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ABSTRACT

ANALYSIS OF TIME FILTERS IN MULTISTEP METHODS

Nicholas Hurl, PhD

University of Pittsburgh, 2017

Geophysical flow simulations have evolved sophisticated implicit-explicit time stepping meth-

ods (based on fast-slow wave splittings) followed by time filters to control any unstable models

that result. Time filters are modular and parallel. Their effect on stability of the overall

process has been tested in numerous simulations, but never analyzed. Stability is proven

herein for the Crank-Nicolson Leapfrog (CNLF) method with the Robert-Asselin (RA) time

filter and for the Crank-Nicolson Leapfrog method with the Robert-Asselin-Williams (RAW)

time filter for systems by energy methods. We derive an equivalent multistep method for

CNLF+RA and CNLF+RAW and stability regions are obtained. The time step restriction

for energy stability of CNLF+RA is smaller than CNLF and CNLF+RAW time step restric-

tion is even smaller. Numerical tests find that RA and RAW add numerical dissipation.

This thesis also shows that all modes of the Crank-Nicolson Leap Frog (CNLF) method

are asymptotically stable under the standard timestep condition.
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1.0 INTRODUCTION

The primary method for time discretization in present-day geophysical fluid dynamics (GFD)

codes is the implicit-explicit (IMEX) combination Crank-Nicolson Leapfrog (CNLF) method

with time filters. The advantage of CNLF is its ability to separate the fast, low energy waves

into the implicit Crank-Nicolson (CN) method and the slow, high energy waves into the

explicit Leapfrog method (LF). Without a time filter CNLF is stable under the same time

restriction as LF, but shows a weak instability. The unstable mode of LF is credited with

causing the weak instability in CNLF, that is CN is believed to not control the unstable

mode of LF. The stability of different modes of CNLF is discussed in chapter 4 .

To control the weak instablity of CNLF modular time filters have been developed in geo-

physics community for use in combination with CNLF. The most common are the Robert-

Asselin (RA) time filter and Williams’ addition to RA the Robert-Asselin-Williams (RAW)

time filter. The scheme consists of one step of CNLF, followed by one step of RA, followed by

one step of RAW, which is Williams addition to the filter. The RA step adds numerical diffu-

sion by reducing the curvature of the solution to stabilize the method, but reduces accuracy.

The RAW step introduces some anti-diffusion to restore some lost accuarcy. Williams [W09]

lists 25 major GFD codes using this approach including the Community Climate Systems

Model, e.g., [TL05].

Given N ×N matrices A,Λ, we consider the system for u : [0,∞)→ RN

du

dt
+ Au = −Λu, u(0) = u0, where (1.1)

A+ AT ≥ 0, and Λ = −ΛT .

When A + AT = 0 so A = −AT the system is exactly conservative for the euclidean norm:

|u(t)| = |u(0)|. When A+ AT > 0 it is dissipative, |u(t)| → 0 as t→∞.
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The CNLF method followed by the Robert–Asselin–Williams (RAW) filter [AKW11,

W09, W11] is as follows. Given timestep ∆t and starting values u0, v1 (of sufficient accuracy,

[V09]), find un, wn+1, vn+1 satisfying

(CNLF step)
wn+1 − un−1

2∆t
=− Aw

n+1 + un−1

2
− Λvn, (1.2)

(RA step) un = vn +
να

2
(wn+1 − 2vn + un−1), (1.3)

(W step) vn+1 = wn+1 +
ν(α− 1)

2
(wn+1 − 2vn + un−1). (1.4)

The parameter ν is the RA filter parameter, usually O(0.01 – 0.2), and α is the Williams

filter parameter, usually around 1/2. If α = 1 then the W filter step drops out and the

method reduces to the CNLF method with the RA filter, which is analyzed in chapter 2

which is based on a paper [H12]. When α 6= 1 we get an active W step, which is analyzed

in chapter 3, which is based on a paper [HLLT13]. If ν = 0, the unfiltered CNLF scheme is

recovered.1

A crucial step in understanding behavior of non-commuting systems over long time cal-

culations is the energy stability analysis. CNLF was first anlyzed by Fourier methods for

scalar test problem, y′ + ay + iλy = 0 in 1963 [JK63], which led to the timestep condition

necessary for stability,

4t|Λ| < 1, | · | = euclidean norm. (1.5)

The energy stability for systems of CNLF was proven in 2011 [LT12] showing the condition

(1.5) is also sufficient. Stability of CNLF with time filters has been analyzed by root condition

methods for linear constant coefficient, scalar test problems as well [R69, A72, W11, JW11].

Despite time filters adding stabilityty in many cases there are reports in which CNLf plus

time filters destabilizes the method when CNLF alone is stable [JW11, RL97, DC86]. In

chapters 2 and 3 the energy stability analysis of CNLF+RA and CNLF+RAW for non-

commuting systems is presented complementing previous analysis and numerical tests found

in [D10, W09].

In chapter 4, which is based on the paper [HLLM13], we prove (asymptotic) stability of

the so-called unstable mode (or computational mode) of the CNLF method applied to (1.1).

1In chapters 2 and 3 we assume ν ∈ (0, 1] throughout. In chapter 4 ν = 0 since we focus on CNLF alone.
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The solution to (1.1) under the conditions prescribed satisfies u(t) → 0 as t → ∞ so any

growth in the approximate solution is a numerics induced instability. The CNLF method is

the ν = 0 case from above: given u0, u1, for n ≥ 2

un+1 − un−1

24t
+ A

un+1 + un−1

2
+ Λun = 0. (CNLF)

It is often reported that as n→∞

Stable Mode: |un+1 + un−1| → 0,

Unstable Mode: |un+1 − un−1| → ∞. (1.6)

One mystery is that since CNLF is stable under (1.5), no growth is possible in linear

theory and yet time filters to deal with (1.6) are nearly universal in practice, [JW11]. It is an

open question to determine if this could be due to a gap for IMEX methods (e.g., [ARW95],

[CM10], [FHV96], [HV03], [V80], [V09]) between necessary conditions from root condition

analysis and sufficient ones for systems, to accumulation in the unstable mode of roundoff

errors, to imperfect imposition of the timestep condition, to nonlinearities [D10] or other

unknown causes. We prove that under (1.5) the CNLF unstable mode is (asymptotically)

stable. This result, consistent with numerical tests in Section 4.3, supports the scenario that

growth in the unstable mode is due to imperfect imposition of and thus slight violation of

(1.5) or due to nonlinerity.

3



2.0 ENERGY STABILITY ANALYSIS OF CRANK-NICOLSON-

LEAPFROG METHOD WITH THE ROBERT-ASSELIN FILTER

2.1 INTRODUCTION

The most common method for timestepping in atmosphere, ocean and climate models is

the implicit-explicit combination of the Crank-Nicolson-Leapfrog (CNLF) method because

it allows separate treatment of the fast, low energy wave from the slow, high energy ones,

e.g. Kalnay [K03], Durran [D10], Robert [R69], Asselin [A72], Williams [W11], Thomas and

Loft [TL05]. For example Williams [W09] gives a list of 16 atmosphere, ocean and climate

codes based on CNLF plus time filters. CNLF has a weak instability usually attributed to

CN not damping the unstable mode of Leapfrog [D10, GS98, F73, V09]. Thus sophisticated

tools based on modular time filters have been developed in the geophysics community for use

in combination with CNLF. The most popular are the Robert-Asselin (RA) filter [R69, A72],

see (2.4) below, and Williams’ addition to the RA filter the RAW filter [AKW11, W09, W11].

We study herein the combination CNLF+RA.

In spite of its wide use and attention, there has been no stability analysis of CNLF + RA

for (non-commuting) systems by energy methods, a step which is critical to understand its

use in nonlinear systems and for large time calculations. CNLF was first analyzed for scalar

problems in 1963 [JK63] by Fourier methods and its stability for systems in 2012 [LT12].

Stability of CNLF+RA has been analyzed by root condition methods (for linear constant

coefficient, scalar test problems) [R69, A72, W11, JW11]. However, there have also been

cases reported [JW11, RL97, DC86] of CNLF + time filters destabilizing a simulation in

which CNLF alone is stable. This issue also is addressed herein.

The first energy analysis of stability of CNLF+RA time filter for systems will be presented
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in this chapter. To begin, consider the initial value problem:

 u′(t) + Au(t) + Λu(t) = 0 for t > 0

u(0) = u0

(2.1)

where u : [0,∞)→ RN , and A, Λ are NxN real matrices with

 A = AT > 0

Λ = −ΛT
(2.2)

An equation with this form arises in spatial discretizations of linearized flow problems with

Coriolis forces and for Stokes-Darcy problem.

Let ∆t be the time step and un ≈ u(tn) for tn = n∆t. Here ν is a parameter, usually

small (e.g. ν ∼ 10−1) and recomend by [A72] to satisfy 0 < ν < 1. The usual CNLF+RA

time filter method for (2.1) is: given un−1, vn find un, vn+1 satisfying

vn+1 − un−1

2∆t
+ A(

vn+1 + un−1

2
) + Λ(vn) = 0, (2.3)

un = vn +
ν

2
(vn+1 − 2vn + un−1) (2.4)

The step (2.3) is CNLF and (2.4) is the RA time filter. Here vn denotes an unfiltered

transitional value and un the filtered solution. In the preliminary section 2.2 we recall the

motivation for the RA filter and collect in Proposition 1 the results in [R69, A72, K03] that

RA reduces the discrete curvature (precisely defined). In Section 2.3 the intermediate values

vn, vn+1 can be eliminated from (2.3) and (2.4), reducing CNLF+RA to a non-standard

linear multistep method (LMM). We prove:

Theorem 1. The approximation vn and un from CNLF+RA, (2.3) (2.4), both satisfy

un+1 − νun − (1− ν)un−1 + ∆tA
(
un+1 + (1− ν)un−1

)
+ 2∆tΛ(un − ν

2
un−1) = 0 (2.5)

for n ≥ 2.

