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In this paper analytical methods to formally incorporate knowledge of physics-based
equations between multiple outputs in a Gaussian Process (GP) model are presented. In
Gaussian Processes a multi-output kernel is a covariance function over correlated outputs.
Using a general framework for constructing auto- and cross-covariance functions that are
consistent with the physical laws, physics-based relationships among several outputs can
be imposed. Results of the proposed methodology for simulated data and measurement
from flight tests are presented. The main contribution of this paper is the application and
validation of our methodology on a dataset of flight tests, while imposing knowledge of
flight mechanics into the model.

Nomenclature

yi Output Data fi Latent Function

xi Input Data g(.) Relation between outputs

m(x) Mean function for a Gaussian Process k(x, x′, θ) Covariance function for a Gaussian Process

Kxx Auto-covariance matrix for points x kx∗x Covariance Matrix at points x∗ and x

θ Hyperparameters for a Gaussian Process L Jacobian matrix of g(.)

x∗ Prediction points y∗ Prediction at point x∗
X Joint Input Data Matrix Y Joint Output Data Vector

η Spanwise distance from wing root Cz Lift coefficient in z direction

kz Aerodynamic force in z direction εi Measurement error

σi Variance of measurement error i Output number

d Absolute distance between points µy2
Mean value of the process y2

ηroot Spanwise position at fuselage and wing joint ηedge Spanwise position at wing edge

I. Introduction

Precise values of flight loads are highly useful information at several stages of an aircraft’s life cycle.
During certification, aircraft manufacturers need experimental flight loads to verify and improve their the-
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oretical models. Monitoring aircraft usage through loads can provide a better estimate of the remaining
time-to-failure of components against their prescribed fatigue life. Aircraft flight loads are often difficult
and expensive to measure experimentally. This calls for a need to develop a theoretical framework to merge
different types of measurements and produce a robust flight loads surrogate model.

A. Background

Identification of an accurate flight loads surrogate model over the complete flight domain is an expensive
exercise, notably because one cannot perform extensive flight testing on all the flight configurations. Since
the last decade, techniques such as Neural Networks1,2 have been applied while recently Gaussian Process
Regression3 (also known as Kriging) has shown great promise in developing the surrogate models that infer
loads at untested flight configurations.

It has been proved extensively that introduction of prior information4 improves the prediction capabilities
of a GP surrogate model, diminishes chances of over-fitting and helps in identifying outliers. In recent times,
techniques such as Gradient Enhanced Kriging (GEK)5,6 have been used successfully in various engineering
systems to impose prior information of gradients or local linear models, thereby improving the performance
of surrogate models.

Building surrogate models on multi-output data is also known as co-kriging7 or multi-output GP.8 Mod-
elling multi-outputs is particularly difficult because we need to construct auto- and cross-covariance functions
between different outputs based on the relationships between them. Recently, it has been shown that re-
lationships between multiple outputs can be imposed by encoding it in the covariance functions9 to derive
models consistent with relationship and data.

B. Contribution

In this paper we extend the framework of Gradient Enhanced Kriging to integral enhanced kriging, quadratic
enhanced kriging or “any relationship between outputs” enhanced kriging. Using a general framework to
encode relationships between outputs9 , we will impose prior knowledge into the Gaussian Process Regression
framework and apply it for predicting flight loads.

In this paper we assume one output to be independent while the remaining outputs are linked to the
first output using physics-based relationships. For instance, lift coefficient (Cz) and spanwise aerodynamic
force (kz) have an integral relationship between them equation 21. As will be described in subsection II.B,
the auto- and cross-covariance functions between these outputs are evaluated exactly if the physics-based
relation between them is linear10 or using approximate joint-covariance for non-linear relationship between
the outputs.9 The main contribution of this paper is the application and validation of our methodology on
a dataset of flight tests, while imposing knowledge of flight mechanics into the model.

