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Abstract – Thermogravitational separation has until now, been used in different heated vertical cells called
thermogravitational columns. The cell can be an annular cavity with two isothermal faces maintained at
different temperatures. The main objective of this paper is to study the two dimensional coupled convection
with thermodiffusion process. It concerns a theoretical and numerical investigation of species separation
in a binary liquid mixture saturating a horizontal porous annulus space where the inner cylinder is heated
isothermally. This kind of geometry is used instead of the annular vertical cell, hence the novelty of this
technique. Analytical resolution is performed using the perturbation method function of time versus the
corresponding physics (Raleigh and Lewis numbers. . . ). Results reveal that the separation can be increased
with an optimum for small values of Rayleigh number. Further, these values are less important than the
critical value of Raleigh leading to the loss of unicellular flow stability found in literature.
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1 Introduction

Thermogravitational diffusion is the combination of
two phenomena; convection and thermodiffusion. Cou-
pling these two phenomena leads to species separation
constituting a mixture of gas or liquid unfilled a well-
defined geometrical space.

A literature survey related to this topic revealed that
previous studies are substantially orientated toward the
study of concave geometries and only few works deal with
this type of geometry in the presence of porous media.
Most of them are numerical studies. Clusius and Dickel [1]
are among the first in the field: they have successfully
carried out the separation of gas mixtures in a vertical
cavity heated from one side (thermogravitational column,
TGC). Soon thereafter Furry et al. [2] have developed a
theoretical and experimental study on thermogravitation
species separation in binary mixtures (FJO Theory) in
order to interpret the experimental processes of isotope
separation. Subsequently, many works appeared, in or-
der to justify or extend the FJO theory and results on
the binary liquid case [3]. Furthermore, other research

a Corresponding author: oussama.abahri@gmail.com

on the improvement of experimental devices to increase
separation can be found in literature. In this regard,
Lorenz et al. [4] proposed the introduction of a porous
medium into the cavity. Later, still regarding this topic,
Caltagirone [5] used the perturbation method by devel-
oping the temperature and stream function in terms of
Rayleigh number until order 3, to provide solution for
low flow regimes. Thereafter, Burns and Yien [6] treated
a steady flow with other types of boundary conditions
for the inner cylinder (i.e. uniform temperature or im-
posed flow). They used the finite difference method for
solving the linear system based on the S.O.R procedure
and found the Caltagirone results for Dirichlet bound-
ary conditions for the temperature. Later, Bau [7] inves-
tigated the effect of the cylindrical eccentricity on heat
transfer, using a perturbation method with Rayleigh num-
ber as a development parameter. Indeed, Himasekhar [8]
used the Galerkin method developed at higher levels to
analyze the stability of two-dimensional unicellular flow
with two different approaches. The first approach esti-
mates the convergence of the obtained solution in terms
of entire series of Rayleigh number, while the second one
focuses on the linear stability of the obtained solution

http://dx.doi.org/10.1051/meca/2015115
http://www.mechanics-industry.org
http://www.edpsciences.org


Nomenclature

a∗ Thermal diffusivity of the mixture a∗ = λ∗/(ρc)f

C Mass fraction of the denser component of the mixture

D∗ Mass diffusion coefficient (m2.s−1)

D∗
T Thermodiffusion coefficient (m2.s−1.K−1)

e Dimensional gap width e = re − ri (m)

g Gravitational acceleration (m.s2)

k Wave number

K Permeability of the porous medium (m2)

Le Lewis number Le = a∗/D∗

P Pressure of fluid (Pa)

R Radius ratio R = re/ri

Ra Thermal filtration Rayleigh number Ra = gβ (Ti − Te) (ρc)fK ri/λ∗ν
Rac Critical Rayleigh number

S Separation

Sp Separation factor

T Temperature (K)

t Dimensionless time

V Velocity field (m.s−1)

Vϕ, Vr Velocity components (m.s−1)

Greek symbol

βT Thermal expansion coefficient (K−1)

βC Solutal expansion coefficient (m3.kg1)

ε Porous medium porosity

έ Normalized porosity έ = ε/σ

λ∗ Effective thermal conductivity of the porous medium mixture system (W.m−1.K−1)

(ρc)f Volumetric heat capacity of the mixture (J.m−3.K−1)

(ρc)∗ Effective volumetric heat capacity of porous medium mixture system (J.m−3.K−1)

