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Contract-based modeling and verification of timed safety
requirements within SysML

Iulia Dragomir1
· Iulian Ober2

· Christian Percebois2

Abstract In order to cope with the growing complex-
ity of critical real-time embedded systems, systems engi-
neering has adopted a component-based design technique
driven by requirements. Yet, such an approach raises sev-
eral issues since it does not explicitly prescribe how system
requirements can be decomposed on components nor how
components contribute to the satisfaction of requirements.
The envisioned solution is to design, with respect to each
requirement and for each involved component, an abstract
specification, tractable at each design step, that models
how the component is concerned by the satisfaction of
the requirement and that can be further refined toward a
correct implementation. In this paper, we consider such
specifications in the form of contracts. A contract for a com-
ponent consists in a pair (assumption, guarantee) where the
assumption models an abstract behavior of the component’s
environment and the guarantee models an abstract behavior
of the component given that the environment behaves accord-
ing to the assumption. Therefore, contracts are a valuable
asset for the correct design of systems, but also for mapping
and tracing requirements to components, for tracing the evo-
lution of requirements during design and, most importantly,
for compositional verification of requirements. The aim of
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this paper is to introduce contract-based reasoning for the
design of critical real-time systems made of reactive com-
ponents modeled with UML and/or SysML. We propose an
extension of UML and SysML languages with a syntax and
semantics for contracts and the refinement relations that they
must satisfy. The semantics of components and contracts is
formalized by a variant of timed input/output automata on top
of which we build a formal contract-based theory. We prove
that the contract-based theory is sound and can be applied
for a relatively large class of SysML system models. Finally,
we show on a case study extracted from the automated trans-
fer vehicle (http://www.esa.int/ATV) that our contract-based
theory allows to verify requirement satisfaction for previ-
ously intractable models.

Keywords Contract-based reasoning ·Safety requirement ·
Component-based design · UML/SysML · Compositional
verification · Timed input/output automata

1 Introduction

The component-based design paradigm is one of the most
used techniques for the development of critical real-time
embedded systems. Integrated in a complete development
process, it facilitates the system decomposition and, later,
integration of components by delegating the responsibilities
of developing correct components to different engineering
teams. Yet, having multiple suppliers building integrated
systems based on common system requirements entails a
risk of errors during development due to the difficulty of
decomposing global system requirements on components
and the misinterpretation of the system requirements allo-
cated to the software [25]. These misunderstandings have
several sources but are often due to the use of ambiguous



means to describe the system requirements and implemen-
tations thus leading to different interpretations. In industrial
practice, early design models are often built in semi-formal
languages such as UML [53], SysML [52] or AADL [63]
which lack a proper mechanism for formalizing requirements
and proving their satisfaction. The errors potentially intro-
duced during the development are then discovered late and
by very costly processes.

The last decades have seen an accelerating utilization of
formal verification and validation techniques in the early
phases of the development process in order to guarantee as
soon as possible the correctness of the design, as well as
for reducing production costs and increasing system quality.
Design models are validated using an assortment of tech-
niques, including design review [58], interactive simulation,
and model checking [60]. While the first two explore a partial
set of behaviors, model checking allows to verify the sys-
tem requirements on all possible executions of the design,
something which, for large systems with a high degree of
parallelism, is often impossible to achieve due to the com-
binatorial explosion of the number of possible behaviors.
For this reason, common verification techniques may find
themselves powerless in front of the complexity of industrial-
grade systems.

A way to tackle these problems is to use a compositional
approach that allows for a requirement to be correctly decom-
posed into requirements on components and whose aim is to
provide sound implementations. Therefore, we consider a
development process based on partial and abstract specifi-
cations for components, traceable at each refinement step,
and driven by requirements. Such specifications can then
answer to two important open points in the design process:
how are requirements mapped to each component involved
in their satisfaction and how one component engages in
the satisfaction of several requirements. We consider such
specifications in the form of contracts: a contract for a com-
ponent is defined by a pair (assumption, guarantee) where
the assumption models an abstraction of the component’s
environment behavior and the guarantee models an abstrac-
tion of the component’s behavior given that the environment
behaves according to the assumption.

