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Abstract: The increasing numbers of design variables and constraints have made many civil 

engineering problems significantly more complex and difficult for engineers to resolve in a timely 

manner. Various optimization models have been developed to address this problem. The present 

paper introduces Symbiotic Organisms Search (SOS), a new nature-inspired algorithm for 

solving civil engineering problems. SOS simulates mutualism, commensalism, and parasitism, 

which are the symbiotic interaction mechanisms that organisms often adopt for survival in the 

ecosystem. The proposed algorithm is compared with other algorithms recently developed with 

regard to their respective effectiveness in solving benchmark problems and three civil 

engineering problems. Simulation results demonstrate that the proposed SOS algorithm is 

significantly more effective and efficient than the other algorithms tested. The proposed model is 

a promising tool for assisting civil engineers to make decisions to minimize the expenditure of 

material and financial resources. 

 

Keywords: Constrained optimization; nature-inspired; symbiotic organisms search; symbiotic 

relationship. 

  
 
 

Introduction   
 

In recent decades, design optimization has become a 

critical and challenging activity that has gained in 

importance in the field of civil engineering. A goal of 

designers is to obtain optimal solutions in order to 

reduce construction project costs. Optimization 

allows designers to create better designs that reduce 

expenditures of material and financial resources as 

well as time. However, modern engineering design 

problems have increased tremendously in complexity 

and now frequently address complicated objective 

functions with large numbers of design variables and 

constraints [1]. This complexity has inspired numer-

ous studies worldwide with the shared goal of 

developing a model that effectively optimizes current 

civil engineering problems.  

 

Many optimization methods have been introduced 

over the past four decades. Gradient-based methods 

were the first of these methods to be widely used in 

solving decision-making problems in civil engineer-

ing [2]. 
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These methods are often inadequate in dealing with 

the complexities inherent in many of today’s 

optimization problems due to poor handling of large-

scale variables and constraints. Additionally, these 

methods also use analyses that require gradient 

information to improve initial solutions. However, 

the designers usually have insufficient knowledge to 

locate the initial solutions, as they have no way to 

identify the most promising area for the global 

optimum of the current problem. Therefore, these 

gradient-based search methods frequently fail to 

converge on global optimum because of failed 

guesswork in defining the area of the global 

optimum. The above concerns have encouraged 

researchers to work to develop better optimization 

models. 
 

The field of nature-inspired algorithms has been 

studied extensively with regard to its potential to 

solve optimization problems due to its superior 

performance in handling models that are highly 

nonlinear and complex. One of the most significant 

advantages of nature-inspired algorithms is that 

these algorithms do not use gradients to explore and 

exploit the problem search space. Instead, they 

combine natural pattern rules and randomness to 

identify near-optimum solutions efficiently [3]. 

Examples of nature-inspired algorithms include: 

Genetic Algorithm (GA) [4], Particle Swarm 

Optimization (PSO) [5], Differential Evolution (DE) 

[6], and Artificial Bee Colony (ABC) [7].  

 

In recent years, numerous studies have proposed 

nature-inspired approaches to solve civil engineering 
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problems. In construction management, nature-

inspired algorithms have been used to solve 

problems such as project site layout [8], time-cost 

trade-off [9], and resource leveling [10]. In structural 

engineering, examples of nature-inspired appli-

cations include: truss design [11,12] and frame 

design [13]. Nature-inspired algorithms have also 

been used in dealing with geotechnical problems 

[14], pavement engineering [15], and concrete mix 

design [16,17]. As civil engineering problems become 

more complex, new nature-inspired algorithms will 

continue to emerge. 

 

A new nature-inspired algorithm called Symbiotic 

Organisms Search (SOS) has been developed by 

Cheng and Prayogo [18]. The SOS algorithm mimics 

the interactive behavior between living organisms in 

ecosystem. In the previous study, the performance of 

SOS has been compared with other nature-inspired 

techniques in numerous mathematical test functions 

and engineering problems. The comparison results 

indicate that SOS was able to achieve a better 

performance in terms of effectiveness and efficiency 

[18]. As a new nature-inspired algorithm, it is 

worthwhile to explore and investigate the SOS 

algorithm in seeking the global solution. This paper 

studies the effectiveness of Symbiotic Organisms 

Search (SOS) in solving various civil engineering 

optimization. SOS is first validated on benchmark 

functions and then tested on three practical civil 

engineering problems. The obtained results are then 

compared with well-known optimization techniques.  

