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NONPARAMETRIC AND SEMIPARAMETRIC INFERENCE ON

QUANTILE LOST LIFESPAN

Lauren C. Balmert, PhD

University of Pittsburgh, 2017

ABSTRACT

A new summary measure for time-to-event data, termed lost lifespan, is proposed in which

the existing concept of reversed percentile residual life, or percentile inactivity time, is recast

to show that it can be used for routine analysis to summarize life lost. The lost lifespan infers

the distribution of time lost due to experiencing an event of interest before some specified

time point. An estimating equation approach is adopted to avoid estimation of the proba-

bility density function of the underlying time-to-event distribution to estimate the variance

of the quantile estimator. A K-sample test statistic is proposed to test the ratio of quantile

lost lifespans. Simulation studies are performed to assess finite properties of the proposed

statistic in terms of coverage probability and power. The concept of life lost is then extended

to a regression setting to analyze covariate effects on the quantiles of the distribution of the

lost lifespan under right censoring. An estimating equation, variance estimator, and mini-

mum dispersion statistic for testing the significance of regression parameters are proposed

and evaluated via simulation studies. The proposed approach reveals several advantages over

existing methods for analyzing time-to-event data, which is illustrated with a breast cancer

dataset from a Phase III clinical trial conducted by the National Surgical Adjuvant Breast

and Bowel Project.

Public Health Significance: The analysis of time-to-event data can provide important in-

formation about new treatments and therapies, particularly in clinical trial settings. The

methods provided in this dissertation will allow public health researchers to analyze effective-
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ness of new treatments in terms of a new summary measure, life loss. In addition to providing

statistical advantages over existing methods, analyzing time-to-event data in terms of the

lost lifespan provides a more straightforward interpretation beneficial to clinicians, patients,

and other stakeholders.

Keywords: Lost lifespan; residual life; survival analysis; time-to-event; right censoring.
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1.0 INTRODUCTION

Time-to-event data, which focuses on the time until occurrence of an event of interest,

can be encountered in many research areas such as engineering, economics, medicine, and

social sciences. Statistical methods for analyzing this type of data have mainly considered

cumulative information up to the time of analysis or residual information beyond the time

of analysis. To our best knowledge, there exist no methods in the literature to analyze

censored time-to-event data in terms of quantiles of time loss. Here, a summary measure

termed lost lifespan is proposed to consider the time lost due to experiencing an event of

interest before some specified time point. The contribution of the proposed methods is

several-fold. First, the interpretation of the lost lifespan at a specific follow-up time point

is more straightforward and more informative than that of existing methods, including the

hazard function-based results. For example, a physician can explain an intervention effect

as “Taking this drug is expected to reduce your life loss by 50% on average at 5 years after

beginning treatment”. In comparison, the interpretation of the hazard function-based results

could be less transparent to the laymen because of the definition of the hazard function as

the conditional limiting probability. The proposed method also offers important advantages

over residual life based methods, which can be heavily influenced by censored observations.

In the lost lifespan analysis, the observations beyond the fixed time point t0 are excluded, so

that it would be substantially less affected by heavy censoring at the tail of the distribution.

We propose here a nonparametric quantile-based method, which is more robust than the

mean-based method for often asymmetric time-to-event data, yet our inference procedure

does not require estimation of the probability density function of the true time-to-event

distribution under censoring to evaluate the variance of the quantile. We then extend the

methods to a quantile regression setting to allow for examination of covariate effects on the
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lost lifespan. This extension is important for considering the relationship between the lost

lifespan and a covariate of interest while adjusting for potential confounding factors.

Chapter 2 will provide a literature review of the existing methods related to nonparamet-

ric inference and quantile regression. Chapter 3 will introduce the quantile lost lifespan and

provide a non-parametric estimation and inference procedure. Simulation studies will assess

the proposed methods, and an application to a real data set will illustrate their use. The

research presented in this Chapter has been previously published in Biometrics1, a journal

of the International Biometric Society, by Wiley-Blackwell Publishing (Balmert and Jeong,

2017). A regression model and method for testing significance of covariates will be presented

in Chapter 4. The model will be evaluated via simulations studies and applied to real data.

Chapter 5 will conclude with a brief discussion and future directions of the research.

1Available at http://onlinelibrary.wiley.com/doi/10.1111/biom.12555/full
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2.0 LITERATURE REVIEW

2.1 NONPARAMETRIC INFERENCE LITERATURE REVIEW

The third chapter focuses on recasting the concept of reversed percentile residual life, or

reversed inactivity time, to show how it can be used for routine analysis of time to event

data to summarize ‘life lost’. Time-to-event analysis can be based on cumulative information

up to a given time point or residual information after the given time point. Popular summary

measures for time-to-event outcomes from medical or reliability studies have been the hazard

function and associated survival probability or quantile survival time. The adoption of

residual life as a summary measure for time to event data stemmed from the interest of

knowing the remaining life expectancy at a specified time point beyond the initial diagnosis

or start of treatment. The mean residual life function, defined as E(T − t|T ≥ t), has been

studied extensively in the literature (Berger et al., 1988; Chen et al., 1983; Chiang, 1960;

Oakes and Dasu, 1990; Maguluri and Zhang, 1994; Chen et al., 2005). Here, T represents

the event time, and t is the specified time point. More recently, there has been examination

of the median life function, defined as median(T − t|T ≥ t) (Schmittlein and Morrison,

1981; Fligner and Rust, 1982; Wang and Hettmansperger, 1990; Su and Wei, 1993). The

median is particularly important in analysis of skewed data, as it is more robust to outliers

than the mean. An important nonparametric method was proposed for median residual life

estimation using martingale increments, and an asymptotically chi-square test statistic was

derived for comparing the ratio of median residual lifetimes between groups (Jeong et al.,

2008). These methods were also extended to summarize other quantiles that may be of

interest to investigators. The methods proposed here will be extended to the lost lifespan in

Chapter 3. Further detail for the inference and regression procedures for quantile residual

life has been documented in the literature (Jeong, 2014).
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The hazard function, or conditional failure rate, has also been studied extensively. The

traditional hazard function is defined as the instantaneous failure rate given that a subject

did not experience an event of interest previously, or the ratio of the probability density

function to the survival function (Klein and Moeschberger, 2003), ie for a non-negative

random variable T,

h(t) = lim
∆t→0

Pr(t−∆t ≤ T ≤ t|T ≥ t) =
fT (t)

ST (t)
.

On the other hand, the reversed hazard function (Block et al., 2009; Chandra and Roy,

2001) specifies the instantaneous failure rate given that a subject did experience an event

previously, i.e for a non-negative random variable T ,

hR(t) = lim
∆t→0

Pr(t−∆t ≤ T ≤ t|T ≤ t) =
fT (t)

FT (t)
, (2.1.1)

where fT (·) and FT (·) are the probability density function and the cumulative distribution

function of T , respectively. The importance of the reversed hazard function particularly in

the presence of left censoring has also been discussed (Andersen et al., 1993; Kalbfleisch and

Lawless, 1989). The reversed hazard function will be used to show in Chapter 3 that it

characterizes the distribution of the proposed lost lifespan, also known as the inactivity time

(Ruiz and Navarro, 1996; Li and Lu, 2003).

The concept of restricted mean lifetime has also been briefly addressed in the literature

to identify the average time lived before some specified time point (Irwin, 1949; Karrison,

1987; Andersen et al., 2004; Royston and Parmar, 2011). Andersen, 2013 (Andersen, 2013)

then defined “years lost” in terms of the restricted mean lifetime at a specified time point

under competing risks, using the difference between the specified time point and the mean

restricted lifetime. Specifically, the expected number of years lost before time τ can be

described as,

L(0, τ) = τ −
∫ τ

0

S(t)dt.

Despite this recent development, there have been no estimation or inference methods

proposed for the quantile lost lifespan under the scenario of right-censored data.
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2.2 QUANTILE REGRESSION LITERATURE REVIEW

The fourth chapter focuses on extending the lost lifespan to a quantile regression setting.

Quantile regression, originally developed by Koenker and Basset (Koenker and Bassett,

1978), is a well studied extension of linear regression (Jung, 1996; Portnoy and Koenker,

1997). As defined in the literature (Koenker and Bassett, 1978), the θ-regression quantile is

a solution to the minimization of

minb∈R

 ∑
t∈{t:yt≥xtb}

θ|yt − xtb|+
∑

t∈{t:yt<xtb}

(1− θ)|yt − xtb|


of the regression process µt = yt − xtβ. Methods have also been established for analyzing

survival data in the presence of censoring (Lindgren, 1997; McKeague et al., 2001; Yin and

Cai, 2005; Peng and Huang, 2008). More recently, the concept of residual life has seen

extensions to regression analysis. Covariate effects on residual life were examined under the

proportional hazards and accelerated life models (Raja rao et al., 1992), regression models

on the median failure time were proposed (Ying et al., 1995), and bayesian modeling was

considered on median residual life (Gelfand and Kottas, 2003).

A method for quantile regression on the residual life function was recently developed, in

which covariate effects on the quantile failure time among individuals surviving beyond a

specified time point can be estimated (Jung et al., 2009). The proposed method is useful for

situations where the researcher is interested in examining the residual life while controlling for

important demographic, environmental, or medical factors. A log-linear regression method

was considered for the ε-quantile, such that

ε− quantile{ln(Ti − t0)|Ti ≥ t0, Zi} = β
′

ε|t0Zi.

An asymptotically chi-square test statistic was proposed to test the significance of covariates

within the model utilizing the minimum dispersion statistic of Basawa and Koul (Basawa and

Koul, 1988). The methods proposed here will be extended to the lost lifespan in the fourth

chapter. Further detail, including parametric and semi-parametric estimation of regression

parameters, can be found in the literature (Jeong, 2014). This method has also been extended

5



to cause-specific quantile residual life regression (Lim and Jeong, 2015), and more recently

to methods allowing for dynamic predictions (Li et al., 2016).
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3.0 NONPARAMETRIC INFERENCE ON QUANTILE LOST LIFESPAN

3.1 INTRODUCTION

In Chapter 3, we introduce the lost lifespan distribution, providing a derivation and con-

structing an estimating equation to estimate the median lost lifespan. We propose an infer-

ence procedure through the confidence interval approach. A two-sample statistic is derived to

compare the median lost lifespans between groups, utilizing the minimum dispersion statis-

tic. The two-sample test statistic is also extended to K samples to compare multiple groups

to a baseline group. Simulation studies are performed to demonstrate finite properties of

the proposed two-sample statistic in terms of coverage probability and power. Finally, the

proposed method is exemplified with a real data example from a breast cancer study. The

benefits of the proposed method over traditional methods are discussed in the conclusion.

3.2 DERIVATION OF LOST LIFESPAN DISTRIBUTION

The reversed hazard function (Block et al., 2009; Chandra and Roy, 2001), as previously

mentioned, specifies the instantaneous failure rate given that a subject did experience an

event previously. It can be shown that the this function characterizes the distribution of the

lost lifespan. Specifically define T ∗ = t0 − T to be a time loss due to an event occurence

prior to t0. Here t0 can be any time point during an observation period whose maximum

might be determined by administrative censoring. Therefore when T is defined as time to

death, the lost lifespan can be interpreted as the time period being dead, in contrast to

being alive, or life lost due to death prior to t0. In general, it can be viewed as the time

7



span after occurrence of an event of interest, so that the longer it is, the less favorable it is

to a patient in a disease setting. Figure 3.2 compares the traditional residual lifetime and

the lost lifespan at a fixed time point t0. At t0, we can either consider the remaining lifetime

given that an individual has not yet experienced an event (residual life), or the life lost given

that an individual has already experienced an event (lost lifespan). As t0 is shifted to the

right, more information in included in the lost lifespan analysis.

