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Intelligent mobile devices have become the focus of the electronics industry in recent years. 

These devices, e.g., smartphones and internet connected handheld devices, enable quick and 

efficient access of users to both business and personal data, but also allow the same data to be 

easily accessed by an intruder if the device is lost or stolen. Existing mobile security solutions 

attempt to solve this problem by forcing a user to authenticate to a device before being granted 

access to any data. However, such checks are often easily bypassed or hacked due to their 

simplistic nature. In this work, we demonstrate Invisible Shield, a gesture-based authentication 

scheme for mobile devices that is far more resilient to attack than existing security solutions and 

requires neither additional nor visible effort from user perspective. In this work, we design 

methods that efficiently record and preprocess gesture data. Two classification problems, "one 

vs. many" and "one vs. all," are then mathematically formulated and examined using the gesture 

data collected from 20 individuals. Classification algorithms specialized for each case are 

developed, achieving a classification accuracy as high as 90.7% in the former case, and an equal 

error rate as low as 7.7% in the latter using real Android systems. Finally, the system resource 

requirements of different classification algorithms are compared. 
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1.0  INTRODUCTION 

Intelligent mobile devices have become the major horsepower behind the evolution of the 

modern electronics industry: smartphone and tablet shipments triple every six years, and are 

anticipated to reach a volume of 1.7B in 2017 [18]. Besides communication, smart mobile 

devices are broadly utilized in many aspects of everyday life, such as web surfing, entertainment 

viewing, fitness tracking, etc. With 84% of smartphone owners now utilizing their device to store 

both business and personal data [1], protection of this information has become a major concern. 

Although a number of solutions for mobile device security and authentication have been 

proposed, the most popular schemes like PIN and pattern lock remain easily bypassed [2][3]. 

Mobile phone manufacturers have begun to include biometric identification systems in 

their products to address this security weakness. As an example, a fingerprint scanner was 

introduced in both the Apple iPhone 5S and HTC One. However, such biometric authentication 

methods suffer from two intrinsic drawbacks: First, they often incur extra cost, e.g., bespoke 

sensors like fingerprint scanners. Second, the authentication procedures of these solutions still 

require extra time and effort before a user can access their data, no different from conventional 

methods. This delay continues to be the largest contributor to reduced user adoption rates of 

mobile security solutions in general [12]. 

In this work, we propose Invisible Shield, a gesture-based mobile authentication scheme 

which overcomes the drawbacks of existing security solutions. Our scheme is based on data 
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recorded during regular operation of the device using only existing, internal sensors. Specific 

contributions of our work to the field include: 

 

• Mathematical definition of two authentication scenarios, "one versus many" and "one 

versus all," and application of gesture-based classification algorithms for each case; 

• Demonstrating that normal device interaction contains sufficient information to be 

utilized as a highly reliable authentication key, achieving an identification accuracy as 

high as 90.7% and allowing for an entirely transparent security scheme for mobile 

devices; 

• Identification of the most efficient form of data representation, sample rate, and training 

set size so as to achieve maximized classification accuracy and minimized system 

resource requirements; 

• Detailed analysis of the utilized classification algorithms in terms of feasibility, accuracy, 

and demand on mobile device resources. 

 

The remainder of this thesis is organized as follows: Section 2 provides a background on 

gesture-based mobile security solutions and an overview of our Invisible Shield system; Section 

3 presents our data collection and processing techniques; Section 4 details the two target mobile 

security scenarios, and our developed approaches to each; Section 5 illustrates the experimental 

results; Section 6 provides discussion regarding our experimental results; Section 7 reviews 

related works; and Section 8 concludes the paper. 
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2.0  BACKGROUND AND OVERVIEW 

Without loss of generality, we define "gesture" as the way in which a user interacts with their 

device. Because the majority of interaction with modern mobile devices involves interfacing 

with a touchscreen, we limit our examination to only gestures performed during these 

interactions.  

The human hand contains 29 pieces of bone, 35 pieces of muscle, 48 strips of nerves, and 

123 pieces of ligament [19]. Such biometric features cause an individual’s gesture to be entirely 

unique, with this uniqueness further emphasized by varying flexibility of joints and personal 

comfort preferences [6]. Hence, the unique nature of gesture defines it as an ideal vehicle for 

user identification. Further, gesture patterns are not only unique but also change over time [15], 

allowing authentication credentials to evolve with the user. 

2.1 PROPOSED SOLUTION 

Invisible Shield functions as follows: First, gesture information is captured as a user interacts 

with their device. The accelerometer, gyroscope, and touchscreen are polled for information 

while a user is in direct contact with the touchscreen. Once the user is no longer in contact with 

the touchscreen, the gesture is considered complete and all collected data is stored to a database. 

