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Massive Open Online Courses (MOOCs) are becoming a promising solution for delivering high-

quality education on a large scale at low cost in recent years. Despite the great potential, today’s 

MOOCs also suffer from challenges such as low student engagement, lack of personalization, 

and most importantly, lack of direct, immediate feedback channels from students to instructors. 

This dissertation explores the use of physiological signals implicitly collected via a "sensorless" 

approach as a rich feedback channel to understand, model, and improve learning in mobile 

MOOC contexts. 

 I first demonstrate AttentiveLearner, a mobile MOOC system which captures learners' 

physiological signals implicitly during learning on unmodified mobile phones. AttentiveLearner 

uses on-lens finger gestures for video control and monitors learners’ photoplethysmography 

(PPG) signals based on the fingertip transparency change captured by the back camera. Through 

series of usability studies and follow-up analyses, I show that the tangible video control interface 

of AttentiveLearner is intuitive to use and easy to operate, and the PPG signals implicitly 

captured by AttentiveLearner can be used to infer both learners’ cognitive states (boredom and 

confusion levels) and divided attention (multitasking and external auditory distractions).  

 Building on top of AttentiveLearner, I design, implement, and evaluate a novel 

intervention technology, Context and Cognitive State triggered Feed-Forward (C2F2), which 

infers and responds to learners’ boredom and disengagement events in real time via a 
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combination of PPG-based cognitive state inference and learning topic importance monitoring. 

C2F2 proactively reminds a student of important upcoming content (feed-forward interventions) 

when disengagement is detected. A 48-participant user study shows that C2F2 on average 

improves learning gains by 20.2% compared with a non-interactive baseline system and is 

especially effective for bottom performers (improving their learning gains by 41.6%). 

 Finally, to gain a holistic understanding of the dynamics of MOOC learning, I investigate 

the temporal dynamics of affective states of MOOC learners in a 22-participant study. Through 

both a quantitative analysis of the temporal transitions of affective states and a qualitative 

analysis of subjective feedback, I investigate differences between mobile MOOC learning and 

complex learning activities in terms of affect dynamics, and discuss pedagogical implications in 

detail. 
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1.0  INTRODUCTION 

With the increasing ubiquity of Internet access, Massive Open Online Courses (MOOCs) are 

experiencing rapid growth. MOOCs are becoming a common form of online course delivery with 

more than 35 million registered students by December 2015 [109]. Although polarized opinions 

still persist, many experts believe that MOOCs and flipped courses, when properly designed and 

executed, could serve as an excellent complement to traditional education by delivering high-

quality education on a large scale at a lower cost [46]. MOOCs allow learners “to control where, 

what, how and with whom they learn” [68]. Researchers also found MOOCs could help students 

develop new skills such as autonomous learning, and improve the visibility of universities and 

courses [62]. 

 In current MOOCs, the courses are mostly organized as sequences of pre-recorded lecture 

videos, split into 3-15 minute pieces for better engagement [51]. Such small video clips are easy 

to consume on mobile devices during learners' fragmented time. Indeed, major MOOC providers, 

such as Coursera, edX, and Udacity, have released their mobile apps to support “learning on the 

go”. Compared with traditional MOOCs, mobile MOOCs provide unique advantages such as 

“ubiquitous, respond to urgent learning need, and flexibility of location and time to learn” [129]. 

 Despite the great potential, MOOCs today still have much room for improvement. 

Studies on MOOCs have shown problems such as low completion rate (10% in [46], 7% in [87]), 

high in-session distractions [94], and lack of interactions among students and instructors  [48, 



 2 

116]. I summarize three essential challenges for MOOCs. First, learners are more likely to 

become disengaged and “mind wander” in MOOC contexts than in classrooms [46, 100]. This is 

because of external distractions in the non-classroom environment and a lack of sustained 

motivation when studying alone with technology. Second, there is a lack of personalization for 

individual learners. Given the large pool of students, it is hard for MOOC instructors to cater 

instructions and learning materials for individual learner’s need and learning process. Third, the 

current design of MOOCs is primarily unidirectional, i.e., from instructors to students. There is a 

lack of direct, immediate feedback channels from students to instructors. Unlike in traditional 

classrooms, MOOC instructors no longer have access to important cues, such as facial 

expressions, raised hands, or oral questions to infer students’ mental and learning state. Although 

questionnaires, post-lecture reflections [45, 48], and browser log analysis (including both 

activities in learning sessions [66] and follow-up discussion forums [136, 137]) can be used to 

infer the quality of learning, such post-hoc analysis techniques are usually coarse-grained, highly 

delayed, and indirect measurements of the actual learning process.  

 To directly measure learners’ actual learning process, researchers have explored using 

physiological signals to infer learners’ cognitive and affective states in educational systems. 

AutoTutor [36, 55], Wayang intelligent tutor [128],  GazeTutor [42] and Artful [116], are a few 

notable examples. These systems collect physiological signals, such as heart rates  [52, 55, 59], 

facial features [36, 61, 128], galvanic skin responses (GSR) [13, 17, 52, 55, 59] and 

Electroencephalography (EEG) [52, 59, 116], and use machine learning algorithms to predict 

students’ affective and cognitive states (e.g., attention, mind wandering, and confusion, etc.) 

during learning. Although these systems have been shown to successfully detect and respond to 

learners’ affective and cognitive states, most of them require dedicated sensors, such as cameras 
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[36, 128], eye trackers [42],  and EEG headsets [116] for signal collection. The cost, availability, 

and portability of such equipment have prevented the wide adoption of such systems beyond lab 

settings.  

1.1 ATTENTIVELEARNER 

Camera View Widget

AttentiveWidget

PPG Signal Indicator
 

Figure 1. The video play interface of AttentiveLearner.  

This video play interface is similar to that of a mobile video player, with additional widgets for visualizing the 

camera preview window, the attention indicator and the PPG preview window. The camera preview window shows 

a live video stream from the back camera. The AttentiveWidget shows the learner’s instant heart rate as well as the 

covering state of the lens. The PPG indicator shows the real-time waveform of the learner’s PPG signals. 

 

Motivated by previous research which use physiological signals to understand and enhance 

learning in computer-based educational systems, I develop AttentiveLearner (Figure 1), a mobile 

learning system which captures and uses learners’ physiological signals implicitly to improve 

mobile MOOC learning without leveraging any dedicated sensors. AttentiveLearner uses on-lens 

finger gestures to control the MOOC video playback (i.e., covering and holding the back camera 
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lens to play a lecture video, uncovering the lens to pause the video). Moreover, it monitors 

learners’ photoplethysmography (PPG) signals implicitly based on the fingertip transparency 

changes captured by the back camera on unmodified mobile phones. Compared with previous 

cognitive-aware educational systems which utilize dedicated devices to track physiological 

signals, AttentiveLearner uses the built-in camera of mobile phones to monitor physiological 

signals. More importantly, in addition to traditional activity logs, questionnaires, and quiz 

performance, AttentiveLearner provides an informative and orthogonal feedback channel for 

MOOC instructors.  

I use the term “implicit physiological signal sensing” to describe AttentiveLearner to 

differentiate between the usage scenario of AttentiveLearner and traditional methods when 

tracking physiological signals. The “implicitness” of AttentiveLearner has two aspects: Implicit 

Hardware and Implicit Software. Implicit Hardware means that AttentiveLearner does not 

require users to purchase and mount extra sensing equipment to collect physiological signals. 

Implicit Software suggests that users do not need to “explicitly” launch monitoring apps and 

spend an uninterrupted amount of time in data collection. Instead, extraction of PPG signals has 

been integrated into the process of video control, thus AttentiveLearner can infer learners’ 

physiological signals as a side effect while they are watching the lecture videos. 

By predicting learners’ cognitive and affective states (e.g., attention, “mind wandering” 

events, or confusion) using the PPG signals implicitly captured by the built-in camera of 

unmodified mobile phones, AttentiveLearner has the potential to address the three MOOC 

challenges mentioned earlier by: 1) adaptive interventions (e.g., integrated exercises, feed-

forward reminders) when “mind wandering” events or learner disengagement are detected, thus 

making the learning process more attentive and enjoyable; 2) providing learners with 
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personalized learning materials and instructional paradigms (e.g., adjusting material difficulty, 

switching learning tasks, etc.) based on their real-time cognitive state inference; and 3) providing 

instructors with fine-grained, real-time feedback on learners' actual cognitive states synchronized 

with the learning materials, thus facilitate bi-directional learning.  

1.2 RESEARCH OVERVIEW 

In this dissertation, I systematically explore this “sensorless” approach adopted by 

AttentiveLearner (Figure 1) which implicitly captures learners’ physiological signals and infers 

their cognitive states during mobile MOOC learning. Figure 2 shows the three major components 

of AttentiveLearner: 1) a tangible video control channel (Chapter 3); 2) an implicit PPG sensing 

module (Chapter 4); and 3) cognitive state inference algorithms (Chapter 5, 6). These three 

components together allow instructors to gain a deeper understanding of MOOC learners’ 

cognitive and affective states, making AttentiveLearner a rich, fine-grained feedback channel 

from learners to instructors.  

Moreover, AttentiveLearner can benefit learners by providing personalized and adaptive 

learning interventions based on the detected cognitive states. To justify this assumption, I 

designed and implemented a novel intervention technology, context and cognitive state triggered 

adaptive feed-forward (C2F2), within AttentiveLearner. This technology uses cognitive state 

triggered proactive reminders (feed-forward) as an intervention to recognize and alleviate 

disengagement in mobile MOOC learning. C2F2 shows the feasibility and effectiveness of using 

PPG signals implicitly recorded by mobile cameras to improve mobile MOOC learning (Chapter 

7).  
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Tangible Video 
Control

Implicit PPG 
Sensing

Cognitive State 
Inference

AttentiveLearner

Learners

Instructors

Personalized 
learning

Rich
feedback 
channel

Understanding and Improving MOOC Learning

Dynamics of Moment-to-
Moment Affective States

Context and Cognitive 
State Triggered 

Feedforward (C2F2)

 

Figure 2. Main components of this research. 

 

Moreover, I investigated the dynamics of learners’ moment-to-moment affective state 

transitions during mobile MOOC learning (Chapter 8). I extended the model of affect dynamics 

in complex learning environments [33] to MOOC contexts. This research promotes a better 

understanding of the dynamic learning process and provides important pedagogical implications 

of how and when to regulate the learners’ affective states in MOOC contexts. 

1.3 STATEMENT 

Given the above research overview, this dissertation has the following thesis statement:  
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By proposing a “sensorless” approach to collect photoplethysmography (PPG) signals 

implicitly from users on unmodified mobile devices, this dissertation explores novel technologies 

to monitor learners’ cognitive and affective states, and provide cognitive state triggered adaptive 

interventions, which can effectively improve learning in mobile MOOC contexts. 

1.4 HYPOTHESES 

To support this thesis, I generate a list of hypotheses grouped by the different components 

presented in Figure 2: 

A. The tangible video control channel: 

A1. The AttentiveLearner tangible video control channel is accurate and responsive enough to 

support smooth user interactions. 

A2. The tangible video control channel is user-friendly. This requires that it is easy to operate 

and comfortable to use for the learners. The battery life should also be enough to support most 

learners’ daily MOOC learning requirement.  

B. The implicit PPG sensing module: 

B1. With only the built-in camera of commodity mobile phones, I can collect high quality PPG 

signals (comparable to signals collected by a standard pulse oximeter) from the user. With the 

PPG signals captured by the camera, I can accurately measure the user’s heart rates. 

B2. I can collect reliable, high quality PPG signals during actual mobile MOOC learning 

sessions with the implicit PPG sensing module enabled by the built-in camera. 

 C. Cognitive state inference: 



 8 

C1. Using the PPG signals captured by AttentiveLearner to predict learners’ cognitive states, 

such as boredom and confusion during learning, I can achieve comparable predication 

performance as existing systems [32, 55] which rely on dedicated physiological sensors to 

predict cognitive and affective states.  

D. Context and cognitive state triggered feed-forward: 

D1. Cognitive-aware interactive systems built on top of AttentiveLearner will benefit learners 

and improve their learning outcomes by providing in-situ adaptation and feedback.   

D2. Providing adaptive cognitive state triggered proactive reminders before important topics 

(i.e., C2F2) during mobile MOOC learning will improve learning performance.   

E. Dynamics of moment-to-moment affective states in MOOC contexts: 

E1. The dynamics of moment-to-moment affective states in MOOCs is different from that in 

complex learning [33] due to the different characteristics of these two learning contexts. 

E2. Using the PPG signals captured by AttentiveLearner to predict the fine-grained moment-to-

moment affect dynamics in mobile MOOC learning, I can achieve significantly better 

performance than a random classifier (Kappa = 0), suggesting the feasibility of using 

AttentiveLearner to detect moment-to-moment affect dynamics in MOOC contexts.   

1.5 CONTRIBUTIONS 

To summarize, this research has three major contributions: 

• It promotes a better understanding of MOOC learners by providing instructors with a direct 

feedback channel of learners’ actual learning states, specifically their cognitive and affective 

states. On the contrary, current feedback mechanisms in MOOCs (e.g., questionnaires, post-
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lecture discussions and reflections, browser-log analysis, etc.) are mostly used to infer the 

quality of learning, and cannot provide direct, fine-grained information of learners’ actual 

learning states during each learning session.  

• It presents AttentiveLearner, a cognitive-aware mobile learning system, as well as C2F2, an 

intelligent intervention technique. Through a 48-participant user study, this dissertation 

shows that the cognitive-aware interactive system can effectively improve learners’ 

performance in mobile MOOC learning.  

• It provides valuable insights and pedagogical implications from the PPG signal analysis and 

the investigation of affect dynamics. These insights and implications could help instructors 

improve the design of MOOC courses.  

Because of this research, I also developed the following algorithms, techniques, or systems 

working on the Android platform: 

• LensGesture [133]: a mobile interaction technique that augments mobile interactions via 

finger gestures (e.g., covering the lens fully or partially, swiping across the lens) on the back 

camera of mobile devices. I implemented the recognition algorithms for different types of 

LensGestures as well as multiple LensGesture applications (Chapter 3.1.3) which 

demonstrate various usage scenarios of LensGesture as a new input channel. The source code 

of these applications can be downloaded from http://mips.lrdc.pitt.edu/lensgesture.  

• LivePulse [53]: A commodity-camera-based photoplethysmography (PPG) sensing and 

heuristic-based heart rate measurement algorithm working on unmodified smartphones. I 

have developed both a mobile application running LivePulse algorithm to measure heart rate 

in real-time and a PC application for debugging the LivePulse algorithm. Both are open 

source software released under BSD license and the implementation can be downloaded from 

http://mips.lrdc.pitt.edu/lensgesture
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http://mips.lrdc.pitt.edu/bayesheart. In order to make the heart rate monitoring task more 

engaging, my colleagues in the University of Pittsburgh and I have also designed serious 

mobile games (LivePulse Games) that leverage the LivePulse algorithm and integrate heart 

beat measurement implicitly in the game play [53]. The implementation of LivePulse Games 

can be downloaded from http://mips.lrdc.pitt.edu/livepulsegames/.  

• AttentiveLearner [130, 134]: a mobile MOOC application which collects and analyzes 

learners’ PPG signals to infer their cognitive states while they watch lecture videos. I  

developed the AttentiveLearner mobile client based on the open source edX Android 

application (https://github.com/edx/edx-app-android). Similar to existing MOOC mobile 

clients by Coursera, edX, and Udacity, the AttentiveLearner mobile application allows 

learners to browse, stream, and watch lecture videos on their mobile phones. Moreover, I 

integrated the tangible video control channel (Chapter 3) and implicit PPG sensing module 

(Chapter 4) in the mobile client. The AttentiveLearner mobile client should be available for 

everyone to download at http://www.attentivelearner.com in the near future.  

• C2F2 [131]: an adaptive intervention technique which monitors learners’ engagement while 

they watch lecture videos and adaptively reminds learners of important upcoming content 

when they are disengaged. I implemented the C2F2 technique and integrated it into the 

AttentiveLearner mobile client. AttentiveLearner loads a pre-built engagement prediction 

classifier (Chapter 7.3.1), uses it to predict learners’ engagement states after they watch each 

topic, and triggers C2F2 when the conditions are met. The AttentiveLearner mobile client 

with C2F2 adaptive intervention should be available to download at 

http://www.attentivelearner.com in the near future.  

http://mips.lrdc.pitt.edu/bayesheart
http://mips.lrdc.pitt.edu/livepulsegames/
https://open.edx.org)/
http://www.attentivelearner.com/
http://www.attentivelearner.com/
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1.6 OUTLINE 

Chapter 2 presents relevant technologies for improving MOOCs, provides a background on the 

role of affective-cognitive states in learning, and introduces related work on using physiological 

signals to detect and react to students’ affective-cognitive states in educational systems.  

Chapter 3 and Chapter 4 focus on the two enabling technologies of AttentiveLearner. 

Chapter 3 presents LensGesture [133], a general interaction technique which leverages on-lens 

finger gestures to interact with mobile devices. I optimize LensGesture specifically for the 

tangible video control channel of AttentiveLearner. Through off-line benchmarking and an 18-

subject user study, I verified that the tangible video control channel was both accurate and 

responsive (Hypothesis A.1). Chapter 4 demonstrates LivePulse, a real-time heart rate 

measurement algorithm based on commodity-camera-based photoplethysmography (PPG) 

sensing. LivePulse enables the implicit PPG sensing module of AttentiveLearner on unmodified 

smartphones. I conducted a 12-participant study to test the accuracy and reliability of LivePulse, 

which proved Hypothesis B.1. Furthermore, through another 18-participant user study and 

follow-up analyses, I showed that the tangible video control interface in AttentiveLearner was 

intuitive, and comfortable to use (Hypothesis A.2). AttentiveLearner could also collect reliable 

PPG signals during actual MOOC learning sessions (Hypothesis B.2). 

Chapter 5 and Chapter 6 focus on cognitive state inference via implicit PPG sensing on 

unmodified mobile phones [130, 132, 134]. Chapter 5 presents an 18-participant study which 

demonstrates the feasibility of detecting boring and confusing topics in MOOC videos for 

individual learners, while Chapter 6 investigates the impact and detection of divided attention in 

the context of mobile MOOC learning through a second 18-participant study. These two 

chapters support Hypothesis C.1.  
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Chapter 7 proposes an intervention technology which builds upon AttentiveLearner. 

This new technology, Context and Cognitive State triggered Feed-Forward (C2F2), proactively 

reminds a learner of important upcoming content (the feed-forward intervention) when 

disengagement is detected. A 48-participant user study was performed, and I found that C2F2 

yielded superior learning performance compared with a standard non-interactive learning system 

[131]. This result verified Hypothesis D.2. The effectiveness of C2F2 also validated Hypothesis 

D.1, showing the feasibility and efficacy of building end-to-end, affect-aware mobile MOOC 

systems on top of AttentiveLearner.  

Chapter 8 presents a 22-participant study to understand the dynamic transitions of 

affective states during a MOOC learning session. I show that MOOC learning has a different 

model of affect dynamics from complex learning (Hypothesis E.1). Also, I demonstrate the 

feasibility of using implicit PPG sensing to detect moment-to-moment affective states 

(Hypothesis E.2).  

Chapter 9 summarizes the contributions of this dissertation and presents a discussion of 

future work. 
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2.0  BACKGROUND 

2.1 TECHNOLOGIES FOR IMPROVING MOOCS 

The passive, asynchronous, distributed viewing experiences of MOOCs present unique 

challenges to quality education. To address these challenges, researchers have proposed many 

new techniques, which can be grouped into three categories based on the goal of the technique 

(Table 1).  

Table 1. Existing techniques for improving MOOCs. 

Technique Category Examples Benefits Limitations 
Improving video 
quality and 
interactivity 

Video annotation 
(overlay video content 
[26], sub-goal labels 
[122], digital footnote 
[71]) 
 

Augment the video 
viewing experience;  
 
improve student 
engagement 

No personalization;  
 
require extra video 
production effort 

Video navigation 
(learner activity 
augmented timeline 
[65], NoteVideo [82], 
Video Digest [88], 
QuizCram [69]) 

 

Video interactivity 
 (in-video exercises 
[64], embedded 
comments [81, 83]) 
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Enhancing 
communication 
 

Asynchronous 
communication 
(discussion forums [4, 
20]; post-lecture 
reflections [45, 47, 
48]) 
 

Promote social 
interactions and 
create a feeling of 
community;  
 
generate feedback for 
instructors;  
 
promote in-depth and 
thoughtful discussion 
and reflections 

Passive student 
“lurkers” do not 
participate in the 
activities (low 
forum participation 
rate in MOOC 
[16]); 

asynchronous 
methods lack 
immediate 
feedback;  

synchronous 
methods may not 
allow deep 
reflections 

 

Synchronous 
communication (chat 
systems [21])  

Hybrid (time-
anchored commenting 
[72]) 

Post-hoc clickstream 
and major video 
event analysis 

Activities within 
learning sessions 
(video event analysis 
[51, 66, 67]) 
 

Reveal insightful 
information to 
understand MOOC 
learners 

Log analysis reveal 
learners' actions 
rather than actual 
cognitive states in 
learning.  
 Activities in the 

follow-up discussion 
forums ([136, 137]) 
and exercises  
 
 
Activities in the 
“course-level” ([22, 
123]) 
 

 

 The first group of techniques aims to enhance learner engagement by improving the 

quality and interactivity of MOOC videos. Researchers have used video annotations to augment 

interactions with the video [26, 122] and enhance the video viewing experience [71]. 

Furthermore, various navigation controls have been proposed to help users browse and skim 

videos [65, 69, 82, 88]. For example, Kim et al. [65] designed a learner activity augmented 
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timeline to facilitate video navigation. The timeline visualizes learner interaction peaks based on 

historical interactions and enables non-linear scrubbing through friction. Kovacs [69] proposes 

the QuizCram interface which enables question-directed video viewing. Users navigate through 

the video segments by answering questions. Moreover, there are techniques which add 

interactive elements in the video, such as interactive exercises [64] and embedded comment 

threads/assessment [81, 83]. For example, L.IVE by Monserrat et al. [81] provides in-situ 

learning, discussion, and assessment via an interactive overlay directly on top of the lecture 

video. RIMES [64] supports interactive, multimedia responses (handwriting, audio, and video) in 

lecture videos. However, one problem of these interaction techniques is a lack of personalization 

for individual learners. Some techniques (e.g., video annotation, interactive exercises, etc.) also 

require extra video production effort.  

The second group of techniques aims to promote communications among students and 

instructors in the system. These include asynchronous communication techniques, such as 

discussion forums [4, 20] and post-lecture reflections [45, 48]; synchronous communication 

techniques, such as chat-room systems [21]; and hybrid techniques combining elements of both 

synchronous and asynchronous communication, such as time-anchored commenting [72]. These 

techniques can either promote student-student interactions [21, 72], or support student-instructor 

feedback [45, 48]. For example, Glassman and colleagues [48] invented the Muddy Card 

technique to allow students to indicate confusing concepts (muddy points) on the corresponding 

lecture slide. Such a technique provides a way for students to efficiently and specifically express 

their confusion to instructors. However, most of these interactive techniques rely heavily on 

learners’ active participation while prior research indicated low participation rates of activities or 

class discussions in MOOC contexts [16].  
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The third group of techniques is post-hoc analysis of clickstream data and major video 

interaction events. Researchers have analyzed both activities within the learning session (e.g., 

click-level interactions [51, 66, 118], visual attention [67], and exercise events [73]), activities in 

the follow-up discussion forums [136, 137], and “course-level” activities and events [22, 123]. 

For example, Kim et al. [66] applied temporal pattern analysis techniques on video play activities 

and found that students tended to selectively pick parts of the video to watch and 61% of the 

interaction peaks involved a visual transition that proceeds or after the peak. Yang et al. [137] 

used learners’ discussion forum behavior and clickstream data to identify posts that express 

confusion. These analyses can reveal insightful information about MOOC learning, such as the 

correlation of video production and student engagement [51, 67], and factors that contribute to 

course dropout [51, 136, 137]. Although server-side activity logs are easy to collect and can 

reveal insightful information, mouse clicks and keystrokes are relatively sparse in a single 

learning session. More importantly, they reveal learners' actions rather than actual cognitive 

states in learning. There is still little direct measurement of learners’ actual learning process in 

MOOCs.  

This dissertation explores the continual collection and use of spontaneous PPG signals 

and heart rate as a fine-grained feedback channel in MOOC learning. Such physiological signals 

correlate directly with learners' physiological states and cognitive states [96] and can 

complement today's log analysis techniques.  
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2.2 AFFECTIVE-COGNITIVE STATE AND LEARNING 

It has been widely acknowledged that cognition, motivation, and emotion are the key 

components of learning [2, 55, 128]. Previous studies have shown that learners experience a rich 

diversity of learning-centered affective states, including Engagement/Flow, Boredom, Confusion, 

Curiosity, Happiness, and Frustration in the process of learning [2, 7, 29]. Affective-cognitive 

states are highly relevant and influential to both the processes and outcomes of learning. 

Experimental mood studies have found that affect influences a broad variety of cognitive process 

that contributes to learning, such as perception, attention, cognitive-problem solving, decision 

making, and memory processes [90]. Positive affect (e.g., flow and confusion) could promote 

rational processing of information and induce relational processing [92], while negative affect 

(e.g., Boredom and Frustration) “produce task-irrelative thinking, thus reducing cognitive 

resources available for task purposes, and undermine students’ intrinsic motivation” [90]. For 

example, Boredom, a commonly observed affective state during learning, could disengage 

learners from educational activities and seriously decrease learners’ abilities to acquire 

knowledge [119]. Boredom was also found to be an antecedent to gaming the educational system 

[7] and negatively correlated with learning performance [7, 33].  