0t

0 ,  Residual LifeT t

0 ,  Lost Lifespant T

Figure 3.2.1: Comparison of Residual Life and Lost Lifespan at t0
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Now we show that the hazard function of the lost lifespan distribution is characterized

by the reversed hazard function defined in Equation (2.1.1). The cumulative distribution

function of T ∗ can be defined as

FT ∗(s) = Pr(t0 − T ≤ s|T ≤ t0)

=
FT (t0)− FT (t0 − s)

FT (t0)
. (3.2.1)

Since the probability density function of T ∗ is

fT∗(s) =
dFT ∗(s)

ds
=
fT (t0 − s)
FT (t0)

,

its hazard function is given by

hT ∗(s) =
fT ∗(s)

1− FT ∗(t0 − s)
=
fT (t0 − s)
FT (t0 − s)

,

which is the reversed hazard function of the original random variable T at a backward time

point t0 − s.

From Equation (3.2.1), the λ-percentile, θ
(λ)
t0 , of the lost lifespan distribution can be

defined by solving

FT (t0)− FT
(
t0 − θ(λ)

t0

)
FT (t0)

=
ST

(
t0 − θ(λ)

t0

)
− ST (t0)

1− ST (t0)
= λ. (3.2.2)

With a continuous survival function ST (·) = 1−FT (·), Equation (3.2.2) provides the solution

θ
(λ)
t0 = t0 − S−1

T [λ+ (1− λ)ST (t0)] . (3.2.3)

For notational simplicity and without loss of generality, we will denote the median lost

lifespan throughout the paper as

θt0 = median(t0 − T |T ≤ t0),

which can be interpreted as the median time loss among individuals who experienced an

event before time t0. While the estimation and inference procedures in the following sections

will focus on the median, the results can be easily adapted for other quantiles of interest by

adjusting λ.

9



3.3 INFERENCE ON QUANTILE LOST LIFESPAN: ONE SAMPLE CASE

3.3.1 Notation

Here, notation used throughout the third chapter will be defined. Let Tik denote the event

time of the ith patient in group k (k = 1, 2) and nk the the number of patients in the kth

group. In the situation where observations are censored prior to experiencing the event, Cik

will denote the censoring time. Thus the observed information for each patient will be Xik =

min(Cik, Tik) with an event indicator ∆ik = I(Tik < Cik). We will make the assumption that

event times are independent of censoring times. Sk(t) will be the survival function of Tik for

the kth group and Ŝk(t) the corresponding Kaplan-Meier estimator. Let Yki(t) = I(Xki ≥ t)

and Nki(t) = ∆kiI(Xki ≤ t) be the at-risk and event processes, respectively, for patient i in

group k. Also, we define Yk =
∑nk

i=1 Yki and Nk =
∑nk

i=1 Nki.

3.3.2 Estimation

Suppressing the subscript k, from Equation (3.2.2) the median of the lost lifespan distribution

at t0 can be estimated for each group by solving û(θt0) = 0 for θt0 where

û(θt0) = Ŝ(t0 − θt0)−
1

2
Ŝ(t0)− 1

2
, (3.3.1)

with Ŝ(·) being the Kaplan-Meier estimate of the true event time distribution. Thus, the

median lost lifespan can be nonparametrically estimated by

θ̂t0 = t0 − Ŝ−1[(1/2){1 + Ŝ(t0)}].

Let θt0,0 denote the true median lost lifespan at time t0 and S∗(·) the true survival function,

so that

u(θt0,0) = S∗(t0 − θt0,0)− 1

2
S∗(t0)− 1

2
= 0.

By rearranging (3.3.1) at θt0,0, we have

û(θt0,0) = Ŝ(t0 − θt0,0)− S∗(t0 − θt0,0)− 1

2
[Ŝ(t0)− S∗(t0)] + S∗(t0 − θt0,0)− 1

2
S∗(t0)− 1

2

= Ŝ(t0 − θt0,0)− S∗(t0 − θt0,0)− 1

2
[Ŝ(t0)− S∗(t0)],

10



which can be represented as the sum of independent martingales by Corollary 3.2.1 of Fleming

and Harringtion (1991)

û(θt0,0) = −
n∑
i=1

S∗(t0 − θt0,0)

∫ t0−θt0,0

0

dMi(s)

Y (s)
+

1

2

n∑
i=1

S∗(t0)

∫ t0

0

dMi(s)

Y (s)
+ op(n

− 1
2 ),

where Mi(t) = Ni(t) −
∫ t

0
Yi(s)dΛ(s) is a martingale with the cumulative hazard function

Λ(s), so that E[dMi(t)|Ft− ] = 0 for filtration {Ft : t ≥ 0}. The op(n
− 1

2 ) term indicates that

remainder terms, multiplied by n
1
2 , will converge in probability to 0. Also, Y (t)/n uniformly

converges to y(t) over [0, ξ], where ξ is the maximum follow-up time, so we have

û(θt0,0) =
n∑
i=1

εi + op(n
− 1

2 ),

where

εi = −S∗(t0 − θt0,0)

∫ t0−θt0,0

0

dMi(s)

ny(s)
+

1

2
S∗(t0)

∫ t0

0

dMi(s)

ny(s)
.

Again since u(θt0,0) = 0 at the true value θt0,0, substituting in 1
2
S∗(t0) + 1

2
for S∗(t0 − θt0,0)

alternatively gives

εi =
1

2
S∗(t0)

∫ t0

t0−θt0,0

dMi(s)

ny(s)
− 1

2

∫ t0−θt0,0

0

dMi(s)

ny(s)
.

Note that ε1,...,εn are independent random variables with mean 0 and variance σ2
t0

. This

follows from martingale theory where for filtration {Ft : t ≥ 0},

E(dMi(t)) = E{E(dMi(t)|Ft)} = 0.

The variance can then be estimated by σ̂2
t0

=
∑n

i=1 ε̂
2
i with

ε̂i =
1

2
Ŝ(t0)

∫ t0

t0−θ̂t0

dM̂i(s)

Y (s)
− 1

2

∫ t0−θ̂t0

0

dM̂i(s)

Y (s)
,

where

M̂i(t) = Ni(t)−
∫ t

0

Yi(s)dΛ̂(s),

and Λ̂(s) =
∫ t

0
Y −1(s)dN(s) is the Nelson-Aalen Estimator (Nelson, 1972; Aalen, 1978). By

applying the ordinary Central Limit Theorem, a one-sample test statistic û(θt0)
2/σ̂2

t0
follows

a χ2-distribution with 1 degree of freedom. A large value of the proposed statistic would
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reject the null hypothesis, H0 : θt0 = θt0,0. The test statistic has been developed based

on a martingale representation of the entire estimating equation, instead of relying on the

underlying event distribution. Finally, a 100(1-α)% confidence interval can be constructed

by inverting {
θt0 :

û(θt0)
2

σ̂2
t0

< χ2
1,1−α

}
. (3.3.2)

3.4 TWO SAMPLE TEST STATISTIC AND CONFIDENCE INTERVAL

In order to compare two groups, we could consider the ratio of the median lost lifespans at

t0. If we are interested in the case of an equal median lost lifespans, then the hypotheses can

be specified as H0: τt0 = 1 versus H1: τt0 6= 1, where τt0 = θ2,t0/θ1,t0 , with θk,t0 representing

the median lost lifespan for the kth group (k = 1, 2). The estimating function for group k

is defined as

ûk(θk,t0) = Ŝk(t0 − θk,t0)−
1

2
Ŝk(t0)− 1

2
,

so that under the null hypothesis of θ2,t0 = τt0 θ1,t0 we have the two-sample test statistic

Wt0(τt0 , θ1,t0) =
û2

1(θ1,t0)

σ̂2
1,t0

+
û2

2(τt0θ1,t0)

σ̂2
2,t0

, (3.4.1)

where σ̂2
k,t0

(k = 1, 2) is the variance estimate of ûk(θk,t0) for group k, and θ2,t0 is replaced in

the second term with τt0 θ1,t0 from the null hypothesis.

A well-known approach to eliminating the unknown nuisance parameter θ1,t0 from the

test statistic (3.4.1) would be to minimimize the statistic over the parameter θ1,t0 , resulting

in the minimum dispersion statistic (Basawa and Koul, 1988). For any given time t0, under

the null hypothesis of H0 : τt0 = τt0,0 it can be shown (Jeong et al., 2008) that

Qt0(τt0,0) = inf
θ1,t0

Wt0(τt0,0, θ1,t0) (3.4.2)

follows asymptotically a χ2
1-distribution. Specifically, for group k (= 1, 2), let nk denote the

sample size and θ̂k denote the estimator of the median residual lifetime, θk0, at time t. For

n = n1+n2, nk/n→ pk ∈ (0, 1) as n→∞. Suppose that t+θk0 < ξ = sup{t : S(t)G(t) > 0}.

12



Following similar arguments as in the Appendix of Su and Wei (Su and Wei, 1993), we have

Ŝ1(t− θ10)− 1

2
Ŝ1(t)− 1

2
= f1(t− θ10)(θ10 − θ̂1) + op(n

−1/2) (3.4.3)

using a Taylor series expansion, where fk(·) is the probability density function of Sk(·). Let

τ0 = θ20/θ10 and τ̂ = θ̂2/θ̂1. Then, similarly for group 2,

Ŝ2(t− θ20)− 1

2
Ŝ2(t)− 1

2
= f2(t− θ20)(θ20 − θ̂2) + op(n

−1/2)

= f2(t− θ20){(θ10 − θ̂1)(τ0 − τ̂) + θ10(τ0 − τ̂) + τ0(θ10 − θ̂1)}+ op(n
−1/2).

By the consistency of θ̂k, (θ10 − θ̂1)(τ0 − τ̂) = Op(n
−1), so that

Ŝ2(t− θ20)− 1

2
Ŝ2(t)− 1

2
= f2(t− θ20){θ10(τ0 − τ̂) + τ0(θ10 − θ̂1)}+ op(n

−1/2). (3.4.4)

From 3.4.3 and 3.4.4, we have Wt(τ0, θ10) = Vt(τ0, θ10) + op(n
−1), where

Vt(τ0, θ10) = (τ0 − τ̂ , θ10 − θ̂1)Γ′t

 σ2
1(θ10) 0

0 σ2
2(θ20)

Γt

 τ0 − τ̂

θ10 − θ̂1


and

Γt =

 0 f1(t+ θ10)

θ10f2(t+ θ20) τ0f2(t+ θ20)

 .

Therefore, the minimum of Wt(τ0, θ1) with respect to θ1 is asymptotically equivalent to

infθ1 Vt(τ0, θ1), which is (τ0− τ̂)2/var(τ̂) and is asymptotically distributed as χ2
1 by the delta-

method. Thus, we reject the null hypothesis with type 1 error probability of α if Qt0(τt0,0)

> χ2
1,1−α. An important advantage of using this type of statistic is that there is no need

for estimating the underlying probability density function of event times under censoring to

make inference about the ratio of the two median lost lifespans. From (3.4.2), a 100(1-α)%

confidence interval for τt0 can be obtained from

{τt0 : Qt0(τt0) < χ2
1,1−α}. (3.4.5)

Note that to achieve a confidence interval from (3.4.2), the statistic Wt0(τt0 , θ1,t0) first needs

to be minimized over θ1,t0 for each fixed value of τt0 , and then the values of τt0 corresponding

to the range where the value of χ2
1,1−α exceeds the minimum dispersion statistic Qt0(τt0,0)

will form the desired confidence interval.