We note that the three selected sensors are utilized as they are almost universally available on 
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modern mobile devices, allowing Invisible Shield to theoretically function regardless of the 

specific device on which it is being used.  

The recorded data is standardized and normalized into a uniform format for later 

comparison. Specifically, standardization transforms gesture data into equally sized data vectors 

with constant sample rates. As different sensors on a device likely report raw data values with 

varying magnitudes, normalization is performed to remove this artificial weighting from the 

recorded features. The set of newly-formatted data then becomes the basis of a user profile 

utilized to uniquely identify an individual. 

As new input gestures are received, they are compared to existing user profiles utilizing 

machine-learning and pattern-matching techniques, which are selected based on the 

authentication scenario. Two distinct scenarios are defined: "one versus many" and "one versus 

all." "One versus many" (OVM) denotes the case that an unknown user is identified based on 

his/her gestures as one out of a finite group of known users. Alternatively, "one versus all" 

(OVA) denotes the case that an unknown user is identified either as the owner of a device or as 

an attacker.  

In either case, once an input gesture passes the authentication check, the user is allowed 

continued access to the device, and the newly recorded gesture is added to the database of 

gestures for that user. The oldest gesture is then removed from the same database and the user 

profile is updated, allowing the Invisible Shield system to evolve with the user. If the input does 

not pass an authentication check, it likely originates from an attacker, so the device is locked to 

protect the user’s data.  

An overview of Invisible Shield is shown in Figure 1. 
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Figure 1. Data flow of Invisible Shield system 

 

 

2.2 CHALLENGES 

The first challenge in Invisible Shield system design is the identification of features which 

represent a user’s gesture quantitatively. Our design utilizes sensors already embedded on the 

device to record information related to gesture while a user interfaces with the device. In addition 

to being available on most mobile devices, the specific sensors we utilize are selected as they 

provide data closely associated with the way a user is currently interacting with the phone or 

tablet. Through the classification accuracy of our algorithms, we show that the data returned 

from these sensors sufficiently defines a user’s unique gesture. 
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The second challenge is to convert the raw data recorded from device sensors into a 

standardized format such that it can be used in machine-learning algorithms. In our data 

collection phase, gestures are recorded which occur over a period ranging from 0.3 to 2.2 

seconds in length, with a timing distribution as seen in Figure 2. The varying duration of the 

gestures, combined with the fluctuating rate at which the Android OS returns data from sensors, 

results in gestures containing differing amounts of raw data. In our work, we standardize and 

normalize gesture data before attempting to utilize it for classification. We consider two 

standardization and two normalization methods, and determine which yields the highest 

consistency for user identification while maintaining differentiability between users.  
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Figure 2. Timing distribution for recorded gestures 

 

 

The third challenge is to determine which algorithms function best to correctly classify 

users based on their gestures. As the targeted classification problem is partitioned into OVM and 

OVA, we are able to focus our examination on algorithms specifically suited to each situation. In 

Section 4, we discuss the various approaches we attempt. 
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Finally, the remaining challenge is to design an authentication system that will evolve 

with the user. It has been suggested in other works that user gestures change over time [15]. 

Utilizing the collected data, examine methods to account for this. Based on a rolling database of 

training data, we are able to effectively compensate for the shift of the gesture data over time. 

Besides the above theoretical challenges, feasibility requirements need also be fulfilled. 

In a real world scenario, training time required by Invisible Shield must be minimized to 

encourage users to adopt it. However, most pattern-recognition algorithms achieve higher 

classification accuracy with a larger training set. In order to find the most efficient solution to 

this tradeoff, accuracy is investigated utilizing a range of previous inputs as training data.  

Furthermore, the sampling resolution required to achieve optimal classification accuracy 

must be evaluated. Sampling from sensors at higher rates enhances observation granularity and 

will likely improve classification accuracy. However, this requires additional power and greater 

utilization of system resources during the recording stage as well as an increase in processing 

time in the classification stage. We analyze recorded gesture data at different sampling rates via 

down sampling from an original raw recording in order to evaluate the impact on classification 

accuracy. 
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3.0  DATA COLLECTION AND ANALYSIS 

This section describes the data collection methods and sample group utilized as part of Invisible 

Shield. Also discussed is the mathematical description of gesture data referenced throughout the 

rest of the paper, as well as the various techniques used to standardize and normalize raw data. 