5



Next, we give in section 2.3 an energy method proof of stability- the main result of this

work. The proof delineates the discrete system energy and the method-induced numerical

dissipation.

The usual Euclidean inner product and norm are (u, v) = vTu and ‖u‖2 = (u, u). The

A-norm ‖u‖2
A := (Au, u) and the induced euclidean matrix norm, ‖Λ‖ =

√
λmax(ΛTΛ) will

be utilized later. Define the system energy and numerical dissipation of CNLF+RA as:

En+1/2 := (1− ν

2
)
[
‖un+1‖2 + (1− ν)‖un‖2 + 2(∆tΛun, un+1)

]

and

Dn :=
ν

2
‖∆tΛ(un − un−1) + un+1 − un‖2

+
ν(1− ν)

2
‖un − un−1‖2 − ν

2
‖∆tΛ(un − un−1)‖2.

We prove:

Theorem 2. Consider (2.3) and (2.4). If the parameter ν satisfies

0 < ν < 1− (‖Λ‖∆t)2

or equivalently

∆t‖Λ‖ <
√

1− ν < 1

then ‖uN‖ remains bounded and in fact ‖uN‖ → 0 as tN → ∞. In particular for N ≥ 1,

DN ≥ 0 and

EN+1/2 +
N∑
n=1

∆t‖un+1 + (1− ν)un−1)‖2
A +

N∑
n=1

Dn = E1/2.

Remark 1. If A is positive semidefinite energy stability still holds, but not necessarily energy

dissipation.

6



Let us denote the maximum energy stable timestep proven for CNLF and CNLF+RA as,

respectively, ∆tCNLF and ∆tRA. Previously it has been shown [LT12] that ∆tCNLF = 1
‖Λ‖

and Theorem 2 has showed us ∆tRA =
√

1−ν
‖Λ‖ (Though ∆tRA may be improvable). We find

that the two quantities have the relationship

∆tRA =
√

1− ν∆tCNLF .

Though the time step restriction for CNLF+RA is smaller than CNLF, CNLF+RA dissi-

pates nonphysical energy in the unstable mode of CNLF, explaining its necessity in GFD

calculations.

Stability regions of CNLF+RA are derived in section 2.4 for representive values of ν.

The scheme (2.5) fits the form of a Implicit-Explicit (IMEX) method in which stability and

convergence results have been study [C80, ARW95, FHV96, HR07]. The stability of the

combined IMEX method is not guaranteed by the stability of the individual implicit and

explicit methods [FHV96]. The scalar test equation used to study linear stability of IMEX

methods is

ut + au+ λu = 0 (2.6)

where a corresponds to an eigenvalue of A (hence a is real), λ corresponds to an eigenvalue of

Λ (hence λ is purely imaginary and (2.6) arises when A and Λ commute. These regions give

insight into how the RA step can induce instabilities when computing near the CFL limit

(possibly related to anomalies [JW11]) and why CNLF+RA is in most cases more stable

than CNLF alone.

Section 2.5 presents numerical tests showing how stability is sensitive to ∆tRA, the time

step restriction given in Theorem 2.

Remark 2. CNLF+RA is only first order accurate while CNLF is second order [ARW95].

The RAW filter [W09] adds another filter step to CNLF+RA increasing its accuracy and

reducing its numerical dissipation.

7



2.2 CURVATURE EVOLUTION

The description of the RA filter in [R69, A72, W11] is that it stabilizes by reducing the

discrete curvature. We summarize and quantify this property of RA in this preliminary

section.

Definition 1. The discrete curvature of φn is defined by

κ(φn) = φn+1 − 2φn + φn−1.

If un, vn satisfy (2.3), (2.4), we denote the discrete curvatures before the RA step (2.4) by

κnCNLF = vn+1 − 2vn + un−1

and after the RA step by

κnRA = vn+1 − 2un + un−1.

The fundamental property of RA is curvature reduction.

Proposition 1. ([R69, A72]) For every n ≥ 1 we have

κnRA = (1− ν)κnCNLF .

Therefore for 0 < ν < 1, |κnRA| < |κnCNLF |, unless both are zero.

Proof. A calculation with (2.4) shows us first that

un = vn +
ν

2
κnCNLF (2.7)

and second that

κnRA = vn+1 − 2un + un−1

= (vn+1 − 2vn + un−1) + 2(vn − un)

= κnCNLF + 2(
−ν
2
κnCNLF ) = (1− ν)κnCNLF

8



Figure 1: The energy is decreased

The simplest approach to studying stability of CNLF+RA is to check if each step reduces

some system energy individually. Unfortunately, this is not true in the simplest sense.

Figures 1 and 2, based on an description of time filters in [A72, W11, R69], show that RA

can both decrease and increase energy. Both figures are 2d plots of solution vs time at three

different times. Figure 1 presents the case when the RA step decreases the energy, and figure

2 the case of increased energy.

In both figures the solid blue curve shows the CNLF solution, the solution before the filter

step is completed, and the dotted red curve shows the CNLF+RA solution. The relationship

shown in (2.7) demonstrates how the filter step adjusts the CNLF solution to CNLF+RA

which is illustrated in figures 1 and 2 by the arrow.

The discrete curvature of the solid blue curve in figures 1 and 2 is κnCNLF and the dotted

red line has the discrete curvature κnRA. The figures depict how the curvature is reduced

from κnRA to κnCNLF as predicted by Proposition 1.

We prove next that the curvature κnCNLF and κnRA themselves evolve according to the

multistep method (2.5).

9



Figure 2: The energy is increased

Proposition 2. Both κnCNLF , and κnRA satisfy

κn+1 − νκn − (1 − ν)κn−1 + ∆tA
(
κn+1 + (1− ν)κn−1

)
+ 2∆tΛ(κn − ν

2
κn−1) = 0

for n ≥ 2.

Proof. Begin with (2.3). We find from Definition 1:

κ
(
vn+1 − un−1 + ∆tA(vn+1 + un−1) + 2∆tΛ(vn)

)
= 0

which by linearity implies

κ(vn+1)− κ(un−1) + ∆tA(κ(vn+1) + κ(un−1)) + 2∆tΛ(κ(vn)) = 0. (2.8)

10



We will make three calculations each on a part of (2.8). First consider the first two terms

of (2.8). Using (2.4) we write them as a combination of κmCNLF for m = n + 1, n, n − 1 as

follows:

κ(vn+1)− κ(un−1) = (vn+2 − 2vn+1 + vn)− (un − 2un−1 + un−2)

= (vn+2 − 2vn+1 + un) + (vn − un)

−[(vn − 2vn−1 + un−2) + (un − vn) + 2(vn−1 − un−1)]

= κn+1
CNLF +

−ν
2
κnCNLF − [κn−1

CNLF +
ν

2
κnCNLF + 2

−ν
2
κn−1
CNLF ]

= κn+1
CNLF − νκ

n
CNLF − (1− ν)κn−1

CNLF . (2.9)

Similarily we make a second calculation on the terms of (2.8) that A is operating on using

(2.4) and write them as a combination of κmCNLF for m = n+ 1, n, n− 1

κ(vn+1) + κ(un−1) = (vn+2 − 2vn+1 + vn) + (un − 2un−1 + un−2)

= (vn+2 − 2vn+1 + un) + (vn − un)

+[(vn − 2vn−1 + un−2) + (un − vn) + 2(vn−1 − un−1)]

= κn+1
CNLF +

−ν
2
κnCNLF + [κn−1

CNLF +
ν

2
κnCNLF + 2

−ν
2
κn−1
CNLF ]

= κn+1
CNLF + (1− ν)κn−1

CNLF . (2.10)

A third calculation is then made on the term of (2.8) that Λ is operating on using (2.4) to

write it as a combination of κmCNLF for m = n+ 1, n, n− 1

κ(vn) = vn+1 − 2vn + vn−1 = (vn+1 − 2vn + un−1) + (vn−1 − un−1)

= κnCNLF −
ν

2
κn−1
CNLF . (2.11)

To find the result for κnCNLF we substitute each of the three calculations (2.9), (2.10), (2.11)

above for the appropriate terms of (2.8). Hence

κn+1
CNLF − νκ

n
CNLF − (1− ν)κn−1

CNLF + ∆tA(κn+1
CNLF + (1− ν)κn−1

CNLF )

+ 2∆tΛ(κnCNLF −
ν

2
κn−1
CNLF ) = 0. (2.12)

From the curvature reduction property found in proposition 1 κnRA = (1− ν)κnCNLF . By the

linearity of A and Λ multiplying through by 1− ν in equation (2.12) converts all κmCNLF to

κmRA for m = n+ 1, n, n− 1 completing the result for κnRA.

11



2.3 ENERGY STABILITY

This section gives a detailed proof of energy stability. To begin we prove Theorem 1.

2.3.1 Proof of Theorem 1: CNLF+RA is a linear multistep method

Proof. The RA step, (2.4), can be rearranged to read

un − ν

2
un−1 =

ν

2
vn+1 + (1− ν)vn (2.13)

Subtract CNLF at time level tn multiplied by ν
2

from CNLF at time level tn+1 (i.e (CNLF

at tn+1)−ν
2

(CNLF at tn) ). By linearity we obtain

(vn+2 − ν

2
vn+1)− (un − ν

2
un−1) + ∆tA

(
vn+2 − ν

2
vn+1 + un − ν

2
un−1

)
+ 2∆tΛ(vn+1 − ν

2
vn) = 0 (2.14)

The left hand side of (2.13) appears twice in (2.14). We substitute (2.13) into (2.14) and

eliminate un and un−1 which completes the proof for vn. Moving forward we recall that from

Proposition 2, κnCNLF also satisfies the (2.5). Since both vn and κnCNLF satisfy the linear

multistep method (2.5), the relationship (1), un = vn + ν
2
κnCNLF gives the result for un.