II. Theoretical Setup

Let us start by defining a P -dimensional input space and a D-dimensional output space. Such that
{(xji , y

j
i )} for j ∈ [1;ni] is the training dataset for the ith output. Here, ni is the number of measure-

ment points for the ith output, while xji ∈ RP and yji ∈ R. We next define xi = {x1i ;x2i ; . . . ;x
ni
i } and

yi = {y1i ; y2i ; . . . ; yni
i } as the full matrices containing all the training points for the ith output such that

xi ∈ Rni×P and yi ∈ Rni .

yji = f(xji ) + εji (1)

The science of finding a mapping function f denoted by equation 1 between {(xji , y
j
i )} is called surrogate

modeling in engineering design or regression in machine learning. We would use the technique of kriging
(engineering design)11 or Gaussian Process Regression (machine learning)4 to learn this mapping function
f . A Gaussian Process is a probability distribution over infinitely many points, such that any finite subset
of the process is a multi-variate gaussian distribution. A GP can be fully parameterized by a mean and
covariance function equation 2.

f(x) = GP (m(x, θ), k(x, x′, θ)) (2)



A random draw from a multi-variate gaussian distribution yields a random vector around its mean with
values correlated through the covariance matrix. Similarly, a random draw from a GP provides a random
function around the mean function m(x, θ) and of the shape as defined by the covariance function k(x, x′, θ)
(calculated between points x and x′). Hence, GPs provide us a method to define a family of functions whose
shape is defined by its covariance function12 also called kernel.

A. Gaussian Process Regression (GPR)

For the case of a single-output GP we assume that D equals to one, so our dataset will be {(x1, y1)}. We first
start by defining a white noise measurement error between the measured outputs y and mapping function f .

ε = N (0, σ2
noiseI) (3)

Here, σnoise is the magnitude of measurement error. While performing regression in a GPR framework
we first define a family of functions also called a prior described in subsection II.A.1. The next step involves
taking the data and eliminating all the functions in our prior which do not obey the observations, this step
gives us the posterior mean and covariance described in subsection II.A.2. Finally, we can further improve
our predictions by improving our initial family of functions, this is achieved by maximizing the marginal
likelihood subsection II.A.3.

1. Prior

Any regression algorithm starts with an initial family of functions or hypothesis space. By initially defining
a family of functions we indirectly encode initial assumptions or bias (continuity, differentiability etc.) into
our regression algorithm. If an algorithm is not able to represent the mapping function f in its hypothesis
space we will find the closest according to a certain metric.

f(x) = GP (0, k(x, x′, θ)) (4)

Here, the representation of mapping function f equation 4 defines a family of functions also called prior.
Without loss of generality, we can assume that the mean function is zero.4 The covariance function or kernel
k(x, x′) defines the shape of functions defined by the prior equation 4. In this paper we will compare two
types of kernels Standard Exponential kernels and Matérn kernels.

(a) Draws from a Standard Exponential (SE) Kernel
(θ = [1, 0.2]).

(b) Draws from a Mateŕn Kernel differentiable twice
(θ = [1, 0.2])

Figure 1: Draws from Gaussian Process Priors. Solid black line defines the mean function, shaded blue region
defines 95% confidence interval (2σ) distance away from mean. The dashed lines are functions randomly
drawn from the priors



Standard Exponential Kernel

A popular choice of covariance function is a Squared Exponential (SE) function equation 5, because it defines
a family of highly smooth (infinitely differentiable) non-linear functions as shown in figure 1a.

kSE(x, x′, θ) = θ21exp[−
d2

2θ22
] (5)

For the case of the SE kernel equation 5 the hyperparameters (θ = [θ1, θ2]) are; amplitude θ1 which
defines average distance from mean and the length scale θ2 which defines the wiggliness of functions. Here,
d defines the absolute distance between points |x− x′|.

Matérn Kernel

The Mateŕn kernel is the second most popular kernel after the squared exponential kernel. It provides the
flexibility to define a family of functions with varying degree of differentiability. We will take the case of
twice differentiable Mateŕn kernel throughout this article.

kMat2(x, x′, θ) = θ21

(
1 +

√
5d

θ2
+

5d2

3θ22

)
exp

[
−
√

5d

θ2

]
(6)

The hyperparameters (θ = [θ1, θ2]) are; the amplitude θ1 which defines average distance from mean and
the length scale θ2 which defines the wiggliness of functions. The Matérn kernel in equation 6 defines a family
of functions differentiable only twice figure 1b. We can observe that draws from figure 1a are smoother when
compared to draws from figure 1b for the same set of hyperparameters θ.

2. Posterior

Once we have defined an appropriate prior, we have a look at the data {(x1, y1)}. Using the Bayes rule
we eliminate all the functions that are not passing through the observed data points. The predicted mean
equation 7 and variance equation 8 can be analytically calculated4 .

m(y∗) = kx∗x(Kxx + σ2
noiseI)−1y (7)

Cov(y∗) = kx∗x∗ − kx∗x (Kxx + σ2
noiseI)−1kxx∗ (8)

(a) Posterior from a Standard Exponential (SE) Ker-
nel (θ = [1, 0.2];σnoise = 0.05).