13



3.4.1 Extension to K-Sample Case

In this section, the proposed two-sample statistic is extended to K samples for comparisons

among multiple groups. We are interested in testing the null hypothesis of H0 : θ2
θ1

= θ3
θ1

=

... = θk
θ1

= 1, the equality of the median lost lifespans from K − 1 groups (θ2, θ3, ... ,

θK) being compared simultaneously to one from a reference group (θ1). The alternative

hypothesis would then be H1: at least one of the median lost lifespans is different from the

reference group. This would be analogous to a regression model including one covariate with

K categories that requires creating K−1 dummy variables where each pairwise comparison is

performed relative to the reference group. Specifically, let us consider a log-linear regression

model in the median lost lifespan at time t0,

med{log(t0 − Ti)|Ti ≤ t0, x1i} = β
(0)
t0 + β

(1)
t0 x1i, (3.4.6)

where x1i is a binary covariate, say, 0 for control group and 1 for treatment group. Because

the natural logarithm is a monotone transformation and by the invariance property of the

median with respect to monotone transformations, the model (3.4.6) is equivalent to

med(t0 − Ti|Ti ≤ t0, x1i) = exp(β
(0)
t0 + β

(1)
t0 x1i). (3.4.7)

Here θ0 = exp(β
(0)
t0 ) and θ1 = exp(β

(0)
t0 + β

(1)
t0 ) can be interpreted as the median lost lifespans

for the control and treatment groups at time t0, respectively, so that the slope parameter

β
(1)
t0 can be interpreted as the logarithm of the ratio of the two median lost lifespans at time

point t0. Therefore testing the null hypothesis of H0 : β
(1)
t0 = 0 would be equivalent to testing

H0 : θ1/θ0 = 1. If x1i has K categories, then K − 1 dummy variables need to be created and

each summary variable compares the indicated category to the reference group.

Therefore under the null hypothesis of H0 : θ2
θ1

= θ3
θ1

= ... = θk
θ1

= τt0,0 in general, we

propose a nonparametric K-sample test statistic

Wt0(τt0,0, θ1,t0) =
û2

1(θ1,t0)

σ̂2
1,t0

+
K∑
k=2

û2
k(τt0,0θ1,t0)

σ̂2
k,t0

. (3.4.8)

Again, for any given time t0 it can be shown (Jeong et al., 2008) that

Qt0(τt0,0) = inf
θ1,t0

Wt0(τt0,0, θ1,t0) (3.4.9)
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asymptotically follows a χ2-distribution with K − 1 degrees of freedom. We reject the null

hypothesis with type 1 error probability of α if Qt0(τt0,0) ≥ χ2
K−1,1−α.

3.5 SIMULATION STUDIES

3.5.1 Type I Errors

First a simulation study was performed to assess the proposed two-sample test statistic

under the null hypothesis H0 : τt0 = 1, or equal median lost lifespans. Empirical coverage

probabilities at the significance level of 5% and the median lengths of 95% confidence intervals

for the ratio (τt0) of two median lost lifespans were considered. The empirical coverage

probability is how often the estimated confidence intervals from the two-sample test statistic

include the null value of the lost lifespan ratio. Event times were simulated from the Weibull

distribution with survival function

S(t) = exp{−(ρt)η},

where ρ and η are the scale and shape parameters set equal to .2 and 2, respectively. Specif-

ically, event times were generated through the probability integral transformation,

Ti =
1

ρ
(− log(1− Vi))

1
η ,

where Vi is a uniform random variable over the interval (a, b), with a and b determining

the desired censoring proportion. For example, to generate samples with 10% censoring

proportion, a and b were set to 4 and 15, respectively. One thousand (1,000) samples were

simulated with 4 different scenarios of censoring proportions (0%, 10%, 20%, 30%) and 3

different sample sizes (n = 50, 100, 200) at 4 different time points (t0 = 5, 6, 7, 8). The

results are displayed in Table 3.5.1.
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Table 3.5.1: Empirical 95% coverage probabilities and median lengths of empirical 95% con-

fidence intervals of the two-sample test statistic for comparing the median lost lifespans

Censoring Proportion

t0 Obs. 0%(ML) 10%(ML) 20%(ML) 30%(ML)

5 50 0.969(1.18) 0.971(1.20) 0.972(1.23) 0.980(1.29)

100 0.971(0.79) 0.970(0.79) 0.970(0.82) 0.977(0.85)

200 0.969(0.52) 0.968(0.53) 0.969(0.55) 0.969(0.58)

6 50 0.969(0.90) 0.968(0.92) 0.974(0.96) 0.975(1.02)

100 0.969(0.64) 0.971(0.64) 0.977(0.66) 0.978(0.70)

200 0.969(0.43) 0.968(0.43) 0.971(0.45) 0.972(0.48)

7 50 0.974(0.74) 0.971(0.75) 0.978(0.79) 0.984(0.82)

100 0.972(0.51) 0.972(0.51) 0.973(0.54) 0.973(0.58)

200 0.962(0.35) 0.960(0.35) 0.971(0.37) 0.972(0.39)

8 50 0.970(0.60) 0.974(0.62) 0.977(0.65) 0.969(0.68)

100 0.972(0.42) 0.969(0.42) 0.967(0.45) 0.972(0.47)

200 0.964(0.29) 0.957(0.29) 0.964(0.31) 0.967(0.32)
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The coverage probabilities increase slightly as the censoring proportion increases, but

no consistent pattern exists as t0 changes. Although coverage probabilities often decrease

towards 95% as sample size increases, they generally remain conservative. The median

lengths of empirical 95% confidence intervals become narrower as sample size increases and

as t0 increases. The latter phenomenon is due to the fact that more lost lifespan observations

are included in the analysis as t0 increases.

Additionally, a simulation study was performed to assess the proposed K-sample test

statistic to test the null hypothesis H0 : θ2
θ1

= θ3
θ1

= 1, or to compare the median lost

lifespans among 3 groups. Empirical coverage probabilities at the significance level of 5%

and the median lengths of 95% confidence intervals are summarized in Table 3.5.2, where

the observations represent the sample size in each of the three groups.

Similarly to the 2-sample case, coverage probabilities generally decrease towards 95%

as sample size increases, but they remain conservative. Median lengths of 95% confidence

intervals become narrower as sample size increases and t0 increases. Compared to the two-

sample case, the median lengths are generally narrower in the three-sample simulations, due

to the increase in total sample size with the addition of the third group.
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Table 3.5.2: Empirical 95% coverage probabilities and median lengths of empirical 95% con-

fidence intervals of the three-sample test statistic for comparing the median lost lifespans

Censoring Proportion

t0 Obs. 0%(ML) 10%(ML) 20%(ML) 30%(ML)

5 50 0.973(0.87) 0.975(0.88) 0.976(0.93) 0.972(0.97)

100 0.979(0.59) 0.976(0.59) 0.978(0.61) 0.976(0.64)

200 0.964(0.40) 0.964(0.40) 0.965(0.42) 0.968(0.44)

6 50 0.973(0.67) 0.972(0.68) 0.973(0.73) 0.973(0.76)

100 0.967(0.47) 0.963(0.47) 0.968(0.50) 0.975(0.53)

200 0.966(0.32) 0.969(0.33) 0.969(0.35) 0.968(0.36)

7 50 0.973(0.55) 0.966(0.55) 0.974(0.58) 0.976(0.62)

100 0.967(0.39) 0.966(0.39) 0.969(0.41) 0.967(0.43)

200 0.969(0.26) 0.968(0.27) 0.965(0.28) 0.964(0.30)

8 50 0.997(0.45) 0.974(0.46) 0.972(0.48) 0.986(0.52)

100 0.962(0.32) 0.959(0.32) 0.968(0.34) 0.965(0.36)

200 0.968(0.21) 0.967(0.22) 0.966(0.23) 0.967(0.24)
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3.5.2 Power Analysis

The parametric proportional hazards model (Cox, 1972), with a single covariate, was used to

perform power analyses. Event times for the control and intervention groups were generated

as previously described, but β was introduced to simulate differences in survival distributions

between the two groups. Thus, given a binary covariate z as an indicator for the intervention

group (z = 0 for control; z = 1 for intervention), the survival function was specified as

S(t; z) = exp{−(ρt)η exp(βz)},

where ρ and η are the Weibull parameters, which were set equal to .2 and 2, and β is a

regression coefficient associated with z. The median lost lifespan function under this model

is given by

θt0(z) = t0 −
1

ρ
[exp(−βz){log(2)− log(1 + exp(−(ρt0)η exp(βz))}]η. (3.5.1)

Table 3.5.3 shows the values of θt0(z) at different combinations of t0 and β obtained from

(3.5.1). Various scenarios were considered, with β ranging from 0 to -3.0. Under the null

hypothesis of H0 : β = 0, the median lost lifespan increases as t0 increases, as expected.

On the other hand, as β decreases, the distribution of event times shifts to the right in the

intervention group, and hence the median lost lifespan decreases. Thus, the ratio of the

median lost lifespans between the intervention group and the control group decreases as β

decreases. For example, at t0 = 5, the median lost lifespans corresponding to β = 0, -0.9,

-1.2, and -1.5 are 1.92, 1.65, 1.60, and 1.56, respectively. Therefore, the true values of the lost

lifespan ratio corresponding to β = -0.9, -1.2, and -1.5 are 0.86, 0.83, and 0.81, respectively.
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Table 3.5.3: True median lost lifespans at different combinations of β and t0

β

t0 0 -0.5 -0.9 -1.2 -1.5 -2.0 -3.0

5 1.92 1.74 1.65 1.60 1.56 1.52 1.49

6 2.53 2.23 2.08 1.99 1.93 1.86 1.80

7 3.25 2.80 2.56 2.42 2.33 2.22 2.11

8 4.07 3.46 3.10 2.90 2.76 2.59 2.43

9 4.95 4.19 3.71 3.43 3.23 2.99 2.77

10 5.89 4.99 4.38 4.02 3.74 3.42 3.11

11 6.86 5.86 5.12 4.66 4.30 3.88 3.46

12 7.85 6.77 5.92 5.36 4.91 4.36 3.82

20



The results of the power analyses under 3 different sample sizes (n = 50, 100, 200) and

4 different time points (t0 = 5, 6, 7, 8) are displayed for 10% censoring in Table 3.5.4, 20%

censoring in Table 3.5.5, and 30% censoring in Table 3.5.6. Power generally increased as

