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ABSTRACT

Current processors have gone through multiple internal opti-
mization to speed-up the average execution time e.g. pipelines,
branch prediction. Besides, internal communication mecha-
nisms and shared resources like caches or buses have a sig-
nificant impact on Worst-Case Execution Times (WCETs).
Having an accurate estimate of a WCET is now a challenge.
Probabilistic approaches provide a viable alternative to sin-
gle WCET estimation. They consider WCET as a proba-
bilistic distribution associated to uncertainty or risk.

In this paper, we present synthetic benchmarks and asso-
ciated analysis for several LEON3 configurations on FPGA
targets. Benchmarking exposes key parameters to execution
time variability allowing for accurate probabilistic modeling
of system dynamics. We analyze the impact of architecture-
level configurations on average and worst-case behaviors.

CCS Concepts

•Hardware → Statistical timing analysis; •Computer
systems organization → Embedded hardware; Real-time
system architecture; Reconfigurable computing;

Keywords

Performance Analysis; Embedded Systems; Benchmarking;
Processor Synthesis; FPGA; LEON; Probabilistic Worst-
Case Execution Time
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1. INTRODUCTION
Timing constraints contribute defining the correctness of

most of embedded systems. For example, the processor that
manages the injection of an engine or the electronic flight
controls of an aircraft have to provide results within well-
defined time windows. Such systems are called real-time
systems. In particular, hard real-time systems if timing con-
straints misses are not tolerated and soft-real-time systems
if some timing constraints misses can be tolerated.

Recent improvements and optimization of processors in-
duce huge complexity onto real-time systems. We are now
facing multi-core architectures with internal communications,
cache memories, interruptions, multi-functionalities, etc. Each
of which has to be properly analyzed in order to guarantee
both system correctness and predictability. Classical sin-
gle value Worst-Case Execution Time (WCET), based on
modeling internal architectures behavior, may have reached
its limit. Indeed, complexity in micro-architecture and/or
costs in modeling system interactions, may lead to a large
pessimism for the worst-case scenarios.

Probabilistic approaches now emerge as alternatives to
single value WCETs. The probabilistic real-time model-
ing assumes the task WCET as worst-case distribution, the
probabilistic WCET (pWCET), able to upper-bound any
possible task execution behavior. The pWCETs allow ac-
counting for the probability of occurrence of worst-case con-
ditions which could be vanishingly small [6]. Hence, pWCETs
may lead to important reduction of capability over-provisioning
since they cope better with tasks behavior.

1.1 Related Work
Performance analysis of multi-core platforms is an estab-

lished research field, [13–14]. The approaches proposed so
far refer to measurements for evaluating the impact of archi-
tectural elements on system average performance, [11–15].

The probabilistic timing analysis estimates pWCETs and
can be either static-based or measurements-based. Static
Probabilistic Timing Analysis (SPTA) [3–7] requires an ex-
act model of the system in order to infer the probability law,
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thus computing the pWCETs. Measurements-Based Prob-
abilistic Timing Analysis (MBPTA) relies on measurements
and on the Extreme Value Theory (EVT) in order to pro-
vide pWCET distributions, [6–8–10]. The MBPTA does not
require models of the system.

Contributions : This paper investigates the impacts of
CPU architecture elements on tasks execution behaviors.
For that purpose we synthesize LEON3 processors with dif-
ferent architectures on two Xilinx FPGAs. We modify some
core configuration parameters like cache policy, the branch
prediction and the floating-point unit to determine their im-
pact. We run some benchmarks selected from the Mälardalen
WCET project [9] on the synthesized architectures. Finally,
we analyze the results with the use of a measurement-based
probabilistic timing analysis tool called diagXtrm [8], to
perform average and worst-case performance analysis with
probabilistic models1.

Organization of the paper: Section 2 and Section 3
present the architectural parameters applied for synthesiz-
ing LEON3 processors. Section 4 describes the benchmarks
and the task execution conditions applied. Section 5 intro-
duces the diagXtrm framework applied for computing the
pWCETs and for timing performance analysis. Section 6
presents the results obtained in terms of both average per-
formance and worst-case probabilistic models. Section 7 is
for conclusions and future work.

2. MICROPROCESSOR DESIGN SPACE
Recent processors architectures rely on multiple building

blocks. In the following, we consider those with an impact
on the pWCET and present their key parameters.

• Cache memories have a direct impact on performance
through instruction/data prefetching. If there is no cache,
the system is forced to load each instruction from the mem-
ory and to do multiple loads and stores for each variable
directly. The consequent saturation of the memory buses
will have an impact on the instruction latencies.

