An open source and flexible ACARS receiver based on software defined radio

Baptiste Chamaillard ¹ Maxime Lastera ¹ Supervisor : Damien Roque ²

> ¹ISAE Supaero, Mastère TERA ²ISAE Supaero, Département Electronique, Optronique et Signal (DEOS)

4 mai 2017

B. Chamaillard and M. Lastera

SDR ACARS Receiver

4 mai 2017 1 / 23

The goal of this demonstration is to show some of the benefits offered by a **software-defined radio (SDR)** receiver :

- **simplicity** of implementation due to the "on-the-shelf" building blocks.
- low material cost and integrated hardware.
- versatility and extensibility of the receiver.
- \rightarrow excellent educational tool to understand the receiver architecture.

For purposes of illustration, the discussion is based on a **concrete example of an ACARS receiver** developed during our final year project at ISAE-SUPAERO.

Project purpose :

- Theoretical model of a VHF ACARS transmission system (PHY & MAC layers)
- Implementation of a SDR receiver enabling real time decoding operations and providing human-readable informations.

Brief history and quick introduction to ACARS

- A brief history
- ACARS frame description
- 2 A short theoretical analysis of an ACARS transceiver
 - ACARS transmitter
 - ACARS receiver

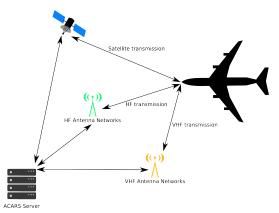
Implementation of an ACARS receiver with GNU Radio

- GNU Radio
- General architecture
- ACARSDecoder Block
- ACARSParser Block

- Brief history and quick introduction to ACARS
 - A brief history
 - ACARS frame description
- A short theoretical analysis of an ACARS transceiver
 ACARS transmitter

 - ACARS receiver

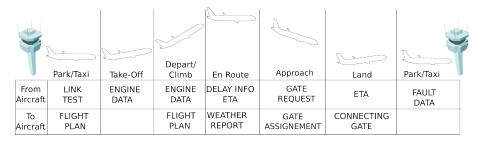
Implementation of an ACARS receiver with GNU Radio


- GNU Radio
- General architecture
- ACARSDecoder Block
- ACARSParser Block

A brief history

ACARS stands for Aircraft Communication Addressing and Reporting System.

- 1976 : Use of VHF in North America at the unique frequency of 131.550 MHz.
- 1984 : AIRCOM network which is an ACARS compatible network has been created by SITA.
- * 1990 : Use of Satellite link.
- * 1998 : Use of HF link.



ACARS network overview

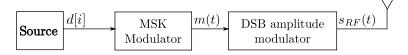
B. Chamaillard and M. Lastera

SDR ACARS Receiver

ACARS communication according to the different flight phases

Parameters	Nb of Bytes	Description
Pre-key	16	Identification and synchronisation parameters
Bit sync	2	
Char sync	2	
SOH	7	
Mode	1	
Address	7	
Ack/Nak	1	
Lable	2	TEXT
Block ID	1	
STX	1	
TEXT	220	
ETX	1	
BCS	2	End frame identification
BCS Suffix	1	

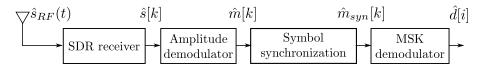
ACARS frame format



- Brief history and quick introduction to ACARS
 - A brief history
 - ACARS frame description
- A short theoretical analysis of an ACARS transceiver
 ACARS transmitter
 ACARS measiver
 - ACARS receiver

Implementation of an ACARS receiver with GNU Radio

- GNU Radio
- General architecture
- ACARSDecoder Block
- ACARSParser Block



Overall architecture of the ACARS transmitter

- A binary source d[n].
- A MSK (Continuous-Phase Modulation) modulator to convert the digital sequence *d*[*n*] into an analogical signal *m*(*t*) with *T_{symbol}* = 1/1200 s.
- Solution A DSB (Double Sideband) amplitude modulator to center the output signal on the carrier frequency $f_0 = 131,725$ MHz.

Overall architecture of the ACARS receiver

- Oversampling & computing of the analogical input signal by the SDR receiver to derive its numerical complex envelope.
- Non coherent amplitude demodulation (no need to recover the carrier and the phase).
- Frame & symbol synchronization thanks to the frame preamble (pre-key).
- MSK demodulation to detect the transmitted bits.

- Brief history and quick introduction to ACARS
 - A brief history
 - ACARS frame description
- 2 A short theoretical analysis of an ACARS transceiver
 - ACARS transmitter
 - ACARS receiver

Implementation of an ACARS receiver with GNU Radio

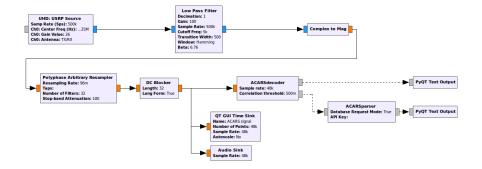
- GNU Radio
- General architecture
- ACARSDecoder Block
- ACARSParser Block

GNU Radio

What is GNU Radio?