ρ Density

Subscripts

e, i Outer (external) and inner (internal)

o Initial value

* Equivalent thermophysical properties of the porous medium

for radius ratios ranging between 21/8 and 2. Thus, they
determine the critical Rayleigh numbers of transition be-
tween two-dimensional systems based on the radius ratio
R. Dyko et al. [9] considered both linear and nonlinear
stability of two-dimensional flow, using linear theory and
the energy method. This study allows defining the cri-
teria for the onset of the secondary flows observed ex-
perimentally. In fact, they obtained a critical Rayleigh
number that delimited the flow stability from the linear
stability analysis. Indeed, a subcritical Rayleigh number
that defines a necessary condition for global flow stabil-
ity was determined using the energy method. Therefore,
Desrayaud et al. [10] consider thermogravitational sepa-
ration of binary mixture and pure fluid in a horizontal
annulus space delimited by two concentric and isother-
mal cylinders. They developed an analytical model able
to describe the phenomenological equation of heat and
mass transfer occurring in this space.

Also, Mojtabi et al. [11] obtained the following corre-
lation for average Nusselt number in an annular space as a
function of the Rayleigh number based on the layer thick-
ness Nu = 1 + 17Ra

(
(re/ri)

2 − ((re/ri) − 1)3
)
/40 320.

This correlation is still valid for an inner temperature
higher than the outer one (Ti > Te). It is sufficient to de-
scribe heat transfer inside the annular space for all values
of Ra lower than 200. The difference compared with the
numerical results is even smaller than the inner radius
is less than

√
2. Under such conditions, an experimen-

tal visualization by Christiansen effect highlighted the
existence ofunicellular and bi-cellular flows for different
aspect ratios.

Recently works on the annular configuration, take into
account changes in fluids properties (i.e. the Boussinesq
assumption is no valid) thus the local thermal equilib-
rium between phases is not retained; Ts �= TF . Otherwise,
preliminary studies concerning unicellular steady state
flow characterized by a single convective cell in the an-
nular layer was performed by [6]. More recently, Hadidi
et al. [12] studied the double-diffusive free convective heat
and mass transfer phenomena in a rectangular inclined
cavity bounded by two adiabatic and impermeable hori-
zontal walls and two isothermal vertical sides filled with
two parallel porous layers. Results indicate that the per-
meability of the two porous layers has a significant effect



on the flow behavior and heat transfer. According to the
numerical analysis three regimes has been distinguished; a
diffusive regime for low values of RK (permeability ratio),
a transition regime where the mean Nusselt and Sherwood
numbers increase with an increase of RK and an asymp-
totic regime where Nu and Sh become independent of
RK .

Thorough analytical and numerical analysis con-
ducted recently by Khouzam et al. [13] on species sep-
aration process in a binary fluid mixture within a hor-
izontal rectangular cavity heated either from the top or
the bottom, it was shown that the separation is controlled
by horizontal temperature gradient and the upper mov-
ing wall. Further, in addition to five parameters setting
the general problem, namely Ra, Pe, Pr, Le and ψ; the
optimal separation solution is also influenced by the mass
Peclet and Rayleigh numbers.

The present paper investigates analytically and nu-
merically the separation of a binary mixture and pure
fluid within a porous horizontal annulus. Both the in-
ner and outer cylinders are heated isothermally, respec-
tively Ti and To with Ti > To. In other words, we propose
a new procedure coupling the convection and the ther-
modiffusion to obtain an important separation between
the top and the bottom of the annular horizontal porous
layer. This kind of geometry is used instead of the annular
vertical cell and the classical rectangular one studied by
Elhajjar et al. [14] or that of Oueslati et al. [15], hence
the novelty of this technique.

2 Mathematical formulation

It should be recalled that thermodiffusion effect in-
duces a mass fraction gradient in binary fluid mixtures
subjected to a temperature gradient. In addition to the
usual isothermal contribution, there is an additional con-
tribution proportional to the concentration, so that:

�J = −ρ D ∇ C − ρC (1 − C)DT ∇T (1)

whereD is the mass diffusion coefficient,DT the thermod-
iffusion coefficient, ρ the density, and C the mass fraction
of the denser component.

The investigated problem is illustrated schematically
in Figure 1, which consists of an annular porous layer
between two coaxial horizontal cylinders of length L. The
inner cylinder of radius ri is at fixed warm temperature
Ti while the outer cylinder of radius re is maintained at
constant and uniform temperature Te with Te < Ti.

