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Abstract 

In four puzzling areas of information in politics, simple intuition and simple theory 

seem to conflict, muddling policy choices. This thesis elaborates theory to help resolve 

these conflicts. 

The puzzle of product bans is why regulators don't instead offer the equivalent 

information, for example through a "would have banned" label. Regulators can want 

to lie with labels, however, either due to regulatory capture or to correct for market 

imperfections. Knowing this, consumers discount regulator warnings , and so regula­

tors can prefer bans over the choices of skeptical consumers. But all sides can prefer 

regulators who are unable to ban products , since then regulator warnings will be 

taken more seriously. 

The puzzle of voter information is why voters are not even more poorly informed; 

press coverage of politics seems out of proportion to its entertainment value. Voters 

can, however, want to commit to becoming informed, either by learning about issues or 

by subscribing to sources, to convince candidates to take favorable positions. Voters 

can also prefer to be in large groups, and to be ignorant in certain ways. This 

complicates the evaluation of institutions, like voting pools, which reduce ignorance. 

The puzzle of group insurance as a cure for adverse selection is why this should 

be less a problem for groups than individuals. The usual argument about reduced 

variance of types for groups doesn 't work in separating equilibria; what matters is 

the range , not variance, of types. Democratic group choice can, however , narrow the 

group type range by failing to represent part of the electorate. Furthermore, random 

juries can completely eliminate adverse selection losses. 

The puzzle of persistent political disagreement is that for ideal Bayesians with 

common priors, the mere fact of a factual disagreement is enough of a clue to induce 

agreement. But what about agents like humans with severe computational limita­

tions? If such agents agree that they are savvy in being aware of these limitations, 
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then any factual disagreement implies disagreement about their average biases. Yet 

average bias can in principle be computed without any private information. Thus 

disagreements seem to be fundamentally about priors or computation, rather than 

information. 
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Chapter 1 Introduction 

It has been barely two decades since adequate formal tools have been used in earnest 

to explore the role of information in social processes. And even then the community 

of explorers engaged in this quest has been dwarfed by the vast terrain to be covered. 

Thus a new explorer such as myself has the luxury of a wide range of rich, close-at­

hand, at yet hardly examined prospects to investigate. There is a long list of basic, 

important, "in your face" social phenomena where information seems to be the key, 

and yet where we have at best only crude unsatisfying stories about what could be 

going on. 

In the four chapters which follow in this thesis, I examine four important and puz­

zling areas of social information phenomena: paternalistic product and activity bans, 

voter incentives to become informed, adverse selection regarding collective choices, 

and the causes of persistent disagreement. In all of these puzzle areas simple intuition 

seems to be in conflict with simple theory, muddling important policy choices. 

To help resolve each conflict between simple intuition and simple theory, I bring 

more sophisticated theory to bear, to identify plausible but overlooked social processes 

at work. When possible, I also use this more sophisticated theory to compare welfare 

across alternative institutions. 

All of these puzzle areas are also either centered in or have strong relevance for 

important political phenomena. Yet they are also all familiar topics in economic and 

policy analysis. Thus this thesis can be thought of as centered either within formal 

political theory, within formal analysis of law and policy, or within the economics of 

information and public institutions. 
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1.0.1 The Puzzle of Product And .Activity Bans 

The puzzle examined in chapter 2 is that of paternalistic product and activity bans. 

At a political level, why do politicians and their regulators ban products, rather than 

labeling them as bad? Or at a personal level, why do parents forbid their children 

to engage in certain activities, such as drinking, driving, and sex, rather than simply 

advising children of possible dangers? 

Pure preference divergence, such as regulatory capture, is an unsatisfying explana­

tion of product bans; why don't captured regulators instead seek direct cash transfers? 

And how could bans be an attempt to hide the fact of transfers when bans are such 

a visible and easily monitored action? If, on the other hand, regulators simply have 

better information than consumers, why don't they just label certain products as 

"would have banned"? 

Chapter 2 shows that either a small degree of regulator capture or a small devi­

ation from fully competitive markets gives regulators a small incentive to lie about 

product quality. But small lies are corrosive, inducing a great deal of consumer skepti­

cism regarding regulator statements. Thus even ideal regulators want to ban products 

which are bad enough, rather than live with the choices of ignorant consumers. Sim­

ilarly parents can want to forbid their skeptical children from engaging in harmful 

activities. 

When regulators and parents are forbidden from banning, however, consumers and 

children take regulator labels and parental warnings more seriously. And a welfare 

analysis reveals that for a wide class of cases, all parties on average prefer the out­

comes when banning is forbidden. In these cases, bans can be seen as a commitment 

failure. This suggests that we consider the alternative institution of constitutional 

prohibitions on product bans, analogous to first amendment prohibitions on media 

bans. 

1.0.2 The Puzzle of Informed Voters 

The puzzle examined in chapter 3 is that of informed voters. 
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Many have wondered why independently acting voters in large electorates would 

have much instrumental reason to vote. After all, such a voter should discount the 

benefits of voting, but not the costs, by the probability of being pivotal (i.e. , that the 

election is decided by one vote). 

By analogy, why would voters acquire political information, such as via the ever­

popular political news? Is politics that entertaining or valuable in day-to-day living? 

Yet actual political choices do not seem to reflect as uninformed an electorate as one 

might fear. (Though clearly the electorate is much less informed than many would 

wish.) 

The analogy between voting and voter information has limits, however. While 

voters may find it hard to commit to vote, voters can commit to holding relevant 

political information, either by just acquiring it or by subscribing to an information 

source. And candidates who can observe such early efforts should adjust their po­

sitions to better favor informed voters. Since this influence is not diluted by the 

probability of being pivotal, it can give voters strong incentives to become informed. 

Chapter 3 also considers voter preferences for being in large vs. small voter groups, 

where candidate positions cannot distinguish group members. Voters can prefer to 

be in large groups because scale economies in information production can override 

free-riding considerations. 

Finally, it is shown that a certain type of voter ignorance, which prefers negative 

to positive news, can benefit voters both individually and collectively, by eliminating 

wasteful instabilities in candidate positions. This complicates consideration of the 

alternative institution of voluntarily-formed voting pools, where all the votes of pool 

members are given to one pool member at random. Such pools can induce better 

informed voters, but the value of ignorance can make voters want to commit not to 

join such pools. 
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1.0.3 The Puzzle of Group Insurance 

Chapter 4 considers the puzzle of group insurance and other attempts to solve adverse 

selection problems via collective choice. 

While there are obvious tax and overhead-reduction advantages of employer-based 

health insurance, it is often argued that a key function of group insurance is to 

avoid adverse selection problems in ind.ividual insurance. Many government-imposed 

restrictions, such as limits on hours of work, are explained similarly; by making a 

common choice we are said to avoid inefficient personal signaling. 

Adverse selection happens in separating equilibria of signaling games. In such 

games, individuals vary in their innate "type," and good types attempt to distinguish 

themselves from "bad" types via their actions. A group making a collective choice 

also has a "type," however, which is the set of its member types. So why don't bad 

companies buy more health insurance than good companies? 

The usual argument one hears is that a group, by averaging over its members , has 

a lower variance of possible risk types than each member. However, given the usual 

equilibrium refinements which select full separation, so that each type is distinguished 

from all the rest , equilibria and their inefficiencies depend only on the support, not 

the variance, of a distribution of types. Thus the usual argument is highly suspect. 

Chapter 4 suggests that the key is not averaging to reduce variance, but limiting 

participation to narrow the support. For example, because a majority vote can fail 

to represent up to half of the electorate, this narrows the range of group types which 

can be inferred from democratic choices. And decisions by a random jury, who fail 

to represent most of a large group, can in the limit avoid all adverse selection losses 

from independent individual risks. This suggests an advantage of judge-made laws 

aimed at excessive signaling, such as liquidated-damages rules. 

1.0.4 The Puzzle of Persistent Disagreement 

Finally, chapter 5 considers the puzzle of persistent disagreement, in politics or any­

where else. 
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While honest differences of opinion seem ubiquitous in the world, simple theory 

suggests the remarkable conclusion that rational agents simply cannot agree to dis­

agree. Consider two ideal Bayesian jurors of the O.J. (Simpson) trial. They start 

(at birth say) with identical beliefs, receive different private information before and 

during the trial, learn something about each other's beliefs during deliberation, and 

finally estimate the chance O.J. did it. If during deliberation these jurors reach a 

highly common belief about which of them estimates a higher chance that O.J. did 

it, this turns out to be enough information to allow these jurors to come to nearly 

the same estimates regarding O.J. 's chances. 

Most researchers who are dissatisfied with explaining apparent disagreement as 

due to different initial (i.e., prior) beliefs, or as due to posturing by people who really 

agree, have looked to bounded rationality as the explanation. And it does seem that 

the calculations required of an ideal Bayesian are typically far beyond the ability of 

mere mortals. 

Existing research on _bounded rationality, however, has either assumed very specific 

computational strategies, or has stayed general at the cost of allowing nearly as 

much computation as an ideal Bayesian requires. For example, some models assume 

that agents know anything a Turing machine can compute in any finite time, and 

other models assume that agents can compute exact expected values over vast state­

dependent sets of possible states, sets which satisfy various strong axioms. 

In contrast, chapter 5 allows agents to make arbitrary state-dependent compu­

tational errors. These agents are constrained only to be savvy in the sense of being 

aware of certain easy-to-compute implications of the fact that agents make such errors. 

Even this minimal degree of rationality, however, implies that agents with common 

priors who agree to disagree about O.J .'s chances must agree to disagree about each 

of their average bias when making such estimates. 

Since average bias could in principle be computed independently of private infor­

mation, this situation is a computational disagreement, similar to a situation where 

one agent always estimates 7f to be 3.14, another always estimates 7f to be 22/7, and 

both are fully aware of the others' alternative method. It seems that disagreements 



6 

are about computation or priors, not information. 
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Chapter 2 

Products 

Why Regulators Ban 

2 .1 Introduction 

2.1.1 The Puzzle of Product Bans 

Governments currently prohibit the sale of a wide variety of products. Often such 

prohibitions take the form of mandating features in allowed products. 

For example, cars, planes, and many household appliances may not be sold with­

out a variety of safety and other standard features (such as seat belts) . Building 

codes constrain which kinds of houses and other construction may be sold. Financial 

regulation, including laws against gambling and usury, prohibit the sale of a wide 

variety of financial instruments, and require a variety of information be disclosed. 

Food must meet various standards before it can be sold, and drugs usually cannot 

be marketed without regulatory approval. Professional licensing laws prohibit unau­

thorized people from selling various medical, legal, educational, and other services. 

Finally, laws in many places limit the sale of sex, of pornography and erotica, and 

even of literature concerning disapproved medical, religious , and political ideas. 

2.1.2 Previous Explanations 

A wide variety of explanations have been offered to account for this regulatory behav­

ior. One class of explanations involves non-competitive industries. Since a monopolist 

or other producer for a non-competitive market may prefer to offer an inefficient menu 

of product qualities [MR78], there can be situations in which regulators1 can improve 

efficiency through restrictions on allowed product quality [Ron91]. Self-regulating 

1 In this paper, a "regulator" is any authority authorized by a government to ban or label products . 
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monopolists can gain similar benefits [GJ95]. 

Product bans may also mitigate excessive signaling, by preventing the product 

variation used to signal. Among the products that may be banned to prevent con­

sumer risk signaling are various insurance products [RS76], product liability waivers 

[Ord79], and liquidated-damages contracts [AH90]. Wealth-signaling status-signals 

can be banned during national emergencies, and professional licensing may limit in­

efficient signaling via human capital investments [Sha86]. 

However, while non-competitive industries and inefficient signaling may be pop­

ular explanations with economic theorists, such concepts are rarely mentioned in 

political discussions where these policies are presumably decided. While this is not 

an overwhelming objection, it does deserve consideration. 

A concept that political discussions more often refer to is that of use-externalities; 

advocates suggest many externalities which their favored bans would mitigate. For 

example, building codes may lower the risk of fires spreading to neighboring prop­

erties. Required health care product features may reduce the spread of infectious 

disease. Required product safety features may lower the risk that injured people will 

use public health care. 

Usury laws and bans on liquidated damages contracts may also limit the risk 

that poor people will require public assistance [Pos95] . And allegations of crime and 

public-assistance mediated externalities have been pivotal in securing public support 

for drug prohibitions [JGP+85 , Mil91], including alcohol prohibition [Bar05, Isa65]. 

Bans on sales of sex, pornography, body parts , and children are said to mitigate the 

externality of "commodification" which markets are said to create in the presense of 

"incommensurable" values [Rad96]. Similarly, bans on prohibited literatures are said 

to mitigate the externalities of contagious bad ideas. Finally, meddling preferences, 

where voters have specific preferences over other people 's consumption patterns, are a 

type of externality which can (perhaps too easily) explain a wide variety of regulatory 

intervention. 

Externalities are surely part of the story for many product bans. But there are 

difficulties in explaining most product bans this way. For example, it is not clear why 
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legal liability rules or special product taxes would not usually better deal with such 

externalities [Bur93]. (Yes a product ban can be thought of as a a very high tax, but 

why are there are not more intermediate level taxes?) 

Also, product bans do not seem to be very sensitive to known variations in the 

·magnitude of externalities. For example, neither drug regulation or health profes­

sional licensing seem to distinguish contagious from non-contagious illnesses. And 

building codes do not seem to distinguish fire-promoting risks from risks , such as 

structural defects, with mostly local consequences. It is also hard to understand 

what substantial externality, signaling, or non-competitive behavior could be behind 

required airline safety features, especially on flights which are mainly over the open 

ocean. 

Regulatory capture by special interests is another relatively general explanation 

of most product bans, which is mentioned often, though not especially frequently, 

in political debates. While this explanation has much intuitive appeal , it is hard 

to understand why rational voters would approve politicians who back such bans, 

if regulatory capture were the main story. Direct cash transfers seem to be a more 

efficient form of wealth redistribution, so the only obvious reason for using inefficient 

bans would be to disguise the transfer. But product bans could only disguise such 

transfers if such bans had other substantial accepted purpose in the minds of voters 

[CM95]. Thus while some degree of regulatory capture is surely present, it is hard to 

understand how it can be the main story. 

Early empirical studies [Sti 71, Mau 7 4] did suggest that professional licensing was 

best explained as due to regulators captured by professionals in search of higher 

incomes. The weight of recent evidence, however , seems to support studies which 

find this to be a relatively small effect when compared to "consumer demand" and 

"public interest" type regulation [Lef78, LOR95, LM90, Jen92]. 

Public interest theories of product bans are also relatively general. Such theories 

focus on regulators who have special information about product quality, and who 

use this information to protect consumers from buying bad products. Such public 

interest theories seem to dominate the political discussion of product bans; critics 
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may question regulator's judgement regarding a particular quality, but they rarely 

question the basic concept of banning very low quality products. For example, the 

Florida statute requiring medical licensing begins by explaining that "it is difficult 

for the public to make an informed choice when selecting a physic1an" [Fei85] . 

· Such public interest justifications also have very high levels of public support. For 

example, a 1976 Harris poll found that 85 and 83 percent of the public favors federal 

regulation of product safety and quality standards, respectively [LS79], 

When regulators have special information which they cannot otherwise communi­

cate to consumers, and when consumers cannot or will not get equivalent information 

from other sources, product bans can improve consumer welfare. For example, when 

regulators can observe product quality, they can help consumers by imposing a mini­

mum required quality level [Lel79]. And theories of special regulator information can 

help explain why old and familiar products, such as rock climbing, smoking, alcohol, 

and pornography, are banned less often than comparable and arguably less harmful 

new products. 

Many authors have noted, however, that in such situations consumers could do 

no worse, and often better, if, rather than banning bad products, regulators instead 

communicated the same information by certifying good products [Hig95, Wei80] . For 

example, Leffler [Lef78] notes that 

Under a costly information argument for intervention, certification is the 

preferred response. Certification provides all the information of licensure 

while offering a wider choice set. 

Confirming this intuition, many papers which suggest an advantage for product 

bans do not directly compare bans to certification of the ban information. Gale 

[Gal96] takes them to be equivalent, for example, and Shapiro [Sha86] compares bans 

with certification of more than the ban information . Shaked and Sutton [SS81], who 

do directly compare bans and labels in comparing professional licensing and certifi­

cation, find that permitting entry of rival para-professionals is welfare improving. 

A counter argument to certification is that it is costly to display labels, and costly 
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for a customer to be constantly "checking for the certification every time he buys an 

unfamiliar product" [Kel81]. With perfect enforcement of bans, in contrast, it takes 

no effort to avoid banned products. In response, many authors have suggested that 

labeling costs could be borne by the unapproved products, for example by requiring 

a large red "Not FDA approved" warning label on unapproved drugs [Gie85, PS82, 

Wei80]. 

If watching for this label is still deemed too costly a burden for consumers, then 

"a case could probably be made for allowing establishment of certain stores, with 

warnings prominently posted, that sell only products that do not meet regulatory 

standards" [Kel81]. One might even require that consumers pass a test, something 

like a driver's test, before they are allowed to buy from such a store. The fact that no 

such exceptions are allowed to product bans is somewhat of a puzzle from the simple 

public interest regulation perspective. 

A simple modified theory which can explain this behavior posits systematic biases 

in consumer beliefs. I~ this case regulators could complain that bans are required 

because consumers would simply not believe regulators who said that the product is 

bad. For example, various limits to contract have been explained as due to "limits 

of cognition" such as framing effects and availability and representativeness biases 

[Eis95]. 

Attention has focused in particular on consumer biases regarding low probability 

events [Spe77]. Ackerlof and Dickens [AD82] suggest that required safety features may 

help consumers if cognitive dissonance makes them prefer to believe products are safe 

rather than fear for their lives. And Viscusi [VVH95] instructs risk regulators to 

keep in mind that "individuals tend to overestimate the risks associated with lower­

probability events ... [and to] underestimate the risks associated with higher-risk 

events." 

Unless people are less biased as voters than they are as consumers, however, it 

is hard to understand why they would favor politicians who promise future product 

bans. The same biases that would lead voters to buy too much of a bad product 

should lead them to expect to benefit from the option to buy such products. Hence 
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we would expect them to favor politicians who promise to allow them that choice, at 

least if voters base their electoral choices primarily on prospective evaluations of the 

future consequences of candidate policy positions. 

In many electoral models, however, "the chosen candidate ... selects an action 

... , where this action is unobserved by the voter, and (stochastically) determines the 

voter's reward for that period." Because of this "the voter employs a simple retro­

spective voting rule: retain the current incumbent as long as rewards remain above a 

certain level" [BS93]. Biased and retrospective-voting consumers could induce regu­

lators to try to correct for their biases, and "take as societies objective the promotion 

of societal welfare based on the true risk levels, not the risk levels as they may be 

perceived by society more generally" [VVH95], as many regulation theorists suggest. 

While there is no doubt that consumers are not always exactly rational , however, 

it is also far from clear that consumers are systematically biased in just the ways 

required to explain most product bans. That is, would consumers be biased even 

after taking a class informing them of their bias, after passing a special test, and 

then being limited to buying such products in special stores? And if strong ex-ante 

public support for product bans we observe [Kel81] means that consumers know they 

are often biased, why wouldn't they then believe regulator warning labels? Or why 

wouldn't they voluntarily agree ahead of time to a personal product ban, where they 

agree to be punished if they purchase some non-certified product? 

2.1.3 Cheap Talk As An Explanation 

This paper suggests that we might better understand the phenomena of product bans 

by realizing that , even with fully rational consumers, a small degree of either regula­

tory capture or non-competitive markets can trigger consumer behavior that looks to 

regulators a lot like an irrational unresponsiveness to regulator labels. This is because 

if retrospective voting explains voter behavior, then regulator product labeling is ba­

sically a cheap-talk signaling game, where a small divergence in preferences between 

regulator and consumers can induce large losses in information transfer [CS82]. And 
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small regulatory capture or non-competitive market effects can induce the required 

small divergence in preferences. 

When product quality is one-dimensional, a regulator-labeling cheap-talk equilib­

rium consists of a set of quality intervals. A regulator who knows the true product 

quality can only communicate which interval this quality lies within, and cannot make 

finer within-interval distinctions. In particular, there is a lowest interval, where con­

sumers will buy an amount of the product corresponding to the average quality in 

this lowest interval. When the true quality happens to be near its lowest possible 

value, the regulator can prefer that no one buy the product , rather than deal with 

the consequences of future voters unhappy with their product experience. 

If regulators can actually ban the product, in addition to announcing its quality, 

then the signaling game is changed; the lowest quality interval now consists of banned 

products, and the boundaries of the higher certification intervals move. In equilibrium 

not banning a product will be taken by consumers as an endorsement of product 

quality, which encourages regulators to ban even more products. And consumers 

who act on this perceived endorsement can as voters be understandably upset at a 

regulator who failed to ban a product of very low quality. 

Like the simple public interest theory which it modifies, this cheap-talk explana­

tion of product bans is relatively general2
, and does not depend on special industry 

structures in the way that the non-competitive market and excessive signaling expla­

nations do. This theory also works with fully rational consumers and regulators, and 

with costless labels. 

This theory fits comfortably with recent empirical work which prefers a large 

public interest component and a small regulatory capture component to product ban 

behavior, since the theory can explain large rates of product banning from small levels 

of regulator bias. With the public interest theory, this theory explains the apparent 

regulatory focus on new harms. 

Yet this theory also explains why consumers ignore fine label information, and 

2 The phenomena of product bans may of course be best explained by many dissimilar theories, 
each of which covers some narrow range of products. But it is surely worth looking for more general 
explanations. 
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why regulators do not allow exceptions for consumers who pass special tests in order 

to shop at special unapproved product stores. This theory also makes it easier to 

understand why voters re-elect regulators who ban, and it explains why regulators 

who are biased in favor of some product category may still ban some products in this 

category. 

Finally, this explanation can take most political discussion of product bans at face 

value, instead of suggesting that such discussion is mainly a smoke screen obscuring 

the real motives. Given that parties already have asymmetric information and that 

the regulatory authority to ban is not in dispute, we should expect to see, and largely 

do see, debate on bans which centers on the actual quality of particular products. 

2.1.4 Welfare Comparisons 

Voters may be happy with the behavior of a particular regulator relative to an equi­

librium of a game where regulators are authorized to ban products. This does not 

mean, however, that voters would not be even happier in an equilibrium of a game 

where regulators are not authorized to ban products. Since these games have different 

equilibria, it is sensible to make welfare comparisons between them. 

After introducing a simple example of Cournot competition in two competing 

products with linear supply and demand, and after examining the divergent prefer­

ences which regulatory capture or non-competitive markets can induce in this ex­

ample , this paper will focus on making welfare comparisons. Assuming a uniform 

distribution over product quality, assuming full competition, and assuming a regu­

lator whose bias for one product over another is constant over the range of product 

quality, exact solutions and welfare values will be given . 

Given these assumptions, it turns out that for any given level of regulator bias, the 

best (i.e., highest total welfare) equilibrium is always in the game where bans are not 

allowed. And if bans are not allowed, all groups ex-ante prefer a smaller magnitude 

bias. 

The different groups have different ex-ante preferences, however, over bans and 
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regulator bias given the game where bans are allowed. Consumers and producers of 

the possibly-banned product always ex-ante prefer no bans and a small bias, as do 

regulators biased in favor of these producers. But producers of the competing product 

ex-ante prefer that bans be allowed, and given bans they prefer that regulators be 

biased as far as possible in their favor. Regulators also prefer bans be allowed when 

they are biased in favor of these competing producers, though they still prefer to have 

a smaller magnitude bias. 

Thus, in this example, eliminating the possibility of product bans aligns the inter­

ests of all parties ex-ante, so that they should all cooperate to minimize the magnitude 

of regulator bias. 