• Cache replacement policies control how cache misses are
handled, and how new pages are loaded. Different policies
may either speed up or slow down a software.

• Branch prediction controls how instructions are prefetched
in the pipeline. Such policies usually rely on heuristics.

• Math co-processor enables faster mathematical opera-
tions compared to software-emulated ones.

For this study, we implement LEON3 processors, a 32-
bit SPARC V8 processor, which general architecture is pre-
sented in Figure 1.

We synthesize each LEON3 platform configuration us-
ing the Gaisler GRLIB VHDL IP Library written in
VHDL, [2], for the Gaisler GR-XC6S-LX75 and the Xil-

inx ML605, which are two boards with Xilinx FPGAs,
DDR RAM, Flash, Ethernet, USB, UART, etc. The two
FPGAs are flashed with various configurations, according to
the four key parameters considered. The architecture and
its configuration space are presented in the next subsections.

2.1 Architecture
The architecture we consider is based on two LEON3MP

processors at 50MHz. We make the following design choices.

1A data pack with all the models is available at
https://forge.onera.fr/projects/syntheticbench
(login: SyntheticBench and password: anonymous)

Figure 1: LEON3 Architectural Blocks.

The integer unit is configured with SPARC V8 multiply
and divide instructions. Emulated floating-point operations
also benefit from this option. The integer multiplier is based
on a 32× 32 pipelined multiplier with a two-cycles latency.

For the cache system, LEON3 processors feature two sepa-
rate instruction and data caches (Harvard architecture) with
snooping and locking. The Instruction Cache (IC) is imple-
mented as a multi-way cache with 4 ways, 4 kbytes/way and
32 bytes/line. The Data Cache (DC) is implemented with
4 ways, 4 kbytes/way and 16 bytes/line. Four cache re-
placement algorithms are proposed: random, direct, Least-
Recently-Replaced (LRR) and Least-Recently-Used (LRU).
Local instruction and data RAM are disabled. We also
choose to disable the Memory Management Unit (MMU).

We implement a hardware module called LEON3 Sta-

tistical Unit (L3STAT). Eight counters are enabled, four
per processor: the execution time counter (counted in CPU
ticks at a frequency of 50MHz), the data and instruction
cache miss counters and the branch prediction miss counter.
In this work we use the execution time counter for evaluating
the impact of each configuration on the task executions.

2.1.1 Cache Memory

Cache memories are key elements of embedded systems
since, depending on the state of the cache, task execution
time could change. Both the worst-case timing analysis and
the accuracy of the pWCET estimates would be impacted
by the cache. We implement two cases: with caches (caches)
and without caches (nocaches). In the first case the cache
hierarchy is fully active, while in the second we disabled the
twos caches for each processor. We expect a penalty on the
execution time from the absence of cache.

2.1.2 Cache Replacement Policies

Cache replacement policies impact system performance
i.e. task execution time. The way cache lines are replaced
would affect next accesses; thus the latency of retrieving
the information in cache changes. The replacement policies
are critical to system variability especially with benchmarks
which saturate the cache. The different replacement algo-
rithms implemented are: the Random algorithm, which se-
lects an item randomly and evicts it; the Direct algorithm,
where the address of the new item is directly used to calcu-
late its location in the cache; the LRR policy: it evicts the
item least recently replaced; the LRU policy which evicts
the item least recently accessed.

https://forge.onera.fr/projects/syntheticbench


2.1.3 Branch Prediction (BP)

The LEON3 is an advanced 7-stage pipelined processor,
which implies the use of an efficient BP. According to the
GRLIB Configuration Help, the BP option would improve
performance with up to 20%, depending on application. In
order to verify that gain of performance and measure the
impact of this option on the worst-case behavior, we run the
benchmarks on a platform with branch prediction (BP) and
without branch prediction (noBP) for comparison.

2.1.4 Floating-Point Unit (FPU)

The FPU is a high-performance, fully pipelined IEEE-
754 FPU. The two FPUs provided are the Gaisler Re-

search’s GRFPU and GRFPU-lite. The GRFPU is a
high-performance pipelined FPU with high area requirements.
GRFPU-lite provides a balanced option with high accel-
eration of floating-point computations combined with lower
area requirements compared to GRFPU. They support all
SPARC FPU instructions. If the FPU is disabled, a simu-
lated, software FPU can be used. The option without FPU
is identified noFPU, while that with FPU are identified as
GRFPU or GRFPU-lite.