Darcy’s law is assumed valid where fluid and solid
phases are in local thermal equilibrium. It is also assumed
that viscous dissipation, compressibility and Dufour ef-
fects are neglected [14] because of their minor influence
on liquid mixture. Also, the Boussinesq approximation is
invoked for binary fluid properties to relate the density
changes to temperature and concentration and to couple
in this way the temperature and concentration fields to
the flow field:

ρ = ρ0 [1 − βT (T − T0) − βC (C − C0)] (2)

Fig. 1. Geometry of the physical problem.

Here, βT and βc are the coefficients of thermal and solu-
tal expansion, respectively, while ρ0 is the fluid mixture
reference density at temperature T0 and mass fraction c0.

Under these assumptions, the equations of continuity,
momentum, energy and chemical species are cast in their
dimensional form as follow:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (V ) = 0

V = −K
μ (∇P − ρg)

λ∗∇2T = (ρc)∗ ∂T
∂t + (ρc)f V · ∇T

ε∂C
∂t + V · ∇C = D∗∇2C +D∗

TC0 (1 − C0)∇2T

(3)

Here it was assumed that there is little variation in the
term C (1 − C) of the species equation, so that it can be
replaced by C0 (1 − C0); with C0 the initial mass fraction.

Equations (3) were transformed in the non-
dimensionalized form by scaling length, time and tem-
perature by ri;

[
(ρc)∗r2i /λ

∗] and [Ti − Te], and the
velocity, pressure and mass fraction by [λ∗/(ri(ρc)f )];
[λ∗μ/(k(ρc)f )] and ΔC = −ΔTc0(1 − c0)D∗

T /D∗,
respectively.

Thus, the dimensionless governing conservation equa-
tions for mass, momentum, energy and chemical species
are: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · (V ) = 0

V = Ra (T + spC)ez

∂T
∂t + V · ∇T = ∇2T

ε
′ ∂C

∂t + V · ∇C = 1
Le(∇2C −∇2T )

(4)

The studied problem depends on five non-dimensional pa-
rameters; the thermal filtration Rayleigh number Ra =
gβ (Ti − Te) (ρc)fK ri/λ

∗ν; the Lewis number Le =
a∗/D∗; the normalized porosity έ = ε/σ; the separation
ratio sp = − (βC/βT ) (D∗

T /D
∗)C0 (1 − C0) and the as-

pect ratio R = re/ri.
Here σ = (ρc)∗/(ρc)f where (ρc)∗ is the effective vol-

umetric heat capacity of the porous medium, and a∗ the
effective thermal diffusivity of the porous medium.

Using polar coordinates (r, ϕ) and the associated local
database (er, eϕ), the velocity can be defined by:

V = Vrer + Vϕeϕ (5)



The vector eZ takes the following form: ez = cos (ϕ)er −
sin(ϕ)eϕ.

With Vr and Vϕ are the radial and tangential velocity
component, respectively.

Using stream function formalism, the velocity compo-
nents can be expressed as:

Vr =
1
r

∂ψ

∂ϕ
and Vϕ = −∂ψ

∂r

The continuity equation is identically satisfied, by taking
the rotational of Darcy’s equation. Studying the steady
state we have to solve the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2ψ = Ra

[
sin (ϕ)

∂

∂r
(T + sp C)

+
cos (ϕ)
r

∂

∂ϕ
(T + sp C )

]

∇2T =
1
r

[
∂ψ

∂ϕ

∂T

∂r
− ∂ψ

∂r

∂T

∂ϕ

]

∇2C −∇2T =
Le

r

[
∂ψ

∂ϕ

∂C

∂r
− ∂ψ

∂r

∂C

∂ϕ

]

∇2. =
∂2.

∂r2
+

1
r

∂.

∂r
+

∂2.

r2∂ϕ2

(6)

The corresponding dimensionless boundary conditions
are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = 1 for r = 1, ψ =
∂2ψ

∂r2
= 0,

∂C

∂r
=
∂T

∂r
,

∀ϕ ∈ [0, 2π]

T = 0 for r = R, ψ =
∂2ψ

∂r2
= 0,

∂C

∂r
=
∂T

∂r
,

∀ϕ ∈ [0, 2π]

ϕ = 0, π
∂T

∂ϕ
=
∂C

∂ϕ
= 0, ψ = 0, ∀r

(7)
For symmetric regime and single-cell system r varies in
the range [1–R], with R = re/ri. Moreover, a new vari-
able can be introduced in function of temperature and the
concentration η = C − T .Thus, the coupled system takes
the form:

∇2ψ = Ra

[
sin (ϕ)

∂

∂r
((1 + sp)T + sp η)

+
cos (ϕ)
r

∂

∂ϕ
((1 + sp)T + sp η )

]
(8)

∇2T =
1
r

[
∂ψ

∂ϕ

∂T

∂r
− ∂ψ

∂r

∂T

∂ϕ

]
(9)

∇2η =
Le

r

[
∂ψ

∂ϕ

∂

∂r
(T + η) − ∂ψ

∂r

∂

∂ϕ
(T + η)

]
(10)

3 Results and discussion

3.1 Analytical results

An analytical resolution, of the coupled mass, energy
and momentum equations (Eqs. (8) to (10)) using the

perturbation method is conducted in this section. The
development is performed till second order.