A contract-based reasoning technique enforces the three
basic principles on which a component-based develop-
ment process relies, which are component substitutivity and
reuse, incremental development by successive refinements,
and independent implementability. Moreover, it can pro-
vide a formal framework for proving the satisfaction of
requirements. Besides being a solution for system design,
contract-based reasoning offers diverse opportunities: map-
ping and tracing requirements to components, tracking the
evolution of requirements during development, reviewing
models, virtual integration of components [26], and, most
importantly, compositional verification. Instead of reasoning

with implementations during formal verification of require-
ments, one can use contracts and split the verification in two
steps: (1) verify that each component satisfies its contract and
(2) verify that the network of contracts correctly assembles
and satisfies the requirement. Even thought the number of
relations that need to be verified in order for contract-based
reasoning to work is multiplied (linearly with the number of
components), in general they involve more abstract specifica-
tions and thus they are less prone to combinatorial explosion,
which makes them more tractable by automatic verification
tools.

Despite these advantages, systems engineering has not
yet widely adopted contract-based reasoning as a develop-
ment technique for model design. The aim of this paper is
to graft contract-based reasoning in the model-driven design
and property verification process for critical real-time sys-
tems modeled in SysML. To the best of our knowledge, this
study is the first to link industrially used standard model-
ing languages such as UML/SysML and formal behavioral
contracts.
Paper structure Section 2 describes, in general terms, a
method for reasoning with contracts which we use throughout
this paper. The component-based model of UML/SysML and
its extension with contract-related notions are presented in
Sect. 3. The formal semantic model based on timed input/out-
put automata on which our approach relies is presented in
Sect. 4, as well as a mapping mechanism between the com-
ponent model described in SysML and the formal semantic
model. In Sect. 5, we develop the contract-based theory
for our formal model and we discuss its implications on
the SysML modeling. An automatic verification mechanism
based on reachability analysis for the generated proof oblig-
ations is described in Sect. 6. The contract-based reasoning
technique is applied in Sect. 7 on an industrial-scale system
model extracted from the automated transfer vehicle system
for the verification of a general safety requirement. The state
of the art in contract-based approaches, discussing formal
theories as well as works anchored in modeling languages,
is presented in Sect. 8, before concluding.

2 A meta-theory for contract-based reasoning

In this section, we present the contract-based meta-theory
proposed by Quinton et al. [61,62] on which we base our
work. By meta-theory, we mean that the notion of compo-
nent is kept abstract and the refinement relations used for
contracts are not fully defined. In order to obtain a working
contract framework, one has to formalize the notion of com-
ponent and the refinement relations that are used, and prove
the compositionality results required by the meta-theory. In
exchange, the meta-theory provides a methodology for rea-
soning with contracts as illustrated in Fig. 1 and explained



Fig. 1: Contract-based
reasoning for a
three-component
subsystem [61]

below. The related work with respect to contract-based meta-
theories and their implementations is discussed in Sect. 8.

Assume, at any level of the hierarchical decomposition
of a system, a subsystem S obtained from the composition
of several components K1, K2, . . . , Kn for which we want
to prove that it satisfies a requirement ϕ. The meta-theory
of [61,62] leaves open the choice of the composition oper-
ator in order to accommodate various definitions. In order
to simplify the presentation, we will assume the existence
of a notion of component compatibility, and the existence
of a composition operator for every pair of compatible com-
ponents, denoted ‖, which is unique and associative. Then,
S is obtained from the composition K1 ‖ K2 ‖ . . . ‖ Kn .
Figure 1 presents a subsystem S containing three components
K1, K2 and K3, and which communicates with an environ-
ment E . Again, on this example, we want to show that the
requirement ϕ is satisfied by the subsystem S.

In order to use this contract-based methodology for prov-
ing requirement satisfaction by a subsystem S, we start by
modeling a global contract C for S which conforms to the
requirement ϕ.

Definition 1 (Contract) A contract C consists of a pair
of compatible component specifications (A, G), where A is
called the assumption and G is called the guarantee.

In this theory, A and G are specified using the same
formalism as normal system components. Informally, the
assumption of the contractC for the subsystem S is an abstract
model of the behavior expected from the subsystem’s envi-
ronment E , while the guarantee is an abstract model of the
behavior promised by S, given that the actual environment

obeys to the assumption. Note that the same contract for a
subsystem, and components in the general case, can be used
to prove the satisfaction of several requirements.

The satisfaction of a requirement ϕ by a contract C =

(A, G) is modeled by the conformance relation A ‖ G � ϕ.
In the meta-theory, � denotes a property conformance oper-
ator which is left open to be defined in its instances. In our
instance of the meta-theory, we will use the same formal-
ism for requirements as for components, and we will use the
refinement relation between components as our conformance
relation.