3.1 DATA COLLECTION 

To collect gesture data suitable for analysis with the Invisible Shield system, a gesture recording 

application is developed based on the Android lock screen. In it, a 3×3 grid of dots is displayed 

to the user, who is then tasked with connecting the correct dots in the correct order to form an 

unlock pattern. In our experiments, the unlock pattern is set as a "fish" shape – a gesture which 

utilizes the top six dots in the 3×3 grid, as displayed in Figure 3. This particular recording 

method and pattern are selected as they are easy for users to understand and perform. All 

subjects are asked to draw the same "fish" in order to guarantee that any differences between 

users will result from the way the gesture is performed and not the gesture itself. 
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Figure 3. User and recording app displaying fish pattern 

 

 

Our gesture recording application is deployed onto several LG Nexus 4 devices running 

the Android 4.3 operating system. The application samples and records data from the device 

touchscreen, accelerometer, and gyroscope while the user is in direct contact with the 

touchscreen. During each gesture, data is first sampled from sensors at the maximum possible 

rate allowed by the device. At each sample point a total of 11 values are recorded, a summary of 

which is shown in Figure 4, with sample values from the sensors displayed in Table I. 
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                                    (a)                                                             (b) 

Figure 4. (a) A user gesture is composed of many discrete samples (b) Each sample contains F=11 raw 

features 

 

 

Table 1. Sample Feature Data 

Parameters Mean Variance 

Time Stamp 

Touch x-Location 

Touch y-Location 

Touch Area 

Touch Pressure 

x-Axis Acceleration 

y-Axis Acceleration 

z-Axis Acceleration 

x-Axis Orientation 

y-Axis Orientation 

z-Axis Orientation 

82.10 

631.00 

158.00 

0.29 

0.71 

2.52 

8.29 

5.48 

0.05 

-0.04 

0.13 

7.01 

22.80 

23.00 

0.03 

0.03 

1.01 

0.57 

0.68 

0.17 

0.17 

0.10 
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Gesture samples are collected from 20 subjects between the ages of 21 and 26, including 

7 female users and 13 male users. Each subject is given a device preloaded with the gesture 

recording application for a 1-2 week period. The gesture recording application reminds the 

subject to interact with the device once an hour by vibrating and displaying an onscreen 

notification. At that time, the user repeats the "fish" gesture on the device ~15 times, resulting in 

a total of between 178 and 2036 recorded gestures per user. By collecting samples gradually over 

a long period of time, variance induced by muscle exhaustion and boredom are minimized. In the 

case where a user enters the wrong pattern into the device, e.g. missing one of the dots or 

connecting them in the wrong order, the data from that gesture is not recorded in the gesture 

database. 

3.2 STANDARDIZATION 

The Android OS does not permit a constant data sampling rate from attached sensors. Instead, 

sensor data is supplied at a coarsely-grained, system relative rate, i.e. slow, medium, fast. The 

recording application requests data at the highest rate possible, resulting in an average (but not 

constant) sample rate of approximately 200Hz. The inconsistencies in sampling rate, in addition 

to varying gesture durations, cause each data vector to contain differing amounts of sample 

points. 

In order to reliably compare user gestures, all samples are reformatted to a uniform 

structure, or standardized. In cases where sample duration is variable, a common method of data 

standardization defines a maximum time window within which each time series is expected to 
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fit. This method is further extended to extrapolate sample points from the raw data which occur 

at regular intervals within the time window, approximating a constant sample rate. We refer to 

this process as "temporal" standardization.  

Mathematically, each recorded gesture is defined as originating from one out of N users. 

For user , data vector  represents a single gesture where  and  is the total 

number of gesture samples recorded for that user. Within vector  there are  subvectors 

denoted as , each representing a single sample point where . Each  contains 

 raw features, addressed individually as  with . The dimensionality of 

each  is then equal to . Table II contains a summary of these variables and definitions. 

Temporally standardized data vector  and its subvectors  are defined using 

.    (1) 

Here , where  is the total number of temporally equidistant samples in the 

standardized data vector.  is determined as 

,      (2) 

where  is duration of the standardized time window in seconds and  is the desired 

sample rate within the window. Each sample point  in the standardized data set is taken to 

occur at time , which is calculated by 

.           (3) 

Raw data samples  and  are the recorded samples that occur at time  and , 

immediately before and after time , respectively. For gestures that do not last the full 

duration  there may not exist  for every ; in such cases, . In our work, we 
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examine data standardized with  and , which allows a time window long 

enough to entirely contain almost every recorded gesture. 

While temporal standardization is the traditional method of handling data time series, 

very few of the recorded input gestures exist for the full duration . The result of this is that 

standardized data vectors contain a large number of trailing zeroes which likely contribute little 

to classification accuracy. This has a further effect of causing the machine-learning algorithms 

explored in Section 4 to utilize valuable system resources processing data that is insignificant. 

In response to this perceived inefficiency, we propose "spatial" standardization to process 

the data in our design. Spatially standardized data vector  and its sample points  are 

calculated using Eq. (1), but with  redefined as 

,       (4) 

where  is the number of temporally equidistant samples of gesture  that occur 

between  and . While every temporally standardized  shares the sample 

rate , each spatially standardized  has its own unique sample rate , defined based on  

.      (5) 

By having a unique sample rate for each gesture, it is guaranteed that each standardized 

data vector is fully utilized to store unique information from the original gesture, eliminating 

trailing zeroes. 