Perturbation method is an approximation technique
based on the principle of asymptotic expansion; the pro-
posed solution is generally represented by the first devel-
oped terms. This development may involve a parameter
(large or small) that appears in the equations, or that
artificially introduced. It is called disturbance parameter.

In the present study, this method leads to express tem-
perature, stream function and concentration as an expan-
sion of Rayleigh number:

ψ =
n∑

i=1

Rai ψi(r, ϕ)

T =
n∑

i=0

Rai Ti(r, ϕ)

η =
n∑

i=0

Rai ηi(r, ϕ) (11)

By introducing these three expressions in Equations (8)
to (10), we obtain an infinite sequence of coupled partial
differential equations that can be solved analytically by
recurrence.

The zero order is given by:

∇2T0 = 0 (12)

∇2η0 = 0 (13)

The following equation system is resulting from the de-
velopment at order 1:

∇2ψ1 = sin (ϕ)
[
(1 + sp)

∂T0

∂r
+ sp

∂η0
∂r

]

+
cos(ϕ)
r

[
(1 + sp)

∂T0

∂ϕ
+ sp

∂η0
∂ϕ

]
(14)

∇2T1 =
1
r

[
∂ψ1

∂ϕ

∂T0

∂r
− ∂ψ1

∂r

∂T0

∂ϕ

]
(15)

∇2η1 =
Le

r

[
∂ψ1

∂ϕ

∂

∂r
(T0 + η0) − ∂ψ1

∂r

∂

∂ϕ
(T0 + η0)

]

(16)

The system developed at order 2 is given by:

∇2ψ2 = sin (ϕ)
[
(1 + sp)

∂T1

∂r
+ sp

∂η1
∂r

]

+
cos(ϕ)
r

[
(1 + sp)

∂T1

∂ϕ
+ sp

∂η1
∂ϕ

]
(17)

∇2T2 =
1
r

[
∂ψ2

∂ϕ

∂T0

∂r
+

∂ψ1

∂ϕ

∂T1

∂r
− ∂ψ2

∂r

∂T0

∂ϕ

−∂ψ1

∂r

∂T1

∂ϕ

]
(18)
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∇2η2 =
Le

r

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ψ1

∂ϕ

∂

∂r
(T1 + η1) +

∂ψ2

∂ϕ

∂

∂r
(T0 + η0)

−∂ψ1

∂r

∂

∂ϕ
(T1 + η1)

−
(
∂ψ2

∂r

∂

∂ϕ
(T0 + η0)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

At order N the equations that can be solved analytically
take the following general form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2ψ(i) = sin (ϕ)
[
(1 + sp)

∂T(i−1)

∂r
+ sp

∂η(i−1)

∂r

]

+
cos(ϕ)
r

[
(1 + sp)

∂T(i−1)

∂ϕ
+ sp

∂η(i−1)

∂ϕ

]

∇2T(i) =
n∑

j=1

1
r

[
∂ψj

∂ϕ

∂T(i−j)

∂r
− ∂ψj

∂r

∂T(i−j)

∂ϕ

]

∇2η(i) =
n∑

j=1

Le

r

[
∂ψj

∂ϕ

∂

∂r

(
T(i−j) + η(i−j)

)

−∂ψj

∂r

∂

∂ϕ
(T(i−j) + η(i−j))

]

(20)
The associated boundary conditions are:

T0 = 0 for r = 1 ∂η
∂r = 0, ψ(i) = 0, for r = 1, R for any

value of i.
T0 = 0 for r = R, ∂η

∂ϕ = ∂T
∂ϕ = 0, ψ(i) = 0 for ϕ = 0, π

for any value of i.
T(i) = 0 for r = 1, R, i � 1.