The linear multistep method (2.5) can be rewritten as

un+1 − un−1

2∆t
+ A

(
un+1 + un−1

2

)
+ Λ (un)

− ν

2

(
un − un−1

∆t
+ A

(
un−1

)
+ Λ

(
un−1

))
= 0. (2.15)

The parameter ν in (2.4) scales the deviation of CNLF+RA from CNLF, and plays that role

in (2.15) as well. The part of (2.15) not multiplied by ν is CNLF centered at tn, and the part

multiplied by ν is a Forward Euler step centered at tn−1. Thus CNLF+RA can be thought

of as CNLF with a penalty Forward Euler step at the previous time level. This shows that

the solution of CNLF+RA will differ from the solution of CNLF when un is not the solution

of Forward Euler at tn−1.
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2.3.2 Proof of Theorem 2: Energy stability

We will now prove Theorem 2 the main result of this chapter.

Proof. Take the inner product of (2.5) with un+1 + (1− ν)un−1. We find

(un+1 − νun + (ν − 1)un−1, un+1 + (1− ν)un−1)

+ ∆t(A(un+1 + (1− ν)un−1), un+1 + (1− ν)un−1)

+ ∆t(Λ(2un − νun−1), un+1 + (1− ν)un−1) = 0

expanding gives

‖un+1‖2 + (1− ν)(un+1, un−1)− ν(un, un+1)− ν(1− ν)(un, un−1)

+ (ν − 1)(un−1, un+1) + (ν − 1)(1− ν)‖un−1‖2

+ ∆t‖un+1 + (1− ν)un−1)‖2
A

+ 2∆t(Λun, un+1) + 2(1− ν)∆t(Λun, un−1)− ν∆t(Λun−1, un+1) = 0.

Here we have use the skew-symmetric property (Λun−1, un−1) = 0. Grouping like terms we

find energy terms and identify a telescoping part of the Λ terms we obtain

‖un+1‖2 − (1− ν)2‖un−1‖2

− ν(un+1, un)− ν(1− ν)(un, un−1)

+ ∆t‖un+1 + (1− ν)un−1)‖2
A

+ (2− ν)∆t[(Λun, un+1)− (Λun−1, un)]

+ ν∆t[(Λun, un+1) + (Λun−1, un)− (Λun−1, un+1)] = 0.

Again by the skew symmetry of Λ,

‖un+1‖2 − (1− ν)2‖un−1‖2

− ν(un+1, un)− ν(1− ν)(un, un−1)

+ ∆t‖un+1 + (1− ν)un−1)‖2
A

+ (2− ν)∆t[(Λun, un+1)− (Λun−1, un)]

+ ν(∆tΛ(un − un−1), un+1 − un) = 0. (2.16)
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Next we will use the polarization identity

(a, b) = −1

2
‖a− b‖2 +

1

2
‖a‖2 +

1

2
‖b‖2

for the inner products on the second line of (2.16) and

(a, b) =
1

2
‖a+ b‖2 − 1

2
‖a‖2 − 1

2
‖b‖2

for the inner product on the last line of (2.16). We obtain

‖un+1‖2 − (1− ν)2‖un−1‖2

+
ν

2
‖un+1 − un‖2 − ν

2
‖un+1‖2 − ν

2
‖un‖2

+
ν(1− ν)

2
‖un − un−1‖2 − ν(1− ν)

2
‖un‖2 − ν(1− ν)

2
‖un−1‖2

+ ∆t‖un+1 + (1− ν)un−1)‖2
A

+ (2− ν)∆t[(Λun, un+1)− (Λun−1, un)]

+
ν

2
‖∆tΛ(un − un−1) + un+1 − un‖2 − ν

2
‖∆tΛ(un − un−1)‖2 − ν

2
‖un+1 − un‖2 = 0.

Grouping like terms this becomes

(1− ν

2
)‖un+1‖2 − (ν − ν2

2
)‖un‖2 − (1− 3ν

2
+
ν2

2
)‖un−1‖2

+ ∆t‖un+1 + (1− ν)un−1)‖2
A

+ (2− ν)∆t[(Λun, un+1)− (Λun−1, un)]

+
ν(1− ν)

2
‖un − un−1‖2 − ν

2
‖∆tΛ(un − un−1)‖2

+
ν

2
‖∆tΛ(un − un−1) + un+1 − un‖2 = 0,

and rewritten as

(1− ν

2
)‖un+1‖2 − ν(1− ν

2
)‖un‖2 − (1− ν

2
)(1− ν)‖un−1‖2

+ 2(1− ν

2
)[(∆tΛun, un+1)− (∆tΛun−1, un)]

+ ∆t‖un+1 + (1− ν)un−1)‖2
A

+
ν(1− ν)

2
‖un − un−1‖2 − ν

2
‖∆tΛ(un − un−1)‖2

+
ν

2
‖∆tΛ(un − un−1) + un+1 − un‖2 = 0.
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Define the CNLF+RA system energy as

En+1/2 := (1− ν

2
)
[
‖un+1‖2 + (1− ν)‖un‖2 + 2(∆tΛun, un+1)

]
.

The energy equality then reduces to

En+1/2 − En−1/2 +
[
∆t‖un+1 + (1− ν)un−1)‖2

A

+
ν

2
‖∆tΛ(un − un−1) + un+1 − un‖2

+
ν(1− ν)

2
‖un − un−1‖2 − ν

2
‖∆tΛ(un − un−1)‖2

]
= 0. (2.17)

To go further we must prove En+1/2 is positive for all n and the term in (2.17) inside the

brackets is non-negative (and hence a dissipation term). Since Λ is bounded operator we

have

2(∆tΛun, un+1) ≤ 2‖∆tΛun‖‖un+1‖

≤ ‖∆tΛun‖2 + ‖un+1‖2 ≤ (∆t‖Λ‖)2‖un‖2 + ‖un+1‖2

Under the assumed time step restriction 1− ν − (∆t‖Λ‖)2 > 0 if un+1, un 6= 0 then

En+1/2 ≥ (1− ν

2
)
[
‖un+1‖2 + (1− ν)‖un‖2 − (∆t‖Λ‖)2‖un‖2 − ‖un+1‖2

]
≥ (1− ν

2
)
[
1− ν − (∆t‖Λ‖)2

]
‖un‖2 > 0.

Also note if un+1 = un = 0 then En+1/2 = 0. Let the CNLF+RA numerical dissipation be

defined as

Dn :=
ν

2
‖∆tΛ(un − un−1) + un+1 − un‖2

+
ν(1− ν)

2
‖un − un−1‖2 − ν

2
‖∆tΛ(un − un−1)‖2.

We find Dn is nonnegative under the assumed time restriction

Dn ≥ ν(1− ν)

2
‖un − un−1‖2 − ν

2
‖∆tΛ(un − un−1)‖2

≥
[ν(1− ν)

2
− ν

2
(∆t‖Λ‖)2

]
‖un − un−1‖2

≥ ν

2

[
1− ν − (∆t‖Λ‖)2

]
‖un − un−1‖2 ≥ 0. (2.18)
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Therefore continuing from (2.17)

En+1/2 − En−1/2 + ∆t‖un+1 + (1− ν)un−1)‖2
A +Dn = 0

and summing from n = 1 to n = N we find

EN+1/2 +
N∑
n=1

∆t‖un+1 + (1− ν)un−1)‖2
A +

N∑
n=1

Dn = E1/2. (2.19)

This proves stability. If u1 and u0 are bounded solutions of (2.1) at time level t1 and t0

respectively, then E1/2 is bounded and hence EN+1/2 and in turn ‖uN+1‖ are bounded.

Next we show ‖uN‖ → 0. Since the right hand side of (2.19) is independent of N, the

left hand side must be uniformly bounded. Therefore (2.19) and (2.18) imply

ν

2

∞∑
n=1

‖un − un−1‖2 <∞ and
∞∑
n=1

‖un+1 + (1− ν)un−1‖2
A <∞

and hence as n→∞

ν

2
‖un − un−1‖ → 0 and ‖un+1 + (1− ν)un−1‖A → 0 (2.20)

By the triangle inequality and equivalency of norms

(2− ν)‖un−1‖ = ‖(un+1 + (1− ν)un−1)− (un+1 − un)− (un − un−1)‖

≤ ‖un+1 + (1− ν)un−1‖+ ‖un+1 − un‖+ ‖un − un−1‖

≤ C‖un+1 + (1− ν)un−1‖A + ‖un+1 − un‖+ ‖un − un−1‖ (2.21)

for some constant C (depending on A). By hypothesis 0 < ν < 1 and hence the left hand

side of (2.21) is positive and by (2.20) the right hand side of (2.21) to go to 0 as n → ∞.

Thus

lim
n→∞

‖un‖ = 0.

Remark 3. We observe from (2.20) that CNLF+RA prevents decoupling of the even and

odd time steps.
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2.4 STABILITY REGIONS

In the previous section we have proven a sufficient condition on the time restriction, the filter

parameter ν and the eigenvalues of Λ for energy stability. The current section will derive

and plot the stability regions in which we observe the relationship of these quantities and

of the eigenvalues of A. To begin we apply CNLF+RA to (2.6): Given un−1, vn ∈ X find

un, vn+1 ∈ X by

vn+1 − un−1

2∆t
+ a

vn+1 + un−1

2
+ λvn = 0

un = vn +
ν

2
(vn+1 − 2vn + un−1).

which by Theorem 1 evolves according to

un+1 − νun − (1− ν)un−1 + ∆ta
(
un+1 + (1− ν)un−1

)
+ 2∆tλ(un − ν

2
un−1) = 0 (2.22)

Define the characteristic polynomials following [HR07],

ρ(ζ) := ζk+1 − νζk − (1− ν)ζk−1

σ(ζ) := ζk+1 + (1− ν)ζk−1

σ̂(ζ) := 2ζk − νζk−1

and the IMEX stablity polynomial as

π(ζ; z, w) = ρ(ζ)− zσ(ζ) + wσ̂(ζ)

where z = −∆ta, w = ∆tλ. A necessary condition for stability is (i) all roots of π have

modulus less than or equal to one and (ii) multiple roots have modulus strictly less than one

[FHV96]. The stability region of the IMEX method (2.3), (2.4) is defined to be the region

in C2

S = {(z, w) ∈ C2 : π(ζ; z, w) = 0 =⇒ |ζ| < 1}.
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Since we are restricting our attention in (2.6) to real a and purely imaginary λ we are

more interested in the stability region

S̄ = {(z, w) : z ∈ R, w purely imaginary, π(ζ; z, w) = 0 =⇒ |ζ| < 1}.