2.2 Architectural Configurations
A platform configuration is made of a set of architec-

tural elements: caches, cache replacement policies, BP and
FPU. We define the reference configuration as Reference

= (caches, Random (IC), Random (DC), BP, noFPU ). In
the following, Reference indicates the choice on the element
composing the reference configuration. All the other config-
urations are compared with Reference.
Other configurations considered are:

Direct = (caches, Direct (IC), Direct (DC), BP, noFPU ),
LRR = (caches, LRR (IC), LRR (DC), BP, noFPU ),
LRU = (caches, LRU (IC), LRU (DC), BP, noFPU ),
noBP= (caches, Random (IC), Random (DC), noBP, noFPU ),
nocaches = (nocaches, N/A, N/A, BP, noFPU ),
GRFPU= (caches, Random (IC), Random (DC), BP,GRFPU ),
GRFPU-lite = (caches, Random (IC), Random (DC), BP,
GRFPU-lite)
The configuration of a typical System on a Chip (SoC) ar-

chitecture like theGaisler GR712RC is GR712RC= (caches,
LRU (IC), LRU (DC), BP, GRFPU ), [1]. We will consider
each choice of this architecture.

3. MICROPROCESSOR SYNTHESIS
The first step of this work is to synthesize the different ar-

chitectural configurations presented in Section 2. Figure 2
shows the entire methodology with the steps considered, re-
spectively for synthesizing, benchmarking and analyzing.

We use the GR-XC6S board for the architectural configu-
rations Reference, Direct, LRR, LRU, noBP and nocaches; we
use the ML605 board instead for the configurations GRFPU

and GRFPU-lite to overcome limits in synthesizing FPUs.
The GR-XC6S is a Spartan-6 FPGA, the ML605 board
feature a Virtex-6 FPGA [19–20].

Figure 4 shows the occupations of the FPGAs in terms
of slice registers (mostly Flip Flops), slice Look-Up Tables
(LUTs, mostly used as logic) and the global numbers of oc-
cupied slices. The Table 1 presents detailed values.

We compare the different architectures related to Refer-

ence. We note that the number of occupied slices for the
Reference configuration is not the same for both FPGAs:
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this is due to the differences between Spartan-6 and Virtex-
6 internal architectures. Moreover, many slices are used for
communication with external elements on the ML605 board
that the GR-XC6S does not have.
• Removing the data and instruction caches reduce slices

by 14.81% and run-time performances, see Section 6.
• Architectures using the Direct or the LRR replacement

algorithm uses almost the same slices as the Random policy.
However, the LRU policy occupies 32.11% more space. This
area overhead is due to the addition of 5 flip-flops per line
(for a 4-way LRU) to store the accesses.

• Disabling the branch prediction only saves 6.73% of the
number of occupied slices, and reduces the performance.

• The implementation of the FPU on the ML605 board
shows that the GRFPU uses almost twice the slices required
without FPU. The GRFPU-lite is, on the other hand, less
demanding in terms of occupied slices.
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Figure 4: Device utilization summary.

Table 1: Device Utilization Summary.
GR-XC6S Occupied slices ML605 Occupied slices

architecture (out of 11662) architecture (out of 37680)
Reference 5219 ⇒ – Reference 10667 ⇒ –

Direct 4957 ⇒ −5.02% GRFPU 20198 ⇒ +89.35%
LRR 4791 ⇒ −8.20% GRFPU-lite 13724 ⇒ +28.66%
LRU 6895 ⇒ +32.11%
noBP 4868 ⇒ −6.73%

nocaches 4446 ⇒ −14.81%



4. EMBEDDED SYSTEM BENCHMARKING
We chose the Mälardalen WCET benchmark programs to

implement tasks and to push the processor to its limits and
to reveal the impact of each architectural change on both
average and worst-case execution time of tasks.

• cnt and matmult are used to fill entirely the data cache
with matrix operations. cnt counts non-negative numbers
in a matrix with a parametrized size of 1000 × 1000. mat-
mult performs a matrix multiplication. As for cnt, the size
is parameterizable and we used 200 × 200 matrix. Those
benchmarks measure the performance of the cache replace-
ment policy and the impact of the (lack of) caches.

• nsichneu is similar to the first two benchmarks, but
for the instruction cache. It uses a large amounts of if-
statements (more than 250) to simulate an extended Petri
Net. The benchmark has three variants, nsichneu inner is
considered because it generates the most variability.