2.3 DETECTING AND RESPONDING TO AFFECTIVE-COGNITIVE STATE IN 

EDUCATION 

Because of the important correlation between affective-cognitive states and learning, researchers 

have built various learning environments which detect and respond to learners’ affective and 
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cognitive states [23, 36, 42, 43, 58, 98, 102, 115, 116, 128, 140]. These systems collect 

physiological signals, such as heart rates [52, 55, 59, 127], galvanic skin responses (GSR) [12, 

127, 128], facial expressions [61, 128, 135], eye gazes [12, 42, 58, 98], and EEG signals [98, 

115, 116, 127, 140], etc., and use machine learning algorithms to predict students’ affective and 

cognitive states (e.g., attention, boredom, confusion, mind wandering, etc.) while they are 

interacting with the system. These affect-sensitive systems then dynamically respond to the 

sensed affective and cognitive states using pedagogical strategies, such as direct feedback [34, 

35, 42], pedagogical agent [6, 128, 135], and adaptive activities [116].  

AutoTutor [35, 36, 55] is a pioneer in detecting and adapting to learners' affect from 

multi-channel physiological signals in an intelligent tutoring system. The authors used 

supervised machine learning algorithms to achieve satisfactory performance on affect 

classification (Kappa = 0.35 for predicting valence, Kappa = 0.23 for predicting arousal). A set 

of production rules were designed to dynamically map students’ cognitive and affective states 

with appropriate tutor actions. Through an 84 participant between-subject study, the authors 

found the affect-sensitive AutoTutor more effective for low-domain knowledge students. Low 

domain knowledge students learned significantly more from the affect-sensitive AutoTutor 

(54.9% learning gains) than the regular tutor (38.2% learning gains); while the students with 

more knowledge didn’t benefit from the affect-sensitive AutoTutor (19.8% learning gains vs. 

37% learning gains). 

To predict students’ affective states, the Wayang intelligent tutor [6, 128] used four types 

of sensor data: facial expressions, seat pressure, mouse pressure and GSR. Empirical studies 

showed that the animated affect-aware agents improved average learning gains by 12% after 
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only two classes and had benefits such as improving learners’ self-concept and making them 

more engaged. 

Gaze Tutor [42] monitors a student’s gaze patterns to identify when the student is 

disengaged or zoning out. The tutor attempts to re-engage the student with direct gaze-reactive 

statements. A 48 participant evaluation study showed that students provided more accurate 

responses to deep reasoning questions when they interacted with the gaze-reactive tutor (31.3% 

learning gains) than the non-gaze-reactive tutor (0% learning gains). Furthermore, the gaze-

reactive statement associated with a significant improvement for students with high aptitude, 

while not as effective for students with average aptitude. 

 Szafir et al. [116] developed an adaptive-review technology which monitored learners' 

attention using their EEG signals and adaptively provided reviews on topics with low-attention 

levels. Results of a 48-participant user study showed that the adaptive review technology 

significantly increased learning gains compared with the no review baseline (57.35% vs. 

39.71%), while no difference were found in learning between the adaptive and full conditions 

(57.35% vs. 58.33%). 

 One common problem with most of these systems [36, 42, 116, 128]  is the requirement 

of dedicated sensors, such as cameras, chest bands or EEG headsets to collect physiological 

signals. The cost, availability, and portability of such equipment have prevented the wide 

adoption of such systems beyond lab settings. A “sensorless” approach to collect physiological 

signals is necessary in order to make the cognitive-aware learning systems widely adopted 

beyond lab settings.  
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3.0  LENSGESTURE AND THE TANGIBLE VIDEO CONTROL CHANNEL 

 

Figure 3. AttentiveLearner uses the back camera as both a tangible video control channel and an implicit heart 

rate sensing channel in MOOC learning. 

 

In AttentiveLearner, on-lens finger gestures are used as an intuitive control mechanism for video 

playback (Figure 3). A learner plays the instructional video by covering and holding the back 

camera lens with her fingertip, pausing the video by uncovering the lens. Such a tangible video 

control mechanism has two advantages when compared with traditional touchscreen widgets: 1) 

the "cover-and-hold-to- play" mechanism enables more flexible video control; 2) this approach 

allows the implicit extraction of PPG signals via commodity-camera-based 

photoplethysmography (PPG) [53] in MOOC learning.  

To implement the tangible video control interface, I begin with a more general question, 

that is, “can we use finger gestures on the back camera lens to support general mobile 
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interactions?” I did a systematic exploration of the design space of on-lens finger gestures and 

proposed a general interaction technique, LensGesture, which leverages finger gestures on the 

back camera lens to support mobile interactions. In this section, I first describe the design, 

implementation, and evaluation of LensGesture. Then, I optimize and evaluate LensGesture 

specifically for controlling video playback in the context of AttentiveLearner. Implementation of 

LensGesture can be downloaded from http://mips.lrdc.pitt.edu/lensgesture. The contents of this 

chapter can be found in the published papers [130] and [133].  

3.1 LENSGESTURE 

LensGesture is initially motivated by the challenges faced by one-handed mobile interaction. 

When a user interacts with her phone with one hand, the user's thumb, which is neither accurate 

nor dexterous, becomes the only channel of input for mobile devices, leading to the notorious 

"fat finger problem" [10, 138], the “occlusion problem” [10, 124], and the "reachability 

problem” [126]. In contrast, the more responsive, precise index finger remains idle on the back 

of mobile devices throughout the interactions. Because of this, many compelling techniques for 

mobile devices, such as multi-touch, became challenging to perform in such a "situational 

impairment" [107] setting. 

 Many new techniques have been proposed to address these challenges, from adding new 

hardware and new input modality [10, 113, 124, 125], to changing the default behavior of 

applications for certain tasks [138]. Due to challenges in backward software compatibility, 

availability of new sensors, and social acceptability [99], most of the solutions are not 

immediately accessible to users of existing mobile devices. 

http://mips.lrdc.pitt.edu/lensgesture
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Figure 4. LensGesture in use for menu navigation. 

 

 Motivated by these challenges, I propose LensGesture (Figure 4), a mobile interaction 

technique which provides a new input channel via finger gestures on the back camera of mobile 

devices.  

3.1.1 The LensGesture Taxonomy 

I propose two groups of interaction techniques, Static LensGesture and Dynamic LensGesture, 

for finger initiated direct touch interactions with mobile cameras (Figure 5). 

Static LensGesture (Figure 5, top row) is performed by covering the camera lens either 

fully or partially. Supported gestures include covering the camera lens in full (i.e., full covering 

gesture) and covering the camera lens partially (e.g., partially covering the left, right, and bottom 

region of the lens1). Static LensGesture converts the built-in camera into a multi-state push 

                                                 

1 According to informal tests, I found the top-covering gesture both hard to perform and hard to distinguish 

(when compared with left-covering gestures, Figure 6, third row, first and last images). So I intentionally removed 

the top-covering gesture as a supported Static LensGesture. Please also note that the definition of “top”, “left”, 

“right” and “bottom” depends on the holding position (e.g., portrait mode or landscape mode) of the phone. 
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button set. Interestingly, the edge/bezel of the camera optical assembly can provide natural 

tactile feedback to the user’s index finger when performing static gestures.  

 

Figure 5. The LensGestures Taxonomy.  

Top: Static LensGestures; Bottom: Dynamic LensGestures. 

 

A user can also perform a Dynamic LensGesture (Figure 5, bottom row) by swiping her 

finger horizontally (left and right) or vertically (up and down) across the camera lens. Dynamic 

LensGestures convert the back camera into a four-way, analog pointing device based on relative 

movement sensing.  

3.1.2 The LensGesture Algorithm 

I designed a set of three algorithms to detect full coverage, partial coverage and dynamic swiping 

of fingers on the lens. Depending on usage scenarios, these three algorithms can be cascaded 

together to support all or part of the LensGesture set. In all LensGesture detection algorithms, the 

camera is set in preview mode, capturing 144x176 pixel color images at a rate of 30 frames per 

second. I disable the automatic focus function and the automatic white balance function to avoid 

interference with the algorithms.  
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Figure 6. Sample images of Static LensGesture.  

First row: no gesture. Second row: full covering gestures. Third row: partial-covering gestures. Left to right: left-

covering, right-covering, bottom-covering, and top-covering (not supported). 

 

 Static LensGesture - Full covering: The full covering gesture (Figure 6, second row) 

can be detected quickly and reliably via a linear classification model on the global mean and 

standard deviation of all the pixels in an incoming image frame in the 8-bit grayscale space. The 

intuition behind the underlining detection algorithm is that when a user covers the camera’s lens 

completely, the average illumination of images drops, while the illumination among pixels in the 

image will become homogeneous (i.e., smaller standard deviations).  

 Figure 7 shows a scatter plot of global mean vs. global standard deviation of 791 test 

images (131 contained no LensGesture; 127 contained full-covering gestures; 533 contained 

partial covering gestures). I collected test images from 9 subjects and in four different 

environments:  1) indoor bright lighting, 2) indoor poor lighting, 3) outdoor direct sunshine, and 

4) outdoor in the shadow. All the subjects in the data collection stage were undergraduate and 

graduate students at the University of Pittsburgh, recruited through school mailing lists. The 

number of samples in each environment condition is evenly distributed.  When I choose mean <= 
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100, stdev <=30 as the linear decision boundaries for detecting full-covering gestures 

(highlighted in Figure 7), I can achieve an accuracy of 97.9%, at a speed of 2.7ms per estimate. 

While more advanced detection algorithms could improve the accuracy, an accuracy of 97.9% is 

sufficient in interactive applicants where users can adapt their behaviors via real-time feedback.  

 

Figure 7. The full-covering LensGesture classification.  

Global mean vs. standard deviation of all the pixels in images with (full-covering: red dots, partial covering: green 

dots) and without (blue dots) Static LensGestures. Each dot represents one sample image. 

 

 Static LensGesture - Partial covering: To detect partial covering gestures in real time, I 

designed three serial cascaded binary kNN (k=5) classifiers to detect covering-left, covering-

bottom, and covering-right gestures. After deciding that the current frame does not contain a full 

covering gesture, the image will be fed to the covering-left, the covering-bottom, and the 

covering-right classifier one after the other. If a partial covering gesture is detected, the 

algorithm will stop immediately, if not, the result will be forwarded to the next binary classifier. 

If no partial-covering gesture is detected, the image will be labeled as “no gesture”. I adopted 

this cascading approach and the kNN classifier primarily for speed concerns. 
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Figure 8. Extracting local features for the partial-covering LensGestures.  

From left to right, extracting local features from Region L (covering-left classifier), Region B (covering-bottom 

classifier), and Region R (covering-right classifier). 

 

The features I used in the kNN classifiers include both global features (mean, standard 

deviation, maximal and minimal illuminations in the image histogram) and local features (same 

features in a local bounding box, defined in Figure 8). There are two parameters (w, l) that 

control the size and location of the local bounding boxes. The (w, l) values (unit=pixels) should 

be converted to a relative ratio when used in different preview resolutions. 

 

Figure 9. Classification accuracies of partial-covering classifiers.  

Left to right: covering-left, covering-bottom, covering-right. 

 

I use the data set described in the previous section, and ten-fold classification to 

determine the optimal values (w and l) for each classifier (Figure 9).  As shown in Figure 9, I 
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found that for the covering-left classifier, w = 24, l = 40 will give us the highest binary 

classification accuracy at 98.9%. For the cover-bottom classifier, w = 4, l = 0, gives the highest 

accuracy at 97.1%, for the covering-right classifier, w = 4, l = 100, gives the highest accuracy at 

95.9%.  The overall accuracy of the cascaded classification is 93.2%. The speed for detecting 

partial covering ranges from 16 – 42 ms.  

 

Figure 10. The difference between image sequences captured by LensGesture (up) and TinyMotion (down) in the 

same scene. 

 

Dynamic LensGesture: The Dynamic LensGesture algorithm is based on the TinyMotion 

algorithm [121] with minor changes and additional post-processing heuristics. TinyMotion [121] 

detects the movement of a cell phone in real time by analyzing image sequences captured by its 

built-in camera. The TinyMotion algorithm detects motion by calculating the block shifting 

distance between two temporally adjacent frames. It applies a Full-search Block Matching 

algorithm (FBMA) [5] to compare the pixel blocks shifted in the current frame with 

corresponding pixels in the previous frame. A motion vector  is calculated to 

represent the relative distance changes in the x and y directions from the previous frame. The 

source code of TinyMotion can be downloaded at 

http://people.cs.pitt.edu/~jingtaow/tinymotion/download.html. As reported by Wang, Zhai, and 

http://people.cs.pitt.edu/%7Ejingtaow/tinymotion/download.html
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Canny in [121], TinyMotion users discovered that it was possible to put one’s other hand in front 

of the mobile camera and control motion sensing games by moving that hand (Dynamic 

LensGestures) rather than moving the mobile phone (TinyMotion). However, as shown in Figure 

10, the fundamental causes of image change are quite different in TinyMotion and LensGesture. 

In TinyMotion (Figure 10, bottom row), the algorithm detects the background shifting caused by 

lateral movement of mobile devices.  When performing Dynamic LensGestures (Figure 10, top 

row), the background keeps almost still while the fingertip moves across the lens. Another 

important observation is that in Dynamic LensGesture, a user’s finger will completely cover the 

lens in one or two frames, making brute force motion estimation results noisy. Therefore, I need 

to modify the TinyMotion algorithm in order to detect Dynamic LensGestures.  

Figure 11 shows the relative movements from the TinyMotion algorithm, as well as the 

actual images captured when a left-to-right Dynamic LensGesture was performed. In Figure 11, I 

see that although the TinyMotion algorithm successfully captured the strong movements in the x-

axis (frames 3, 4, 5, 7, 8, 10, 11), estimations became less reliable (frame 6) when a major 

portion of the lens was covered. To address this issue, I use a variable weight-moving window to 

process the raw output from the TinyMotion algorithm. I give the output of the current frame a 

low weight when a full covering action is detected. The Dynamic LensGesture detection 

algorithm works as follows: After the algorithm first detects a relative movement in consecutive 

image frames captured by the camera, it calculates and accumulates the weighted relative 

movements in the x and y axes on the following image frames until no movement is detected, 

meaning that the Dynamic Gesture has been completed. The algorithm then determines the 

direction of the Dynamic Gesture based on which direction has the overall largest relative 

movement.     
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Figure 11. The plot of the distant changes in both x and y directions for 20 image samples of a Dynamic 

LensGesture. 

 

I collected 957 sets of Dynamic LensGesture sample from 12 subjects (241 move-to-right 

gesture samples, 240 move-to-left gesture samples, 238 move-up gesture samples, and 238 move-

down gesture samples). The subjects were asked to hold the mobile phone with either their left 

hand or right hand, and make each type of Dynamic Gestures on the back camera lens for 20 

times while the camera captured the image frames at 30Hz. All subjects were undergraduate or 

graduate students at the University of Pittsburgh, recruited through school mailing lists. Two 

move-up gesture samples and move-down gesture samples were removed due to the poor image 

quality. There were more than 30000 images in this data set. For each Dynamic LensGesture, 

depending on the finger movement speed, 10-20 consecutive images were usually captured. I 

achieve an accuracy of 91.3% for detecting Dynamic LensGestures on this dataset, at a speed of 

3.9 ms per estimate. I looked deeper into the misclassified sample sequences and found that most 

errors were caused by the confusion between the swiping down and the swiping left gestures. 

Most of the misclassified sequences looked confusing even to human eyes because the actual 

swiping actions were diagonal rather than vertical or horizontal. I attribute this issue to the 
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relative positioning of the finger and the lens, as well as the lack of visual feedback during data 

collection.  

3.1.3 The LensGesture Applications 

 

 

Figure 12. Sample LensGesture applications. From left to right, top to bottom - LensLock, LensCapture, LensMenu, 

LensQWERTY, LensAlbum, and LensMap. 

 

To explore the efficacy of LensGesture as a new input channel, I wrote six applications 

(LensLock, LensCapture, LensMenu, LensQWERTY, LensAlbum, and LensMap). All these 

prototypes can be operated by Static or Dynamic LensGestures (Figure 12). All but one 

application (LensQWERTY) can be operated with one hand. 

 LensLock leverages the Static LensGesture and converts the camera into a "clutch" for 

automatic view orientation changes. When a user covers the lens, LensLock locks the screen at 

the current landscape/portrait format until the user's finger releases from the lens. LensLock can 

achieve the same "pivot-to-lock" technique proposed by Hinckley [54] without using the thumb 

finger to touch the front screen, which may lead to unexpected state changes. 
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LensQWERTY uses Static LensGesture to control the SHIFT state of a traditional on 

screen QWERTY keyboard. The user can use the hand holding the phone to toggle the SHIFT 

state when the other index finger is being used for typing. 

LensAlbum and LensMap are two applications that leverage Dynamic LensGestures for 

one-handed photo album/map navigation. These two application shows that LensGesture can 

alleviate “fat finger problem” and the “occlusion problem” by avoiding direct thumb interaction 

on the touch screen. The LensMenu also illustrates a feasible solution to the "reachability 

problem" via a supplemental back-of-device input channel enabled by LensGestures. 

3.1.4 Implementation 

I implemented LensGesture on a Google Nexus S smartphone. I wrote the LensGesture 

algorithms and all the LensGesture applications in Java. The LensGesture algorithm can be 

implemented in C/C++ and compiled to native code via Android NDK if higher performance is 

needed. Source code of LensGesture can be downloaded from 

http://mips.lrdc.pitt.edu/lensgesture.  

3.1.5 Evaluation 

Although the results of our LensGesture algorithm on pre-collected data sets were very 

encouraging, a formal study was necessary to understand the capabilities and limitations of 

LensGesture as a new input channel. 

http://mips.lrdc.pitt.edu/lensgesture
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3.1.5.1 Experiment Design 

The whole study took less than one hour, and each participant was compensated with a 

$10 gift card after completing all tasks. The study consisted of six parts: 

Overview. I first gave participants a brief introduction to the LensGesture project. I 

explained each task to them, and answered their questions.  

Reproducing LensGestures. This session was designed to test whether users could learn 

and comfortably use the LensGestures I designed, and how accurate/responsive the gesture 

detection algorithm was in a real-world setting.  A symbol representing either a Static 

LensGesture or a Dynamic LensGesture was shown on the screen (Figure 13, (1) (2)). 

Participants were required to perform the corresponding LensGesture with their index fingers as 

fast and as accurately as possible. The application would still move to the next stimulus if a user 

could not perform the expected gesture within the timeout threshold (5 seconds). A user 

completed 20 trials for each supported gesture. The order of the gestures was randomized. 

 

Figure 13. Screen shots of applications in the user study. 

 

Target Acquisition/Pointing. The goal of this session was to quantify the human 

performance of using LensGesture to perform target acquisition tasks. For each trial, participants 
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needed to use Dynamic LensGestures to drive an on-screen cursor from its initial position to the 

target (Figure 13, (3)). After the cursor hit the target, participants were required to tap the screen 

to complete the trial. Regardless of whether participants hit the target or not, the target 

acquisition screen disappeared and an information screen indicating the number of remaining 

trials in the current block would show up. I encouraged participants to hit the target as fast as 

possible and as accurately as possible. Each participant completed 160 randomized trials.  

Text Input. In this task, I compared the performance of standard Android virtual keyboard 

with the LensQWERTY keyboard (Figure 13, (4)).  

Each participant entered 13 short phrases in each condition. The 13 test sentences were: 

“Hello”, “USA”, “World”, “Today”, “John Smith”, “Green Rd”, “North BLVD”, “Lomas De 

Zamora”, “The Great Wall”, “John H. Bush”, “Sun MicroSystem”, “Mon Tue Wed Thu”, and 

“An Instant In The Wind”. These test sentences were intended to maximize the usage of 

LensGesture based shifting feature and simulate commonly used words in a mobile environment 

(person names, place names, etc.).  

Other Applications. In this session, Participants were presented with five LensGesture 

applications I created (LensLock, LensCapture, LensMenu, LensAlbum, and LensMap, Figure 

12).  After a brief demonstration session, I encouraged the participants to play with these 

applications as long as they wanted.  

Collect Qualitative Feedback. After a participant completed all tasks, I asked him or her 

to complete a questionnaire (B.1). I also asked the participant to comment on each task, and 

describe one’s general feeling towards LensGesture. 
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3.1.5.2 Participants and Apparatus 

16 subjects (4 females) between 22 and 30 years of age participated in our study. 15 of 

the participants owned a smartphone. The user study was conducted in a lab with abundant light. 

All of the participants completed all tasks. 

Our experiments were completed on a Google Nexus S smartphone with a 480 x 800 

pixel display, a 1GHz ARM Cortex-A8 processor, running Android 4.0.3. It has a built-in 5.0 

mega-pixel back camera located at the upper right region. 

3.1.5.3 Evaluation Results 

Reproducing LensGestures 

 

Figure 14. Average response time of Static and Dynamic LensGestures with one standard deviation error bars. 

 

As shown in Figure 14, the time needed to perform a static gesture varied on gesture type. 

Repeated measure variance analysis showed significant difference due to gesture type: F(7, 120) 

= 9.7, p < .0001. Fisher’s post hoc tests showed that the response time of full-occlusion gesture 
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(787 ms) was significantly shorter than any of the partial occlusion gestures (left = 1054 ms, p < 

0.01; right = 1374 ms, p < 0.0001; bottom= 1175 ms, p < 0.0001) and dynamic gestures. The left 

partial occlusion gesture is significantly faster than right partial occlusion, p < 0.01, the speed 

differences between other partial occlusion gestures are not significant. For Dynamic Gestures, 

the move-right gesture (1258.6 ms) was significantly faster than move-left (1815.2 ms, p < 0.01) 

and move-down (1540.6 ms, p < 0.05) gestures, but there was no significant time difference 

between move-right and move-up (1395.7 ms, p= 0.15). The move-up gesture was also 

significantly faster than move-left (p < 0.01). The differences in detection time of Dynamic 

LensGestures might be caused by the location of the camera. The camera was located on the 

upper right region of the experiment device, making it easier to make the move-right and move-

up gesture.   

Target Acquisition/Pointing 

 

Figure 15. Scatter-plot of the Movement Time (MT) vs. the Fitts’ Law Index of Difficulty (ID) for the overall target 

acquisition task controlled by Dynamic LensGestures. 
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2560 target acquisition trials were recorded. 2298 pointing trials were successful, 

resulting in an error rate of 10.2%. This error rate is about twice as that of popular pointing 

devices in Fitts’ law studies. After adjusting target width W for the percentage errors, linear 

regression between movement time (MT) and Fitts’ index of difficulty (ID) is shown in Figure 

15: 

MT = 0.594 + 1.8769 log2(A/We+1)    (sec) 

In the equation above, A is the target distance and We is the effective target size. While 

the empirical relationship between movement time (MT) and index of difficulty (ID = log (A/We 

+ 1)) followed Fitts’ law quite well (with R2 = 0.9427, see Figure 15), the information 

transmission rate 1/b = 1/1. 1.8769 = 0.53 bits/sec) indicated a relatively low performance for 

pointing.  In comparison, Wang, Zhai and Canny [121] reported a 0.9 bits/sec information 

transmission rate for device motion based target acquisition on camera phones. I attribute the 

performance difference to the usage patterns of Dynamic LensGestures - due to the relatively 

small touch area of the built-in camera, repeated finger swiping actions are needed to drive the 

on-screen cursor for a long distance. I believe that the performance of LensGesture could be 

improved with better algorithms and faster camera frame rates in the future. More importantly, 

since LensGesture can be performed in parallel with interaction on the front touch screen, I 

believe that there are opportunities to use LensGesture as a supplemental input channel and even 

use LensGesture as a primary input channel when the primary channel is not available.  
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Text Input 

 

Figure 16. Text entry speed from the experiment with one standard deviation error bars. 

 

As shown in Figure 16, the overall speed of LensGesture enabled virtual keyboard, i.e., 

LensQWERTY (13.4 wpm), was higher than that of the standard virtual keyboard (11.7 wpm).  

The speed difference between these two keyboards was significant F(1, 15) = 4.17, p < 0.005. 

The uncorrected error rate was less than 0.5% for each condition. The average error rates for the 

standard keyboard and LensQWERTY were 2.1% and 1.9% respectively. The error rate 

difference between the standard keyboard and LensQWERTY was not significant (p = 0.51). 

Other Applications and Subjective Feedback 

All participants can learn to use the LensGestures applications I provided with minimal 

practice (< 2 min). Almost all participants commented that the portrait/landscape lock feature in 

LensLock was very intuitive and much more convenient than alterative solutions available on 

their own smartphones. Participants also indicated that changing the “shift” state of a virtual 

keyboard via LensGesture was both easy to learn and time saving. 
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 The participants reported positive experiences with LensGesture. All participants 

consistently rated LensGesture as “useful” on the closing questionnaire using a five-point Likert 

scale. When asked about how easy it was to learn and use LensGesture, 13 participants selected 

“easy”. 9 participants commented explicitly that they would use LensGesture on their 

smartphones. 4 of them expressed a very strong desire to use LensGesture applications every 

day. 

3.1.6 Summary 

LensGesture is a pure software approach for augmenting mobile interactions with back-of-device 

finger gestures. LensGesture detects full and partial occlusion as well as the dynamic swiping of 

fingers on the camera lens by analyzing image sequences captured by the built-in camera in real 

time. I report the feasibility and implementation of LensGesture as well as newly supported 

interactions. Both offline benchmarking results and a 16-subject user study show that 

LensGestures are easy to learn, intuitive to use, and can complement existing interaction 

paradigms used in today's smartphones. 

3.2 OPTIMIZING LENSGESTURE FOR TANGIBLE VIDEO CONTROL 

LensGesture is a general interaction technique and it could be used in various usage scenarios. 

For example, since the Static LensGesture basically converts the built-in camera into a multi-

state push button set, it could be used as a switch to “turn on/off” various functions, such as 

lock/unlock the screen orientation, open/close applications. One specific use case for the Static 
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LensGesture is to control video play, i.e., covering the camera lens to play video, and uncovering 

the lens to pause the video. This LensGesture-based video control mechanism is adopted in 

AttentiveLearner.  