A 2d plot will be produced z vs. w of the boundary of S̄. We will outline the proceedure.

Consider (z0, w0) ∈ ∂S̄. At least one root of π(ζ; z0, w0) will have modulus equal to one.

Denote this root as ζ0 = eiθ0 some θ0 ∈ [0, 2π). Now solving π(eiθ0 ; z0, w0) = 0 for w0 we find

w0 =
−ρ(eiθ0) + z0σ(eiθ0)

σ̂(eiθ0)
.

We may think of w0 as depending on z0 and θ0. For each z let us consider the curve

Γz :
−ρ(ζ) + zσ(ζ)

σ̂(ζ)
, ζ = exp(iθ), 0 ≤ θ < 2π.

This curve contains all boundary points (possible more). Since w is purely imaginary for a

fix z we find θ values such that Γz is purely imaginary, and then plot (z,Γz).

We could instead solve π(eiθ0 ; z0, w0) = 0 for z0 and find

z0 =
ρ(eiθ0) + w0σ̂(eiθ0)

σ(eiθ)
.

In this case we think of z0 depending on w0 and θ0. For each w consider the curve

Γw :
ρ(ζ) + wσ̂(ζ)

σ(ζ)
, ζ = exp(iθ), 0 ≤ θ < 2π.

All boundary points are contained by this curve as well. Since z is real for a fixed w we find

θ values such that Γw is real, and plot (Γw, w).

In figures 3, 4, 5, and 6 the boundary of S̄ can be seen by way of both of curves Γz

and Γw. The stability region when ν = 0 is the stability region for CNLF and is shown

in figure 3. In this case the A-stability of the IMEX method is guaranteed by the stability

of the individual methods CN and LF [FHV96]. This also holds true for energy stability

[LT12]. Figure 3 presents a stability region consistent with these results; the stability region

is {(z, w) : z < 0, ‖w‖ < 1,w is purely imaginary}.

Figures 4, 5, and 6 show stability regions with smaller time step restrictions than the

stability region of CNLF. We find that as ν increases the restriction on the size of w decreases
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(hence the restriction on the time step decreases) for all z. When z is small compared to

w the value of ν has more of an effect on the size of restriction on w. The boundary curve

for ν = .1 in figure 4 does not reach −i or i as in CNLF, but approximately includes the

line segment from −.95i to .95i. This implies when z = 0 a 5% decrease in w is necessary

for stability. In figure 5 the stability region contains even less of the imaginary axis. In

figure 6 we find a stability region that only contains the portion of the imaginary axis from

approximately −.55i to .55i which when z = 0 a 45% decrease in w is required for stability.

If we consider the case when z is large (and negative valued) compared to w the value

of ν has less of an effect on the size of the restriction on w. In fact as z → −∞ the stability

regions shown in figures 4, 5 and 6 contain points (z, w) where w satisfies ‖w‖ < 1. This is

the same time step restriction as in CNLF.

2.5 NUMERICAL TESTS

Consider the initial value problem:

ut + A(u) + Λ(u) = 0, u(0) = [1, 1]T . (2.23)

We shall test LF+RA filter. Take ν = 0.19, A = 0, and

Λ =

 0 15

−15 0


so ‖Λ‖ = 15. The first approximations, u1, are computed using the implicit backward Euler

method. From [LT12] the time step restriction for stability for LF is

∆t < 1/‖Λ‖ ≈ 0.0667

and from Theorem 2 the time step restriction for energy stability for LF+RA is

∆t <
√

1− ν/‖Λ‖ = .9/‖Λ‖ = 0.0600.

We take ∆t = .91/‖Λ‖ ≈ 0.0607 in Figure 7 and ∆t = .89/‖Λ‖ ≈ 0.0593 in Figure 8.
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Figure 3: IMEX stability region of CNLF+RA with ν = 0 which is CNLF.
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Figure 4: IMEX stability region of CNLF+RA with ν = .1.
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Figure 5: IMEX stability region of CNLF+RA with ν = .2.
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Figure 6: IMEX stability region of CNLF+RA with ν = 1.

Figure 7: CNLF is stable and CNLF+RA is unstable as anticipated.
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Figure 8: Both CNLF and CNLF+RA are stable with CNLF+RA dissipating to 0.

Since the right hand side of (2.23) is zero any growth is an instability. Here we plot energy

‖un‖ vs. time. We see in both Figures 7 and 8 that the energy of CNLF oscilates but

stays bounded as predicted by the stability theory of CNLF. In Figure 7 we confirm energy

instability when the time step restriction of Theorem 2 is not satisfied, but in Figure 8 the

time step restriction is satified and we observe that the energy is bounded and the energy

dissipates.

2.6 CONCLUSIONS

The RA time filter is designed to reduce curvature, and using its curvature reductions prop-

erties we find CNLF+RA is equivalent to a linear multistep method. The linear multistep

method is stable and dissipates its energy under a time step restriction smaller than CNLF.

The stability regions confirm that indeed large ν values require smaller time steps for stabil-

ity. The numerical tests shows that CNLF+RA is unstable for a small increase in the time
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step restriction ∆tRA and stable for a slight decrease.

For problems utilizing CNLF in which the spurious mode of LF causes instabilities adding

the RA filter will be highly beneficial. The nonphysical energy in the spurios mode is

dissipated by the filter and odd and even solutions are prevented from decoupling. But if

the stability of the praticular problem we are solving is highly sensitive to the size of the time

step restriction then using the RA filter may require too small of a time step for practicality.

Many difficult problems remain open. The W step in the RAW filter antidiffuses the RA

filter and therefore can be expected that the analysis of CNLF+RAW will be more delicate

than for CNLF+RA. Nevertheless, we are hopeful that, based on the analysis herein, a

similar theory could be constructed for the RAW filter, then for more general time filters

and finally extended to nonlinear problems.

25



3.0 STABILITY ANALYSIS OF THE CRANK-NICOLSON-LEAPFROG

METHOD WITH THE ROBERT–ASSELIN–WILLIAMS TIME FILTER

3.1 INTRODUCTION

The fundamental method for time stepping in most current geophysical fluid dynamics

(GFD) codes consists of one step of the Crank-Nicolson-Leapfrog (CNLF) method (based

on a fast-slow wave decoupling strategy) followed by one step of the Robert–Asselin (RA)

[R66, A72] time filter to control CNLF’s computational mode, and followed by one step of

the Williams [W09] time filter to restore lost accuracy and anti-diffuse the RA step. Williams

[W09] lists 25 major GFD codes using this approach including the Community Climate Sys-

tems Model, e.g., [TL05]. Our goal herein is to complement the numerous numerical tests

with a first rigorous numerical analysis of the combination for systems, complementing root

condition analysis and numerical tests in, e.g., [D10, W09]. Thus, given N × N matrices

A,Λ, we consider the system for u : [0,∞)→ RN

du

dt
+ Au = −Λu, u(0) = u0, where (3.1)

A+ AT ≥ 0, and Λ = −ΛT . (3.2)

When A + AT = 0 so A = −AT the system is exactly conservative for the euclidean norm:

|u(t)| = |u(0)|. When A+ AT > 0 it is dissipative, |u(t)| → 0 as t→∞.

The CNLF method followed by the Robert–Asselin–Williams (RAW) filter [AKW11,

W09, W11] is as follows. Given timestep ∆t and starting values u0, v1 (of sufficient accuracy,
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[V09]), find un, wn+1, vn+1 satisfying

(CNLF step)
wn+1 − un−1

2∆t
=− Aw

n+1 + un−1

2
− Λvn, (3.3)

(RA step) un = vn +
να

2
(wn+1 − 2vn + un−1), (3.4)

(W step) vn+1 = wn+1 +
ν(α− 1)

2
(wn+1 − 2vn + un−1). (3.5)

The parameter ν is the RA filter parameter, usually O(0.01 – 0.2), and α is the Williams

filter parameter, around 1/2. If α = 1 then the W filter step drops out and the method

reduces to the CNLF method with the RA filter, and if ν = 0, the unfiltered CNLF scheme

is recovered.1 The unfiltered CNLF method is stable under the time step condition [LT12]

∆t||Λ|| < 1.

3.1.1 A summary of results

The computational mode or the unstable mode of CNLF scheme is one for which un+1 +

un−1 ≡ 0. Difficulties have been reported to appear first in this mode in long-time simula-

tions, e.g., [D10]. There have been many numerical studies of the RAW filter giving evidence

of control of CNLF’s unstable mode. Our analysis supports this conclusion by showing the

stability estimates for the system in Section 3.4 exhibit damping in all modes (see Corollary

1 below).

There have been reports in [DC86], see also [JW11, section 13.5], of stable CNLF simu-

lations that were destabilized when RA step was added. These instabilities (not related to

the nonlinear instabilities studied in [F73]) were resolved in [DC86] by cutting the timestep

severely. We give two analytic explanations. First, the stability regions of CNLF scheme

with the RAW filter in Section 3.5 and the system energy analysis in Theorem 4 lead to

1Thus, we assume ν ∈ (0, 1] throughout the text.
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Courant–Friedrichs–Lewy (CFL) conditions

(Necessary) ∆t||Λ|| ≤ CFLscalar(α, ν),

(Sufficient) ∆t||Λ|| ≤ CFLsystem(α, ν),

where CFLsystem(α, ν) :=
√

2α− 1

√
2− ν

α2(2 + ν − 2αν)

(
1− ν

2
(2α− 1)

)
,

CFLscalar(α, ν) := CFLsystem(α, ν)
1√

1− ν2(1/2− α)2
.