• jfdctint is a typical application used in embedded real-
time systems. By typical application we mean an application
that does not saturate neither the data cache nor the instruc-
tion cache. jfdctint performs a discrete cosine transform on
a 8×8 pixel block. The code is made of long calculation
sequences (i.e., long basic blocks) and single-nested loops.

• lms is used for FPU performances comparison. The
benchmark realizes a Least Mean Squares (LMS) adaptive
signal enhancement on a sine wave with added white noise.

All benchmarks are single path tasks, and so no functional
variability (input vector) is considered. Also there is no need
to look for the worst case path.

We use GRMON monitor from Gaisler. It allows a non-
intrusive debugging of LEON3 systems. It also performs
communication with the modules implemented in the archi-
tecture, like the L3STAT unit. Finally, it is used to down-
load and run applications on FPGAs.

4.1 Execution Conditions
The benchmarks are executed on all architectural configu-

rations, with medium optimization and SPARC V8 instruc-
tions. We investigate two execution conditions.

The first execution condition is to run the task alone, with-
out any other interaction. This execution condition is the
baseline, as it is exempt of any interference tasks by con-
struction. All benchmarks were compiled for this execution
condition, and the flag -msoft-float was used to emulate
floating-point operations when no FPU was present. This
execution condition is named ELF after its compiler name.

The second execution condition consider using the RTEMS
Real-Time Operating System (RTOS), [17]. This execution
condition is more representative of an actual real-time em-
bedded system. It is compiled in Asymmetric Multi Proces-
sor (AMP) mode, to exercise perturbations between cores.
This execution condition is identified as RTEMS.

The RTEMS Multi-Processor application is running in
the pre-emptive mode on two cores. In the first core, two
tasks are launched: the benchmarking task with priority 2
and a second interference task, doing infinite loops, with pri-
ority 1 (higher priority). The second core contains another
task made of an infinite loop. This minimal intra- and inter-
core interference is used to determine the effect of interac-
tions and is representative of a not heavily loaded system.
The methodology could apply to any kind of interference,
and it will be considered in future work.

4.2 Initial State Assumptions
The benchmarking execution diagram is presented in Fig-

ure 3. The trace is made of 5000 consecutive executions of
the same benchmark. There exists a trace per benchmark,
per configuration and per execution condition.

We must ensure that the processor is in the same ini-
tial state at each benchmark execution. Before each run,
the hardware counters from the L3STAT unit are reset, the
caches are flushed and the pipeline is filled with nop() in-
structions. Then, the counters are activated, the benchmark
is executed and finally the eight counters are disabled and
printed for that execution. The resulting trace T is a matrix
of size 8×5000 (eight counters, measured for each of the 5000
executions). The execution time is measured in CPU ticks
and the trace duration spans from 4 minutes to 30 hours,
depending on the benchmark and the architectural config-
uration. This allows including multiple systemic effects in
the traces which could happen late in the executions.

5. PROBABILISTIC PERFORMANCE EVAL-

UATION
The traces obtained from the benchmarking traces are

applied to estimate the pWCETs, Figure 2.
Measurements-Based Probabilistic Time Analysis (MBPTA)

allows defining tasks execution behaviors from runtime mea-
surements. We use the MBPTA approach called diagXtrm

to evaluate the impacts of architectural elements on both av-
erage and worst-case behavior of tasks. Only the execution
time counter from the L3STAT traces is used.

The Extreme Value Theory (EVT) is the statistical tool
composing any MBPTA that produces continuous distribu-
tions which are safe estimation of the task worst-case be-
havior2: the pWCETs. For this specific paper, diagXtrm

applies the EVT in its peak over threshold version identify-
ing the pWCETs from the Generalized Pareto Distribution
(GPD) family. The distribution shape parameter ξ identi-
fies the distribution that better cope with the measurements
within this family. In particular, ξ < 0 is for a Weibull dis-
tribution, ξ = 0 is for a Gumbel distribution and ξ > 0 is
for a Frechet distribution.

Hence, the pWCET is a worst-case thresholds with a prob-
ability associated to the risk to go past this value.

The EVT, thus the MBPTA, is applicable if the mea-
surements are 1. stationary, 2. independent or 3. ex-
tremal independent and 4. they match a specified theo-
retical model, Figure 5. These situations correspond to
four hypothesis that can be asserted from measurements.
diagXtrm verifies all those hypotheses with the correspond-
ing statistical tests. The confidence on the hypotheses val-
idation is related to the quality of the pWCET model pro-
duced, named reliability of the pWCET. Only if all the tests
succeed, the pWCET obtained is reliable and safe. To note
that the independence and the extremal independence are
partially overlapping hypotheses; if one is verified, there is
no need to verify the other, Figure 5.