(b) Posterior from a Mateŕn Kernel differentiable
twice (θ = [1, 0.2];σnoise = 0.05).

Figure 2: Gaussian Process Posterior. Solid black line defines the mean function, shaded blue region defines
95% confidence interval (2σ) distance away from mean. The dashed lines are functions randomly drawn from
the posterior



Figure 2a shows the posterior distribution upon introduction of data to the prior distribution figure
1a. The mean function does not pass through all the observation points because of the assumed measured
noise term σnoise = 0.05. Figure 2b shows the posterior distribution upon introduction of data to the prior
distribution 1b. The mean function does not pass through all the observation points because of the initial
noise term σnoise = 0.05. We can observe that the mean of figure 2a is smoother when compared to the
mean of figure 2b. Moreover the variance estimates in the case of the Matérn kernel are higher than that of
the SE kernel. Since twice differentiability is a less strict initial assumption and has more functions in its
family, more functions are possible through the data.

3. Maximizing Marginal Likelihood

To obtain good prediction capabilities, one needs to start from a prior that explains well our dataset. This
is achieved by optimizing the Marginal Likelihood (ML) equation 9. The probability that our dataset comes
from a family of functions defined by the prior is called the ML.4 Hence, when we maximize the ML we are
actually finding the optimal θ or family of functions that best describe our dataset.

log(P(y | x, θ)) = −1

2
yT [Kxx + σ2

noiseI]−1y − log
∣∣Kxx + σ2

noiseI
∣∣− n

2
log(2π) (9)

The ML is a trade-off between a data-fit term (1
2y
TK−1xx y) and a model complexity term (log |Kxx|). The

optimization of ML(θ) provides the best compromise in terms of explaining the existing dataset {(x1, y1)}
and the initial assumptions encoded in the prior. Hence to find the best set of hyperparameters we maximize
the marginal likelihood equation 9 with respect to its hyperparameters.

log(ML) = -35.3

(a) Posterior between SE
prior with hyperparameters
(θ = [0.05, 0.5];σnoise = 0.01) and
data.

log(ML) = -8.2

(b) Posterior between SE
prior with hyperparameters
(θ = [0.05, 0.5];σnoise = 0.01) and
data.

log(ML) = 6.04

(c) Posterior between SE prior with
optimized hyperparameters (θ =
[0.45, 0.17];σnoise = 0.0014) and
data.

Figure 3: Posteriors for 3 different sets of hyperparameters

Figure 3 compares the posterior distributions obtained for SE priors with 3 different hyperparameters.
We observe that the mean of figure 3b passes through all the observed data points but is more complex
(wiggly). The mean in figure 3a is a smooth function but does not fit the data properly. While figure 3c is
a good compromise between the data-fit term and the model complexity term.

B. Multi-Output Gaussian Process Regression

Given a dataset for multiple outputs {(xi, yi)} for i ∈ [1;D] we define the joint output vector Y =
[y1; y2; y3; . . . ; yD] such that all the output values are stacked one after the other. Similarly, we define
the joint input matrix as X = [x1;x2;x3; . . . ;xD]. For the sake of simplicity, suppose we measure two out-
puts y1 and y2 with some error, while the true physical process is defined by latent variables f1 and f2. Then
the relation between the output function, measurement error and true physical process can be written as
follows.

y1 = f1 + εn1

y2 = f2 + εn2
(10)



Let us take the case of an explicit relationship between the two latent variables equation 11.

f1 = g (f2, x1) (11)

Here g (.) ∈ C2 is an operator defining the relation between f1 and an independent latent variable f2.
Operator g(.) can be a known physical equation or a computer code between the outputs. A GP prior in
such a setting with 2 output variables is expressed in equation 12.[

f1
f2

]
∼ GP

[(
g(0)

0

)
,

(
K11 K12

K21 K22

)]
(12)

K12 and K21 are cross-covariances between the two inputs x1 and x2. K22 is the auto-covariance function
of independent output, while K11 is the auto-covariance of the dependent output variable. The full covariance
matrix KXX is also called the joint-covariance. While, the joint error matrix will be denoted by Σ;

Σ =

[
σ2
n1 0

0 σ2
n2

]
(13)

Where, εn1 and εn2 are measurement error sampled from a white gaussian noise N (0, σn1) and N (0, σn2).