β decreased, indicating higher power to detect a larger difference between the control and

intervention groups. Additionally, power and hence efficiency generally increased with larger

t0, as more information was gained by shifting t0 to the right. Increasing the censoring

proportion, as seen in the different tables, slightly reduced the power possibly due to a

decrease in the number of events. Finally, increasing sample size was obviously associated

with higher power.
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Table 3.5.4: Empirical powers of the two-sample test statistic for comparing the median lost

lifespans at a 5% significance level with 10% censoring

t0 n β = -0.9 β = -1.2 β = -1.5

5 50 0.031 0.046 0.043

100 0.068 0.065 0.066

200 0.111 0.112 0.120

500 0.268 0.306 0.306

6 50 0.058 0.071 0.081

100 0.124 0.157 0.153

200 0.256 0.304 0.320

500 0.602 0.682 0.697

7 50 0.118 0.158 0.150

100 0.253 0.288 0.313

200 0.507 0.594 0.646

500 0.903 0.951 0.954

8 50 0.209 0.265 0.295

100 0.434 0.546 0.576

200 0.771 0.870 0.892

500 0.990 0.994 1.000
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Table 3.5.5: Empirical powers of the two-sample test statistic for comparing the median lost

lifespans at a 5% significance level with 20% censoring

t0 n β = -0.9 β = -1.2 β = -1.5

5 50 0.030 0.041 0.041

100 0.064 0.064 0.066

200 0.104 0.114 0.083

500 0.260 0.310 0.117

6 50 0.063 0.063 0.085

100 0.119 0.149 0.145

200 0.253 0.288 0.304

500 0.582 0.667 0.686

7 50 0.112 0.149 0.153

100 0.245 0.284 0.315

200 0.491 0.578 0.603

500 0.902 0.941 0.952

8 50 0.207 0.264 0.302

100 0.419 0.539 0.547

200 0.745 0.856 0.887

500 0.990 0.996 1.000
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Table 3.5.6: Empirical powers of the two-sample test statistic for comparing the median lost

lifespans at a 5% significance level with 30% censoring

t0 n β = -0.9 β = -1.2 β = -1.5

5 50 0.029 0.044 0.042

100 0.069 0.065 0.055

200 0.097 0.110 0.114

500 0.251 0.292 0.294

6 50 0.059 0.060 0.072

100 0.113 0.139 0.143

200 0.225 0.283 0.268

500 0.542 0.649 0.680

7 50 0.095 0.141 0.149

100 0.217 0.262 0.309

200 0.446 0.566 0.596

500 0.870 0.932 0.943

8 50 0.194 0.269 0.294

100 0.381 0.495 0.534

200 0.697 0.834 0.872

500 0.983 0.993 0.999
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3.6 APPLICATION TO NSABP B-04 DATA

In this section, we apply the proposed method to a real data set from a phase III clinical

study on breast cancer, conducted by the National Surgical Adjuvant Breast and Bowel

Project (NSABP). The data set, referred to as the NSABP B-04 data, includes 1,665 women

with over 25 years of follow-up (Fisher et al., 2002). The original study was designed to

compare a radical mastectomy (RM) with a less intensive total mastectomy (TM). As shown

in Figure 3.6, the 1,079 node-negative patients were randomly assigned to either a radical

mastectomy, total mastectomy, or total mastectomy with regional irradiation (TMR). The

586 node-positive patients were randomly assigned to either a radical mastectomy or total

mastectomy with regional irradiation.

Operable Breast Cancer

(n=1665)

Node-Negative

(n=1079)

Node-Positive

(n=586)

Radical 

Mast.

(n=292)

Radical 

Mast.

(n=362)

Total 

Mast.

(n=352)

Total 

Mast.

&

Radiation

(n=365)

Total 

Mast.

&

Radiation

(n=294)

Figure 3.6.1: NSABP B-04 Study Design 
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In the original study, the data were analyzed with Kaplan Meier curves and Cox propor-

tional hazards models (Fisher et al., 2002). End points considered were disease-free survival,

relapse-free survival, distant-disease-free survival, and overall survival. Follow-up time began

from the date of mastectomy. The following two figures replicate the Kaplan-Meier curves

for overall survival by treatment for the node-negative group (Figure 3.6) and node-positive

group (Figure 3.6), adapted from Fisher et al. (2002) with full follow-up time. No significant

differences among treatments were found within either nodal status group based on log-rank

tests (Fisher et al., 2002).
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Radical Mast.
Total Mast. 
Total Mast. & Radiation

Figure 3.6.2: Kaplan-Meier curves for overall survival by treatment in node-negative 
patients
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Radical Mast.
Total Mast. & Radiation

Figure 3.6.3: Kaplan-Meier curves for overall survival by treatment in node-positive patients

Additionally, hazard ratios from Cox proportional-hazards models further indicated no 

significant differences among groups of node-negative women or node-positive women when 

considering overall survival, disease-free survival, relapse-free survival, or distant-disease-free 

survival (Table 3.6.1). The overall conclusions were no significant advantage from a radical 

mastectomy, consistent with previous results. There was also no significant improvement in 

survival from radiation therapy after total mastectomy among node-negative women (Fisher 

et al., 2002).
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Table 3.6.1: Hazard Ratios (HR) comparing treatment groups by nodal status and endpoint

of interest from Fisher et al. (2002)

Endpoint Nodal Status Comparison HR 95% CI P-Value

Overall Negative RM vs TMR 1.08 (0.91, 1.28) 0.38

RM vs TM 1.03 (0.87, 1.23) 0.72

TM vs TMR 0.96 (0.81, 1.13) 0.60

Positive RM vs TMR 1.06 (0.89, 1.27) 0.49

Distant-Disease-free Negative RM vs TMR 1.08 (0.88, 1.34) 0.44

RM vs TM 1.10 (0.89, 1.35) 0.39

TM vs TMR 1.02 (0.83, 1.25) 0.85

Positive RM vs TMR 1.07 (0.87, 1.32) 0.51

Disease-free Negative RM vs TMR 1.06 (0.90, 1.25) 0.49

RM vs TM 1.07 (0.91, 1.27) 0.39

TM vs TMR 1.02 (0.87, 1.21) 0.78

Positive RM vs TMR 1.12 (0.94, 1.33) 0.20

Relapse-free Negative RM vs TMR 0.96 (0.76, 1.21) 0.74

RM vs TM 1.14 (0.91, 1.42) 0.27

TM vs TMR 1.18 (0.94, 1.48) 0.15

Positive RM vs TMR 1.09 (0.89, 1.35) 0.40
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Thus, to illustrate the use of our proposed method for identifying differences in lost

lifespans between groups, we will focus here on comparing by nodal status, an important

prognostic factor. First, Kaplan-Meier curves were replicated for overall survival by nodal

status, similar to analyses in the original study (Fisher et al., 2002), but with full follow-up

time. Figure 3.6 illustrates the results by nodal status with corresponding 95% confidence

intervals. Survival probability is shown to be consistently higher in the node-negative group

compared to node-positive group.

Node-Negative
Node-Positive 

Figure 3.6.4: Kaplan-Meier curves for overall survival by nodal status
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Then, the same data were analyzed with our proposed method to compare lost lifespans

by nodal status. Specifically, lost lifespans were estimated in each nodal status group using

the proposed nonparametric estimator (3.3.1). The two-sample test statistic (3.4.1) and

associated confidence intervals (3.4.2) were used to compare lost-lifespans between node-

negative and node-positive groups. Time-to-event was defined as time to any death, so that

the lost lifespan was estimated as the years lost in each nodal group. Here the two-sample

test statistic was evaluated at 5 different time points (t0 = 13, 15, 20, 24, and 26 years

post mastectomy) and for three different percentiles (25th, 50th, and 75th). Regardless of

the time points specified, the median lost lifespan was significantly different between the two

groups. The median lost lifespan was consistently longer in the node-postive group indicating

greater life loss, as shown in Table 3.6.2. The ratio of median lost lifespans can be interpreted

as a percent increase or deficit in life loss between groups. For example, at 13 years post

treatment, there is an expected 14% increase in median life loss for the node-positive group

compared to the node-negative group. The test statistic was also applied to the 25th and

75th lost lifespan percentiles to assess differences for the ‘better’ and ‘worse’ case scenarios.

This was accomplished by replacing λ in (3.2.2) with 1/4 and 3/4, respectively. The 25th lost

lifespan percentile represents patients with longer survival, as can be seen by the smaller lost

lifespans. The ratios between node-positive and node-negative groups are larger compared

to those of the 50th percentile, indicating that among patients with longer survival, the

difference in lost lifespan between two nodal status groups is greater. Conversely, the 75th

lost lifespan percentile represents patients with shorter survival, which can be seen by the

larger lost lifespans. The smaller ratios indicate that among patients with shorter survival,

the difference in lost lifespan between two nodal status groups is smaller, although still

statistically significant.
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Table 3.6.2: Estimated median (λ = 0.5), 25th (λ = 0.25) and 75th (λ = 0.75) percentile lost

lifespans in node-negative and node-positive groups, with ratios and 95% confidence intervals

λ t0 Node-Negative Node-Postive Ratio 95% CI

0.5 13 7.91 9.02 1.14 (1.04, 1.25)

15 9.49 10.68 1.12 (1.05, 1.21)

20 13.20 14.98 1.13 (1.06, 1.21)

24 16.04 18.45 1.15 (1.07, 1.25)

26 17.40 20.27 1.16 (1.09, 1.25)

0.25 13 4.68 5.96 1.27 (1.13, 1.40)

15 5.55 7.48 1.35 (1.19, 1.51)

20 7.60 10.63 1.40 (1.21, 1.59)

24 8.90 13.21 1.48 (1.29, 1.72)

26 9.26 15.06 1.63 (1.34, 1.80)

0.75 13 10.38 11.11 1.07 (1.03, 1.14)

15 12.13 13.00 1.07 (1.03, 1.12)

20 16.63 17.88 1.08 (1.03, 1.11)

24 20.30 21.75 1.07 (1.04, 1.10)

26 22.11 23.71 1.07 (1.04, 1.10)
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The proposed method was then compared to the existing methods based on the median

residual life and hazard functions. Table 3.6.3 shows the median residual lifetimes in node-

negative and node-positive groups at given time points t0 together with their ratios and

associated 95% confidence intervals from the same data set used in Jeong et al. (2008). At

each given time point, the median residual lifetime would be the median of the mortality

distribution of the surviving population beyond t0 in node-negative and node-positive pa-

tients, respectively. The median residual life times in node-positive patients are significantly

shorter than ones in node-negative patients up to year 8. The limitation of this summary

measure, however, would be that it can be estimated only at time points where the me-

dian of the residual life distribution exists. More importantly, this summary measure would

produce unstable estimates when there is heavy censoring at the tail of the distribution.

This explains, in Table 3.6.3, why the ratios of the median residual lifetimes were able to be

compared only up to the first 12 years.

Table 3.6.3 also displays the hazard ratio estimates and their 95% confidence intervals

from the Cox’s proportional hazards model among survivors beyond t0. The event times

were truncated at t0 so new event times were defined as T − t0. The hazard ratio in this

case can be interpreted conditionally as the ratio, assumed constant over time, of the two

instantaneous failure rates given that a patient survived up to the current time point in the

distribution of survivors beyond t0, so that its interpretation is not always straightforward to

the laymen. The significance of the hazard ratios also holds up to year 8, which is consistent

with ones from the median residual life analysis in this case.
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Table 3.6.3: Estimated median residual lifetimes in node-negative and node-positive groups,

the ratios, hazard ratios, and 95% confidence intervals (NSABP B-04 data)

Median Residual Lifetime Hazard Ratio (95% CI)

t0 Node-Negative Node-Positive Ratio (95% CI)

0 12.46 6.87 0.55 (0.49, 0.63) 1.53 (1.36, 1.71)

2 12.44 6.93 0.56 (0.47, 0.70) 1.41 (1.24, 1.60)

4 13.05 8.24 0.63 (0.49, 0.81) 1.36 (1.18, 1.57)

6 13.40 8.75 0.65 (0.54, 0.81) 1.40 (1.19, 1.63)

8 12.91 10.19 0.79 (0.66, 0.93) 1.22 (1.01, 1.46)

10 12.48 9.66 0.77 (0.62, 1.00) 1.19 (0.97, 1.46)

12 11.85 9.66 0.82 (0.63, 1.08) 1.14 (0.91, 1.44)

34



The hazard ratios were also estimated at the time points corresponding to the lost lifespan

analysis in Table 3.6.2. The events that occurred after t0 were administratively censored at

that time, so that the hazard function summarizes the information prior to each fixed time

point t0 = 13, 15, 20, 24, and 26 in terms of the conditional instantaneous failure rate. As

shown in Table 3.6.4, the hazard ratios range from 1.54 (95% CI; 1.38-1.73) at t0 = 26 to

1.67 (95% CI; 1.47-1.90) at t0 = 13, all indicating that there were significantly higher hazard

rates on average in the node-positive population. The confidence intervals generally become

narrower as t0 increases as in the case of the lost lifespan analysis, because more information

is gained as time progresses. Again, grasping the concept of the hazard function as the

conditional instantaneous failure rate could be challenging to non-statisticians.