Classification accuracy when using both temporal and spatial standardization is 

investigated in Section 5. 
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3.3 NORMALIZATION 

Individual feature values reported by a device’s sensors have different magnitudes. In order to 

avoid individual features being artificially weighted by their size relative to other components, 

the magnitude of each feature score must be normalized. Table I contains measurement values 

taken from a random set of sample points recorded using an LG Nexus 4 smartphone as an 

example of the raw values which are returned from device sensors. Although a normalization 

method can be easily determined for this specific device, the goal of Invisible Shield is to 

function on all existing devices, regardless of specific hardware components or returned 

measurement values. Hence, a normalization technique that functions regardless of the actual 

values returned by sensors is developed. 

One possible normalization strategy is to adjust feature values such that each feature is 

restricted to the range 0-1 [20]. Each feature  of normalized vector  is calculated from 

standardized vector  using the  previous inputs from user  via 

.        (6) 

This method is referred to as "naïve" normalization, as it has the easily recognizable 

drawback that extreme outliers can have disproportionate effect on normalized feature scores. In 

order to compensate for this, a z-score normalization method [21] is also investigated as a 

potentially superior method, and the impact of both normalization methods on classification 

accuracy is examined in Section 5. 
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Table 2. Symbols definition and description 

Symbol Description 

 
Total number of users 

 
Total features per sample 

 

Raw gesture data from user  

 

The th gesture in data set  

 

The th sample point in gesture  

 

The th feature of sample point  

 

Total number of recorded gestures for user  

 

Total sample points in gesture  

 

Standardized gesture data from user  

 

Normalized gesture data from user  

 
Number samples in standardized data 

 
Number seconds input gesture may last 

 
Sample rate of standardized data 

 
Number of gesture partitions 

 

Time of th sample in  

 
Number of training gestures 
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4.0  AUTHENTICATION ALGORITHMS 

In this section, the authentication algorithms developed for the targeted applications "one versus 

many" (OVM) and "one versus all" (OVA) are described in detail. 

4.1 ONE VERSUS MANY (OVM) 

In the case of OVM, an algorithm must identify which user is interfacing with the device out of a 

set of known users. An example of such a situation would be a family tablet that is able to adjust 

its interface to suit the interests of the family member currently using it. Two types of 

classification algorithms, k-nearest neighbor and generative models, are examined and applied to 

this scenario. 

4.1.1 K-Nearest Neighbor 

k-Nearest Neighbor (kNN) algorithms are commonly utilized when attempting to classify input 

data based on one of N known classes [17]. A kNN classification algorithm is desirable in that it 

is accurate and computationally lightweight when the number of users and gestures are small. 

The algorithm functions by maintaining a database of  previous inputs for each user . 

When a new input  is received from user , it is compared to all previous inputs in the 
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database using a selected distance metric. Input  is then determined as originating from user  

 such that the majority of its k-nearest neighbors also originate from user . When , 

classification is considered correct. 

Classification accuracy is investigated for all , with the upper limit of  

being selected as it represents a realistic value for the number of gestures a user can be expected 

to perform in a single day [4]. The value of  remains constant at  for all classification 

attempts, as it has been shown that the specific value of  exerts little influence over 

classification accuracy [17]. Lastly, we select a Euclidian distance metric to compare gestures. 

4.1.2 Generative Model 

Generative models function by first creating a simplified mathematical representation of each 

user. Each representation is constructed by maximizing the probability that the model will 

generate the data already recorded from that user. When a new input is received, the probability 

of it being generated by each user’s model is determined. The input is then classified as 

belonging to the user whose model has the highest probability of generating it. 

In this work, we assume that all recorded features from a gesture exhibit Gaussian 

distributions, leading us to select a multivariate Gaussian generative model as our basis for each 

user. The parameters of this model include the class mean  and class covariance , which can 

be estimated using the sample mean and sample covariance of the  previous inputs (training 

data) from each user. The originator of input  is determined to be user  where the model for 

user  has the highest calculated probability of generating  using 

.    (7) 
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Of note is that the algorithm utilizes the logarithm of the probability density function 

(PDF) instead of the PDF itself. The reason for this is that in cases of high-dimensional data 

(high sample rate), the magnitude of calculated probabilities becomes too small to represent 

reliably using double-precision floating point values. By instead utilizing the logarithm of the 

PDF, generated probabilities exist entirely within a representable range. 