There are two major differences between usage scenarios of LensGesture in Chapter 3.1 

and those in AttentiveLearner. First, the flashlight of the mobile camera is on by default in 

AttentiveLearner to improve heart rate measurements in low illumination conditions2; second, 

the original Static LensGesture algorithm only determines the coverage of camera lens without 

differentiating whether the coverage was by a finger or inorganic surfaces (e.g., putting the 

phone on a desk).  

Flashlight on Flashlight off

 

Figure 17. Samples images collected during the study.  

First row: the lens is not covered. Second row: the lens is covered. Third row: the lens is partially covered (first two 

images) or blocked by surface (last two images). 

 

To enhance the lens covering detection algorithm based on AttentiveLearner’s unique 

requirements, I rebuilt the linear classification model of Static LensGesture detection. Again, I 

                                                 

2 The flashlight in AttentiveLearner can be turned off if the environmental illumination is sufficient.  
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collected 483 representative test images in 4 (lens fully covered by finger, lens partially covered 

by finger, lens blocked by opaque surface, lens uncovered) x 2 (flashlight on, flashlight off) x 4 

(indoor high illumination, indoor low illumination, outdoor direct sunshine, and outdoor in the 

shade) conditions from 10 subjects. All the subjects were graduate students at the University of 

Pittsburgh, recruited through school mailing lists. Figure 17 shows some sample images 

collected.  
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Figure 18. Global mean vs. standard deviation of pixels in sample images.  

No-covering: blue dot, full-covering-by-fingertip: red dot, partial-covering-by-fingertip: green dot, blocked-by-

surface: purple dot.  Left: samples when the flashlight was on. Right: samples when the flashlight was off. 

 

Figure 18 shows scatter plots of global mean vs. global standard deviation of all test 

images when the flashlight was on (left) and off (right) respectively. I found that when the 

flashlight was turned on, the full-covering-by-fingertip samples (inside the black rectangle) are 

more aggregated than when the flashlight was off. I also observed turning on the flashlight can 

significantly reduce the variations caused by environmental illumination (Figure 17’s left second 

row vs. Figure 17’s right second row). I achieved an accuracy of 99.59% when using 60 ≤ mean 

≤ 90, stdev ≤ 15 as the decision boundaries for detecting lens-covering gestures. The only two 
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misclassifications were false positives when the mobile phone was on a red semi-transparent 

plastic surface (of a plastic flying disc). AttentiveLearner can reject such false positives by 

incorporating output from the heart rate sensing module since non-body parts cannot generate 

periodic transparency changes expected by the PPG detection algorithm.  

3.3 USABILITY 

Other than accuracy, I also systematically investigated the usability of the lens-covering based 

video control interface from other aspects, such as speed and battery life. 

3.3.1 Speed 
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Figure 19. Participants’ average response time using the TouchWidget vs. LensGesture to control video play 

 

I quantitatively studied the responsiveness of the AttentiveLearner tangible video control channel 

and a traditional touchscreen widget. I ran an 18-participant (7 females) study to measure the 

response time of both interfaces. In the experiment, in response to a randomly appearing visual 
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stimulus (a 200dp x 200dp "Play" icon in the center of the screen), participants were instructed to 

play the video by either touching the on-screen “Play” button (traditional, widget interface) or by 

covering the camera lens (the AttentiveLearner tangible video control channel) as fast as 

possible. Each participant completed 20 trials in each condition, and the order of conditions was 

counterbalanced. The participants could choose their preferred hands to complete all the tasks. I 

used a Nexus 5 smartphone with a 5 inch, 1080 x 1920 pixel display for the experiment.  

 I collected 360 successful inputs from the traditional interface and 359 successful inputs 

from the tangible video control interface (the only invalid input happened when the subject 

covered the lens before the “Play” icon appeared). Figure 19 shows the results. The average 

response time of the traditional interface was 462.6ms (σ = 109.3); the average response time of 

the tangible video control interface was 625.9ms (σ = 171.1). Although the tangible interface in 

AttentiveLearner was 160ms slower, it is acceptable for interactive tasks such as playing and 

pausing a video. I attribute the current delay to two reasons. First, there is a 30ms latency caused 

by the 30fps camera frame sampling rate and follow-up image processing. Second, the new 

tangible video control channel was less familiar to the participants. It is expected that the users' 

response time will decrease when high frame rate cameras become popular, and the learners have 

more practice with the tangible interface. 

3.3.2 Comfort 

One major usability concern is whether it is comfortable and natural to cover and hold the 

camera lens during video watching. To address this issue, I reviewed representative smartphones 

on the market. I found that the touchscreens of most phones were 4 to 5.7 inches, and the back 

cameras were located in the upper region of the device. When holding the mobile phone in 
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landscape mode, index or middle fingers of the same hand can naturally reach and cover the lens 

under normal grip in both one-handed and two-handed holding postures. Figure 20 shows 

various lens-covering postures I observed during the MOOC learning study presented in Chapter 

5. Despite the various fingers and postures used, my algorithm can detect lens-covering actions 

accurately. The only problematic posture I found was to cover the lens with a whole palm. In this 

situation, the collected heart rate signals were weak and unreliable. I also collected the users’ 

subjective preference on the tangible video control channel in an 18-subject MOOC learning 

study to be detailed in Chapter 5. Results showed that participants could comfortably use 

AttentiveLearner to watch lecture videos without pausing for at least 8 minutes. Eight minutes is 

longer than the recommended 6-min duration of MOOC videos [51]. For longer video clips, the 

learners can pause the video by uncovering the lens at any time. 

 

Figure 20. Users cover the lens using various hand postures (back camera is in the top right corner). 

3.3.3 Lens Damage 

I consulted design experts in leading mobile phone manufacturers to see if covering and swiping 

directly on the surface of the lens scratch or damage the lens. According to them, mainstream 

optical assemblies in the mobile phones have been carefully designed to avoid damages from 
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accidental drops, scratches, and collisions. The external unit in an optical unit is usually made of 

crystal glass, cyclic olefin copolymer, or sapphire. While they are not scratch free, these 

materials are strong enough to resist frictions caused by finger touch. Interestingly, the 

surrounding bezel of the camera is usually made of a different material, slightly higher than the 

external lens surface. Such material and height difference provide excellent tactile feedback for 

both locating the lens and performing different LensGestures (especially partial occlusion 

gestures and dynamic gestures). 

3.3.4 Battery Life 

I ran three mini-experiments to test the impact of AttentiveLearner on battery life. I used a Nexus 

5 smartphone running Android 5.0.1 for the mini-experiments. I compared the battery life with 

both the built-in video player in Android and AttentiveLearner. I tested battery life with 50% 

backlight of the screen.  

 As shown in Table 2, AttentiveLearner can run 2.5 hours after a full charge, which is a 

60% playtime reduction when compared with the built-in video player. The playtime can be 

significantly improved considering that 1) Nexus 5 has a below average battery life when 

compared with existing smartphones on the market; 2) Hardware-accelerated video decoding 

was used by the built-in video player but not AttentiveLearner in the experiment. Implementing 

hardware-accelerated decoding could significantly improve the battery life of AttentiveLearner. 

Last but not least, considering that the average time spent in lecture videos is 2 to 3 hours per 

week for devoted certificate earners [108] and people usually charge their smartphones daily, I 

believe that the 2.5-hour battery life is enough to support most learners in MOOCs or flipped 

courses.  
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Table 2. Battery life in video playback 

Condition Duration 

Built-in video player 6 hours 19 minutes 

AttentiveLearner, flashlight off 3 hours 57 minutes 

AttentiveLearner, flashlight on 2 hours 31 minutes 
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4.0  LIVEPULSE AND THE IMPLICIT PPG SENSING MODULE 

AttentiveLearner captures each learner’s physiological signals implicitly during learning via 

commodity-camera-based photoplethysmography (PPG). The underlying theory is: in every 

cardiac circle, the heart pumps blood to the capillary vessels of a human body, including 

fingertips.  The arrival of fresh blood changes the transparency of fingertips. Such transparency 

changes correlate directly with heart rates, and can be detected by the built-in camera when the 

user covers the camera lens with her finger tip.  

 This chapter presents an algorithm I have developed, LivePulse, which analyzes changes 

in the transparency of learners’ fingertip to get real-time PPG signals and heart rate while 

learners cover the back camera lens (to watch the MOOC videos). I also present an 18-

participant user study which demonstrates the feasibility of implicit physiological signal sensing 

via AttentiveLearner during actual MOOC learning sessions. The contents of this chapter can be 

found in the published papers [53] and [130]. Implementation of LivePulse algorithm can be 

downloaded from http://mips.lrdc.pitt.edu/bayesheart.  

4.1 LIVEPULSE 

LivePulse is essentially a camera based heart rate detection algorithm. Although camera based 

heart rate detection algorithms have been reported previously [9, 93], the previous algorithms 

http://mips.lrdc.pitt.edu/bayesheart
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were not optimized for extracting heart rates from noisy and intermittent covering actions and 

both algorithms require a long bootstrap time before generating the first estimate (20 seconds in 

[9], 9 seconds in [93]) in clean and continual measurements.  For commercial products, such as 

Instant Heart Rate [56], and Cardiograph [18], their algorithms were never disclosed, and neither 

app could extract heart rates if there are finger movements during the measurement. To achieve 

better robustness and shorter bootstrap time for noisy, intermittent signals from implicit user 

interactions, I designed my own algorithm that could meet the speed, accuracy and robustness 

requirement of this project. 

4.1.1 Algorithm Design 

Instead of using component analysis and then transforming signals to the frequency domain [8, 

93, 97], the LivePulse algorithm extracts PPG signals and heart rate information directly from 

the relatively noisy temporal signal. I made this decision because I expect the LivePulse 

algorithm could run efficiently on mobile devices in real-time and leave enough CPU power to 

handle the media player. Matrix factorization operations and frequency domain transformations 

are still expensive on mobile devices even with support from mobile GPUs.  

In the LivePulse algorithm, the camera is set in preview mode, capturing 144x176 pixel 

color images at a rate of 30 frames per second. I disable the automatic focus function and the 

automatic white balance function to avoid interference with the algorithm. The built-in flashlight 

is turned on to improve performance in low illumination conditions. 

When a lens covering action is detected (Static LensGesture detection algorithm), the 

LivePulse algorithm extracts heart rates via a 6-step, heuristic based process detailed below. 
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Figure 21. Major steps of the LivePulse algorithm  

(a. Signal preprocessing; b. Locating raw local peaks & valleys; c. Locating valid peaks & valleys; d. Locating 

raw zero-crossings; e. Locating valid zero-crossings). 
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Step 1: The LivePulse algorithm first converts each image frame captured by the built-in 

back camera into one time-stamped heart beat sample point via equal distance sampling and the 

summation of 800 pixels on the Y (luminance) channel in each frame (Figure 21.a). The signal is 

flipped in y-axis to match waveform output tradition of existing PPG techniques. In this way, I 

derive a set of time-stamped signal vectors. This step generates the PPG signals, from which I 

extract heart rate information.  

Step 2: The algorithm then detects all the local peaks (local maximum points) and valleys 

(local minimum points) in the converted temporal sequence signal by measuring the local 

curvature changes (Figure 21.b).  

Step 3: Adjustable threshold based heuristics are applied to eliminate small and noisy 

local minima/maxima points (Figure 21.c). After the algorithm locates a new peak or valley (e.g., 

P4 in Figure 21.c), it checks the two most recent peaks (P1, P3) and valleys (P2, P4) to decide if 

the newest peak and valley (P3, P4) are indeed valid. For P3, the algorithm compares the 

amplitude of P3-to-P2 (amp2) with the amplitude of P1-to-P2 (amp1). If P3 has a small 

amplitude (less than a quarter of P1), P3 is considered as a spurious peak and removed from the 

peak list. If P3 is an invalid peak, the algorithm further checks which one of P2 and P4 is a valid 

valley for P1. The algorithm compares the amplitude of P2-to-P3 (amp2) and P4-to-P3 (amp3) to 

see which one of them has a lower value. The one with a lower value is marked as a valid valley 

for P1.  In Figure 21.c, P2 is lower than P4, so P2 is the valid valley. Based on offline 

benchmarking using the data collected in the study in Section 4.1.2, this step can remove up to 

70% invalid peaks while keeping all valid peaks in the PPG signal.  
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Step 4: Instead of estimating heart rates from two adjacent peaks/valleys directly, I found 

that it is more reliable to estimate and interpolate the time stamps of zero-crossing points 

between peaks and valleys and then derive heart rates from the time differences between two 

adjacent time stamps of zero-crossing points. The zero crossing line is dynamic, defined as the 

line with the mean Y values between two adjacent valley and peak (Figure 21.d). The time 

stamps of a zero crossing point (i.e., the zero crossing point in Figure 21.d) are linear 

interpolated values between two adjacent time stamps. 

Step 5: Similar to Step 3, the algorithm applies adjustable threshold based heuristics to 

eliminate invalid, spurious zero crossing points (Figure 21.e). In the algorithm, a valid zero 

crossing should satisfy either of the following two conditions: 1) Amplitude of the corresponding 

peak must be greater than half of the amplitude of the previous peak; 2) The interval between the 

new zero crossing and the previous zero crossing must be greater than 1000ms. For example, in 

Figure 21.e, since amp2 is less than half of amp1 and the interval between Z1 and Z2 is less than 

1000ms, Z2 is an invalid zero crossing. On the other hand, Z3 is a valid zero crossing because 

amp3 is greater than half of amp1.  

Through Step 2 to 5, the LivePulse algorithm identifies each heart beat in the PPG 

signals. The interval between two consecutive (valid) zero crossing points corresponds to one 

heart beat cycle. This interval is often referred to as RR or NN interval [3]. Using this formula: 

60000( ) / ( ),HR ms RR ms=  I can get an instant heart rate estimate for each heartbeat.  

Step 6: However, instant heart rates are unstable and could be noisy due to finger 

movement. To further improve the robustness of LivePulse, I save and sort the time stamp 

distances (RR-intervals) between adjacent zero-crossing points during the past five seconds. Real 
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time heart rate is reported when at least 80% of the time-stamp distances are within a given 

variation range (200ms) (Figure 22).  

RR1 RR2 RRi RRi+n-1 RRi+n

Last 5 seconds

RR Distribution

|RRi - RRMedium| ≤ 200

≥ 80%?

HR = 60000(ms)/RRMean  

Figure 22. Calculating heart rate. 

4.1.2 Evaluation 

 

Figure 23. Comparison between LivePulse and pulse oximeter.  

Left: 14 seconds of sample heart beat signals from LivePulse (red) and Oximeter (blue); Right: Heart rates (bpm) of 

12 subjects from LivePulse (red) and Oximeter (blue). 

 

I performed a formal user study to quantify the accuracy of LivePulse. 12 participants (3 female) 

between 19 and 27 years of age participated in my study. All the participants were undergraduate 
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or graduate students at the University of Pittsburgh. One thing to notice is that the goal of this lab 

study is to explore the feasibility of using LivePulse to estimate heart rate. I am interested in 

knowing whether the performance of LivePulse is good-enough to meet the requirement of 

AttentiveLearner. The number of participants in this study is also on par with many previous 

studies on similar topics, e.g., Nacke et al. [84] (10 Subjects), Nenonen et al. [85] (8 subjects), 

and Row et al. [105] (13 Subjects). Clinical studies with more participants would be conducted if 

I were to evaluate the efficacy of LivePulse for commercial or medical use.    

 The whole experiments took about 10 minutes. The experiments were completed on a 

Google Galaxy Nexus Smartphone with a 4.65 inch, 720 x 1280 pixels display, 1.2 GHZ dual 

core ARM Cortex-a9 processor, running Android 4.1. It has a 5 mega-pixel back camera and a 

LED flash. I also used a CMS 50D pulse oximeter with a USB interface to measure heart rate. 

This pulse oximeter is an FDA approved, medical grade device. The accuracy of CMS 50D for 

pulse ratio is  +/-2BPM. I measured participants’ heart rates in resting condition using both the 

LivePulse application running on a mobile phone and the pulse oximeter for two minutes. 

Participants sat comfortably in a chair, holding the phone with their left hands and using the 

index finger of the left hand to cover the camera lens. I attached the pulse oximeter on the index 

fingers of the participants’ right hands.  

Overall, raw PPG signals from LivePulse and the oximeter were highly consistent in both 

beat-to-beat interval and the actual wave shape (Figure 23, left). To compare the accuracy of 

LivePulse quantitatively, I aligned and re-sampled readings from both LivePulse and the 

oximeter to 20 HZ. When treating the readings from the oximeter as the gold standard, the Mean 

Error Rate (MER) of LivePulse was 3.9% (-7 ~ +5 bpm, Figure 23, right). Analysis of variance 

results showed that the differences in heart rate readings from LivePulse and the oximeter were 
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not statistically significant (F(1, 11) = 1.64, p = 0.13). Pearson product-moment correlation 

coefficient and there was a significant positive correlation between readings from LivePulse and 

oximeter, r = 0.98, t = 15.5, p < 10-7.  

Despite the relatively low MER, the maximal absolute difference could be up to 7 bpm 

between LivePulse and pulse oximeter. I attribute these outliers to noise caused by finger 

position/posture changes and background illumination changes. These outliers can be further 

eliminated by applying a low pass filtering algorithm or heuristics [8, 97] in situations where 

accuracy is more important than responsiveness. 

4.1.3 Application 

 

Figure 24. Real-time heart rate measurement via LivePulse Games (left: City Defender, right: Gold Miner). 

 

LivePulse based PPG sensing and heart rate measurement on mobile devices opens opportunities 

for collecting, interpreting and using physiological signals on smartphones. When integrated 

with LensGesture, LivePulse can extract heart rate from everyday mobile interactions implicitly, 

and this provides interesting research opportunities for healthcare, personal well-being [19], and 

adaptive learning in the future. For example, mobile intelligent tutoring systems could adapt 
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question difficulty based on learners’ stress levels inferred from heart rates measured by 

LivePulse.  

One specific application of LivePulse I have explored along with some of my colleagues 

is LivePulse Games (LPG, Figure 24) [53]. LPG integrate users’ camera lens covering actions as 

essential parts of the game so as to detect heart rate implicitly during game play. LPG make the 

heart rate monitoring task more engaging and have the potential to measure heart rate 

longitudinally in a natural and enjoyable way. LivePulse Games are open source software 

released under BSD license. The implementation can be downloaded from 

http://mips.lrdc.pitt.edu/livepulsegames. 

4.2 IMPLICIT PPG SENSING IN ATTENTIVELEARNER 

AttentiveLearner is an application of the combination of LensGesture and LivePulse used in 

educational contexts. While a learner watches MOOC videos with the tangible video control, her 

real-time PPG signals are implicitly captured using the LivePulse algorithm. I use this 

commodity camera based PPG sensing, instead of a dedicated heart rate monitor, to capture PPG 

signals for two reasons: 1) it works directly on unmodified smartphones and requires no extra 

devices, and 2) forcing learners to cover the camera lens to watch the videos could potentially 

make them pay more attention to the lecture.    

http://mips.lrdc.pitt.edu/livepulsegames
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4.3 USABILITY OF ATTENTIVELEARNER 

Even though I have systematically investigated the usability of the tangible video control 

regarding its accuracy, speed and battery life, it is still unknown whether this interface is 

comfortable to use and provides valuable physiological feedback in MOOC contexts. Therefore, 

I conducted a lab-based study to evaluate the usability of AttentiveLearner during actual MOOC 

learning sessions.  

4.3.1 Experiment Design 

The whole study took about one hour, and each participant was compensated with a $10 gift card 

after watching all MOOC videos. The study consisted of three parts: 

Overview. I first gave participants a brief introduction to the AttentiveLearner project and then 

collected background information. I demonstrated the AttentiveLearner mobile app to the 

participants and answered their questions. 

MOOC Learning. Participants studied the introductory chapter of a MOOC course (Game 

Theory) with AttentiveLearner. The course was offered by Stanford and was available on 

Coursera (https://www.coursera.org/learn/game-theory-1). The topic was selected because 

participants were unlikely to have prior knowledge of it, while it was “representative” as a real-

world STEM learning topic. The chapter (“Informal Analysis and Definitions”) had four video 

lectures named “Introduction to Game Theory and the Predator Prey Example”, “Normal Form 

Definitions”, “Dominance”, and “Nash Equilibrium”. The durations of the four lectures were 

14m47s, 16m54s, 8m48s, and 8m24s respectively. The duration of the whole chapter was 
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48m53s. I intentionally selected longer videos so that I could study whether using the tangible 

video control to consume lecture videos could lead to fatigue when the video was long. 

 For each of the four video lecture clips, participants first watched the video using 

AttentiveLearner in landscape mode. Participants could pause the video at any time. Immediately 

after finishing each video lecture, participants were instructed to rate the interest levels and 

confusion levels of each topic in the lecture on a 5-point Likert scale. There were 7, 9, 5, and 7 

topics in the four video lectures respectively. The duration for each topic ranges between 33s to 

2m46s (average: 1m41s). Participants could take a short break between two video lectures. The 

self-reported ratings on learning topics were used as the ground truth for cognitive state 

inference, which will be detailed in the next chapter.  

Qualitative Feedback. Each participant completed a closing questionnaire (B.2) after finishing 

the lesson.  

4.3.2 Participants and Apparatus 

    

Figure 25. Some participants in my experiment using AttentiveLearner to learn video lectures. 

 

Eighteen subjects (7 females) participated in my study (Figure 25). I decided to recruit 18 

subjects because this number is comparable to similar studies on usability evaluation of learning 

technologies, e.g., Monserrat et al. [81] (18 subjects), Kovacs [69] (18 subjects), Monserrat et al. 

[82] (15 subjects), Kim et al. [65] (12 subjects). The average participant age was 24.9 (σ = 2.2) 
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ranging from 22 to 30. All participants were undergraduate or graduate students at the University 

of Pittsburgh. All participants had little or no knowledge of Game Theory. Among the 18 

participants, 8 took MOOC courses before the study. Only 2 subjects actually finished a MOOC 

course, suggesting a low completion rate in MOOC learning. Three subjects had experiences in 

using mobile MOOC learning apps.  

My experiment was completed on a Nexus 5 smartphone with a 4.95 inch, 1920 x 1080 

pixel display, 2.26 GHz quad-core Krait 400 processor, running Android 5.0.1. It has an 8 mega-

pixel back camera with an LED flash. 

4.3.3 Results 

4.3.3.1 Subjective Feedback 

Participants reported favorable experiences with AttentiveLearner (Figure 26), giving an average 

rating of 4.11 (σ = 0.68) on the overall experience of AttentiveLearner on a five-point Likert 

scale (1-very unsatisfied, 5-very satisfied). 

0 1 2 3 4 5

I am interested in using AttentiveLearner
to take MOOC courses in the future.

The video control channel is responsive.

The video control channel is natural to
operate.

The video control channel is easy to
operate.

It is comfortable to use AttentiveLearner
to consume lecture videos.

On a scale of 1 to 5, how do you like
AttentiveLearner in general?

 

Figure 26. Subjective ratings of AttentiveLearner 
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Regarding the tangible video control interface, participants gave an average rating of 4.33 

(σ = 0.59) on intuitiveness and an average rating of 4.11 (σ = 0.83) on responsiveness. All 

participants agreed that it was comfortable to cover-and-hold the lens while watching the video. 

Fifteen subjects commented that they would continue to use AttentiveLearner to take 

MOOC courses in the future. When asked about what they like about AttentiveLearner, 

participants were most impressed by the flexibility of the video control channel: 

“The lens-covering control is interesting. It is an easy and intuitive way to play/pause video.” 

“I like the auto-pause feature. You just put the device aside and it automatically stops.” 

“A user can play/pause the video easily with one hand. No need to touch the screen which 

normally needs two hands.” 

Some participants also believed the video control channel made them pay more attention 

to the video: 

“It can help me focus on the lesson; you need to hold the mobile phone while listening to the 

instructors.” 

“Because I’d like to keep covering the lens, I am paying attention to the video all the time.” 

4.3.3.2 PPG Signals 

 

Figure 27. Top: Screenshots of AttentiveLearner in the experiment. Bottom: PPG signal at the time of the 

screenshot. Left: high-quality PPG, right: low-quality PPG. 
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Interruptions: Although I encouraged participants to pause the video when needed, I only 

observed a total of 17 user-initiated pauses (i.e., interruptions) from 7 subjects. The main reason 

for interruptions was finger or eye fatigue. However, two participants reported that they paused 

the video to take a closer look at the slides and digest the topic.  

Interestingly, I found that 14 of the interruptions (82.3%) occurred after 8 minutes of 

video play; 12 of them (70.5%) occurred after 10 minutes of video play. This suggests that 

participants usually felt fatigue and needed a rest when they used AttentiveLearner to watch a 

video nonstop for more than 8 minutes.  

 

Figure 28. PPG signals of six participants while watching the first video clip. 

 

Signal Quality: I analyzed the quality of PPG signals by investigating the RR-intervals (the 

cardiac interval between two heart beats) in a 5-second moving window. I used the heuristics that 

a window contains high quality PPG signal if at least 80% of RR-intervals in that window are 

within a given range (+/- 25% from the median). Figure 27 shows two sample sequences of PPG 

signals (left: high-quality; right: low-quality) and the corresponding screenshot of 
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AttentiveLearner. In 88.9% of the 72 video sessions (18 subjects x 4 videos), more than 80% of 

the signals were in high quality. This suggests that AttentiveLearner can collect high-quality 

PPG signals reliably from learners’ fingertips during video watching. 

Figure 28 shows an illustration of the PPG signal quality collected in six learning 

sessions. The white areas were interruptions in the signal (video pauses). The green areas were 

high-quality PPG signals, and the red areas were low-quality signals. The percentage of high-

quality signals for the six video sessions in Figure 28 were 97.74%, 95.70%, 96.76%, 84.71%, 

81.22%, and 74.90% respectively from top to bottom. I observed that the low-quality signals 

were scattered across the whole video session and that each low-quality signal sequence usually 

had short durations (less than 30 seconds). Therefore, I can still extract high-quality PPG signals 

from major portions of the learning sessions even if the video session contained low-quality 

signals (sessions 4 – 6 in Figure 28).  