Table 3.6.4: Hazard ratio estimates from the proportional hazards model corresponding to

life loss time points

t0 Hazard Ratio 95% CI

13 1.67 (1.47, 1.90)

15 1.65 (1.46, 1.87)

20 1.62 (1.44, 1.82)

24 1.57 (1.40, 1.76)

26 1.54 (1.38, 1.73)
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3.7 DISCUSSION ON NONPARAMETRIC INFERENCE

In this paper, a new summary measure for time-to-event outcome, lost lifespan, was intro-

duced and an inference procedure was proposed to estimate and compare the quantile lost

lifespans. In contrast to the traditional residual life analysis, the proposed method is less

affected by heavy censoring, gaining higher efficiency, toward the end of the study period.

The proposed method is nonparametric in nature yet does not require estimation of the

density function of the underlying event distribution to evaluate the variance of the quantile

estimator. The clinical interpretation of the lost lifespan as time lost due to occurrence of

an event of interest is straightforward.

A practical question may arise regarding how to select the fixed time points where the

statistical analyses are performed. Because the proposed method is based on the quantiles of

the distribution of the lost lifespan, the minimum time point for analysis should be selected,

so that the quantiles of interest exist. Here the quantile of interest might be determined based

on an investigator’s study goal. For example, if the investigator is interested in patients with

poor prognosis, the higher quantile of the lost lifespan distribution would be appropriate and

vice versa.

A statistical aspect of the proposed method can be directly compared with an existing

method closely related to the hazard function such as the log-rank test. The log-rank test

may be viewed as a method to assess a group effect on the hazard function, because it is

well-known that the score test statistic from the partial likelihood under the proportional

hazards model is equivalent to the log-rank test when there are no ties. Therefore the

log-rank test is known to be optimal when the proportional hazards assumption holds, but

the proposed method does not need such assumption. Rather, for the proposed test to be

optimal, an assumption of a linear covariate effect on the quantile lost lifespan on a log-scale

in a semiparametric setting might be needed, which might also merit further investigation.

The main advantage of using the lost lifespan would be its straightforward interpretation

compared to an approach using the hazard function, as described in the last two paragraphs

at the end of Section 3.6. In this era of patient-centered outcomes research, this might be

very helpful in practice for the stakeholders such as physicians and patients to understand
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potential benefits and harms of an experimental drug in clinical studies. In addition to this

advantage of easy interpretation, the proposed method based on the lost lifespan would allow

for the routine analysis of time-to-event data by using the cumulative information prior to

a given time point, unlike the residual lifetime analysis.
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4.0 REGRESSION ON QUANTILE LOST LIFESPAN

4.1 INTRODUCTION

In the following chapter, we propose a novel quantile regression model on the quantiles of

the distribution of the lost lifespan under right censoring. The consistency and asymptotic

normality of the regression parameters are established. To avoid estimation of the probabil-

ity density function of the lost lifespan distribution under censoring, the estimating equation

for the quantile lost lifespan is directly used to construct the test statistics for the regression

parameters. To test a subset of the regression parameters, the minimum dispersion statistic

is adopted to eliminate the nuisance parameters not being tested. Simulation results are pre-

sented to validate the finite sample properties of the proposed estimators and test statistics.

The proposed method is illustrated with a real dataset from a clinical trial on cancer.

4.2 QUANTILE LOST LIFESPAN FUNCTION

The lost lifespan, as defined in the previous chapter, considers the time lost due to an event

occurring prior to a specified timepoint, t0. Recall the definition of the λ-percentile of the

lost lifespan distribution as

θλ|t0 = λ-percentile{t0 − Ti|Ti ≤ t0}.

Then θλ|t0 satisfies P (t0 − Ti ≤ θλ|t0|Ti ≤ t0) = λ, or

P (Ti ≥ t0 − θλ|t0)− P (Ti ≥ t0)

1− P (Ti ≥ t0)
= λ,
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which can be rewritten in terms of the survival function as

S(t0 − θλ|t0)− S(t0)

1− S(t0)
= λ.

Here given observed data and λ, θλ|t0 can be nonparametrically estimated after replacing S(t)

with Ŝ(t). Throughout the remainder, Yi will represent the observed time as the minimum of

Ti and censoring time Ci, and ∆i will be an event indicator (∆i = 1 if Yi = Ti). The censoring

distribution will be denoted by G(t) = P (C ≥ t) and will be estimated by the Kaplan-Meier

estimator denoted Ĝ(t) (Kaplan and Meier, 1958). We will assume independence between

event times and censoring times. In the following section, the concept of percentile lost

lifespan (θλ|t0) will be extended to a regression setting.

4.3 REGRESSION MODEL

4.3.1 Formulation of Estimating Equation

We propose the following log-linear regression model on the λ-percentile of a distribution of

lost lifespans at t0:

λ-percentile{ln(t0 − Ti)|Ti ≤ t0, Zi} = β′λ|t0Zi, (4.3.1)

where β′λ|t0 is a vector of the regression coefficients, (βλ|t0,0, βλ|t0,1, ..., βλ|t0,p)
′, and Zi is a

vector of covariates for the ith individual, (1, X1i, ..., Xpi). When censoring is not present,

the regression parameter can be estimated from minimizing the following absolute deviation

function:
n∑
i=1

| ln(t0 − Ti)− β′λ|t0Zi)| =

n∑
i=1

({ln(t0 − Ti)− β′λ|t0Zi} × I(ln(t0 − Ti)− β′λ|t0Zi > 0)− {ln(t0 − Ti)− β′λ|t0Zi}

×I(ln(t0 − Ti)− β′λ|t0Zi < 0)).
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The right side of the equation can be rewritten as

=
n∑
i=1

(2{ln(t0 − Ti)− β′Zi} × I{ln(t0 − Ti)− β′Zi ≥ 0} − {ln(t0 − Ti)− β′Zi})

and in terms of λ,

=

(
1

1− λ

) n∑
i=1

{ln(t0 − Ti)− β′Zi} × (I{ln(t0 − Ti)− β′Zi ≥ 0} − (1− λ)).

Differentiating with respect to β results in a general form of the estimating function for the

noncensored case as

−(
1

1− λ
)

n∑
i=1

Zi(τ − I(Ti > t0 − exp(β′λ|t0Zi))× I(Ti < t0),

where the indicator I(Ti < t0) has been added to ensure existence of the natural logarithm.

Assuming conditional independence of Ti and Ci given Zi, and independence of Ci from

covariates Zi, the following equation holds conditionally given Zi under right censoring,

E(I{ln(t0 − Yi)− β′λ|t0Zi < 0}|Zi) = P (ln(t0 − Yi)− β′λ|t0Zi < 0)

= P (Ti > t0 − exp(β′λ|t0Zi))× P (Ci > t0 − exp(β′λ|t0Zi)).

Since the λ-percentile lost lifespan function is defined under model (4.3.1) as

λ = P (t0 − Ti ≤ exp(β′λ|t0Zi)|Ti ≤ t0)

=
P (Ti ≥ t0 − exp(β′λ|t0Zi))− P (Ti ≥ t0)

1− P (Ti ≥ t0)
,

we have

P (Ti > t0 − exp(β′λ|t0Zi))× P (Ci > t0 − exp(β′λ|t0Zi))

=

(
P (Ti ≥ t0 − exp(β′λ|t0Zi))− P (Ti ≥ t0)

1− P (Ti ≥ t0)

)
× P (Ci > t0 − exp(β′λ|t0Zi))

= λ× P (Ci > t0 − exp(β′λ|t0Zi))

= λ×G(t0 − exp(β′λ|t0Zi)),
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leading to

E[I(ln(t0 − Yi)− β′λ|t0Zi < 0)] = λ×G(t0 − exp(β′λ|t0Zi))

assuming Yi < t0 to satisfy the natural logarithm. Therefore the regression parameter βλ|t0

can be estimated from the following equation under right censoring:

Sλ|t0(βλ|t0) =
n∑
i=1

Zi

[
I(ln(t0 − Yi)− β

′

λ|t0Zi < 0)

Ĝ(t0 − exp(β
′
λ|t0Zi))

− λ

]
× I(Yi < t0)

=
n∑
i=1

Zi

[
I(Yi > t0 − exp(β

′

λ|t0Zi))

Ĝ(t0 − exp(β
′
λ|t0Zi))

− λ

]
× I(Yi < t0) ≈ 0. (4.3.2)

A solution of the estimating equation (4.3.2) can be found by minimizing ||Sλ|t0(βλ|t0)||,

where || · || denotes the square root of the sum of squares. In the next section, we show that

the estimator from equation (4.3.2), β̂λ|t0 , is a consistent estimator for the true parameters,

β0
λ|t0 , under certain regularity conditions.

4.3.2 Consistency of Regression Parameter Estimates

We start by defining

S̃λ|t0,n(βλ|t0) =
n∑
i=1

Zi × [P (Ti ≥ t0 − exp(β′λ|t0Zi)|Zi)− λ].

When βλ|t0 is replaced with β0
λ|t0 , the true value in the interior of a bounded convex region

D, the above equation reduces to 0. We will denote Fi(·|Z) to be the cumulative distribution

function of log(t0 − Ti) + β0′
λ|t0Zi given covariate Zi, and its corresponding derivative will be

denoted by fi(·|Zi). Additionally, G(·|Zi) will denote the survival function of the censoring

distribution, such that the derivative of −G(·|Zi) will be g(·|Zi). Note, that both the deriva-

tives and vector Zi are uniformly bounded. Following Csorgo and Horvath (1983), we know

that for all ε > 0,

sup
s≤t̃
|Ĝ(s)−G(s)| = o(n−1/2+ε), a.s.

where t̃ is a constant satisfying P{log(t0 − Yi) ≤ t̃} > 0 and β′λ|t0Z ≤ t̃, with probability 1.