The robust statistics [5–8] is applied by diagXtrm for
quantifying the uncertainties from statistical tests. It defines
the confidence cl on the hypothesis verified.

2By safe estimation we mean a pWCET which is larger than
or equal to any possible task execution time, [7].
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Stationarity Hypothesis: The analysis of trace can
show the relationship between consecutive measurements
and evaluate the impact that previous (in time) measure-
ments on future ones, i.e. their independence. The EVT
applicability relates to stationary traces and is measured by
the The Kwiatowski Phillips Schmidt Shin test, [12] as cl1.

Independence Hypothesis: The statistical dependence
is checked through the existence of correlated patterns of
measurements, using the Brock Dechert Scheinkman statis-
tical test [4]. The confidence on the independence is cl2.1.

Extremal Independence Hypothesis: When overall
independence does not hold, another way is to look for the
independence of extreme measurements3. The extremal in-
dex θ ∈ [0, 1] is an indicator of dependence degree between
extreme measurements, [16]. We denote this parameter cl2.2.

Matching Hypothesis: The matching test is based on
a quadratic statistic which measures the square distance be-
tween the pWCET model estimated and an hypothetical
exact pWCET model following the GPD. The Cramer Von
Mises criterion is applied for verifying the degree of match-
ing between the two distributions, leading to parameter cl3.

Finally, diagXtrm computes pWCET parameters such as
the threshold u and the pWCET distribution shape ξ that
guarantee the best pWCET model among the possible EVT
pWCETs, see [8] for details.

We stress the fact that with MBPTA approaches, the re-
sulting pWCET model represents the worst-case for the ex-
ecution conditions accounted for by the measurements. It
is not an absolute worst-case. Thus safety, confidence and
reliability relates to the specific measurements considered.

6. TRACE ANALYSIS
Given a trace of measurements, diagXtrm profiles both

the average and the worst-case behavior of tasks. We use
that tool for each architectural configuration and present the
results in the following subsections.

6.1 Average Performance
At first we focus on the average execution time to compare

the architectural configuration effects.

6.1.1 Execution Time Variability

Figure 6 illustrate the execution time variability of any
system. More precisely, the trace is the result of 5000 exe-
cutions of the cnt benchmark on the reference architecture
without any RTOS. That proves that even when an applica-
tion is run in a standalone mode, variability is present due
to systemic and functional changes happening at runtime,
due to caches, BP, etc.
3By extremal measurements we allude to observations rel-
atively far from the average values as well as observations
well separated in time.
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Figure 6: Time trace and histogram of execution
times (benchmark cnt on the GR-XC6S reference
architecture without RTEMS).

6.1.2 Impact of the Cache Replacement Policy

We analyze the traces of the two benchmarks matmult
and nsichneu which saturate respectively the data and the
instruction caches.
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Figure 7: Box plots of execution times for different
cache replacement policies.

Figure 7a presents the box plots of execution times for the
matmult benchmark. We can see that in order to improve
the average performance of the data cache, the best cache
replacement policy is the LRU algorithm. Then comes the
random, the direct and finally the LRR algorithm.

As a matter of fact, programs usually compute results
thanks to a restricted set of variables. It is then natural that
the LRU algorithm is the best choice for the data cache re-
placement policy. This result is consistent with the fact that
multiple SoC architectures implement the LRU algorithm
for their data cache replacement policy, like the GR712RC

configuration.



Figure 7b illustrates the execution times as box plots for
the benchmark nsichneu. We can see that the LRU algo-
rithm is not the best replacement policy for the instruction
cache. The random algorithm is the first, then the direct,
the LRU and finally the worst is the LRR.

For instruction cache the random replacement policy has
better performance on average than the other policies, [3].
Unlike data variables accesses, sequences of instructions of
any program are not really regular. That explains why the
random algorithm is the best instruction cache replacement
policy. However, the choice of another algorithm is not crit-
ical as the drawback induced on the execution time is not
significant, comparatively to the bigger differences of exe-
cution times related to the data cache replacement policies,
Figure 7a (to note that the scales are not the same in the
two figures).