The above conclusions were for a uniform distribution over product quality. For 

other distributions it will be shown that the best equilibrium can be in the game where 

bans are allowed. This does not contradict the intuition that consumers should prefer 

the information in a ban to the ban itself, since the lowest label in the no-ban game 

equilibrium communicates different information than a ban. This is because banning 

a product is a more severe action than assigning it the lowest quality label in the no 

banning game, so there are quality levels which a regulator is not willing to actually 

ban , but is willing to label as in the lowest quality interval without bans. 

Finally, a general sufficient condition will be given regarding when the maximum 

welfare equilibrium is always in the game where bans are not allowed . We start with 

general preferences over one-dimensional types (e.g. , quality levels) and actions (e.g. , 

amount purchased) and consider Crawford and Sobel's [CS82] cheap-talk signaling 

game between a sender (e.g. , a regulator) and a receiver (e.g., a market containing 

consumers) , modified to allow the sender a single extreme "forced" or "ban" action. 

We assume, with Crawford and Sobel [CS82], concavity and sorting in preferences, 

convex signal support , that at no type do the two player's preferences coincide, and 

that interval boundaries all move in the same direction. 

Given these assumptions , we find that allowing a ban is never better for either 

the sender, the receiver , or anyone with intermediate preferences, when the sender's 

preferences are biased away from the forced action. At least this is true if the ban 
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outcome is between these two no-ban-possible outcomes: when the sender declares 

that the signal (e.g., quality) was the worst possible, and when the receiver knows for 

sure that the signal is the worst possible. 

This result is counter to the plausible intuition that while it might be dangerous 

to allow bans by a regulator who is biased against a product, it couldn't hurt to allow 

bans if the regulator is biased in favor of the product. Actually, bans can only help 

ex-ante with regulators who are biased against the product. 

When consumers ex-ante prefer the no-ban game to the ban game, banning can 

be thought of as a commitment failure. Without a commitment not to ban , even an 

ideal unbiased regulator will often want to ban in equilibrium, knowing that a failure 

to ban would be interpreted by consumers as a product endorsement . But consumers 

who know that regulators are constitutionally prevented from banning will interpret 

regulator labels differently, to their ex-ante benefit. 

It was hard for this author to find combinations of functional forms and parameter 

values for which consumers prefer the ban game, and relatively easy to find functional 

forms where for all parameter values consumers prefer the no-ban game. This sug­

gests, though only weakly, that preferring the no-ban game is the usual case. If 

so, perhaps consumers would benefit overall from a broad constitutional prohibition 

against product bans, such as currently applies to print media in the United States. 

2.1.5 General Paternalism 

The generalized "cheap-talk" model of Crawford and Sobel [CS82] mentioned above, 

with one-dimensional information held by a sender, and a matching one-dimensional 

choice made by a receiver, applies to a wide variety of contexts beyond that of prod­

uct quality regulation. And the augmented game with a single extreme forced action 

available to the sender can be considered a general model of "extreme-act paternal-

ism." 

For example, a parent may face the choice between recommending to their child 

how far to go on a date, or simply prohibiting dating before a certain age. Similarly, a 
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parent may either face the choice between recommending how much alcohol or other 

drugs to consume, or simply prohibiting any such consumption. Parents may also 

advise their children how carefully to drive, or simply prohibit driving. The above 

analysis suggests that such "paternalistic" extreme choices will often be made, even 

with fully rational children, if parents suspect that their children believe that those 

parents have slightly different preferences. 

On a technical note, this paternalism game is somewhat unusual in mixing cheap 

talk and expensive signals. This paper has also made a modest technical contribu­

tion to the analysis of the original cheap-talk game of Crawford and Sobel [CS82]. 

They called the assumption that interval boundaries all move in the same direction 

monotonicity, and presented a sufficient condition for monotonicity involving two in­

equalities on preferences. A different and arguably more intuitive sufficient condition 

is presented here , involving only one preference inequality. 

These general results on an applied model are somewhat unusual in the cheap-talk 

literature, most of whi<:h has been concerned either with models with specific func­

tional forms, or with very general analysis, mostly regarding equilibrium refinements 

and existence. 

2.2 Linear Supply and Demand 

2.2.1 The Market Model 

Let us first consider product bans in a case of not fully competitive markets with 

linear supply and demand . Specifically, let us consider two products, 1 and 2, with 

linear supply, i.e., industry marginal cost , given by 

and linear demand, i.e. , consumer marginal value, given by 
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We assume non-negative slope coefficients bi , b2, di, d2, ei, e2, and assume did2 > eie2 

to ensure the familiar sign of slopes in expressions like Qi =Ai - aiP1 + /31P2. 

We also assume Cournot competition. Each of n 1 identical producers of product 

1, facing an individual marginal cost of MCi = ai + n 1 bi Qii, simultaneously chooses 

its quantity Qii· At the same time, n 2 identical producers of product 2 similarly 

choose Q2i. Then consumers drive prices to their marginal value at the quantities 

produced, as in P 1 = MVi(Q1, Q2) with Qi= :L~::!:i Qii, and similarly for P2 and Q2. 

Defining marginal welfare loss to be Li = MVi - MCi, the Cournot equilibrium 

satisfies Li = ( dif ni)Qi. Thus welfare loss is positive, but decreases as more firms 

compete (ni larger), as demand becomes more inelastic (di smaller), and as total 

demand decreases (Qi smaller). (This last dependence on quantity may be an artifact 

of holding the number of firms fixed as quantity decreases, rather than modeling the 

entry and exist of firms from each ind us try.) 

Defining 

f _ 1 (d ni + 1 b ) 
i-- i +i, 

ei ni 

C1 - ai 
9i = 

(and L2 , h, and 92 similarly, with the labels 1 and 2 switched), we can write the 

equilibrium quantities as 

Q - li91 - 92 
i- fif2 - 1 ' 

Consider now the consequences of varying the quality q of product 1, which varies 

the parameter c1 = q + ci while holding constant n 1 , n 2 and all the other supp}y and 

demand parameters. The quantities Q1 ( q), Q2 ( q) then vary linearly with 91 , and hence 
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linearly with q, and they vary in opposite directions. At Q1 = 0, Q2 = Q2 = g2/ Ji 

and at Q2 = 0, Q1 =Qi = 92· 

For example, in the symmetric case where a1 = a2 = 0, b1 = b2 = 0.5, c2 = 1, 

di = d2 = 1.2, e1 = e2 = 1, and ni = n2 = 100, as Q varies over [O , 1], Ci varies over 

[0.584, 1.712], Q2 ranges over [0.584, OJ, P 1 ranges over [O, 0.512], and P2 ranges over 

[0.299, O]. All these variables are linear in ci, and hence are linear in each other. 

2.2.2 Possible Biases 

Risk-neutral consumers who are symmetrically uncertain about quality q will act 

according to their common expectation of quality q = E[q], inducing a market quantity 

Q = Qi(fJ.), instead of the quantity Q = Qi(q) which would be induced by perfect 

information. Incentives for any agent to deceive consumers about product quality 

can then be described by the way in which that agent's payoff changes with consumer 

expectation q, given a fixed true quality q. 

Let K 1 , K 2 be the producer profits for the two industries, let Kc be consumer 

surplus, let W 0 = Kc + K 1 + K 2 be total welfare given equal welfare weights , and for 

any X let X' = dX/dq evaluated at q. Then we can write 

which combines the consequences of quality misperceptions with the welfare losses of 

non-competitive markets. 

In the competitive limit (ni, n2 --+ oo), W0 is maximized at q = q, so someone 

seeking to maximize total welfare would have no incentive to deceive consumers about 

quality. For a finite number of firms, however, this expression W~ can be non-zero 

even when q = q. This is because quantity increases due to misperceptions of product 

quality can be used to compensate for quantity reductions due to non-competitive 

markets. 

Further incentives to deceive consumers about quality can arise from not giving 

equal welfare weights to the three groups, consumers and two producer industries, as 
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in WI' = W0 +1-i-1r1 + / 27f2 , with 11 , 12 being the weight deviations of the two producer 

industries. 

Before describing these more general incentives in detail, let us note that since W~ 

and all 7rj are linear in both q and q (e.g., 7r~ = L1 Q~ + Q1MV{), all preferences are 

quadratic in q with a convexity w; independent of q. For agents with such quadratic 

preferences, we need only consider their ideal points. For such quadratic agents, we 

can also generalize our information structure; q and Q can now refer to the expected 

value of quality and quantity using the regulator's superior but not necessarily full 

information. 

Thus we need only consider such an agent's bias, defined as the difference /3( Q) = 

Q* - Q, where ideal point Q* solves W~ = 0 for a given Q. Bias is the difference 

between the true quantity Q = Q1 (q) and the ideal quantity Q = Q 1 (ij) one would 

like consumers to believe. A bit of algebra then reveals that 

where Ho = eif1 (f1h - 1) and 

To ensure the concavity of WI', we assume H0 > H 1 + H2 . 

Bias vanishes, i.e., /3(Q 0
) = 0, at Q0 = Q1H2/(H1 + H2 ). The sign of the bias 

changes at this boundary, and for Q > Q0
, sign(/3) = sign(H1 + H2 ). Thus when 

Q0 lies in [O, Q1], Hl + H2 > 0 gives an outward bias, toward the extremes, while 

Hl + H2 < 0 gives an inward bias, toward the boundary Q0
. When H 1 + H2 = 0, the 

bias is constant. 

In the special case of zero weight deviations, 11 = 12 = 0, the bias is outward with 

Q0 = n1d2Qi/(n1d2+n2diff). For example, as quality q rises so that Q2 goes to zero, 
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the welfare loss from a not fully competitive market in product 2 also falls to zero , 

while the welfare loss from a not fully competitive market in product 1 gets larger. In 

this case, one might prefer that consumers overestimate the quality of product 1 to 

compensate for the producer's strategic reductions in the quantity of that product. 

In the special case of fully competitive markets ( ni, n 2 --+ oo) , we can write Hi = 

'YiHi and H 2 = "(2H2 , with Hi , H2 independent of "fi, "12· Thus for "12 = 0 and 'Yi > 0, 

Q0 = 0 and for positive Q, bias f3 is positive for Hi positive. That is , someone who 

gives extra weight only to producers of product 1 prefers consumers to overestimate 

the quality of that product. Similarly, for H 2 positive someone who gives extra 

weight only to producers of product 2 prefers consumers to underestimate the quality 

of product 1. 

For example, m the specific symmetric example described earlier, zero weight 

deviations bi, "(2 ) = (0, 0) imply an outward bias that ranges over [-0.00368, 0.01079] 

as Q ranges over [O , 1], with a zero bias at Q0 = 0.254. That is, with one hundred 

competing firms for each of two symmetric products, bias is a bit less that one part 

in a hundred, and toward overestimating quality over most · of the quality range. 

Exactly zero bias can come from symmetric negative deviations for both producers, 

specifically bi, "(2 ) = (-0.0229, -0.0229). A constant negative bias of -0.01 comes 

from deviations bi, "(2 ) = (-0.0444, 0.0402) , while a constant positive bias of 0.01 

comes from deviations bi, "(2 ) = (-0.00138, -0.0860). 

2.2.3 Modeling Regulators 

Let us assume that consumers are symmetrically but not fully informed about the 

quality of some product , and that some regulator has obtained further information 

about this quality. Such a regulator will be empowered to make a pre-purchase 

announcement to consumers regarding product quality, such as via requiring a product 

label visible at the point of purchase, and may also be empowered to simply ban the 

product, ensuring the Q = 0 outcome. 

If consumers can be divided into distinct groups with differing information or 
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preferences regarding product quality, and if our regulator can selectively target these 

different groups with different labels and bans, we will consider these to be two 

different products, to be modeled separately. 

We do not explicitly model a regulator who is also empowered to require that con­

sumers purchase the product. We do this because few products are directly required 

in this manner; most product requirements are actually implemented via product 

bans. For example, those who buy cars must also buy seat belts , l?ut people are 

not required to buy cars. Instead, they are forbidden from buying the product of 

cars without seat belts. This makes sense because there are very few products which 

regulators know that all consumers would buy, were it not for quality misperceptions. 

Similarly, we do not allow our regulators to signal their information by punishing 

themselves, i.e, by "burning money" [ASB95], either directly or indirectly by imposing 

costs on consumers or producers. 

Finally, we assume that regulators just care about the consequences of their ac­

tions for consumer and producer welfare, and not about the act itself. Thus in the 

above example we assume our regulator seeks to maximize W1 for some values of 

')'1 , ')'2 . Having a regulator maximize a linear welfare function such as this is a stan­

dard assumption in the economics of regulation literature [LT93]. Note that this 

assumption ignores the internal structure of the regulatory process, such as that ex­

amined by Hopenhayn and Lohmann [HL96]. We are implicitly assuming something 

like retrospective voting; come election day voters don't remember much about the 

specific actions taken by regulators, but they can estimate how happy they are with 

recent consequences in some regulatory area. 

2.2.4 Alternative Theories of Bans 

Before considering our cheap-talk model for this quadratic preference case, let us first 

consider some alternative theories of product bans. 

First , consider the case of fully competitive markets ( n 1 , n 2 -+ oo) where con­

sumers know that regulators have no private quality information. Here, product bans 
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must be due purely to "captured" regulators, who are described by non-zero weight 

deviations 11,/2 . Such a regulator will ban the product if {J(Q) < -Q/2. For a 

constant bias, the fraction of products banned is linear in the bias, but the product 

is never banned if the regulator has a bias in its favor. 

Second, consider a case of irrational consumers and completely uncaptured reg­

ulators. Here information about Q is symmetric between regulators and consumers, 

but regulators know that consumers are irrationally systematically biased, acting on 

Q = aQ +'Tl· In this case regulators will ban the product when Q < rJ/(2 - a). Here 

the fraction of products banned is roughly linear in consumer bias 'TJ , but product 1 

is never banned if consumers are biased against this product (at least for a < 2). 

Third, consider a prohibitively-costly-labels explanation of bans. Assume that Q 

is distributed uniformly, that the regulator is unbiased, and that the regulator can 

only communicate with consumers by banning the product (labels will not be read). 

In this case the regulator bans the product if Q < ~· 

2.2.5 Cheap Talk With Constant Bias and Uniform Distri­

bution 

Consider now the cheap-talk explanation of product bans. There are effectively two 

actors in the cheap-talk model, a regulator and a market. The preferences of both 

these actors are quadratic over the regulator's private quality signal Q and the mar­

ket's estimate of this quality Q. The market effectively maximizes -(Q - Q) 2 , and 

the regulator maximizes W-y , which is equivalent to maximizing -(Q - Q + {J(Q)) 2 . 

The cheap-talk game proceeds as follows. The regulator sees a private quality 

signal Q, and then either bans the product (if given the authority) or announces a 

recommended quantity Q. Consumers then estimate product quality, which influences 

their product demand, which then determines the amount Q of the product actually 

purchased. 

Relatively general results regarding such cheap talk games with bans are given in 

section 2.3 , titled "A General Banning Game." Here we look in more detail at some 
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specific closed form expressions for equilibria of this linear supply and demand game. 

To ease our task of finding closed form expressions, we will in this section assume 

both that the regulator quality signal Q is distributed uniformly on [O, 1], and that the 

regulator has a constant bias (3( Q) = (3. (By assuming constant bias, we are for ease 

of analysis focusing on a particular one-dimensional subspace of the two-dimensional 

space of linear bias functions possible in this linear model.) 

For this game, Bayes-Nash equilibria can be described by a simple partition of 

[O, 1], that is, a set of n intervals [Qi, Qi+1] such that Q0 = 0, Qn = 1, where a regulator 

who observes a Q E [Qi, Qi+1] can only communicate the fact that Q E [Qi, Qi+1]. 

Consumers would not believe any more specific claims about Q. 

If Q E [O, Q1], the lowest quality interval, a regulator who is allowed to will ban 

the product, forcing Q0 = 0. Given a uniform distribution over Q, consumers who 

are told Q E [Qi, Qi+i] and have a choice will choose to buy an average amount 

Qi = (Qi+ Qi+1)/2. Finally, the Qi are the points where the regulator is indifferent 

between the outcomes Qi-I and Qi. Given the quadratic regulator preferences, Qi 

solves 

These equations can be solved to give closed form solutions3 , shown in Table 2.1. 

With no ban, there can be an equilibrium with n intervals for any integer n ::::=: 1 such 

that 1 ::::=: 2lf31n(n - 1). For bans allowed with positive (pro product 1) regulator bias 

((3 > 0) the same expression holds, but for bans allowed with negative regulator bias 

((3 < 0) the condition is instead 1 ::::=: 2lf31(n - 1) 2
. Thus for a negative bias, but not 

for a positive bias, allowing bans can increase the equilibrium "size," i.e., the number 

of intervals in the equilibrium. 

The solutions with the maximal number of intervals n for any given bias level are 

graphed in Figure 2.1, for n E [1, 7]. (To see the full solutions for lessor values of 

n, project the lines shown in Figure 2.1 toward the zero bias line.) Table 2.2 gives 

3 Closed form solutions for the case where bans are not allowed were given in Crawford and Sobel 
[CS82]. 
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no ban {3 > 0 Q1 - 1-2/jn(n-l) 
Qi - iQ1 + 2{3i(i - 1) - -n 

ban {3 > 0 Q1 - 1-2,Bn(n-l) 
Qi - (2i - l)Q1 + 2{3i(i - 1) - 2n-l -

no ban {3 < 0 1 - Qn-1 - 1+2,Bn(n-1) 
1 - Qn-i - (n - i)(l - Qn-1) - -n 

ban {3 < 0 1 - Qn-1 - 1+2.B~n-1) 2 

-2{3(n - i)(n - i + 1) - n-1/2 

Table 2.1: Linear Cheap Talk Equilibria Formula 

Bias Welfare n max Boundaries Qi for n max 
no ban -.5 -83.3 1 0, 1 
no ban -.05 -15.9 3 0, .53, .87, 1 
no ban -.005 -1.66 10 0, .19, .36, .51, .64, .75, .84, .91, .96, .99, 1 
no ban .005 -1.66 10 0, .01, .04, .09, .16, .25, .36, .49, .64, .81, 1 
no ban .05 -15.9 3 0, .13, .47, 1 
no ban .5 -83.3 1 0, 1 

ban -.5 -333.3 1 0, 1 (all banned) 
ban -.05 -17.9 4 0, .31, .74, .97, 1 
ban -.005 -1 .68 10 0, .1, .28, .44, .58, .7, .8, .88 , .94, .98, 1 
ban .005 -1.68 10 0, .005, .04, .09, .16, .25, .356, .49, .64, .81, 1 
ban .05 -18.7 3 0, .08, .44, 1 
ban .5 - 83.3 1 0, 1 (nothing banned) 

Table 2.2: Linear Cheap Talk Equilibria Examples 

numerical values for some specific bias values. 

Note that with bans allowed, product bans occur for regulators with both positive 

and negative bias, and given negative bias a large fraction of products are banned 

even with a very weak bias. For example, 10% of products are banned at a bias of 

- .5%, and this banning fraction goes roughly as the square root of bias, at least for 

negative bias. In contrast, in the alternative models described above of pure regulator 

capture or consumer irrationality, the fraction of banned products is roughly linear 

in the bias, and hence smaller, and bans only happen for one sign of the relevant bias 

parameter. 

If we assume a full competitive market, then for the class of games we have consid­

ered in this section, with quadratic preferences and a uniform distribution over best 

quantity Q, it turns out that allowing bans never increases expected total welfare W0 . 
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Figure 2 .1: Solutions for Quadratic Preferences, Uniform Distri bu ti on 
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For any equilibria of such a game with bans, there is an equilibria of the correspond­

ing no-ban game with higher ex-ante expected welfare. And if bans are not allowed, 

all groups ex-ante prefer that regulator bias be made as small as possible. 

The different groups have different ex-ante preferences, however , over bans and 

regulator bias given bans. Specifically, producers of competing products ex-ante prefer 

that bans be allowed on this product, and given bans competing producers ex-ante 

prefer regulators to be biased as far as possible in their favor. Regulators also prefer 

bans be allowed when they are biased in favor of these competing producers, though 

they do prefer their bias to be as small in magnitude as possible. In contrast, potential 

consumers and producers of this product always ex ante prefer no bans and a small 

bias, as do regulators biased in favor of these producers. 

2.2.6 A Counter Example 

Given the fact that bans never improve ex-ante consumer welfare in the full com­

petition case just described, one might conjecture that this result holds much more 

generally. After about a dozen trials of different functional forms, however, this au­

thor found a counter example. It can be constructed by making just one change to 

the above model. 

Instead of a uniform distribution F'(Q) = 1 over Q, let us assume 

F'(Q) = Hl - Q)-1/2. 

This distribution is concentrated near Q = 1, but also has substantial weight over the 

whole [O, 1] range. As shown in figure 2.2, for f3 E [-.5, -.18] the game with a ban 

has a two interval (n = 2) solution, while the no-ban game only has a one interval 

( n = 1) solution4
. And for f3 > - .24, this two interval solution has a higher ex-ante 

expected consumer welfare. Thus for f3 E [- .24, -.18], the game with bans allowed 

is ex-ante better. For example, if f3 = .2, then the two interval solution has Q1 = .64 

and Q1 = .88. In this equilibrium 403 of products (those for which Q E [O, .64]) are 

4 More precisely, Mathematica failed to find a solution. 
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Figure 2.2: Counter-Example Welfare 

It should be noted that for a wide range of other bias values in this model , the 

ban game is ex-ante worse, and often by much larger margins. See Figure 2.2. 

Another counter example model arises from F'(Q) ex (1 - Q)- 114
. 

2.3 A General Banning Game 

2.3.1 The Model 

The following is a more general model of a cheap-talk labeling game, taken directly 

from the first published cheap-talk signaling game paper of Crawford and Sobel [CS82] 

(hereafter, C&S). (We will soon extend it to include a single forced "ban" action.) 

There are two players, a Sender (S) who observes private information a E [~,a] C 

R (the real line) , and a Receiver (R) who takes an action y E [H_, Y] c R . This 

is a signaling game in that before R takes action y, but after S learns information 

a, S sends a signal s to R about a. It is a "cheap-talk" signaling game in that 

the player's twice continuously differentiable utility functions, U5 (y, a) and UR(y, a), 

do not depend directly on the signal s. S's private information a is drawn from a 



29 

differentiable c.d.f F( a) with support [g,_, a]. 

Sender S can be thought of as a regulator with special information a = Q on 

product quality, and receiver R can be thought of as a market which chooses quantity 

purchased y = Q to maximize some effective objective. (For a competitive market , 

this objective would be total welfare.) Alternatively, S can be thought of as a "parent" 

who can either recommend a level of some "child" R's activity, such a:s driving, drugs, 

or sex, or can instead ban this activity entirely. 

Instead of dealing directly with utilities U(y, a), it will usually be more convenient 

to deal with marginal utilities M(y, a) = U1 (y, a). Following C&S, we will assume 

concavity, M1 < 0, and sorting (or single-crossing), M 2 > 0, everywhere . These imply 

strictly increasing and unique ideal points y(a) = argmaxyU(y, a). Futhermore, we 

w.1.o.g. assume5 MR(y, y) = 0, which implies yR(a) =a. Unless otherwise noted, we 

will also assume [g,_, a] C []L, y]. Finally, we will often want to assume that S's "bias" 

relative to R's preferences, ys(a) - yR(a) , has a constant sign, either positive from 

Ms > MR or negative f_rom Ms < MR. 

In the game C&S considered, S first observes a and then sends signal s to R, who 

then chooses an action y. In this paper, we compare this basic labeling game with an 

extended labeling plus ban game, where Scan choose to force a certain "ban" action 

x instead of sending a signals to R. If S chooses x, the game ends immediately. Note 

that this extended game mixes cheap talk and costly signals within the same strategy 

space; the sender S chooses between "talking" and "doing." 