This can be used to show that for βλ|t0 ∈ D, a bounded convex region,
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Sλ|t0,n(βλ|t0)− S̃λ|t0,n(βλ|t0) =
n∑
i=1

Zi ×
[
I{Yi ≥ t0 − exp(β′t0Zi}
G{t0 − exp(β′t0Zi)}

−
P{Yi ≥ t0 − exp(β′t0Zi)}
G{t0 − exp(β′t0Zi)}

]

=
n∑
i=1

Zi ×
[

1

G{t0 − exp(β′t0Zi)}

]
× [I{Yi ≥ t0 − exp(β′t0Zi)} − P{Yi ≥ t0 − exp(β′t0Zi)}]

Because

sup
βλ|t0∈D

∣∣∣∣∣
n∑
i=1

G−1{t0 − exp(β′t0Zi)} × [I{Yi ≥ t0 − exp(β′t0Zi)} − P{Yi ≥ t0 − exp(β′t0Zi)}]

∣∣∣∣∣
= o(n1/2+ε)

it follows that

sup
βλ|t0∈D

∣∣∣∣∣∣n−1Sλ|t0,n(βλ|t0)− n−1S̃λ|t0,n(βλ|t0)
∣∣∣∣∣∣ = o(n−1/2+ε), a.s. (4.3.3)

Now let us define

An(βλ|t0) = − 1

n

n∑
i=1

fi{(βλ|t0 − β0
λ|t0)

′
Zi|Zi}ZiZ

′

i ,

where f(·|Z) is the conditional density of T given Z = z. Then, supposing E{ZZ ′f(0|Z)}

is positive definite implies An(βλ|t0) is nonpositive definite. Then, An(β0
λ|t0) converges to

−E(ZZ
′
f(0|Z)) with probability equal to 1, which is negative definite. Using Taylor series

expansion around β0
λ|t0 and letting β∗t0 be some point between β̂λ|t0 and β0

λ|t0 , we have

n−1{S̃λ|t0(β̂λ|t0)− S̃λ|t0(β0
λ|t0)} ≈ (β̂λ|t0 − β0

λ|t0)
′
An(β∗t0). (4.3.4)

From the definition of β̂λ|t0 , we know n−1Sλ|t0,n(β̂λ|t0) = 0, and so by (4.3.3) n−1S̃λ|t0,n(β̂λ|t0)

will converge to 0, almost surely, as n→∞. Together, with (4.3.4), this shows β̂λ|t0 → β0
λ|t0 ,

a.s. as n→∞.
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4.3.3 Test Statistic for Significance of Regression Parameters

Now, we construct global and local test statistics to test the regression coefficients under

specified null values. To avoid estimation of the probability density function of (t0−Ti)I(Ti <

t0)|Zi under censoring, an inference procedure directly based on the asymptotic distribution

of the estimating equation (4.3.2) is proposed. First for the global test, consider the null

hypothesis of H0 : βλ|t0 = βλ|t0,0.

Here, we establish asymptotic normality of n−
1
2Sλ|t0,n(β0

λ|t0), used to develop the test

statistic. We can begin by approximating the equation with a sum of independent zero-

mean random variables. Recall that

n−1/2Sλ|t0(β
0
λ|t0) = n−1/2

n∑
i=1

Zi ×

[
I{Yi ≥ t0 − exp(β0′

λ|t0Zi)}
Ĝ{t0 − exp(β0′

λ|t0Zi)}
− λ

]
,

where the right-hand side can be re-written as

= n−1/2

n∑
i=1

Zi ×

{[
I{Yi ≥ t0 − exp(β0′

λ|t0Zi)}
Ĝ{t0 − exp(β0′

λ|t0Zi)}

]
+

[
I{Yi ≥ t0 − exp(β0′

λ|t0Zi)}
G{t0 − exp(β0′

λ|t0Zi)}

]

−

[
I{Yi ≥ t0 − exp(β0′

λ|t0Zi)}
G{t0 − exp(β0′

λ|t0Zi)}

]
− λ

}

= n−1/2

n∑
i=1

Zi ×

{[
I{Yi ≥ t0 − exp(β0′

λ|t0Zi)}
G{t0 − exp(β0′

λ|t0Zi)}

]
− I{Yi ≥ t0 − exp(β0′

λ|t0Zi))}

×

[
Ĝ{t0 − exp(β0′

λ|t0Zi)} −G{t0 − exp(β0′
λ|t0Zi)}

G{t0 − exp(β0′
λ|t0Zi)} × Ĝ{t0 − exp(β0′

λ|t0Zi)}

]
− λ

}
. (4.3.5)

Let us define

Q1(s) = n−1

n∑
i=1

ZiI{t0 − exp(β0′
λ|t0Zi) ≤ min(s, Yi)}

such that the second term of (4.3.5) is asymptotically equivalent to,

−
∫ ∞
−∞

[
n−1/2{Ĝ(s)−G(s)}

G(s)2

]
dq1(s),
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where q1(s) = limn→∞Q1(·). The random process −n−1/2{Ĝ(s)−G(s)}/G(s) can be repre-

sented as a martingale integral, following arguments of Fleming and Harrington (Corollary

3.2.1, 1991),

∫ s

−∞

n−1/2
∑n

i=1{dI(Yi ≤ v,∆i = 0)− I(Yi ≥ v)dΛG(v)}
n−1

∑n
i=1 I(Yi ≥ v)

, (4.3.6)

where ΛG(·) represents the cumulative hazard function of the censoring distribution, and

h(v) is the limit of
∑n

i=1 I(Yi ≥ v)/n as n → ∞. Then, (4.3.6) is asymptotically equivalent

to ∫ s

−∞
h−1(v)n−1/2

n∑
i=1

[dI(Yi ≤ v,∆i = 0)− I(Yi ≥ v)dΛG(v)],

and so, the second term of (4.3.5) is asymptotically equivalent to

∫ ∞
−∞

G−1(s)

∫ s

−∞
h−1(v)n−1/2

n∑
i=1

[dI(Yi ≤ v,∆i = 0)− I(Yi ≥ v)dΛG(v)]dq1(s).

Finally, (4.3.5) is asymptotically equivalent to n−1/2
∑n

i=1 τλ|t0,i, where

τλ|t0,i = Zi ×

[
I{Yi ≥ t0 − exp(β0′

λ|t0Zi)}
G{t0 − exp(β0′

λ|t0Zi)}
− λ

]
+

∫ ∞
−∞

G−1(s)

∫ s

−∞
h−1(v)

×[dI{Yi ≤ v,∆i = 0} − I(Yi ≥ v)dΛG(v)]dq1(s).

Following the Multivariate Central Limit Theorem and because τλ|t0,i for i = 1, ..., n are inde-

pendent random vectors with mean 0, the distribution of n−1/2Sλ|t0(β
0
λ|t0) is asymptotically

normal with mean 0 and variance-covariance matrix Γλ|t0 = n−1
∑n

i=1 τλ|t0,iτ
′

λ|t0,i. Then a

consistent estimator of Γλ|t0 can be obtained by replacing β0
λ|t0 with β̂0

λ|t0 , G with Ĝ, h(s)

with
∑n

i=1 I(Yi ≥ s)/n, q1(s) with Q1(s), and dΛG(S) with [
∑n

i=1 I(Yi ≥ s)]−1d[
∑n

i=1 I(Yi ≤

s,∆i = 0)], which leads to our estimator Γ̂λ|t0 = n−1
∑n

i=1 τ̂λ|t0,iτ̂
′

λ|t0,i, where

τ̂λ|t0,i = Zi ×

[
I{Yi ≥ t0 − exp(β̂′Zi)}
Ĝ{t0 − exp(β̂′Zi)}

− λ

]
+

n∑
l=1

Zl

[
I{t0 − exp(β̂′Zi) ≤ Yl}
Ĝ{t0 − exp(β̂′Zi)}

]
×

{
(1−∆i)×

I{Yi ≤ t0 − exp(β̂′Zi)}∑n
m=1 I(Ym ≥ Yi)

−
n∑
j=1

(1−∆j)I(Yj ≤ min{t0 − exp(β̂′Zi), Yi})
{
∑n

m=1 I(Ym ≥ Yj)}2

}
.
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Now that we have established asymptotic normality of n−
1
2Sλ|t0,n(β0

λ|t0), we can derive a

test statistic for testing the null hypothesis as

n−1S
′

λ|t0,n(βλ|t0,0)Γ̂−1
λ|t0Sλ|t0,n(βλ|t0,0),

which approximately follows a χ2-distribution with p + 1 degrees of freedom. Recall that p

corresponds to the number of covariates in the model.

Next, we establish asymptotic normality of regression parameter estimates based on local

linearity for Sλ|t0,n(βλ|t0). From Section 4.3.2, An(βλ|t0) = 1
n

∂
∂βλ|t0

S̃λ|t0(βλ|t0) and An(β0
λ|t0)

converges to A = −E[ZZ
′
f(0|Z)] as n→∞, a nonsingular matrix. We will show that

Sλ|t0,n(βλ|t0) = Sλ|t0,n(β0
λ|t0) + nA(βλ|t0 − β0

λ|t0) + op(max(n1/2, n||βλ|t0 − β0
λ|t0||)) (4.3.7)

for all β in ||βλ|t0 − β0
λ|t0|| < cn−1/3, where c is any fixed constant. It will follow from (4.3.7)

that the distribution of (β̂λ|t0 − β0
λ|t0) is approximately normal with mean 0 and covariance

matrix Λ = n−1A−1Γ(A−1)′. Two important lemmas will be used to show the previous (Lai

and Ying, 1988).

Lemma 1. Let µ be a continuously differentiable function. Then

sup
|s−t|≤cn−1/3,s,t≤t̃

|µ{Ĝ(t)} − µ{G(t)} − µ{Ĝ(s)}+ µ{G(s)}| = op(n
−1/2)

Lemma 2. Let νi be a sequence of constants. Then, for a fixed t0

sup
||βλ|t0−β

0
λ|t0
||<cn−1/3

∣∣∣∣∣
n∑
i=1

νiI{Yi ≥ t0 − exp(β′λ|t0Zi)} −
n∑
i=1

νiI{Yi ≥ t0 − exp(β0′
λ|t0Zi)}−

n∑
i=1

νi[1− Fi{exp(β′λ|t0Zi)− exp(β0′
λ|t0Zi)}]G(t0 − exp(β′λ|t0Zi))+

n∑
i=1

νiλG{t0 − exp(β0′
λ|t0Zi)}

∣∣∣∣∣ = op(n
1/2)

In particular, we have

sup
||βλ|t0−β

0
λ|t0
||<cn−1/3

n∑
i=1

|I{Yi ≥ t0 − exp(β′λ|t0Zi)} − I{Yi ≥ t0 − exp(β0′
λ|t0Zi)}| = Op(n

2/3).

(4.3.8)
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Since βλ|t0 is in the n−1/3 -neighborhood of β0
λ|t0 , Lemma 1 gives

Sλ|t0,n(βλ|t0) = Sλ|t0,n(β0
λ|t0) +

n∑
i=1

[G{t0 − exp(β′λ|t0Zi)}
−1I{Yi ≥ t0 − exp(β′λ|t0Zi)} − λ]Zi

−
n∑
i=1

[G{t0 − exp(β0′
λ|t0Zi)}

−1I{Yi ≥ t0 − exp(β0′
λ|t0Zi)} − λ]Zi +

n∑
i=1

[Ĝ{t0 − exp(β0′

λ|t0Zi)}
−1

−G{t0−exp(β0′
λ|t0Zi)}

−1]×[I{Yi ≥ t0−exp(β′λ|t0Zi)}−I{Yi ≥ t0−exp(β0′
λ|t0Zi)}]Zi+op(n

1/2).

(4.3.9)

By using (4.3.8) and |Ĝ{t0 − exp(β0′
λ|t0Zi)}

−1 −G{t0 − exp(β0′
λ|t0Zi)}

−1| = op(n
−1/2+ε) for all

ε > 0, the fourth term of the right-hand side of (4.3.9) is op(n
1/2). Furthermore, by Lemma

2, it can be shown that

n∑
i=1

[G{t0 − exp(β′λ|t0Zi)}
−1I{Yi ≥ t0 − exp(β′λ|t0Zi)} − λ]Zi

−
n∑
i=1

[G{t0 − exp(β0′
λ|t0Zi)}

−1I{Yi ≥ t0 − exp(β0′
λ|t0Zi)} − λ]Zi

=
n∑
i=1

[G{t0 − exp(β′λ|t0Zi)}
−1P{Yi ≥ t0 − exp(β′λ|t0Zi)|Zi} − λ]Zi + op(n

1/2),

because

G{t0 − exp(β0′
λ|t0Zi)}

−1P{Yi ≥ t0 − exp(β0′
λ|t0Zi)|Zi} − λ = 0.