1. Multi-Output Prior

For a linear operator g(.) the joint-covariance matrix can be derived analytically,13 due to the affine property
of Gaussian’s. [

f1

f2

]
∼ GP

[(
g(0)

0

)
,

(
g(g(K22, x2), x1) g(K22, x1)

g(K22, x2) K22

)]
(14)

Using the known relation between outputs we have successfully correlated two GP priors from equation
11. This effectively means that when we randomly draw a function f2 it will result in a correlated draw of
f1 such that the two draws satisfy the equation 11. We have effectively represented the covariance function
K11 in terms of the hyperparameters of covariance function K22 using the known relation between outputs.

(a) Prior from a joint SE Kernel such that (θ =
[1, 0.2]) and f1 = df2/dx.

(b) Prior from a joint Mateŕn Kernel differentiable
twice such that (θ = [1, 0.2]) and f1 = df2/dx.

Figure 4: Multi-Output Gaussian Process Prior. Solid black line defines the mean function, shaded regions
define 95% confidence interval (2σ) distance away from mean. The dashed lines are functions randomly
drawn from the prior. Pairs of similar colored dashed lines follow the given relation between f1 and f2.

However, a non-linear operation g(.) on a Gaussian distributed variable does not result in a Gaussian
distributed variable. Hence, for the case of non-linear g (.) the above joint-covariance matrix as derived in
Equation 14 is not positive semi-definite, which prevents us from taking its inverse in equation 9. Therefore
we use an approximate joint-covariance9 for imposing non-linear relations equation 15.



[
f1
f2

]
∼ GP

[(
g(0)

0

)
,

(
LK22L

T LK22

K22L
T K22

)]
(15)

Here, L = ∂g
∂y

∣∣∣
y2=ȳ2

is the Jacobian matrix of g (.) evaluated at the mean of independent output y2.

Equation 15 is a Taylor series expansion for approximating related kernels. Since a Taylor series expansion
is constructed from derivatives of a function which are linear operations, the resulting approximated joint
kernel is a Gaussian kernel.9

Figure 4 shows the joint prior for two functions f1 and f2 given a relation f1 = df2/dx between them.
The pairs of similarly colored random draws follow the given equation. We can verify this fact by observing
that f1 tends to zero when f2 tends to a maxima or minima. The draws from figure 4a are smoother when
compared to draws from figure 4b.

2. Multi-Output Posterior

To obtain predictions on non-measured points (X∗), we now proceed in a similar manner as prescribed in
section A. We optimize the ML to find the optimal θ and then find the predicted mean and covariance as
shown in equation 16 and equation 17.

m(Y∗) = KX∗X(KXX + Σ)−1Y (16)

Cov(Y∗) = KX∗X∗ −KX∗X(KXX + Σ)−1KXX∗ (17)

As mentioned earlier while calculating the posterior we apply the bayes rule. This effectively means that
we eliminate all the functions that do not pass through measured points. Since we have encoded the relation
between f1 and f2 in the joint-prior. When we eliminate not possible functions from the prior of f1, we
consequently eliminate functions from the prior of f2 and vice-versa. In the process we come up with a
posterior which is consistent with the observations and initial relation.

(a) Posterior from a joint SE Kernel such that (θ =
[0.45, 0.17]; σn2 = 0.02; σn1 = 0.1) and f1 = df2/dx.

(b) Posterior from a joint Mateŕn Kernel differ-
entiable twice such that (θ = [0.45, 0.17]; σn2 =
0.02; σn1 = 0.1 and f1 = df2/dx.

Figure 5: Multi-Output Gaussian Process Posterior. Solid black line defines the mean function, shaded region
defines 95% confidence interval (2σ) distance away from mean. The dashed lines are functions randomly
drawn from the posterior

Figure 5 shows the joint posterior for two functions f1 and f2 given a relation f1 = df2/dx and data
between them. We have used same data as used in figure 2 but have reduced the number of measurement to
8 and derivative points to 8. Figure 5a shows the posterior for a SE kernel. At the positions where the value
of derivative f1 is given, we see a shrinking of variance in f2. Draws from the posterior and mean of f2 both
have value of derivative as set by f1. Figure 5b shows the posterior for SE kernel. At the positions where



value of derivative f1 is given, we see a shrinking of variance in f2. Draws from the posterior and mean of
f2 both have value of derivative as set by f1.

