500 N=1000 N=1500

Design Censoring Conditional Overall Conditional Overall Conditional Overall

A 0% 0.86 0.13 0.99 0.18 1.00 0.20

10% 0.72 0.02 0.94 0.01 0.99 0.01

25% 0.50 0.00 0.73 0.00 0.86 0.00

50% 0.17 0.00 0.26 0.00 0.32 0.00

B 0% 0.93 0.49 0.99 0.69 1.00 0.84

10% 0.85 0.62 0.98 0.82 1.00 0.93

25% 0.73 0.63 0.91 0.81 0.97 0.90

50% 0.53 0.51 0.68 0.65 0.79 0.74
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Figure 3: Predicted values of normalized subsurvival of competing events death and trans-

plant conditional on bilirubin level
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4.0 SUMMARY

Competing risks are commonly encountered in many biomedical studies where multiple

causes of failure are present. Several methods exist for estimating the cause-specific hazards

and cumulative incidence functions, but few methods are available for a marginal time-to-

event analysis. Estimation of the marginal survival function is desirable so that researchers

can assess risks associated with a specific cause of interest as opposed to in-conjunction with

other competing events. The majority of the current approaches involve making unverifiable

assumptions on the dependency structure between competing events, such as claiming the

events are independent. The random signs censoring assumption is an alternative approach

that can be verified through the observed data. Formal testing procedures for the random

signs censoring assumption have only recently been developed, and they do not allow for

covariate effects. It is important to incorporate covariates in order to analyze the risk re-

lationship between them and the event of interest. In this dissertation, we developed two

new tests as extensions of the random signs censoring test but that do allow for inclusion of

covariate analyses.

In Chapter 2, we proposed a test for the stratified random signs censoring assumption,

which tests whether the random signs censoring assumption is met within at least one group

of a categorical covariate. Even if the overall sample does not satisfy the random signs

censoring assumption, it is possible that a specified subgroup may. If one were to try to apply

the unstratified test to each subgroup individually, not only would it be tedious and time

consuming, but it would inflate the type I error rate. The stratified test offers an omnibus test

that can check all of the subgroups of a categorical covariate at once. We showed analytically

that our test statistic has an asymptotically normal distribution. Simulation studies showed

that even with random right censoring rates up to about 50% and a relatively small sample
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size of n = 200, the proposed test statistic maintains a type I error rate close to the nominal

level. An example using the liver transplant data exhibited the utility of the stratified test.

In Chapter 3, we further extended the random signs censoring assumption to allow for

adjustment of categorical and/or continuous covariates and developed a test for conditional

random signs censoring. This test is a promising development in the competing risks field,

allowing researchers the potential to assess multiple covariate effects on the marginal survival

function for an event of interest. We established the asymptotic properties of our test statistic

and derived an estimator for the variance. We were able to show that this test statistic also

has an asymptotically normal distribution. Lastly, we evaluated its finite sample properties

through simulation and demonstrated its use through an application to the liver transplant

data.

Future work in this area of competing risks can consider possible extensions of the strati-

fied and/or conditional random signs censoring tests. It would be interesting to explore other

potential model choices (aside from the Cox model) to estimate the cumulative incidence

functions for the conditional random signs censoring test. Due to the model-based nature

of the test, improvement could be seen from choosing a more accurate underlying model to

estimate the cause-specific hazard functions. In addition, both the stratified and conditional

tests are currently limited to fixed covariates, but it could be useful to be able to include

time-dependent covariates.
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APPENDIX

PROOF OF CONDITIONAL RANDOM SIGNS CENSORING THEOREM

Proof of Theorem 4. Let ξ denote a random variable such that, ξ = T1 − T2. If T2|Z is a

conditional random signs censoring of T1|Z, then by definition, T1|Z is independent of the

sign of (T1 − T2)|Z, i.e. T1 ⊥ sign(ξ)|Z.

Using this notation, we first prove part 1 → 2:

Since T1 ⊥ sign(ξ)|Z,

S1(t|Z) = pr{T1 > t, T1 < T2|Z}, by definition

= pr{T1 > t, ξ < 0|Z}, since ξ = T1 − T2

= pr{T1 > t|ξ < 0,Z}pr{ξ < 0|Z}, by Bayes’ Theroem

= pr{T1 > t|ξ < 0,Z}S1(0|Z), since S1(0|Z) = pr{ξ < 0|Z}

= pr{T1 > t|ξ > 0,Z}S1(0|Z), because T1 ⊥ sign(ξ)|Z, and

S2(t|Z) = pr{T2 > t, T2 < T1|Z}, by definition

= pr{T1 − ξ > t, ξ > 0|Z}, since ξ = T1 − T2

= pr{T1 − ξ > t|ξ > 0,Z}pr{ξ > 0|Z}, by Bayes’ Theroem

= pr{T1 − ξ > t|ξ > 0,Z}S2(0|Z), since S2(0|Z) = pr{ξ > 0|Z}

= pr{T1 > t+ ξ|ξ > 0,Z}S2(0|Z).
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Thus, for t > 0,

pr{T1 > t|ξ > 0,Z} > pr{T1 > t+ ξ|ξ > 0,Z}

⇐⇒ S1(t|Z)

S1(0|Z)
>
S2(t|Z)

S2(0|Z)

⇐⇒ S∗1(t|Z) > S∗2(t|Z).

Next, we prove part 2 → 1:

Let T1 and T2 be random variables with normalized subsurvival functions conditional

on covariate vector Z, S∗j (t|Z) for j = 1, 2. Then S∗1(t|Z) > S∗2(t|Z) ∀ Z and ∀ t > 0, and

S∗−1
1 (t|Z) and S∗−1

2 (t|Z) exist. Choose a random variable δ, such that δ ⊥ T1|Z with

pr{δ = 1|Z} = S1(0|Z) and pr{δ = 2|Z} = S2(0|Z),

and put

ξ(Z) = I{δ = 2|Z}
(
T1(Z)− S∗−1

2 S∗1(T1|Z)
)
− (I{δ = 1|Z}), S∗1(t|Z) > S∗2(t|Z).

Hence we have {ξ = −1|Z} = {δ = 1|Z} and {ξ > 0|Z} = {δ = 2|Z}.

Therefore, T1 ⊥ sign(ξ)|Z and

pr{T2 > t, T2 < T1|Z} = pr{T1 − ξ > t, ξ > 0|Z}, since ξ = T1 − T2

= pr{T1 − ξ > t|ξ > 0,Z}pr{ξ > 0|Z}, by Bayes’ Theroem

= pr{T1 − ξ > t|ξ > 0,Z}S2(0|Z), since S2(0|Z) = pr{ξ > 0|Z}

= pr{S∗−1
2 S∗1(T1) > t|Z}S2(0|Z), when ξ > 0, ξ(Z) = T1(Z)− S∗−1

2 S∗1(T1|Z)

= pr{T1 > S∗−1
1 S∗2(t)|Z}S2(0|Z), after rearranging

=
(
S∗1S

∗−1
1 S∗2

)
(t|Z)S2(0|Z), by definition

= S∗2(t|Z)S2(0|Z), since S∗1S
∗−1
1 cancel

= S2(t|Z).
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Lastly,

pr{T1 > t, T1 < T2|Z} = pr{T1 > t, ξ < 0|Z}, since ξ = T1 − T2

= pr{T1 > t|ξ < 0,Z}pr{ξ < 0|Z}, by Bayes’ Theroem

= S∗1(t|Z)S1(0|Z), by definition

= S1(t|Z).
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