The first condition is necessary (and sufficient for scalar problems) while the second is suffi-

cient. The relationship between the conditions is

CFLsystem(α, ν) ≤ CFLscalar(α, ν) < 1 = CFLCNLF .

Note that CFLscalar(α, ν) → 0 as α → 1/2. Thus, a stable CNLF simulation at or near its

CFL limit would be exponentially destabilized by an added RAW step.

The natural, but so far unsuccessful, strategy to analyze the stability of the CNLF

method with the RAW filter for systems is to track the evolution of a system energy through

the individual steps of (3.3), (3.4) and (3.5). Instead, our stability analysis is based on the

reduction of the CNLF method with the RAW filter to an equivalent partitioned multistep

method followed by application of the tools of stability regions and G-stability theory [D78,

HW10]. Thus, the first main result is the equivalence to a linear partitioned multistep

method and analysis of its consistency error, proved in Section 3.3.

Theorem 3. The approximation un of the CNLF method with the RAW filter satisfies

un − νun−1 − (1− ν)un−2 =−∆tA(un + ν(α− 1)un−1 + (1− να)un−2)

−∆tΛ
((

2 + ν(α− 1)
)
un−1 − ναun−2

)
. (3.6)

The the CNLF method with the RAW filter scheme is first-order accurate for ν ∈ (0, 1], α ∈

(1/2, 1], and is second order when α = 1/2.
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For notational simplicity, denote γ, p, q, r by

γ = ν
√

(1− α)2 + α2∆t2‖Λ‖2, p = 1− γ

2
, (3.7)

q = 1− γ

2
− ν

(
1− ν

2

)
, r =

√
(γ − ν)2 + ((2− ν)∆t‖Λ‖)2.

There holds p > r2/(4q) for α ∈ [1/2, 1] and ν ∈ (0, 1]. Our main result, which will be

proved in Section 3.4, is as follows.

Theorem 4. Consider the the CNLF method with the RAW filter (3.3)-(3.5) with α ∈

[1/2, 1] and ν ∈ (0, 1]. Suppose that the time step condition holds

∆t‖Λ‖ ≤ CFLsystem(α, ν), (3.8)

then the method (3.3)-(3.5) is stable. More precisely, for each N ≥ 2 we have(
p− r2

4q

)
|un|2 +

( r

2
√
q
|un| − √q|un−1|

)2

(3.9)

+
γ

2

N∑
n=2

(
|un−un−1| − |un−1−un−2|

)2
+
(ν

2
(2α−ν(2α−1))−γ

)N−1∑
n=2

|un − un−1|2

+ ∆t
N∑
n=2

‖un + ν(α− 1)un−1 + (1− να)un−2‖2
A

≤ |u1|2 + |u0|2 + (2− ν)∆t〈Λu0, u1〉+
γ

2
|u1 − u0|2.

This theorem implies the control of the unstable mode when A+ AT > 0.

Corollary 1. Assume ∆t‖Λ‖ ≤ CFLsystem(α, ν) and A+AT > 0. Then the approximations

generated by the CNLF method with the RAW filter satisfy un → 0 as n→∞.

Proof. The right-hand side of (3.9) is independent of N. Thus, letting N → ∞, the infinite

series on the left-hand side of (3.9) converge. Hence, the nth terms of all three series must

approach zero as n→∞. Since A+ AT > 0, as n→∞ this implies

an = un − un−1 → 0,

bn = un + ν(α− 1)un−1 + (1− να)un−2 → 0.

From these two sequences, form the sequence that must also approach zero: bn − ναan−1 −

(an − an−1) = (2− ν)un−1 → 0.
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The stability bound (3.9) and the proof of the corollary shows the mechanism by which

RAW controls the unstable mode of CNLF. The second dissipative term controls all modes

except those for which un − un−1 ≡ 0 while the third dissipative term controls all modes

except those for which un + ν(α− 1)un−1 + (1− να)un−2 ≡ 0. In combination, both modes

are controlled.

The paper is organized as follows. A brief background on the RAW time filter is discussed

in Section 3.2. In Section 3.3 and 3.4, we prove Theorem 3 and Theorem 4, respectively.

The stability of the leapfrog scheme with RAW filter (i.e., A = 0) is given in Section 3.5

using the root locus curve method. The conclusions appear in Section 3.6.

3.2 BACKGROUND ON THE RAW TIME FILTER

Detailed background for the CNLF method with the RAW filter is given in, e.g., [R69, R66,

A72, W09, W11, AKW11]. Thus, we give only a brief outline in this section. In GFD

simulations the choice of the terms A,Λ in (1.1) is to associate Λu with Coriolis terms

yielding waves that are high energy but slow waves, and Au with low energy but fast waves

along with other effects. Thus the CFL condition associated with explicit treatment of Λu

is modest. Durran [D10, page 412] shows that accuracy degrades rapidly when fully implicit

treatment of all terms is used in conjunction with a larger time step violating the timestep

condition for the high energy components (see also [L07, K02, HW80]).

The CNLF method has a long history. Stability was proven by Fourier methods in

1963 [JK63] and in 2012 by energy methods for systems, [LT12]. In practical computations

with unfiltered CNLF method, non-physical growth in the unstable or computational mode

is often reported (e.g., [HV03] and [GS98, page 242]). Computational tests including the

RA or RAW time filter report that this growth, whatever its cause, is controlled by the

addition of time filters. While the RA filter controls the unstable mode, it also reduces the

accuracy from second order (for CNLF) to first order and over damps [LT14, W09, W13].

The computed solution using CNLF method with the RA filter satisfies un → 0, even when

||u(t)|| ≡ ||u(0)||. The W step anti-diffuses the RA step and restores accuracy to the second
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order if α = 1/2 +O(∆t).

3.2.1 Curvature evolution

This section reviews the geometric interpretation of the RAW filter in terms of curvature

evolution by Robert, Asselin and Williams [W09].

Definition 2. The discrete curvature of φn is

κ(φn) = φn+1 − 2φn + φn−1.

Denote a curvature in time before and after the time filter, (3.4) and (3.5), as, respec-

tively,

κnold = wn+1 − 2vn + un−1,

κnnew = vn+1 − 2un + un−1.

Figure 9 illustrates how the time filter reduces the discrete curvature of the solution. After

solving for wn+1 in the CNLF step (3.3) the first solution curve is the continuous line. The

curvature obtained is κnold. Next, performing the filter (3.4) and (3.5) leads to the new

solution curve (the dashed line of Figure 9), with curvature κnnew.

Proposition 3. For n ≥ 1 we have

κnnew = (1− να + 1

2
)κnold,

|κnnew| < |κnold| for 0 < ν < 1, 1/2 < α ≤ 1.

When α = 1/2 the approximated solution computed by the CNLF method with the RAW filter

preserves the mean of the solution curves:

vn+1 + un + un−1

3
=
wn+1 + vn + un−1

3
.
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Figure 9: RA moves vn down to decrease κ; W moves wn+1 to preserve means.

Proof. The first step of the filter (3.4) is un = vn + να
2
κnold and the second step (3.5) is

vn+1 = wn+1 + ν(α−1)
2

κnold. A calculation with (3.4) and (3.5) shows

κnnew = vn+1−2un+un−1

= (wn+1−2vn+un−1) + (vn+1−wn+1) + 2(vn−un)

= κnold +
ν(α− 1)

2
κnold + 2(

−να
2

)κnold

= (1− ν(α + 1)

2
)κnold.

When α = 1/2 the means are

vn+1 + un + un−1

3
=
wn+1 + vn + un−1 + (2α−1)ν

2
κnold

3
=
wn+1 + vn + un−1

3
.
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3.3 THE EQUIVALENT IMEX MULTISTEP METHOD

The identification of the equivalent IMEX multistep method is the first step in the stability

analysis. Tools from the theory of such methods will then be applied.

Proof of Theorem 3. This equivalence is proven by algebraic elimination of intermediate vari-

ables. Indeed, the first two steps, (3.3) and (3.4), can be rewritten as a block 2x2 system (I + ∆tA) 2∆tΛ

να
2
I (1− να)I

 wn+1

vn

 =

 (I −∆tA)un−1

un − να
2
un−1

 .
We solve this system expressing wn+1, vn in terms of un, un−1. Next these are inserted into

(3.5) yielding the claimed linear partitioned multistep method.

Let u be the exact solution of u′(t) = −Au − Λu. Using Taylor expansion, the local

truncation error of the scheme (3.6) is

τn(∆t) =
∣∣∣u(tn)−νu(tn−1)−(1−ν)u(tn−2)

∆t

+ A
(
u(tn) + ν(α−1)u(tn−1) + (1−να)u(tn−2)

)
+ Λ

(
(2+ν(α−1))u(tn−1)− ναu(tn−2)

)∣∣∣
=
ν

2
(2α− 1)|u′(tn)|∆t+O(∆t2).

Thus, the method is second order for either α = 1/2 or ν(α−1/2) = O(∆t), which completes

the proof.

Remark 4 (On parameter values). The question arises if similar effects can be obtained by

using only the RA filter (i.e., α = 1 and no W step) but taking smaller parameter values.

This does not seem to be the case. Typical values for the RA parameter ν vary from ν =

0.01 in quasi-geostrophic models [W09, S10], to ν = 0.12 for global atmospheric models, to

ν = 0.5 − 0.6 for convective cloud models [D10, PX09]. The CNLF method with the RA

filter is more stable than with the RAW filter, see e.g., Figure 10. CNLF with either RA or

RAW is first order (for α > 1/2). However, the consistency error when using the RAW filter

has a smaller error coefficient. For example, suppose the RA parameters ν = 0.2, α = 0.53.