This and (4.3.9) imply that

Sλ|t0,n(βλ|t0) = Sλ|t0,n(β0
λ|t0) + S̃λ|t0,n(βλ|t0) + op(n

1/2) (4.3.10)

Thus local linearity in (4.3.7) follows by taking Taylor’s expansion of S̃λ|t0,n(βλ|t0) in (4.3.10)

at β0
λ|t0 , i.e.

n−1{S̃λ|t0,n(βλ|t0)− S̃λ|t0,n(β0
λ|t0)} ≈ (βλ|t0 − β0

λ|t0)
′
A.
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4.3.4 Partitioning Regression Coefficients

For the local test, suppose we are now interested in testing a subset of the regression pa-

rameters explicitly, say H0 : β
(1)
λ|t0 = β

(1)
λ|t0,0, from a partition of the regression coefficients

β
′

λ|t0 = (β
(1)
λ|t0 , β

(2)
λ|t0), where β

(1)
λ|t0 is a vector with r × 1 elements. The regression parameters

β
(2)
λ|t0 would be still involved in the test statistic, but not specified under the null hypothe-

sis, so that they need to be treated as nuisance parameters. One way of eliminating those

nuisance parameters would be to minimize the test statistic over them (Basawa and Koul,

1988). Therefore, we have the minimum test statistic for the local test as

V (β
(1)
λ|t0) = min

β
(2)
λ|t0

)

{n−1S
′

t0,n
((β

(1)′
λ|t0 , β

(2)′
λ|t0))Γ̂

−1
λ|t0St0,n((β

(1)′
λ|t0 , β

(2)′
λ|t0))} (4.3.11)

Following arguments in Wei et al. (1990) and Ying et al. (1995), this statistic would follow an

asymptotic χ2-distribution with r degrees of freedom. We can further obtain a 100×(1−α)%

confidence interval for β
(1)
λ|t0 by inverting the minimum dispersion statistic V (β

(1)
λ|t0) such that

{β(1)
λ|t0 : V (β

(1)
λ|t0) < χ2

r,1−α}. (4.3.12)

4.4 SIMULATION STUDIES

4.4.1 Empirical Estimates

Several simulation studies were performed to assess the proposed estimators and test statis-

tics with the finite samples. To generate data, we assumed a parametric proportional hazards

model (Cox, 1972) with a Weibull distribution as the baseline distribution and one group

indicator as a covariate. Thus, the survival function is specified as

S(t) = exp(−(ρt)η exp(βZi)), (4.4.1)

where ρ and η are the the Weibull parameters set to 0.2 and 2, respectfully, and β is the

regression parameter associated with the group indicator Zi (Zi = 0 for control and Zi = 1 for
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an intervention, or treatment). By using the probability integral transformation, potential

failure times were generated from

Ti = (1/ρ)(− exp(−βZi)(log(1− ui))1/η,

where ui is a uniform random variable on [0, 1]. Potential censoring times Ci were gener-

ated from a uniform distribution on [a, b], where a and b determine the desired censoring

proportions. Observed survival times Yi were then determined as the minimum of poten-

tial failure times and potential censoring times, i.e. min(Ti, Ci). Under the parametric Cox

model (4.4.1), the true median lost lifespan (θt0), as shown in Chapter 3, can be derived as

θt0(z) = t0 −
1

ρ
[exp(−βz){log(2)− log(1 + exp(−(ρt0)η exp(βz))}]η. (4.4.2)

First, we evaluate performance of our proposed method of estimation. The true values of

θt0 in (4.4.2) when β = 0 would be the same for both control and treatment groups as 10.8,

9.8, 8.8, and 7.8 at t0 = 15, 14, 13, and 12, respectively. Let us consider a simple log-linear

regression model on the median lost lifespan,

med(ln(t0 − Ti)|Ti ≤ t0) = β
(0)
t0 + β

(1)
t0 Z1i, (4.4.3)

where Z1i is a binary covariate indicating treatment group (Z1i = 1) or control group

(Z1i = 0), and β
(0)
t0 and β

(1)
t0 are the intercept and a regression coefficient associated with

Z1i, respectively. Following the invariance property of the log-transformation, the model is

equivalent to

med(t0 − Ti|Ti ≤ t0) = exp(β
(0)
t0 + β

(1)
t0 Z1i),

implying that exp(β
(0)
t0 ) and exp(β

(0)
t0 +β

(1)
t0 ) can be interpreted as the median lost lifespan in

the control group and in the treatment group, respectively. Thus, the difference in median

lost lifespans between groups is given by exp(β
(0)
t0 )(exp(β

(1)
t0 ) − 1), and the ratio of two lost

lifespans by exp(β
(1)
t0 ), so that testing a null hypothesis of β

(1)
t0 = 0 will be equivalent to

testing whether the ratio of two median lifespans equals 1.

In order to evaluate our parameter estimates, we compare β̂
(1)
t0 to 0 and β̂

(0)
t0 to the

logarithm of the true median lost lifespan from (4.4.2) under H0. At time point 15, for

example, the true median lost lifespan of 10.8 corresponds to β
(0)
t0 = 2.38 and β

(1)
t0 = 0 under
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the proposed log-linear regression model. We used the grid search method to minimize the

proposed estimating equation in (4.3.2). In situations where Ĝ(·) is not defined or is equal to

0, the minimum Kaplan-Meier survival estimate of the censoring distribution was used. The

mean and standard deviation of the parameter estimates were used to evaluate the empirical

distribution of β
(0)
t0 and β

(1)
t0 under various time points (15, 14, 13, and 12) and censoring

proportions (0%, 10%, 20%, and 30%).

The results are displayed in Table 4.4.1 based on 1000 simulations with 100 observa-

tions per group. As the censoring proportion increases, the differences between parameter

estimates and true values slightly increase. The empirical standard deviations also inflate

as the censoring proportion increases and as t0 decreases. In general, the proposed method

provides estimates very close to the true values.
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Table 4.4.1: Mean and standard deviation of the empirical estimates of true regression pa-

rameters β
(0)
t0 = 2.38, 2.29, 2.18, and 2.06 and β

(1)
t0 =0 at t0 = 15, 14, 13, and 12; estimated

median lost lifespan in control group (θ̂(0)); and estimated median lost lifespan in treatment

group (θ̂(1))

t0 c% β
(0)
t0 SD(β

(0)
t0 ) β

(1)
t0 SD(β

(1)
t0 ) θ(0) θ(1)

15 0 2.376 0.028 0.005 0.038 10.764 10.814

10 2.376 0.028 0.005 0.037 10.765 10.814

20 2.378 0.027 0.003 0.038 10.781 10.812

30 2.377 0.038 0.004 0.049 10.770 10.812

14 0 2.279 0.032 0.004 0.043 9.772 9.809

10 2.280 0.032 0.004 0.042 9.773 9.808

20 2.281 0.030 0.002 0.041 9.790 9.805

30 2.281 0.040 0.002 0.055 9.783 9.802

13 0 2.172 0.035 0.004 0.047 8.775 8.810

10 2.172 0.035 0.004 0.047 8.774 8.806

20 2.173 0.036 0.002 0.048 8.787 8.802

30 2.172 0.045 0.004 0.060 8.774 8.806

12 0 2.052 0.039 0.005 0.054 7.780 7.815

10 2.051 0.039 0.003 0.054 7.776 7.803

20 2.053 0.039 0.002 0.054 7.788 7.800

30 2.052 0.055 0.002 0.076 7.780 7.792
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4.4.2 Type I Errors

We then assessed the proposed test statistic (4.3.11) in terms of type I error probabilities

to test locally the null hypothesis of H0 : β
(1)
t0 = 0 with a significance level of 0.05 under

various time points (15, 14, 13, and 12), censoring proportions (0%, 10%, 20%, and 30%),

and sample sizes (50, 100, and 200). The results are displayed in Table 4.4.2. Empirical

type I error probabilities are generally conservative regardless of the censoring proportion

or sample size. These results are similar to those presented in previous papers using the

minimum dispersion test statistic (Su and Wei, 1993; Wei et al., 1990; Ying et al., 1995;

Jeong et al., 2008; Jung et al., 2009).
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Table 4.4.2: Type 1 Errors for testing the null hypothesis H0 : β
(1)
t0 = 0

t0 c% n=50 n=100 n=200

15 0 0.023 0.022 0.022

10 0.024 0.017 0.022

20 0.014 0.015 0.021

30 0.005 0.008 0.015

14 0 0.021 0.021 0.022

10 0.022 0.017 0.022

20 0.013 0.016 0.022

30 0.010 0.010 0.015

13 0 0.026 0.024 0.019

10 0.025 0.017 0.022

20 0.015 0.016 0.021

30 0.006 0.008 0.016

12 0 0.026 0.022 0.019

10 0.021 0.017 0.022

20 0.014 0.015 0.020

30 0.007 0.009 0.014
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4.4.3 Power Analysis

For power analysis, we generated data under the parametric proportional hazards model in

(4.4.1) by increasing the values of βt0 to induce differences between control and treatment

groups. We assumed that βt0 = −0.44,−0.82,−1.18, and -1.60 in (4.4.2), which is equivalent

to increasing the differences in median lost lifespan between control and treatment by 1, 2,

3, and 4. To further illustrate the effect of beta, Figures 4.4.3 and 4.4.3 show event times

generated under different scenarios. Figure 4.4.3 assumes no difference between lost lifespans

in the control and treatment group, while Figure 4.4.3 assumes a difference of 4 years between

lost lifespans in the control and treatment group. The event times for the treatment group

in Figure 4.4.3 are noticeably longer than those for the control group, while event times in

Figure 4.4.3 are similar between groups. Introducing a smaller beta increases event times in

the treatment group, thus simulating larger differences in lost lifespans.

Table 4.4.3 summarizes the probabilities of rejecting the null hypothesis of H0 : β
(1)
t0 = 0

from the simple model (4.4.3) under various scenarios. Power decreases as t0 decreases since

less observations are included in the analysis, and it increases as βt0 decreases, indicating

greater power to detect a larger difference between groups. Power varied slightly among

different censoring proportions, occasionally increasing as the censoring proportion increases.

This is possibly due to an increased number of observations included in the analysis as more

observed times occur before t0 when the censoring proportion increases. Power also increases

as sample size increases, as expected.
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Figure 4.4.1: Event times simulated assuming no difference between groups

54



Years to Event

O
b

se
rv

at
io

n
s

Difference = 4

5

X

X

X

X

X

X

X

X

X

X

10 15

Control Group
Treatment Group

Figure 4.4.2: Event times simulated assuming a difference of 4 years between groups
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Table 4.4.3: Powers for testing the null hypothesis H0 : β
(1)
t0 = 0

n=100 n=200

-0.44 -0.82 -1.18 -1.60 -0.44 -0.82 -1.18 -1.60

15 0 0.158 0.401 0.648 0.803 0.304 0.768 0.948 0.991

10 0.150 0.409 0.624 0.786 0.314 0.795 0.969 0.993

20 0.139 0.434 0.715 0.881 0.380 0.840 0.979 0.998

30 0.175 0.525 0.791 0.938 0.540 0.959 0.995 1.000

14 0 0.151 0.371 0.593 0.756 0.293 0.740 0.936 0.983

10 0.146 0.395 0.570 0.706 0.309 0.785 0.959 0.976

20 0.139 0.429 0.722 0.828 0.367 0.839 0.983 0.995

30 0.185 0.517 0.801 0.928 0.527 0.937 0.996 0.999

13 0 0.127 0.340 0.536 0.664 0.278 0.680 0.905 0.958

10 0.133 0.390 0.545 0.613 0.307 0.780 0.928 0.951

20 0.126 0.418 0.684 0.729 0.341 0.836 0.973 0.982

30 0.167 0.523 0.793 0.898 0.520 0.934 0.995 0.999

12 0 0.125 0.290 0.448 0.555 0.262 0.618 0.849 0.913

10 0.139 0.336 0.400 0.518 0.298 0.726 0.835 0.894

20 0.123 0.408 0.606 0.601 0.328 0.815 0.959 0.947

30 0.156 0.492 0.752 0.820 0.503 0.934 0.995 0.998
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4.5 APPLICATION TO NSABP B-04 DATA

In this section, we apply the proposed estimation procedure and test-statistic to a real

dataset from a clinical trial on breast cancer, i.e. NSABP (National Surgical Adjuvant

Breast and Bowel Project) B-04 dataset (Fisher et al. 2002), introduced in the previous

chapter. In addition to follow-up information, surgery type, and nodal status, the dataset

also contains other covariates including age at diagnosis and pathological tumor size. Both

simple regression models and multiple regression models will be considered. Three covariates

will be included in the analyses to be performed in this section; nodal status as a binary

covariate with 0 for node-negative and 1 for node-postive, and both age at diagnosis and

pathological tumor size as continuous covariates. There were 1,079 node-negative women

and 586 node-positive women. Age at diagnosis ranged from 20 to 87 years with the mean

of 55.4, and pathological tumor size ranged from 0 to 250mm with the mean of 34.1mm.