 

The Symbiotic Organisms Search (SOS) 
 

Symbiotic Organisms Search (SOS) Algorithm 

 

SOS is a new nature-inspired algorithm inspired by 

the natural phenomena of symbiotic interactions 

proposed by Cheng and Prayogo [18]. Over the past 

years, SOS has been proven to successfully solve 

various problems in different fields of research [19-

22]. In surviving environmental change, the living 

organisms often develop symbiotic interactions 

among themselves. The most common examples of 

symbiotic interactions found in nature may be 

divided into three main categories:  

1. Mutualism: This category describes the interac-

tive behavior between two different living orga-

nisms that gain advantage mutually from that 

interaction. An example of mutualism is the rela-

tionships between oxpecker and zebra. Oxpecker 

lands on zebra, eating all the parasites. This 

activity benefits both zebra and oxpecker, since 

oxpecker collects foods and zebra gains pest con-

trol. Another example of mutualism is the 

relationship between bee and flower. 

2. Commensalism: This category describes the 

interactive behavior between two different living 

organisms in which one gains advantage and the 

other is unaffected or neutral. An example of 

commensalism is the relationships between 

remora and shark. The remora gains an 

advantage by attaching itself to the shark and 

eats food leftovers. The shark is unaffected by 

remora fish activities and gains no benefit from 

the relationship. Another example of commen-

salism is the relationship between orchid and 

tree. 

3. Parasitism: This category describes the interac-

tive behavior between two different living 

organisms in which one gains advantage and the 

other is harmed. The anopheles mosquito trans-

mits the plasmodium parasite into the human 

host. The parasite, thus, reproduces inside the 

body resulting the human host suffers malaria. 

Other examples of parasitism is the relationship 

between cuckoo and reed warbler. 

 

In SOS algorithm, three phases of the search are 

performed mimicking the three symbiotic interac-

tions namely mutualism, commensalism, and parasi-

tism phase. By performing these three phases, SOS 

attempts to move a population (ecosystem) of 

possible solutions to a better region in the search 

space during the searching process for the optimal 

solution. In SOS, each solution in the population is 

known as an organism. Every organism is associated 

with its fitness value, which represents the survival 

advantage within the current environment. Through 

successive iterations, the fitness values of the 

organisms are improved by simulating the symbiotic 

interactions. The process of generating solutions 

through three phases is repeated until stopping 

criteria are satisfied.  The source code for a MATLAB 

implementation of SOS is publicly available at 

http://140.118.5.71/sos/.  

 

The next section provides further details on the three 

phases. 

 

Mutualism Phase 

 

The mutualism phase simulates the mutualism 

between two living organisms, ecoi and ecoj. The 

mechanism of mutualism is modeled in Equations 

(1) - (5).  

2

ji

mutual

ecoeco
eco


   (1) 

BF1 = 1 + round (rand (0,1)) (2)  

BF2 = 1 + round (rand (0,1)) (3) 

ecoi new = ecoi + rand (0,1) * (ecobest – ecomutual * BF1) (4) 

ecoj new = ecoj + rand (0,1) * (ecobest – ecomutual * BF2) (5)  
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where ecoi is the i-th organism of the ecosystem, ecoj 

is the j-th organism of the ecosystem where j ≠ i, BF1 

is the benefit factor matched to ecoi, BF2 is the 

benefit factor matched to ecoj, ecobest represents the 

best organism in the current iteration, ecomutual repre-

sents the relationship characteristic between orga-

nism ecoi and ecoj, ecoi new and ecoj new represent candi-

date solutions for ecoi and ecoj after their mutualistic 

interaction, respectively. 

 

ecobest is the target point for every organism to 

increase its fitness during its interaction with 

another organism. Organisms ecoi and ecoj are 

updated only if their new (ecoi new and ecoj new) fitness 

is better than their old fitness (ecoi and ecoj). 

 

Commensalism Phase 

 

The commensalism phase simulates the commensal-

lism between two living organisms, ecoi and ecoj  

with ecoi gains advantage and ecoj is unaffected. The 

mechanism of commensalism is modeled in Equation 

(6).  

ecoi new = ecoi + rand(-1,1) * (ecobest – ecoj) (6) 

where ecoi is the i-th organism of the ecosystem, ecoj 

is the j-th organism of the ecosystem where j ≠ i, ecoi 

new represents candidate solutions for ecoi after their 

interaction, respectively. 

 

Organism ecoi is updated only if its new fitness is 

better than its old fitness. 