Taking into account the boundary conditions of temper-
ature and concentration and after direct integration, the
following expressions are obtained for zero order:

T0 = 1 − ln(r)
ln(R)

(21)

η0 = cte (22)

By recurrence and after replacing T0 and η0 by their ex-
pressions in Equation (14) the following partial differen-
tial equation is obtained:

∂2ψ1(r, ϕ)
∂r2

+
1
r

∂ψ1

∂r
+

1
r2
∂2ψ1(r, ϕ)

∂ϕ2

+
(1 + sp)
rln(R)

sin (ϕ) = 0 (23)

Using the separation of variables method, the solution at
order 1 of Equation (23) is:

ψ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
4
r (1 + sp) (2R2 ln (R) −R2 + 1)

ln (R) (R2 − 1)

−R
2 (1 + sp)

2r (R2 − 1)
−

r (2 ln (R) − 1) (1 + sp)
4 ln (R)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

sin(ϕ) (24)

The same procedure is applied to the temperature where
the following equation should be solved:

∂2T1(r, ϕ)
∂r2

+
1
r

∂T1

∂r
+

1
r2
∂2T1(r, ϕ)

∂ϕ2
+Q (r) cos (ϕ) = 0

(25)
with,

Q (r) =
1

r2 ln(R)

⎛
⎜⎜⎜⎜⎜⎜⎝

r (1 + sp) (2R2 ln (R) −R2 + 1)
4 ln (R) (R2 − 1)

− R2(1 + sp)
2 r(R2 − 1)

−
r (2 ln (r) − 1) (1 + sp)

4 ln(R)

⎞
⎟⎟⎟⎟⎟⎟⎠
(26)

In this case, the corresponding solution of Equation (25)
takes the following form:

T1 =
(
a1r ln2 (r) + a2r ln ( r) + a3r

−1 ln (r)

+a4r
−1 + a5r

)
cos(ϕ) (27)

where, ai are coefficients that depend only on the ratio R
and the separation factor sp.

Similarly η takes the form partial differential equation
form as the temperature:

∂2η1(r, ϕ)
∂r2

+
1
r

∂η1
∂r

+
1
r2
∂2η1(r, ϕ)
∂ϕ2

+ g (r) cos (ϕ) = 0

(28)
with,

g (r) =
Le

r2 ln(R)

⎛
⎜⎜⎜⎜⎜⎜⎝

r (1 + sp) (2R2 ln (R) −R2 + 1)
4 ln (R) (R2 − 1)

− R2(1 + sp)
2 r(R2 − 1)

−
r (2 ln (r) − 1) (1 + sp)

4 ln(R)

⎞
⎟⎟⎟⎟⎟⎟⎠
(29)

Then, the solution of this equation is:

η1 = Le
(
b1r + b2r

−1 + b3r
−1 ln (r) + b4r ln (r)

+b5r ln(r)2
)
. cos (ϕ) (30)

where, bi are coefficients that depend only on the ratio R
and the factor sp.

Further, the concentration c(i) are identified using the
relationship between:

c(i) = η(i) + T(i) (31)

After injecting the temperature, the concentration and
the current function found previously at order 1 and order
in Equation (17), and after using the separation variables
method, the current function at order 2 (ψ2) takes the
following form:

ψ2 =
(
c1r

2ln2 (r) + c2r
2ln ( r) + c3ln (r) + c4r

2

+c5 + c6r
−2

)
sin (2ϕ) (32)



Concerning the temperature at order 2, this variable as-
sumes the general following form:

T2 = fT (r) cos(2ϕ) + gT (r) (33)

And also for the concentration:

η2 = fη(r) cos(2ϕ) + gη(r) (34)

where ci, fT (r), fη(r), gT (r), and gη(r) are function of R
and the separation factor

Expressions of temperature, stream function and con-
centration at a given point will be approximated by the
three equations developed earlier:

⎧⎪⎨
⎪⎩
ψ = Raψ1 +Ra2ψ2

T = T0 +RaT1 +Ra2T2

η = η0 +Raη1 +Ra2η2

(35)

Here, the perturbation method is applicable only for small
values of Rayleigh number.

3.2 Numerical results

To highlight the developed analytical method, analyt-
ical results are compared against those obtained by solv-
ing the basic equations of the coupled model. It is under-
taken using COMSOL Multiphysics code [16] which is a
powerful environment for modeling and solving a variety
of research and engineering problems based on the finite
element method (FE). Moreover, this software is partic-
ularly adapted for the treatment of Multiphysical prob-
lems where several phenomena are simultaneously stud-
ied. Thus, the assessment of the incidence of heat and
mass transfer on other phenomena such as the ingress of
aggressive agents (chlorides, ions) and the ingress of pol-
lutants (Volatile Organic Compounds) becomes possible.
Also, different kind of meshes are easily generated which
is more convenient for 3D studies. It is obvious that the
accuracy of numerical results is function of the mesh size.