Here the two outputs need not be measured at the same input points, this will be demonstrated in
subsection III.B. Another interesting observation is that while optimizing the marginal likelihood for figure
5, the noise terms for two outputs are different (σn2 = 0.02; σn1 = 0.1). This means that the two outputs
have different values of fidelity, this looks very similar to co-kriging. In fact co-kriging can be seen as a
special case of joint multi-output GPR. Such that the two outputs are linked by the relation f1 = f2 and the
two error measurements are linked by the relation σn1 >> σn2, the output y1 is a low fidelity measurement
when compared to output y2.

III. Results

In this section, we provide a numerical illustration to the theoretical derivations in the earlier sections. We
start with a synthetic problem where we try to learn the model over quadratic relationships. We compare the
cross-validation error values of independent GPR with that of multi-output joint GPR. Finally, we compare
the performance of our methods on flight-loads estimation for a horizontal tail plane.

The basic toolbox used for this paper is GPML provided with “Gaussian Process for Machine Learning”,4

we generate covariance functions to handle relationships as described in equations 14 and 15 using the
“Symbolic Math Toolbox” in MATLAB 2014b. All experiments were performed on an Intel quad-core
processor with 4Gb RAM.

A. Quadratic relation on Synthetic Data

We take the case of a quadratic operator g(.) equation 18.

f1 = f22 (18)

To generate the data we randomly draw a single function of f2 as described in equation 19 for 50 equally
spaced inputs between [-1, 1]. The data for f1 is the calculated using equation 18. The latent functions f
are then corrupted according to equation 19 which gives us the outputs y′s. We finally hide the observations
for y1 in the domain x = [−0.2, 0.2]. We thus have our dataset for testing the performance of quadratic
relationship.

f2 ∼ GP [0,KSE(0.2, 1)]

σn2 ∼ N [0, 0.1]

σn1 ∼ N [0, 1] (19)

KSE(0.2, 1) means squared exponential kernel with length scale 0.2 and variance 1. σn2 and σn1 are the
white noises added to the latent functions f1 and f2 respectively. Since the quadratic relationship g(.) is
non-linear in nature we use the equation 15 to calculate the auto- and cross-covariance functions as explained
in equation 20.

K12 = 2µy2(x1)K22

K11 = 4µy2(x1)2K22 (20)

Here, µy2(x1) is the mean value of function y2 calculated at the input points x1. For the case of quadratic
relationship the jacobian L as described in equation 15 comes out to be 2µy2(x1). For non-linear operators
g(.) the joint-covariance prior depends on the mean value of f2. K22 and K11 are the auto-covariance
functions calculated at the input points x1 and x2 as described in equation 15 and equation 12. K12 is the
cross-covariance function between the input points x1 and x2. We can observe that the joint-covariance has
been expressed as a function of covariance K22 using equation 18.

Figure 6a shows the independent fit of two GPR. For the case of y1 there is a huge difference between the
real data and predicted mean at points where data is unavailable. Figure 6b shows the joint-GP regression.
Joint-GP model gives better prediction even in the absence of data for y1 because transfer of information
is happening from observations of y2 present at those locations. For the case of y2 there is no significant
improvement in the prediction of two methods.



(a) Independent GP Regression for the two outputs
y1 and y2. For y1 the data is hidden from section
x = [−0.2, 0.2]. We can observe the huge difference
between the real data and the predicted mean values
at zone with no data.

(b) Joint-GP Regression for the two outputs y1 and
y2 related through equation 18. For y1 the data is
hidden from section x = [−0.2, 0.2]. We can observe
the improved prediction between zone with no data
because information is being shared between the two
outputs.

Figure 6: GP Regression on Quadratic relationship. The solid black line represents the predicted mean while
the shaded area denotes 95 % confidence interval (2σ) uncertainity region. The dashed black line represents
the real value of f1. For y1 the data is hidden from section x = [−0.2, 0.2].

Table 1: mean RMSE errors for quadratic relationship

RMSE y1 RMSE y2

Independent Single-output GPR 1.74 0.14

Joint Multi-output GPR 0.26 0.12

Table 1 shows comparison of Root Mean Square Error (RMSE). 10 sets of experiments were run for 85%
of data as training set and 15% of data as test set, the training and test sets were chosen randomly. We learn
the optimal set of hyperparameters for on training data all 10 sets of experiments. Finally RMSE values are
evaluated with respect to the test set. We see a significant improvement in performance for the case of joint
multi-output GPR.

B. Flight Mechanics on Flight Test Data

Procuring data in engineering design is a costly exercise, a high-fidelity CFD simulation runs for days and a
flight test campaign costs millions. In this context it is important to be data efficient while creating models
with data. We leverage the knowledge of available relations between several types of data and build a more
robust, physically consistent and data efficient model.