If we then apply only one RA step with νRA−new = ν(α − 1/2) = 0.006, then this RA-new
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and RAW have the same order of accuracy and the same coefficient of ∆t in the consistency

error. However, the value 0.006 lies outside the range observed in practice of acceptable RA

filter values (the associated damping rate is 1− νRA−new = 0.994 ≈ 1).

3.4 G-STABILITY ANALYSIS OF CNLF METHOD WITH THE RAW

TIME FILTER

For vectors of the same length, denote the usual euclidean inner product and norm by

〈u, v〉 := uTv, |u|2 := 〈u, u〉, the weighted norm by ‖u‖2
A := uTAu (well-defined since A +

AT > 0), and by ‖Λ‖ the matrix norm of Λ. In this section, we give the proof of Theorem

4.2

Proof. Proof of [Theorem 4] First, we introduce some notation to simplify the proof.

ηn = un − un−1,

x =
1

2

√
ν

2
(2 + ν − 2αν), y =

1

2

√
ν

2
(2− ν)(2α− 1),

γ =
√

4(x2 − y2)2 + (αν∆t‖Λ‖)2, p = 1− γ

2
,

q = 1− γ

2
− 4x2 − ν2(α−1), r =

√
(ν(α− 2) + 2(x2 − y2) + γ)2 + ((2− ν)∆t‖Λ‖)2,

and G =

 1− (x+ y)2, ν
2
(α− 2) + 2x(x+ y)

ν
2
(α− 2) + 2x(x+ y), 1− (x+ y)2 − 4x2 − ν2(α− 1)

 .

The variables γ, p, q, r are exactly those defined in (3.7). For α ∈ [1/2, 1] and ν ∈ (0, 1], all

the variables (except ηn) are non-negative, x ≥ y ≥ 0, and the matrix G is positive definite.

Taking the inner product of (3.6) with (un + ν(α− 1)un−1 + (1− να)un−2), we have the

following identity.

2For detailed proof, see the expanded version at http://www.mathematics.pitt.edu/sites/default/

files/research-pdfs/CNLFraw.pdf
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0 =

∥∥∥∥∥∥ un

un−1

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈Λun−1, un〉

−
∥∥∥∥∥∥ u

n−1

un−2

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈Λun−2, un−1〉


+ ∆t‖un + ν(α−1)un−1 + (1−να)un−2‖2

A + |(x+y)un−2xun−1+(x−y)un−2|2

+ αν∆t
(
〈Λun−1, un〉 − 〈Λun−2, un〉+ 〈Λun−2, un−1〉

)
. (3.10)

It is easy to check that the last two terms in (3.10) are bounded below by

|(x+y)un−2xun−1+(x−y)un−2|2+αν∆t
(
〈Λun−1, un〉−〈Λun−2, un〉+〈Λun−2, un−1〉

)
≥
(

2(x2 + y2)− γ

2

)
|ηn|2 − γ

2
|ηn−1|2 +

γ

2

(
|ηn| − |ηn−1|

)2 − (x− y)2
(
|ηn|2 − |ηn−1|2

)
.

Inserting this inequality into (3.10), we have

∥∥∥∥∥∥ un

un−1

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈Λun−1, un〉 − (x− y)2|ηn|2


+ ∆t‖un + ν(α− 1)un−1 + (1− να)un−2‖2
A

+
(

2(x2 + y2)− γ

2

)
|ηn|2 − γ

2
|ηn−1|2 +

γ

2

(
|ηn| − |ηn−1|

)2

≤

∥∥∥∥∥∥ u
n−1

un−2

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈Λun−2, un−1〉 − (x− y)2|ηn−1|2
 . (3.11)

Summing (3.11) for n = 2 to N and simplifying it gives∥∥∥∥∥∥ uN

uN−1

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈ΛuN−1, uN〉+
(

(x+ y)2 − γ

2

)
|ηN |2


+ ∆t

N∑
n=2

‖un + ν(α−1)un−1 + (1−να)un−2‖2
A +

γ

2

N∑
n=2

(
|ηn| − |ηn−1|

)2

+
(
2(x2 + y2)− γ

)N−1∑
n=2

|ηn|2

≤

∥∥∥∥∥∥ u
1

u0

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈Λu0, u1〉+
γ

2
|η1|2

≤ |u1|2 + |u0|2 + (2− ν)∆t〈Λu0, u1〉+
γ

2
|η1|2. (3.12)
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The first term on the left-hand side of (3.12) is bounded below by∥∥∥∥∥∥ uN

uN−1

∥∥∥∥∥∥
2

G

+ (2− ν)∆t〈ΛuN−1, uN〉+
(

(x+ y)2 − γ

2

)
|ηN |2

≥
(
p− r2

4q

)
|uN |2 +

(
r

2
√
q
|uN | − √q|uN−1|

)2

,

where 4pq > r2 for α ∈ [1/2, 1] and ν ∈ (0, 1]. Therefore (3.12) becomes(
p− r2

4q

)
|uN |2 +

( r

2
√
q
|uN | − √q|uN−1|

)2

+ ∆t
N∑
n=2

‖un + ν(α− 1)un−1 + (1− να)un−2‖2
A +

γ

2

N∑
n=2

(
|ηn| − |ηn−1|

)2

+
(
2(x2 + y2)− γ

)N−1∑
n=2

|ηn|2

≤ |u1|2 + |u0|2 + (2− ν)∆t〈Λu0, u1〉+
γ

2
|η1|2. (3.13)

Under the time step condition (3.8), all terms on the left-hand side of (3.13) are positive.

Finally, we write (3.13) in terms of α, ν and un to obtain the energy bound (3.9). This

concludes the proof.

Remark 4.1 In the case when Λ = 0 and A is symmetric positive definite, there holds∥∥∥∥∥∥ un

un−1

∥∥∥∥∥∥
G

≤ R(∆tA)

∥∥∥∥∥∥ u
n−1

un−2

∥∥∥∥∥∥
2

G

,

where 0 < R(∆tA) < 1 for any ∆t > 0.

Proof. If Λ = 0, without loss of generality, let A be a diagonal matrix, i.e.,

A=diag(λ1, · · · , λN), λk > 0, k = 1, 2, · · · , N . Then we can analyze the system in terms

of components. One can derive that the kth component of the numerical solution satisfies

un(k) = R(∆tλk)u
n−1
(k) , where

R(∆tλk) =

(ν + ν(1− α)∆tλk)±
√

(ν + ν(1− α)∆tλk)2 + 4(1 + ∆tλk)(1− ν − (1− να)∆tλk)

2(1 + ∆tλk)
.
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This yields ∥∥∥∥∥∥ un(k)

un−1
(k)

∥∥∥∥∥∥
G

= |R(∆tλk)|

∥∥∥∥∥∥ u
n−1
(k)

un−2
(k)

∥∥∥∥∥∥
2

G

.

It is easy to check that |R(∆tλk)| < 1 for k = 1, · · · , N . By letting

R(∆tA) = max
1≤k≤N

|R(∆tλk)|,

we conclude the proof.

Corollary 2. When α = 1 the resulting CNLF method with the RA filter with ν ∈ (0, 1] is

stable if

∆t‖Λ‖ ≤ 1− ν/2.

3.5 ABSOLUTE STABILITY REGION AND ROOT LOCUS CURVE OF

LEAPFROG SCHEME WITH RAW TIME FILTER

Stability can be analyzed exactly for scalar problems following the root locus curve method.

The results of this analysis are organized in a compact and useful manner by the stability

regions, derived in this section.

3.5.1 Root locus curve

Taking A = 0, we consider the leapfrog method with the RAW filter. In this case (3.6)

becomes

un − νun−1 − (1− ν)un−2 = −∆tΛ
((

2 + ν(α− 1)
)
un−1 − ναun−2

)
. (3.14)

The characteristic polynomials of (3.14) are

ρ(ζ) = ζ2 − νζ − (1− ν),

σ(ζ) = −(2 + ν(α− 1))ζ + να.
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Denote w = ∆tλ, where λ is an arbitrary non-zero eigenvalue of Λ. Thus, w is a purely

imaginary number. Let ζ be on the unit circle, i.e., ζ = eiθ, θ ∈ [0, 2π], then the characteristic

equation of (3.14) is

ρ(ζ)− wσ(ζ) = 0 or w =
ρ(ζ)

σ(ζ)
.

Since w is purely imaginary, the real part of w is zero. Consequently, θ satisfies

cos θ = 1 or cos θ = ν − 1 +
2− ν

2α
,

and hence

w = 0, or, w = ±i
√

(2− ν)(2α− 1)

α
√

2− ν + 2αν
.

The values above indicate the intersections of the root locus curve with the imaginary axis.

Since λ is an arbitrary non-zero eigenvalue of Λ, the stability region is given by

∆t‖Λ‖ ≤
√

(2− ν)(2α− 1)

α
√

2− ν + 2αν
= CFLscalar(α, ν).

Therefore we have proven the following result on the absolute stability of the leapfrog method

with the RAW time filter.

Proposition 4. The leapfrog method with the RAW filter (i.e., A = 0) is stable if and only

if the time step condition satisfies

∆t||Λ|| ≤ CFLscalar(α, ν). (3.15)

Several root locus curves for the leapfrog method with the RAW filter are plotted in

Figure 10. For a fixed value ν, the intersection of the root locus curve with the imaginary

axis shrinks as α decreases.

Corollary 3. The leapfrog method with the RAW filter for α = 1/2 is unstable for ν ∈ (0, 1].

Proof. From (3.15) we note that CFLscalar(α, ν) = 0 when α = 1/2. This implies that the

only intersection of the root locus curve with the imaginary axis is the origin, concluding

the argument.
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Figure 10: Root locus curves of the leapfrog method with the RAW filter for

α = 0.53, 0.7, 1, with a fixed value ν = 0.2.
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Corollary 4. Let A = 0,Λ 6= 0. Then, the CNLF method with the RAW filter is uncondi-

tionally unstable if α = 1/2.