6.1.3 Disabling Key Architectural Elements

In order to evaluate the gain of performance provided by
the branch prediction or the cache memories, we disabled
them from reference architecture. The Table 2 summarizes
the execution time distributions and the performance draw-
backs for different benchmarks. We chose matmult and
nsichneu because they overuse the cache memories when
present. Thus, those benchmarks are prone to reveal the
catastrophic effects of disabling the instruction and the data
caches. The third benchmark analyzed is jfdctint which is
applied for investigating the impact on the execution time
for an application that does not saturate caches.

Table 2: Execution Time Distributions.
(a) Benchmark matmult on the GR-XC6S without RTEMS.

GR-XC6S Execution Time Distribution Perf.
architecture Min Mean Max drawback

Reference 139147148 139292184 139447778 –
noBP 154722839 154869205 155006999 11.19%

nocaches 1095326983 1095468302 1095562181 687.17%

(b) Benchmark nsichneu on the GR-XC6S without RTEMS.

GR-XC6S Execution Time Distribution Perf.
architecture Min Mean Max drawback

Reference 10828017 12624121 14445302 –
noBP 11597909 13516958 15485162 7.20%

nocaches 94652781 110600474 126897285 778.47%

(c) Benchmark jfdctint on the GR-XC6S without RTEMS.

GR-XC6S Execution Time Distribution Perf.
architecture Min Mean Max drawback

Reference 2468750 2468762 2468788 –
noBP 2546749 2546760 2546791 3.16%

nocaches 16326625 16328010 16329192 561.43%

As described in Section 2, the branch prediction deterio-
rates performances up to 20% if disabled. A maximal draw-
back of 11.19% is measured, Table 2a.

The cache memories impact on the execution time distri-
bution is huge. For the same application, a factor of 8.78
on the execution time can be observed (Table 2b), where a
factor of at least 2-3 was expected according to the GRLIB

Configuration Help. For a typical application, the perfor-
mance drawbacks are not negligible, Table 2c.

The results demonstrate that branch prediction and cache
memories are key elements for embedded systems. Although
they clearly improve average performances, they increase ex-
ecution time variability. The system predictability or ana-
lyzability are affected by those elements.

6.1.4 Impact of The FPU Architecture

We use the benchmark lms that computes a lot of floating-
point operations. Figure 8 presents the first 1000 executions
of the resulting traces. We note that there are different
execution modes, each with some variability, depending on
the FPU architecture. The only element which is not re-
set between each benchmark execution is the FPU branch
prediction, as the integer unit branch prediction and the
cache memories are flushed each time. The multiple modes
are then probably due to a non-zero prediction distance as
detailed in [18].
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(a) Reference architecture with software FPU.

0 200 400 600 800 10005
0

0
0

0
0

5
4

0
0

0
0

Benchmark Executions

C
P

U
 T

ic
k
s

(b) Architecture with GRFPU.
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(c) Architecture with GRFPU-lite.

Figure 8: Time traces of execution times (lms on
the ML605 without RTEMS).

In the remaining 4000 measurements only one execution
mode exists, revealing a convergence to a mode after some
executions. Its mean value is used for comparison between
the 3 FPUs. The emulated FPU has a mean level of 17′826′717
CPU ticks, the GRFPU converges at 522′888 CPU ticks and
the GRFPU-lite at 923′719 CPU ticks. Improvements are
(respectively) of 33× and 18× faster.
The advantages of using a hardware FPU instead of an

emulated FPU for floating-point applications are comforted;
GRFPU is up to 34 times faster than a software FPU;
GRFPU-lite is a good compromise between speed improve-
ment (19 times faster) and occupied slices.

A side comment regards the capability that diagXtrm

has of modeling architectural elements without the need for
an exact element model. For example, with lms and the
FPU architecture, although not knowing the internal behav-
ior of the FPUs applied, diagXtrm is able to characterize
the different modes just from measurements.

Table 3 summarizes the average execution time of each
architectural change. This is done for the five benchmarks
of interest and for each execution condition.

Two additional configurations were synthesized: the yare
identified as Best. For the GR-XC6S it is Best1 = (caches,
Random (IC), LRU (DC), BP, noFPU ) and for the ML605

it is Best2= (caches, Random (IC), LRU (DC), BP,GRFPU ).
They are the best configuration since they collect the choices
which improves the most the average performances, respec-
tively for each FPGA architectures.