2.3.2 Equilibria 

Concavity ensures that R never uses mixed strategies, so R's strategy can be written 

as y(s). Smay use mixed strategies, so we write S's strategy as q(sJa), a probability 

density of s given a, where 1 - Jq(sJa)da is the probability of x given a. 

There will be some set of actions Y induced in any sequential equilibrium, and 

since talk is cheap and S has all private information, S essentially can choose any 

5If this is not true for U(y, b) , use U(y, a) = U(y, a(b)) with a' (b) = - M f ( b, a(b)) / Mf ( b, a(b) ). 
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y E Y. C&S's lemma one shows that this set of equilibrium actions is finite given 

Ms> MR or Ms< MR, and their proof is valid without modification in our extended 

game. 

Sorting and concavity ensure that the set of S types a who choose Yi are of the 

form [ai, ai+il· (We needn't be very precise regarding the behavior of the measure-zero 

set of boundary types ai-) When Y has n elements, we have a0 = Q,, an =·a. 

When several signals s induce the same action Yi, R's expected utility must be 

the same given each of them, which follows if q(sia) is the same for each such s, given 

a E [ai, a i+ 1]. Since the signal space will be partitioned into sets whose members are 

not meaningfully distinguished by the players, all that really matters about the space 

of possible signals s is its cardinality, which we will assume is large enough to not be 

a constraint. Following C&S, we ignore signals from here on, describing equilibria by 

a= ( ai)i=o and y = (yi)i:{ 

C&S's theorem one shows that, for the basic game, there exists a N such that 

for every integer n in [1, NJ, there exists a sequential equilibrium where a, y satisfy 

t . (cS)n-1 (cR)n-1 h t" cS( ) · equa 10ns '--'i i=l, '--'i i=O, w ere equa 10n '--'i Yi-1, ai, Yi is 

- rai+I R 
Yi= y(ai, ai+1) = argmaxy lai U (y, a)dF(a). 

Furthermore C&S show that every equilibrium is essentially equivalent to one of these. 

These equations Eis, EiR can be rewritten in terms of M as 

[Yi s 
},, M (y, ai) dy = 0, 
Yi-I 

Alternatively, we can rewrite these equations Eis, EiR as 
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where we have defined a pseudo-utility 

If x is too low or high, S may strictly prefer to never choose x. Such an equilibria 

of the extended game can be identified with an equilibria of the basic game with no 

forced act x. 

For an equilibria of the extended game where the forced act x is chosen by S with 

positive probability, the only change to these equilibrium equations is that for some 

i = i, the equation [iR(ai, Yi, ai+1) is replaced by Yi= x. In this case there is no longer 

any direct dependence between ai and ai+l· Thus for interior forced acts i (j. {O, n}, 

the equilibrium equations are divided into disjoint sets, sets where i is above and 

below the i where Yi= x. 

For every equilibria of the basic game there is for some x an equilibria of the 

extended game with the same a, if. This is because if we set x = Yi for any Yi in the 

basic game, S won't want to change his strategy, and hence neither will R. Thus 

we may w.1.o.g. analyze only equilibria of the extended game where x is chosen with 

positive probability. 

C&S's proof of their theorem one (which proves existence) applies to our extended 

game as well, if we simply replace the equation [iR with Yi= x. We again have a set 

of continuous non-linear difference equations with the same sort of properties. The 

only significant difference is that these equations may be divided. Son = 1 is possible 

only if either all or no S types a prefer the forced act x. Thus the following lemma 

applies. 

Lemma 2 .1 Given a farced act x, there exists a N ( x) such that for every n E 
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[N, N(x)], for N·E {1, 2}, there is a Bayes-Nash equilibrium (which is also sequential) 

satisfying (EiR)~- 1 , (Ep)~- 1 , except that for some i, EiR may be replaced by Yi = x. 

2.3.3 Comparing Welfare 

To simplify their analysis C&S invoked a monotonicity assumption equivalent to 

daif dx > 0 for all i E [1, n - 1], which implies dyif dx > 0 for all i E [O, n - 1], 

and also implies that in the basic game there is a unique equilibrium for each size n. 

C&S's lemma three proves this, and their proof applies here. The only modification 

is that interior forced acts can induce some non-uniqueness; an n = 7 solution, for 

example, might have 3 parts on one side and 4 parts on the other, or these numbers 

might be reversed. 

C&S showed that a sufficient condition for monotonicity is (something slightly 

weaker than) M.f + M,f ::; 0 and Mf + Mf ~ 0. An alternative and perhaps more 

intuitive sufficient condition for monotonicity is available, however. 

Lemma 2.2 Monotonicity is implied by JR having steeper isoquants than us in (y, a) 

space, i.e., by 
JR US 
_l_ < _l 

If- - Ul° 

(Non-trivial proofs are in the Appendix.) Note that all isoquants of both JR and 

us are in the ( +, +) direction. 

Let us now collect together all of C&S's assumption we plan to use and call them 

C&S's standard JD cheap-talk assumptions. These assumptions are: [g,_, a] c []Li y], 

concavity M1 < 0 and sorting M 2 > 0 in preferences, monotonicity dad dx > 0, 

and either Ms > MR or Ms < MR. We will from here on make these standard 

assumptions unless we state otherwise. 

Let us also define a mixed agent T to be one for which MT = BMR + (1 - B)Ms 

for some function B(y, a) E [O, l]. A mixed agent has a marginal utility interrp.ediate 

between the sender S and receiver R. (Both S and R are mixed agents.) Finally, let 

us define Zn to be the Yo in the n step equilibrium of the basic game. Zn is the lowest 

act the receiver would voluntarily take. 
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Given monotonicity and a positive sender bias, we can show that both the sender 

and receiver, or any mixed agent in between, ex-ante prefers an n step equilibrium 

of the basic game to an n step equilibrium of the extended game where Zn 2: x =Yo· 

Such a forced act is the lowest act taken in equilibrium, and is no more than the 

·lowest act taken when no forced act is possible. 

Lemma 2.3 Given Ms 2: MR, any mixed agent prefers an n step equilibrium of the 

basic game to an n step equilibrium of the extended game where Zn 2: x = y0 . The 

preference is strict if the equilibria are distinct. 

We can also show that one can't get any more equilibrium steps by introducing 

a lowest-taken forced act x that is within the range of the actions the receiver might 

take if she were fully informed. 

Lemma 2.4 Given Ms > MR, for any n step equilibrium of the extended game 

where Q :::; x = y0 , there exists an n step equilibrium of the basic game. 

Putting together lemmas 2.3 and 2.4, we can conclude that for Ms > MR and 

y0 = x E [g,_, znJ, a mixed agent ex-ante prefers the basic game. 

Theorem 2.1 Given C8S 's standard JD cheap-talk assumptions, and Ms > MR, 

for any n step equilibria of the extended game where y0 = x E [g,_, Zn], there exists 

an n step equilibrium of the basic game which any mixed agent ex-ante prefers. This 

preference is strict if the equilibria are distinct. 

Since both S and R are mixed agents, an immediate corollary is that both S and 

R ex-ante prefer the basic game in this situation. 

One of the standard lD cheap-talk assumptions is that ]!_ :::; Q, which implies 

says that there is a distinct best action y( a) for the receiver for any true signal a. 

In the product quality domain this is equivalent to saying that quality cannot be 

negative; there is only one fully-known quality level where none of the product would 

be purchased. 
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We can also extend the result of theorem 2.1 to the case where, while holding Q 

fixed, we allow ']/_ to vary up into the range where 'fj_ > Q. This allows for negative 

product quality. 

Let us define z00 =max(']/_, rJ.), the lowest action the receiver would take given full 

information. Let_ us also define Zn =max(']/_, Zn), where Zn is as before, the Yo of then 

step equilibria of the basic game where 'Jj_ s; g_. Then Zn must be the Yo of the n step 

equilibria of the basic game, assuming it exists, for any value of 'l!_· (J'.or 'Jj_ s; Zn the 

equilibria is not changed, and for 'f!_ > Zn, monotonicity requires Yo = ']/_-) Using these 

definitions, we can express a more general result. 

Theorem 2.2 Given C&S's standard JD cheap-talk assumptions, except that we al­

low']/_~ g_, and given M 5 > MR, for any n step equilibria of the extended game where 

y0 = x E [z00 , zn], there exists an n step equilibrium of the basic game which any 

mixed agent ex-ante prefers. This preference is strict if the equilibria are distinct. 

2.3.4 Applications 

These general results translate to the domain of product bans as follows. Assume 

that more of some product is purchased when consumers expect it to be of a higher 

quality. Assume that for any given fully-known quality level more of the product 

would be purchased in a fully competitive market than in the actual market. Assume 

that the regulator would prefer at least this much of the product be purchased. And 

assume the regulator has private information about product quality. 

Finally, assume that a product "ban" results just in a situation equivalent to that 

where consumers expect some low quality level, without any further enforcement 

costs or losses. Assume that the amount of the product purchased under a ban is 

somewhere between the amount which would be purchased if consumers were certain 

that the product was of the worst possible quality, and the amount which would 

be purchased if the not-entirely trusted regulator, with no authority to ban, simply 

declared the product to be of the worst possible quality. 

Given these assumptions, neither the regulator nor an external observer preferring 
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the fully-competitive market quantity would ex ante prefer that the regulator have 

the authority to ban the product. With bans possible, however, the regulator will 

sometimes choose bans in equilibrium. 

A similar translation can be made to the domain of a parent concerned about a 

child's level of some risky activity. 

Assume that the child would do more of the activity if it were safer. Assume that 

for any given fully-known safety level, an external observer would prefer to see more 

activity than the child would, and that the parent would prefer even more activity 

than that. Assume the the parent knows more about the risk level than the child. 

Finally, assume that if the parent were to "ban" this activity the resulting activity 

level would be somewhere between what the child would choose if certain that the 

risk were the highest possible, and the level the child would choose if the not entirely­

trusted parent, with no ability to ban, were to just tell the child that this risk is 

maximal. 

Given these assump~ions, neither the child, the parent, nor the external observer 

would ex-ante prefer that the parent be able to ban the activity. Given the power to 

ban, however, the parent will sometimes choose to ban . 

2.4 Conclusion 

This paper presents a game-theoretic model of product bans, intended to combine 

the best elements of the captured regulator, public interest, and irrational consumer 

models , and to explain a number of empirical regularities regarding product bans. 

The basic intuition is that when a "nanny" keeps dangerous things out of some­

one's reach, that someone becomes more complacent about possible harms. This in 

turn encourages "paternalism" in the nanny, who is unwilling to live with the conse­

quences when complacence encounters real danger. When this person knows that the 

nanny must treat them as an "adult," however , and can only warn them about dan­

gers, they become more cautious. And overall, people may be better off being treated 

as adults . This intuition applies to the relationship between parents and children, 
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and to the relation between a "nanny state" regulator and consumers. 

This intuition is formalized in a simple model of a one-dimensional choice set and 

a single extreme action which can be forced. Focusing on the product ban application, 

we consider simple products with no use externalities, or relevant signaling function, 

and we imagine that regulators have quality information not otherwise available to 

fully rational consumers. We assume that regulators are rewarded only by retrospec­

tive voters attending to their ex post utility levels, we assume some small degree of 

either regulator capture or non-competitive markets , and we assume that product 

labeling or banning are the only policy options available to the regulator. 

Given these assumptions, regulator labeling is a cheap-talk signaling game, and 

so there are cases where the regulator would rather ban a product than live with 

the consequences of consumers who don't believe their labeling advice, but who will 

nonetheless hold the regulator accountable for the consequences of consumer choices. 

Giving the regulator the ability to ban products changes the equilibria, and in some 

situations this makes consumers ex-ante better off, while in other cases consumers be­

come worse off. While it seems easier to generate examples where consumers become 

worse off, more work needs to be done to find a systematic way to distinguish these 

cases. A general sufficient condition for the superiority of prohibiting bans has been 

given, but there is much that it doesn 't cover. 

If bans are ex-ante worse, product bans can be viewed as commitment failures. 

Without a commitment not to ban, regulators will want to ban sometimes, and con­

sumers will base their inferences on this possibility. With a commitment not to ban, 

consumers make different inferences , to their ex-ante benefit. A commitment not 

to ban also aligns the ex-ante preferences of all actors toward minimizing the mag­

nitude of regulator bias. Perhaps we should consider a constitutional prohibition 

on regulator-informat ion motivated product bans, similar to the U.S. prohibition on 

print media bans. 

There are also many other directions for future work. It would be nice to better 

characterize when bans are ex-ante better, to consider bias functions which can be 

zero at points , and to consider the case of where a regulator can choose to either 
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ban or require a product. And it is important to examine the degree to which the 

cheap-talk aspect of regulator recommendations is broken by repeated play with some 

later information revelation to consumers about true product quality. 

Beyond this, we might consider imperfect enforcement, imperfect commitments 

to not ban, and regulator powers to place taxes or subsidies on products. We might 

allow consumers to be uncertain about regulator bias. And we might let regulators 

signal via "burned money", such as purposely expensive advertizing [ASB95] . We 

might also model the case where one or more private information sources can also 

certify the product, and we might explicitly model exogenous label-reading costs and 

ban enforcement costs. Finally, we might consider a model with endogenous quality, 

where producers decide what products to develop and market . 

Empirical work to illuminate the range of application of this model is also appro­

priate. Lab experiments should verify that people really do play according to one of 

the analyzed equilibria of such games, and data on the rates and correlates of activity 

bans which parents impose on their nearly-mature children should be informative. 

Finally, the correlates of regulator product bans may help us to confirm or reject 

this cheap-talk model of such bans. This model predicts political debates focused on 

quality levels, predicts that bans will focus on new unfamiliar harms about where 

better regulator information is plausible, predicts bans by regulators biased in favor 

of a product, and predicts large rates of bans from small levels of bias. The model 

also suggests larger rates of product bans from regulators whose advice consumers 

treat more skeptically. Finally, the model also suggests that voters and candidates 

will be unreceptive to proposals for ban-exceptions using special stores and tests, 

and suggests that consumer disregard for product labels is due more to skepticism 

than cognitive processing limits. One or more of these predictions may be testable 

empirically. 
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Figure 2.3: Aid To Monotonicity Proof 

2.5 Appendix 

2.5.1 Proof of Lemma 2.2 

MR=O 

M5 = 0 

y 

PROOF: (See Figure 2.3.) An equilibrium can be thought of as a path through the 

(y, a) plane. 

The forced act point (x, ai+i) for i = i is connected by a horizontal line representing 

equation Ettl to a point (Yi+ 1, ai+ 1). A vertical line representing equation £[!+- 1 then 

connects this to a point (yi+1 , ai+2 ). This zig-zag pattern continues until a vertical 

line reaches the last point (Yn-l, a). If xis interior, then going in the other direction 

from point (x, ai+ 1), the zig-zag pattern ends at a vertical line reaching (y0 , g_). 

As x varies, each point (y, a) will vary with some vector (dy/dx, da/dx), and the 

equations corresponding to each line connect the vectors on the two ends of the lines. 

The Eis equations say that if the vector on one side of a horizontal line cuts the us 

isoquants so as to move toward lower us, the other side must cut in the opposite 

direction, so as to also move toward lower us . Since points connected by lines are 

on opposite sides of the maximal Qs (i.e., Ms = 0) curve, opposite movement means 

they both move "inside" (toward Ms = 0) , or both move "outside" (away from 

Ms = 0) . Similarly, the £iR equations say that the vector must cut the JR isoquants 
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in opposite directions from they= x (i.e., MR = 0) line at the two ends of a vertical 

line. 

The end point (Yn- 1 , a) must vary along the line a= a, which as Yn-l increases 

must cut inside the isoquants of JR. Thus at (Yn-l, an_1) the vector must also be 

inside JR, and is hence positive, and the assumption of a steeper JR vector implies 

inside us as well. Continuing, at (Yn- 2 , an_ 1 ) the vector must cut inside us and be 

positive, which is now also inside JR, since we are on the other side of Ms = 0. 

Since all the constructions leave the vector in the ( +, +) direction, the vector at 

(x, ai+1 ) is also in this direction, and so all da/dx and dy/dx are positive for i > i. 

The same argument applies when starting from end point (y0 , r) which varies along 

the line a = Q, implying that all dy / dx and dy / dx are positive for i < i. QED. 

2.5.2 Proof of Lemma 2.3 

In general ex-ante expected utility for any agent is 

E[U] = ~ 1a;+i U(yi, a)dF(a). 
i=O a, 

To compare utility between equilibria, we will continuously vary one equilibrium 

into another, and in a way such that the local derivative of E[U] along the way 

maintains the same sign. (This proof closely follows C&S's proof of their theorem 

three.) 

Let us define y _ 1 to be the solution to Et ( y _ 1, Q, z). For x < y _ 1, S never chooses 

x, so the extended and basic equilibria are identical. 

For x ?:: y_ 1 , as we vary x = y0 in the extended game from y_ 1 to x to z, we move 

from an equilibria with the same Yi as an n + 1 step solution of the basic game over 

[y_ 1 , a], to an n step solution of the extended game on [g,_, a], to an n step solution 

of the basic game on [g,_, a]. (All the while we hold [g,_, a] fixed.) Along this path, the 

local derivative of E[U] with respect to x is 
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dE[U] n-l (dyi 1a;+1 dai f,Yi ) = 2= - M(yi, a)dF(a) - -d M(y, ai)dy . 
dx i=O dx a; X Yi-1 

Given monotonicity all the dad dx and dyif dx are positive. 

For S, the second integral is exactly zero for all i, and so given Ms 2: MT' for T 

this integral term contributes non-negatively. For R the first integral is exactly zero 

for all i =J. 0, and for i = 0 is positive for any x E [y_1 , z), since xis less than R 's ideal 

y(r, ai) where this integral is zero. (xis clearly less at x = g_, and by continuity stays 

less across this range; otherwise it would be equal somewhere between, identifying 

another n step solution of the basic game, which contradicts monotonicity.) Thus for 

T the first integral contributes positively. 

Thus the sum is positive, and so T strictly prefers a distinct n step equilibrium of 

the basic game to an extended n step equilibrium for x 2: r. QED. 

2.5.3 Proof of Lemma 2.4 

PROOF: We need to show that for g_ :S x = y0 and Ms > MR, introducing the forced 

act x does not increase the number of equilibrium steps possible, i.e., that N 2: N(x). 

Let us focus first on x = g_ in the extended game. And let us consider allowing 

the range [g_, a] to vary within a larger range [r_, f]. A varying Fg,a will be obtained 

by conditioning on a differentiable c.d.f G(a) with support [r_,r], as in 

G(a) - G(r) 
Fg,a.(a) = G(r') - G(r)' 

Observe that since the equations [is, [iR are in terms of continuous functions of 

the ai , Yi, their solutions vary continuously as we vary g_, in both the case where 

g_ = x and where there is no forced act. The only thing preventing one from taking a 

solution with n steps over range [g_, a] and collapsing it all the way to [a, a] is that at 

some point the solutions found this way will begin to violate one of the constraints 
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If there were a sequence of solutions to EP approaching Yi-l = Yi, then we would 

have M 5 (Yi-1, ai) = 0 2: MR(Yi-1, ai)· M2 > 0 and £/!_ 1 imply that if this MR(Yi- 1, ai) 

is zero, then ai = ai_ 1 , and otherwise £/!_ 1 has no solution. Thus as r increases, 

Nrr' and Nrr' can decrease only immediately after the r points which have boundary 

solutions where ai = ai+l for some i. 

£iR, Mf > 0, and MR(y, y) = 0 imply that if any two of ai, Yi, ai+. 1 become equal, 

all three must be equal. Similarly, Ms 2: MR, MR(y , y) = 0, and M1 < 0 imply that 

Eis has no solution for Yi-l < ai = Yi· Taken together these imply that boundary 

solutions must satisfy Q = a0 = a 1 , in both the basic and extended game, with 

ai < ai+l for all i > 0. In the basic game £(! implies y0 = a0 , while in the extended 

game x = Q implies the same thing. Thus both games will have a boundary solution 

for a given Q if either does. Since for Q = a we have N = N = 1, and since N, N 
change by one unit at a time, we must have Nga = Ng,_a for all Q, a for x = Q. 

Now consider forced acts y0 = x 2: Q. For any equilibrium of the extended game 

with x = y 0 , a0 only appears in the constraint Q = a0 ::; a 1 . Thus given such an 

equilibrium, we can construct other equilibria on other ranges by simply varymg 

Q = a0 within [r., a1]. This implies that for y0 = x 2: Q, Ng,_a 2: Ng,_a,(x). 

Thus for any equilibria of the extended game meeting the conditions, there is an 

equilibria of the basic game with at least as many steps. QED. 

2.5.4 Proof of Theorem 2.2 

The only change that 'fl_ > Q induces in the basic game that in some equilibria the 

equation £(!, which is fj(Q, ai) = 'fl_, is replaced by y0 = 'fl_ when fj(Q, ai) < 'fl_ · Since 

z00 = max('f!__, g,_) and Zn = max('f!__, Zn), then x E [z00 , Zn ] is the same as x = 'fl_ or 

x E [g,_, znl· For x ='fl_ then, if there is an n step equilibrium of the extended game, 

then the only way there can fail to be an identical n step equilibrium of the basic game 

is if fj(Q, a 1) > 'fl_ for the a 1 of this extended equilibrium. But by monotonicity 'fl_ < Zn, 

and so in this case x E [g,_, zn ]· For this condition, the n step basic game equilibria 

exists without modification from the 'fl_ ::; Q case. Here the result of theorem 2.1 
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applies directly. QED. 
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Chapter 3 

Informed 

Voter Incentives to Become 

3 .1 Introduction 

3.1.1 The Question 

In his classic 1957 book, "An Economic Theory of Democracy," Anthony Downs con­

sidered whether, in a democracy, voters have too little incentive to become informed: 

[a voter's] value of voting correctly ... is compounded from his estimates 

of his party differential and of the probability that his vote will be deci­

sive. . .. [and] is nearly infinitesimal under most circumstances. . . . The 

result is an enormously diminished incentive for voters to acquire political 

information before voting .. .. democratic election systems always operate 

at less-than-perfect efficiency. [Dow5 7] 

Downs has recently reflected [Dow93] that "the way information costs are treated 

in that book is perhaps its most important contribution." However, while attention 

has recently turned to ways in which voters can make great use-of inexpensive infor­

mation shortcuts [Pop91, M086, GW93], and to various other incomplete information 

models of electoral processes, little formal work has followed up on the question of 

voter incentives to become informed. (There are exceptions [Ger95] .) 

This neglect is unfortunate because we can imagine alternative political institu­

tions in which voters would have much stronger incentives to become informed. For 

example, if we randomly selected a small jury to decide an election, each juror would 

have a high probability of being decisive. We would like to know whether to consider 

such alternative institutions. 
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This paper therefore attempts to develop a relatively-general fully-game-theoretic 

model of voter choices of efforts to become informed, and of candidate responses to 

those choices. Prominent prior analyses of related issues [Uhl89, FS89, FS90], have, 

in contrast, considered only simple partial-equilibrium models, with for example only 

two possible candidate positions and agents who even then do not fully optimize their 

behavior in response to the strategies of others. 

With this general model in hand, this paper then attempts to clarify what does 

and does not dilute voter incentives to become politically informed. We will find that 

voters can have surprisingly strong incentives to become informed , that information 

scale economies can overwhelm large group free-riding problems, and that even when 

information is free, voters can prefer ignorance to full information. 

3.1.2 Model Overview 

This paper analyses a fundamentally prospective two-candidate election. That is, 

before an election each of two candidates must simultaneously announce their policy 

positions, policies which they are committed to implementing if elected. In contrast 

to most prospective election models, however, we here allow "policy-day" to occur 

well before election-day, to allow for the time and repetition required to communicate 

policies to wider audiences. 