 

Parasitism Phase 

 

The parasitism phase simulates the parasitism 

between two living organisms, ecoi and ecoj with ecoi  

gains advantage and ecoj is harmed. Organism ecoi 

serves a role similar to the anopheles mosquito and, 

thus, create an artificial parasite called ecoparasite.  
 

Generally speaking, ecoparasite is a clone of organism 

ecoi. To differentiate the ecoparasite from ecoi, some 

random decision variables from the initial ecoparasite 

will be modified randomly. The location of the modi-

fied decision variables is determined randomly using 

a random method. For each dimension, a uniform 

random number is generated. If the random number 

is less than 0.5, the variable will be modified by a 

random value generated by uniform distribution; 

otherwise, it will stay the same.  
 

Organism ecoj serves as a host to the ecoparasite. If 

ecoparasite has a better fitness value, it kills organism 

ecoj and replaces its position in the ecosystem. If the 

fitness value of ecoj is better, ecoj survives and the 

ecoparasite can no longer exist in the ecosystem.  

The Framework of the SOS Algorithm for the 

Design Optimization in Civil Engineering 

 

Design objectives in design problems also have 

various other constraints including deflection, stress, 

material dimensions, pressure, and temperature. 

Many civil engineering problems may be expressed 

as constrained optimization problems. This paper 

handles the constraints using Deb’s feasibility rules 

[23]. The use of SOS in constrained optimization 

problems that incorporate Deb’s rules is summarized 

as follows. 

 

Initialize Ecosystem 

 

The SOS establishes an initial ecosystem by gene-

rating a matrix that contains uniform random 

numbers that exist within the given boundaries. 

After the initialization is complete, the initial best 

solution is calculated. The ecosystem is expressed as 

follows:  
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In this step, the initial ecobest is determined by choos-

ing the fittest organism in the initial ecosystem. 

 

Simulate Interaction between Organisms 

through the Mutualism Phase 

 

After the ecosystem initialization, each organism in 

the ecosystem will go through three phases, 

mutualism, commensalism, and parasitism. In the 

mutualism phase, ecoj is picked randomly from the 

ecosystem that is designated to interact with ecoi 

where i is start from 1, 2, 3, … to ecosize, j is a 

random number which ≠ i. New candidate solutions 

ecoi new and ecoj new are calculated using Equations (2) 

and (3), in which ecomutual is determined using 

Equation (1) and Benefit Factors (BF1 and BF2) are 

determined using Equations (4) and (5). New 

candidate solutions ecoi new and ecoj new are compared 

to the old ecoi and ecoj. Deb’s rules are implemented 

to retain the fittest solutions in the search space for 

the next iteration. 

 

Simulate Interaction between Organisms 

through the Commensalism Phase 

 

In the commensalism phase, another organism, ecoj, 

is picked randomly from the ecosystem to interact 

with ecoi. The new candidate solution ecoi new is calcu-

lated using Equation (6) and compared to the older 

ecoi. Deb’s feasibility rules are applied to identify the 

fittest organism as the solution to be carried forward 

into the next iteration. 
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Simulate Interaction between Organisms 

through the Parasitism Phase 

 

In the parasitism phase, another organism, ecoj, is 

picked randomly from the ecosystem to be a host 

organism. ecoparasite is created by mutating the parent 

organism ecoi in random dimensions using distri-

buted random numbers that are limited within a 

specific range. Deb’s rules are then used to compare 

this vector to host organism ecoj. If the host organism 

is fitter than ecoparasite, the host organism will survive 

to the next iteration and ecoparasite will be eliminated. 

Conversely, a fitter ecoparasite will lead to its retention 

into the next iteration and elimination of ecoj. 

 

Updating the Best Organism 

 
When the fitness of the organism ecoi is better than 
the fitness of the ecobest, the ecobest is updated with 

ecoi. 
 

Termination 
 

If the current ecoi is not the last member of the 
ecosystem, the SOS will automatically select the 

next organism to simulate the mutualism, commen-
salism, and parasitism, and update the ecobest. After 
all members of the ecosystem finish the whole 
process, SOS will check the termination criteria. The 

common termination criteria used in the literature 
are the maximum number of iterations and the 
maximum number of function evaluations. SOS will 
stop if one of the termination criteria is reached; 

otherwise, SOS will start the new iteration. 
 