Since we are interested in working with contracts and
discarding components compositions as much as possible
from the reasoning, the methodology continues by design-
ing a contract Ci = (Ai , Gi ) for each component Ki of the
subsystem S. The contract Ci is an abstract model of how
the component Ki of S contributes toward the satisfaction
of requirement ϕ. Indeed, the assumption Ai is expressed
over the environment E ‖ (‖ j �=i K j ), while the guarantee
Gi models the abstract behavior for Ki with respect to the
running requirement ϕ. Note again that, when one is trying
to prove the satisfaction of several requirements, the same
contract can sometimes be used for one component, but also
different contracts can be modeled for the same component
with respect to different requirements. Figure 1 presents a
set of contracts {C1, C2, C3}, each Ci being modeled for the
corresponding component Ki .

Next, the methodology requires for each component to
satisfy its contract, denoted Ki |� Ci . To define contract
satisfaction, the meta-theory relies upon the existence of
a refinement under context relation. This relation between



two components Ki and K j in an environment E , denoted
Ki ⊑E K j , informally means that component Ki , when
composed with the environment E , “behaves like” K j when
composed with the same environment. Although the choice
of the refinement under context relation is left open, the
meta-theory requires this operator to satisfy certain impor-
tant properties, such as compositionality and correctness of
circular reasoning; they are described below and are needed
for proving Theorem 1.

Based on refinement under context, contract satisfaction
is then defined as follows:

Definition 2 (Contract satisfaction) A component K satis-

fies a contract C = (A, G), denoted K |� C, if and only if
K ⊑A G.

Note that the meta-theory does not impose any constraint
with respect to the signature (i.e., the set of possible inter-
actions with the environment) of the components K , A and
G. As we will later see, in our instance of the meta-theory
in Sect. 5.1, that we allow A and G to concentrate only on a
subset of a component’s signature and on a part of its behav-
ior. This provides the ability to keep a contract abstract, with
only the essential information for the running requirement.

The following step of the reasoning consists in proving
the refinement of the global contract C by the set of contracts
{Ci }i=1,n . For this, the meta-theory introduces the notion of
dominance relation.

Definition 3 (Contract dominance) A set of contracts
{Ci }i=1,n dominates a contract C if and only if for any set
of components {Ki }i=1,n the following holds:

Ki |� Ci , i = 1, n �⇒ K1 ‖ K2 ‖ . . . ‖ Kn |� C.

The dominance relation defined above involves compo-
nent composition while avoiding defining a contract compo-
sition operator. However, in order to establish dominance,
one would like to avoid component (implementation) com-
position, which is the main cause for combinatorial explosion
in large systems. The crux of the meta-theory is the Theo-
rem 1 below, which provides a set of sufficient conditions
for dominance, allowing to boil dominance down to a set of
contract satisfaction proof obligations. In order for it to work,
the following compositionality conditions have to hold in the
instance of the meta-theory:

1. Refinement under context is compositional:
K1 ⊑E1‖E2 K2 �⇒ K1 ‖ E1 ⊑E2 K2 ‖ E1. This
property allows for incremental design by successively
incorporating parts of the environment in the components
under study, while refinement under context holds.

2. Circular reasoning is sound: K ⊑A G ∧ E ⊑G A �⇒

K ⊑E G. This property allows for independent imple-

mentability by breaking down the dependency between
the components and their environment.

These two compositionality results ensure that the reasoning
method of the meta-theory is sound.

Theorem 1 (Sufficient condition for dominance [61]) If

refinement under context is compositional and supports

sound circular reasoning, then for establishing that {Ci }i=1,n

dominates C it is sufficient to prove that

{

G1 ‖ . . . ‖ Gn |� C, and

A ‖G1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn |� C
−1
i , ∀i ∈ 1, n

where C
−1
i = (Gi , Ai ) denotes the “mirror” contract of Ci .

The first relation requires the refinement of a more abstract
guarantee by a set of more specific guarantees, while the sec-
ond expresses that individual assumptions need to be refined
by the other components’ guarantees together with the over-
all assumption.

Since real-life systems often exhibit a multi-layer architec-
ture, the dominance step can be iterated at each architectural
level and for each composed component until reaching the
contracts for “atomic” components. To simplify the presen-
tation, Fig. 1 only shows one dominance step.

Finally, in order to guarantee the satisfaction of the
requirement ϕ, we have to make sure that the assumption
A we made over the environment E and which is used in the
global contract C is correct. The last step of the methodology
consists in verifying the satisfaction of the “mirror” contract
C−1. We note that this is necessary when the system under
study S is an open subsystem, i.e., it interacts with an envi-
ronment. If the requirement ϕ is expressed on a closed (i.e.,
not open) system, then there is no assumption to be defined
and this step may be skipped.