Also, voters do not directly base their election-day voting decisions on announced 

policies, for two reasons. First , information may be revealed between policy-day 

and election-day regarding the consequences of candidate policies. For example, a 

candidate may announce a policy in March favoring free trade, but the consequences 

of this policy may become clearer by November as the national economy weakens, as 

trading partners clarify their intentions, and as pundits analyze the situation. Thus 

candidate policy-day positions are really lotteries over election-day positions. 

Second, voters need not be perfectly informed about candidate election-day po­

sitions when they vote . Instead, voters may receive only imperfect signals regarding 

such positions, signals whose quality (i.e., relation to candidate positions) may come 
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at some personal cost. Voter efforts to become politically informed are conceived of 

very broadly here, and may include any effort which improves one's political signals 

or ability to interpret them, such as attending college, subscribing to a newspaper, or 

watching a debate. 

Strategically, it will be useful to divide voter information efforts into two cate­

gories: early efforts, like attending college, made before candidates announce their 

policies and visible to candidates, and late efforts, like watching a debate on TV, either 

made after the candidates announce their policies, or not visible to those candidates. 

The main space of possible candidate policies modeled here will be roughly "dis­

tributive." That is, a candidate's election-day position says how large a "pie-slice" 

each of the finite set of voters would receive if this candidate were elected. The size 

of the total "pie," however, is not fixed. Instead, a candidate's policy-day lottery can 

contain election-day positions with different total pie sizes. An announced policy of 

an aggressive military buildup may, for example, increase the national pie if potential 

adversaries back down, but decrease the national pie if adversaries respond in kind. 

This space of candidate positions is also generalized in two ways. First, candidate 

distributive positions can be constrained by the existence of voter "groups," which 

are such that all members of a group must be given the same size pie slice. There are 

no group leaders here, however, nor any other non-trivial form of group organization. 

Second, conditions are identified which allow one to add any arbitrary policy space 

to the analysis without changing the conclusions. 

Putting this all together, then, this paper's main model contains the following 

stages 

1. Voters choose early (visible) information efforts. 

2. Candidates choose policy-day positions ( = lotteries on election-day positions). 

3. Voters choose late (or invisible) information efforts . 

4. Nature chooses election-day positions from policy-day lotteries, and chooses 

each voter's noisy signals regarding election-day positions. 
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5. Voters chooses their votes, after seeing their signals regarding the "pie slice" 

their group would receive from each candidate. 

3.1.3 Key Insights 

This model can ·be used to present a number of insights regarding voter incentives 

to become informed, some of them counter-intuitive. While some of these insights 

can be, and have been, presented in the context of simple partial-equilibrium models, 

their elaboration in this more general context should increase our confidence that 

they are relatively general features of electoral games, and should help us understand 

their range of applicability. 

Downs, in addition to remarking on infinitesimal voter "incentives to acquire po­

litical information" (as in the previous quote) also remarked that 

the more information a citizen has, the more influence over government 

policy he is likely to exercise, provided he informs the government what 

his preferences are .... an influencer's intervention value may suffer hardly 

any discount because only a small number of others are interested in the 

policy he wants to influence ... . Such ignorance ... stems from the great 

cost of obtaining enough information to exert effective influence .... The 

complexity of these areas often forces influencers to become experts before 

they can discover what policies best suit their own interests. [Dow57] 

That is, Downs noticed that efforts by citizens to become informed in order to commu­

nicate their preferences to politicians do not suffer a dilution due to low probabilities 

of being pivotal in an election, if these communications are made before these politi­

cians choose their policy positions. 

Downs claimed that this vast leverage in influence is available only to a small mi­

nority, apparently because a large minimum effort is required before one can become 

informed enough to use this channel of influence. Similarly, most discussions of inter­

est group politics [Uhl89, Ros93, Wal91] allow group leaders , but not group members, 

to expect their actions to have a non-negligible influence on candidate policies. 
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Downs' large-minimum-effort claim is difficult to understand, however. In theory, 

any credible visible signal about how informed one will be regarding candidate po­

sitions on election day should have a direct influence on those candidates, undiluted 

by the probability of being pivotal. And, contrary to Downs, this should be true 

regardless of the level of information signaled, though of course a signal of a high 

information level should induce a stronger reaction than a signal of a low information 

level. For example, simply subscribing to a newspaper is a relatively cheap visible 

signal of a minimal information level. 

The basic game-theoretic concept here is that the first-mover in a game often 

gains an advantage by her ability to commit to a course of action up front. Voters 

can commit to becoming informed, just by becoming informed , and then credibly 

signaling that fact. 

The other major reason cited (most famously by Olson [Ols65]) for weak voter 

information incentives is free-riding within large voter interest groups. If candidate 

positions must treat all interest group members the same, then without some special 

group organization each group member might rather that the other members make 

whatever efforts are required to convince candidates to fear their group's wrath. 

What group member efforts need to produce, however, is information, and it is 

worth pointing out that there can be large scale economies in information produc­

tion. Imagine, for example, a situation where if one group member bothered to learn 

a candidate's position toward his group, he could costlessly communicate this infor­

mation to all other members of his group. In such a case, information-production 

scale economies could outweigh even a very extreme group free-riding problem, so 

that voters prefer to be members of larger groups. 

Note, however, that voters having strong incentives regarding their political infor­

mation need not imply that such voters want more information, even when informa­

tion is free. There are many games, including electoral games [Ree89], where players 

prefer less information to more, at least if other players become aware of and can 

respond to this fact. You can prefer, for example, that potential extortionists believe 

that you don't know whether they would carry out a threat to hurt you. 
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As suggested by Fiorina and Shepsle [FS90, FS89], voters can prefer a "negative 

news" form of ignorance, where one's probability of supporting a candidate is concave 

in the position they take. Voters who are more likely to learn of candidates who hurt 

them than of candidates who help them will be effectively "negative voting." Not 

only can this concavity induce stability (or zero variance) in candidate positions, but 

the optimal form of ignorance will induce the same expected benefits from 'candidates 

as full information. 

This possible preference for strategic ignorance offers a caveat regarding mecha­

nisms like the voting juries mentioned above and other stochastic voting mechanisms 

which have been suggested [Lev89, Sto90, Dah89]. While such mechanisms can in 

fact induce voters to become better informed, strategically ignorant voters can prefer 

to commit to not using such mechanisms. 

3.1.4 Technical Features 

The game model used here has some noteworthy technical features. 

First, this model assumes that candidates maximize something like plurality. This 

is a common assumption, and is equivalent to maximizing the probability of winning 

under a variety of conditions, reviewed by Coughlin [Cou90]. For example, Hinich 

[Hin77] .justifies it by assuming everyone votes, their vote distributions are indepen­

dent, and the electorate is large. 

Second, noisy voter signals imply that candidates are not sure about each voter's 

response to their positions. Hence this is a probabilistic voting model [Cou92 , Led84]. 

However, in contrast to probabilistic voting models which are driven either by voter 

mistakes or by exogenous candidate uncertainty over voter preferences, here all actors 

are full rational and candidate uncertainty is endogenous - all the model specifies is 

a mapping between voter effort and the resulting conditional signal distribution. 

Third, this model differs from previous probabilistic voting models in considering 

mixed strategy equilibria for the candidate-policy-position game. While previous 

models, such as Coughlin's [Cou92], have been able to demonstrate results such as 
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that candidates give better offers to voters who they expect will be better informed, 

these results have been limited to the case of probability distributions which imply 

concave candidate expected payoffs, and hence pure strategy candidate choices. This 

excludes, for example, small normally-distributed errors over distributive policies. 

Mixed strategies are examined here even though good reasons have been offered 

[Ord86] to be wary of using them to model what may be considered an intrinsically 

dynamic process of position adjustment. Others, such as Myerson [Mye93], have 

gained useful insights through mixed-strategy electoral models. And while it seems 

clear that real candidates can often react to opponent positions, it also seems clear 

that there remains some inertia in the process, and that candidates often remain 

uncertain on election day about effective opponent positions (how an opponent's 

position will be perceived by voters). A fully multi-stage adjustment process is more 

complex to analyze, and even so can reduce to a single-stage game in the last period 

[Led89]. 

Finally, the use of mixed strategies over policy-day positions, which are themselves 

lotteries over election-day positions, implies that candidates are in effect choosing 

from a convex set of distributions over election-day positions. Instead of explicitly 

representing this convex set in terms of a finite number of "pure strategy" boundary­

vertex lotteries, however, we will instead describe this convex set in terms of a finite 

number of boundary-surfaces specified by linear inequalities. 

That is, we will allow a candidate to choose any lottery over pie-slices which 

satisfies a given set of inequalities regarding the expected value of various functions. 

For example, candidate lotteries over pie-slice allocations might have to keep the 

expected value of the total pie size below some bound. Also, a candidate's ability to 

"gamble" with the total pie size might be limited by a constraint on the variance of 

total pie size within each lottery. 

This may seem an odd way to describe candidate strategy sets. But given this ap­

proach, conditions are found under which it is a sequential equilibrium for candidates 

to choose their distributions to be independent, rather than correlated, across groups. 

And given such independent equilibria, candidates can be thought of as playing a 
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number of independent electoral games, one for each voting group. 

Thus independent equilibria allow us to dramatically simplify the description and 

analysis of such games. In contrast, previously known mixed-strategies over divide­

the-pie games, such as the "Colonel Blotto" game [GW50], contain rather complex 

correlations. This simplification enables a simplified presentation of most of the 

applications in the paper, and should simplify future analysis of models in this family. 

If one finds it difficult to accept candidate strategy spaces bounded by expec­

tation inequalities, this approach to candidate strategy spaces can be alternatively 

understood as a technical trick to relax of the usual constraint of an exact fixed-pie, 

made primarily to simplify the resulting analysis. If only a small pie-size variance is 

allowed, for example, this might be considered only a slight relaxation of the usual 

constraint. 

3.2 The Model 

3.2.1 Players and Actions 

A two-candidate election where voters have incomplete information is modeled as an 

extensive form game, with the sequence of events sketched in Figure 3.2.1. 

The players are a set of two candidates C = { 1, -1}, and a finite set of voters J., 

who are divided by a partition G into disjoint voter groups g, so that for each voter 

i, i E g(i) E G C 21
. There are thus III voters divided into IGI groups, each of size 

n9 = lgl. Feminine and masculine pronouns will be used to denote candidates and 

voters respectively. 

Each voter i will eventually chose a vote vi E C. The net vote for candidate 1 is 

v = LWiVi + £, 

iEI 

where wi is the number of votes controlled by voter i, £ is some independent noise, a 

combination of coin flips used to break ties, vote miscounts, etc., with a continuously 
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Stage I Each voter i chooses early efforts iii, then all players are told a= (ai)iEI· 

Stage II Each voter i chooses late efforts ai(a). Simultaneously, each candidate 
c E C chooses a distribution Fe(ii) over election-day positions Xe· 

Nature Moves Nature picks (xeg)gEG = Xe rv F e(ii), and then (si)i s rv 

H(slx1, X-1, a, a). 

Stage III Each voter i sees signal si but not a_i, and then chooses a vote 
vi(si, ai, a) E C. 

Nature Again Nature picks vote noise E"' N(e:), and the max plurality candidate 
wms. 

Figure 3.1: Order of Events in Game 

differentiable c.d.f. distribution N(e:). The total ballot is v = (e:, (vi)iEJ), and the 

winning candidate will be c( v) = 1 if V ~ 0, and -1 otherwise. 

Before the election, each candidate c E C must choose and commit to a probability 

distribution Fe over "divide a pie" election-day group positions (xeg)gEG = Xe E 

Xe (compact and convex) C R'.;1, where Xeg E R+ is the "pie" amount given to 

each member of group g. (Distributions are also assumed to be independent across 

candidates.) This distribution Fe must satisfy M distribution constraints of the form 

(3.1) 

for some continuous functions f me(Xe) and constants Kme· 

For example, one such constraint might be an average pie-size constraint 

(3.2) 

where Xe(xe) = LgEG n9 Xeg· Here candidates need not divide the same total dis­

tributive pie Xe, but can instead in effect make limited "gambles" with their total 

expected pie Xe· Another example constraint is 
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where K here constrains the variance of Xe. Setting K = X2 would constrain the 

variance to be zero. We assume, however, that there exists some distribution such 

that all these constraints are not binding (i.e., Slater's condition). 

Before candidates choose their positions, each voter chooses an early effort level 

ai E Ai (compact and convex) regarding how informed he will be about candidate 

positions. All these efforts ii = ( iii)iEI are then revealed to all players. 

After candidates choose their positions, but before voters vote, each voter chooses 

a late effort level iii E Ai (compact and convex), also regarding how informed he will 

be about candidate positions. Nature then gives each voter a noisy signal Si E Si 

about candidate positions, and each voter then chooses a vote vi(si)· This signal 

process will now be explained in more detail. 

3.2.2 Information 

Most real politician~ are so much better informed about politics than most voters that 

it seems reasonable to consider a first approximation where each candidate knows 

everything voters know, and everything other the candidates know, but where voters 

may know much less. 

Thus this game models voter ignorance, but not asymmetric candidate ignorance. 

Specifically, each voter i only observes a noisy signal si E Si (compact and convex) 

before he votes, instead of directly observing candidate positions Xe· The total signal 

s = (si)iEI is distributed according to a c.d.f. 

continuous in x 1 , x_ 1 , ii, a, where a = (ai)i. Again, iii and iii denote voter i's early 

and late efforts, respectively, to become informed about candidate positions. 

The information structure of the game is encoded in the following notation of the 

strategies of each player at each choice point. First, all voters choose early efforts 

iii· Then the two candidates simultaneously choose distributions Fe(ii) over Xe, while 

all voters simultaneously choose their late efforts level iii(ii). Next, nature samples 
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Xe rv Fe and thens rv H(slx1, X_1, ii, a) . Finally, voters choose vi(si, ii, ai) and nature 

samples Erv N(E). After the election, the winner c(v) implements their policy Xe· 

3.2.3 Preferences 

Each candidate e's utility We(v) depends in general on the total ballot v. Each 

candidate c prefers more votes, so cWe( v) is non-decreasing in each vi· 

Each voter i cares about the winning position Xe, and their efforts, iii and ai, to 

become informed. Specifically, each voter i gets utility 

which is continuous, non-decreasing, and strictly concave in its first argument, x, and 

continuous in the remaining arguments. Note that this utility form ui(x, ii, a) can 

express non-electoral advantages of political information, such as in performing one's 

job or in making better ~onsumer decisions. 

3.2.4 Expected Payoffs 

Putting it all together, we can think of this as the three "stage" game in Figure 1. 

In the first stage, each voter knows only the game form, and chooses early effort 

iii to maximize 

where v(s) = (E,(vi(si,ai,ii))iEJ), and where we define the joint distribution J as 

In the second stage, each voter i knows all early efforts ii, and chooses late effort ai 

to maximize this same tJ form. The difference is that a voter knows that later-stage 
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strategies vi, Fe of other players can depend on his first-stage choice of ai, but they 

cannot depend on his second-stage choice of ik 

In the second stage, each candidate c also knows only a, and chooses distribution 

Fe to maximize 

subject to M constraints of the form EFe [f me(Xe)] :S Kme· 

In the third and last stage, each voter i, knowing his signal si, his late effort ai, 

and all early efforts a, chooses strategy vi E C to maximize 

where v_i = v\vi = (E, (vi')i'El\i)· 

Since a is told to all after the first stage, the game starting with the second stage 

is a proper subgame of the whole game. We will call this subgame the late game. 

3.3 ·Existence of Equilibria 

Before considering this game further , let us consider whether equilibria exist. 

If Si is not finite, then let a finite approximation to S be a finite partition Si of 

Si, which implies a discrete distribution h(s) = fsE s dH(s) for each s E Si (suppress­

ing arguments x1 , x_ 1 , a, a). To use such an approximation, one replaces integrals 

fsES; dH(s) with sums :Z:::sES; h(S) in the expressions for u, U, W. 

We can prove the following result (see section 3.9.1). 

Theorem 3.1 For any finite approximation to S , there exists a mixed-strategy se­

quential equilibrium to the late game. 

Our analysis will be easier, however, if we can find equilibria where candidates 

treat each voter group independently, so that Fe(xe) = IT9 Fe9 (xe9 ) . Defining group 
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signals sg = ( si)iEg and group votes Vg = ( vi)iEg, such independent equilibria can be 

found if we assume 

2. group-linear candidate preferences, as in Wc(v) = Wco(E) +Lg Wcg(vg) , and 

3. group-linear distribution constraints, so f mc(xc) = Lg f mcg(Xcg) and Xe = x gXcg> 

with f mcg continuous and Xcg compact and convex. 

For example, group variances might, given constants Kc, keg, Xcg, be constrained via 

LkcgVary:c [Xcg] :S Kc - Lkcg(E:;:c [Xcg] - Xcg) 2
. 

g 

We can prove the following (see section 3.9.2). 

Theorem 3.2 If signals are group-independent and candidate preferences and distri­

bution constraints are group-linear, then there exists a mixed-strategy equilibrium to 

the late game where candidates treat groups independently. 

The assumptions of this theorem are not that unreasonable for independent equi­

libria. 

For independent equilibria, group should strive to avoid having their signal of 

candidate positions toward them mixed up with candidate posit_ions regarding other 

groups, since those other positions are completely irrelevant to their choice. That is, 

groups should strive for group-independent signals. 

Regarding the assumption of group-linear candidate preferences, all we really need 

is group-linearity of the expected candidate payoff, as in 

This should be approximately true, for example, for in an independent equilibrium 

with IGI large and We a smooth function of total votes V. With fractionally-small 
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groups, helping out one group should keep V with a range where We is approximately 

linear, and so not much effect the benefits of helping out other groups. 

Independent equilibria with fractionally-small groups also provide a reason to be 

less wary of assuming group-independent distribution constraints, and more generally 

of using distribution constraints to constrain candidate policy positions. That is 

because with enough small groups, the only binding constraint should be an average 

pie-size constraint, which is group-independent. 

In an independent equilibria, the total variance the total pie I:9 n9 xc9 is the sum 

of the variances of the group distributions Fc9 , each of which depends mainly on 

within-group properties. As we get more fractionally smaller groups, the total frac­

tional variance declines to zero, and so reasonable distribution constraints on the 

variance should be slack. Similarly, with enough groups finite higher-moment group 

distributions Fc9 should also make reasonable higher-moment distribution constraints 

slack. Thus in the limit of many groups, only a simple average-pie-size distribution 

constraint (such as equation 3.2) should bind. 

We can thus think of this model as an exact description of a finite-group ap­

proximation to the asymptotic case where variance goes to zero with enough small 

voter groups, and budgets can be balanced exactly even with independent equilibria 

[Mye93]. 

The big advantage of dealing with group independent equilibria is their simplicity. 

For example, modulo a few coordinating parameters, candidates can be thought of as 

playing many independent games, one for each group. Let us define each candidate's 

group vote payoff to be the expectation over any vote or effort strategy mixtures of 

which is the convolution of voting strategies, vote payoffs and the voter signal process. 

We can prove the following (see section 3.9.3). 

Theorem 3.3 An independent equilibrium has the same candidate strategies as a set 

of equilibria of one-group candidate games where, given fixed constants (>-cm)m, each 
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candidate c 's net payoff is 

Qcg(Xcg' X-cg) - L Acmfmcg(Xcg)· 
m 

3.4 Rationalizing the Policy Spaces 

We have so far described candidates strategy spaces very abstractly; candidates choose 

distributions Fe over · divide-a-pie positions Xe = (xcg)g, positions which are con­

strained to lie within a convex set defined by a finite set of bounding planes given by 

inequalities of the form EFc [fmc(Xc)] :S Kmc· But is this very abstract characteriza­

tion of strategy spaces consistent with any more concrete models of candidate policy 

spaces? 

Imagine that each candidate could, on "policy day", choose from among a finite set 

of policy positions a E Ac, and that between policy day and election day, information 

would come out about the consequences of these positions for post-election group 

pie-slices xg which would result from policy a. In this case, each policy-day position 

a would be associated with a distribution Fa over election-day positions (xg)g· 

Candidates able to choose mixed strategies over policy-day positions a could thus 

choose any mixture Fe = LaEAc 7rwFa where LaEAc 1fw = l. . Given a finite set Ac 

of possible policy-day positions a, the set of possible mixtures Fe would be a convex 

hull with a finite set of vertices Fa, and also a finite set of bounding surfaces. Thus 

in this model candidate strategy spaces could as well be described by a finite set of 

inequalities, one for each bounding plane. So the abstract formulation of this paper 

would apply to this more specific model. 

An alternative concrete model is as follows. Let each candidate choose both a 

distributive policy de = (dcg)g, where Lg deg = 1, and a macroeconomic policy me. 

Let each pair of such policies d, m be associated with a distribution Wm(XJd) over the 

total pie size X. Given a realized total pie X, each group would get a pie-slice given 

by Xg = X bg(X, d) for continuous pie fraction functions bg(X, d) where (bg(X, ·))g is 

a one-to-one and onto function on the IGI dimensional simplex. Note that for fixed 
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distributive policies d we allow the pie fractions b9 to vary with the total pie X, but 

we only allow macro policy m to influence outcomes x via the total pie X. 

Given these assumptions, every outcome x = (x 9 ) 9 (where all x9 2 0) is associated 

with a unique pair d, X such that x = (X b9 (X, d)) 9 . Thus any distribution :F(x) over 

election-day positions x can be associated with a distribution D( d) over distributive 

policies d together with a set of total-pie distributions -W(Xld), one for each distribu­

tive policy d. Thus if there exists a wide enough range of macro polic:ies m, so that 

for each d there exists a mixture 7r(mld) such that -W(Xld) = J '1Fm(Xld) d7r(mld) , 

then a distribution :F can be implemented by a mixed-strategy randomization D( d) 

over distributive policies d, followed by a conditional mixed-strategy randomization 

7r(mld) over macro policies m. 

Imagine, for example, that a presidential candidate could, on policy-day, commit 

to the following deal with a foreign power. In exchange for other concessions, the 

candidate would if elected arrange for his nation to buy from that foreign power some 

of a certain product at a certain price. This product might , for example, be a foreign 

currency. If the foreign power was risk-neutral, if the product was resellable, and 

if the agreed on purchase amount could vary arbitrarily with the later exogenous 

market price of the product, then the candidate could in effect agree to any constant­

expected-value conditional bet of his nation's total assets. If there were no other 

sources of total-pie uncertainty than the future market price of this product, then the 

candidate could obtain any distribution over X which satisfied E [Xld] ::; X(d) and 

Prob[X < OJ = 0. 

If we further assumed that the average total pie satisfied X ( d) = X, being inde­

pendent of distributive policies d, then the candidate could in effect commit to any 

distribution :F subject to an average-pie-size distribution constraint E :F [X] ::; X. 

This space of distributions :F includes many group-independent distributions where 

F = ITg Fg. 
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3.5 Extending the Model 

It turns out that this model can be straight-forwardly extended to endogenize the 

spaces of possible pie-divisions Xe, and to allow candidates to take positions on more 

general policy issues, in addition to positions on distributive questions. In this ex­

tended model, all our previous results will still hold. 

Let candidates now take general policy positions Ze E Ze (compact and convex) in 

addition to choosing distributions over divide-the-pie positions Ye = (ye9 ) 9 E []L, y]IGI, 

subject to only an average pie-size distribution constraint, E:Fe [I.: 9 n9 ye9 ]::; Yc. (Re­

call that this is the only constraint expected to bind in the limit of a large number of 

groups.) 

Voter utility will now be of the form 

with µ 9 continuous, except that after the winning candidate is chosen, each voter will 

be given the option to "revolt." If all of the members of any group revolt, they will 

all be guaranteed ui(O, ai, ai)· Note that while we have made the strong assumption 

that voter preferences are linearly separable in general policy and group pie-slices, 

the choice of zero for the voter revolt payoff is without loss of generality, since utility 

ui is specified only up to an affine transformation. 