Practical Examples on Civil Engineering Pro-
blems 
 

This section uses three widely used civil engineering 
problems to assess SOS performance. Obtained SOS 
optimization results are then compared to data 
published in the literature. These problems are: (1) 

reinforced concrete beam design minimization, (2) 
25-bar transmission tower truss weight minimiza-
tion, and (3) site layout optimization for caisson 
structure fabrication.  
 

Reinforced Concrete Beam Design Minimiza-
tion 
 

This case study is a cost minimization problem of the 
reinforced concrete beam as illustrated in Figure 1. 

This was first presented by Amir and Hasegawa 
[24]. The beam is assumed simply supported with a 
9.144-m (30-ft) span and subject to a live load of 1 ton 
(2.0 klbf) and a dead load of 0.5 ton (1.0 klbf) 

accounting for the beam weight. Concrete compres-

sive strength (c) and reinforcing steel yield stress 

(y) is 34.474 MPa (5 ksi) and 344.74 MPa (50 ksi), 
respectively. The unit cost of steel and concrete are 

$472.4/m2/ linear m ($1.0/in2/linear ft) and $9.449/-

m2/linear m ($0.02/in2/linear ft), respectively. The 
cross sectional area of reinforcing (As), beam width 

(b), and beam depth (h) are selected as the decision 
variables.  

 

Figure 1. Reinforced Concrete Beam Problem 

 

As is determined as a discrete variable and must be 

chosen from the following list: As = [6.0, 6.16, 6.32, 

6.6, 7.0, 7.11, 7.2, 7.8, 7.9, 8.0, 8.4] in2; b is 

determined as an integer variable: b = [28, 29, 30, … 

, 39, 40] in; and h is a continuous variable with the 

boundary limit: 5 ≤ h ≤ 10 in. 
 

The structure should be designed to meet the mini-

mal strength required under ACI 318-77 building 

code: 

 (7) 

where Mu, Md, and Ml, respectively, are the flexural 

strength, dead load, and live load moments of the 

beam. In this case, Md = 152.53 kNm (1350 in kip) 

and Ml = 305.06 kNm (2700 in kip). Beam depth 

ratio is restricted to be less than or equal to 4. The 

optimization problem may be stated as: 

Minimize:  (8) 

Subject to: 

 (9) 

 (10) 

 

Table 1 presents the optimum designs of this 

problem and the parameters used, including several 

comparisons with prior research on SD-RC [24], GA 

and FLC-AHGA [25], CS [26], FA [27]. In this case 

study, SOS found the same optimum solution 

identified by FA in 1/10th the time required by FA 

using 15 organisms.  
 

A 25-bar Transmission Tower Truss Weight 

Minimization 
 

Over last decades, the 25-bar transmission tower 

spatial truss (shown in Figure 2) is one of the most 

studied problems in the field of structural engi-

neering optimization. The structure is composed of 

25 members and categorized into 8 groups which 

are: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–

A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25. The 

members were constructed from materials with a 
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mass density of 2767.99 kg/m3 (0.1 lb/in.3) and an 

elastic modulus (E) of 68.95 MPa (10,000 ksi). All 

members were subjected to stress limitations of 

±275.8 MPa (40,000 psi) while all nodes were subject 

to displacement limitations of ± 0.0226 cm (0.35 in).  
 
Loads are shown in Table 2. There are two types of 
given variables for this problem. The first version 
uses discrete variables, while the second version uses 
continuous variables.  
 

Table 2. Load Case for the 25-bar Spatial Truss Structure 

Nodes 
Loads 

Px (kips) Py (kips) Pz (kips) 

1 1.0 −10.0 −10.0 
2 0.0 −10.0 −10.0 
3 0.5 0.0 0.0 
6 0.6 0.0 0.0 

Note: 1 kips = 4.448 kN 

 
 

Figure 2. A 25-bar Spatial Truss Structure 
 

For the discrete-problem version, discrete variables 
are selected from the set: 
D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.
2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2
.6, 2.8, 3.0, 3.2, 3.4] (in.2). Table 3 summarizes the 
results obtained by the SOS algorithm and the other 
optimization methods reported in the literature. 
HPSO obtained a minimum weight of 219.92 kg 
(484.85 lbs) in over 25,000 structural analyses. SOS 
algorithm obtained the same in 20,000 structural 
analyses with population size of 50. 