A multivariate Gaussian distribution model is potentially beneficial as it is able to weight 

features individually and detect relationships between features through the use of the sample 

covariance, . However, generative models place a heavy reliance on having access to an 

abundance of training data, as the additional information allows for the closer approximation of 

class models. In addition to this,  is required to be nonsingular for the PDF to be defined, in 

turn requiring  to be greater than the dimensionality of . At higher sampling rates, gesture 

data vectors contain over 1,000 features, which translate to more than 10 days’ worth of gestures 

from the average user. By our definitions, this requirement causes Invisible Shield to become 

unlikely feasible in terms of training time. 

To overcome this drawback, a dimensionality reduction algorithm is utilized to project 

recorded data vectors onto a  dimensional subspace. Each user’s generative model is then 

constructed within this subspace, whose reduced dimensionality greatly increases the likelihood 

that  will be full rank even for small values of . Principal component analysis (PCA) [16] is 

utilized as it creates a low-dimensional subspace for data while maintaining as much of the 

original sources of variance as possible. 

While this allows the generative model to function feasibly, there remains a reliance on 

large values of , as PCA introduces a loss of characteristic variance during dimensionality 

reduction, even though it is minimized. 
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4.2 ONE VERSUS ALL (OVA) 

In the case of OVM authentication, an unknown user is given a binary classification as either the 

one known owner of a device or an attacker. Because previous input gestures are only available 

from the device owner, threshold-based classification can be utilized to determine the originator 

of any inputs. The accuracy of generative models is evaluated when applied to the OVA 

problem. 

4.2.1 Gaussian Generative Models 

The techniques utilized in Section 4.1.2 can be easily modified to work in a one versus all case. 

However, instead of having a separate model for each user in a group of users, only the model 

for the actual owner of the device is maintained. When a new input gesture is recorded, the 

probability of it being generated by the user is calculated and compared to a preselected 

threshold value. If the probability is greater than the threshold value, the originator of the gesture 

is assumed to be the user and they are allowed continued access to the device. If the probability 

is below the threshold, the user is assumed to be an attacker and they are denied access to the 

device. 

Varying the threshold has a direct effect on classification accuracy for the algorithm. 

Decreasing the threshold reduces the number of attackers who are incorrectly given access to the 

device, which is termed the false positive rate (FPR). By forcing all input gestures to be closer to 

the user ideal before granting access to the device, FPR is reduced. However, gestures produced 

by the actual owner of the device are not perfectly ideal. This means that in some cases, the user 

may be incorrectly denied access to their own device – the proportion of the time this occurs is 
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referred to as the false negative rate (FNR). FNR can be reduced by increasing the classification 

threshold, but this in turn increases FPR. In order to simplify accuracy analysis, we consider 

equal error rate (EER) as the measure of classification accuracy. EER is the value of the FPR and 

FNR when the threshold has been tuned such that they are equal. 
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5.0  RESULTS 

In this section, the methods of estimating classification accuracy of Invisible Shield are described 

in detail. Also examined are the experimental results obtained using the classification algorithms 

detailed in Section 4. 

5.1 OVM ANALYSIS 

To demonstrate classification accuracy in the OVM scenario, the final 70 gestures recorded from 

each of the 20 subjects (1400 gestures in total) are classified. By using the final gestures 

recorded by each user, large variances from users altering their interactive preferences, i.e. 

orientation or method of gripping the device, were eliminated. By the time users recorded their 

last gestures, they were likely comfortable using the recording device and were no longer 

radically altering the way they interfaced with it. 

We consider training sets of  gestures, requiring a total of the last 170 

unique gestures from each individual. This is determined by the classification of the 70th-to-last 

gesture recorded from a subject, which requires at most the 100 gestures occurring before it as 

training data. 
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Although many subjects recorded significantly more than 170 gestures, three users 

recorded less than 200. In the context of this work, it was deemed more valuable to have sample 

sets from a larger group of user than it was to have larger sample sets from a smaller group of 

users. As such, the limit of 170 gestures per user was determined in order to be able to equally 

represent each user in the classification stage, as well as allow at least a 30 gesture buffer during 

which all users were becoming comfortable with the device. Extra sample data from other 

subjects is discarded as the additional gestures would result in uneven representation in testing 

data, influencing classification accuracy. 

When attempting to classify a gesture , training data is considered the final  recorded 

gestures for users . However, for user , training data is instead the  gestures that 

occur immediately before the current gesture. This approximates our defined use case where the 

gesture profiles for all other users of a device are already known and static, while the current 

user’s gesture profile is continuing to evolve as they interact with the phone or tablet. 

The accuracy results from the kNN classification scheme can be seen in Figure 5. The 3-

dimensional surface maps illustrate the classification accuracy for each combination of 

 and . The top row of results is generated using spatially 

standardized data, and the bottom row from temporally standardized data. Each column in the 

figure represents a different method of data normalization, with the first column containing 

results from non-normalized data, the second from naïve normalized data, and the third from z-

score normalized data. 
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Figure 5. Accuracy results using kNN classifier. From left to right: no normalization, naïve normalization, 

and z-score normalization. Top row is spatially standardized, bottom row is temporally standardized. 