To find a proper grid size, a grid testing is performed
using various grid combinations (90 × 10 to 180 × 20)
of control volumes. For each grid size, separation (S)
and Nusselt number (Nu) are presented in Figure 2 for
Ra = 10, sp = 0.1, R = 35/32 and Le = 100. Through-
out this investigation, grid sizes greater or equal than
150 × 20 are sufficient to have a solution independent of
the mesh. Hence, considering both the accuracy and the
computational costs, most computations reported in the
current work were performed with a multiple grid sys-
tem of 150 × 20, leading to good agreement between the
numerical and analytical results.

Figure 3 represents the isoconcentration lines within
an annular space of aspect ratio r = 35/32, obtained for
different Ra (0.1, 10 and 100, respectively). In order to
highlight the effect of Ra alone, both Lewis number, R
and sp were kept constant at values. As seen, the form
of the isoconcentration line is affected by the increasing
value of Ra. Increasing the Rayleigh number intensifies

Fig. 2. Detail of the grid dependency.

 

       

Ra=0.1   Ra=10    Ra=100 

Fig. 3. Iso-concentration for Le = 100, sp = 0.1 and R =
35/32 for Ra = 0.1, Ra = 10 and Ra = 100 from the left to
the right side.

distortions of the concentration profiles, particularly in
the vicinity of the two poles. In fact, for a low value
of Ra (0.1), it can be seen that these isoconcentrations
have quasi-uniform and homogeneous radial distribution
along the horizontal cell. This means that the separation
is mainly due to the thermodiffusion where the role of the
convection is almost negligible. When increasing Ra, con-
vection velocity rises; this affects the isoconcentrations
curvatures; so that concentration plumes emerge above
the poles of the inner cylinder, which signal an increase
in the mass transfer rate, as is indicated in Figure 3b.
Therefore, we approach increasingly from horizontal sep-
aration, in which case the coupling convection/ thermod-
iffusion is optimal. For Ra = 100, the convection develops
compared to the thermodiffusion, this promotes instabil-
ity of the isoconcentrations repartition and therefore the
separation decreases significantly.

4 Comparison between analytical
and numerical results

In this section, we compared results of a numerical
solution obtained by the finite element method (COM-
SOL) to those given by an analytical method developed
above. The analytical method used to solve the cou-
pled Equations (8)–(10) with the associated boundary



Fig. 4. Separation concept.

conditions (7) is a perturbation technique based on the
principle of asymptotic expansion with a development till
second order. The developed perturbation method is ap-
plicable only for low Rayleigh numbers.

The comparison is based on the main variables of the
problem; namely the stream function (ψ); temperature
(T ), mean Nusselt number (Nu) and separation (S). The
global Nusselt number characterizing the rate of total
heat transfer is defined as the ratio of the total heat flux to
the conductive heat flux through the same surface. Thus,
the internal and external Nusselt can be defined as follow:

Nugi = − ln(R)
π

π

∫
0

[
∂T

∂r

]
r=1

dϕ

Nuge = −R ln(R)
π

π

∫
0

[
∂T

∂r

]
r=R

dϕ

The separation factor (S) is defined as the difference of
the mass fractions of the heavier component between two
points [(R+1)/2]φ=0 and [(R+1)/2]φ=π as shown in Fig-
ure 4. Thus, separation is: S = Cmax−Cmin. Maximum
separation means an optimal coupling between the ther-
modiffusion and convection. According to the reference
variable adopted for the mass fraction, separation is al-
ways greater than 1.

The comparison of numerical and analytical stream
function, separation and temperature results is illustrated
in Table 1 and Figure 5. Upon inspection of Table 1 it is
observed that the comparison of temperature behavior is
globally in good agreement. It is also noted a good agree-
ment for the values of Nusselt number for a wide range of
Ra, the maximum deviation was within one percent.

While a slight difference not more than 6% between
analytical and numerical results of the stream func-
tion values is observed. We noted that the stream func-
tion vanishes on the walls (r = 1 and r = R =
35/32), this is due to the condition of adhesion to the

Fig. 5. Analytical and numerical temperature for different Ra
and for Le = 100, sp = 0.1, φ = 0 and R = 35/32.

surface; then it present an extremum for r = 1.06
(–0.123814 and –0.127929 for numerical and analytical
results, respectively).