If the winning candidate ever has µ 9 (ze) + Yeg < 0 for some group g, then that 

group will clearly revolt. If candidates sufficiently abhor the prospect of revolution 

then they will not choose any mixed strategy which gives a finite probability that 

their positions z, y will violate this constraint. Thus if we define Xeg = µ 9 (ze) + Yeg 

we are assured that all Xeg chosen will be non-negative, if such a choice exists. Thus 

voter utility will again be of the previous standard form ui(x9 , ai, ai)· 

The single distribution constraint can be rewritten in terms of the Xeg as 
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If we further assume utility signals, so that H(slv1 , Y-1, Z1, L 1 , a, a)= H (slx1, X-1, a, a) , 

with voters only receiving signals about their utility-relevant package Xeg(i), instead 

of about the individual components Yeg(i) and Ze, then X( zc) in the distribution con­

straint is the only place where the Ze still appear in our reformulation of this game. 

Thus if this distribution constraint is binding, then in any equilibrium each candi­

date must choose a z~ which maximizes X(ze) over Ze. Thus, taking Xe = XAz~) , this 

extended game has reduced to the unextended game, inducing the same distributions 

over the Xeg· 

Result 3.1 Allowing general policy positions in addition to divide-a-pie positions 

does not change the results of this paper if voter preferences are linearly separable in 

these two kinds of policies, if voters receive only utility signals, and if only an average 

pie-size distribution constraint is binding. 

3.6 Model Applications 

3.6.1 Simplified First-Order Conditions 

We can gain a clearer understanding of the conflicting influences on voter information 

effort by examining equilibrium first-order conditions regarding those efforts. But first 

we should simplify the model to make these conditions more transparent. 

Let us make the assumptions required for independent equilibria, let us further as­

sume identical candidate abilities Xe, fmeg(·), Kme, Xe, and let us focus on the symmet­

ric strategies Fe = :F ( = IT9 F9 ) which should exist in this now candidate-symmetric 

game. Let us assume that for all i, j E g, ui = Uj, so all voters in a group have the 

same risk preferences and cost of information. Furthermore, let us assume group­

independent information production, so that 

where group efforts are a9 = (ai)iEg and a9 = (ai)iEg· Also assume group information 
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pooling, where all group members i E g become identically informed about candidate 

positions, with si = Sj when g(i) = g(j), even though their information efforts vary. 

Finally, assume pure strategy votes and effort choices. 

With identical group members, group information pooling, and pure-strategy votes 

and late efforts, the entire group will either choose one candidate or the other, and 

so candidate group vote payoff must be of the form Qcg(X1g, X-1g) = Vcgqg(X1g, X-1g), 

where qg + ~ is the probability that voter i E g will vote for candidate 1, given by 

Since we have independent Fg and Hg here, the Xcg are independent as well, and so 

knowing the offers, signals, or efforts of other groups tells a voter nothing about how 

he should vote. (So there is no "swing voter's curse" here [FP96].) Thus, defining 

Pg(V-g) to be the c.d.f. distribution over other-group votes V_g = V - I:iEg wivi, and 

defining wg = I:iEg wi, we can refer to the probability that some voter in g is pivotal 

in this election as Pg = Pg[wg] - Pg[-wg], independent of the late efforts ag, signal 

sg, and offers x1g, x_1g of this group g. 

Given all this, expected voter utility is, for i E g, 

[Ji = 1 ui(x, ai, ai)dFg(xla) + 2pg(a) 1 ui(x, ai, ai) ~ qg(x, y, ag, ag)dFg(yja)dFg(xla). 

(3.3) 

Assuming an interior solution and differentiability, the first-order condition for 

maximizing late effort ai is (suppressing obvious g, a notation) 

and for maximizing early effort ai is 
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where we've compacted the notation, writing Ux = u(x), Fx = F(x) and qxy = q(x, y). 

In both expressions, the left-most term is the expected marginal cost of effort, and for 

p small enough the right-most term can be neglected compared to the other terms. 

The choice of late effort ai trades off marginal cost of effort against the marginal 

value of ai in improving the choice of candidate when the voter's group is pivotal , 

discounted by the probability of being pivotal. The choice of early effort iii, however, 

trades off marginal cost of effort against the marginal value of influence over candidate 

strategies, an influence not diluted by the probability of being pivotal. 

There is, however, a common pool problem here within each group regarding both 

efforts iii, ai; each group member trades off the personal cost of these efforts with the 

group benefits these efforts produce in the group terms F9 and q9 (x, y). 

Thus, as claimed: 

Result 3.2 In a symmetric independent equilibrium with group-independent infor­

mation production, group information pooling, and identical group members, only 

late, not early, voter information efforts are diluted by the group probability of being 

pivotal. Both efforts, however, can be diluted by a group common pool problem. 

Note that if we modeled the incentives to vote, instead of to become informed , we 

should find that because the effort required to actually vote cannot be pooled the way 

information can, a voter's incentive to actually vote is diluted by the probability that 

his vote is pivotal, not by the probability that someone in his group will be pivotal. 

On the other hand, there is no group common-pool problem with voting. 

3.6.2 A Parameterized Example 

Let us now examine an instance of this last model, using specific functional forms to 

allow us to examine closed-form expressions for equilibrium strategies. 

Assume H9 is such that each voter group g either learns both candidate posi­

tions Xcg exactly, with probability Ql.9 , or it learns nothing. Let the production of 

information Ql.9 from efforts iii, ai E [O , 1] be given by 
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,.,,, = r,,69 ;:.,bg 
u.g U.g U.g . 

. This describes voters who need a conjunction of both early information &.9 and late 

information &.
9 

to learn about candidate positions. For 89 < 1 there are diminishing 

returns to estimating candidate positions from the information available. 

Groups jointly produce early and late information according to 

1 - &.9 = Il(l - ait9 

iEg 

1 - &.g = rr (1 - ai)"9
• 

iEg 

where group ignorance 1- a 9 is a product of individual ignorance 1- ai. This form of 

the information (and communication) production function would allow a small subset 

of the group to produce all of the group information if they wanted, by eliminating 

their own ignorance. 

The coordination factor K describes possible economies of scale in group informa­

tion production. There are no scale economies when K = l/n, since here identical 

individuals are in the same situation as they would be in groups of size one. For 

K = 1, in contrast, there is zero marginal cost to including and informing a larger 

group, even if the added members contribute nothing to information production 

Regarding preferences, let voter utility be a "Cobb-Douglas" power law 

where all 8, (3, "(, K > 0, so that voters prefer information leisure (equals ignorance) 

1 - ai. Let candidates seek plurality We= cV, where w9 > 0 for all g. 

Finally, assume only an average pie-size constraint (so M = 1); candidates choose 

independent F9 on Xcg ~ 0 constrained only by L:9 n 9xc9 s; X, where Xcg = EF [xc9]. 
g 

A little algebra reveals that a sufficient condition for this model to have a unique 

interior independent equilibrium is 8, "(,Ks; 1, :Y ~ 1.5(3b(l - K,) and i' ~ .5(38(1 - ~) 
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for all groups. In this equilibrium, candidate distributions are uniform on [O, 2xc9] , and 

divide the expected pie according to vote-weighted probabilities of being informed 1, 

as m 

ngXcg WgO'.g 

X L:;9 , Wg'O'.g' 

Voters choose their efforts to satisfy (suppressing g subscripts): 

& 

1-& 

a 
1-a 

K,o{J ( pa + 1 _ wa ) 
i' 2 + {J(l +pa) L:;9 WgO'.g ' 

K-b{J ( pa ) 
= T 2 + f3(1 +pa) · 

(3.4) 

(3.5) 

In the limit of low information levels &, a « 1 and small groups n 9 xc9 « X, we get 

the approximation 

(3.6) 

Examining this expression, we can conclude the following. 

Result 3.3 With low information levels, small groups, and decreasing returns to 

late information (b < 1) in this parameterized example, group information levels, 

and hence mean candidate offers to the group, increase with economies of scale in 

group information production K,, and with the group probability of being pivotal p. 

Information levels decrease with the personal costs of information "(, and with voter 

risk-aversion l/ {3. 

Note that group information levels a 9 depends on group size n 9 through both 

decisiveness p9 , which one expects should be approximately linear in w 9 for a small 

group, and through the coordination factors K,9 , which should typically decline with 

group size n 9 . If, for example, we assume that for n small, p = kn, b = 8, and 

1This equilibrium has the same marginals as the related Colonel Blotto equilibria [GW50]. 
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Fi,= K, = k'n-T, then for T < 1/2 the equilibrium group information level a increases 

with group size. 

A perhaps clearer, though more extreme, example is where K, = K, = 1 in equations 

3.4 and 3.5, in which case a larger group is clearly better informed, since p9 must be 

increasing in w9 . Note also that even if group information levels stay constant as 

group size increases, larger groups still have higher member utilities for nK, > 1, since 

in equilibrium (1 - &g(i)) = (1 - airK and similarly for early efforts. With a larger 

group, each member need contribute less to information production to get the same 

total pooled information. Thus: 

Result 3.4 If group scale economies in information production are large enough, 

and if late information efforts are important, members of larger groups will be better 

informed and better off. 

3.6.3 Ignorance Can Be Bliss 

The following model shows how voters can strongly prefer to be ignorant in certain 

ways about candidate positions. 

Assume again group-independent information production, make the assumptions 

required for independent equilibria, assume the only binding distribution constraint 

is the average pie-size one (equation 3.2) , and assume symmetric candidates who take 

symmetric strategies Fc9 = F9 . 

Assume further that for some group g we effectively have l1tl = 1 for all i E g, 

so there are no late effort alternatives. This captures the idea that there is some 

small minimum effort required to obtain any late information, making effort ai so 

costly relative to a voter's tiny incentive to obtain it that in equilibrium there is no 

temptation to make late efforts. Let us also assume that early effort is completely 

costless, so that ui(x, iii, ai) = ui(x) for all iii, ai and i E g. Finally, assume group 

information pooling. 

Now define a negative news signal distribution as H9 (s9 lx 19 , x_ 19 ) = ITc Hc9 (sc9 lxc9 ) 

where each c.d.f. Hc9 (slx) = s/2x. That is, each voter get two independent signals 
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sc E R+, one from each candidate, such that given a candidate offer x the signal 

s is distributed uniformly on the interval [O, 2x]. For small x, or "negative news," 

this signal distribution is more concentrated, and hence this distribution is especially 

informative about such situations. While good candidates can appear bad , bad can­

didates cannot appear good. 

Since this negative news distribution has a monotone likelihood ratio , -it induces 

a voting strategy of vi = 1 if s1 > s_ 1 , and 0 otherwise, which implies a voting 

probability 

1 { x/2y 2 +q(x,y) = 
1 - y/2x 

x~y 

x~y 
(3.7) 

This function is concave in x and induces a unique pure strategy candidate equilib­

rium. We can also prove the following (see section 3.9.4) . 

Theorem 3.4 If, for some group, early information efforts are costless, and late 

efforts effectively cannot vary, then if there are some early group efforts which induce 

a negative news group signal distribution, it is a group-Pareto equilibrium for group 

members to choose those efforts. In particular, these strictly dominate any group 

efforts which induce fully informative signals. 

This negative-news signal distribution induces the same expected offer Xcg as the 

fully informed case. The difference is that it induces a pure-strategy response, instead 

of the variance associated with the candidate response to a full-informed group. Thus 

a switch from full-information to negative-news signals can help this group without 

hurting any other groups; optimal ignorance can in principle produce large welfare 

gains by stabilizing the political system. 

In this model, a candidate, considering proposing some policy change, knows that 

the voters who would be hurt by that change are more likely to find out about it than 

voters who would be helped, and is thus discouraged from proposing the change. The 

tendency for people to more easily join an interest group to stop a bad change than 

to effect a good one [Han85] is perhaps weak support for this model. 
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Note that the model in this section can apply to any situation in which someone 

with an indivisible prize to award wants to induce two suitors to both curry as much 

favor as possible, and where this prize-holder will want to award it to the suitor who 

did the most currying. Imagine an older person with a valuable inheritance, seeking 

more attention from his children. Such a person can prefer ahead of time to structure 

his system of information so that he will not learn too much about how much each of 

his suitors has favored him. Knowing about this ignorance, his suitors may then be 

induced to reduce the variance of their choices. 

3. 7 Voting Lotteries 

Let us make the assumptions necessary for group-independent equilibria, and consider 

again the simplified model of section 3.6. l. 

Imagine that after candidates take their positions, but before voters take late 

efforts, the voting weight w9 for some group g is subject to a fair lottery, so that with 

probability 1/b9 group g will have b9w9 votes, and otherwise it will have zero votes. 

This might happen, for example, if random juries were used to decide elections, 

and if no more than one juror could come from any one group. Alternatively, voters 

might be allowed to join voting "pools" where all pool votes are randomly given to 

one pool member, and all members of g might join the same pool. Or perhaps voters 

could just directly gamble their vote at fair odds with an electoral agency. 

If we assume that Qc9 = w9 q9 , so that candidate utility is linear in the group's 

voting weight w 9 , then candidate behavior will not be directly sensitive to the lottery 

size b9 , since the expected voting weight is independent of this size. 

Voter information efforts will, however, be influenced by the vote lottery. Voters 

will still maximize an expected utility tJ of the form of equation 3.3, but the deci­

siveness term p9 (b9 ) will change. When choosing ai, group members will, instead of 

considering p9 (1) as they would without the lottery, now consider p9 (0) = 0 when 

their group loses the voting lottery, and p = p9 (b9 ) when they win. And when choos­

ing ai, group members will consider the expected value p = p9 (b9 )/b9 . In all cases the 
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relevant fonction q9 (x, y) will be the one when the voter has won the lottery. 

The calculation of p = p9 (b9 ) should of course take into account the fact that 

winning the lottery might tell one something about the distribution of votes of other 

groups. But since in equilibrium the candidates still treat groups independently, this 

p remains independent of this group's efforts, signal, or offers. 

For simplicity, let us now consider the case of group-independent lotteries, where 

knowing whether a group won or lost their lottery says absolutely nothing about other 

group weights. In this case p9 (b9 ) = P 9 [b9w9 ] - P 9 [-b9 w9 ], and p = p9 (b9 ) is clearly 

increasing in b9 . If we further assume a uni-modal vote distribution, with the p.d.f 

P' being maximal at zero (since candidates are symmetric) and decreasing away from 

zero, then p should be decreasing in b9 , but decreasing only slightly for b9 w9 small. 

Substituting p into equation 3.4, and p into equations 3.5 and 3.6, notice that a 

small a increases almost linearly in p for b9w9 small, while a depends only sightly on 

a small p. Thus: 

Result 3.5 In the parameterized example with a uni-modal vote distribution, late 

efforts are strongly increasing in the lottery size, while early efforts are only very 

slightly decreasing. 

In section 3.6.3, we assumed that some voting group had zero early effort costs, 

and had late efforts effectively prohibited, perhaps by weak incentives and some small 

fixed cost. We showed such a group would prefer early efforts that produced a form 

of ignorance which induced the best possible candidate offers. 

Once candidates have taken their positions, however, such voters would have no 

such strategic incentive to decline low cost information about candidate positions. 

But such a temptation could lead candidates to expect voter's signals would deviate 

from the negative-news distribution on election day, inducing worse candidate offers. 

Thus a voter might regret the option to have stronger incentives to make late efforts, 

and hence may regret the option to gamble their vote. 

For example, imagine that there were only two possible late efforts, a higher effort 

which made one's group fully informed, and a lower effort which gave no information. 



69 

If there was a b9 large enough to make p9 (b9 ) large enough that a voter would want 

to choose the higher effort if they won the lottery, then once candidate choices are 

made, this voter could not resist the temptation to play this lottery, even if he would, 

before candidates take their positions, regret having this lottery option. Note also 

that both effort choices result in the same expected candidate offers , and so other 

groups remain unaffected by this choice. Thus: 

Result 3.6 A voter group could prefer the option to visibly commit, before candidates 

take their positions, to not use a voting lottery. Allowing this commitment can aid 

this group without harming any other group. 

3.8 Discussion 

A fully-game-theoretic model of a two-candidate election has been presented where 

candidate policy positions are lotteries over election-day positions, and where the 

space of mixture of such lotteries is delimited by a set of expectation inequalities. 

In effect, candidates can make small gambles with a distributive pie, and voters can 

choose how informed to become about candidate election-day positions. 

This model illustrates the important points that 1) early visible voters efforts to 

. become informed are not diluted by the probability of being pivotal, that 2) scale 

economies in information production can outweigh group free-riding problems, and 

that 3) voters can prefer ignorance and negative news signals in order to induce 

political stability. 

While Downs seems to have understood this first point about early visible effort, 

he seems to have mistakenly narrowed its scope of application. I have not seen any 

other prior discussion of the first and second points, and the third point has only 

been suggested in the context of less than fully-game-theoretic models. 

These insights offer many ways to understand existing political phenomena, and 

suggest directions for future empirical work. 

Writing or calling a representative is easily understood as a direct early signal of 

voter information, though it does require a non-trivial minimum effort. Education and 
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age, however, should also signal information levels, and are very cheap to signal. And 

both of these indicators seem to be strongly correlated with political participation 

[WR80]. Subscribing to a newspaper, magazine, or interest group newsletter also 

signal future information levels , and require relatively little effort. This approach 

might even help explain why many people seem so much more interested in politics 

in general, rather than in learning about specific candidates just before an election. 

The models in this paper also suggests that successful and unsucc~ssful interest 

groups should differ by more than just factors moderating the free-rider problem, 

such as group size, fat-cat members, and private benefits of joining formal group or­

ganizations. In the models of this paper, the technology of information production 

and distribution is central to the democratic process. Technological progress in in­

formation production, however, may not be the political windfall many hope them 

to be if str<3:tegic ignorance is an important factor. Strategically ignorant voters may 

not want to learn any more about politics. 

Testable implications regarding negative voting and negative news have begun to 

be explored [FS89], and there is a rich literature on negative voting to draw on. 

There are also many directions for further exploration of related formal models. 

One could try a two-period model with some candidate uncertainty over voter costs 

and see if voters can use the fact that they voted in the first-period , rather than 

abstaining, to signal their information level, and so influence second-period candi­

date offers. Such a model might explain the observed stronger-than-expected voter 

incentives to vote. This signaling model would be somewhat analogous to a model of 

Glazer [Gla87] on voting to signal compatibility with colleagues, and less analogous, 

though still related, to the models of Lohmann [Loh94] on protest signaling. 

Rather than requiring candidates to observe credible signals regarding the infor­

mation levels of each and every voter, one could also try a sampling model where 

each candidate examines the information levels of some random sample of voters, and 

extrapolates the sample results to the rest of each voting group. Such a model would 

plausibly still give voters a strong incentive to become informed, if they did not know 

whether they would be sampled. 
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Finally, we most need to model some more direct welfare effects of voter infor­

mation on the quality of policies adopted by candidates. One presumes that better 

informed voters can induce candidates to adopt better policies, but we would like to 

see if this intuition can be realized in a precise model. 

3.9 Appendices 

3.9.1 Proof of Theorem 3.1 

The relevant strategies for the claimed mixed equilibrium are the :Fe distributions 

over Xe, distributions Bi over the ai, and Pi(s) = Prob[vi = 1 Is] for all s E S. The 

relevant payoffs are the expected approximate payoffs 

where B = (Bi)i and p- = (pi)i. To show that the claimed equilibrium exists, it is 

enough to show that these payoff functions are continuous and quasi-concave in these 

strategies, and that the strategy spaces are convex and compact. (By Berge's maxi­

mization theorem, best-reply correspondences which maximize a continuous function 

over a compact set exist and are upper-hemi-continuous with compact values. Quasi­

concavity implies convex best-reply values. By Kakutani's fixed-point-theorem then, 

a best-reply fixed-point exists [BA94].) 

Since all the strategies are distributions , all strategy spaces are convex, and all 

payoffs are linear and hence quasi-concave in these strategies. Under the weak topol­

ogy, an unconstrained space of probability distributions is a compact metric space. 

For the constrained :Fe, the M constraints E:;:e [fme(xe)] ::; Kme are all inequalities 

linear in the :Fe, and so intersect the compact and convex set of possible :F with 

half-spaces, leaving a compact convex set of constrained :F. 

Finally, given the continuity assumptions made on ui and h, the expected approx­

imate payoffs are continuous in Xe and a, and therefore in the strategies :Fe, Bi , Pi· 
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After all, the Pi specify a mixture over a finite set of possible ballots v, expressions 

of the form J j(z)dF(x) are continuous in the distribution F when the function f is 

continuous, and the ratio of two non-zero continuous functions is continuous, as in 

the form 

QED. 

3.9.2 Proof of Theorem 3.2 

The proof strategy will be to show first that there exists an equilibrium when can­

didates are constrained to choose independent distributions, and then to show that 

when candidates are allowed to choose any distribution, they don't have a reason to 

deviate from this independent equilibrium. 

Call P(Xe) the space of distributions over Xe, where Xe is the space of possible Xe· 

If we constrain each Fe to satisfy Fe(Xe) = IT9 Fe9 (xe9 ), then the resulting subset of 

P(Xe) is not convex under the stochastic combination 

t:F + ( 1 - t) F' = t rr Fg + ( 1 - t) rr F~. 
9 9 

However, if we consider the space of candidate strategies to be x 9 P(Xe9 ), where Xe9 

is the space of possible Xe9 , then this space is convex under the combination 

t:F + (1 - t)F' = il(tF9 + (1 - t)F~). 
9 

Thus we can show existence of equilibria in this constrained strategy space, using the 

same proof structure as for Theorem 3.1, if we can show that, under this alterna­

tive convex combination, the M distribution constraints preserve convexity, and that 

candidate payoffs are still quasi-concave. 

For any function f of the form f(x) = 2:
9 

f 9 (x9 ), we have 
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j f(x)dF(x) = j ( ~ f9 (x9 )) ( i;i dF9 (x9 )) = ~ j f 9 (x9 )dF9 (x9 ) 

and so 

j j(td:F+(l-t)d:F') = ~ j fg (tdFg + (1 - t)dF~) = t ( ~ j fgdFg) +(l-t) ( ~ j fgdF~) 

so that f is exactly linear in the mixing parameter t. Thus since the distribution 

constraints are of this form J Lg fgd:F ~ K, those constraints preserve convexity of 

the distribution space. 

Since candidate payoff is of the form We= Weo +Lg Wegi expected payoff can be 

rewritten as We = Weo +Lg WegdFeg, which is linear, and hence quasi-concave, in 

such mixtures :F. Thus there exists a constrained equilibrium. 

To complete our proof, we now need only to show that when the space of strategies 

allowed for each candidate is expanded to the full P(Xe), the same independent distri­

bution still maximizes each candidate's expected payoff, holding the other candidate's 

strategy fixed at their independent equilibrium strategy. 

The expression W = W0 + J Lg Wgd:Fe is linear in :Fe, and hence concave as 

well. And since we've assumed there is some distribution where no constraint binds, 

Slater 's condition is satisfied. Thus a maximum implies a Lagrangian saddle-point 

and vice-versa [Fra80]. 

For the "restricted" case where :Fe must be independent, then in equilibrium Fe 

must , for some (>.m)m, (7Jg)g, be a saddle-point of the Lagrangian£= 

(suppressing obvious c notation). For the "unrestricted" case where any correlated 

:Fe is allowed, the last term is replaced by 710 (1 - J d:F). 

Note that a solution :F to either of these problems, restricted or unrestricted, will 

be a solution to the matching "linearized" problem, where the Lm Am part is taken 
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to be part of the· payoff function, instead of a constraint multiplier term. Conversely, 

a solution of either linearized problem with the right Am is a solution of the problem 

it was derived from. 