 

 

The accuracy results indicate that spatially standardized user gestures allow for kNN 

classification algorithms to achieve higher classification accuracy than with temporally 

standardized data when utilizing the same number of the sample points. Further, naïvely 

normalizing feature data before attempting to classify gestures yields higher identification 

accuracy than that achieved using z-score normalized data sets.  

Figure 6 illustrates the influence of sample rate over the average classification accuracy 

for the kNN algorithm. It can be seen from the figure that increasing sample rate beyond 10Hz 

does not increase classification accuracy. In the normalized cases, average classification 

accuracy ceases to increase after reaching a sample rate of just 4Hz. This would indicate that the 

characteristic features embedded in user gestures likely occur in the 2Hz range, and is consistent 

with the findings in [22]. This is significant as capturing this data is possible even at extremely 
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low sample rates, meaning Invisible Shield can function optimally with a kNN classification 

algorithm while imposing very little load on mobile device resources. 

 

Figure 6. Impact of training set size and sample rate on classification accuracy. 

 

 

The kNN algorithm achieves a peak classification accuracy of 90.7% with spatially 

standardized data, naïve normalization, , and . 

For Gaussian generative models, the process for selecting training and testing data is 

identical to that of the kNN algorithm. The classification accuracy of the multivariate Gaussian 

generative model is included in Figure 7. The surface maps in the figure are positioned 

identically to that of the kNN results in Figure 5, with each combination of standardization, 

normalization, training set size, and sampling rate being represented. 
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Figure 7. Accuracy results using a multivariate Gaussian classifier. The top row is spatially standardized, the bottom 

row is temporally standardized. From left to right: no normalization, naïve normalization, and z-score normalization. 

 

 

The results are to be expected after reviewing the classification accuracy of the kNN 

algorithm. Spatially standardized data is again favored, and naïve normalized data gives the 

highest accuracy results on average. Figure 6 illustrates the impact of training set size and sample 

rate on average classification accuracy. The data indicates that a training set of  gestures 

is the best on average. Unlike kNN, generative model accuracy continues to rise as sample 

frequency increases.  

Of note, however, is that for every combination of standardization and normalization 

strategies, there exists an extreme peak in classification accuracy which occurs at a sample rate 

of approximately 4Hz. This is reflected in the results, with the generative model’s maximum 

classification accuracy of 89% occurring with  and  when applying spatial 

standardization and naïve normalization. The peak is followed by a rapid decline in classification 
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accuracy as the sample rate is increased beyond 4Hz, only returning to a comparable level after 

the sample rate has increased much further. 

While this "early peak" phenomenon is present in when utilizing a kNN algorithm, it is 

much more obvious here. This is likely brought about through the use of PCA, which indicates 

that there exists a large portion of the internal variance for a user which occurs at a frequency 

just above 2Hz. Unlike the unique, characteristic data that was previously identified as occurring 

near 2Hz, these higher frequency variations are almost identical for every user, causing a 

significant drop in classification accuracy once sample rate in increased to the point where they 

are detected and utilized. The results indicate that this identical information only occurs within a 

small frequency band, as when higher frequency variances are captured with faster sampling 

rates the classification accuracy slowly returns to its previous level. 

5.2 OVA ANALYSIS 

The accuracy of our OVA classification algorithm is evaluated by again performing 

classification for each of the  subjects utilizing the final 70 gestures from each to provide . 

We refer to  as the target gesture. 

A multivariate Gaussian generative model is created for the user based on the  gestures 

that were recorded immediately prior to the target gesture. From this model, the logarithm of the 

probability of the user generating  is calculated. Also calculated is the probability of 

generating the 10 first input gestures from users , which we refer to as imposter gestures. 
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The first 10 gestures from users  are utilized as imposter gestures as when they 

were created, subjects were likely not yet familiar with using the gesture recording device. 

Similarly, an attacker who has just taken a user’s phone or tablet would not be immediately 

comfortable using it, causing initial imposter gesture patterns to be highly variant in nature. By 

using the first gestures created by each user, we are able to closely approximate the real-world 

scenario of an attacker who has just taken the device. 

Figure 8 displays the EER results when using the multivariate Gaussian generative model 

in OVA authentication. Surprisingly, in this case, EER is lowest when no data normalization is 

performed, while our spatial standardization technique continues to yield the best results. 

 

Figure 8. Equal error rates utilizing a multivariate Gaussian classifier. The top row is spatially standardized, the 

bottom row is temporally standardized. From left to right: no normalization, naïve normalization, and z-score 

normalization. 
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5.3 RESOURCE REQUIREMENTS 

 

Figure 9. Power measurement setup. 