For the Separation the maximum deviation increases
with the Rayleigh number. Analytical values for the sepa-
ration are slightly lower than that calculated numerically.
The results are very close at low Ra number, the max-
imum deviation increases with Ra (i.e. the error passes
from 0.1% for Ra = 0.1 to 5.4% for Ra = 0.5).

The various results presented allow us to conclude that
the analytical perturbation method developed till second
order is more appropriate for small values of Ra.

In the following, to better understand the considered
phenomenon it is instructive to study the effects of several
parameters on the separation “S”. The invoked parame-
ters are the Rayleigh and Lewis numbers with the annulus
dimension.

Table 2 highlights the evolving separation within the
porous annular space according to Ra for three main val-
ues of the separation factor (sp). These values are: sp =
0.1305; 0.12 and 0.1. Results indicate that the separation
factor sp does not entail any significant change in the sep-
aration (S) for all Ra values. Subsequently, the value of
sp will be set equal to 1.

In order to highlight the effect of Ra alone, both Lewis
number, separation factor (sp) and gap ratio (R) were
kept constant at values equal to 100, 0.1 and 35/32, re-
spectively. Figure 6 shows the separation factor versus Ra
in the range Ra = 0 to 50. A detailed investigation of the
result show that the optimal separation is at Ra = 1.75.
This maximum corresponds to the optimal coupling be-
tween convection and thermal diffusion. By raising Ra,
the separation predictions show a gradual dip and then
assume an asymptotic trend so that the effect of Ra on the
separation seems to be insignificant. For slightly high Ra
values, the flow is intense and it does not provide sufficient



Table 1. Comparison between analytical and numerical solution for Le = 100, sp = 0.1; and R = 35/32 for: Stream function
(Ra = 1, φ = π/2); mean Nusselt number (inner cylinder) and Separation.

Stream function (Ra = 1, ϕ = π/2) Nusselt (r = 1) Separation “S”
r Num. sol Anal. sol Ra Num. sol Analy. sol Num. sol Anal. Sol.

1.00 0.05 1.000000 1.000000001 0.957 0.957
1.01 –0.04817 –0.05026 0.1 1.000000 1.000000006 1.904 1.915
1.02 –0.08543 –0.08794 0.2 1.000000 1.000000561 3.738 3.831
1.03 –0.10994 –0.11329 0.3 1.000000 1.000000989 5.442 5.747
1.04 –0.12116 –0.12654 0.4 1.000000 1.000001520 7.259 7.663
1.05 –0.12381 –0.12792 0.5 1.000000 1.000002018 8.312 9.579
1.06 –0.11071 –0.11768 1. 1.000000 1.000004379
1.07 –0.09238 –0.09601 10 1.000002 1.000072115
1.08 –0.06119 –0.06313 20 1.000011 1.000287791
1.09 –0.01881 –0.01925 30 1.000023 1.000649663

1.0937 40 1.000047 1.001148666

Table 2. Separation for Le = 204 and R = 2(1/2).

Ra 0.1 0.3 0.75 1 1.75 2 4 10 20
Separation for sp = 0.1305 3.092 3.335 2.250 1.903 1.597 1.224 0.790 0.462 0.309

Separation for sp = 0.1 3.064 3.336 2.251 1.903 1.334 1.222 0.788 0.461 0.308
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Fig. 6. Effect of Rayleigh number on separation curves for
Le = 100, sp = 0.1 and R = 35/32.

separation. In contrast, for low Ra numbers, convection is
smaller compared with the thermal-diffusion which con-
trols separation time.

Furthermore, numerical calculations have been per-
formed for different Lewis numbers. This number provides
a measure of thermal diffusivity of a fluid to its mass dif-
fusivity. Thus when Lewis number equals one, the ther-
mal diffusivity equals to the mass diffusivity. This means
that heat and species diffuse with the same characteristic
time and the isothermal lines are congruent with the iso-
concentration lines. Lewis number in the ongoing investi-
gation was varied in the range from 0 to 100 as depicted
in Figure 7 showing separation versus Ra.

Results shown in this figure indicate that the maxi-
mum separation value is practically independent on the
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Fig. 7. Effect of Lewis number on separation curves for sp =
0.1 and R = 35/32.

Lewis number. Furthermore, the results also point out di-
rect impact of Lewis number on the optimum Ra; they
are inversely proportional. In fact, the optimal Rayleigh
is even small when Lewis number increases (i.e : Raopt =
1.75; 3.75 for Le = 100 and 50, respectively).