 

4.3.4 Summary 

This usability study showed the feasibility of using AttentiveLearner in extended MOOC 

learning sessions. Learners found the tangible video control interface in AttentiveLearner to be 

intuitive to learn, and accurate and responsive to use. The PPG signals collected via commodity 

camera phones were also reliable. Finger fatigue may happen after extended usage of 

AttentiveLearner. To avoid finger fatigue, the durations of lecture videos in AttentiveLearner 

should be no more than 8-10 minutes based on qualitative feedback from the closing 

questionnaire.  
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5.0  IMPLICIT COGNITIVE STATE INFERENCE: HEART RATE AS FINE-

GRAINED FEEDBACK FOR MOOC LEARNING 

In this section, I demonstrate the feasibility of using the PPG signals and heart rate implicitly 

captured by AttentiveLearner to predict learners’ cognitive states. Specifically, I am interested in 

two cognitive states: boredom and confusion in MOOC learning. The contents of this chapter can 

be found in the published papers [130] and [134]. 

5.1 BACKGROUND 

A user’s changing heart rhythms affect not only the heart itself, but also the brain’s ability to 

process information and manage emotion. Researchers have discovered that both the heart rate 

[120] and heart rate variability (HRV) [110] have strong correlation with user’s physiological 

state, including cognitive workload and mental stress level, in contexts such as computer user 

interfaces [105], traffic control [105], longitudinal monitoring of emotion and food intake [19], 

and intelligent tutoring [55, 59]. Previous studies have already used heart rate and HRV to infer 

cognitive workload [75, 105, 127], mental stress [74, 114], attention [59, 102], or emotions [55]. 

In this section, I investigate the feasibility of using PPG signals and heart rate collected by 

AttentiveLearner to predict learners’ cognitive states. 
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5.2 DATA COLLECTION AND FEATURE EXTRACTION 

In Chapter 4.3, I presented an 18-participant user study to evaluate the usability of 

AttentiveLearner during actual MOOC learning sessions. In the same study, AttentiveLearner 

collected participants’ PPG signals throughout the whole learning session. In the study, 

participants were also instructed to rate the perceived interest levels and confusion levels of each 

topic in the videos on a 5-point Likert scale immediately after they watched each video. I used 

participants’ self-reported ratings on learning topics as the gold standard. A total of 522 user 

ratings (29 topics * 18 subjects) were collected. I excluded video sessions with the same rating 

for all topics, implying that the participant reported the same feeling throughout the session. The 

whole dataset contained 428 samples of interest/boredom predictions (23.83% of the topics were 

rated boring/uninteresting, rating ≤ 2) and 490 samples of confusion predictions (19.8% were 

rated confusing, rating ≥ 4). 

 For each video session, I used LivePulse to extract RR-intervals and heart rates from the 

corresponding PPG signals. I applied the following heuristics to eliminate outliers in RR-

intervals: 

• Discard RR-intervals corresponding to heart rates beyond 40 ~ 140 bpm; 

• Discard RR-intervals corresponding to heart rates differ more than 20 bpm from the 

median over the video session;  

• Discard RR-intervals corresponding to heart rates differ more than 10 bpm from the 

previous RR-interval. 

I extracted 14 dimensions of features from raw PPG signals of each learning topic. The 

durations of a topic ranged between 33s to 2m46s (average: 1m41s). Among these features, 7 
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dimensions were global features extracted from the PPG signals of the entire topic section. The 7 

global features were these: 1) Mean-HR; 2) SD-HR; 3) AVNN; 4) SDNN; 5) pNN50; 6) rMSSD; 

7) MAD. These features were common short-term time domain heart rate and HRV features 

[106, 117] and Table 3 lists the descriptions for these features. The other 7 dimensions (e.g., 

Local Mean-HR) were local features extracted by averaging the same features in multiple fix-

sized, non-overlapping local windows within the topic section (Figure 29). If the last local 

window overlapped with the beginning of the next topic, only signals that had fallen within the 

current topic were used. I also normalized the features in each video session for each participant. 

Table 3. Descriptions of the heart rate and HRV features extracted in the study 

Feature Name Explanation 
Mean-HR Average of the heart rate 
SD-HR Standard deviation of the heart rate 
AVNN Average of the RR-intervals (or NN-intervals) 
SDNN Standard deviation of the RR-intervals 
pNN50 Percentage of adjacent RR-intervals with a minimum 

difference of 50 ms in the corresponding time frame 
rMSSD Square root of the mean of the squares of difference 

between adjacent RR-intervals 
MAD Median absolute deviation of all RR-intervals 
 

Topic 1 Topic 2 Topic 3

D1

D2

S

……

7 global features

7 local features

 

Figure 29. Feature Extraction from the PPG signal in each section of a video session. 
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5.3 RESULTS 

I explored several supervised machine learning algorithms to predict learners’ interest/boredom 

and confusion states using the extracted features. The algorithms I tested were k-nearest 

neighbors (kNN), Naïve Bayes (NB), Decision Tree (DT), support vector machine with linear 

kernel (LinearSVM), and support vector machine with radial basis function kernel (RBFSVM). I 

used WEKA to train and optimize the classifiers. I explored these algorithms because they were  

commonly used machine learning algorithms which can be applied to almost any data problems 

in the absence of prior knowledge about the data and domain.  

I used the leave-one-subject-out method to evaluate the performance of the models. 

Therefore, all results reported were user-independent. I calculated and reported Cohen’s Kappa 

because the distributions of class labels were skewed (23.8% and 19.8% topics were rated boring 

and confusing) so reporting accuracies alone would be insufficient. The optimal parameters of a 

classifier were chosen according to the best average Kappa over all subjects. To get the optimal 

performance, I tried 5 different delays D1 for extracting the global features (0s, 5s, 10s, 15s, 20s) 

× 5 different delays D2 for the first window (0s, 5s, 10s, 15s, 20s) × 12 window sizes S (10s, 

15s, 20s … 60s) for extracting local features (Figure 29).  

Table 4 lists the best performance (in Kappa) achieved by each classifier. The RBF-

kernel SVM has best overall Kappa (0.297 and 0.269) for predicting both boring and confusing 

topics. The reason why RBF-SVM has the best performance might be that the relationship 

between the extracted features and learners’ cognitive state is non-linear. And compared to other 

models, the RBF-kernel can map the data to a much larger dimensional space; thus, RBF-kernel 

SVM is more likely to find the optimal solutions.  
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Table 4. The performance of the classifiers for boredom prediction and confusion prediction. 

Prediction of the boring topics in a video session 
Model Accuracy Precision Recall Kappa 
kNN 77.29% 0.504 0.325 0.258 
NB 69.37% 0.376 0.373 0.162 
DT 78.56% 0.523 0.180 0.191 

LinearSVM 67.71% 0.397 0.538 0.237 
RBFSVM 73.58% 0.462 0.499 0.297 

Prediction of the confusing topics in a video session 
kNN 77.17% 0.396 0.316 0.211 
NB 77.99% 0.358 0.164 0.116 
DT 81.96% 0.523 0.208 0.224 

LinearSVM 75.74% 0.402 0.366 0.223 
RBFSVM 77.69% 0.516 0.353 0.269 

 

The performance of my classifiers is comparable to existing systems that rely on 

dedicated physiological sensors to detect human affect (e.g., Hussain et al. [55] developed user 

dependent models with Kappa scores of 0.35 and 0.23 for detecting three-level valence and 

arousal; D’Mello et al. [32] extracted features from dialog, posture, and face to classify four 

different affect, and their user dependent models achieved the best Kappa score of 0.29). It is 

worth highlighting that the performance is achieved on today’s mobile phones without any 

hardware modifications. The Kappa scores indicate that AttentiveLearner is capable of 

identifying the perceived boring and confusing parts of a video in a user-independent fashion.  

One thing to notice is that the focus of this research is to explore the feasibility of 

detecting learners’ cognitive states during mobile MOOC learning via a “sensorless” approach. 

Currently, the performance is still far from perfect. The relatively low Kappa/accuracy might be 

because of the following reasons: 1) Noises in the signal; 2) Heart rate and PPG signals might be 

affected by other confounding effects, such as physical movement or fatigue; 3) There exists a 

large variance among people. The diverse heart rate, PPG signal patterns, as well as the different 

perception of learning materials among participants may be additional factors that limit the 
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performance of a user-independent model. I believe that the accuracy/Kappa could be improved 

using more powerful machine learning techniques or building user-dependent classifiers. 

I found that the local window size had a significant impact on the classifier performance 

(Figure 30). A window size of 50 seconds had the best performance for predicting perceived 

boredom and a smaller window (30 seconds) led to the best performance for predicting confusing 

topics.  
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Figure 30. Classifiers' Kappa by the local window size. 

5.4 EXTREME EVENTS AND AGGREGATED EVENTS 

The previous study shows that it is feasible to detect boring and confusing topics in MOOC 

videos via PPG signals implicitly captured by AttentiveLearner. Although the Kappa scores 

indicated a strong correlation between HRV features and cognitive states, the prediction 

accuracy is still far from perfect. Therefore, I propose two solutions to get reliable and effective 

learning analytics from imperfect predictions: predicting extreme personal learning events and 

aggregated learning events. I define extreme personal learning events as a small fraction of 

events from a learner that are drastically different from other events based on a specific marker. I 
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define aggregated learning events as the aggregated responses of all learners towards a learning 

topic.  
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Figure 31. Predication accuracy when using local mean-HR (left) and local AVNN (right) as markers of "extreme 

personal learning events". 

 

 Figure 31 shows the use of the local mean-HR feature (left) and the local AVNN feature 

(right) as markers of "extreme personal learning events" and the corresponding prediction 

accuracies on relative interest/boredom and confusion. I can predict with 60% accuracy in 

relative confusion by restricting predictions to events where the local mean-HR was at least 11% 

higher than the previous topic. I can predict with 83.3% accuracy by restricting predictions to 

events where the local mean-HR was at least 15% higher than the previous topic (Figure 31 left). 

Similarly, the local AVNN can also be used as an effective marker for predicting relative 

interest/boredom and confusion (Figure 31 right). In my experiments, local mean-HR was a 

better marker for predicting relative confusion (Figure 31 left) and local AVNN was a better 

marker for predicting relative interest/boredom (Figure 31 right).  

I also found that PPG signals from a group of learners could be aggregated for more 

accurate prediction of cognitive states. Such aggregated events are informative to instructors 

because they convey the overall feedback from students on a specific learning topic. For 
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example, Figure 32 shows the aggregated histogram of “confusing” topic from both reported 

results (left) and predicted results (right) for the second lecture (“Normal Form Definitions”). It 

is clear that our aggregated prediction is consistent with participants’ ratings. In both histograms, 

the 7th topic has more confusion than any other topic, implying that this topic is challenging 

during learning. After investigating the corresponding lecture video, I found that the 7th topic 

contains an in-depth analysis of the “Team Games” concept. Such insights captured from 

learners’ physiological signals can help teachers refine instructional content for the future.  
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Figure 32. Histograms of “Confusing” topics of video clip 2.  

Left: reported results. Right: predicted results. 

5.5 INFRASTRUCTURE OF ATTENTIVELEARNER 

Given the feasibility to infer learners' cognitive, affective states and attention from the implicitly 

captured PPG signals; I believe AttentiveLearner can bring many new opportunities to enrich 

large scale learning analytics and enable attentive and bi-directional learning on unmodified 

mobile phones. Figure 33 shows a hypothesized infrastructure of AttentiveLearner. Step 1: While 

a learner uses the AttentiveLearner mobile interface to consume lecture videos, the interface also 

implicitly captures her PPG signals and sends the information to the server. Step 2: On the 
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server’s side, pre-trained classifiers make predictions of the learner’s cognitive states using the 

received PPG signal information. Then, the server sends the cognitive state information back to 

the mobile interface. Step 3: Knowing the learner’s real-time cognitive states, the mobile 

interface can benefit learners by providing personalized learning materials and instructional 

paradigms. For example, when a learner is not interested in a topic, AttentiveLearner may switch 

to a different learning resource or use integrated exercises [48, 81] to engage the learner. 

AttentiveLearner can also use visual and tactile feedback to remind learners when they are "mind 

wandering". Such interactions have the potential to make the MOOC learning process more 

attentive. In Chapter 7, I will present an intervention technique, the Context and Cognitive State 

triggered Feed-forward, which effectively improve student engagement and efficacy in mobile 

MOOC learning.  

Server

Mobile Interface

Instructor Side Visualization

“Mind wandering” alert

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9
Section

"D
iff

icu
lt"

 Co
nt

en
t D

ist
rib

ut
io

n 
(%

)

Timestamp Interested? Confused? Mind 
Wandering?

1:30 3 5 F

3:40 2 1 T

… …

Adaptive Learning Resources
Integrated exercises

“c
on

fu
sin

g”
 co

nt
en

t d
ist

rib
ut

io
n(

%
)

Aggregated data

 

Figure 33. The infrastructure of AttentiveLearner. 
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 As shown in Figure 33, AttentiveLearner can also benefit instructors by providing 

instructor side visualization of the aggregated information of learners’ physiological, cognitive, 

and affective states synchronized with the learning materials. An instructor can identify and 

reflect upon areas needing improvement within the curriculum. For example, which parts of a 

lecture are more confusing to students? Did my joke "wake up" the students? Or, were students 

bored by the end of the lecture? I believe this fine-grained, continual, implicitly feedback 

channel through learners' physiological signals can serve as a valuable complement to existing 

technologies such as log analysis [21, 51], questionnaires, and post-lecture reflections [48].  Such 

information can help instructors to identify both struggling students and lecture materials that 

need improvements, hence enabling bi-directional communications between learners and 

instructors.  
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6.0  IMPLICIT COGNITIVE STATE INFERENCE: UNDERSTANDING AND 

DETECTING DIVIDED ATTENTION IN MOBILE MOOC LEARNING 

 

Figure 34. AttentiveLearner detects external distractions (colleagues discuss in the background) during mobile 

MOOC learning. 

 

Learners tend to face more distractions due to the highly diversified learning environments and 

highly interruptive learning context when studying alone with one’s mobile devices. Distractions 

could come from both external sources (e.g., background conversations, ambient noises) and 

multitasking (e.g., checking/updating social networking sites). When learners divide their 

attention between the learning materials and other tasks or external distractions, the interference 

hampers their intentional use of memory [57] and reduces the memory performance substantially 

[25]. Both outcomes hinder the knowledge encoding process and lead to decreased 

understanding of the learning materials. In this section, I investigate the impact of divided 
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attention (DA) on both the learning process and the learning outcomes in the context of mobile 

MOOC learning. In this section, I demonstrated the feasibility of detecting whether a learner is 

dividing her attention as well as the type of DA via implicit physiological signal sensing on 

unmodified mobile phones (Figure 34). The contents of this chapter can be found in the 

published paper [132].  

6.1 BACKGROUND 

By definition, divided attention (DA) occurs when attention is divided among simultaneous 

stimuli [60]. DA is different from mind wandering (MW) [80] in that DA is either caused by 

intentional multi-tasking (internal distractions) or passive external distractions [60], while MW is 

an involuntary shift in attention from task-related thoughts to task-unrelated thoughts [76, 80] 

and is stimulus independent [63]. Existing DA research in learning technology is limited because 

MW can happen in any environment [63] while DA is more pervasive in informal learning. 

Research on DA has been focusing on understanding people’s capabilities to perform 

multiple tasks simultaneously [25, 57, 60]. Kahneman [60] systematically reviewed experiments 

on the parallel processing of simultaneous inputs and found that although parallel processing was 

possible, its effectiveness was often impaired due to the interferences among multiple activities. 

Craik et al. [25] conducted four experiments to explore the effects of DA on encoding and 

retrieval processes. Experimental results showed that DA during the encoding process was 

associated with large reductions in memory performance. The divided attention made the 

selection of information imperfect, resulting in delayed or slowed processes [112].  
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Although researchers have explored the use of various physiological signals, such as 

Electroencephalography (EEG) [52, 116], eye gaze [11, 12, 30], galvanic skin responses (GSR) 

[12, 13, 17, 52, 55, 59], and heart rate [52, 55, 59] to infer learners’ attention state or “mind 

wandering” events in educational settings, little work has been done on detecting divided 

attention from attention. The work by Rodrigue et al. [104] is perhaps the most relevant research. 

In two three-participant experiments, Rodrigue and colleagues built user-dependent models 

(accuracies range from 79% to 99%) to detect DA from signals collected by a consumer-grade 

eye tracker and an EEG sensor. However, this research mainly focused on reading and the DA 

detection required dedicated devices for signal collection. 

6.2 USER STUDY 

I conducted another 18-participant study to investigate the impact of divided attention on both 

learning outcomes and learners’ PPG signals in mobile MOOC contexts.  I studied two typical 

types of distractions: 1) multitasking distractions (i.e., internal divided attention) where the 

subject’s attention is divided between two sets of stimuli; and 2) unpredictable and intrusive 

auditory distractions (i.e., external divided attention). 

6.2.1 Task  

The basic task for participants was to watch four lecture videos (8 minutes each) with 

AttentiveLearner. I used two types of stimuli to create internal divided attention condition (e.g., 

multitasking) and external divided attention condition (e.g., distractive audio sound) while 
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participants were watching MOOC videos. In the control condition (full attention), participants 

can focus on the video without any internal or external stimuli.  

I adopted the color counting task [104] to introduce internal divided attention. While a 

participant was watching the lecture video using AttentiveLearner, a computer placed on the side 

spoke the names of six different colors in a random order at a speed of one-second per word 

(high divided attention) or five-seconds per word (low divided attention). The volume of the 

smartphone was set to the highest. The volume of the computer was set to be as low as possible 

while still allowing the subject to hear the colors clearly. Participants were told to focus on the 

video but also count the number of times a target color (e.g., the color “red”) was spoken during 

the video. The participants reported the counted number of the target color after each video, 

which was compared to the ground truth to ensure that they indeed divided their attention 

between the two tasks.  

To simulate an environment where a learner is distracted by external stimuli (external 

divided attention), such as unexpected and intrusive auditory distractions, the computer placed 

on the side of the learner played loud and energetic music while the learner was watching the 

lecture video. I chose to use music as an external stimulus because it is a common environmental 

sound during informal learning. The volume of the computer was set to high so that the 

participants were more likely to be distracted while still allowing them to hear the lecture video 

clearly (tested in a pilot study of three participants). 

6.2.2 Participants and Apparatus 

Eighteen subjects (6 females) participated in the study (Figure 35). The average age was 25.8 (σ 

= 2.73) ranging from 22 to 32. All participants were graduate students at the University of 
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Pittsburgh. None of the participants had previous knowledge of the learning materials used in the 

study. Four subjects had prior experience of using mobile apps for MOOC learning.  

    

Figure 35. Some participants in the user study. The laptop on the left was used to play stimulus sound. 

 

The experiment was completed on a Nexus 5 smartphone with a 4.95 inch, 1920 x 1080 

pixel display. The device had an 8-megapixel back camera and a 2.26 GHz quad-core Krait 400 

processor, running Android 5.0.1.  

6.2.3 Procedure 

The whole study took about one hour, and each participant was compensated with a $10 gift 

card. The study consisted of three parts: 

 Introduction: I ran a tutorial session and collected background information from 

participants. 

 MOOC Learning Session: Participants watched four video clips in four conditions (i.e., 

within-subjects design): control condition (i.e., Full Attention, FA), low internal divided 

attention condition (LIDA), high internal divided attention (HIDA), and external divided 

attention (EDA). The order of condition assigned to each video was counterbalanced by a Latin 

Square pattern. Before a participant watched each video, I also collected one-minute baseline 

PPG signals from her. 
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 The four video clips were chosen by three reviewers to make sure all video clips had 

similar difficulties and durations. Two video clips were from the course “Intro to Design of 

Everyday Things” (https://www.udacity.com/course/intro-to-the-design-of-everyday-things--

design101), and the other two were from the course “Intro to iOS App Development with Swift” 

(https://www.udacity.com/course/intro-to-ios-app-development-with-swift--ud585). Both 

courses were taken from the MOOC learning platform, Udacity. All clips were edited to exactly 

eight-minutes long.  

 Post-video Quiz and Self-Rating: After finishing each video clip, participants completed a 

five-question quiz on the topics covered in the video. The questions tested their ability to recall 

important information presented in the video. For example, “please explain the concept 

‘signifier’” and “what are the two ways to center the button horizontally and vertically in the 

container”.  

 Participants also reported the perceived interestingness level and difficulty level for each 

video clip, as well as their perceived distraction level for each learning condition on a 7-point 

Likert scale. 

6.3 EFFECT OF DIVIDED ATTENTION ON LEARNING 

6.3.1 Subjective Feedback 

The perceived distractions were 1.33 (σ = 0.47), 3.11 (σ = 1.59), 4.11 (σ = 1.24), and 4.97 (σ = 

1.18) for the four conditions FA, EDA, LIDA, and HIDA respectively. Repeated measures of 

Analysis of variance showed a significant main effect (F (3, 15) = 9.28, p < 0.0001) of the 

https://www.udacity.com/course/intro-to-ios-app-development-with-swift--ud585)
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perceived distractions among the four conditions. Pairwise mean comparison (t-tests) with 

Bonferroni correction showed that the control condition (FA) was rated significantly less 

distractive than all other conditions (t(17) = 4.74, p < 0.001; t(17) = 8.71, p < 0.001; t(17) = 

12.27, p < 0.001). External Divided Attention (EDA) was significantly less distractive than the 

high internal divided attention (HIDA) (t(17) = 4.28, p < 0.001). The difference between the two 

levels of internal divided attentions, i.e., HIDA and LIDA, was also significant (t(17) = 3.38, p = 

0.0036). The results suggested that both external divided attentions and internal divided 

attentions had a significant impact on learners’ perceived distraction levels in mobile MOOC 

learning.  

6.3.2 Effect of Divided Attention on Learning Performance 
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Figure 36. Participants’ quiz performance by conditions. 

  

Questions in the post-video quiz were graded by the following rubrics: a participant received 1 

point for a complete and accurate answer; the participant received 0.5 points for a reply with a 

correct general idea but missing critical details; the participant did not get any points if the 

answer was incorrect or missing. Participants’ average scores for the four conditions were 4.11 



 78 

(σ = 0.66), 3.83 (σ = 0.90), 3.33 (σ = 0.92), and 2.92 (σ = 0.98) respectively. Repeated measures 

of Analysis of variance showed a significant main effect (F (3, 15) = 1.12, p < 0.01) of the 

learning outcomes. Pair-wise mean comparison (t-tests) with Bonferroni correction showed that 

participants performed significantly better in control condition (FA) than both LIDA (t(17) = -

3.0, p < 0.01 ) and HIDA (t(17) = -4.13, p < 0.001). Although the learners’ average performance 

in FA was better than that in EDA, the difference was not significant (t(17) = -1.17, p = 0.256).  

This suggests that IDA is more detrimental to learning than EDA.   

 Figure 36 shows the average number of questions the participants answered entirely 

correct and partially correct. Compared to the FA condition, participants had less completely 

correct answers, but more partially correct answers in the divided attention conditions. This is 

especially true for the HIDA condition, where the number of entirely correct answers were only 

58.1% of that in the FA condition (2 vs. 3.44), while the number of partially correct answers 

increased by 37.5% (1.83 vs. 1.33). I found that learners in the divided attention condition were 

more likely to miss important details. Their answers also showed partial and shallower 

understanding of the learning materials.  

6.4 DIVIDED ATTENTION DETECTION 

I explored the use of PPG signals implicitly captured during mobile MOOC learning to predict 

whether a learner has divided attention, as well as its type and intensity.  My work is different 

from Rodrigue et al. [104] in two major ways: 1) My method can run on unmodified 

smartphones and does not rely on external eye trackers and EEG sensors; 2) My approach 

focuses on mobile MOOC learning rather than reading on desktop computers. Since the divided 
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attention detection algorithm in [104] was user-dependent, for direct comparison purposes, I 

begin with user-dependent models, and then build user-independent models to estimate 

performances in the “cold-start with no adaptation” situation.  

6.4.1 User-Dependent Classification 
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Figure 37. Accuracies for detecting divided attention. a: FA and EDA only; b: FA and IDA; c: FA, EDA, and IDA; 

d: all four conditions. 

 

The PPG signals collected from each lecture video first went through a second-order Butterworth 

filter with a cutoff frequency of [0.75, 3.3] Hz. The signals were then segmented into small, non-

overlapping consecutive windows to detect divided attention. I explored 5 different window sizes 
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(20s, 30s ... 60s). I used the LivePulse algorithm to extract RR-intervals and heart rates from 

each window. I applied the same heuristics to eliminate outliers in RR-intervals as the study 

presented in Chapter 5. Nine dimensions of heart rate and HRV features were extracted from 

each window: 1) Mean-HR; 2) SD-HR; 3) AVNN; 4) SDNN; 5) rMSSD; 6-8) pNN12, pNN20, 

pNN50; and 9) MAD. Definitions of these features were presented in the previous study 

(Chapter 5.2). All these features were normalized using the corresponding features from the one-

minute baseline PPG signals collected before the corresponding video. I used WEKA to train and 

optimize different classification algorithms. Support vector machine (SVM) with a radial basis 

function (RBF) kernel yielded the best overall performance.  

I built divided attention prediction models for each participant and evaluated them with 

10-fold cross validation. Figure 37 shows the average prediction accuracies across the 18 

subjects by different window sizes for various classification tasks: 1) detect EDA from FA 

(binary classification, Figure 37. a); 2) detect IDA from FA (binary classification, Figure 37.b); 

3) detect FA, EDA and IDA (three-way classification, figure 37.c); 4) detect FA, EDA, LIDA 

and HIDA (four-way classification, figure 37.d).  