 

 

Runtime and power benchmarking is performed on the LG Nexus 4 devices while running the 

algorithms utilized in Invisible Shield in order to determine real world resource utilization. 

Figure 9 shows our benchmarking setup. In order to be certain that all power utilized by the 

device is being recorded, we remove the back cover and battery from the phone and modify the 

internal connector to draw power directly from a Monsoon Power Monitor. Figure 10 contains 

sample points collected using this test bench which show the power consumption of the device 

while performing the different calculations required by Invisible Shield. In the figure, the blue 

sample points are taken from the device while idling with the screen turned on displaying our 

gesture recording app. These measurements serve as a baseline by which to determine the 

additional power that is required by Invisible Shield. The green sample points are recorded while 

the additional sensors required by Invisible Shield (the accelerometer and gyroscope) are enabled 

and reporting at the highest sample rate, similar to the case when a user is interacting with the 
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device. Finally, the red sample points are recorded while the additional sensors are enabled and 

the device is performing calculations as part of our machine-learning algorithms, e.g. matrix 

multiplication, PCA, etc. The trend lines in the figure detail the average power consumption in 

each case, and highlight the extra power overhead required by Invisible Shield in each of its 

functional stages. 

 

Figure 10. Recorded power levels for LG Nexus 4 device. 

 

 

Additionally, runtime benchmarking is performed using additional LG Nexus 4 phones. 

Android OS system timestamps and a benchmarking application are utilized to determine total 

processing time required to perform user authentication utilizing the two main machine-learning 

algorithms considered as part of Invisible Shield. Runtime benchmarking is performed for each 

combination of  and , and is combined with the results from power benchmarking to 

determine impact on device battery life and usability. 
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Utilizing the parameters which achieve the highest classification accuracy with the kNN 

algorithm, a runtime of 46ms is required to determine which user a newly-recorded input gesture 

originates from. Device usability is not heavily impacted by this required processing time, even 

if performed after every input gesture. Further, modern mobile devices have multiple processor 

cores which would allow the task to be offloaded onto another core in the background while to 

user continues to utilize the device. Because of this capability, the main concern in modern 

systems instead becomes that of power consumption. In the case of the Nexus 4, assuming a user 

performs 1000 gestures on their phone everyday (100 unlocks followed by nine further gestures 

each time), Invisible Shield requires only 0.4% of the total battery power per day when utilizing a 

kNN classification algorithm. 

 

Figure 11. Power consumption of Invisible Shield over a day of use. 

 

 

With Gaussian generative models, the processing time is significantly longer at 181ms to 

achieve best case classification accuracy, which would likely be noticed by the user and would 

utilize 1.6% of the device’s battery life per day. However, this figure assumes that a new user 
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model is generated after every new gesture, requiring PCA to be performed each time. When the 

classification and model generation stages are decomposed, it is found that just performing PCA 

requires 128ms of computation, while classification only requires 53ms, which itself is on the 

same order as the kNN classification algorithm. The results in Figure 11 show that the system 

power requirements for this scheme become unmanageable as sampling rate increases beyond 25 

times per gesture. We note that this result assumes that a new user model is generated after every 

new gesture, requiring PCA to be performed each time. When the classification and model 

generation stages are decomposed, we found that just performing PCA requires 128ms of 

computation, while classification only requires 53ms. Hence, by reducing the frequency of 

model generation, power requirements could be reduced even further. 
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6.0  DISCUSSION 

Contrary to our initial hypothesis, our results showed that naïve normalization yields the most 

accurate results. This indicates that although outliers do play a role in gesture classification, it is 

a positive one. Happily, naïve normalization has the added benefit of requiring fewer 

calculations than z-score normalization, although the difference in real-world scenarios is likely 

negligible. 

In all cases, our spatial standardization scheme yielded better results than traditional 

temporal standardization, given than both contained the same number of sample points. 

However, note that spatially standardized sample points each contain an additional feature than 

those in temporally standardized data. This is because unlike in temporally standardized data, 

each sample point must store timing information as sample rate is not constant between gestures. 

This causes each temporally standardized  to be of dimensionality , while each 

spatially standardized  is of dimensionality . The result is that spatially standardized 

gestures require 10% more memory to store than temporally standardized gestures, and 21% 

more calculations during matrix operations. However, accuracy results can be realized which are 

similar to those achieved using temporally standardized data while using approximately half of 

the sample points, greatly reducing the required computations overall. 
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When using both kNN and generative models for OVA classification, it is noted that a 

peak in classification accuracy occurs when a sampling rate of 4Hz is utilized, itself allowing for 

the monitoring of 2Hz signals. The peak quickly drops off as the sampling rate increases to 

include sources of variance at higher frequencies. This finding is significant as it would suggest 

that classification accuracy can be greatly improved if gesture data were to be subjected to a low-

pass or band-stop filter before being analyzed with Invisible Shield. This would allow for the 

removal of higher frequency sources of variance that all users share. 