Proof. Two different proofs: First, the stability region of the CNLF method with the RAW

filter does not intersect the imaginary axis if α = 1/2. Second, in the above necessary

condition for stability CFLscalar(α, ν) = 0 if α = 1/2.

This corollary is one explanation of the common practice3 of taking α > 1/2 but close

to α = 1/2.

We give an illustration showing the energy behavior for different time steps. Consider

u′(t) = Λu(t), Λ =

 0 10

−10 0

 , u(0) = [1, 1]T .

Take α = 0.53 and ν = 0.2, and denote the time step threshold in (3.15) as ∆tRAW , i.e.,

∆tRAW = CFLscalar/‖Λ‖. The energy of the numerical solution for ∆t = 1.01∆tRAW ,

∆t = ∆tRAW and ∆t = 0.99∆tRAW is plotted in Figure 11. The time step condition (3.15) is

sharp, and a smaller (bigger) time step with respect to the threshold will force the numerical

solution stable (unstable).

3.6 CONCLUSIONS

The Crank-Nicolson-Leapfrog method with the Robert-Asselin-Williams time filter is equiv-

alent to an implicit-explicit combination of a linear multistep method. We derived the

method’s stability regions for scalar cases and performed the G-stability analysis for sys-

tems. The RAW filter stabilizes the unstable or computational mode of the CNLF method.

3Thus, the recommendation α = 1/2 is shorthand for, e.g., α = 1/2 + O(∆t), which also preserves the
higher consistency error of α = 1/2.
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Figure 11: Energy of the numerical solution for different time steps. The energy grows for

∆t = 1.01∆tRAW , decays for ∆t = 0.99∆tRAW and stays preserved for ∆t = ∆tRAW .
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4.0 THE UNSTABLE MODE IN THE CRANK-NICOLSON LEAP-FROG

METHOD IS STABLE

4.1 INTRODUCTION

In this chapter we prove (asymptotic) stability of the so-called unstable mode (or computa-

tional mode) of the Crank-Nicolson Leap-Frog, CNLF, method for:

du

dt
+ Au+ Λu = 0, for t > 0 and u(0) = u0 (4.1)

A : A+ AT > 0 and Λ : skew symmetric.

Here u : [0,∞)→ Rd and the square, non-commutative, real matrices A,Λ have compatible

dimensions. Under these conditions, the solution to (4.1) satisfies u(t) → 0 as t → ∞ so

any growth in the approximate solution is a numerics induced instability. With superscript

denoting the time step number, CNLF, the Implicit-Explicit (IMEX) combination of Crank-

Nicolson and Leap Frog, is given by: given u0, u1, for n ≥ 2

un+1 − un−1

24t
+ A

un+1 + un−1

2
+ Λun = 0. (CNLF)

Root condition analysis for the scalar test problem y′ + ay + iλy = 0 leads to the timestep

condition, necessary for stability, [JK63], and recently proven sufficient in [LT12],

4t|Λ| < 1, | · | = euclidean norm. (4.2)
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However, in practical simulations, difficulties with CNLF’s unstable mode occur. It is often

reported that as n→∞

Stable Mode: |un+1 + un−1| → 0,

Unstable Mode: |un+1 − un−1| → ∞. (4.3)

CNLF is used for many geophysical flow simulations from which experience with and fixes for

the unstable mode are correspondingly large, e.g., [D10], [K03], [K12], [TL05], [A72], [R69],

[W11], [JW11]. One mystery is that since CNLF is stable under (4.2), no growth is possible

in theory and yet time filters to deal with (4.3) are nearly universal in practice, [JW11].

It is an open question to determine if this could be due to a gap for IMEX methods (e.g.,

[ARW95], [CM10], [FHV96], [HV03], [V80], [V09]) between necessary conditions from root

condition analysis and sufficient ones for systems, to accumulation in the unstable mode of

roundoff errors, to imperfect imposition of the timestep condition, to nonlinearities or other

unknown causes. We prove that under (4.2) the CNLF unstable mode is (asymptotically)

stable. This result, consistent with numerical tests in Section 3, supports the scenario that

growth in the unstable mode is due to imperfect imposition of and thus slight violation of

(4.2).

Theorem 5. Suppose the timestep condition (4.2) holds. Then, all modes of CNLF are

asymptotically stable:

un → 0 as n→∞ and thus both

un+1 + un−1 → 0 and un+1 − un−1 → 0.

4.2 PROOF OF ASYMPTOTIC STABILITY OF THE UNSTABLE MODE

Denote the usual euclidean inner product and norm by 〈w, v〉 := wTv , |v|2 := 〈v, v〉 and the

A−norm (well defined since A+ AT > 0) by

|u|2A := uTAu.
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Step 1: Energy Stability. In step 1 we follow [LT12]. Take the inner product of

CNLF with un+1 + un−1, add and subtract |un|2 and multiply through by 24t. This yields

[
|un+1|2 + |un|2

]
−
[
|un|2 + |un−1|2

]
+4t|un+1 + un−1|2A + 24t〈Λun, un+1 + un−1〉 = 0. (4.4)

Next, using skew symmetry rearrange

24t〈Λun, un+1 + un−1〉 = 24t〈Λun, un+1〉 − 24t
〈
Λun−1, un

〉
.

Define the first energy (which is positive if 4t|Λ| < 1, [LT12])

En+1/2 := |un+1|2 + |un|2 + 24t〈Λun, un+1〉.

Collecting terms we obtain

En+1/2 − En+1/2 +4t|un+1 + un−1|2A = 0. (4.5)

This implies that the stable mode un+1 + un−1 → 0 as n → ∞. Indeed, summing for

n = 1, · · ·, N and then letting N →∞ , we see that

∑∞

n=1
|un+1 + un−1|2A <∞

and thus the nth term |un+1 + un−1|2A → 0.

Step 2: A second estimate. Take the inner product of CNLF with un+1 − un−1 and

multiply through by 24tδ where δ > 0 will be determined later. This gives

4tδ
〈
A(un+1 + un−1), un+1 − un−1

〉
+δ|un+1 − un−1|2 + 2δ4t〈Λun, un+1 − un−1〉 = 0. (4.6)
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Split the operator A into two parts, A := As + Ass where As is symmetric and Ass is

skew-symmetric. The first term of (4.6) becomes

〈
A(un+1 + un−1), un+1 − un−1

〉
=
〈
As(u

n+1 + un−1), un+1 − un−1
〉

+
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

=
〈
Asu

n+1, un+1
〉
−
〈
Asu

n−1, un−1
〉

+
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

= |un+1|2A − |un−1|2A +
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

since the A−norm holds the property |v|2A = 〈Asv, v〉. Use the above equality for the first

term in (4.6) and add and subtract 4tδ|un|2A to gain

[
δ4t|un+1|2A + δ4t|un|2A

]
−
[
δ4t|un|2A + δ4t|un−1|2A

]
+δ4t

〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

+δ|un+1 − un−1|2 + 2δ4t〈Λun, un+1 − un−1〉 = 0. (4.7)

Define the second energy

En+1/2 := En+1/2 + δ4t|un+1|2A + δ4t|un|2A.

The key step is adding (4.5) and (4.7) which gives

En+1/2 − En−1/2 +4t|un+1 + un−1|2A + δ|un+1 − un−1|2

+δ4t
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

+ 2δ4t〈Λun, un+1 − un−1〉 = 0.

Summing this from n = 1 to N gives

EN+1/2 +
N∑
n=1

[
4t|un+1 + un−1|2A + δ|un+1 − un−1|2

]
+Q1 +Q2 = E1/2, (4.8)

Q1 :=
N∑
n=1

δ4t
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉
,

Q2 :=
N∑
n=1

2δ4t〈Λun, un+1 − un−1〉.
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Step 3: Bounding |Q1| & |Q2| . For Q1 note that

〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

≤ |Ass||un+1 + un−1||un+1 − un−1|

≤ 1

2ε
|Ass||un+1 + un−1|2 +

ε

2
|Ass||un+1 − un−1|2

where ε > 0. Hence

|Q1| ≤
N∑
n=1

δ4t
2ε
|Ass||un+1 + un−1|2 +

N∑
n=1

δ4tε
2
|Ass||un+1 − un−1|2

For Q2 note that

〈Λun, un+1 − un−1〉

=
1

2
〈Λ(un − un−2), un+1 − un−1〉+

1

2
〈Λ(un + un−2), un+1 − un−1〉

≤ 1

2
|Λ||un − un−2||un+1 − un−1|+ 1

2
|Λ||un + un−2||un+1 − un−1|

≤ 1

2
|Λ|
(

1

2
|un − un−2|2 +

1

2
|un+1 − un−1|2

)
+

+
1

2
|Λ|
(

1

2ε
|un + un−2|2 +

ε

2
|un+1 − un−1|2

)
.

Then

2δ∆t
N∑
n=1

1

2
|Λ|
(

1

2
|un − un−2|2 +

1

2
|un+1 − un−1|2

)
=
δ

2
∆t|Λ||uN+1 − uN−1|2+

+δ∆t|Λ|
(
|uN − uN−2|2 + · · ·+ |u3 − u1|2

)
+
δ

2
∆t|Λ||u2 − u0|2

≤ δ∆t|Λ|
N∑
n=1

|un+1 − un−1|2, (4.9)

and

2δ∆t
N∑
n=1

1

2
|Λ|
(

1

2ε
|un + un−2|2 +

ε

2
|un+1 − un−1|2

)

=
δ∆t|Λ|

2ε

N−1∑
n=1

|un+1 + un−1|2 +
εδ∆t|Λ|

2

N∑
n=1

|un+1 − un−1|2

≤δ∆t|Λ|
2ε

N∑
n=1

|un+1 + un−1|2 +
εδ∆t|Λ|

2

N∑
n=1

|un+1 − un−1|2. (4.10)

46



Thus, |Q2| is now bounded by combining (4.9) and (4.10) as follows

|Q2| ≤ δ∆t|Λ|(1 +
ε

2
)

N∑
n=1

|un+1 − un−1|2 +
δ∆t|Λ|

2ε

N∑
n=1

|un+1 + un−1|2.