Overall, the classification accuracies increase with the growth of window sizes. When 

using 60s windows, the classifiers achieved an accuracy of 88.54% when detecting EDA 

(86.22% accuracy) from the control condition FA (93.65% accuracy) (Figure 37.a); 84.49% 

when detecting IDA (84.24% accuracy) from the control condition FA (81.77% accuracy) 

(Figure 37.b); 74.13% when detecting the FA (65.80% accuracy), EDA (77.81% accuracy), and 

IDA (73.43% accuracy) (Figure 37.c); and 72.74% when detecting all four conditions (69.26%, 

78.91%, 62.37% and 81.57% accuracy for FA, EDA, LIDA and HIDA) (Figure 37.d).   
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It is worth noting that I used accuracy as the performance metric (rather than Kappa 

which is used in [11, 94]) because the class label distributions in my experiments were balanced. 

In comparison, the distributions of “Mind Wandering” labels in [11] and the boring/confusing 

topics in my previous study were highly skewed. The corresponding Kappa scores across the 18 

subjects were 0.77 for FA, EDA detection, and 0.591 for FA, IDA detection.  

The classification accuracy of the binary classifiers is comparable to EEG and eye-gaze 

based methods (accuracies range from 79% to 99%) [104]. I also investigated multiclass 

classification to differentiate the type and intensity of divided attention, which were not presented 

in [104]. Please note that a strict performance comparison with [104] was not possible due to the 

task difference (mobile MOOC learning vs. speed reading on PCs) and the number of 

participants (18 vs. 6). However, it is still inspirational to show the feasibility to detect divided 

attention on unmodified mobile devices at a performance comparable to dedicated eye-trackers 

and EEG sensors.  

6.4.2 User-Independent Classification 

While personalized models usually have better performances, it is necessary to estimate the 

expected system performance to simulate the “cold-start with zero adaptation” scenario. 

Therefore, I also built user-independent models to detect divided attention. 

In addition to the PPG signal processing I have done for the user dependent models, I 

found the following two techniques can improve the performance of user-independent models3: 

1) Smoothing the RR-intervals and interpolating the RR-intervals at 20Hz; and 2) adding four 

                                                 

3 These techniques do not improve user-dependent models according to my experiments.  
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additional HRV features, i.e., pNN5, (percentage of adjacent RR-intervals with a difference 

longer than 5ms), SDANN (standard deviation of AVNN in all k segments of a window), 

SDNNIDX (mean of SDNN in all k segments of a window), and rMSSD/SDNNIDX.  

Table 5. The performance of the user independent models for divided attention detection. 

Condition Chance Accuracy Precision Recall Kappa 
FA vs. EDA 50.0% 72.2% 0.75 0.67 0.44 
FA vs. LIDA 50.0% 75.0% 0.71 0.83 0.50 
FA vs. HIDA 50.0% 83.3% 0.80 0.89 0.67 
FA + EDA vs. 
LIDA + HIDA 50.0% 83.3% 0.90 0.75 0.67 

FA vs. LIDA vs. 
HIDA 33.3% 63.0% 0.67 0.63 0.44 

FA vs. EDA vs. 
LIDA vs. HIDA 

25.0% 50.0% 0.52 0.50 0.33 

 

I used RBF-SVM for classification. I found that segmenting the signals into larger 

window size generates better prediction accuracy. Therefore, PPG data of an entire video session 

(8 minutes) was treated as an instance in the user independent model. This made the dataset 

contain 72 instances (18 instances per condition). The leave-one-subject-out method was used to 

evaluate my user-independent models. Table 5 lists the performance of different classifiers. 

Although the accuracies were lower than corresponding performances in user-dependent models, 

both accuracies and Kappa scores were far above chance. It is expected that the detection 

accuracy of HIDA is higher than LIDA and EDA, considering that HIDA can cause stronger 

changes in physiological arousal due to the higher level of divided attention.  

I also ran a linear regression analysis to gain further insights on the relationship between 

HRV features and different attentional states. I found that for detecting FA and EDA, the 

important features were MAD (p = 0.0167) and pNN5 (p = 0.0258); while important features for 
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FA, IDA prediction were MAD (p = 0.0054), SDNN (p = 0.0158), and SDANN (p = 0.0326). 

For FA, EDA, LIDA, HIDA prediction, the only important feature was MAD (p = 0.0325). It 

can be seen that MAD was the most important features for the user-independent classifiers of 

divided attention.  

6.5 DISCUSSIONS 

The classification accuracies of the user-independent models were much lower than the user-

dependent models in my experiments. In addition to the inherent challenges in building user-

independent models, there are three additional reasons I need to take into account. First, although 

all participants reported that FA to be less distractive than DA, the difference could be small 

(i.e., less than 1 on a 7-point Likert scale) for some participants; second, several participants 

reported that they had a habit of listening to music while studying, so they do not consider the 

loud music in the EDA condition a major distraction; third, although 16 out of 18 participants 

reported that IDA is more distractive than EDA, two participants reported the opposite. Such 

differences in the perception of IDA and EDA among my participants may be additional factors 

that limit the performance of a user-independent model. Inspired by the recent advances in 

speech recognition, the accuracies of user-independent recognition can be further improved with 

more training data from highly diversified users and sub-group modeling/adaptation.  

Since the user dependent model achieved much higher accuracy than the user 

independent model, the user independent model could be used initially when there is not enough 

personal data for the user dependent model. AttentiveLearner then switches to a personalized 
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model when more training data of the user are gathered after a couple of sessions. In this way, I 

could deal with the “cold start” problem for the personalized system.  

The automatically detected divided attention information can be used to improve mobile 

MOOC learning. First, since different types of learning activities have different requirement for 

attention, the system could switch to less attention-demanding learning activities, such as 

discussion forums, when consistent divided attention is detected. This allows the system to 

assign learning tasks properly so that learners’ can achieve optimal learning efficacy. Second, 

appropriate intervention technologies could be developed in the system to directly address 

divided attention. For example, the system can use visual and tactile feedback to remind learners 

to focus on the video alone when divided attention is detected. The system may also provide 

customized reviews on the sections when divided attention is detected.  
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7.0  ADAPTIVE INTERVENTIONS TO IMPROVE LEARNER ENGAGEMENT AND 

PERFORMANCE 
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Feed-Forward

Topic 3

77
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Figure 38. The proposed system detects disengagement by analyzing implicitly captured PPG signals.  

The system uses feed-forward to remind learners when they are disengaged. 

 

I have demonstrated AttentiveLearner as a “sensorless” approach that implicitly captures 

learners’ physiological signals and infers their cognitive states. While the previous chapters 

focus on improving instructors' understanding of the MOOC learning process via offline 

analytics, this chapter demonstrates a novel intervention technology, context and cognitive state 

triggered adaptive feed-forward (C2F2), which provides real-time predictions of the learner’s 

cognitive states during learning and adaptively responds to the predicted cognitive states.  C2F2 

monitors a learner’s engagement while she is watching lecture videos and adaptively reminds the 
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learner of important upcoming content when she is disengaged (Figure 38). C2F2 is built on top 

of AttentiveLearner and provides real-time predictions of the learner’s engagement state for each 

learning topic using the implicitly captured PPG signals. Moreover, the system proactively 

initiates feed-forward interventions to re-engage the learner if she is currently disengaged and the 

upcoming topic is important. My prediction is that by monitoring and responding to 

disengagement at the right time, C2F2 will yield superior learning performance compared with a 

standard non-interactive learning system. 

In this section, I present the design and evaluation of C2F2 and perform a comparison 

between my PPG-based engagement detection method and state-of-the-art 

electroencephalography (EEG) based methods [115, 116]. The contents of this chapter are 

modified from a published paper [131].  

7.1 BACKGROUND 

Disengagement/boredom is one of the most frequent affective states and is persistent across 

various learning environments [7, 103]. Previous studies have shown that boredom was a 

negative affective state which interactive learning environments should focus on detecting and 

quickly responding to [7, 24, 42, 91, 103, 119]. Craig et al. [24] investigated the role of affective 

states in learning through a user study with 38 low domain knowledge undergraduate students. 

Results of the study showed a significant negative correlation between learning gains and 

boredom. Baker et al. [7] analyzed data on students’ affective-cognitive states as they used three 

educational environments. They found that boredom was the most persistent state and was the 

only state that led students to game the system, which was known to be associated with poorer 
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learning. Boredom could disengage learners from educational activities and seriously decrease 

learners’ abilities to acquire knowledge [119]. Boredom was also found to adopt a persistent 

temporal quality [42, 103], where students were less likely to be re-engaged once they were 

disengaged.  

Given the harmful effects of boredom on learning, it is important for intelligent 

educational systems to maintain learner engagement and regulate boredom state during learning. 

The proposed intervention technique, C2F2, is a disengagement repair technique specifically 

designed for mobile MOOC learning.  

7.2 DESIGN OF C2F2 

7.2.1 The C2F2 Intervention 
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Figure 39. The working mechanism of C2F2. 

A feed-forward reminder is presented after Topic 3 because the learner is disengaged watching the Topic 3 

video and the next topic (Topic 4) is important. 
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The design of C2F2 intervention is based on two key assumptions of MOOC learning. First, if a 

learner becomes disengaged watching one video, she is likely to stay disengaged watching 

similar videos shortly. I made this assumption based on the temporal persistence nature of 

disengagement/boredom [7, 42]. Going to the next video alone is unlikely to increase the 

learners’ engagement, as the basic learning activity (video watching) is unchanged, and the 

follow-up videos usually have the same teaching style on relevant topics. Therefore, I develop 

C2F2 to repair disengagement and maintain sustained engagement across multiple video 

sessions. My second assumption is that not all parts in a lecture video are of equal importance. 

Some segments present key concepts or methods, while others may present less relevant or 

duplicate content. The inclusion of topic importance helps us isolate and quantify key factors that 

influence the learning outcomes. Because of these two assumptions, I consider both the learner’s 

cognitive states and the intrinsic importance of the upcoming learning topic to determine the 

timing of intervention. 

 C2F2 uses feed-forward reminders to draw the learner’s attention to the video when 

he/she is disengaged. C2F2 is triggered before a video if the following two conditions are met at 

the same time: 1) the system detects that the learner is in a disengagement/boredom state 

watching the last video; and 2) the next video is an important subtopic and will be assessed in 

tests or exams (Figure 39, the feed-forward after Topic 3). If only one condition is satisfied, or 

none condition is satisfied, the system directly presents the next subtopic. By considering both 

contents of the video, and learners’ real-time cognitive states, I hope to effectively regulate their 

disengagement/boredom state without frustrating them with too many feed-forward.  
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7.2.2 Disengagement Detection 

When a learner is watching lecture videos with C2F2, the system also implicitly captures her 

PPG signals at the same time. The raw PPG signals are processed by LivePulse to extract RR-

intervals and instant heart rates. Outliers of the RR-intervals are removed using the same 

heuristics as previous studies. 24 dimensions of heart rate features are then extracted. Similar to 

the study presented in Chapter 5, half of these features are global features extracted from the 

PPG signals of the entire subtopic video. These global features are: 1) Mean-HR; 2) SD-HR; 3) 

AVNN; 4) SDNN; 5) pNN50; 6) rMSSD; 7) MAD; 8) pNN12; 9) pNN20; 10) SDANN 

(standard deviation of the averages of RR-intervals in all k bins); 11) SDNNIDX (mean of the 

standard deviations of RR-intervals in all k bins); 12) SDNNIDX/rMSSD. The other 12 

dimensions are corresponding local features extracted by averaging the same features in multiple 

fix-sized, non-overlapping local windows within the subtopic video. For each participant, the 

features are normalized using the same features of a two-minute baseline PPG signal sequence 

collected before the learning session. 

 I used WEKA and LibSVM to train and optimize the classifier using data collected from 

a 10-participant pilot study reported in the evaluation section. The final prediction algorithm 

(RBF-SVM) can run in real time on mobile devices. The classifier predicts whether a learner was 

disengaged watching a subtopic video immediately after the learner watched that video. On a 

Nexus 5 smartphone, each prediction only takes on average 275 millseconds, which is hardly 

noticeable according to participants in the user study.   
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7.2.3 Feed-Forward Reminder Design 

The feed-forward reminder prompts a learner of upcoming important topic so as to redraw her 

attention back to the videos. Figure 40 is the design of feed-forward reminders after two rounds 

of pilot studies (4 subjects each). The cartoon character acts as a learning companion, which 

attracts the learner’s attention. I piloted with a number of messages displayed to the learner but 

finally chose to display a simple message “Please Pay Attention!”. An audio response “The next 

topic is very important. Let’s pay more attention to it!” is also played immediately after the feed-

forward shows up. The learner needs to explicitly acknowledge the feed-forward reminder by 

pressing the “Learn” button.  

 Through my pilot studies, users commented that they preferred direct, concise messages, 

more than indirect, polite messages. Pilot study users also suggested that I should avoid using 

negative statements. According to one user, statements such as “You should pay more attention” 

or “you are not paying enough attention” discouraged him, especially when he thought he had 

already paid enough attention to the video. Therefore, in the audio message, I attribute the 

occurrence of feed-forward to “the next topic is very important” to avoid eliciting negative 

emotions from the user.  

 

Figure 40. The feed-forward reminder presented to users. 
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 My feed-forward design also adopted a high-interruptive presentation. The learner has to 

explicitly acknowledge it before watching the next video. According to [50], the high-

interruptive presentation is more effective than low-interruptive indicators when the learner is in 

a negative learning state. 

7.3 EVALUATION 

I conducted a lab-based study to investigate the effectiveness of C2F2 on learning. I have the 

following hypothesis: In a given learning task, providing adaptive feed-forward before important 

topics when learners are disengaged will increase learning performance compared with a no 

feed-forward baseline. 

 To gain a thorough understanding of C2F2, I implemented three alternative designs of 

feed-forward interventions. The first design provides no feed-forward, the second provides 

context only feed-forward which presents feed-forward before randomly selected important 

subtopics, and the third provides cognitive only feed-forward which presents feed-forward after 

learner disengagement is detected regardless of whether the next subtopic is important or not.  

7.3.1 Experiment Design 

I conducted a between-participant study in which I manipulated the presentation timing of feed-

forward within a mobile MOOC learning system. The independent variable was the type of feed-

forward intervention received by the participant: (1) no feed-forward, (2) context only feed-
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forward, (3) cognitive only feed-forward and (4) C2F2. The dependent variables included 

participants’ recall of the video content, their learning gains, and their perceptions of the system. 

 In the experiment, participants used our mobile MOOC client to study an introductory 

lecture about computer and network security, a topic that participants were unlikely to have prior 

knowledge, while being “representative” as a real-world STEM learning topic. The lecture is 

divided into six videos based on the subtopics: “Cryptography Basis”, “Computer Virus and 

Worms”, “AIC Principles”, “Cyber Crimes”, “Access Control”, and “Session Hijacking”. The 

length of each video has been adjusted to exactly 4 minutes and 30 seconds, leading to a total 

instructional time of 27 minutes.  

 Because our feed-forward technique also considers the importance of subtopics, I 

selected the second (“Computer Virus and Worms”), third (“AIC Principles”), fifth (“Access 

Control”) and sixth (“Session Hijacking”) videos as the important ones as these four videos 

convey the most essential and relevant topics. In comparison, the first and the fourth video clips 

either contain some trivia, non-technical content, or duplicate content from previous videos, thus 

they are the non-important videos in the study.  

 To assess learning performance, participants were asked to answer eight multiple-choice 

questions for each subtopic/video. Unlike previous studies [35, 42, 116] which have the 

evaluation session after the whole learning session, I chose to present the evaluation questions 

for a subtopic immediately after the learner watched the video of that subtopic. This design was 

fair to all subtopics and minimized the effect of different memory abilities among participants. 

The evaluation questions were asked for all subtopic videos (including the non-important ones) 

to ensure that participants had no idea of which subtopics were important and should be given 

more attention. However, I only considered participants’ performance on the four important 
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subtopics. One thing to note is that previous research also showed that in-video quizzes could 

potentially improve learner engagement [64]; however, the effect of quizzes on engagement is 

out of the scope of this study.  

 I first conducted a pilot study to train and optimize the disengagement prediction 

classifier. I recruited 10 participants (4 females) between 23 to 33 years old (μ=27.8, σ=2.8) for 

the pilot study. All participants were graduate students at the University of Pittsburgh. 

Participants watched the six subtopic videos introduced earlier using AttentiveLearner (no feed-

forward was presented). Immediately after watching each video, participants were instructed to 

rate their perceived engagement levels while watching the video on a 5-point Likert scale. 

Participants’ self-reported ratings on the subtopics were used as the ground truth when 

evaluating performance of the classifiers. Of the 60 ratings (6 videos x 10 participants), 51.67% 

indicated disengaging learning experience (rating <= 3). I used the leave-one-subject-out method 

to evaluate the performance of classifiers. Therefore, all results reported were user-independent. 

The RBF-kernel SVM had best overall Kappa (Kappa = 0.349, accuracy = 68.33%) predicting 

learner disengagement.  

 In real-world usage scenarios, the system can present a feed-forward reminder whenever 

it detects that the learner is disengaged, leading to various numbers of feed-forward reminders 

per learning session depending on the learner’s engagement state. Therefore, in the study, I 

intentionally controlled the number of feed-forward to avoid confounders. All systems, except 

for the no feed-forward system, will present two feed-forward reminders to the learner for the six 

subtopic videos.  

 For the context only feed-forward system, feed-forward reminders are presented before 

two randomly selected important subtopics. For the cognitive only feed-forward and C2F2 
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system, I designed an algorithm that decides two optimal positions to present feed-forward 

reminders. The algorithm gives higher priority to the videos participants are more likely to be 

disengaged with by setting different classification thresholds (determined by the probability 

estimation of LibSVM) of the disengagement classifier for the six subtopic videos (thresholds 

are 0.8, 0.6, 0.5, 0.6, 0.5, 0.5 respectively). The adaptive thresholds are determined based on 

participants’ average engagement ratings reported for the six videos in the pilot study. For 

example, because none participants reported disengagement experience for the first video, it has 

a high classification threshold. The system will stop presenting any feed-forward if it has already 

presented two feed-forward reminders. If a learner is always predicted as being engaged, the 

feed-forward reminders will be presented before the last two (important) subtopic videos. In this 

way, the same number of feed-forward is guaranteed for all participants. 

7.3.2 Procedure 

The whole study took about one hour, and each participant was compensated with a $10 gift card 

after completing the MOOC course. The study consisted of four phases: 

 Introduction. Participants first signed an informed consent and completed a 

demographics questionnaire. Next, participants were instructed to use C2F2 to watch a forty-

second warm-up video to get familiar with the tangible video control interface.  

 Initial Quiz. Participants were required to take an eighteen-question multiple-choice quiz 

(three questions for each subtopic) to assess their prior knowledge of the learning topic.   

 MOOC Learning and Evaluation. 48 participants were randomly assigned to one of the 

four experimental conditions (12 participants each condition). Depending on the experimental 
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condition, participants used one of the four mobile MOOC systems with different feed-forward 

interventions.    

 After participants watched a subtopic video, they immediately evaluated this video with a 

Subjective Impression Questionnaire (B.4). Participants also took an 8-question, multiple choice 

quiz, which tested their understanding of the subtopic video they’ve just watched. After 

participants completed the questionnaire and quiz, they continued to learn the next subtopic.  

 During the MOOC learning and evaluation phase, my participants also wore a Neurosky 

MindWave headset which measured and stored their EEG data during learning.  

 Qualitative Feedback. Participants first completed the Subjective Impression 

Questionnaire (B.4) of the whole learning session. Next, each participant took a post-experiment 

(B.3) questionnaire to obtain their subjective evaluations of the mobile MOOC application. 

7.3.3 Participants and Apparatus 

Forty-eight subjects (28 males and 20 females) participated in my study (Figure 41). Each of the 

four conditions was gender balanced (seven males and five females). The number of participants 

were determined by running a prior power analysis (assumptions of the standardized group mean 

difference of the participants was based on [116]). Moreover, the number is on par with many 

previous studies on similar topics in educational setting, for example, Szafir et al. [116] (48 

subjects, 4 learning conditions), Ogan et al. [86] (12 subjects, 1 learning condition). The average 

participant age was 23.4 (σ = 3.5) ranging from 18 to 32. All participants were undergraduate or 

graduate students recruited from the University of Pittsburgh by flyers posted around the 

campus. Prior familiarity with the lecture used in the study was low; the average pre-lecture quiz 
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score is 12.31% (σ = 12.9%). No significant differences in pre-lecture quiz score were found 

across conditions.  

 

 

 

Figure 41. Sample participants in my experiments. Participants also wore an EEG headset during learning. 

 

 My experiment was completed on a Nexus 5 smartphone with a 4.95 inch, 1920 x 1080 

pixel display, 2.26 GHz quad-core Krait 400 processor, running Android 5.0.1. It has an 8 mega-

pixel back camera with an LED flash.  

7.4 RESULTS 

7.4.1 Signal Quality 

The mobile MOOC systems collected PPG signals while participants were watching lecture 

videos and stored them on the mobile device. I have collected a total of 1305 minutes of PPG 

signals from the 48 participants (average 27 min 11s per participant). I analyzed the quality of 

collected PPG signals by investigating the RR-intervals in a 5-second moving window. I found 
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that of the 288 (48 x 6) video sessions, 66.7% of them contained more than 90% high-quality 

PPG signals, 82.29% of them contained more than 80% high-quality PPG signals, and 89.23% of 

them contained more than 70% high-quality PPG signals. Only 5.9% of them contained less than 

60% high-quality PPG signals. This suggested that AttentiveLearner generally collected reliable 

PPG signals from learners’ fingertips during video watching.  

7.4.2 Feed-Forward Accuracy 

To verify that my system was working correctly, I first checked if the feed-forward intervention 

was indeed presented at the correct time. Participants’ self-reported engagement levels were used 

as the ground truth. A feed-forward was presented at the correct place if the learner was 

disengaged while watching the last video and the next video was important. I also excluded 

participants whose ratings suggested consistent engagement throughout the whole learning 

session as in this case the position of feed-forward interventions was likely to make no 

difference. For the context only condition, 39.13% feed-forward was presented at the right 

position, for the cognitive only condition, 27.79% feed-forward was presented at the right 

position, and for C2F2, 62.5% feed-forward was presented at the right position. If I did not 

consider presenting feed-forward before important videos as a constraint, then in the cognitive 

only condition, 56.6% feed-forward was presented at the right position. 

 One thing to note is that in all feed-forward experimental conditions, the participant 

received two feed-forward reminders. Some of these feed-forward reminders are extra, that is, 

they are triggered not because of the learner’s cognitive state, but triggered to balance the 

number of total feed-forward received. Disregarding these extra reminders, only 12.25% feed-

forward was triggered at a wrong place in C2F2 condition, 37.5% feed-forward was triggered at 
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a wrong place in cognitive only condition, and 41.67% feed-forward was triggered at the wrong 

place in context only condition.  If I did not consider presenting feed-forward before important 

videos as a constraint, then in the cognitive only condition, only 12.5% feed-forward was 

triggered at the wrong place. Therefore, in C2F2 condition, my algorithm generally presented 

feed-forward in the correct position.  

7.4.3 Learning Performance 

My experiment was based on the concept that different feed-forward interventions would affect 

learning, thus I first utilized analysis of variance (ANOVA) to analyze the effect of feed-forward 

interventions on participants’ learning performance. I looked at participants’ performance on the 

post-video quizzes only for the important subtopics (4 x 8 = 32 questions in total).   

 Information Recall, measured by the percentage of correctly answered questions, were on 

average 63.57% (σ = 17.75%), 65.16% (σ = 17.47%), 68.71% (σ = 15.72%) and 76.39% (σ = 

12.17%) in the no feed-forward, context only feed-forward, cognitive only feed-forward, and 

C2F2 conditions respectively (Figure 42). A one-way between subject ANOVA found no 

significant effect of the type of feed-forward interventions on Information Recall: F (3, 44) = 

1.4754, p = 0.2343. Post-hoc pairwise t-tests with Bonferroni correction suggested no significant 

difference between the C2F2 condition and the no feed-forward condition (t (22) = 0.1281, p = 

0.0602, d = 0.8161). However, the large effect size (Cohen’s d > 0.8) indicated the possibility of 

a significant relationship between these two conditions. 

 I used proportional learning gains, computed as (post-test – pre-test scores)/(1 – pre-test 

scores), to measure Learning Gains. Average Learning Gains were 60.03% (σ = 19.38%), 

60.50% (σ = 19.54%), 64.17% (σ = 15.72%) and 72.18% (σ = 13.43%) in the no feed-forward, 



 99 

context only feed-forward, cognitive only feed-forward, and C2F2 conditions respectively. No 

significant effect of the type of feed-forward interventions on Learning Gains was found: F (3, 

44) = 1.2030, p = 0.3198. Post hoc pairwise t-tests with Bonferroni corrections revealed no 

significant differences between the C2F2 condition and the no feed-forward condition (t(22) = 

0.1214, p = 0.1008, d = 0.7026). 

 Although I did not observe significant learning differences between the conditions for all 

participants, the large effect size of the t-tests between the C2F2 condition and the no feed-

forward condition indicated that there probably existed a significant interaction in the data worth 

further investigation. Therefore, I divided participants in each condition into two groups. Based 

on participants’ scores on the quizzes, I divided participants in each condition into the bottom 

half performers (six participants) who earned the lower score on the quizzes and the top half 

performs.  