In the linearized expanded problem, the only constraint directly on the distribution 

is that it be normalized. Thus the added constraint in the linearized non-expanded 

problem that the distribution Fe must be independent does not reduce the payoff, 

since for any solution distribution of either problem, a distribution concentrated at 

a single point within the support of that solution distribution will do just as well , 

and is clearly independent. Thus a solution to the linearized non-expanded problem 

is a solution to the linearized expanded problem, and hence is a solution to the non­

linearized expanded problem. Thus there is no incentive to deviate. QED. 

3.9.3 Proof of Theorem 3.3 

The Lagrangian of equation 3.8 can be rewritten as L = I:m AmKm +Lg Lg, where 

Lg= 

Since the only dependence of L on Fg is via Lg, a maximum of L with respect to Fg 

is a maximum of each component Lg with respect to Fg, given the Am· And since 

each Lg is linear in Fg , the support of any distribution Fg which maximizes Lg must 

maximize the integrand Wg - Lm Amfmg· All that remains is to note that, given our 

definitions, Wg = J QgdF_eg, and that I:m Ame! meg(Xeg) is independent of X-eg· 

3.9.4 Proof of Theorem 3.4 

Since voter utilities ui(Xg(i)) are concave in Xg, it is enough to show that, given the vote 

probability q(x, y) of equation 3.7, the optimal candidate choice is a pure-strategy 

x* = x 1g = x_ 1g equal to the maximum possible expected value i = J xdF(x) in 

any equilibrium. Such an x* = i would then first and second-order stochastically 
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dominate any other equilibria, and hence be a group-Pareto equilibria. 

From theorem 3.3 we know that there is some A such that candidates choose Xcg to 

maximize cq9 (xc9 , x_c9 )-AXcg· Plugging a pure-strategy x* into first-order conditions, 

using q9 (x, y) of equation 3.7, we get x* = 2\. And by the concavity of q(x, y) this is 

a maximum. 

For all x in the support of any F, we have 

j q(x, y) dF(y) - AX 2 j q(O, y) dF(y) > 0 

since a maximal x should be at least as good as x = 0, and since q 2 0. Integrating 

this over F , we have 

~ - A j x dF(x) 2 0, 

since the average vote per candidate is ~ in a symmetric equilibrium. This implies 

that the maximum expected offer is 2\. 

If the group were to be perfectly informed (say with Beg = xc9 ), then candidates 

would face ~ + q(x, y) = step(x - y), inducing an equilibrium candidate c.d.f. of 

F(x) = AX, uniform on [O, ±L with mean J xdF = 2\. Since this signal distribution 

has the same mean as the negative news distribution, but has substantial variance, 

it is dominated by that distribution. 



76 

Chapter 4 Adverse Selection and 

Collective Choice 

4.1 Introduction 

4.1.1 When Is Intervention Efficient? 

When can (coercive) government intervention make an economy more efficient? A 

standard answer is: when there is "market failure," so that an equilibrium of a feasible 

coercive mechanism scores higher on some efficiency measure than an equilibrium of 

the no-intervention situation. 

This answer is, however, subject to several familiar caveats. In particular, there 

is the possibility of "democratic failure" [Wit95]. Even when efficient interventions 

exist, a political process may actually select an inefficient intervention. Furthermore, 

a political process which chooses an intervention may constitute an informed principal 

[MT90], thereby effecting the intervention's equilibrium. 

Since this last caveat has, it seems, received no formal attention, this paper exam­

ines some consequences of asymmetrically-informed centralized collective choice for 

economists' second-favorite prototypical situation calling for intervention: adverse se­

lection and other excessive-signaling. 1 Our goal: to clarify the extent to which and 

the mechanisms by which democratic choice can mitigate adverse selection. 

4.1.2 Adverse Selection Is Widely Cited 

Soon after the first signaling game models [Spe74, RS76] were developed, researchers 

noted that pooling equilibria can Pareto-dominate separating equilibria, and that 

1 Economists' favorite prototype of justified intervention is arguably that of public goods and 
other externalities. 
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externally-imposed limits on allowed signals can force more efficient pooling. 

For example, low-risk insurance customers may offer to buy less than full insurance 

in order to signal their low-type, and thereby convince insurance companies to offer 

them lower rates. This can work if high-risk types would rather admit their high type 

than do without full insurance. If sufficient limits are imposed on allowed signals, 

however, such as requiring that everyone buy some minimum amount of insurance, 

then everyone will pay average-type rates for this insurance. This can in some cases 

make all types better off [AH90]. 

Economists have long mentioned these facts in a wide range of policy contexts, as 

support for state-imposed signal limits, taxes, or forced pooling, or at least as support 

for favoring group insurance and collective-bargaining. For example, various forms of 

excessive-signaling arguments have been cited in support of taxes on status-signaling 

luxuries [Ire94], progressive taxation in general [And96], limits on work hours [LRT96], 

and taxes on job market signals such as education. 

More prominently, ~dverse selection has been central to economist 's recent argu­

ments for greater government intervention in the health care market [Dia92]. Employer­

based group insurance is said to mitigate adverse selection, and standard public fi­

nance texts (such as Hyman's [Hym93]) cite adverse selection as a major explanation 

for Medicare and government unemployment-insurance. (Curiously, though, the lead­

ing political science analysis of the politics of insurance regulation, by Meier [Mei91], 

doesn't even mention the mitigation of adverse selection among the six main goals 

of insurance regulation . And the empirical evidence that excessive-signaling is a real 

insurance problem is weak [Hem92, BD93].) 

Finally, adverse selection is the primary formal justification offered in law and eco­

nomics for limits to freedom of contract regarding "private" affairs which basically 

affect no one else. (Non-formal justifications offered by legal scholars focus largely on 

paternalism and irrationality [Tre93].) For example, excessive signaling arguments 

have been offered in support of liquidated-damages rules [AH90] and inalienable pro­

ducer product liability [Ord79]. 
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4.1.3 Problems With Collective Choice 

Even if efficiency could be improved by forced pooling, signal limits, or signal taxes 

imposed from the outside, however, there is room for doubt about the efficiency of such 

signal restrictions chosen by real collective-choice processes involving asymmetrically­

informed agents. Similarly, there remain questions about the degree to which adverse 

selection problems are really reduced when large employers choose group-insurance, 

or when labor unions choose employee benefits. 

In any of these cases of collective choice2
, if a different actual distribution of 

types in the relevant population would induce a different collective choice for that 

population, then this choice should serve as a signal to receivers, such as insurance 

companies, in the remainder of the signaling game. Insurers should, for example, be 

wary that employers or labor unions with riskier employees will ask for more group 

insurance. 

Similar concerns should in principle exist even with national political choices, 

such as national health care reform. Instead of signaling directly via their choice of 

insurance policy, voters might instead signal indirectly via their political choices. 

While there have been some recent complete-information models of voting over 

health care and other public provision of private goods, [Gou93, ER96], I know of 

no such incomplete information models. And while there is a literature on informed 

principals in mechanism design, I know of no such models with multiple principals. 

Thus this issue seems to have not yet been addressed. 

4.1.4 Model Overview 

To explore this collective signaling effect, I examine the ex-ante Pareto-efficiency of 

"extreme" models. That is, models in which the adverse selection problem is the 

most severe, in which voters are otherwise identical, and in which the democratic 

processes considered are the most benign, minimizing agency costs and revealing the 

least information to signal receivers. This is an attempt to find the best case for 

21 take "non-collective choice" to be the case where each agent independently plays their signaling 
game. 
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democratic and other collective choice processes to mitigate adverse selection prob­

lems. A significant adverse-selection effect in these extreme models should suggest 

that this problem be taken seriously in less-extreme models as well. 

After all, when adverse selection problems are mild , attention should shift to other 

tradeoffs regarding intervention. And when collective choice has high agency costs, 

or when voters are very diverse, there are other reasons to avoid collective choice. 

Finally, the more information that is revealed about the collective choice process, the 

more opportunities there are to signal via that process. 

To model a severe adverse-selection problem, I use a basic insurance model [CL87] 

with no hidden actions or other allocative benefits of sorting agents, and where agents 

are distinguished by a continuous one-dimensional risk-type distributed over a wide 

support. In this insurance model, potential insurees signal their risk level by offering 

an insurance contract, which insurance companies must then either accept or reject. 

To keep the adverse selection problem severe, I also focus on separating equilibria, 

which are preferred by refinements such as intuitive equilibria [CK87], as opposed 

to pooling equilibria, which tend to be preferred by refinements such as undefeated 

equilibria [MOFP93] . 

The focus is on collective choice of group insurance, where every group member 

must get the same insurance policy. I also, however, consider a variation where the 

group chooses a certain minimum insurance level required of each member. 

I compare two models of collective choice of group insurance to individual choice of 

insurance. One model of collective choice has a single full-informed profit-maximizing 

group owner choosing group insurance. This owner must ensure that each member 

has at least an individual reservation utility level. 

The other model of collective choice uses a direct-democracy process for voting 

on group insurance. In particular, I consider a median voting rule, where everyone 

submits a number and the median number is implemented . This median voting model 

has the same equilibrium outcomes as a two candidate prospective voting model, 

where the two candidates both know the median type of the electorate, and where 

insurance companies only observe the position of the winning candidate. 
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To minimize ·information revealed by collective choice, the insurance company 

observes the collective choice itself, but not any of the individual votes that produced 

this result. Having the insurer observe more process information would allow more 

opportunities for group members to signal their types, which would presumably allow 

even more adverse selection. 

Finally, to further give the best chance for a collective choice process to successfully 

mitigate adverse selection problems, voters are assumed identical aside from their 

insurance risk level , and risks are assumed to be distributed independently across 

voters. 

4.1.5 Results Overview 

When group insurance is chosen by a profit-maximizing group owner, and when each 

member's reservation utility is what he would get buying individual insurance outside 

the group, then it turns out that group insurance offers no advantages over individual 

insurance for separating equilibria. Assuming no wealth effects, the utility of insurees 

is no better, and usually worse. 

This is because separating equilibria depend on the support of the distribution of 

types, and the distribution of group averages has the same support as the distribution 

of individual types. While the variance of group types is substantially reduced, th.is 

is irrelevant in separating equilibria. 

Regarding voting, a simple differential equation characterizes the median vote 

separating equilibrium when voters choose either a single pooled insurance contract, 

or a common signaling limit , i.e. , a minimum insurance requirement. This median 

vote equation generalizes easily to apply to any "pivotal" collective choice process, in 

which each choice among the equilibrium alternatives is the favorite choice of some 

pivotal member of the collective. 

In a particular example, a computed median vote separating equilibrium demon­

strates explicitly that democratic choice is not always ex-ante efficient, though it can 

improve on the no-intervention equilibrium. This improvement can be thought of as 
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arising from the fact that democracy can fail to represent the opinions of up to almost 

half of the electorate. Insurers who know that the median type is the worst possible 

type, for example, know that half the electorate is also of this worse type, but know 

nothing about the other half. 

This suggests that we might get better outcomes by using collective choice mech­

anisms which fail to represent even larger fractions of the electorate. For example, 

if a random "jury" is selected to hold a median vote on signal restrictions, selfishly 

following its own preferences, this jury should not signal any types but its own. And 

it turns out that in the limit of large but fractionally small juries, the population gets 

the favorite insurance amount of the median type, given the mean insurance rate. 

When the mean equals the median, this implies asymptotic ex-ante efficiency. Thus 

random juries can eliminate adverse selection problems. 

4.2 Individual Insurance 

The following is the standard adverse-selection insurance game, widely treated as a 

prototype of excessive-signaling correctable by external restrictions. We now review 

standard results for separating equilibria of such games. 

4.2.1 The Basic Insurance Signaling Game 

This signaling game has two players, a risk-averse insuree desiring insurance against 

a possible loss L, and a risk-neutral insurance company. (We will denote the insuree 

and insurer by male and female pronouns respectively.) If x is the insuree 's loss when 

an accident occurs, y is his loss otherwise, and p(t) = 1/(1 + t) is his probability of 

avoiding a loss (with t = l/p - 1 being the insuree 's risk type), then the player's 

expected payoffs are 

insuree: U(x, y, t) (1 - p(t))u(-x) + p(t)u(-y)) = p(t)(tu(-x) + u(-y) 

msurer: V(x, y, t) (1 - p(t))(x - L) + p(t)y = p(t)(t(x - L) + y) 
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where u is assumed continuously differentiable, strictly increasing, and strictly con-

cave. 

The insuree, knowing his risk type t, signals by offering a contract ( x, y) E R 2 . 

The insurer, knowing only a prior c.d.f. F(t) on t, and whatever she can infer from 

the insuree's offer, accepts or rejects that offer. Given rejection , (x, y) = (L, 0). 

When F(t) has convex support [.t., ~, then separating sequential equilibria exist 

with just barely accepted offers (x(t), y(t)) fort E [.t., ~ satisfying V(x(t), y(t), t) = 0, 

so that y(t) = y*(t, x(t)), where y*(t, x) = t(L- x). The local incentive compatibility 

condition for separation is 

0 = tu'(-x)x'(t) + u'(-y)y'(t). ( 4.1) 

An interim-Pareto-dominant separating equilibrium must also satisfy x' ( t) < 0 < y' ( t) 

and x(I) = x*(t, I), where we define favorite points as 

x*(s, t) = argmaxx U(x , y*(s, x), t). 

(This argmax is unique by the strict concavity of u.) While the worst type t gets his 

favorite level of insurance, in this case being fully insured with x = y , better types 

are less than fully insured with x > y. 

We will denote this basic equilibrium as x1(t) from here on, with y1(t) = y*(t, x1(t)). 

Note that the equilibrium menu of x, y choices depends on the distribution F only 

via the support [.t., I] of F. No other features of F are relevant . 

There are many possible insurer belief profiles which can support this dependence 

x 1(t). One example is where insurer beliefs result in these insurer expectations 

if X <x1(t) 

E[t J offer (X, Y)] = if X E [x1 (t) , Xi (.t.)J 

If we temporarily re-express utility as U(x, y, t) = U( Ux, Uy, t) = p(t)(tux + uy), 
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where ux = u(-x), Uy= u(-y), then for all t ER, U everywhere satisfies the standard 

single-crossing condition in terms of Ux and uy, since 

!!__ ( au / au ) _ 1 
dt aux auy - . 

(4.2) 

Thus the local incentive compatibility equation (equation 4.1) implies global incentive 

compatibility, and a solution to this differential equation exists. (See Fudenburg and 

Tirole [FT91], chapter 7.) 

Note that the single-crossing condition of equation 4.2 also guarantees that insurer 

preferences will be single-peaked along any separating equilibrium x-y curve satisfying 

a local incentive compatibility equation such as equation 4.1. After all, if preferences 

were not single-peaked, at some point the local incentive compatibility equation would 

have to be satisfied for two distinct points for the same type. 

4.2.2 Doing Better 

The basic equilibrium x 1(t) is generally ex-ante worse than the ex-ante optimal pool­

ing insurance, which would result from an ex-ante contract between the insuree and 

insurer which was non-renegotiable. (More precisely, the basic separating equilibrium 

is worse for the insuree, and the same for the insurer.) Under this optimal ex-ante 

contract, all types would get the same result, being fully insured as if they were of 

the average type i where p(i) Ep[p(t)] = J p(t)dF(t). That is, for all t, we would 

have x = y = i - x*(i,i). 

Depending on the game-theory equilibrium refinement used, this efficient pooling 

result can actually be an equilibrium of our signaling game under asymmetric infor­

mation. (And, as mentioned above, the empirical evidence for adverse selection in 

insurance is weak.) But to ensure that there is a real adverse .selection problem, we 

will assume a refinement such as the intuitive criterion [CK87] which selects the fully 

separating equilibrium even when it is less efficient than pooling. 

Full insurance with no adverse selection losses can also result when the insurer 

is the one to make a take-it-or-leave-it offer, instead of the insuree. For some dis-
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tributions F(t), the insurer will offer (x, x) where x solves U(x, x, t) = U(L, 0, t) 

and V(x, x, i) :'.'.'.: 0. But with a relatively competitive insurance market the privately 

informed insuree plausibly has most of the negotiating power, making the above 

insuree-signaling model a better approximation. 

If available, an ideal external agent who shared the interests of the insuree, but 

who was somehow prevented from becoming informed by that insuree, could directly 

impose the optimal pooling contract, at least if it were empowered to do so. 

Similar to the gains from forcing all types to pool at the same contract, more 

efficient pooling can also result from an externally-imposed maximum allowed loss 

x, which limits the signals an insuree can send. With such a signal limit, there are 

three possible equilibrium forms, depending on the value of x. There is a i such that 

for x ~ i everyone pools at (x, y) = (x, y(i, x)). (If x = i, the ex-ante optimal full 

pooling is achieved.) For i < x < x1 (t) there is partial pooling, and for x1 (t) ~ x the 

limit has no effect, leaving full separation. 

With partial pooling, bad types t > i separate with (x1(t), y1 (t)), and good types 

t ~ i pool at (x, y(p-1(EF[p(t)lt < ~, x)). The cutoff type i(x) solves 

U(x1 ( i), Y1 ( i), i) = U(x, y(p-1 ( E F[p( t) It > i]), x), i), 

so this ·type is just indifferent between separating and pooling. The cutoff limit i 

solves i(x) =I, so that the worst type is indifferent. 

Since the best limit mimics forced pooling, we will focus in the following focus on 

forced pooling, and just mention in passing its relation to signal limits. 

4.3 Group Insurance 

Presuming that adverse selection is a real problem, that renegotiation cannot be 

prevented , that negotiating power cannot be shifted, and that ideal powerful agents 

are not available, many observers have considered group insurance to be a cure for 

adverse selection. More generally, many have considered collective choice, especially 
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democratic choice, as a cure for excessive signaling of many sorts. 

The intuition seems to be that groups can limit excessive signaling internally by 

forcing internal pooling or signal restrictions. Also, group level adverse selection is 

said to be limited because for large groups the variance of group risks are vastly 

reducted relative to independent individual risks. 

Assume there are n copies of the above players, with n insurees and n insurers. 

There is some joint c.d.f. J( ( ti)i) with support [t, t]n over the risk types ti of each 

insuree i, and assume that this joint J is symmetric in the ti, with individual marginals 

F(ti) · Now instead of having each insuree i directly propose a contract (xi, Yi) to his 

insurer, the whole group will jointly propose a single contract (x, y) to all of their 

insurers. Each insurer will again accept or reject this offer, but since each risk-neutral 

insurer has the same preferences and gets the same information, the insurers are in 

identical situations. Thus since there are no coordination effects and there are strict 

preferences over actions, all insurers will take identical actions. 

When signal limits are considered, the group will jointly choose a signal limit x, 
and then each insuree and insurer pair will play the individual insurance signaling 

game. 

4.3.1 Profit-Maximizing Group Insurance 

Let us now consider a single well-informed group owner empowered to choose the 

group offer (x, y). (Think of an employer choosing a group insurance policy.) This 

owner is able to offer state-independent compensation ci to each group member, 

desires to minimize the total group compensation Li Ci, knows the risk type ti of 

each group member, and is constrained to give each agent at least a reservation 

utility level ui, so that U(x - Ci, y - Ci, ti) ;:::: ui. 

The risk type of a group is the n dimensional [ = (ti)i. Insurers should be inter­

ested only in the actual average risk types, defined by p(s) = EJ[.P({)I[ picked x, y], 

where p({) = LiP(ti)/n. Given this fact and the small dimensional space of possible 

signals, the most separation we can expect is a semi-pooling equilibrium where the 
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set of all possible [is partitioned into a one-dimensional continuum of sets S, such 

that every type [ES picks the same (x, y) in equilibrium. We can index these sets S 

by their average risk type s, writing S( s ), and the equilibrium choices as well, writing 

(x(s), y(s)). 

Each insurer now makes her accept/reject decision based on V(x(s), y(s), s), im­

plying that now y(s) = y*(s, x(s)). When n = 1, we must of course have s = t, 

S(s) = {t}, and the equilibrium (x 1(s), y1(s)) over [.t:, t] as before. 

The group owner's optimization has a lagrangian l:i ci+>.i(U(x-ci, y-ci, ti)-Ui)· 

Substituting the first-order conditions for optimizing the various ci into the local 

incentive compatibility condition for separation yields 

u'(-y)y'(s) = -p-l(i5(1)) 
u'(-x)x'(s) 

u'(ci - y)/u'(-y) 
ti= ti '( )/ '( ) . U Ci - X U -X 

(4.3) 

The compensation ci can be said to have induced a wealth effect when /i # ti; 

in this case the relative marginal value of money in the two states changes as the 

agent's wealth varies. This wealth effect disappears (so that /i = ti) with exponential 

utility, where u'(a+b) = u'(a)u'(b), and with compensating reservation utilities Ui = 

U(-x 2 (s), -y2(s), ti) where ti is in a group indexed bys, and where x2(s), y2 (s) is the 

profit-maximizing group insurance equilibrium. We have compensating reservation 

utilities if and only if we have vanishing equilibrium compensations ci = 0 for all i 

and { 

The wealth effect also disappears at x = y, which implies that for an interim 

Pareto dominant equilibrium, the worst possible group type where ti = Ni reveals its 

type s = t and chooses full insurance x2 (t) = y2 (t) = x1 (t). 

Ignoring wealth effects, profit-maximizing group insurance offers no advantage 

over individual insurance. 
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Theorem 4.1 Given no wealth effects we have x2 ( s) = x1 ( s), so that the interim 

Pareto Dominant separating equilibrium curve of profit-maximizing group insurance 

curve is identical to the interim-Pareto dominant separating equilibrium curve of indi­

vidual insurance. Given compensating reservation utilities, so all ci = 0, all insurees 

·are no better off than with individual insurance, and are strictly worse off when ti i=- s. 

Proof: When /i = ti for all f E S(s), the right-hand side of equation 4.3 is 

-p- 1 (p(i)). Thus all the types f who choose this (x(s), y(s)) have the same value of 

p(i) , and so by p(s) = E 1 [.P(i)lf picked x, y] we have p(s) = p(i). Thus the right side of 

equation 4.3 is -s, making this equation the same as equation 4.1 with s substituted 

fort. Since we also know that x 2 (l) = y2 (l) = x 1 (l), the interim-Pareto-dominant 

separating equilibrium for profit-maximizing group insurance is x2 (s) = x1(s), with 

the same x, y curve as individual insurance over the same ranges E [t, t]. 

With individual insurance, each insuree gets her favorite point along the curve 

x 1 (t), y 1(t) overt E [t, ~- With compensating reservation utility, each insuree instead 

gets the point x1 ( s), y1 ( s) where p( s) = p( i) and s E [t, ~. Thus the insuree is no 

better off, and is strictly worse off when ti i=- s. QED. 

With no wealth effects, the group chooses contracts off the same x-y curve as 

with individual insurance. Since separating equilibria depend only on the support of 

the type distribution, and not its variance, the lower variance of types under group 

insurance does not help. Thus each individual gets no better an insurance package 

than he would individually. And when his risk type differs from the average of his 

group, he gets a worse insurance package. 

Note however that even though (x2 , y2 ) = (x1 , y1), the equilibrium is not the same 

for n > 1. Not only might some agents getting compensated for having different insur­

ance amounts, but the distributions overs are not the same, i.e., F(s) i=- Pr1 [p(i) ~ s]. 

Thus an equilibrium refinement which does not always select a separating equilibrium 

may possibly select the separating equilibrium in one case but not the other. 3 

31 have not analyzed what further equilibrium refinements are satisfied by these separating equi­
libria. It should be noted that for reasonable type distributions F(t) and larger electorates, the 
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4.3.2 Voting on Group Insurance 

Democratic collective choice has also been considered a cure for many sorts of adverse 

selection problems. So let us now consider some simple models of voting over group 

insurance. 