As already mentioned, the framework presented above is
a meta-theory, which has to be instantiated for a particular
component model in order to yield a usable methodology.
The instantiation means defining certain notions and prov-
ing certain results, something that we do for our concrete
component model in the subsequent sections. The “to do”
list is the following:

1. Formally define the component framework—the notions
of component, parallel composition and refinement—the
conformance relation � (if different from component
refinement) and the refinement under context relation
⊑E .

2. Prove that both conformance and refinement under con-
text relations are preorders, i.e., they are reflexive and
transitive. These conditions are needed for proving the
compositionality results required by Therorem 1.



3. Prove that refinement under context is compositional.
Compositionality is a prerequisite of Theorem 1.

4. Prove that circular reasoning is sound. This is also a pre-
requisite of Theorem 1.

For our component model of SysML, the formal model
and the results mentioned above are provided in Sects. 4 and
5. Before that, in the next section we begin by examining the
extensions of the UML/SysML meta-model needed in order
to capture the syntactic aspects of contracts.

3 Modeling behavioral contracts in SysML

In order to be able to use contract-based reasoning in a
model-driven development approach, we propose in the fol-
lowing an extension of modeling languages by introducing
the notion of contract and the verification relations needed.
First, since SysML is a rich standard supporting various mod-
eling aspects, we identify a sufficient subset of modeling
elements which allows to describe hierarchical component-
based systems similar to the one depicted in Fig. 1. Next, we
describe the contract-related notions presented in Sect. 2 by
a domain meta-model illustrated in Fig. 5, as well as a set
of well-formedness rules defined and formalized over these
concepts in order to ensure that models comply to the meta-
theory. Our domain meta-model is defined as an extension
of the UML subset used in the definition of SysML (i.e., the
UML4SysML package from [52]), thus the profile which is
derived from it is applicable to both UML and SysML. We
close this section by presenting this profile and how it can
be used together with the meta-theory’s methodology on a
running example.

3.1 A UML/SysML subset for modeling timed

asynchronous component-based systems

A component-based system, such as the one presented in
Fig. 1, is structurally modeled in UML4SysML by two
notions: the class which allows to define types that are to
be used in the model and composite structures that allow to
cope with the complexity of large systems by describing class
instances and how they are composed and interconnected in
a hierarchical structure.

In the following, we will assume the reader is familiar
with the class, composite structure, and all the other relevant
modeling elements from the UML and SysML standards. We
impose certain constraints as to how these modeling elements
are to be used, in order to avoid any modeling ambiguities,
ensure rigorous static typing of composite structure models
and make them comply with the formal model detailed later
on in the paper. The constraints are only listed briefly in the
following; they are described in full detail and justified in

[49]. The components are deemed to communicate only by
asynchronous signals, sent and received over ports. The type
of a port consists of one interface that defines only the signal
receptions that can travel through, while its direction spec-
ifies whether it is an entry (provided) or an exit (required)
point. We denote by component signature the set of signal
receptions defined within the component port types and their
input/output direction. In a composite structure, the ports of
the different parts (components) shall be connected with con-

nectors whenever they communicate. Multicast ports, i.e.,
outbound ports that are connected to more than one inbound
port having the same type, are forbidden since they induce an
important overhead in the definition of the semantics. When
needed, we require them to be modeled through multiple
output event ports.

The behavior of an atomic component is modeled by a
state machine. To describe actions (e.g., transition effects),
we use a subset of the action language formalized by the
fUML standard [56] consisting of signal output, assignment
of structural features, and expression valuation. The behavior
of a composed component should not be explicitly modeled
as it is given by the parallel execution of all its subcompo-
nents.

Since we aim to model real-time systems, we extend the
modeling of component behavior with timed concepts as they
are described in the MARTE profile [55] for physical/real-
time. We define by Timer a clockType stereotyped class that
has a dense time base and which contains the getTime and
setTime operations. Thus, a designer can use Timer instances
within a component behavior description in order to model
time elapse and timeout events. In addition, we allow using
urgency stereotypes on transitions for describing more flexi-
bly how time can elapse in control states: ≪eager≫ models
that the transition has to be executed as soon as it is enabled
(i.e., time elapse is disabled) and ≪lazy≫ models that the
transition can be executed at any moment in time (i.e., time
elapse is enabled and unbounded). The notion of urgency
was introduced for timed automata in [12] and was previ-
ously used in our work on UML [50].