 The bottom half performers had an average Learning Gains of 43.75% (σ = 11.16%), 

44.45% (σ = 11.59%), 52.74% (σ = 5.43%) and 61.94% (σ = 4.32%) respectively. I observed 

significant main effect of type of feed-forward interventions for the bottom half performers on 

Information Recall, F (3, 20) = 6.11, p = 0.004, and on Learning Gains, F(3, 20) = 5.68, p = 

0.0056. Post hoc pairwise t-tests with Bonferroni correction (α = 0.05/6 = 0.0083) revealed that 

for the bottom performers, they learned significant better in the C2F2 condition than in the no 

feed-forward condition (t = 0.1829, p = 0.0018) and the context only feed-forward condition (t = 

0.1749, p = 0.0025). Although the sample size (N = 6) is small, the small p value and the large 

effect size suggested a high practical significance. However, I did not observe significant main 

effect of type of feed-forward interventions for the top half performers on Information Recall, 
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F(3, 20) = 0.7580, p = 0.5308, and on Learning Gains, F(3, 20) = 0.3714, p = 0.7745.  Figure 42 

shows the major results of the study.  
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Figure 42. Recall rate and learning gains of different conditions.  

Top: general results of all participants, bottom: detailed results for bottom performers (L) and top performers (H). 

Marginal and significant p values are reported. (*) denotes significant differences. 

 

The results suggested that C2F2 were especially effective for bottom performers. A closer look 

at participants’ learning performance showed that the top four performers in the no feed-forward 
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condition did well enough and achieved comparable performance as the top performers in other 

conditions. Looking at these participants’ self-reported impression on the lectures, three of them 

reported consistent engagement and attention throughout the whole session. On the other hand, 

four of the six participants with the lowest scores across all conditions were from the no feed-

forward condition. Two of them reported consistent disengagement since the fourth video in the 

lecture. This finding suggested that C2F2 was useful for learners who became disengaged from 

learning and lacked the self-regulation ability to refocus on the learning content. For these 

learners, C2F2 prevented them from staying in a disengaged state and reoriented their attention 

back to the learning materials. 

 My results also suggested that presenting feed-forward based on topic importance alone 

did not improve learning. Presenting feed-forward based on learners’ cognitive state was more 

effective. This is because cognitive-state triggered feed-forward directly addresses the learner’s 

disengagement state, thus it is more effective at helping the learner maintain sustained 

engagement and attention throughout the whole learning session. 

7.4.4 Subjective Feedback 

Participants reported an average rating of 3.67 (σ = 0.89), 4 (σ = 0.60), 4.17 (σ = 0.72), 4.17 (σ = 

0.58) on a 5-point Likert Scale for the mobile MOOC system in the no feed-forward, context 

only feed-forward, cognitive only feed-forward and C2F2 conditions respectively. I found no 

significant main effects of the type of feed-forward interventions on participants’ impressions of 

the learning session (e.g., attention and engagement level, the effort put into the lecture, 

perceived learning, etc.).  
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Participants were generally very positive towards feed-forward. They commented that the 

feed-forward intervention indeed reoriented their attention to the video when they were 

disengaged: 

“I thought it is a good idea. I think it grabbed my attention when I was zoning out. So 

overall pretty good.” 

“The feed-forward alert really helps me re-engage when my mind starts wandering.” 

“It was helpful when I knew I needed to pay more attention. It was distracting when I felt 

that I was paying attention.” 

Some participants reported that the feed-forward was presented at the wrong place, 

especially in the context only feed-forward condition. The self-perceived accuracy of whether the 

feed-forward was presented at the right place could affect how a learner responds to feed-

forward:  

“I think the feed-forward alerts were presented at random places. It showed up when I 

paid a lot of attention and did not show up when it should. So I did not find it useful and just 

ignored it.” 

Some problems of the feed-forward were also identified from the experiment. One 

participant mentioned, “I paid extra attention for the 4th video when I saw the alert (feed-

forward), and then paid less attention in the following video.” This suggested that asking learners 

to pay more attention to one video could potentially make them pay less attention to another 

video. The feed-forward intervention is also not necessarily helpful for everyone. One participant 

commented, “When I am learning, extrinsic motivation often isn’t helpful for me. If I do not find 

a topic interesting, it is hard to pay attention even if I’m told to pay attention”.   
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Participants also reported that the content of a video affected their overall engagement for 

that video, “I could tell I preferred the one video about computer virus. It was more interesting 

for me and also easier to follow.” 

7.5 COMPARISON WITH EEG 

Another goal of the study was to directly compare the performance my disengagement prediction 

method (camera-phone based PPG-sensing) with the EEG-based engagement monitoring 

method, which is the current state-of-the-art technique to infer users’ engagement and attention 

state [115, 116] from physiological signals. Therefore, all participants in the study were asked to 

wear a Neurosky Mindwave EEG headset (Figure 42) during the learning session. This setup was 

similar to previous studies investigating the use of EEG-monitored attention during learning 

[115, 116]. Among the 48 participants in the experiment, the EEG signals from 11 participants 

were either incomplete (due to the device problem) or partially unusable (highly corrupted by 

noises). Therefore, I compared the performance of the PPG-based method and EEG-based 

method using data from the remaining 37 subjects.   

I performed off-line analysis and used the EEG-based engagement-monitoring algorithm 

in [115, 116] to calculate and filter an attention index. A participant’s engagement level for a 

given video was determined by calculating the mean of the attention index recorded during that 

video. I used participants’ self-reported engagement ratings for each video as the ground truth. I 

evaluated performance of the method using three measures: accuracy of using the EEG attention 

index to identify the video (of the six videos in the lecture) with the lowest engagement for each 

subject (acc1); accuracy of detecting the bottom two videos with the lowest engagement for each 
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subject (acc2), and accuracy of detecting the bottom three videos (acc3) with the lowest 

engagement for each subject. 

For direct comparison, the same measures were also applied to evaluate the performance 

of my PPG-based engagement prediction method. I used a Ranking SVM algorithm (SVMrank) to 

predict the ranks of learners’ engagement levels for the six videos they watched. Based on the 

ranking, I was also able to predict the video(s) with the lowest engagement. The same set of PPG 

features as well as signal processing methods used in 7.2.2 were also used. The leave-one-

subject-out evaluation was utilized to evaluate the performance of the ranking model.  

The EEG-based engagement prediction method achieved the best accuracy of 55.56% for 

acc1, 62.5% for acc2, and 75.93% for acc3 when the regularization constant was set to 0.02. 

This means that using the average EEG attention index, I could correctly identify the video 

which a learner showed the least engagement with 55.56% accuracy. On the other hand, my 

PPG-based method achieved 69.44% accuracy for acc1, 68.05% accuracy for acc2, and 76.85% 

accuracy for acc3. The PPG-based method outperformed the EEG-based method, especially 

detecting the video with the lowest engagement (acc1). The reason why my PPG-based 

classifiers achieved better accuracy might be the specifically trained machine learning models. 

The EEG-based engagement monitoring method directly calculates the attention index and does 

not have any learning involved.  

 One benefit of the EEG-based engagement monitoring method is that the method can 

capture finer-grained attention changes as the attention index is updated every one second. On 

the contrary, I used PPG signal sequences of a few minutes to predict learners’ general attention 

and engagement over a period. Another limitation of my PPG-based engagement prediction 

method is that it is less robust against different learning environments than the EEG-based 
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method. One important characteristic of heart rate and heart rate variability is that they are easily 

affected by the surrounding environments or the learner’s physical state. In real usage scenarios, 

learners are likely to study in more interrupted, highly diverse environments (e.g., standing, 

sitting, public transit). Therefore, one important issue is the confounding effects of the 

environments on PPG signals. On the contrary, the Mindwave headset collects EEG 

measurements from the FP1 region of the cortex, which is directly correlated with concentration. 

In the future, I shall investigate how to infer reliable engagement information from noisy, highly 

interrupted PPG signals. 

One problem I observed during my experiment was that wearing the EEG headset for an 

extended time could cause physical discomfort. More than ten participants complained about the 

pain caused by the ear clip and headband of the EEG headset. In my study, participants were 

instructed to wear the device before the learning session and take off the device after the whole 

learning session. The sensor tip on forehead could get detached from the participant’s skin due to 

incorrect adjustment of the device or user movement. This was the main reason why I was not 

able to collect complete good quality EEG data from the 11 participants excluded from this 

analysis.  

7.6 DISCUSSIONS 

One limitation of the proposed C2F2 technique is that the reminder is only presented before an 

entire subtopic video. Participants reported that they would also like to receive within video 

reminders immediately after they mind wandered. In this way, they could quickly redraw their 

attention to the video. However, the accuracy of predicting whether a participant was MW at a 
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moment using the implicitly captured PPG signal is moderate at best (highest precision 40% and 

highest recall 65% in [94]). Such accuracy is insufficient to support fine-grained reminders 

within a video.  

Another problem is that the feed-forward intervention will be presented when the system 

detects that the learner is not engaged/paying attention while watching the last video. Although 

feed-forward could potentially regulate learner’s disengagement state, the learner was still 

disengaged before the C2F2 reminder. To address this problem, C2F2 technique could be used 

together with other techniques, such as adaptive review, to improve learning. After the system 

detects that the learner is disengaged for the last video, the system could present a short review 

video or slide, or use exercises to help the learner review content of the last video. My colleagues 

at the University of Pittsburgh have developed the AttentiveReview [95] intervention technique 

which recommends review materials adaptively from the PPG signals captured by 

AttentiveLearner. 

The current design requires lessons to be divided into small subtopic videos. C2F2 could 

make learners pay attention for a while, but learners could still become disengaged halfway 

through a video if the video was long and boring. Smallwood et al. [111] found an increased 

mind wandering with time on task. Therefore, it is important to identify the maximum duration 

of a learning topic/video which allows learners to maintain sustained engagement. Based on 

subjective feedback from the study, most participants commented that they could stay focused 

for 3 to 5 minutes after seeing the feed-forward reminder. For longer videos, brief in-video alert 

in the middle of the video could be used.   
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8.0  DYNAMICS OF AFFECTIVE STATES DURING MOOC LEARNING 

The previous chapters mainly focus on the static presence of affective-cognitive states, such as 

Boredom and Confusion, at specific parts of the lecture video. However, learners’ cognitive 

states are dynamic and periodically change [33]. An understanding of the temporal dynamics of 

certain classes of affective states is necessary for a satisfactory model that integrates affective 

states and MOOC learning. For example, physiologists have shown that Flow/Engagement is the 

optimal experience during learning [27] when learners are completely focused and engaged. To 

keep learners in the optimal Flow state, I should understand how learners enter other affective 

states and how to revert them back.   

 In this chapter, I present a fine-grained analysis of the rapid dynamics of affective-

cognitive states that naturally occur during a MOOC learning session. 

8.1 BACKGROUND AND MOTIVATION 

A series of studies have explored the affective-cognitive states that occur during learning with 

technologies [7, 24, 29, 36, 40]. Graesser and his colleagues collected online measures of affect 

in various ways, such as observations by trained judges, self-report ratings, emote aloud 

protocols, and biological detection through physiological signals [24, 36, 40]. These studies have 

revealed that Boredom, Engagement/Flow, Confusion and Frustration dominate learning 
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experiences, with Delight and Surprise occasionally occurring but considerably less frequent. In 

a selective meta-analysis of 24 studies which monitored student affect during interactions with 

learning technologies, D’Mello [29] found that Engagement/Flow, Boredom, Confusion, 

Curiosity, Happiness, and Frustration occurred more frequently during learning than other 

affect. Baker et al. [7] studied the incidence, persistence, and impact of students’ affective-

cognitive states during their interactions with three different computer-based learning 

environments. They found that Confusion and Engagement were the most common states within 

all three learning environments. Boredom was the most persistent state and was associated with 

poorer learning and problematic behaviors. 

 

Figure 43. Model of affect dynamics in complex learning [33] 

  

One important aspect of the learner affect that has been explored by researchers is the 

temporal dynamics of affective states. D’Mello et al. [28, 31, 33, 41] proposed and tested a 

model of affect dynamics (Figure 43) during complex learning. The model emphasizes the 

importance of cognitive disequilibrium in complex learning and posits the bi-directional 
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transitions between Engagement/Flow (cognitive equilibrium) and Confusion (cognitive 

disequilibrium). The model assumes that learners in a base state of Engagement/Flow will 

experience cognitive disequilibrium and Confusion when they are confronted with 

contradictions, anomalies, or obstacles to goals (Link 1). Learners revert to Engagement/Flow if 

they resolve the impasse and restore equilibrium (Link 2). However, when the impasse cannot be 

resolved, and important goals are blocked, learners will experience Frustration (Link 3), which, 

if unresolved, will eventually lead to Boredom, a point at which the learner is disengaged from 

the learning process (Link 4). This model specifies how affective states evolve, morph, interact, 

and influence learning and engagement in complex learning contexts.  

Although a series of studies have explored affective states in complex learning 

environments, little work has been done in the MOOC context. Different from complex learning 

environments which allow students to gain knowledge through interactive problem-solving 

activities, MOOC students learn primarily by watching lecture videos. Due to the differences 

between the learning activities (actively solving problems vs. passively watching videos), many 

findings in the complex learning domain might not apply to MOOC learning. Additionally, 

previous studies on student affect in understanding learners’ affective experience in relation to 

the course as a whole on a weekly/module level [38, 39]. For example, Dillon et al. [38] 

conducted a study to measure a range of self-reported student affect throughout a MOOC course. 

They used “course-level” affect surveys in which students reported their emotions in relation to 

the course as a whole at the start of even-numbered modules. There is little work on the moment-

to-moment affective state transitions within each learning session.  

To expand the limited research of affective states in MOOC contexts and gain a holistic 

understanding of the dynamics of MOOC learning, I investigated the moment-to-moment 



 110 

affective states during a typical MOOC learning session. This piece of work alone has two 

unique contributions: 

• Through a 22-subject user study, I identify common affective states that naturally 

occur during a MOOC learning session and the dynamic temporal transitions between 

these states. This work extends the model of affect dynamics in complex learning 

environments proposed by D’Mello et al. [28, 31, 33, 41] to MOOC contexts.  

• I demonstrate the feasibility of predicting a learner’s moment-to-moment affective 

states by analyzing the PPG signals implicitly captured by mobile cameras.  

8.2 MOOCS VS. COMPLEX LEARNING 

While previous studies mostly explored the incidence and transitions of students’ affective states 

in complex learning environments, this dissertation focuses on the same topic during MOOC 

learning sessions. I observed four major differences between MOOC learning (watching lecture 

videos) and complex learning (solving problems): 1) Levels of control over the pace and process 

of the learning activity; 2) Clarity of learning goals as well as achievement feedback; 3) Levels 

of interactions offered by the system during the learning process; 4) Require conceptual skills. 

Table 6 gives a detailed comparison between these two types of learning.  

Considering these significant differences, the affect dynamics model for complex 

learning proposed by D’Mello et al. [33] might no longer apply to the MOOC contexts. It is 

necessary to propose a new model of affect dynamics specifically for MOOC learning.    
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Table 6. Major differences between complex learning and MOOC learning. 

                          Content 
Differences 

Complex Learning MOOCs 

1. Levels of control over 
the learning process 

Flexible control over 
the speed and process 
of learning 

Little control due to the 
constant information 
flow of the video 
 
 

2. Achievement of 
learning goals 

Goals are well-defined 
(solving the problem 
following each step) 
and can be clearly 
measured (pass or fail). 

Goals are often not 
explicitly defined; 
Achievement of goals 
depends on individual 
learner’s standards and 
expectations 
 

3. Levels of Interactivity 
 
 
 

Constant feedback in 
trial-and-error 

Little direct feedback 
within the video 

4. Required conceptual 
skills 

Deeper level of 
comprehension skills is 
required (e.g., generate 
references, diagnose 
and solve problems, 
transfer acquired 
knowledge, generate 
coherent explanation, 
etc.)  
 

Shallower level of 
skills is required 
(extracting and 
memorizing 
information) 

 

8.3 HYPOTHESES 

I first came up with a list of hypotheses of learners’ affective experiences during MOOC 

learning. Please note that my focus is the moment-to-moment affect that occurs during short (30 

minutes to 1 hour) MOOC learning sessions, which could be very different from the affective 

experience in relation to the whole course on a weekly/module level [39]. Also, I focus on the 
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primary learning activity within MOOCs, i.e., watching lecture videos. I have three main 

hypotheses: 

1. The video content plays an important role in the incidence and temporal transitions of 

learners’ affective states in MOOC learning.  

The affect dynamics model for complex learning [33] is motivated by the cognitive 

disequilibrium theory, which emphasizes the critical role of uncertainty that occurs when an 

individual is confronted with impasses and obstacles. However, the shallower MOOC learning 

activity mainly requires learners to memorize key phrases and facts from the video and is 

unlikely to explicitly present impasses and obstacles to challenge learners (difference 4). 

Therefore, the impasse-driven dynamics may not apply for MOOC learning.  

One explanation for the origins of emotions in the academic domain is the control-value 

theory of achievement emotions [89]. This theory posits that subjective control over the activities 

and outcomes, and the subjective values of these activities and outcomes, are central to the 

arousal of achievement emotions. For example, a student experiences learning-related enjoyment 

when she has a sense of being able to master the material (high control) and intrinsically values 

the material (high interest). Inspired by this theory, I assume that perception of the learner 

regarding the learning materials plays an important role in the incidence and transitions of 

affective states in MOOC contexts. 

2. Learners are less likely to experience frustration with MOOC learning than with 

complex learning.    

Frustration is a primary affective state that frequently occurs in complex learning, but I 

suspect that MOOC learners are less likely to experience Frustration. In complex learning, 

learners experience Frustration when they constantly make mistakes and are unable to resolve 



 113 

the impasse [33]. Since MOOC learners are unlikely to be challenged and experience failure in 

the process of watching a lecture video, I assume Frustration will not frequently occur.  

3. Transitions to boredom are more easily triggered in MOOC learning.  

In the affect dynamics model for complex learning [33], to enter 

Boredom/Disengagement, learners will experience the following sequence of transitions: 

Engagement/Flow  Confusion  Frustration  Boredom. I assume learners are more likely to 

become bored with the MOOC learning activity for two reasons: there is little interaction and 

explicit feedback in the learning process (difference 3), and there is a lack of clear learning goals 

to motivate the learner (difference 2). According to the control-value theory [89], I think that it is 

possible for a learner to directly enter Boredom from Engagement/Flow if she finds the video no 

longer appealing (low perceived value). 

8.4 USER STUDY 

To test the above hypotheses, I conducted a user study in which I observed the affective states of 

college students while they took a mini-MOOC course (30-minute lecture videos). I had two 

major goals for the study. First, I would like to investigate the dynamics of affective states in a 

MOOC learning session. Second, I was interested in exploring the feasibility of using implicitly 

captured PPG signals to predict learners’ moment-to-moment affective states. 
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Figure 44. Some participants in my study.  

They were watching the MOOC videos with a laptop computer. Participants also held a smartphone running the 

LivePulse application to collect the PPG signals from their fingertip. 

8.4.1 Participants 

Due to funding constraints, I managed to recruit 22 University of Pittsburgh students (12 males, 

10 females) for the study (Figure 44). While more participants are desirable, the scale of this 

study was comparable to some previous studies investigating affective states in educational 

systems, e.g., Diana et al. [37] (19 subjects), Kizilcec et al. [67] (22 subjects), D’Mello et al. [28, 

31, 41] (28 subjects). The average age was 22.68 (σ = 4.04) between19 and 34. The participants 

were recruited via flyers posted around the campus, and they had various backgrounds: half of 

them had an engineering background (majored in CS, electrical engineering, etc.), 9 of them 

majored in liberal arts (history, neuro-science, etc.) and the other 2 went to the medical school. 

All participants reported little or no prior knowledge of the MOOC course used in the study.  
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8.4.2 Materials and Equipment 

The mini-MOOC course used in the study was a section of the Coursera course “Cryptography” 

taught by Professor Dan Boneh from Stanford University 

(https://www.coursera.org/learn/crypto/home/week/1). There were three lecture videos in this 

mini-MOOC course: Introduction to Ciphers, One-Time-Pad, and Stream Ciphers. Duration of 

the three videos were 10m18s, 11m45s and 8m30s respectively. I chose the course because this 

was a topic that participants were unlikely to have prior knowledge while being “representative” 

as a real-world STEM learning topic. Moreover, the course was chosen because the difficulty of 

its content varied at different parts. The first half of the lecture presented basic concepts and 

simple ciphers, while the second half of the lecture talked about more challenging content, 

including mathematical deduction and proofs. I believe such variety in the lecture content could 

help me elicit diverse emotional responses from my participants. Also, given that the participants 

had various background, I suspected that some participants (e.g., the students with engineering 

background) might be more interested in the course than the other students, this allowed me to 

investigate the effect of interest on learners’ affect in MOOC contexts (Section 8.6).    

 The three lecture videos each contained one or two multiple choice questions (five 

questions in total) somewhere in the middle to test the learners’ understanding of the topics. 

Learners were given 15 seconds to think about the question before the instructor revealed the 

answer. The questions were similar to the in-video quizzes [70], which were commonly found in 

MOOCs on Coursera.  

Participants watched the lecture videos on a MacBook Pro with a 13-inch screen. I also 

recorded participants’ PPG signals using a smartphone running the LivePulse application while 

participants watched the lecture videos. The Nexus 5 smartphone had a 4.95 inch, 1920 x 1080 

https://www.coursera.org/learn/crypto/home/week/1)


 116 

pixel display, 2.26 GHz quad-core Krait 400 processor, running Android 5.0.1. It had an 8 mega-

pixel back camera with an LED flash.  

8.4.3 Procedure 

Participants completed the mini-MOOC course by watching the three lecture videos one by one. 

To collect learners’ moment-to-moment affective states during learning, I asked participants to 

provide judgment of their affective states at fixed affect judgment points in the video at which 

the video paused automatically. Participants reported the affective states they experienced at that 

instant and clicked the play button to resume watching the video. Affect judgment points were at 

the end of each concept, usually composed of a definition and a few sentences of explanation, or 

before the instructor presented the answer to a question. The intervals between two consecutive 

judgment points ranged from 21s to 80s (average 42.39s), depending on how much time the 

instructor spent on a concept. There were 16, 16, 15 affect judgment points in the three videos 

respectively, resulting in 47 affect judgment points in total across the whole lecture.  

There are two major differences between my method to collect affect reports and the 

method used by D’Mello et al. [33]. First, in [33], students provided judgment of their affective 

states after the learning session by viewing the face and screen videos recorded during the 

learning session. In a pilot study with four subjects, all participants commented that they had a 

hard time discriminating their affective states based on the recorded face videos alone. I assume 

that compared with complex learning, learners were presumably more affectively neutral and 

showed less facial expression changes in the shallower MOOC learning session, thus the 

retrospective method might not be applicable.  Therefore, instead of using the retrospective 

method, I decided to collect affect self-report during the learning session, similar to [23, 58]. 
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However, collecting affect report during the learning session had the problem of disrupting the 

learning process with probes [49]. To minimize the interruptions, I did not obtain affect 

judgments at short, fixed intervals (e.g., 20 seconds) as [33], which could easily interrupt a 

learner in the middle of a statement. Based on participant feedback in a multiple subject pilot 

study, learners normally did not experience significant affective state transitions when the 

instructor talked about the same concept. Therefore, I chose to obtain affect judgments at the end 

of each concept/slide to avoid interruptions. 

 

Figure 45. The interface participants used to report their affective states at each affect judgement point 

 

Figure 45 shows the interface participants used to reported their affective states at each 

affect judgment point. For each affect judgment point, participants were provided with a 

checklist of nine states to mark along with definitions of each state. While [33] measured seven 

states (Engagement/Flow, Boredom, Confusion, Frustration, Surprise, Delight, Neutral), I added 

another two states, Curiosity and Happiness, which were also reported to occur during learning 

with technology [29]. The definitions were presented on a piece of paper that participants 
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retained throughout the study. Definition of the first seven states can be found in [33]. Curiosity 

was defined as “being curious, in regards to the desire to gain knowledge or information.” 

Happiness was “being pleased and glad about the condition or situation.” Participants were 

asked to choose the affect that best described their state at the exact instant from the checklist. 

Participants were also asked to rate the level of valence (displeasure to pleasure) and arousal 

(deactivation to activation) they experienced using the Self-Assessment Manikin’s (SAM) [15].  

The whole study took about one and a half hours, and each participant was compensated 

with a $15 gift card after completing the MOOC course. The study contained the following three 

phases.  

Overview. I collected participants’ background information and gave a brief introduction 

to the study. Participants also completed an initial quiz (7 multiple choice questions) to assess 

their prior knowledge of the class. 

MOOC Learning. Participants took the mini-MOOC course. They were required to 

provide judgments on their affective states at the affect judgment points during learning. 

Participants’ PPG signals were captured throughout the entire learning session.  

After participants watched a lecture video, they immediately evaluated this video with the 

Subjective Impression Questionnaire (B.4). Participants also completed a post-lecture test, 

containing 7 to 9 questions, testing their understanding of the video they had just watched. After 

the participant completed the questionnaire and quiz, they continued to the next video. 

Qualitative Feedback. Each participant completed a closing questionnaire about when 

and why they experienced each of the nine affective states during learning.  
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8.5 RESULTS 

8.5.1 Affect Distribution 

I collected a total of 1034 self-reported affect judgments for the 22 participants’ MOOC sessions. 

Table 7 shows the number of instances of each affect.  

Table 7. The number and percentage of each affective state collected in the study. 

Affect Whole 
Session Video1 Video2 Video3 

Engagement 368 
(35.7%) 

117 
(33.2%) 

112 
(31.8%) 

139 
(42.4%) 

Boredom 136 
(13.2%) 

47 
(13.4%) 

52 
(14.8%) 

37 
(11.2%) 

Confusion 150 
(14.5%) 

57 
(16.2%) 

55 
(15.6%) 

38 
(11.5%) 

Frustration 24 
(2.3%) 

5 
(1.4%) 

13 
(3.7%) 

6 
(1.8%) 

Delight 17 
(1.6%) 

10 
(2.8%) 

4 
(1.1%) 

3 
(0.9%) 

Surprise 21 
(2.0%) 

5 
(1.4%) 

3 
(0.9%) 

13 
(3.9%) 

Curiosity 122 
(11.8%) 

48 
(13.6%) 

40 
(11.4%) 

34 
(10.3%) 

Happiness 35 
(3.4%) 

9 
(2.6%) 

15 
(4.3%) 

11 
(3.3%) 

Neutral 161 
(15.6%) 

54 
(15.3%) 

58 
(16.5%) 

49 
(14.8%) 

 

I analyzed the proportional occurrences of the affective states experienced by the 22 

participants. A repeated measures ANOVA indicated that there was a statistically significant 

difference in the frequency of occurrences of these states, F(8, 168) = 21.8, p < 0.0001. 