To highlight the effects caused by changing the radius
ratio (R) on the Separation, Figure 8 depict the separa-
tion following different annulus dimension and three as-
pect ratios; R = 35/32 (narrow gap), R and R = 21/2

(wide gap). The ratio (R) characterizing the annulus di-
mension is defined as a ratio between the outer and the
inner radii of the crown (R = re/ri). As can be seen,
the ratio R has an influence on both the maximum sep-
aration and the optimum Rayleigh number. Indeed, re-
ducing the dimensionless ratio (R), improve both the



Table 3. Effect of the gap width and mean radius on the separation (Le = 100, sp = 0.1).

R = 1.09375 e = 3

re ri E Raopt S re ri e′ R Raopt S

35 32 3 1.750 13.609 35 32 33.5 1.09375 1.75 13.609

70 64 6 1.000 13.595 40 37 38.5 1.08108 2.00 15.644

105 96 9 0.600 13.598 50 47 48.5 1.06382 2.75 19.506

140 128 12 0.500 13.500 55 52 53.5 1.05769 2.77 21.741

60 57 58.5 1.05263 3.00 23.793

70 67 68.5 1.04477 4.00 27.718

102 99 100.5 1.03030 6.00 40.618
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Fig. 8. Separation curves for R = 21/2, R = 35/32, Le = 4
and sp = 0.1.

maximal separation (Smax) and Raopt (i.e. R = 35/32:
Raopt = 1.75 and Smax = 13.75; R = 21/2: Raopt = 0.7
and Smax = 3). The evolution of S also shows a rapid ten-
dency toward an asymptotic behavior as Ra grows (i.e.
R = 21/2: Raasym = 10 and Sasym = 0.45; R = 35/32:
Raasym = 30 and Sasym = 2).

To achieve the effect of dimensionless parameter on
the separation we focused on the influence of the crown
section characterized by the gap width e = (re − ri). The
dependence of the separation on the gap (e) is displayed
in Table 2 showing the optimal separation for Le = 100,
sp = 0.1 and R =1.09375. Note that the annular space
width (e) vary in multiples of the lowest value (e = 3)
corresponding to re = 35 and ri = 32. It follows that the
optimal separation remains substantially constant around
13.5 regardless of the gap width e. In contrast, the opti-
mal Rayleigh (Raopt) decreases when increasing diame-
ters, therefore the gap (e).

In the general formalism the radii ratio is involved,
in reality separation also depends on other quantities (di-
mension). Therefore, it is interesting to consider the same
thickness (e) case and vary the mean radius of the crown;
e′ = (re + ri)/2, just like R. Thus; Table 3 also illus-
trates separation (S) according to the average radius.
The increase in the prediction separation is vivid as (e′)

is increased; this is due to the behavior of the mixture
inside the cell. Increasing the mean radius will raise the
workspace with considerable concentration distribution at
the vicinity of the outer cylinder leading to a migration of
the heavier component to the coldest side by simple dif-
fusion. This component will be advected to the left side
of the cell by convection so that the accumulation of the
concentration difference between the top and bottom of
the cell concentration creates great separation. In con-
trast to the previous case, the prediction of the optimal
Rayleigh shows a growth as (e′) increases.

5 Conclusion

This paper focuses on the characterization of binary
fluid separation process in annular porous layer A hori-
zontal annular cell is used instead of the rectangular cell,
hence the novelty of this technique.

In a first part, an analytical resolution, of the cou-
pled mass, energy and momentum equations, using the
perturbation method was conducted. The development
was performed till second order. Regarding the encour-
aging results obtained for temperature and stream func-
tion solutions, it was observed that for high values of
the Rayleigh number (Ra above the optimal) concen-
tration diverges (concentration varies proportionally with
the Rayleigh number), although the value of Nusselt are
in very good agreement with the numerical results.

In a second part, several numerical simulations, using
the finite element method were performed to corroborate
the results obtained analytically. These simulations allow
a good agreement with the analytical temperature fields,
the stream function and the separation parameter espe-
cially for Ra values less than the optimum.

Then, a parametric study based on the Rayleigh num-
ber Lewis number, separation factor porosity and charac-
teristic size of the annular configuration was performed.
It shown that for low ratios of R, the separation is op-
timal and varies proportionally with the increase of the
mean radius.

Further experimental works are required as perspec-
tive to check the real functionality of the proposed annular
geometry.
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thermogravitationnel de séparation dans un liquide,
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