Hence

|Q1|+ |Q2| ≤ δ∆t
(
|Λ|(1 +

ε

2
) +

ε

2
|Ass|

) N∑
n=1

|un+1 − un−1|2

+
δ∆t

2ε

(
|Λ|+ |Ass|

) N∑
n=1

|un+1 + un−1|2.

Step 4: Using the Q1 & Q2 estimates in the energy inequality. Inserting this

estimate for Q1 and Q2 into the energy inequality and collecting terms gives

EN+1/2 + δ
(

1− (1 +
ε

2
)∆t|Λ| − ε

2
4t|Ass|

) N∑
n=1

|un+1 − un−1|2

+∆t
N∑
n=1

(
|un+1 + un−1|2A −

δ

2ε

(
|Λ|+ |Ass|

)
|un+1 + un−1|2

)
≤ C(u0, u1). (4.11)

Step 5: Estimating the unstable mode. Since the RHS, C(u0, u1), is independent

of N , we can let N →∞ and conclude that

δ
(

1− (1 +
ε

2
)∆t|Λ| − ε

2
4t|Ass|

) ∞∑
n=1

|un+1 − un−1|2+

+∆t
∞∑
n=1

(
|un+1 + un−1|2A −

δ

2ε
(|Λ|+ |Ass|)|un+1 + un−1|2

)
<∞.

From this we shall deduce that
∑∞

n=1 |un+1 − un−1|2 < ∞ and thus |un+1 − un−1|2 → 0

as n → ∞. To make this step, two conditions are required: the second sum must be non-

negative and the coefficient of the first sum positive. That coefficient is positive if

ε < 2
1−4t|Λ|

4t|Λ|+4t|Ass|

Since ε > 0 is arbitrary, this condition can be satisfied if the stability condition ∆t|Λ| < 1

holds. For the second sum to be non-negative, it suffices that

|un+1 + un−1|2A −
δ (|Λ|+ |Ass|)

2ε
|un+1 + un−1|2 ≥ 0.
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This can be attained by picking δ = ελmin(As)/ (|Λ|+ |Ass|), where λmin(As) denotes the

minimum eigenvalue of As. With this condition on 4t and choice of δ, we conclude that the

sum below converges

∞∑
n=1

|un+1 − un−1|2 ≤ C <∞. (4.12)

Thus the nth term |un+1 − un−1|2 → 0 and |un+1 + un−1|2A → 0 from Step 1. Hence, un → 0

and all modes, including the unstable mode, are controlled.

4.3 NUMERICAL EXPLORATION OF THE UNSTABLE MODE

There are (at least) three natural conjectures about the growth of the unstable mode1. The

first is that practical simulations often occur with many accompanying perturbations. Thus

the matrix Λ will only be skew symmetric to O(ε), where ε is the magnitude of the errors in

numerical integration, computer arithmetic, function evaluation, previous calculations and

so on used to generate Λ and form the product Λu. These perturb the eigenvalues of Λ

to be outside the stability interval of leap-frog, {z : Re(z) = 0,−1 < Im(z) < +1}. CN

contributes damping of the stable mode sufficient to control its growth, leaving the unstable

mode’s growth to accumulate. The second is that practical simulations often occur for

implicitly defined operators Λ. The singular values of Λ are not available and guesses of |Λ|

based on physical reasoning or preliminary calculations are used instead. As a result, the

timestep condition 4t|Λ| < 1 may be slightly violated. This results in an instability that

begins small, is damped in the stable mode by CN and accumulates in the unstable mode.

The third is that the unstable mode occurs only in cases not covered by the theorem such

as with A = A(u). Practical simulations often occur with Λ a linear operator (as covered)

but A = A(u) a nonlinear operator with 〈A(u), u〉 ≥ 0 for which step 2 in the proof fails.

We give three tests to check these scenarios.

1These scenarios owe much to many lively discussions with Catalin Trenchea, for which we are apprecia-
tive.
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Test 1:A has large skew symmetric part. Let

A =

 104 103

−103 10−4


which has symmetric part As = diag{104, 10−4} and skew symmetric part

Ass = antidiag{−103, 103} and consider the 2× 2 system

du

dt
+ (104u+ 103v)− v = 0,

dv

dt
+ (10−4v − 103u) + u = 0.

The matrix Λ is

Λ =

 0 −1

+1 0

 .
We apply CNLF over a long time interval:

un+1 − un−1

24t
+ 104u

n+1 + un−1

2
+ 103v

n+1 + vn−1

2
− vn = 0,

vn+1 − vn−1

24t
+ 10−4v

n+1 + vn−1

2
− 103u

n+1 + un−1

2
+ un = 0,

with starting conditions u0 = v0 = u1 = +1, v1 = −1. We calculate |Λ| = 1 so the time step

condition is 4t < 1. We test:

• For 4t = 1.01(> 1) CNLF is unstable. Figure 12 verifies that the instability occurs in

only the unstable mode (a scenario suggested by root condition analysis [D10]).

• For 4t = 0.99(< 1), CNLF is energy stable. All modes are observed to be stable in

figure 15 over a very long time interval.

Test 2: Small perturbations of Λ. Let A = diag{104, 10−4} and consider the 2 × 2

system
du

dt
+ 104u+ ε1u− v = 0,

dv

dt
+ 10−4v + ε2v + u = 0.

The matrix Λ is thus

Λε1,ε2 =

 ε1 −1

+1 ε2
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Figure 12: For 4t = 1.01 the unstable mode grows and the stable mode decays

Figure 13: For 4t = .99 the both unstable and stable modes decay

50



Figure 14: For 4t = 1.01 the unstable mode grows and the stable mode decays

in which skew symmetry is broken by the small, random coefficients ε1 and ε2. We apply

CNLF over a long time interval:

un+1 − un−1

24t
+ 104u

n+1 + un−1

2
+ ε1u

n − vn = 0,

vn+1 − vn−1

24t
+ 10−4v

n+1 + vn−1

2
+ ε2v

n + un = 0,

with starting conditions u0 = v0 = u1 = +1, v1 = −1. We calculate |Λ0,0| = 1 so the time

step condition is 4t < 1. We test:

• For 4t = 1.01(> 1) and ε1 = ε2 = 0 CNLF is unstable. Figure 14 verifies that the

instability once again occurs in only the unstable mode.

• For 4t = 0.99(< 1), CNLF is energy stable if ε1 = ε2 = 0; we pick ε1 = ε2 = 10−4 and

check for growth in the unstable mode in figure 15. All modes are observed to be stable

over a very long time interval.

Test 3: Nonlinear version of Test 2. Consider the 2× 2 nonlinear system

du

dt
+ a1(u) + ε1u− v = 0,

dv

dt
+ a2(v)10−4v + ε2v + u = 0,

where a1(u) = 104|u|u, and a2(v) = 10−4|v|v.
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Figure 15: For 4t = .99 the both unstable and stable modes decay

The matrix Λ is thus

Λε1,ε2 =

 ε1 −1

+1 ε2


in which skew symmetry is broken by the small coefficients ε1 and ε2. We apply CNLF over

a long time interval:

un+1 − un−1

24t
+ a1

(
un+1 + un−1

2

)
+ ε1u

n − vn = 0,

vn+1 − vn−1

24t
+ a2

(
vn+1 + vn−1

2

)
+ ε2v

n + un = 0,

with starting conditions u0 = v0 = u1 = +1, v1 = −1. We calculate |Λ0,0| = 1 so the two

time step condition is 4t < 1. We observe that:

• For 4t = 1.01(> 1) and ε1 = ε2 = 0 CNLF is unstable; The instability again occurs in

only the unstable mode, figure 16.

• For 4t = 0.99 < 1, CNLF is energy stable (as Step 1 of the proof extends to this

nonlinear case) if ε = 0. Pick ε1 = ε2 = 10−4 in this test and find all modes go to zero

(figure 17); there is no growth in the unstable mode.
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Figure 16: For 4t = 1.01 the unstable mode grows and the stable mode decays

Figure 17: For 4t = 0.99 both the unstable and the stable mode decay
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5.0 CONCLUSIONS

The Crank-Nicolson Leapfrog method with the Robert-Asselin or Robert-Asselin-Williams

time filters applied to a linear system is equivalent to a linear multistep method. Under a

smaller time step restriction than CNLF alone the multistep method is energy stable and

first order accurate with 0 < ν ≤ 1 and 1/2 < α ≤ 1. The case of α = 1/2 increases the

accuracy of the multistep method, but it is unconditionally unstable. The multistep method

introduces numerical dissipation which controls all modes of CNLF. Stability regions confirm

that the multistep method is stable under a smaller time step. Numerical tests show a small

increase in the time step restriction derived for the multistep method causes the multistep

method to be unstable and a small decrease stable.

The computational mode of Crank-Nicolson Leapfrog method (without a time filter) is

stable when applied to a linear system.

54



BIBLIOGRAPHY

[AKW11] Amezcua, J., Kalnay, E., Williams, P.D.: The effects of the RAW filter on the
climatology and forecast skill of the SPEEDY model. Monthly Weather Review
139(2), 608–619 (2010).
http://dx.doi.org/10.1175/2010MWR3530.1

[ARW95] U. Asher, S. Ruuth and B. Wetton, Implicit-Explicit methods for time
dependent partial differential equations, SINUM 32(1995) 797-823.

[A72] R.A. Asselin, Frequency filter for time integration, Mon. Weather Review
100(1972) 487-490.

[CM10] J. Connors and A. Miloua, Partitioned time discretization for parallel solution
of coupled ODE systems, BIT Numer. Math. 57(2011) 253-273.
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