Engagement/Flow was the most frequent affect during MOOC learning, followed by Boredom, 

Confusion, Curiosity, and Neutral. There were only a few occurrences of Frustration, Delight, 

Surprise, and Happiness.   
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As expected, there were fewer occurrences of Frustration in MOOC contexts than in 

complex learning (Hypothesis 2). According to [33], persistent failure and goal block lead to 

Frustration. In the MOOC learning session, the learners were not given specific learning goals 

which they had to achieve, thus they were less likely to be frustrated when their learning goals 

were blocked. Also, watching MOOC videos is generally less mentally demanding than solving 

complex problems. The learners were less likely to get stuck on the lecture videos than on 

complex problems. For these reasons, Frustration is less likely to happen in MOOCs than in 

complex learning contexts. 

8.5.2 Subjective Feedback of the Origins of Affective States 

Before I quantitatively analyze the dynamic transitions of affective states during MOOC 

learning, I first reviewed the qualitative feedback from participants in the closing questionnaire 

regarding when and why they experienced each affective state in the study. The qualitative 

feedback provides insights of what causes and modulates learners’ affective states during MOOC 

learning sessions. I categorized the causal attributions of each affective state into two groups: 

internal attributions, which are related to the learner, and external attributions, which are about 

the learning material. A full summarization of the causal attributions of different affective states 

is presented in 0.   

8.5.3 Dynamics of Affective States 

To identify the frequently occurring transitions between different affective states, I used the 

transition likelihood metric L [28, 33] to compute the likelihood of transition between any two 
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affective states. The metric can be represented as L(Mt  Mt+1), where Mt is the state at time t 

(the current states), and Mt+1 is the next state at t+1. L(Mt  Mt+1) is defined by equation 1.  

 

This definition considers the base rate of the subsequent emotions and penalizes 

associations that are not greater than an expected amount of association 

( ). The metric specified in Equation 1 was used to compute the relative 

likelihood that individuals in an affective state at time ti, will remain in the same state or change 

to another affective state at time ti+1. When analyzing transitions between different states, I used 

the same data recoding method in [33] to eliminate repetitions between states. For example, 

XYYZ was converted to XYZ. This process reduced the length of the time series to 

635 states with a mean of 28.9 states per participant (SD = 9.3). This data recoding procedure 

was not used when analyzing persistence in the same state (i.e., the students being in the same 

state for two successive observations).  

Our investigation focuses on the frequently occurring states (Engagement, Boredom, 

Confusion, Curiosity, Neutral) and Frustration, a primary negative affect in complex learning [7, 

33]. To determine whether there is any relationship between immediate and next state, I 

performed one-sample, t-tests to test whether the likelihood was significantly greater than or 

equal to zero. Figure 46 presents the descriptive statistics for the likelihood that each of the 6 

investigated affective states immediately follows another. I now present analysis for each state.  
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Figure 46. Likelihoods that each of states immediately follows (a) Engagement, (b) Boredom, (c) Confusion, (d) 

Curious, (e) Frustration, (f) Neutral. 
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8.5.3.1 Engagement 

Engagement is the most frequently occurring state during MOOC learning. Based on 

participants’ subjective feedback, they felt engaged when they were interested in the video 

content and were able to comprehend the video. This was evident by their comments: “When I 

was first starting out, I was interested in learning a new topic.” [S13], “When content, although 

very unfamiliar, seemed simple enough for me to comprehend and follow or accessible.” [S6]. 

This finding also confirms the control-value theory [89] which predicts that learners feel engaged 

when they have high perceived control (ability to understand the content) and positive values 

(interest in the content) over the learning materials.  

Figure 46a presents the average likelihood that each of the 6 investigated affective states 

immediately follow Engagement. It also presents results of the one-sample t-tests, which indicate 

that transitions from Engagement to Engagement (t(21) = 3.13, p = 0.005), Engagement to 

Confusion (t(21) = 2.55, p = 0.019), and Engagement to Boredom (t(21) = 2.15, p = 0.043) are 

significantly more likely than chance. The transition of Engagement to Curiosity is marginally 

significant (t(21) = 2.05, p = 0.053).  

Unlike D’Mello’s model [33], I observed that the Engagement  Boredom transition 

significantly occurred. Instead of experiencing the Engagement  Confusion  Frustration  

Boredom process, learners could directly enter Boredom from Engagement. Based on subjective 

feedback related to the 29 direct Engagement  Boredom transitions, 51.7% occurred because 

the material did not appeal to the learner (low perceived value). The content was not interesting, 

redundant or trivial: “topic is boring” [S7], “took too long on the example” [S9], “already knew 

the content” [S19], “same stuff repetitive” [S22]. 41.4% occurred because the learner could not 

cope with the lecture (low control): “lost” [S6], “too hard to follow” [S9], or “can’t understand 
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and do not know what to do” [S3]. The other 6.9% occurred because the learner’s mind 

wandered or she felt tired. This finding that Boredom in MOOC contexts could be caused by 

either low perceived value or low control is consistent with Pekrun’s control-value theory [29, 

89, 91] that “boredom occurs when value is low, when skills exceed challenges (too high 

control) and when challenges exceed skills (too low control)” [29].  

The Engagement  Confusion was also a significant transition. Learners experienced 

this transition when they did not understand a statement, symbol or notation presented in the 

video (“Must’ve missed something. What’s ‘key space’?” [S17], “unsure of why E is 

randomized” [S12]), or when they encounter a question (“The question has me a little confused.” 

[S4]). 

There is also a marginally significant Engagement  Curiosity transition. Participants 

indicated that they felt curious when the instructor asked a question, and they were interested to 

know the answer (“want to know the answer or why something is the way it is” [S20], “when I 

was unsure of an answer or unsure how a problem was going to be addressed” [S19]) or when 

they encountered a new idea and were curious to know more (“sometimes I was intrigued and 

wanted to know more about an idea or concept generally” [S3], “Why is E “randomized”? Tell 

me more.” [S4]).  

8.5.3.2 Boredom 

Three learners did not report any experience of Boredom. Thus the degree of freedom of 

the t-tests was 18. Learners in the state of Boredom were most likely to remain bored (Figure 

46b). The transition from Boredom to Boredom was significant compared to chance level (t(18) 

= 4.39, p < 0.001). The small p-value showed that Boredom was persistent, which was also found 

in complex learning systems [7]. Given the strong persistence of Boredom, when instructors 
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create MOOC videos, it is important to adopt engaging video production and interaction 

techniques so that learners are less likely to become bored.   

The Boredom  Engagement and Boredom  Confusion transitions were rare in the 

MOOC learning activity as I observed a negative transition likelihood and a marginally 

significant difference. However, the Boredom  Neutral transition occurred above chance (t(18) 

= 2.27, p = 0.036). Given that learners had no apparent emotions when they were neutral, the 

Neutral state could act as a transitional state for the learner to move out of Boredom state and 

enter another state.  

8.5.3.3 Confusion 

I found a significant transition from Confusion to Confusion (t(18) = 2.37, p = 0.029). 

Confusion was rarely followed by Boredom because the transition likelihood was negative at a 

significant level (t(18) = -2.10, p = 0.050). The Confusion  Engagement, Confusion  

Curious, and Confusion  Frustration transitions all occurred at chance levels. Three learners 

did not report experiencing the confused states. Thus the degree of freedom was 18. 

I did not find any significant transitions from Confusion to another state, so I further 

investigated whether the amount of Confusion could impact the transitions of affective states. 

The 19 participants reporting Confusion were divided into two groups based on the amount of 

Confusion they were experiencing during the learning session. 9 subjects reported more than 

15% confusion states (Avg: 27.7%, SD: 9.6%) and they were in the strong Confusion group. The 

other 10 subjects were in the mild Confusion group (Avg: 7.0%, SD: 3.5%). I observed 

significant transitioning from Confusion to Frustration in the strong Confusion group (t(8) = 

2.41, p = 0.042). However, the Confusion  Frustration transition were rare (t(9) = -2.13, p = 

0.059) in the mild Confusion group. This difference suggests when a learner consistently feels 
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confused, she likely becomes frustrated. Participants’ comments also supported this transition 

from consistent Confusion to Frustration: “I was constantly confused which affected my focus. I 

became frustrated” [S9], “The lecturer made me feel frustrated. I often would not tell if I felt 

frustrated or simply confused” [S3], “I felt frustrated when I was feeling confused for 3 to 5 

minutes and felt no sense of achievement” [S14]. 

I did not observe a strong transition from Confusion to Engagement as in D’Mello’s 

affect dynamics model [33], which posits that Confusion is a key signature of the cognitive 

disequilibrium state in complex learning. Learners must engage in effortful problem-solving 

activities to resolve the impasse and restore Equilibrium/Engagement. On the other hand, 

participants in my study reported that Confusion  Engagement happened when “(the 

instructor) made it clearer” [S9], “narrator repeated his words once. It was more thorough” 

[S6], “more interesting and better understanding” [S5], “New concept has me interested now” 

[S6]. Therefore, the occurrence of Confusion  Engagement depends more on the content and 

flow of the video (e.g., the video provides follow-up explanations to clarify a confusing idea, or 

it moves from one topic to a more interesting topic, etc.) than the learner actively solving the 

problem independently. Because of this large reliance on the content and flow of the video, the 

learner might remain confused if their questions or doubts are not answered in the video. The 

learner can become frustrated as the video plays and the content gets more and more difficult 

before she is ready to advance. 

8.5.3.4 Curiosity 

Figure 46d shows that learners in the Curiosity state are highly likely to transition to the 

Engagement state (t(17) = 5.68, p < 0.001). This transition was also reflected by participants’ 
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feedback comments, “Once you feel curious, you become more engaged” [S20]. All other 

transitions occurred randomly.  

8.5.3.5 Frustration 

Because participants rarely experienced frustration in my study (only 11 participants 

reported experiencing frustration for a few times), I did not observe any significant transitions 

after Frustration. Different from D’Mello’s affect dynamics model [33], I observed that the 

Frustration  Boredom transition was rare and occurred significantly below chance (t(10) = -

2.90, p = 0.016). This further proves that learners could easily enter Boredom instead of going 

through the Frustration  Boredom process. Learners were also unlikely to enter the Curiosity 

state from the Frustration state (t(10) = -2.22, p = 0.051).  

The transitions from Frustration to Engagement, Confusion, and Frustration all occurred 

at random. I found that Frustration  Engagement transitions might occur when frustration is 

caused by temporary, yet irritating video production problems (e.g., “annoyed by choppy voice 

or writing” [S21], “this person’s handwriting can be a little hard to read” [S4]). The learner 

returned to the engaged state when the problem was diminished. However, to confirm these 

speculations and identify significant transitions related to Frustration, more affective state data 

needs to be collected.   

8.5.3.6 Neutral 

I found a significant transition from Neutral to Engagement (t(18) = 2.29, p = 0.035), and 

a marginally significant transition from Neutral to Neutral (t(18) = 2.05, p = 0.056). Given the 

significantly occurred Boredom  Neutral transition, there exists this Boredom  (Neutral)  

Engagement transition. The Boredom  Engagement transition occurred when the learner had 



 128 

an increased interest level (“interested to know info” [S5], “new subject” [S22]) or exhibited a 

better understanding of the content (“Okay, what he is saying makes sense now.” [S3]).  

8.5.3.7 Discussions 

Based on participants’ feedback of when they experienced each affective state, I thought 

the Confusion  Boredom transition might be significant: “The second and third videos got 

boring after I became confused. I didn’t have the background knowledge” [S9], “When things 

dragged on and I didn’t fully understand (I got bored)” [S5], “When the content seems way over 

my head and the lecture was too difficult to follow (I got bored)” [S6]. Based on these comments, 

I assume that a learner might first feel confused and lost when she missed a fundamental concept 

in the lecture. As the lecture went on, the learner could eventually get bored if she couldn’t 

follow the lecture and give up on the lecture. 

Unlike my expectation, the Confusion  Boredom transition was rare and below chance 

(t(18) = -2.10, p = 0.050). One explanation for this is that Boredom and Confusion might co-

exist, but participants were only required to report the dominant affective states at each judgment 

point in the study. Some participants did report the co-existence of confusion when they were 

bored: “Notation still confusing” [S9], “I have no idea what he was talking about.” [S3]. 

Previous studies have also reported the co-existence of Boredom and Confusion [37, 39]. 

Another explanation is that the Confusion to Boredom transition might happen at a fast rate. 

Pekrun et al. [91] found that students with a self-concept of low aptitude and low interest in the 

learning material may not believe that the effort will help them master the material, thus they 

may quickly become bored and disengaged. Since the intervals between two consecutive affect 

judgment points was as short as twenty seconds to one minute, the confusion to boredom 

transition could have happened at a fast rate of less than one minute. 
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8.6 FACTORS INFLUENCING LEARNER AFFECT 

The quantitative analysis of affect dynamics displays the general moment-to-moment affective 

state transitions that individuals undergo during MOOC learning. I also performed quantitative 

analysis to identify the external and internal factors that influence learners’ affective experience 

during MOOC learning.   

In the study, other than the affective state judgments, I also asked participants to provide 

other information which I thought might influence their affective experience during MOOC 

learning. These include knowledge base (F1, measured by whether they have engineering 

background or not), interest in the course (F2), perceived usefulness of the course (F3), 

perceived learning capability (F4, measured using the Perceived Competence Scale), perceived 

interestingness of the learning material (F5) and perceived difficulty of the learning material 

(F6). F1 was collected in the entrance survey, F2 to F4 were collected before the participant 

watched each video, and F5 and F6 were collected after the participant watched each video. 

To analyze if learners’ affective experiences were correlated with these factors, I 

calculated the proportional occurrence of each affective state by each participant and ran linear 

regression analyses. Since Boredom could be caused by either a lack of perceived values 

(disinterested in the content) or a lack of control (high mental demand), I manually labeled each 

boredom either as Boredom1 (caused by low value) or Boredom2 (caused by low control) 

according to the learner’s comments during the lecture, their subjective feedback after the 

lecture, as well context of the judgment point (e.g., Boredom after Confusion likely belongs to 

Boredom2). Table 8 displays the results of the linear regression analysis.  
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Table 8. Linear regression analysis of the proportional occurrence of each affective state and the six 

factors.  

 F1 F2 F3 F4 F5 F6 

Engagement 
-0.204 
(0.839) 

-1.106 
(0.273) 

-0.016 
(0.987) 

0.434 
(0.665) 

3.560 
(0.001*) 

-0.289 
(0.773) 

Boredom 
0.908 

(0.368) 
-0.801 
(0.426) 

-0.300 
(0.765) 

0.063 
(0.950) 

-6.113 
(<0.001*) 

-0.011 
(0.991) 

Boredom1 2.792 
(0.007*) 

0.132 
(0.896) 

-0.600 
(0.551) 

0.502 
(0.618) 

-4.868 
(<0.001*) 

-1.718 
(0.091) 

Boredom2 
-0.840 
(0.404) 

-1.104 
(0.274) 

0.287 
(0.775) 

-0.251 
(0.803) 

-3.159 
(0.003*) 

1.4336 
(0.157) 

Confusion 
-2.150 

(0.036*) 

0.581 
(0.564) 

0.178 
(0.859) 

-2.156 
(0.035*) 

1.396 
(0.168) 

2.723 
(0.009*) 

Frustration 
-0.573 
(0.569) 

1.962 
(0.055) 

-1.00 
(0.319) 

0.408 
(0.685) 

-0.675 
(0.502) 

1.883 
(0.065) 

Curiosity 
-2.038 

(0.046*) 

0.533 
0.596 

2.054 
(0.045*) 

-0.841 
0.404 

1.304 
0.197 

-2.820 
(0.007*) 

 

I have some interesting findings. For example, both Confusion and Frustration had a 

strong positive correlation with the perceived difficulty of the learning material. However, 

Confusion was negatively correlated with the knowledge base and the perceived learning 

capability. This suggested that when the learner did not have necessary background knowledge 

or did not possess the learning skills to understand the lecture, she likely became confused. On 

the other hand, Frustration had a strong negative correlation with interest, suggesting that when 

the learner saw the value of the lecture, but could not understand it due to its difficulty, she 
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tended to feel frustrated because she was unable to master the knowledge which was valuable for 

her.  

The two types of Boredom also had different relationships with the six factors. While 

both types of Boredom had a strong negative correlation with the perceived interestingness of the 

learning material, Boredom1 was negatively correlated with the learning material difficulty, 

while Boredom2 had a positive relationship. This confirmed my previous finding that both low 

mentally demanding (low difficulty) and high mentally demanding (high difficulty) could induce 

Boredom. Also, Boredom1 was positively correlated with the knowledge base which suggested 

that learners were more likely to get bored if they were already familiar with the topic.  

8.7 IMPLICATIONS 

8.7.1 Providing materials with the right difficulty level 

It is important to provide materials for a learner with the appropriate difficulty level. As I have 

discussed in the Engagement  Boredom transition, 51.7% of the transition occurred when the 

learning material had low perceived value. 41.4% of the transition occurred when the learner had 

low control over the learning activity. When mental demands are too low, there is an insufficient 

challenge and a lack of intrinsic value, thus producing Boredom. Conversely, when demands 

exceed capabilities and cannot be met, it may be difficult to detect meaning in the activity, thus 

reducing its value. Therefore, Boredom can be experienced when learning materials are too easy 

(low mental demands) or too hard (high mental demand). 
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As I have discussed earlier, the learner’s knowledge base and learning capabilities could 

greatly impact her mental load as well as her overall affective experience while learning. 

Therefore, it helps the learning process to assess the student's learning capabilities and pre-

course knowledge base before a lecture to provide materials accordingly. For example, the 

MOOC course could provide some optional introductory videos for learners lacking the 

necessary background and skills to take the course.  

8.7.2 Distinguishing the types of boredom detected 

Because Boredom is found to be associated with poor learning, researchers have explored the use 

of physiological signals, such as EEG signals and eye gaze data, to detect 

Boredom/Disengagement in educational systems [42, 116]. However, none of these work detects 

the types of Boredom, which can be triggered when one's mental demand is either high or low. 

Affect detection in a MOOC environment should distinguish the types of Boredom 

detected because different interventions should be deployed to handle these two types of 

Boredom. To diminish the Boredom caused by easy activities, the system should introduce more 

challenging content. For example, the system could skip the more basic explanatory video 

sections and jump to the important part. The system could also use interventions such as in-video 

quizzes to challenge learners and improve their engagement. On the other hand, for Boredom 

caused by high mental load, the system should increase the learner's understanding of the 

lecture. It could slow down the playback speed, rewind the video to go over the important parts, 

or provide adaptive reviews after the lecture.  
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8.7.3 Addressing learners’ confusion state 

D’Mello’s affect dynamics model [33] posits the central role of Confusion and cognitive 

disequilibrium in deep learning. A major assertion that emerges from the model is that the 

Engagement/Flow  Confusion oscillations are beneficial to learning, and the system can 

introduce Confusion to place learners in a state of cognitive disequilibrium in which they will 

have to stop, think, reason, and be active problem solvers. Unlike complex learning, MOOC 

learners are unlikely to engage in this productive deep thinking process because: 1) As opposed 

to deep learning activities, the MOOC activity mainly requires learners to memorize key phrases 

and facts in videos; 2) Due to the constant information flow of MOOC videos, learners are 

unlikely to spend much time thinking about the concepts/questions presented in the video. 

Therefore, is Confusion still a desirable state in MOOCs, and should the system even purposely 

induce Confusion?  

My analysis of the transition from Confusion (cognitive disequilibrium) to Engagement 

(cognitive equilibrium) suggests that this transition relies more on the information provided by 

the video than on the effortful reasoning and problem-solving by the learner. Because this 

transition relies heavily on the content and flow of the video, which might vary greatly among 

different videos for different learners, I did not observe a significant Confusion  Engagement 

transition in the MOOC learning session; rather I observed that a confused learner is most likely 

to stay confused. As Confusion accumulates, it is likely that the learner will eventually become 

frustrated when she can no longer follow the lecture. Apart from the persistence of Confusion 

and the Confusion  Frustration transition, I also observed a possible fast transition from 

Confusion to Boredom. As previous work suggests [49], some students “may not have enough 

skills and knowledge of math to experience much confusion other than an initial bewilderment 
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and quick escape.” If a student believes that the learning material exceeds her aptitude and her 

effort will not help to master the material, she could quickly become bored and give up. 

From the above discussion, it can be seen that Confusion in MOOC contexts is unlikely 

to elicit deep inquiry and learning gains; rather, it could easily lead to Disengagement and 

Frustration if the challenge is too difficult for the learner. Therefore, rather than intentionally 

causing Confusion, we should make the videos clear and easy to understand for general learners. 

Based on participants’ subjective feedback on what lead to confusion, I summarized a list of 

rules to help instructors produce better MOOC videos that eliminate unnecessary Confusion of 

learners: 

• Avoiding making assertions or claims without any explanation or support.  

• Adding necessary transitions between two topics (for example, explain why introducing 

the new topic and its relevance to the previous one). 

• When presenting a concept involving much information (e.g., proving a mathematics 

equation), slow down the instructional pace. Avoiding putting information on a single 

slide all at once, clearly explaining the concept step by step.  

• Using diagrams and demonstrations might help the learner understand a concept.  

• Using standard notations and symbols.  

• Avoiding sloppy and unrecognizable handwriting.  

8.7.4 Curiosity leading to better engagement 

I found that the transition from Curiosity to Engagement occurred quite often. Thus, one 

effective way to improve student engagement is to make them feel curious about the upcoming 

content. I had discussed earlier how learners experienced Curiosity (0), the most common answer 
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was, “when the speaker posted a question and I was interested to hear what the answer was” 

[S4]. Therefore, in-video quizzes, which are adopted by many MOOC learning platforms (e.g., 

Coursera, Udacity), are indeed effective for improving learner engagement. Some participants 

also indicated that statements such as “we will address this issue later”, “we will now talk about 

this problem in detail” pique their interests. Therefore, instructors could use these prompts now 

and then to draw learners’ attention.   

8.8 PPG SIGNALS AND MOMENT-TO-MOMENT AFFECTIVE STATES 

I also explored the feasibility of using the PPG signals collected in the study to predict learners’ 

moment-to-moment affective states. This is different from our previous cognitive state detection 

tasks (presented in Chapter 5, 6, 7), which dealt with predicting learners’ cognitive states over a 

period (e.g., within each learning topic). The moment-to-moment affective state detection is 

more difficult as learners’ affect typically fluctuate dynamically and could change rapidly.  

8.8.1 Signal Quality 

I first analyzed the quality of implicitly captured PPG signals by investigating the RR-intervals 

in 5-second moving windows (measurement presented in Chapter 4.3.3.2). I only collected 

partial PPG data from S1 because he accidentally closed the LivePulse application during the 

study. Of the remaining 21 participants, I found that most participants had good quality PPG 

signals except for S4. The PPG data from S4 was of extremely low quality (12.9%), suggesting 

that S4 did not cover the camera lens fully during the study. For the remaining 20 participants, an 
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average of 89.10% of the PPG signals collected had high quality. 85.7% of the 60 video sessions 

(20 subjects X 3 videos) were in high quality. Figure 47 shows illustrations of the quality of the 

PPG signals, captured using the LivePulse application from 6 participants (signal quality: 95.8%, 

96.3%, 95.3%, 82.7%, 84.64%, 74.9% respectively). 

 

Figure 47. Quality illustration of the PPG signals from six participants while they were watching the third video 

clip. 

 

Figure 48 shows a comparison of the HRV spectrograms (normalized amplitude) when a 

learner is in a general Engagement/Neutral state vs. deep Confusion state during learning in a 

one-minute time segment. The HRV spectrograms were computed by calculating the power 

spectral density from the RR intervals. Each topic used a one-minute sliding window with one-

second increments to configure power spectral density. I found that in general there was less 

high-frequency power (0.15 ~ 0.4 Hz) in the HRV spectra when the learner was in a deep 

Confusion state, suggesting that the learner was under a higher cognitive workload. 



 137 

S6 S8 S9 S12 S17
E

ng
ag

em
en

t
C

on
fu

si
on

 

Figure 48. Heart rate variability spectrogram (normalized amplitude) of five participants (S6, S8, S9, S12, S17) 

when they were in a neutral/engagement state (top row) and when they were in a deep confusion state (bottom row). 

8.8.2 Moment-to-Moment Affect Detection 
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Figure 49. Extracting features for each affect judgment point. 

 

I did not consider S1 and S4 in the following analysis due to the missing and highly corrupted 

PPG signals. For the collected PPG signals of the remaining 20 subjects, I first used LivePulse to 
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extract the RR-intervals. The RR signals were smoothed to reduce noises. Heart rate variability 

(HRV) features were extracted from the PPG signal segment right before each affect judgment 

point (Figure 49) and used to detect learners’ affective states at that judgment point. 11 

dimensions of HRV features were extracted from a context window in the PPG segment: 1) 

AVNN; 2) SDNN; 3) rMSSD; 4-7) pNN5, pNN10, pNN20, pNN50; 8) MAD; 9) SDANN; 10) 

SDNNIDX; and 11) rMSSD/SDNNIDX. For each participant, all features were rescaled to [0,1] 

to eliminate individual and dimensional variance. I explored three parameters when extracting 

the HRV features: the size of the context window (20s, 30s, 40s), the preceding time offset (0s, 

3s, 5s, 10s), and the size of the bin (3s, 5s, 10s).  