Lastly, we are interested in verifying requirement satis-
faction, and therefore in their formalization. Our interest is
limited to safety requirements, i.e., properties that assert that
nothing bad happens during system execution, and whose
violation can always be described in terms of a finite trace.
In our case, the properties are described in an automata-based
language, in the form of observers. An observer is an object
that monitors the system events and gives verdicts about the
(non-)satisfaction of the requirement that it formalizes. It is
modeled by a class stereotyped ≪observer≫ which has a
local memory (attributes) and a state machine to describe
the requirement’s behavior. In order to model the divergence
from a nominal scenario, observer states may be marked with
the≪error≫ stereotype when the executions leading to them
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Fig. 2: Running example: the architecture of the simplified automated teller machine

have to be considered erroneous. The monitoring of actions
is modeled by a set of special transition triggers called match

clauses as follows: send for output actions and acceptsignal

for triggers. The semantics of a match clause is to synchro-
nize with the occurrence of the respective signal in the system
at execution. Further details about the observer mechanism
used in this paper can be found in our previous work [50].

3.2 The simplified automated teller machine running

example

In order to illustrate the contract-based concepts for system
designs, we describe in the following the running example of
a simplified automated teller machine (sATM) for the with-
drawal transaction only. The model has been edited using the
IBM SysML Rhapsody tool.1

The architecture of the system is represented in Fig. 2 and
consists of the following blocks: the sATM that contains an
instance of the CardUnit responsible for the insertion and
removal actions of a card and an instance of the Controller

responsible for the withdrawal transaction, and the User.
Note that the User models the environment of the sATM
and, therefore, is not part of the system under study. We con-

1 http://www.ibm.com/software/products/en/ratirhapfami.

sider here only one of the possible behaviors a real customer
can exhibit as described below.

The considered use case for the sATM is the following:
a customer is required to insert a card into the card unit of
a sATM. Then, the sATM will verify the amount available
on the card and will propose several amounts (within the
accepted range) to the user for withdrawal. The sATM inter-
acts with the customer via a console and can handle only one
user at a time. The customer chooses an amount and waits for
the sATM to execute the transaction. The sATM will display
a message and eject the card. If the card is removed within 5
time units after being ejected, the amount is distributed and
the total amount available on the card updated. Otherwise,
the card is retained and the sATM will become unavailable
for further transactions. This behavior is modeled in Fig. 3
by a state machine for each component.

We are interested in showing with the contract-based
approach that the current model satisfies the following
requirement:

Requirement 1 If the card is removed within 5 time units

after being ejected, the amount released by the sATM is the

amount requested by the customer.

This requirement is formalized with an observer in Fig. 4
from the point of view of the sATM. This formalization
captures several events that are briefly mentioned by the
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Idle

RemoveCard

/match acceptsignal amount //

WaitForRemoval

/match send retrieveCard //
t.setTime(0)

WaitForMoney

/match acceptsignal cardRemoved //

/match send releaseMoney //

[amount.value = 
  releaseMoney.value]

Error

«error»[amount.value <> releaseMoney.value]

End
[t.getTime() > 5]

Fig. 4: SysML formalization with an observer of Require-
ment 1: the amount released by the sATM is equal to the

requested amount

textual requirement as follows: the amount to be selected,
retrieveCard, and cardRemoved to check the assumption over
the environment and releaseMoney over which the require-

ment is expressed in conjunction with amount. Initially, the
observer waits in the state Idle for the customer to insert a
card and select an amount. Next, it expects for the customer to
remove the card from its slot within 5 time units once the lat-
ter is ejected by the machine: the retrieveCard output signal
followed by the cardRemoved input signal sequence. Then,
the sATM executes the releaseMoney operation. The values
of the requested and released amounts are modeled by a para-
meter of their corresponding signals. If the values coincide
then the requirement is satisfied, otherwise the Error state
is reached and the property is violated. In case the card is
not removed within the allowed time interval, since this is in
fact an assumption made over the sATM’s environment, the
requirement may be considered satisfied; the observer then
goes into state End and stops.

3.3 A meta-model for behavioral contracts

The contract-based meta-theory presented in Sect. 2 is sup-
ported by a domain meta-model illustrated in Fig. 5. To
explain this meta-model, we start by the meta-classes that
are reused as such from UML4SysML [52]. The meta-class
Property denotes the notion of part (component) in a com-
posite structure, in the standard. The meta-class Class models
component types.