- Free and open-source software.
- SDR applications development tool.
- Pre-compiled signal processing blocks in **C** or **python**.

Why GNU Radio?


to offer to the community a flexible open-source ACARS receiver deployable with only **a VHF antenna** and a **SDR receiver**.

GNU radio receiver architecture

GNU radio receiver architecture

Role : Demodulate the received symbols in order to retrieve the transmitted bits when an incoming frame is detected.

Parameters : *samp_rate*, *corr_thres*

Some programming features :

- Involved in the frame detection and symbol synchronization steps.
- Block-processing of the data flow.
- Frame structure check-up and parity bits control → incremental improvement of the receiver robustness.

Role : Make the decoded data understandable. Frame information is transmitted in binary format from **ACARSDecoder** block via **asynchronous** messages.

Parameters : *db_request_mode*, *API_Key*

Processed content :

- Transmission mode.
- Label.
- Aircraft Address (HTTP request).
- Aircraft flight number (IATA request).
- Text.

```
New Frame !
Time : vvvv-mm-dd hh:mm:ss
Transmission Mode : E ==> Category B - Air to Ground transmission
Airplane Address : . A - A A A A - Aircraft Model : Airbus A320-232(SL) (A-AAAA) Airline name
Departure Airport : Heathrow (LHR) - Arrival Airport : Blagnac (TLS)
ACK/NAK : NAK
Label • 1 0
Block TD · 2
STX
Message Sequence Number : M 1 8 A
Flight Number : B A 0 3 7 9
Text : D R C 0 1 1 6 0 4 - - - 1 5 4 6
End of Frame
New Frame !
Time : yyyy-mm-dd hh:mm:ss
Transmission Mode : e ==> Category B - Ground to Air transmission
Airplane Address : . A - A A A A - Aircraft Model : Airbus A320-232(SL) (A-AAAA) Airline name
Departure Airport : Heathrow (LHR) - Arrival Airport : Blagnac (TLS)
ACK/NAK : 2
Label : _ DEL ==> General response, demand mode, no information to transmit
Block ID · V
End of Frame
```

I S a e 🚈

^{1.} Date, Airplane Address and Airline company name have been changed to respect communication privacy


```
New Frame !
Time : vvvv-mm-dd hh:mm:ss
Transmission Mode : 2 ==> Category A - Broadcasting to all the stations
Airplane Address : . A - A A A A - Aircraft Model : Airbus A320-214 (A-AAAA) Airline name
Departure Airport : Orly (ORY) - Arrival Airport : Houari Boumediene (ALG)
ACK/NAK : NAK
Label : H 1 ==> Message to/from terminal
Block TD · 5
STX
Message Sequence Number : C 0 2 A
Flight Number : Z I 0 2 5 9
Sublabel : # C F ==> Central Fault Display
Text : B W R N / W N 1 7 0 3 1 5 1 1 0 6 0 0 4 6 2 0 0 0 0 6
   DATALINK ATC FAULT
End of Frame
New Frame !
Time : vvvv-mm-dd hh:mm:ss
Transmission Mode : 2 ==> Category A - Broadcasting to all the stations
Airplane Address : . A - A A A A - Aircraft Model : Airbus A320-214 (A-AAAA) Airline name
Departure Airport : Orly (ORY) - Arrival Airport : Houari Boumediene (ALG)
ACK/NAK : 5
Label : DEL ==> General response, demand mode, no information to transmit
Block TD · T
End of Frame
```

^{2.} Date, Airplane Address and Airline company name have been changed to respect communication privacy


```
New Frame !
Time : vvvv-mm-dd hh:mm:ss
Transmission Mode : e ==> Category B - Transmitting from a specific station - Ground to Air link
Airplane Address : NUL - Aircraft Model : No Information Available (from https://planefinder.net)
Departure & Arrival Airports : No Information Available (from https://planefinder.net)
ACK/NAK : NAK
Label : S Q ==> Squitter Message
Block TD · NUL
STX
Version Number · 0 2
Service Provider : X S
TATA Station ID : T L S
TCAO Station TD : L F B O
Station Number ID : 0
Latitude : 4 3 3 7 N
Longitude : 0 0 1 2 3 E
Text: V136975/
ETX
```


- Brief history and quick introduction to ACARS
 - A brief history
 - ACARS frame description
- 2 A short theoretical analysis of an ACARS transceiver
 - ACARS transmitter
 - ACARS receiver

Implementation of an ACARS receiver with GNU Radio

- GNU Radio
- General architecture
- ACARSDecoder Block
- ACARSParser Block

Results :

- GNU Radio working receiver.
- Open-source project available at https://sourceforge.isae.fr/git/supacars

Enhancement and perspectives :

- Code optimization to reduce the receiver complexity.
- Study in depth ARINC 618 [1] and 620 [2] to enhance the receiver parsing features.
- Submit an article to the IEEE AESS Systems magazine.

Thank you for your attention. Do you have some questions?

ARINC, "Arinc 620 - datalink ground system standard and interface specification," Jan 2014.