Table 3. Optimum Design Comparison for the Discrete 25-

Bar Spatial Truss Structure 

Variables (in2) GA [28]                HS [29] HPSO [30] SOS 

A1 0.1 0.1 0.1 0.1 

A2–A5 1.8 0.3 0.3 0.3 

A6–A9 2.3 3.4 3.4 3.4 

A10–A11 0.2 0.1 0.1 0.1 

A12–A13 0.1 2.1 2.1 2.1 

A14–A17 0.8 1.0 1.0 1.0 

A18–A21 1.8 0.5 0.5 0.5 

A22–A25 3.0 3.4 3.4 3.4 

Weight (lbs) 546.01 484.85 484.85 484.85 

Note: 1 in2 = 6.425 cm2, 1 lb = 4.448 N. 

 
Table 4 outlines the performance of the SOS algo-
rithm and the other optimization methods reported 
in the literature for the continuous-problem version. 
SOS used 50 organisms and 20,000 structural 
analyses. 
 
The result for the SOS was found after 30 inde-
pendent runs. The results for the other algorithms 
were referenced from Degertekin and Hayalioglu 
[35]. It is apparent that the design solution obtained 
by HS [31] is theoretically infeasible because these 
solutions violate the design constraint stated in [35]. 
The results produced by the SOS algorithm were 
competitive with those produced by TLBO [35] and 
SAHS [34] and superior to those of HPSO [32], and 
BB-BC [33]. Furthermore, the SOS algorithm deli-
vered a better average solution, and lower standard 
deviation compared to the TLBO algorithm, support-
ing that the SOS algorithm is a better optimization 
method than TLBO in terms of consistency.  
 
Site Layout Optimization for Caisson Struc-
ture Fabrication 
 

The performance of SOS was validated for solving 

construction site-level facility layout, a function 

within the field of construction management. Next, a 

real-life site-level layout problem previously posited 

by Kim et al. [36] was investigated. The aim of this 

case study was to design the site layout for caisson 

structure fabrication. The site layout considered nine 

Table 1. Results of the Reinforced Concrete Beam Example 

 
Amir and 

Hasegawa [24] 
SD-RC 

Yun [25] Gandomi et al. 
[26] 
CS 

Gandomi et al. 
[27] 
FA 

Present study 
SOS GA GA-FL 

As (in2) 7.8 7.2 6.16 6.32 6.32 6.32 
b (in) 31 32 35 34 34 34 
h (in) 7.79 8.0451 8.75 8.5 8.5 8.5 
g1  -0.0205 -0.0224 0 0 0 0 
g2 -4.2012 -2.8779 -3.6173 -0.2241 -0.2241 -0.2241 
fmin (in2) 374.2 366.1459 364.8541 359.2080 359.2080 359.2080 
Average N.A. N.A. N.A. N.A. 460.706 359.7726 
Standard deviation N.A. N.A. N.A. N.A. 80.7387 1.2832 
No. of evaluations 396 N.A. 100,000 N.A. 25,000 2,500 

Note: 1 in2 = 6.425 cm2. 

http://www.sciencedirect.com/science/article/pii/S0045794909000261#bib18
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facilities including: (1) steel plate storage, (2) con-

crete mold storage, (3) steel rod storage, (4) concrete 

curing place, (5) fabrication factory of caisson wall, 

(6) prefabrication factory of base plate, (7) steel rod 

factory, (8) crane 1, and (9) crane 2. 

These nine predetermined facilities must be 

properly assigned to nine predetermined locations 

scattered over the site. The goal of this case study is 

to obtain the optimum layout which has the shortest 

total traveling distance between facilities. The total 

traveling distance (TD) minimization problem is 

stated as: 

Minimize: ijxixi

n

j

n

x

n

i

dfδ xx
111




     (11) 

Subject to:  

1
1




xi

n

x

δ , i = 1, 2, 3, …, n  (12) 

where n is the number of facility locations;  is the 

permutation matrix variable such that when facility 

x is assigned to location I,  is the traveling 

frequency of the construction crew between facilities 

x and I and  is the distance between location i 

and j. The traveling frequency and distance table are 

shown in Table 5 and Table 6, respectively. 