Additionally the median follow-up was 26 years with the overall censoring proportion of 23%.

In the multivariable models, the continuous covariates were multiplied by 0.01, to satisfy the

regularity conditions. The main outcome from the analysis utilizing the proposed method

will be how many more years the node-positive patients are expected to lose compared to the

node-negative patients at various time points post treatment, adjusted for age and tumor

size.

First, we used the proposed minimum dispersion statistic in (4.3.11) to evaluate the

significance of nodal status in a simple log-linear regression model (4.4.3). The test statistic

was calculated at 5 time points (t0 = 13, 15, 20, 24, and 26 years post-surgery). Table

4.5.1 summarizes the results, including the parameter estimates (β̂intercept and β̂node), 95%

confidence intervals for βnode calculated from equation (4.3.12), and corresponding median

lost lifespans for both groups. Here, θnode− represents the median lost lifespan for the node-

negative group equal to exp(βintercept), and θnode+ represents the median lost lifespan for the

node-postive group equal to exp(βintercept + βnode).

Note that regardless of any time point specified, the median lost lifespans were signif-

icantly different between the two nodal groups. The node positive group had consistently

longer median lost lifespans across all time points indicating worse prognosis in survival. The
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difference between nodal status groups also increased as time point increased, as evident by

the increasing values of βnode.

Table 4.5.1: Parameter estimates, 95% CIs, and corresponding median lost lifespans from

simple regression models

t0 β̂intercept β̂node 95% CI θ̂node− θ̂node+

13 2.054 0.125 (0.035, 0.215) 7.799 8.837

15 2.166 0.172 (0.070, 0.255) 8.723 10.360

20 2.475 0.196 (0.100, 0.300) 11.882 14.454

24 2.679 0.204 (0.135, 0.300) 14.571 17.868

26 2.762 0.217 (0.160, 0.305) 15.831 19.668

While the estimates and inference procedure from the proposed model cannot be com-

pared directly to ones from other models, we provide the p-values from the proposed method

(4.3.11) compared to the p-values from testing the significance of the nodal status param-

eter using the proportional hazards model and the bootstrap method in Table 4.5.2. The

proportional hazards model was evaluated at the same time points, with events occurring

after t0 being administratively censored at t0. Thus, the hazard function summarizes the

cumulative information up to each specified time point in terms of the conditional instan-

taneous failure rate. Table 4.5.2 additionally shows the p-values from testing significance of

the nodal status parameter based on the bootstrap method of variance estimation (Efron,

1979). We resampled 500 times from the original dataset with replacement and estimated

the regression parameters with the proposed method. The p-values were calculated from

the Wald tests by using the variance of those parameter estimates, which provided similar

results at all time points. The results from the simple regression model presented here are

also consistent with those from the two-sample test statistic proposed in Chapter 3.

58



Table 4.5.2: P -values from the proposed minimum dispersion statistic (p-valuenew), Cox

model (p-valuecox), and the bootstrap method (p-valuebs)

t0 p-valuenew p-valuecox p-valuebs

13 0.011 <0.0001 0.01

15 0.001 <0.0001 0.001

20 <0.001 <0.0001 <0.0001

24 <0.001 <0.0001 <0.0001

26 <0.001 <0.0001 <0.0001

For further comparison, the same data have also been previously analyzed under the

quantile regression model for the median residual life (Jung et al., 2009). This method

summarizes the remaining life conditioned on survival beyond a specified time point. The

results of the original analysis are displayed in Table 4.5.3. The nodal status parameter

was only significant through 7 years post-treatment, indicating longer remaining life in the

node-negative group. Analyses were limited through 10 years post mastectomy due to heavy

censoring in the tail of the distribution.
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Table 4.5.3: Regression parameter estimates from median residual life simple regression

model, 95% confidence intervals, and p-values for testing H0 : β
(node)
t0 = 0

t0 β̂
(intercept)
t0 β̂

(node)
t0 95% CI p-value

0 2.54 -0.62 (-0.74, -0.47) <0.0001

2 2.53 -0.59 (-0.77, -0.37) <0.0001

4 2.56 -0.50 (-0.72, -0.21) 0.0003

6 2.59 -0.44 (-0.71, -0.17) 0.001

7 2.57 -0.26 (-0.57, -0.09) 0.008

8 2.54 -0.22 (-0.42, 0.05) 0.116

10 2.46 -0.09 (-0.48, 0.11) 0.343
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Now we extend our analysis to a multiple log-linear regression model containing nodal

status, age at diagnosis, and pathological tumor size as covariates. Each covariate was tested

separately for its significance using the proposed test statistic (4.3.11). The parameter

estimates and corresponding 95% confidence intervals are shown in Table 4.5.4. Except

at time point 13, the nodal status covariate remained statistically significant in all other

multivariable models. Additionally, the difference between node-negative and node-positive

groups generally increased as time point increased, similar to the results from the simple

log-linear regression models (Table 4.5.1). The covariate of age at diagnosis was significant

through 15 years post-surgery, while the covariate of pathological tumor size was consistently

significant in all models. The proposed regression model allows for predicting a patient’s

median lost lifespan for a given time point based on significantly important factors, i.e.

nodal status and age at diagnosis. For example, a 30 year old woman with positive lymph

nodes and tumor size of 50mm is expected to have a median lost lifespan of 11.8 years

(= exp{2.274 + 0.127 × 1 − 0.390 × (0.01 × 30) + 0.364 × (0.01 × 50)}) at 15 years after

diagnosis. In comparison, a 30 year old patient with negative lymph nodes and tumor size

of 50mm is expected to have a median lost lifespan of 10.4 years at 15 years after diagnosis.

Table 4.5.4: Parameter estimates and corresponding confidence intervals (95% CI) from

multiple regression models using the proposed minimum dispersion statistic

t0 β̂intercept β̂node β̂age β̂size

13 2.365 (2.14, 2.57) 0.072 (-0.01, 0.15) -0.685 (-0.94, -0.34) 0.245 (0.08, 0.43)

15 2.274 (2.12, 2.65) 0.127 (0.02, 0.21) -0.390 (-0.93, -0.22) 0.364 (0.10, 0.52)

20 2.567 (2.25, 2.72) 0.182 (0.12, 0.27) -0.395 (-0.61, 0.06) 0.371 (0.24, 0.55)

24 2.647 (2.41, 2.86) 0.188 (0.11, 0.26) -0.134 (-0.49, 0.17) 0.364 (0.23, 0.52)

26 2.715 (2.39, 2.88) 0.189 (0.12, 0.27) -0.114 (-0.37, 0.37) 0.376 (0.25, 0.54)
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4.6 DISCUSSION ON REGRESSION

We have proposed a new method for time-to-event analysis in a regression setting that allows

for analyzing covariate effects on the quantiles of the distribution of lost lifespan. Asymptotic

properties were derived for the regression parameter estimators and test statistics. Simula-

tion studies validated the estimation and inference procedure under various scenarios, and

the proposed method was illustrated with an application to a breast cancer dataset. While

prognosis is well known to be worse for breast cancer patients with positive lymph nodes,

the information gained from this particular application could allow a physician to explain

the difference in terms of years lost at various time points after surgery.

The proposed log-linear regression model provides benefits over traditional survival mod-

els such as the proportional hazards model and accelerated failure time model. It can be

easily seen that the lost lifespan-based methods are less sensitive to heavy censoring to-

wards the end of study than the residual life-based methods. Also, the proposed summary

measure provides a straightforward clinical interpretation that is invaluable to clinicians,

patients, and other stakeholders. The quantile-based approach would be more robust than

the mean-based one for the analysis of time-to-event data.

While the proposed regression model avoids many assumptions of the traditional survival

models, it does assume a log-linear relationship between covariates and the quantile lost-

lifespan. Next steps should include methods for testing this model assumption. Ying et al.

(1995) proposed a graphical check, which was also implemented in the median residual life

analysis of the NSABP B-04 data (Jung et al., 2009). A zero-mean Gaussian process of

cumulative sums of median residuals was defined as

W (s) = n−1/2

n∑
i=1

eiI(β̂′ε|t0Zi ≤ z), (4.6.1)

where ei takes the following form

ei =
I{Yi ≥ t0 + exp(β̂′ε|t0Zi)}
Ĝ{t0 + exp(β̂′ε|t0Zi)}

− (1− ε)I(Yi ≥ t0)

Ĝ(t0)
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Plotting W (s) against predicted residual lifetimes could evaluate the model assumption. This

method could be extended to the lost lifespan by replacing ei with the proposed estimating

equation 4.3.2 to evaluate W (s) in 4.6.1.
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5.0 DISCUSSION AND FUTURE RESEARCH

The primary goal of this dissertation was to develop a new method of analyzing time-to-

event data that allows for more effective communication of results to clinicians and patients.

Here, we consider the life lost due to an event of interest occurring before some specified

time point. Thus, the time lost can be captured at various time points after diagnosis or

treatment. We’ve extended the nonparametric based methods for quantile residual life to

estimating the life lost in the presence of censoring, comparing the lost lifespans between

groups, and examining covariate effects on the lost lifespan.

The proposed method provides potential for numerous extensions. Future research can

involve developing methods to account for competing risks. In situations where a particular

outcome is of interest, say death from breast cancer, deaths from other causes would prevent

observance of the event of interest. Methods for quantile residual life analysis under compet-

ing risks have been proposed for both parametric and non-parametric settings (Jeong, 2014).

The non-parametric methods proposed here could potentially be extended to the quantile

lost lifespan for analysis under competing risks.

Future research could also consider regression models allowing random effects, for sit-

uations where covariates are considered to be representative of a general population. The

traditional cox proportional hazards model has been extended to allow for clustered time-

to-event data (Sargent, 1998; Vaida and Xu, 2000); however, these methods still rely on the

proportional hazards assumption. The extension to random effects in lost lifespan modeling

could be particularly useful for scenarios involving genetically or environmentally related

patients or trials conducted at multiple centers.
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Additionally, one limitation of the proposed methods is the computationally intensive

grid search method of estimation, particularly for models with multiple covariates. Devel-

opment of a technique of smoothing the estimating equation for more efficient estimation of

the regression parameters might merit future research.
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