While kNN classification performs extremely well for such a lightweight algorithm, 

classification accuracy was likely limited due to the inability to weight feature values. By 

adopting a distance metric which is able to weight feature values, classification accuracy would 

likely be greatly improved. We pursued this possibility through the use of a large margin nearest 

neighbor (LMNN) algorithm, and were able to achieve classification accuracy as high as a 98.5% 

when utilizing the same dataset examined in this work. However, the computational complexity 

of generating parameters used by LMNN was such that it quickly became obvious that it was 

infeasible to implement on mobile devices. Hence, it is not formally examined here. 

Finally, in the case of both main algorithms it was shown that the required computation 

time and draw on system resources is negligible when classifying new inputs, meaning Invisible 

Shield can feasibly run in the background on a modern device. However, for multivariate 

Gaussian generative models, it was discovered that it was not realistic to regenerate a user model 

after every new input due to the computational complexity of performing PCA. This can be 

negated through the use of a more computationally efficient dimensionality reduction algorithm. 

However, the problem opens for consideration the question of how often a user model should be 
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recalculated in order to maintain classification accuracy. In this work, we assume after every 

gesture. However, as user gestures change slowly over time, this may not be the case. 
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7.0  RELATED WORK 

This section summarizes the previous works of others in this area or the topics related to 

it, and how our work can be differentiated from them. 

7.1 DEVICE INTERACTION 

Previous research has shown a strong link between hand biometrics and mobile device 

usage, with thumb link length and an individual’s degree of joint motion being the two largest 

contributors to input variation [8]. Similar studies have found that the size and shape of a mobile 

device also exerts a large influence over the way a user interacts with it, indicating that the same 

user would create different input patterns between two different devices [5]. These observations 

are leveraged in [13] where Cai et al. are able to identify the characters being selected on a 

mobile device’s on screen keyboard by utilizing only the information recorded from the device’s 

camera and accelerometer. In their research, it was found that some features, e.g., the striking 

and supporting force placed on the touchscreen, were highly variant between users, and as such 

needed to be filtered and ignored in their analysis. While not beneficial to Cai et al., features 

such as these that allow gesture to function as a form of identification. 
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7.2 GESTURE AUTHENTICATION 

In a recent study on gesture-based mobile authentication, Feng et al. utilized data 

recorded from a smartphone’s embedded sensors and those of a custom-made sensor glove in 

order to uniquely identify a user [14]. A false positive rate (FPR) of 2.15% and a false negative 

rate (FNR) of 1.63% were achieved through the use of decision tree, random forest, and Bayes 

Net classifiers. Although the results are encouraging, requiring the use of such a specialized 

piece of equipment when interacting with a smartphone is not entirely feasible outside of a 

laboratory environment, largely due to the added cost and inconvenience placed on an end user 

by such a device. 

7.3 ALTERNATE DEFINITIONS 

Conventionally, "gesture" has been used to describe a user making a unique, dedicated 

motion using their entire arm, wrist, and hand while holding a device [7][9][11][15]. In the 

significant body of research that identifies gestures as such, a low FPR and FNR were achieved 

when using them as a form of authentication by utilizing a very efficient dynamic time warping 

(DTW) algorithm to assist with classification [7][9][11][15]. Although fundamentally different 

in nature, the success of the DTW algorithm when applied to these conventional gestures likely 

translates well into our modern definition, as both utilize similar information collected from 

device sensors. However, up to this point, our work has focused on the use of the previously 

described algorithms over these. 
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8.0  CONCLUSION 

In this paper, we proposed a gesture-based mobile authentication scheme referred to as Invisible 

Shield. We defined two distinct authentication scenarios, "one versus many" and "one versus 

all," which allowed for the definition of classification algorithms specifically suited to each. 

In the case of OVM, two classification algorithms were investigated, i.e., a k-nearest 

neighbor and a generative model system based on Gaussian distributions. High classification 

accuracy was achieved in each system, 90.7% and 89%, respectively. Further, the results for 

each case revealed that gesture data formatted using a spatial standardization method and naively 

normalized yielded the highest classification accuracy. In addition to this, it was shown that high 

classification accuracy can be achieved when using a sample rate as low as 4Hz, as the results 

indicate there is a significant amount of user unique gesture information that occurs in the region 

of approximately 2Hz. 

As part of OVA analysis, a generative model system based on Gaussian distributions is 

examined and applied, yielding an EER as low as 7.7%. Results here mirror those found in 

OVM, with spatially standardized data yielding more accurate results. 

Finally, system resource utilization by the above algorithms is examined. It is discovered 

that a kNN algorithm only requires 0.4% of a user's battery life per day, making it an ideal choice 

for continuous, background authentication. 
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