 

In this experiment, we compared SOS with PSO and 

DE. Because the site-level facility layout is a per-

mutation problem, we modified the continuous-based 

initial solution vector into the permutation vector 

using the indices that would sort the corresponding 

initial solution vector. The experiment setup was as 

follows: All the algorithms used the same common 

control parameters with a population size of 50 and a 

total of 20,000 function evaluations. The crossover 

rate (CR) and the scaling factor (F) for DE were 

chosen as 0.9 and 0.5, respectively. The cognitive and 

social factors (c1 and c2) were set to 1.8 and the 

inertia weight (w) was set to 0.6 for PSO. Table 7 

summarizes the results obtained by the SOS algo-

rithm and by the other algorithms over 100 inde-

pendent runs. The best-known answer for this case 

study is [9 1 8 7 6 5 3 2 4] with a total travel distance 

of 7727 meters. SOS algorithm delivered the best 

average solution, worst solution, and lower standard 

deviation in comparison with DE and PSO. Further-

more, SOS achieved the highest success rate in 

finding the best solution over 100 runs.  
 

Table 5. Traveling Frequencies between Two Locations 

Location 1 2 3 4 5 6 7 8 9 

1 0 5 2 2 1 1 4 1 2 

2 5 0 2 5 1 2 7 8 2 

3 2 2 0 7 4 12 9 4 5 

4 2 5 7 0 20 7 8 1 8 

5 1 1 4 20 0 30 4 10 3 

6 1 2 12 7 30 0 5 8 15 

7 4 7 9 8 4 5 0 7 6 

8 1 8 4 1 1 8 7 0 9 

9 2 2 5 8 3 15 6 9 0 
 

Table 6. Distance between Two Locations (m) 

Location 1 2 3 4 5 6 7 8 9 

1 0 15 25 33 40 42 47 55 35 

2 15 0 10 18 25 27 32 42 50 

3 25 10 0 8 15 17 22 32 52 

4 33 18 8 0 7 9 14 24 44 

5 40 25 15 7 0 2 7 17 37 

6 42 27 17 9 2 0 5 15 35 

7 47 32 22 14 7 5 0 10 30 

8 55 42 32 24 17 15 10 0 20 

9 35 50 52 44 37 35 30 20 0 

 
Table 7. Result of Site-level Facility Layout for Caisson 

Structure 

 DE PSO SOS 

Best (m) 7727 7727 7727 

Mean (m) 7769.53 7916.55 7734.90 

Worst (m) 8304 8579 7863 

Standard deviation (m) 99.42 215.77 23.80 

Success Rate 74/100 32/100 89/100 

 

Table 4. Optimum Design Comparison for the Continuous 25-bar Spatial Truss Structure 

Variables (in2) HS [31]  HPSO [32] BB-BC [33] SAHS [34]                                                                        TLBO [35]                                                                      SOS 

A1 0.047 0.010 0.010 0.010 0.0100 0.0100 
A2–A5 2.022 1.970 2.092 2.074 2.0712 1.9848 
A6–A9 2.950 3.016 2.964 2.961 2.9570 2.9954 

A10–A11 0.010 0.010 0.010 0.010 0.0100 0.0100 
A12–A13 0.014 0.010 0.010 0.010 0.0100 0.0100 
A14–A17 0.688 0.694 0.689 0.691 0.6891 0.6810 
A18–A21 1.657 1.681 1.601 1.617 1.6209 1.6784 
A22–A25 2.663 2.643 2.686 2.674 2.6768 2.6651 

Weight (lbs) 544.38 545.19 545.38 545.12  545.09  545.180 
Constraint tolerance (%) 0.206 None None None None None 

Average Weight (lbs) N/A N/A 545.78 545.94 545.51 545.292 
Standard deviation (lbs) N/A N/A 0.491 0.91 0.42 0.102 
No. of structure analyses 15,000 125,000 20,566 9,051 15,318 20,000 

Note: 1 in2 = 6.425 cm2, 1 lb = 4.448 N. 
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Conclusion 
 

This paper introduced the use of a new optimization 

algorithm called Symbiotic Organisms Search (SOS) 

in civil engineering applications. SOS is a population 

based nature-inspired algorithm that mimics the 

interactive behavior between organisms in an 

ecosystem. The three phases of mutualism, commen-

salism, and parasitism inspire SOS to find the opti-

mal solution for a given objective. Incorporating the 

characteristic of natural organism interactions into 

the search strategy supported the superior per-

formance of the SOS algorithm. 
 

In this paper, we first validate the performance of 

SOS against different optimization methods in 

constrained benchmark problems and then test the 

performance of SOS in numerous practical civil 

engineering problems. SOS precisely identified all 

optimum solutions in every run with significantly 

fewer function evaluations than algorithms tested in 

previous works. The novel SOS algorithm presented 

in this paper is adequately robust to solve various 

civil engineering problems. The proposed model may 

be an effective new tool to guide and support the 

decision-making process of practitioners. 
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