Table 3: Mean execution time in thousands of CPU ticks.
Embedded system GR-XC6S Architectures ML605 Architectures

benchmarking Cache Replacement Policies Key Elements Best FPU Best
Env. Bench. Reference Direct LRR LRU noBP nocaches Best1 Reference GRFPU GRFPU-lite Best2

ELF

cnt 77.082 77.082 77.082 77.082 81.132 436.601 77.082 77.276 77.276 77.276 77.276
matmult 139.292 142.168 149.393 132.077 154.869 1095.468 132.077 129.721 129.721 129.721 129.721
nsichneu 12.624 18.337 29.122 21.806 13.517 110.600 12.624 21.638 21.791 21.785 12.627
jfdctint 2.469 2.469 2.469 2.469 2.547 16.328 2.469 2.501 2.485 2.485 2.501
lms 17.738 17.737 18.312 17.737 19.108 178.854 17.738 17.827 0.523 0.924 0.524

RTEMS
jfdctint 2.496 2.498 2.503 2.495 2.575 18.268 2.496 2.530 2.532 2.532 2.532
lms 17.980 18.032 18.304 17.977 19.387 207.048 17.979 18.078 0.535 0.939 0.535

Global time scores4 – +8.32% +24.58% +11.67% +6.62% +663.63% −1.01% – −19.35% −18.91% −27.71%

On a global scale, the Best configurations improve the
performance more than they deteriorate it, Table 3. The
architectures without BP or without caches are clearly the
worst. The LRU algorithm is not always the faster, as we
can see with the nsichneu benchmark, but its choice rather
than the random replacement policy for the data cache is
profitable. As we can see, Best configurations allows an ad-
ditional gain of 1.01% on the GR-XC6S and of 8.36% on
the ML605 in comparison with the second best architec-
tures, respectively Reference and GRFPU.

Finally, the effect of the RTOS can be observed: the mean
execution times undergo a penalty of 2.52% on average with
RTEMS as compared to standalone ELF.

6.2 Worst-Case Performance
This section focuses on the worst-case performance and

the estimation of the pWCETs. The methodology applied
as well as the quality of the pWCET models (reliability and
hypothesis confidence) are detailed. Two cases are inves-
tigated: the impact of different cache replacement policies
and the impact of the RTOS on worst-case behaviors.
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Figure 9: Measurements and model for pWCET es-
timation (matmult on GR-XC6S without RTEMS).

6.2.1 Probabilistic Distribution Fitting

Figure 9 shows the measurements and the pWCET de-
rived from the EVT. The inverse cumulative distributions
are represented. u is the threshold parameter that diagXtrm

computes for obtaining the best pWCET model; k is the
number of measurements above the threshold selected. We
see how the pWCET model is able to perfectly cope with the
input measurements and then safely infers the rare events
(risk probability ≤ 10−9).

6.2.2 Quality of the Probabilistic WCET Model

As described in Section 5, the reliability of the pWCET
model is based on the confidence levels of the four hypotheses
{cl1, cl2,1, cl2,2, cl3}. Each hypothesis is scored out of 4.0,

4For each benchmark, a score is determined as
executionTime

max(executionTimes)
. Then, the sum of the scores are

compared relatively to the Reference.

and a minimum of 1.0/4.0 is required in order to apply the
method. Hypotheses cl2.1 and cl2.2 are covering each other,
so that a score of 1.0/4.0 in one of the two is sufficient.
The spider net in Figure 10 represents the reliability of the
pWCET model from these confidence levels.

Hence, all the assumptions are satisfied, the model is re-
liable. Stationarity, independence, extremal independence
and matching are verified with almost the maximal confi-
dence. The EVT is applicable with realistic architectures as
there is enough variability from the measurements.

cl1

cl2.1

cl2.2

cl3

xc6s.elf.Reference

xc6s.elf.Direct

xc6s.elf.LRR

xc6s.elf.LRU

(a) Cache replacement
policies (matmult on
GR-XC6S without
RTEMS).

cl1

cl2.1

cl2.2

cl3

ml605.elf.GRFPU

ml605.rtems.GRFPU

(b) Impact of the RTOS:
without and with
RTEMS (benchmark
lms on the ML605).