 To have a long enough PPG sequence to make a prediction, I removed those affect 

judgment points which were close to the previous affect judgment point (interval < 30s), leading 

to a total of 33 affect judgment points for each participant. Also, if the window used for 

extracting HRV features of the current affect judgment point reached and exceeded the previous 

affect judgment point, then only signals after the previous affective judgment point were used to 

ensure that there were no interferences between the PPG sequences of two consecutive affect 

judgment points. Finally, I removed those affect judgment points which had low-quality (<50%) 

PPG sequences. After these operations, the data set contained 643 entries for training and testing 

the affective state classifiers.  

 Using self-reported affect judgments as the gold standard, I performed the following 

detection tasks: 1) Task 1: detecting whether the learner is in Engagement, Boredom, or 

Confusion state (yes or no, binary classification); 2) Task 2: detecting whether the learner is in a 

negative state; and 3) Task 3: detecting the occurrence of critical events.  
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 I performed detection Task 1 because these three states are the most important states that 

occur during MOOC learning. When building classifiers for a certain affective state (e.g., 

Boredom), I excluded participants who did not report experiencing that affective state from the 

dataset. Therefore, the final dataset contained 643 entries for the Engagement prediction task (20 

participants, 32.97% Engagement state); 577 entries for the Boredom prediction task (18 

participants, 17.33% Boredom states); and 544 entries for the Confusion prediction task (17 

participants, 18.75% Confusion states.). 

For Task 2, valence ratings of each judgment were used to identify negative states. For 

each participant, based on the valence ratings, I marked each affect judgment point either as 

positive (rating >= 3) or negative (rating <= 2).  I excluded participants who did not report 

experiencing any positive or negative states. The final dataset consisted of 511 entries (16 

participants, 15.46% negative states). 

For Task 3, critical events were identified using the arousal ratings of each affect 

judgment. For each participant, based on the arousal rating, I marked each affect judgment point 

either as critical (rating >= 4) or not (rating <= 3).  I excluded participants who did not report any 

critical events. The final dataset had 478 entries (15 participants, 14.22% critical events). 

I used the Support Vector Machine (SVM) with a radial basis function (RBF) to build the 

classifiers. I built both user-independent models and user-dependent models. The leave-one-

subject-out evaluation was used to evaluate the user-independent models. User-dependent 

models were built for each participant and evaluated with 10-fold cross-validations. Table 9 lists 

Kappa’s best performance for each classification task. 

The Kappa score indicated a clear relationship between learners’ affective states and their 

PPG signals. I achieved the best performance predicting the critical or high arousal events when 
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participants had stronger emotions. This is expected, as one might assume that stronger emotions 

will also lead to stronger changes in physiological responses. Moreover, Engagement prediction 

was more accurate than Boredom and Confusion prediction.  As I have discussed, Boredom and 

Confusion might co-exist, which could affect the prediction performance for Boredom and 

Confusion. Also, the performance of user dependent models are much better than the user 

independent models. The user dependent models are more accurate because there might exist 

significant differences among participants in the PPG signal as well as the perception of affective 

states in learning. 

Table 9. The performance of different moment-to-moment affective state prediction tasks. 

Detection User-independent User dependent 

Acc. Kappa Acc. Kappa 

Engagement 70.75% 0.1512 61.96% 0.2770 

Boredom 83.57% 0.0766 83.71% 0.1387 

Confusion 80.09% 0.0701 83.72% 0.2054 

Negative Events 
(low valence) 

85.46% 0.1071 84.97% 0.1815 

Critical Events 
(high arousal) 

84.80% 0.2332 84.60% 0.2854 

 

Compared with the cognitive state prediction tasks presented in Chapter 5 and 6, the 

classifiers in the current tasks had worse performance, suggesting that it is indeed more difficult 

to predict moment-to-moment affective states as opposed to predicting the general cognitive 

states over a period. The worse performance might be due to two reasons: 1) In the current 

prediction tasks, the PPG signal sequence of each sample was much shorter than the ones in the 

previous tasks (~20s vs. > 1min), indicating less information and more noises in the data; 2) 
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Participants only reported one dominant affect at each affect judgement point. The coexistence of 

affect at each point was not considered and manifested in the label of the samples. However, it is 

worth highlighting that our performance was achieved on current mobile phones without any 

hardware modifications. I also only used the PPG signals and did not use any other contextual 

features. To the best of my knowledge, this is the first work to investigate the prediction of 

moment-to-moment affective states in the MOOC contexts. 

8.9 DISCUSSIONS AND SUMMARY 

One limitation of this research is that the dynamics model I presented for MOOC learning is 

essentially a first-order Markov model showing the links between primary affective states. 

However, a more detailed model is possible if hidden states are considered. Although the 

feedback from participants suggests that both the video content and individual differences could 

affect how learners experience and regulate their affective states, the current model does not 

consider these possible hidden states. To improve the current model, a new study can be 

conducted to gather more information about the video content and the learner at each affect 

judgment point.  

Another limitation pertains to the generalizability of the findings. The proposed model 

was tested on 22 students from various backgrounds who were on the same course. This raised 

the question of whether the model would be supported by a larger population of students using a 

different course. Considering that there are other alternative methods to track learner emotions 

(e.g., observations by external judges [14, 36, 103]). In the future, the models should be tested on 

a larger population using different courses and alternate affective state tracking methods.  
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To sum up, in this chapter, I present a 22-participant study to investigate the dynamic 

temporal transitions of affective states during a MOOC learning session. I discuss differences of 

MOOC learning and complex learning from the perspective of affect dynamics and present 

pedagogical implications of the results. I also showed that PPG signals implicitly captured by the 

built-in cameras on unmodified mobile phones can be used to detect moment-to-moment 

affective states, especially the high arousal and critical events. This research promotes a better 

understanding of the dynamic MOOC learning process.  
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9.0  CONCLUSIONS 

9.1 CONTRIBUTIONS 

This dissertation presents AttentiveLearner, a mobile learning system which captures and uses 

learners’ physiological signals implicitly during mobile MOOC learning without leveraging any 

dedicated sensors. I explored the use of physiological signals collected from learners via 

AttentiveLearner to understand, model, and improve learning in mobile MOOC contexts. To 

support this dissertation, I had a list of hypotheses (Section 1.4) and these hypotheses are 

supported by the following specific contributions: 

Chapter 3 presented the design and evaluation of the tangible video control channel of 

AttentiveLearner. A general on-lens finger gesture based interaction technique, LensGesture, 

was first proposed. I then optimized the Static LensGesture specifically to meet the unique 

requirement of AttentiveLearner. Through off-line benchmarking and an 18-subject user study, I 

verified that using the on-lens finger-covering gesture to control video play was both accurate 

and responsive (Hypothesis A.1). Moreover, I systematically investigated various usability 

concerns regarding the new video control channel, and showed that the tangible video control 

interface in AttentiveLearner was user-friendly (Hypothesis A.2).  

Chapter 4 first demonstrated LivePulse, a real-time heart rate measurement algorithm 

based on commodity-camera-based PPG sensing. A 12-participant user study verified the 
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feasibility of using LivePulse to collect PPG signals and measure heart rate (Hypothesis B.1). I 

conducted another 18-participant user study to investigate the usability of AttentiveLearner 

during actual MOOC learning sessions. Results of the study suggested that AttentiveLearner 

could collect high quality PPG signals reliably from the learner during actual MOOC sessions 

(Hypothesis B.2).  

 In Chapter 5 and Chapter 6, I showed that the PPG signals, implicitly recorded by the 

built-in camera of mobile phones, can be used to infer learners' interests and perceived confusion 

levels towards the learning topics (Chapter 5), as well as their divided attentional state 

(Chapter 6) during learning. Two 18-participant user studies were conducted to collect data and 

build the cognitive state prediction models. The models achieved comparable performance as 

existing research that used dedicated physiological sensors to detect human cognitive states. 

Results of these two chapters proved Hypothesis C.1.  

In Chapter 7, I demonstrated an intervention technique, Context and Cognitive State 

triggered Feed-Forward (C2F2), which proactively reminded a learner of important upcoming 

content when learner disengagement was detected. I performed a 48-participant user study to 

evaluate effectiveness of C2F2 and found that C2F2 could improve both information recall and 

learning gains for bottom performers when compared with a non-interactive system (Hypothesis 

D.2).  The effectiveness of C2F2 demonstrated the feasibility and efficacy of building end-to-

end, affect-aware mobile MOOC systems on top of AttentiveLearner to benefit MOOC learners 

(Hypothesis D.1).  

Finally, in Chapter 8, I investigated the dynamics of moment-to-moment affective states 

in MOOC contexts through a 22-participant user study. I identified several different affective 

state transition patterns between MOOC learning and complex learning, which verified 
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Hypothesis E.1. Using the PPG signals collected in the study, I explored the feasibility of 

moment-to-moment affective state predictions. Performance of the classifiers indicated a clear 

relationship between learners’ affective states and their PPG signals, especially for the high 

arousal events. This finding verified Hypothesis E.2. Moreover, important pedagogical 

implications were discussed in this chapter. 

Recall that this dissertation has the following thesis statement: 

By proposing a “sensorless” approach to collect photoplethysmography (PPG) signals 

implicitly from users on unmodified mobile devices, this dissertation explores novel technologies 

to monitor learners’ cognitive and affective states, and provide cognitive state triggered adaptive 

interventions, which can effectively improve learning in mobile MOOC contexts. 

Chapter 3 and 4 demonstrated the feasibility of AttentiveLearner, the “sensorless” 

approach, to implicitly capture learners’ physiological signals on unmodified mobile phones 

without any extra sensor. In Chapter 5, 6 and 8, I showed that learners’ cognitive and affective 

states can be inferred by analyzing the PPG signals collected by AttentiveLearner. These three 

chapters verified that AttentiveLearner can promote a deeper understanding of learners’ 

cognitive and affective states in MOOC contexts. In Chapter 7, I proved that affect-aware 

interventions (e.g., C2F2) can be built on top of AttentiveLearner and improve learning 

performance. Chapter 5, 6, 8 showed that from the instructor’s perspective, AttentiveLearner can 

provide a rich, fine-grained feedback channel for them to understand the learners. Chapter 7 

showed that from the learner’s perspective, AttentiveLearner can directly benefit learners by 

providing affect-aware adaptive interventions. In all, I showed that AttentiveLearner can help us 

improve learning in the mobile MOOC contexts.  
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To achieve the goal of this dissertation, I also contributed with a series of user studies. A 

summary of these user studies is presented in Appendix C.   

9.2 FUTURE WORK 

My current research has built the foundation of AttentiveLearner as a rich and effective feedback 

channel to understand, model, and improve learning in mobile MOOC contexts. I believe that 

there are many research directions that can be pursued to improve and utilize AttentiveLearner. 

First, my colleagues plan to conduct large-scale, longitudinal studies on AttentiveLearner in 

learners' everyday environments soon. Second, security and privacy issues arise when learners' 

physiological signals are transmitted, stored, and visualized on the server-side. It is important to 

explore security algorithms and policies to provide rich feedback without disclosing unnecessary 

privacy from learners. Third, although my current cognitive state prediction models are user-

independent, the PPG signals were collected when learners were learning the same material. This 

could impact the scalability of my method since the learning materials vary across different 

courses. A course-independent model is necessary for the robust detection of affective states and 

wide adoption of AttentiveLearner. Fourth, my current research has only scratched the surface of 

using physiological signals to understand and improve MOOC learning. There are other 

physiological signal modalities we can explore. For example, the front camera of smartphones 

can be used as a facial expression sensor and provide new complementary signals to understand 

and improve MOOC learning. I expect that different physiological signal channels might be 

effective under different circumstances. It is interesting to explore “for who, under what 

circumstances, what signal channel is effective”.  Finally, currently, the C2F2 intervention is 
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based on PPG signals alone. It will be interesting to explore intervention techniques from 

multiple modalities (e.g., PPG, EEG, facial expressions, and eye gaze), especially investigating 

the interactions among multiple signal sources so as to identify the optimal timing to trigger 

interventions. 

AttentiveLearner uses the mobile device to monitor physiological signals, but there are 

many new opportunities of measuring and using physiological signals beyond the mobile 

platform. For example, recent work has shown that physiological measurement of heart rate, 

breath rate, and HRV can be accurately captured remotely (3 meters away from the camera), via 

photoplethysmography using a low-cost digital camera [77, 79]. Digital cameras could also 

capture the user’s facial features and behaviors to infer her affective and cognitive state [44, 78, 

101]. Furthermore, it is reported that wireless signals could be used to monitor the vital signs 

(breathing and heart rate) of multiple people without body contact [1]. Moreover, with the rapid 

development of wearable technology, many wearable devices, such as smartwatches, fitness 

wristbands, and headphones, can monitor users’ heart rate and other physiological signals. 

Therefore, there are many opportunities for us to collect physiological signals implicitly without 

purchasing dedicated physiological sensors. These multiple channels of signals from different 

sources could complement each other and provide better classification accuracies in detecting 

various affective-cognitive states and learning events.  

I have already integrated AttentiveLearner into the OpenEdx, an open-source MOOC 

platform that powered edx.org, one of the major MOOC providers nowadays. The 

AttentiveLearner mobile client should be available for everyone to download at 

http://www.attentivelearner.com soon. One question I cannot resist asking myself is, “What if 

millions of people use AttentiveLearner?” With millions of users, I would obtain a great deal of 

http://www.attentivelearner.com/
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relevant and useful information to understand MOOC learners and improve the performance of 

the cognitive state predictions. For example, I would gain a better understanding of which HRV 

features were user-independent and which features were course-independent. Moreover, I would 

be able to investigate the impact of different environments (e.g., classrooms vs. public transit, 

sitting vs. walking) on learners’ PPG signals. This could help me exclude confounding effects of 

the environments on PPG signals and get more reliable cognitive state information. Finally, I 

could explore how different techniques of learning analytics (e.g., log analysis, post-lecture 

feedback, and AttentiveLearner) can be integrated to provide informative feedback to both 

instructors and students.  
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APPENDIX A 

THE CAUSAL ATTRIBUTIONS OF AFFECTIVE STATES IN THE VIDEO-BASED 

MOOC LEARNING ACTIVITY 

Table 10. The causal attributions of affective states in MOOC learning 

Affect Internal Attributions (learner) External Attributions (video) 

Engagement 

1. Interested in the video content. 

2. Able to understand and comprehend 
the video content well. 

New or interesting concept/topic is 
introduced and is presented clearly. 

S6: “When content, although very 
unfamiliar, seemed simple enough for 
me to comprehend and follow or 
accessible.” (2) 
S13: “When I was first starting out, I 
was interested in learning a new topic.” 
(1) 

S19: “Material was interesting and 
presented clearly.” 
S20: “When the lecture is clear and in 
a good pace to catch up with.” 

Boredom 
1. Disinterested in the video content. 
2. Unable to keep up with the lecture. 
3. Physical or mental tiredness. 

1. The content is easy/obvious, 
redundant, trivial or unrelated to the 
main topic. 
2. Too much information is presented 
at the same time and/or presented at a 
fast pace so that the learner cannot 
process or remember all information. 
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S1: “Anything math related. I don’t find 
this type of field interesting so it’s 
difficult to pay attention.” (1) 
S6: “When the content seemed way over 
my head and the lecture was too 
difficult to follow (most of section 3).” 
(2) 
S17: “When I am tired and the material 
isn’t all that interesting.” (1, 3) 

S11: “When the lecture seems to be 
straying from its goals.” (1) 
S20: “When the explanation was too 
wordy, the definition was unclear, or 
the instructor introduced theories 
without talking about why we need 
them”. (1, 2) 
S22: “Number/Equation crunching.” 
(2) 
S9: “Too much mathematic talking.” 
(2) 

Confusion 

1. Do not understand a statement, 
symbol or notation. The learner may 
lack prerequisite knowledge for the 
course in the first place. 
2. Encounter a question, either raised 
explicitly by the instructor (i.e., in-video 
quiz) or came up with by the learner. 

1. Instructions are fast, unclear, and/or 
missing important information (e.g., 
making an assertion without any 
support, no explanation for symbols, 
etc.). 
2. Sudden switch to a new concept 
without necessary transitions.  

S23: “I felt confused when I didn’t 
understand the overall point.” (1) 
S6: “When I got lost during the lectures, 
especially because the content was 
extremely unfamiliar.” (1)  
S11: “When I might have missed a point 
or not connected the ideas, or had a 
question.” (1, 2) 

S18: “Sometimes, lecturer would 
explain a concept, then immediately 
move on without letting the concept 
sink in.” (1, 2) 
S16: “Felt confused when there were 
a lot of symbol being used at the same 
time; couldn’t understand what they 
all meant.” (1) 
S17: “When they explain too quickly. I 
would usually have gone back in the 
video and rewatched” (1) 

Frustration 

1. Unable to achieve the learning goal. 
This happens when the learner feels 
extremely confused and cannot follow 
up the video.  
2. Unsatisfied about the actual details of 
something in the lecture (e.g., the 
explanation of a theory etc.). 

1. Instructions are too fast to allow the 
learner to process and understand the 
lecture. 
2. Poor video production: crappy 
hand-writing, lags in the video-over, 
etc. 

S7: “My expectations were not met as I 
didn’t understand (the lecture), and I 
became frustrated.” (1) 

S21: “Annoyed by choppy voice or 
writing.” (2) 
S3: “Some concepts were brushed 
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S14: “When I was feeling confused for 3 
to 5 minutes and felt no sense of 
achievement.” (1) 
S9: “The second video while trying to 
learn the symbols and notations used. I 
was constantly confused which affected 
my focus. I became frustrated.” (1) 
S17: “When things aren’t explained to 
my satisfaction.” (2) 

past and I felt frustrated when I 
couldn’t think through the material at 
my own pace.” (1) 
S5: “When they went through things 
too fast that I could not follow.” (1) 
 

Curiosity 

Interested to know answers to a question 
or know more about an idea or concept. 

The instructor asks a question and 
seeks answer 

S21: “Want to know the answer or why 
something is the way it is.” 
S19: “When I was unsure of an answer 
or unsure how a problem was going to 
be addressed. When the instructor said 
‘We’ll address this later’.” 
S3: “Sometimes I was intrigued and 
wanted to know more about an idea or 
concept generally.” 

S4: “The speaker posted a question 
and I was interested to hear what the 
answer was.” 
S18: “Every now and then, they’d ask 
questions that I was curious to know 
the answer to.” 
 

Surprise 

Something unexpected happened or is presented in the video.  

S10: “When something new I learned was something I couldn’t 
predict/hypothesize.” 
S18: “At one point, the lecturer asked a question that I thought I got right, but it 
turned out to be wrong.” 

Happiness 

The learner achieved something and feel accomplished (e.g., correctly answer a 
question, fully understand a concept, etc.) 

S21: “Got answer correct, or understand (the content), feeling encouraged.” 
S14: “Once I felt I’ve got the idea or my confusion was gone.” 

Delight 

The learner answered a difficult question correctly and completed a section 

S2: “Answered questions correctly (not the trivial ones).” 
S11: “Usually when some point has been completed and I feel like the lecture 
helped me understand.” 
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APPENDIX B 

QUESTIONNAIRES USED IN THE USER STUDIES 

B.1 LENSGESTURE EVALUATION QUESTIONNAIRE 

1. I find the LensGesture input method useful. 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

2. I find LensGesture useful as a Main Input channel.  

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

3. I find LensGesture useful as an Assistant Input channel. 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

4. I find LensGesture accurate 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

5. I find LensGesture responsive 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

6. I find LensGesture easy to perform 

 1 – Strongly Disagree2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

7. I will use LensGesture input method in the future on my mobile phone 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
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8. What do you like or dislike about LensGesture? 

 

9. Do you have any suggestions for us to improve the LensGesture? 

B.2 ATTENTIVELEARNR EVALUATION QUESTIONNAIRE 

1. On a scale of 1-5, how do you like the AttentiveLearner mobile application in general? 

1 – Strongly Dislike 2 – Dislike 3 – Neutral 4 – Like 5 – Strongly Like 

2. I find it comfortable to use the AttentiveLearner mobile application to consume lecture videos. 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

3. I find the AttentiveLearner mobile application useful for consuming lecture videos.  

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

4. I find the video control channel (cover the lens to play video, uncover the lens to pause video) 

easy to operate. 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

5. I find the video control channel intuitive. 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

6. I find the video control channel responsive. 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

7. I am interested in using the AttentiveLearner mobile application in the future to learner more 

courses. 

 1 – Strongly Disagree2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 
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8. What do you like or dislike about the video control channel (cover the lens to play video, 

uncover the lens to pause video)? 

 

9. Do you feel any fatigue/uncomfortable during the video watching session? If so, when do you 

feel tired/uncomfortable? what’s the optimal duration of a video lecture should be? 

 

10. What do you like or dislike about the AttentiveLearner mobile application?  

 

11. Do you have any suggestions for us to make the application better? 

B.3 C2F2 EVALUATION QUESTIONNAIRE 

 

1. On a scale of 1-5, how do you like the mobile MOOC application you used in general? 

1 – Strongly Dislike 2 – Dislike 3 – Neutral 4 – Like 5 – Strongly Like 

2. I am happy to download the application and use it to take lessons on my mobile phone: 

1 – Strongly Disagree 2 – Disagree  3 – Neutral 4 – Agree 5 – Strongly Agree 

 

If you have NOT seen a feed-forward alert (the “Pay Attention” warning before a topic), please 

skip the following questions 

 

3. On a scale of 1-5, do you find the feed-forward alert helpful?  

1 – Strongly Disagree 2 – Disagree  3 – Neutral 4 – Agree 5 – Strongly Agree 
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4. On a scale of 1-5, do you find the feed-forward alert distractive? 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

5. On a scale of 1-5, do you find the feed-forward alert triggered at the right time? 

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree 

 

6. What do you like or dislike about the feed-forward alert. 

 

7. Do you have any suggestions to improve the feed-forward alert? 

B.4 SUBJECTIVE IMPRESSION QUESTIONNAIRE 

I paid attention in this learning session 

    |-----------------|------------------|------------------|-----------------| 

   Strongly Disagree         Disagree                   Neutral                    Agree               Strongly Agree 

 

I was engaged during this learning session 

    |-----------------|------------------|------------------|-----------------| 

   Strongly Disagree         Disagree                   Neutral                    Agree               Strongly Agree 

 

I felt bored during this learning session  

    |-----------------|------------------|------------------|-----------------| 

   Strongly Disagree         Disagree                   Neutral                    Agree               Strongly Agree 

 

I found the lecture hard to follow in this learning session 
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    |-----------------|------------------|------------------|-----------------| 

   Strongly Disagree         Disagree                   Neutral                    Agree               Strongly Agree 

 

I put effort into this learning session 

    |-----------------|------------------|------------------|-----------------| 

   Strongly Disagree         Disagree                   Neutral                    Agree               Strongly Agree 

 

I think I learned the lecture well 

    |-----------------|------------------|------------------|-----------------| 

   Strongly Disagree         Disagree                   Neutral                    Agree               Strongly Agree 
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APPENDIX C 

A SUMMARY OF USER STUDIES 

Table 11. A summary of all user studies presented in this dissertation 

Chapter Study Description No. of 
Subjects 

Type Major Result 

3 Static LensGestures 
sample image collection 

9 Data 
Collection 

791 sample images collected;   
gesture detection accuracy: 
97.9% (full-covering gesture), 
93.2% (partial-covering gesture) 
 

Dynamic LensGestures 
sample image collection 

12 Data 
Collection 

957 sets of sample gestures 
collected; gesture detection 
accuracy: 91.3% 
 

LensGesture usability 
evaluation 

16 System 
Evaluation 

1. LensGesture response time: 
789 ~ 1815ms 
2. Target acquisition followed 
Fitt’s Law 
3. Speed of LensGesture-enabled 
keyboard vs. standard keyboard: 
13.4 vs. 11.7 wps 
 

Static LensGesture 
sample image collection 
for AttentiveLearner 
 

10 Data 
Collection 

483 sample images collected;               
accuracy: 99.59% 
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Tangible video control 
channel response time 
evaluation 
 

18 System 
Evaluation 

Tangible video control vs. 
traditional control: 625.9 vs. 
426.6 ms. 

4 LivePulse usability 
evaluation 

12 System 
Evaluation 

1. Raw PPG signals from 
LivePulse and the pulse oximeter 
were highly consistent 
2. MER of heart rate estimation: 
3.9% 

AttentiveLearner 
usability evaluation in 
actual MOOC learning;  
PPG signal collection for 
boredom/confusion 
detection 

18 System 
Evaluation/ 
Data 
Collection 

1. Average user experience 
ratings: 4.11  
2. Collected PPG signals were 
reliable: 88.9% sessions, more 
than 80% signals were of high 
quality 
3. Boring topic prediction 
performance: 0.297 Kappa; 
confusing topic prediction: 0.269 
Kappa 
 

6 PPG signal collection for 
divided attention 
detection 

18 Data 
Collection 

1. Learners’ average 
performance in FA, EDA, LIDA, 
HIDA: 4.11, 3.83, 3.33 and 2.92  
2. Accuracy of attentional state 
prediction (user-dependent): 
72.74% ~ 88.54% 
 

7 Evaluation of C2F2 
against other feed-
forward intervention 
strategies (no feed-
forward, context-only 
feed-forward, cognitive-
only feed-forward) 
 

48 System 
Evaluation 

C2F2 were effective for bottom 
performers. Average Learning 
Gains was 43.75%, 44.45%, 
52.74% and 61.94% in the four 
conditions respectively. C2F2 
vs. no feed-forward condition (t 
= 0.1829, p = 0.0018); C2F2 vs. 
context only feed-forward (t = 
0.1749, p = 0.0025) 
 

8 Investigation of the 
affect dynamics in 

22 Data 
Collection 

1. A set of common affective 
states and transitions of affective 
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mobile MOOC contexts;  
PPG signal collection for 
moment-to-moment 
affective states detection 
 

states in MOOC contexts were 
identified 
2. Performance of moment-to-
moment affect detection: 0.07 ~ 
0.23 Kappa (user-independent); 
0.14 ~ 0.29 Kappa (user-
dependent) 
3. Implications for MOOC 
design 
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