To make the ·best case for voting to solve signaling problems, let us minimize the 

amount of information revealed by the voting process, informing the insurers only of 

the final joint offer (x, y) made, and not of any other statistics regarding the vote. 

Let us also try to avoid any additional agency costs by using a direct vote on policy, 

rather than have intermediating politicians. Finally, let us simplify our analysis by 

focusing on democratic mechanisms which have pivotal voters, where the result chosen 

implies a certain type t was pivotal. 

For example, consider a direct two-dimensional (2D) median vote, wherein each 

voter submits a pair (xi, Yi), and the chosen announced values are the medians x = 

mediani Xi and y = mediani Yi · In a separating equilibrium where all other voters 

submit their favorite point along an x-y curve which separates accepted from rejected 

offers, for n odd each voter of type ti effectively chooses a point in a box with opposing 

corners x(ti-1), y(ti-1) and x(tH1), y(ti+1), for ti-1 ::; ti ::; ti+1, a choice which only 

matters if ti happens to be the median type t. 

The optimal strategy in this case is for voter i to submit his favorite point 

x(ti), y(ti) along this curve, regardless of what he knows about the preferences of 

others. The winning ( x, y) is thus the favorite point along this x-y curve of the voter 

with the median type t among the n actual voters. This sample median type is then 

pivotal. 

We can generalize this 2D median vote mechanism to a 2D median jury, where 

voting is done only by a random sample of j (odd) jurors chosen from then insurers. 

Will discuss this option more below. 

Another variation is to use a one-dimensional (lD) median vote over the limit 

distribution of s should be highly concentrated, with very thin tails out to the extreme values. Thin 
tails should also appear in the distribution of s in the next section on voting. Many have questioned 
the realism of separating equilibria in this sort of circumstance [MOFP93]. Signaling game models 
have only been experimentally tested with two near-equal-weight types [BCP94]. 
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x, where after the vote each pair of insuree and insurer play their signaling game 

separately. If preferences over x are single-peaked, lD voters should also submit their 

favorite x. And for all x ::; x, voter preferences are the same as in the 2D case, since 

in this case the effect of a limit x is that everyone will pool at x = x. 
Finally, note that we get the same equilibria in a simple two candidate prospective 

voting model. When candidates are constrained to pick positions on the above equi­

librium x-y curve, then if both candidates know the median type of the electorate, 

and if insurers only observe the position of the winning candidate, then the standard 

one-dimensional results apply. Since by single-crossing voter preferences are single­

peaked along this separating curve, both candidates should pick the ideal point of the 

median type in the population. 

The same equilibrium outcomes also result when candidates are free to pick po­

sitions in the entire x-y plane, because no majority prefers any other point to the 

median type's favorite point x(t), y(t) along the x-y curve which separates accepted 

from rejected offers. 

First, no majority prefers offers which would be rejected. After all, the worst type 

t. prefers x(t.), y(t.) to the rejection point (L, 0), and by single-crossing all other types 

have even stronger preferences that way. Also, by the monotonicity of u all types also 

dislike any distinct point (x, y) for which x 2: x(t) and y 2: y(t). 

Finally, for any point (x, y) for which x < x(t) and y > y(t), by single-crossing 

the type who is just indifferent between these two points must be higher than the 

median type, and the types who strictly prefer the offer (x, y) must be even higher 

still. But then this set of types could not be a majority. A similar argument applies 

for (x, y) for which x > x(t) and y < y(t). 

4.3.3 Voting Equilibria 

For any mechanism where the collective choice of offer ( x, y) implies a pivotal type t 

for whom this (x, y) is best, knowing this pivotal type t gives one information about 

the expected average group type s(t) where p(s(t)) = EJ[p(i)lt pivotal]. For example, 
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with a 2D median jury, if the ti are i.i.d. (independently identically distributed), with 

J = I1i F(ti), we have 

p(s(t)) = _!.p(t) + n - j p(i) + j -
1 

(EF[p(t')lt':::; t] + EF[p(t')lt' 2: t]). (4.4) 
n n 2n 

That is, knowing that one juror is the median tells one only that half of the other 

jurors are worse than that median, that half of the jurors are better, and tells nothing 

about non-jurors. 

Given an average type function s(t) such as equation 4.4, we can again find 

an interim-Pareto-dominant separating equilibria to this voting game, where again 

x'(t) < 0 < y'(t), and equation 4.1 is satisfied. (Note that in this section we in­

dex equilibrium points by the type of the pivotal voter t, rather than the group 

average type s.) The difference from individual insurance is that the insurer now 

makes her accept/reject decision based on V(x(t), y(t), s(t)), implying again that 

y(t) = y*(s(t), x(t)). (This of course reduces to the basic signaling game when 

s(t) = t.) 

If we define an (under) insurance ratio r = u'(-x)/u'(-y), then we can describe 

an agent of type t's favorite point along the (x, y) line y = y*(s, x) in terms of 

that type's favorite insurance ratio r*(s, t) = s/t. This shows that voters will prefer 

other than full insurance when s(t) =I t, i.e., when they do not pay for insurance 

according to their type's actual risk level. We can also re-express the conditions 

for a voting equilibrium which is fully-separating in the type of the pivotal voter as 

r(l) = r*(s(l), l), y = y*(s, x), and 

r = ~ (i + ln 1 (~
1

~ x)) ( 4.5) 

where for any a(t), ln'a(t) = a'(t)/a(t). 

These same equations should determine the x(t) for the 2D median vote, the lD 

median vote for x < i, or for the two candidate prospective election. 
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4.3.4 Juries Can Do Best 

When s and L - x are both increasing in t, the form of equation 4.5 indicates that , 

except for the worst type, insurees get less insurance (a larger ratio r) than they 

would prefer. This equation also suggests, however, that this problem goes away ifs 

changes very slowly with t relative to x, i.e., when knowing the pivotal type t tells 

one very little about the average type s. 

Since with a random jury and independent types , the pivotal juror tells one noth­

ing about the types of non-jurors, it turns out that we can get the ex-ante optimum 

in the limit of large groups with fractionally small juries. 

Let us define the prior median type tm as solving 1/2 = F(tm)· This median 

will of course equal the mean i when the distribution F is symmetric. Let us also 

define X(r,s) as solving r = u'(-x)/u'(-y*(s,x)), and re-express insuree utility as 

U(x, y, t) = 

U(r, s, t) = p(t) (tu(-X(r , s)) + u(-y*(s, X(r, s)))). 

Given these definitions, we can express the following theorem. 

Theorem 4.2 When types are i. i. d. { J = ITi F) and when juries are large but 

fractionally-small {i .e., j ---+ kna as n ---+ oo for a E (0, l)), the interim-Pareto 

dominant separating equilibrium of both JD and 2D median vote juries converges in 

probability to the utility outcome U(i/tm , i, tm)· When the prio-r mean i equals the 

prior median tm, this implies the ex-ante optimum (x, y) = (x, x). 

Proof: First consider 2D median vote juries. We must have 

A s A A s 
U( t' s, t) ~ U(r(t), s, t) ~ U( t' s, t) 

where s = s(t) and s = s(f). The first inequality applies because in a separating 

equilibria the type t can do no better than to get his favorite ratio r = s/t, and 

the second inequality applies because t always has the option of offering his favorite 
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point along the line corresponding to the worst type f; such an offer should never be 

rejected by the insurer in a sequential equilibrium. If s(t) converges to s as n grows 

without bound, as it does for equation 4.4 given our assumption of fractionally-small 

juries, then the two outside terms have the same limit, which therefore must equal 

the limit of the inside term. 

Since j grows without bound with n, and since in general sample medians converge 

in probability to prior medians, the pivotal type t must converge in probability to tm· 

Equation 4.4 has all s(t) converging to the mean type i. Thus the outcome converges 

to U(t/tm,i, tm)· 

If the prior median equals the prior mean, so that i = tm, the actual choices 

x, y must converge to give the ex-ante optimal utility U(l, i, i), which by the strict 

concavity of u can only happen at x = y = x. Thus the 2D median jury converges to 

the ex-ante optimum. 

Regarding lD median juries, we know that i > x1 (.t.) > :i:. The first inequality 

follows from the definition of i and the concavity of U, as in 

U(x*(t), x*(t), t) = U(i, y(i, i), t). 

The second inequality follows because both are full insurance points , and i is less 

riskier than t. Since :i; < i, the above proof applies to lD juries as well, since 2D and 

lD equilibria are the same for x < i. QED. 

A corollary is that the same result applies for the two candidate prospective elec­

tion model, since we 've shown the equilibria offers are the same. 

4.4 An Example 

Figure 4.1 shows numerically computed separating equilibria for exponential utility 

u(x) = -e-x with an accident loss of L = 2, and with the risk probability of types, p(t) 

distributed uniformly on [.53, .77]. For any uniform distribution on p(t) , equation 4.4 

becomes 
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Figure 4.1: Three Examples of Equilibria 

j+l ( j+l) p(s(t)) = ~p(t) + 1 - ~ p(i) . 

For j = n and n -t oo, the range of p(s) goes to [HP(I) + p(t)) , ~(p(f) + p(i))], 

which remains wide. Uniform distributions are symmetric, so that i = tm, and so 

theorem 4.2 implies small juries asymptotically reach the ex-ante optimum. 

The straight lines in figure 4.1 are insurer indifference curves V(x, y, t) = 0 for the 

minimum, maximum, and average types f , t, i. The three curves labeled circle 1, 2, 3 

are separating equilibria for three different cases. 

Curve 1 describes x 1 , y1 , the equilibrium for both individual insurance, with each 

insuree and insurer playing separately, and also for profit-maximizing group insurance. 

The worst type t gets full insurance with x = y, and better types rapidly get much less 

than full insurance. For large groups, the typical outcome is where the V(x, y , i) = 0 

line intersects curve 1, where insurance is less that half of full insurance. 

Curve 2 describes the voting equilibrium, when there are 121 group members 
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who all vote. When the pivotal voter is the worst possible type, insurers can infer 

that just over half of the group is the worst type, but can infer nothing about the 

rest of the group. Since the average inferred type in this case is better than that 

of the pivotal voter, the pivotal voter faces relatively cheap insurance, and chooses 

to overinsure. Thus the curve begins with y > x. Adverse selection quickly makes 

better groups underinsure, however, and most outcomes are likely to be near where 

the V(x, y, i) = 0 line intersects curve 2. 

This voting equilibria does typically induce substantially more msurance than 

under profit-maximizing group insurance. This improvement can be thought of as 

due to the fact that the curve starts at a better point for the worse type, since 

knowing that the worse type is the median type tells insurers nothing about almost 

half of the electorate. 

Curve 3 describes the equilibrium of voting using a random jury of 11 of the 121 

voters. Here the worst possible jury signals nothing about the other 110 group mem­

bers, so it can buy insurance even more cheaply, and hence it chooses to overinsure 

even more. The most common (i.e., modal) outcome is where the V(x , y , i) = 0 

line intersects curve 3, which gives nearly full insurance, and is close to the ex-ante 

optimum. 

4.5 Discussion 

Signaling games have been used for several decades to model a wide variety of eco­

nomic phenomena, including most social insurance and limits to freedom of contract. 

Most of these analyses have noted that the "market failure" of inefficient signaling 

is correctable by exogenous signal restrictions. Most such analyses have suggested, 

explicitly or implicitly, that some sort of collective choice, such as employer-based 

group insurance or democratic government intervention, should or does deal with 

this problem by imposing such restrictions. 

Many commentators have observed that such normative conclusions must be tem­

pered by the possibility of "democratic failure." For example, in one-dimensional 
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policy spaces the preferred policy of a pivotal median voter is typically not efficient 

(given the possibility of transfers), and in higher-dimensional spaces democracy can 

induce policy cycling. These observations can seem too abstract to offer much of a 

guide to practical policy, however. 

The explicit model of democratic failure in a signaling context presented above 

may, in contrast , be specific enough to illuminate policy. For example, this model 

suggests that beyond a dozen or so, the size of a collective is not especially important. 

What matters more is that member risks are independent, and so not correlated 

via the process by which this collective was formed, and that the collective choice 

process be capable of ignoring the opinions of many members , the more the better. 

Adverse selection is worse, for example, when all opinions are considered, as with 

profit-maximizing group insurance. 

Another mechanism, not explicitly analyzed above, by which a collective choice 

process could solve an excessive signaling problem is via a special ability to make non­

renegotiable commitme_nts. Large fixed costs of invoking a collective choice process 

might, for example, deter later attempts at renegotiation. Of course those fixed costs 

would constitute another form of democratic inefficiency. 

These observations suggest that, for example, the use of social insurance to mit­

igate adverse selection might be most successful when managed by administrative 

agencies who are the least responsive to public input , perhaps by being the most 

cumbersome and expensive to change. Similarly, judge-made law regarding limits to 

freedom of contract might best mitigate adverse selection to the extent when judges 

are relatively unresponsive and difficult to influence. 

In general, we might expect substantial agency costs and inefficiencies to be associ­

ated with unresponsive administrative agencies and judges. A medium-sized random 

jury, however, seems able to hold the potential to avoid such a tradeoff. Perhaps 

labor unions should consider using random juries to propose benefits packages. And 

perhaps a national jury should be considered to propose a national health care reform. 
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4.6 Conclusion 

While it has long been suggested that group insurance mitigates adverse selection by 

reducing the variance of the distribution of types, a precise analysis reveals that this is 

simply not true for separating equilibria. Such equilibria depend only on the support 

of the distribution of types. For example, since profit-maximizing group insurance 

considers the preferences of all group members, it has the same distribution of types 

as individual insurance, and hence offers no adverse selection advantages. 

Democratic collective choice has also long been considered as solution to adverse 

selection and other excessive signaling problems, via government-imposed limits on 

signals, forced-pooling, or signal taxes. This paper demonstrates that while a democ­

racy where everyone can vote can improve on the problematic equilibria, it also suffers 

a "democratic failure" and fails to achieve the ex-ante optimum. 

This failure is due to the fact that voters can signal their types via the democratic 

process. At the very least the resulting choice can signal something about' the pop­

ulation of types in the electorate, as in the models presented here. And presumably 

voters could signal even more when signal receivers can observe more detail about 

the democratic process. Voters might, for example, be able to publicly donate to a 

p11rticular candidate. 

The improvement of democracy over individual choice can be thought of as due 

to the fact that majority rule can ignore the opinions of up to half of the population. 

Further improvements can be obtained by narrowing participation even further, such 

as with a random jury. This suggests a fundamental tradeoff between democratic 

participation and the ability of governments to solve excessive signaling problems. 

If the most effective mitigation of excessive signaling can come from government 

agents, such as administrative agencies or legal judges, who are the least responsive 

to the influence of public opinion, then we may face a vexing tradeoff between the 

agency costs of unresponsive government agents and losses from excessive signaling. 
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Chapter 5 Disagreements Are Not 

About Information 

5 .1 Introduction 

Theory and observation seem to be in conflict. 

On the one hand, persistent disagreement on matters of fact seems to be ubiquitous 

in the world. In such disagreements, two or more groups have differing opinions, and 

seem well aware of this fact, including which side of the issue each group falls on. 

Consider, for example, the O.J. Simpson trial, where two identifiable communities 

appeared to persistently disagree on the probability that O.J. killed his wife. 1 Or 

consider the apparent ubiquity of speculative trade, and the apparent ubiquity of 

longstanding disagreements in academia, industry, and politics. 

On the other hand, we also have some theory that suggests that rational agents 

cannot agree to disagree in this manner. Bayesians with common priors cannot so 

disagree [Aum76, SG83, MP86, NBG+9o], even approximately [MS89, Nee96a, Son95] 

nor can agents who satisfy some weaker rationality assumptions [Gea, Gea94, Sam90, 

Mor94, RW90]. 

There are three natural resolutions of this puzzle. First, contrary to widespread 

appearance and belief, most apparent disagreements may not be real. People may not 

be aware of their disagreement, they may be trying to signal association or ability, 

or they may be trying to persuade an audience. Second, people may be seriously 

irrational, so irrational that it would be profitable and feasible for them to modify 

their behavior to become more in line with these theoretical results. Third, the 

existing theoretical results may be fragile, and not hold up under more reasonable 

1 For future readers unfamiliar with this "trial of the century," opinion on the guilt of this black 
football star seem to be correlate with race. 
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concepts of rationality. 

One example of this third type of resolution is the claim that it is not irrational for 

Bayesians to have different priors. Another example is the suggestion that rational 

agents need not have the heroic computational abilities that the existing literature 

on disagreement typically assumes of its agents. For example, Bayesians as well as 

agents characterized by less constrained possibility correspondences are assumed to 

exactly calculate expected values over what are typically truly immense sets of possi­

ble states. And the few explicitly computational papers which go beyond simulating 

very specific computational strategies allow their agents to know all theorems which 

can be generated in any finite time by a Turing machine, regardless of practical limits 

on the time a real agent can devote to theorem proving [Meg89, SW94, Lip95]. 

This paper, in contrast, considers Bayesian wannabes, who can have severe con­

straints on their computational and other abilities, and who may use most any com­

putational strategy to deal with those constraints. Specifically, regarding most every 

variable of interest, agents in this model can have arbitrary state-dependent errors, 

i.e. , differences between the agent's estimate of that variable and the estimate a 

Bayesian would make with the same information. 

These errors will be subject to only a few easy-to-compute consistency relations, 

which express the idea that an agent is minimally savvy in the sense of being aware of 

certain of her limitations, and of a few important but easy-to-compute implications 

of these limitations. 2 Specifically, a savvy agent will make simple broad calibration 

adjustments to try to correct for any overall biases she perceives in her estimates, and 

she is aware of certain relations among such biases. 

Can such agents disagree? Bayesian agents can disagree, that is, differ in their 

estimate of some real-valued random variable, either due to differing priors or differing 

information. And error prone Bayesian wannabes can, in addition, disagree due to 

the fact that they make different computational errors. But can savvy Bayesian 

wannabes nearly agree to disagree, so that they are well aware of their disagreement? 

2This concept of error-prone but savvy agents was inspired by, and generalizes, noisy game 
theories such as quanta! response [MP95, MP96]. 
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And if so, to what can we attribute such disagreement: priors, state information, or 

computational errors? 

While there seems to be some dispute about whether rational3 agents can re­

ally have substantially different priors, it seems clear that given suitably divergence 

priors, Bayesians can agree to disagree purely due to such priors. Thus we should 

consider this possibility in our analysis. Similarly, we should consider the possibility 

of agents purely agreeing to disagree due to computational differences, even if we have 

reservations about the rationality of such behavior. 

An example of a pure computational disagreement would be where one agent 

estimates 7r ~ 3.14 while the other estimates 7r ~ 22/7, where neither agent is willing 

to calculate 7r more exactly, and where both agents are well aware that they each use 

these different approximations. Such a dispute could not be attributed to external 

state information, if both agents were aware that the value of 7r is the same in all 

self-consistent state descriptions. Nor could such a dispute be attributed to internal 

state information, if the agents had no relevant uncertainties about the computational 

approach being used by each agent. 

While Bayesian wannabes can apparently agree to disagree purely due to diver­

gent priors, or purely due to computational errors, they cannot agree to disagree, 

even approximately, purely due to different information. ("Purely" here means with 

common priors and zero errors.) An important open question, however, is whether 

such agents can agree to disagree due to an intrinsic combination of differing infor­

mation and computational errors, or whether all such situations can be traced to a 

pure case of agreeing to disagree over computation. 

This paper answers this question by showing that if any two error-prone Bayesian 

wannabes nearly agree to disagree regarding any random variable, are both aware of 

a certain result of this paper, and nearly agree that both are self-respecting in the 

sense of considering themselves well-calibrated, and that one of them is savvy in the 

sense of realizing a particular implication of calibration attempts, then these agents 

must nearly agree to disagree about the other agent's average calibration bias. A 

3 By "rational" I mean consistent with feasible-to-implement normative criteria. 
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savvy Bayesian wannabe thinks she is likely well-calibrated, so if she nearly agrees 

to disagree with another such agent, she must think the other agent is very likely 

miscalibrated. 

Though such average calibration bias would be extremely difficult to compute ex­

actly, private state information, even regarding the internal state of other agents, is 

irrelevant to its computation. Thus this is a case of a purely computational disagree­

ment, which can not be attributed to any uncertainty agents might hav~ about either 

the external state of nature or about the internal state of other agents. 

We thus conclude that any persistent near disagreement between savvy but error­

prone Bayesian wannabes with common priors can be attributed to a near disagree­

ment purely about computation. Even for severely computationally constrainted 

agents, disagreements cannot be about information. And to the extent that diver­

gent priors and pure computational disagreements are irrational, rational agents sim­

ply can not agree to disagree. In this case human disagreements would have to either 

be mostly illusory, or they would have to be attributed to correctable irrationality." 

5.2 The Model 

5.2.1 Bayesian Wannabes 

We consider a finite universe containing agents who would be perfect Bayesians, 

if it were not for the fact that they are usually subject to computational resource 

constraints, 

That is, given a finite (but typically very large) set of possible states n, at each 

state w E n agent i would, in the absence of computational constraints, estimate any 

real-valued random variable X(w) E [X, .X] via the exact Bayesian expected value 

Xi(w) = Eµ;[X I Ji(w)] = Lw'El;(w) X(w')µ:(w') 
Lw'El;(w) µi(w) 

(5 .1) 

where µi ( w) > 0 is a prior and the information set Ji ( w) is an element of the partition 

Ii which embodies all implications of the information available to agent i. We assume 
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a common prior, so µi =µand Eµ; = E. 

These are typically sums over very large sets, however, so an agent i with limited 

computational resources must typically settle for an approximate estimate 

also within [X, X], which differs from the ideal Bayesian estimate Xi(w) by an error 

eiw[X]. More generally, for any random variable Y(w), Bayesian wannabe i at state 

w makes do with an error-prone estimate Eiw[Y] = Y(w) + eiw[Y]. 

We consider a Bayesian wannabe i to be characterized by (Ji and) her estimation 

operator Eiw, or equivalently by her error operator eiw· This characterization of an 

agent is limited in the sense that the objects of beliefs are well-defined random vari­

ables Y(w); Bayesian wannabes do not suffer from ambiguity regarding the meaning 

or referents of their estimates. 

Beyond this limitation, however, we consider a very general class of computationally­

limited agents, and attempt to make only the weakest restrictions required to obtain 

our results. Thus unless we explicitly assume otherwise, we assume no necessary re­

lations between our agent's estimates of related random variables. For example, even 

if c = a + b it need not be true that 

Such a relation may hold, however, when agent i is aware that c = a+b, and when 

a+ b is not a difficult computation. More generally, we will informally say that an 

agent is aware of certain simple easy-to-compute consistency conditions on relations 

between various random variables Y if she makes her estimates Eiw [Y] also satisfy 

these consistency conditions and relations. 

States w identify complete self-consistent descriptions of possible realities, and 

so encode information about both the external world and the internal reasoning of 

agents. Since one could in principle calculate the errors eiw [X] by calculating both 
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the approximate Xi(w) and the exact Xi(w), these errors eiw[X] cannot give more 

information than the information Ii available to an ideal Bayesian agent. Thus for all 

w' E Ii ( w), we must have eiw' = eiw and Eiw' = Eiw. Of course for i an ideal Bayesian, 

eiw[Y] = 0 and Eiw[Y] = Y for all w, Y. 

5.2.2 Calibration 

While we may not allow agents to fine tune all their errors eiw[X] in the light of 

exact calculations of expectations (since then we'd get all eiw[X] = 0), we may allow 

an agent to calibrate her estimates. That is, we consider eiw[X] = miw[X] - ci[X], 

where miw [X] would be the mistake with zero calibration, and ci[X] is a calibration 

adjustment. 