In this section we conduct experiments, applying our approach on the flight loads data. We look at
normalized data of a simple longitudinal maneuver. The maneuver is quasi-static which means that airplane
is in equilibrium at all times and there are no dynamic effects observed by the aircraft. The two outputs in
our case are coefficient of lift Cz on the Horizontal Tail Plane (HTP) and spanwise lift kz. We know that
the integral of spanwise pressure will be equal to the coefficient of lift.

Cz(η) =

∫ ηroot

ηedge

kZ(η)dη (21)

.



Here, ηedge denotes the edge of horizontal tail span while ηroot represents root of tail. The above equation
is linear in nature and hence we will use equation 14 to calculate the auto- and cross-covariance functions.

In practice, the coefficient of lift Cz is calculated using strain gauges on the HTP and the spanwise force
is measured using pressure tappings. Chordwise pressures are measured at multiple η locations on the HTP,
which are integrated chordwise to give spanwise lift distribution. We are trying to merge data coming from
two different calculation processes of flight mechanics and aerodynamics using a basic physics based relation
and improve the accuracy of our model.

(a) Joint multi-output GPR between Kz and Cz us-
ing a SE kernel and equation 21. Optimized hyperpa-
rameters (θ = [0.42, 0.08]; σnKz = 1.3∗10−4; σnCz =
0.0414)

.

(b) Joint multi-output GPR between Kz and Cz

using a twice differentiable Matérn kernel and
equation 21. Optimized hyperparameters (θ =
[0.53, 0.08]; σnKz = 9.3 ∗ 10−7; σnCz = 0.018)

Figure 7: Joint multi-output GPR on Kz and Cz relationship. Solid black line defines the mean function,
shaded region defines 95% confidence interval (2σ) distance away from mean.

Figure 7 shows a comparison between two joint multi-output GPR on Kz and Cz using initial assumptions
regarding order of differentiability. Figure 7a shows the effect of SE kernel (infinite differentiability) on the
joint model. The SE kernel is a strong assumption for type of lift distribution. To accomodate for the value
of measured Cz the error band increases and the boundary condition at HTP root is not satisfied. Moreover,
we identify points in the figure 7a which fall out of the 95% confidence band. We can claim with 95%
probability that if our lift distributions come from a family of highly differentiable functions these outliers
do not satisfy the physics of the problem and can be termed as measurement errors.

Figure 7b shows the effect of twice differentiable Matérn kernel on the joint model. The twice differentiable
assumption gives our family of functions enough flexibility to follow the spanwise lift data. We observe that
error estimates for Cz improves considerably while there is an increased uncertainity at the HTP root for
Kz. This loss in order of differentiability can be explained due to fuselage HTP interaction near HTP root.
Since there is a discontinuity in the surface due to presence of fuselage, the pressure distribution near the
HTP root cannot remain infinitely smooth. We can conclude that even though we are working with very
basic assumptions of differentiability the choice of kernel is important in performing the predictions.

This procured model can be used as a robust surrogate model which is consistent with the physics based
relations. The relation g(.) can be a known functional relationship or some transformation arising from a
computer code. This surrogate model can be used in further use cases for example finding optimal placements
of sensors so as to reduce the overall uncertainty in the system, or performing bayesian optimization or
Efficient Global Optimization (EGO) using information coming from several outputs. Making the steps
more data efficient and consistent with the physics of the system.

IV. Conclusion

This paper describes a general framework of joint multi-output GPR to find mapping function between
a set of input and related outputs9 . Using very basic assumptions such as order of differentiability and



knowledge of relation between the outputs a joint family of functions can be constructed. Later functions
inconsistent with the observed data are eliminated using bayes rule. This gives us a prediction which is
consistent with the initial assumptions, initial relationship and observed data.

We initially provide empirical demonstrations of the framework on synthetic data related through a
quadratic relationship. The approach shows improvements in prediction capabilities and handling of missing
data. The second demonstration was performed on flight loads data and demonstrated that imparting prior
flight mechanical relationships into GPR allows for a better surrogate flight loads model. Thus, we are now
capable of creating a more robust, physically consistent and interpretable surrogate model for these loads,
thereby greatly improving the identification process.

As we keep on adding more physical information into GPR, the number of points in the joint-covariance
matrix increase. However GPR does not scale well to very large number of input points. Future work will
investigate recent advances in scaling up GPR14 in order to handle several relationships and possibly cover
the whole flight test dataset.
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