Figure 10: Reliability of the pWCET estimations

6.2.3 Comparisons of Worst-Case Behaviors

From the pWCET distributions we can extract the WCET
thresholds with a 10−9 risk probability i.e. confidence. This
allows us to identify the impact of each architectural change
on the worst-case behaviors with single values. Table 4 in-
dicates the pWCET distribution shape parameter ξ for each
pWCET model as well as the theoretical estimations i.e. the
WCET thresholds at 10−9. diagXtrm automatically selects
ξ to best fit the input measurements. As it can be seen, the
measurements have small variance hence they are better ap-
proximated with a Weibull GPD distribution, ξ < 0.
The accuracy of the pWCET defines how close the pWCET

is to the maximum measured execution time: it is the nor-
malized difference between the pWCET and the highest
measured value. As the models are all Weibull distribu-
tions, thus bounded to the right, they are quite close to
the maximum measured values, Table 4. The small accu-
racy indicates that the measured values embed already the
worst-case conditions. Thus, the pWCET as Weibull distri-
bution is able to perfectly cope with the measurements and
the task average behavior. The case with accuracy equal
to 1.32E-01, Table 4 ELF, indicates that the measurements
have large variability. This means that the worst-case con-
ditions could have a significant impact on the task execution
times. The resulting Weibull, in order to account for that



and foreseen the worst-cases, has to differ more from the
measurements. Nonetheless, the pWCET is equally reliable
due to the maximum confidences achieved.

The impact of the cache replacement policy on the worst-
case behavior is presented in Table 4a. The results are con-
sistent with those presented in Section 6.1.2.

The benchmark lms was used to characterize the impact
of the RTOS. We noted that the behavior of the FPU is not
stable in the first 1000 runs of the benchmark, thus we use
the last 4000 iterations to determine the pWCET distribu-
tion (i.e. achieve the hypotheses scores presented before in
Figure 10b). The Table 4b gives the results. They confirm
that the use of a RTOS like RTEMS induces a small penalty
of 2.85% on the task performance: minimal interference were
added and then accounted by a more pessimistic pWCET.

Table 4: pWCET distribution parameters.
(a) Impact of the cache replacement policy

(benchmark matmult on the GR-XC6S without RTEMS).

GR-XC6S Distribution diagXtrm results
architecture shape ξ Theoretical Measured Accuracy

Reference −0.249 139447252.58 139433822 9.63E-03
Direct −0.219 142170799.12 142170390 2.88E-04

LRR −0.095 149397501.05 149396595 6.06E-04
LRU −0.317 132076829.57 132076819 8.00E-06

(b) Impact of the RTOS (benchmark lms on the ML605).

ML605 Distribution diagXtrm results
with GRFPU shape ξ Theoretical Measured Accuracy

ELF −0.149 527244.18 526547 1.32E-01
RTEMS −0.596 542279.08 542228 9.42E-03

7. CONCLUSION AND FUTURE WORK
In this work, we review i) configuration space of LEON

processors on FPGA and ii) benchmarking LEON3 proces-
sors elements. Some architectural choices have been made,
described and then synthesized on two FPGA platforms.
Tasks benchmarks have been selected for their ability of
revealing the impact of each configuration on average and
worst-case behaviors. Execution conditions have been cho-
sen in order to expose key parameters in execution time
variability in both standalone and RTOS environments.

The results verify that time execution variability is present
in any modern processor. Average performance analyses
show that the best data cache replacement policy is the LRU
algorithm, while the random algorithm is the best choice
for the instruction cache. The results confirm that cache
memories, branch predictions and high-performance math
co-processor are key elements of modern processors. They
contribute in improving average performance at the cost of
increased variability in the system.

Probabilistic models have been estimated to show the im-
pact of different cache replacement policies and the impact
of the RTOS on the worst-case task behaviors. We validated
the reliability and the accuracy of the resulting pWCETs.

This approach could be applied with other benchmarks or
architectural configurations. Future work will study inter-
ference among tasks in RTOS, and evaluate the impact of
scheduler or resource sharing at software and hardware lev-
els (cache, MMU, etc.). This will improve the understanding
of modern processors so as to guarantee timing constraints.

8. ACKNOWLEDGMENTS
The authors thanks Thales Avionics for their support

through the ARISE Chair.

9. REFERENCES
[1] Gaisler. GR712RC User’s Manual. pp. 43–44, 2016.

[2] Gaisler. GRLIB VHDL IP Core Library, 2016.

[3] S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis. Static
probabilistic timing analysis for real-time systems
using random replacement caches. Real-Time Systems,
51(1):77–123, 2015.

[4] W. A. Brock, J. A. Scheinkman, W. D. Dechert, and
B. LeBaron. A Test for Independence based on the
Correlation Dimension. Econometric Reviews,
15(3):197–235, 1996.

[5] J. J. Buckley. Fuzzy statistics: hypothesis testing. Soft
Comput., 9(7):512–518, 2005.

[6] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo,
T. Vardanega, L. Kosmidis, J. Abella, E. Mezzetti,
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