Choices of calibration ci[X] would be made at calibration sets Df (w) :::> Ii(w ), 

the set over which the agent cannot help but to make the same calibration choice of 

X, given her general computational strategy. (We now typically suppress X in the 

notation of ci and Di-) 

Di(w) # Ii(w) for agents who cannot afford to make their calibration choices 

contingent on all available information. An agent cannot typically compute Di(w ), 

but she may be aware that Di = {Di(w) I w E fl} must be a partition that coarsens 

h 
To make more precise the idea that what we mean by Xi is agent i's best computationally­

feasible approximation to her ideal expected value Xi(w), we might let ui(w) = 

-(Xi(w) - X(w)) 2 be i's utility, and have i "seek to" adjust her calibration c to 

minimize 

U(c, w) = E[(Xi(c) - X) 2 I Di(w)], 

the expectation of her squared error at this calibration set. 

Agent i at state w does not, however, typically have access to the exact values of 

this function U(-,w) of c. She must instead make do with an estimate of Eiw[U(c,w)]. 

Furthermore, her choice of c may not exactly minimize this estimate. Under these 
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circumstances, it may not be clear what exactly it means for ui to be agent i's utility. 

We will attempt to side-step this conceptual muddle by focusing in the sections 

which follow on the following two definitions. First, let us define an agent 's bias as 

ei[XISJ = E[eiw[X] I SJ, i.e., average error over some set S of possibilities. Second, let 

self-respect be a bound on a self-estimate of bias. 

Definition 1 Agent i at w displays 6-self-respect about X on E if IEiw[ei[XIEJI ~ b. 

This notion of self-respect can be motivated as follows. First, we can show the 

following (non-trivial proofs in the Appendix). 

Lemma 5.1 The ci[X] which minimizes E[(Xi - X) 2 I Di(w)] sets ei[XIDf (w)] = 0. 

It seems plausible that an agent i who is aware of lemma 5.1 and who desires to 

minimize her squared-error of Xi should estimate that she is well-calibrated, so that 

After all, if she estimated that she was biased, it seems she should expect to do better 

by changing her calibration ci· Thus such an agent i at state w should display perfect 

(b = 0) self-respect on Di(w). 

Furthermore, if this agent didn't think she could identify any miscalibrations 

among her alternative selves at other states in an event E, then she should also 

satisfy 

If this agent also conditioned her calibration on this event, so that E was a union 

of Di members (meaning Di(w) C S for all w E E), then this would imply that 

Eiw[ei[XIEJ] = 0. 
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Thus we can think of the self-respect parameter o as describing the degree to 

which agent i estimates her alternative selves to be on average miscalibrated, or to 

fail to condition their calibration on the event E. 

5. 2. 3 Agreement 

A Bayesian agent i knows event E if E ::J Ji ( w), and an event E is common knowledge 

among a set N of such agents at state w if E ::J I(w) = /\Ji(w), where the common 

information partition I is the meet (or finest common coarsening) of the partitions 

(Ii)iEN · 

Bayesians are also said to p-believe event E at states within belief sets 

Bf(E) = {w I µ(EI Ji(w)) 2: p}, 

and are said to have common p-belief of event E at states within any p-common 

event C where C c Bf (C) and C c Bf (E) for all i E N. There is a unique such 

p-common event CP(E) which contains all other such p-common events of E. It is 

found by requiring p-belief at all meta belief levels, as in 

En= n Bf(En-1), 
iEN 

for E 0 = E [MS89]. 

Let us also say that such agents p-agree that E at states in any p-agreement event 

C where CC Bf(CnE) for all i EN. Note that either common p-belief or p-agreeing 

at level p = 1 implies common knowledge, and that these concepts are closely related 

via their p values. 

Lemma 5.2 Common p-belief implies 2-rl-agreeing, and p-agreeing implies common 

p-belief. 

Thus the choice between these two concepts seems largely a matter of convenience. 



105 

Regarding Bayesian wannabes, let us generalize these definitions. Let us say that 

an agent q-estimates an event E within the estimation set 

B{(E) = {w I Eiw[µ(E I Ii(w))] 2: q}, 

and say that_ the accuracy of agent i on this estimation set is µ( E I B{( E)). (Bayesians 

q-estimate an event if and only if they q-believe it, and they have an accuracy of q in 

their q-estimation.) 

We could say that a set N of agents had "common q-estimation" of event E at 

states within any event C which satisfied CC B{(C) and CC B{(E) for all i E N. 

It will, however, be more convenient to focus on a generalization of p-agreeing. 

Definition 2 Agents N q-agree that E within any C where 

(5.2) 

We will call such an event C a q-agreement event of E, and call equation 5.2 its 

agreement equation. 

Let us also define awareness. 

Definition 3 Agent i is q, q'-aware that SC T if B{(S) CB{' (T). 

One expects q' ~ q. Similarly, let us say about predicates P, Q that i is q, q'-aware 

that P implies Q if i is q, q'-aware that { wJP at w} C { wJQ at w }. And let us say 

that i is q, q'-aware that P implies Q relative to A when i is q, q'-aware that the 

conjunction of P and A implies the conjunction of Q and A. 

Note that the union CUC' of any two q-agreement events of E is itself a q'­

agreement event of E, if each agent is q, q' -aware that ( C n E) c ( C n E) U ( C' n E) :::::> 

(C' n E). Note also that q-agreement C of P, together with q, q'-awareness that P 

implies Q relative to C, implies that C is also a q'-agreement of Q. 

Finally, note that while, for Bayesians, p-agreeing that E at w implies constraints 

on higher order beliefs such as w E Bf (Bf(E) n EHE)), Bayesian wannabes who q­

agree need not satisfy analogous relations like w E Bi (Bi ( E) niJg ( E)). This is because 
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we have not made any assumptions relating beliefs of varying orders. If one wanted 

to additionally require agents to be aware of their agreement, one might formally 

require q, q'-awareness of the agreement equation 5.2. This would be satisfied, with 

q = q' = 1, for any agent who in all states took equation 5.2 as part of the definition 

ofthe set C. 

5.2.4 Disagreement 

We can informally say that two agents disagree regarding their estimates of X when 

xi -=!=- Xj. There are three possible reasons for such disagreement. Bayesians, for 

whom xi = xi, can disagree purely due to divergent priors, as when µi -=!=- µj even 

though Ji = Ij· Bayesians can also disagree purely due to differing information, as 

when Ii -=/=- Ij even though µi = µj. Furthermore, Bayesian wannabes can also disagree 

purely due to bounded computation, such as when ei -=/=- ej even though Xi = Xj. And 

of course disagreements can be due to combinations of these three causes. 

While it may be easy to understand how disagreement might arise in general, it 

seems harder to understand how two agents could repeatedly interact in ways which 

inform them about their difference of opinion, and yet end up with stable but differing 

opinions. That is , how could two rational agents both know that they disagree, 

without at least one of them wanting to adjust her estimate xi in the direction of the 

other agent's estimate xj? 

Definition 4 Agents i, j are said to E-disagree about x when xi ~ xj + E. 

Note that this definition is not symmetric between the agents i, j. When j, i 

E-disagree about X we instead have Xj ~ Xi+ E. 

Let 

be called the i, j E-disagreement event about X. Then we can say that i, j q-agree 

to E-disagree about X if they q-agree regarding i, j's E-disagreement event about X. 
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Such an agreement to disagree would allow each of them to adjust their estimate in 

the direction of the other agent's estimate. 

It is well known that if Bayesians have differing priors, they can disagree, and 

agree to disagree, purely due to those differing priors. It is less clear, however, that 

it is rational for agents to have differing priors. It also seems possible for error-prone 

Bayesian wannabes to agree to disagree purely due to computation-al errors, though 

it is also not clear whether this behavior is rational. 

Let us say that agents i, j q-agree to £-disagree about the computation of Y when 

they q-agree to c-disagree about a random variable Y which is state-independent, so 

Y(w) = Y. There are many possible examples of such computational disagreement. 

• Agents may use differing approximations to 7r to compute the volume of a coin. 

(See Examples section.) 

• Agents may use different computational strategies to search for and estimate the 

coordinates of the minimum of some complex but state-independent function. 

• Agents with access to the same photos and other relevant information about 

jars and jelly beans may still compute different estimates of the number of jelly 

beans in a jar. 

In such cases, it seems possible, though not necessarily fully rational, for agents 

to be fully aware of the alternative computational strategies used by other agents, 

without being very tempted to change their choice of their own strategies. An agent's 

choice of computational strategy may, for example, be particularly suited to that 

agents computational hardware. In such situations, disagreement cannot be at­

tributed to uncertainty about other agent's computational strategies or other internal 

state such as randomization choices. 

In contrast, it is known that Bayesians cannot agree to disagree, even approx­

imately, purely due to information [Aum76, MS89, Son95, Han94]. It may still be 

considered an open question, however, whether Bayesian wannabes with common 

priors can agree to disagree due to a combination of differing information and com­

putational limits. That is, can computationally-limited agents who have different 
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information but the same priors agree to disagree without also agreeing to disagree 

about some relevant computation? 

5. 3 Analysis 

To address this question, we focus attention in the remainder of this pa,per on the 

implications of two agents who nearly agree to disagree at w about X. 

That is, assume that agents 1, 2 q-agree to E-disagree about X. So there is a 1, 2 

E-disagreement event E = {w I X1(w) 2: X2 (w) + E}, with E > 0, and a q-agreement 

event C satisfying equation 5.2. Also, if agents imagine there could be more than one 

q-agreement event of E which satisfies equation 5.2, assume that in all states both 

agents focus attention on the same unique q'-agreement event, such as the one with 

the largest prior weight . 

To further simplify our notation, let A = C n E be the set our analysis will 

focus on, let Bi = B{(A) be its estimation sets, let ei = ei[XIBi] be the agent's bias 

on those sets, and let Pi = µ(A I Bi) be the agent's accuracy on those belief sets. 

Note that all of these variables, E , C, A, Bi , Pi, and ei, are state-independent random 

variables. Thus agreeing to disagree about any one of them is agreeing to disagree 

about computation. 

A little algebra reveals the following. 

Lemma 5.3 eifp1 - e2fp2 = E[X1 - X2 \A]+ E[X1 - XI B1 \A](l - P1)/P1 - E[X2 -

x I B2 \A](l - P2)/p2 . 

Let us define 6.X = X - X, Po= min(p1,p2 ) and 

E(p, b) =PE - 2(1 - p)t::..X - b/p, 

which is positive for E positive, b not too large, and p close enough to 1. Then 

lemma 5.3 implies the following. 
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For lemma 5.4 and the analysis which follows, results are given only for one of the 

two agents 1, 2. Symmetric results for the other agent can be found by simultaneously 

switching agent labels 1 B 2 and variables X B -X, -X B (-X), since we can 

also write E = {wl - X2(w) 2: -X1(w) + E}. 

An agent who is aware of lemma 5.4 should be savvy in the sense of keeping her 

estimates consistent with the inequality constraint given there. 

Note as a corollary that if an s-savvy agent 2 estimates agent 1 to be unbiased, 

as in E2w[e1] = 0 then 

For large E, this requires either poor savvy or self-respect, or a low estimate of accuracy 

p0 . Note also that it seems feasible for an agent i to condition her calibration on being 

in her estimation set, to make Bi be a union of Di members. 

If agent 2 is both s-savvy and Drself-respecting about X on B2, then 

and if agent 1 is D1-self-respecting about X on B1 then IE1w[e1JI ~ D1. These trivially 

imply the following. 

Lemma 5.5 If 1, 2 are Di-self-respecting about X on Bi, if 2 is s-savvy, and if 

E2w[po] 2: p, then 2, 1 €-disagree about e1, for E = f.(p, D2) - s - Di. 

Lemma 5.5 can be considered an implication, P implies Q. So if an agent is 

q', q"-aware of lemma 5.5, then if she q'-estimates the event P, that the assumptions 

of lemma 5.5 hold, she must also q"-estimate the event Q, that the conclusion of 

lemma 5.5 holds. Similarly, if the agents have a q'-agreement event C' of P, and they 

are q', q"-aware, relative to C', of lemma 5.5, then C' must also be a q"-agreement 

event for Q. 

This brings us to our main conclusion. 
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Theorem 5.1 Regarding agents l, 2 possibly q-agreeing to E-disagree about X (at 

agreement C for E > 0), if 

1. both agents q' -agree (in agreement C') that 

(a) agent 2 is s-savvy and estimates both agents to be p-accurate on Bi (so 

E2w[Po] 2: p), and 

(b) each agent is Di-self-respecting about X on Bi B{(C n {wlE1w[X(w)] 2: 

E2w[X(w)] + c}), 

2. and if each agent is q', q" -aware of lemma 5. 5 relative to C', 

then within C' agents 2, 1 q" -agree to £-disagree about the computation of e1 , with 

That is, let us consider the possibility that two agents nearly agree to dis.agree 

strongly enough regarding any real-valued random variable. Assume, regarding this 

possibility, that both are sufficiently aware of lemma 5.5 and have near agreement 

that they both are self-respecting enough (i.e., aware enough of lemma 5.1), and that 

one of the agents is savvy enough (i.e., aware enough of lemma 5.4) and considers both 

agents to be accurate enough in estimating their agreement. Then we can conclude 

that these agents must nearly agree to disagree about the the average calibration bias 

of the other agent. 

Since average calibration bias e1 has been specified in a state-independent man­

ner, private state-information is irrelevant to its computation. Thus savvy Bayesian 

wannabes who nearly agree to disagree about anything must nearly agree to disagree 

purely on computation, where state information is irrelevant. 

Note that the statement of theorem 5.1 tries as far as possible to avoid fragile 

assumptions. For most assumptions used, a parameter is given so that one can relax 

that assumption by varying that parameter. A total of eight such parameters are 
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given: q, q', q",p, E, 61 , 62 , s. Note also that both E and C are allowed to be empty 

sets. 

5.4 Examples 

Let us now consider two examples which illustrate the above results. 

In our first example two agents i = 1, 2 estimate the dollar value v of a gold coin. 

There is only one relevant state w, so n = { w}. At this state, the agents agree that 

the coin has a height of h = .1 units and a radius of r = 10 units. They also agree 

that gold is worth v /V = 100 dollars per unit volume, and that the volume of a disk 

is given by V = 7rr 2h. So they agree that v = (v/V)7rr 2h. That is, for i = 1, 2, we 

have 

and Eiw[h] = .1, Eiw[r] = 10, and Eiw[v/V] = 100. 

The agents disagree, however, in their estimates of the mathematical constant 

7r, since Ew[7r] = 3.14 and Ew[7r] = 22/7. Thus the agents also disagree in their 

estimates of the value of the coin, with E1w[v] = 3.14 and Ew[v] = 22/7. 

Since there is only one state w, both agents perceive that there is only one self­

consistent description of a possible reality. The agents do not perceive any state­

uncertainty regarding any relevant parameters, including the estimates made by the 

other agent. This does not mean that such estimates are error free, however. For 

example it is possible that E2w[Ew[7r]J could equal either 3.14 (with zero error) or 

3.15 (with an error of .01). 

Our second example is an adaptation of an example by Neeman [Nee96a]. Let 

there be three states, n = {1 , 2, 3}, and a random variable X = (X(l) , X(2), X(3)) = 

(1, 1, 0). Two agents i = 1, 2 have information sets 11 = { {1, 2} , {3}} and h = 

{ {1}, {2, 3} }, and a common priorµ= {(1 - p)/(2 - p),p/(2 - p), (1 - p)/(2 - p)} . 

If agents 1, 2 were Bayesians, they would each have µ(21Ii(2)) = p, and thus at 
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w = 2 have both common p'-belief and p'-agreement, for any p' ~ p, of any event E 

such that 2 E E. They would also have estimates X 1 = (1, 1, 0) and X 2 = (l ,p,p), 

giving a disagreement of X 1 - X 2 = (0, 1 - p, -p), and p-agree at w = 2 that they 

1 - p-disagree. 

Since both Bayesians have zero bias, E2w[ei] 2:: E1w[ei] + €(p) becomes 0 > €(p) = 

p(l - p) - 2(1 - p). 

If agents 1, 2 are Bayesian wannabes, their actual estimates Eiw ~an differ from 

Bayesian estimates by errors eiw· Since these errors constitute a very large number 

of possible parameters, we consider a very specific case. 

Let p = .97 and Di = h If e12 [µ(2II1(2))] = -.01 and e22[µ(2II2(2))] = .01, 

then at w = 2 the agents q-agree, for q = .96 regarding the event {2} . If ei[X] = 

(-.01, -.01, .04), and e2[X] = (-.01, -.15, -.15) , then using E = .15 we have X1 -

X2 - E = (-.15, .02, -.93), and thus they also q-agree at w = 2 that they €-disagree, 

since X 1 2: X2 + E. 

Let us assume that at state 2 both agents estimate that both are exactly ( s = · 0) 

savvy, exactly ( 8 = 0) self-respecting at state 2 regarding X on their information sets 

Ji(2), and are .95-accurate on those sets. Let us also assume that in all states both 

agents are fully (1, 1) aware of lemma 5.5 relative to {2}. 

Assuming the agents are actually savvy at state 2, the agent's estimates will satisfy 

E22 [e1] 2:: €(.15, 0) = .0425 and E12 [e2] ~ -.0425. These consistency constraints are 

satisfied for errors e12 [e2] = .04 and e22 [e1] = .1, since then E22 [e1] = .09 2:: .0425 

and E12 [e2] = -.11 ~ -.0425. The resulting disagreement about average bias is as 

predicted, with E22[ei] - E12[ei] - €(p, 0) = .0475 > 0 and E22[e2] - E12[e2] - €(p, 0) = 

.0675 > 0. 

5.5 Conclusion 

Since Bayesians with a common prior cannot "agree to disagree", to what can we 

attribute persistent human disagreement? One possibility is that disagreements are 

only apparent. A second possibility seems to be purely differing priors, while a third 
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possibility seems to be purely differing computational errors. However since differing 

information appears to many to play a central role in human disagreements, many 

have sought a forth theoretical alternative, where information plays a central role. 

Can we understand persistent human disagreement as due to an intrisnic mixture of 

differing information and unavoidable computational constraints on human inference? 

In an attempt to address this question, this paper has introduced the concept of 

Bayesian wannabes, which is a very general class of agents who would be Bayesians if 

it were not for computational limitations. The paper also introduced the concept of 

savvy, i.e ., awareness of certain easy-to-compute implications of computational errors. 

Speaking loosely, for savvy Bayesian wannabes with common priors we have shown 

that arbitrary situations of "nearly agreeing that both agents are savvy and yet dis­

agree about something else" imply "nearly agreeing to disagree about the computation 

of average calibration bias". 

Thus we can attribute persistent disagreement to not wanting to be Bayesian, to 

differing priors, to per~istent disagreement about a matter of pure computation, or 

to a lack of savvy, but not to any other sort of differing information. That is, the 

only differing information which can alone explain disagreement is uncertainty about 

whether the other agent is aware of certain state-independent facts about disagree­

ments in general. Beyond this, disagreements are not about information. 

While this paper has introduced and illustrated the concept of agreeing to dis­

agree about computation, it has said relatively little about this concept, which seems 

ripe for further analysis. Are there further simple-to-compute consistency relations, 

i.e,. further concepts of savvy, which can limit the situations when it is possible to 

rationally agree to disagree about computation? 

Agents who agree to disagree regarding computation would seem to be forgoing 

Pareto improvements obtainable by a combination of a monetary transfer and an 

agreement to use some intermediate estimate. Can this intuition be formalized? Can 

such agreements be enforced? 

Finally, what dynamics should we expect for computational-error-driven disagree­

ments? Are there empirically-testable differences between such dynamics and the 
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dynamics one should expect for information-driven and prior-driven disagreements? 

5.6 Appendix 

Lemma 5.1 The ci which minimizes E[(Xi - X)2 I Di(w)] sets ei[XIDi(w)] = 0. 

Proof: Since ei = Xi - Xi , then (Xi - X) 2 = (ei + (Xi - X))2 = ~I + (Xi -

X) 2 + 2ei(Xi - X). The second term on the right cannot be affected by adjusting 

Xi, and the expectation of the third term on the right over Di ( w) vanishes because 

ei is constant over each Ii(w) C Di(w) and E[Xi - XI Ji(w)] = 0, which follows from 

equation 5.1. Thus to minimize E[(Xi - X)2 I Di(w)] is to minimize E[el I Di(w)]. 

Write ei = mi - Ci = (mi - mi) + (mi - ci), where mi = E[mi I Di(w)]. Then 

el= (mi - mi) 2 +(mi - ci)2 + 2(mi - mi)(mi - ci)· But the expectation of the third 

term here over Di(w) vanishes by the definition of mi, the first term is independent 

of ci , and the second term is minimized by ci =mi· So ei =mi - ci = 0. QED. 

Lemma 5.2 Common p-belief implies 2p-l-agreeing, and p-agreeing implies common 

p-belief. 

Proof: Regarding the first claim, Cc Bf(CnE) implies both Cc Bf (C) and Cc 

Bf (E) _due to the general relation that Bf (S) C Bf (S') whenever SC S'. Regarding 

the second claim, for all win a common set C, µ(CI Ji(w)) ~ p and µ(EI Ji(w)) ~ p. 

Defining a1 = µ(C n EI Ii(w)), a2 = µ(C\E I Ii(w)), a3 = (E\C I Ii(w)) , and a4 = 

1-a1-a2-a3 ,wethushavea1+a2 ~panda1 +a3 ~p. Thisimpliesa3 +a4 ~1-p 

and a2 + a4 ~ 1 - p which implies 1 - a1 = a2 + a3 + a4 ~ a2 + a3 + 2a4 ~ 2(1 - p) 

so that a1 = µ(C n EI Ii(w) ~ 2p - 1 for all w EC. QED. 

Lemma 5.3 eif p1 - e2f p2 = E[X1 - X2 I A]+ E[X1 - XI B1 \A](l - P1)/P1 - E[X2 -

x I B2 \A](l - P2)/P2· 

Proof: Since ei =Xi - Xi, we have E[e1 I A] - E[e2 I A] = E[X1 - X2 I A] - E[X1 -

X2 I A]. The strategy of proof is to find expressions for each of these terms, substitute 

them, and then solve for eif p1 - e2f p2. 
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First, rearranging equation 5.1 implies that E[Xi I SJ = E[X I SJ for any S which 

is a union of Ii members. And Bi must be a union of Ii members since Eiw' = Eiw is 

the same for all w' E Ii(w). Thus E[Xi I Bi] = E[X I Bi]. Since Pi= µ(A I Bi), we also 

have 

E[f I Bi]= E[f I A]pi + E[f I Bi\A](l - Pi) (5.3) 

for any f. Using f = X and f = Xi, we can then solve for E[Xi I A] = E[X I A] + 
E[X - xi I Bi \A](l - Pi)/pi, which implies 

Second, using f = ei in equation 5.3 yields E[ei I A]= eifpi-E[ei I Bi\AJ(l-pi)/Pi· 

Finally, we can leave E[X1 - X2 I A] = E[X1 - X2 IC n E] alone, as this must be at 

least E by the definition of E. Substituting into the original equation, noting that 

(Xi - X) + ei =Xi - X, and solving for eifp1 - e2/P2 gives the result. QED. 

Proof: Since X1 - X2 ~ E everywhere in E, and A c E, the first right side term 

in lemma 5.3's equation is at least E. For E ~ 0 the most negative imaginable case for 

this right side is where (B1 \A) n (B2 \A) = 0, with X1 = X and X = X on B1 \A, 

and X2 = X and X = X on B2 \A. This gives 

Multiplying this equation by p1 , the most negative case for the last two right side 

terms is p1 = p2 = p0 , and when e2 = -62 :S 0, the most negative case for the first 

right side term is p1 = 1,p2 = p0 . This implies the result. QED. 
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