An important concept that is not part of the UML meta-
model, but which is defined within SysML is the requirement.
However, the SysML definition and usage of requirements
is informal, while contract-based reasoning needs to for-



Fig. 5: An extension of the UML meta-model for contract-based reasoning

malize them within a framework. Since several formalisms
are available to represent requirements (e.g., automata-based
languages like the observer notion presented in Sect. 3.1,
temporal logics, etc.) and implemented in different tools sup-
porting UML/ SysML modeling, we prefer to add the concept
to our meta-model and to keep it at an abstract level. There-
fore, a requirement that a UML/SysML model has to satisfy
is denoted by the meta-class SafetyProperty in Fig. 5.

There are two categories of notions that are defined within
the meta-theory of Sect. 2: (1) those that define how to model
a contract, represented in the upper part of the meta-model
of Fig. 5 and (2) those that define the relations between com-
ponents/ contracts, represented in the lower part of Fig. 5.

3.3.1 Modeling contracts

In order to introduce contracts, we firstly define the assump-
tion and the guarantee which are, respectively, represented
by the meta-classes assumption and guarantee. Both notions
are subtypes of Class. The intuition behind this is straight-
forward: the meta-theory defines the assumption/guarantee

as component, and therefore, to describe them, we can use
the language element as for SysML components, i.e., a class
with a behavior modeled by a state machine. One restriction
that applies to this representation of assumptions/guarantees
as classes is that they may not be involved in any relations
(in the UML/SysML sense, such as associations or general-
izations) except interface realizations needed to type ports.
The reason is that assumptions/guarantees do not have the
usual operational semantics of classes but are only used in
refinement relations (in the sense of our formal framework),
and therefore, their only relevant elements are their interface
(ports) and behavior (state machine). This way of model-
ing assumptions/guarantees is convenient and supported by
standard UML/SysML model editors.

A contract is represented by the meta-class Contract, a
subtype of Class, whose composite structure must contain
exactly one assumption and one guarantee, all other proper-
ties being forbidden. In order to comply to the definition of
contract from the meta-theory, we need again to restrict the
language a contract can be described with. Therefore, a con-
tract does not exhibit any behavior and it is not involved in



any other relations than the ones defined in the meta-theory.
This modeling of a contract allows for reusability: a contract
is defined only by instances, while types (assumption/guar-
antee) can be used within other contracts too.

The meta-theory requires for a contract to be a closed
component. This means that all signals of a contract’s
assumption/guarantee have as source/target the other com-
ponent. Since the communication for our system models is
based on ports and connectors, we express this constraint on
contracts with respect to port types that must be matched with
reversed direction, in the following rule:

Rule 1 Given a Contract, the assumption and the guarantee

define a closed system: all ports of each type have a corre-

spondent (by type and conjugated direction) within the ports

of the other type.

Moreover, the purpose of a contract is to model a partial
behavior with respect to a requirement. We enable this by
allowing a guarantee to define a set of ports that corresponds
to a subset of the component’s ports. The port correspondence
is based on name, type, and direction, which must be the same
as those of a port of the class typing the component. The aim
of this rule is to contribute to requirement-driven design of
systems: specifications are refined toward implementations
based on requirements, and in order to support integrating
multiple requirements in the same component, one needs to
be able to specify contracts that concern only a subset of the
component’s ports.

Rule 2 The set of ports of a contract’s Guarantee is included

in the set of ports of any Property (component) that satisfies

the Contract.

Rules 1 and 2 are part of a set of well-formedness rules
defined for the meta-model of Fig. 5 such that the steps of
the meta-theory from Sect. 2 can be applied on system mod-
els. This set of rules has been formalized with OCL [54],
which allows to verify (using an OCL interpreter, Topcased2

in our case) the static typing of a model extended with con-
tracts, before applying verification and validation techniques
for system behavior. We present here only a few important
rules concerning the contract definition for the satisfaction
and dominance relations of the meta-model and for which
the OCL formalization is provided in “Appendix 1.” Further
details and the complete set of rules can be found in [35].

3.3.2 Modeling contract satisfaction

The satisfaction relation that relates a component to a con-
tract is represented by the Implementation meta-class at the
type level of the component. This relation, a subtype of

2 http://www.polarsys.org/.

Dependency, is defined between a Class and a Contract and
expresses that the class satisfies the contract. This definition
allows for the multi-view modeling of a system from the
requirement perspective: a class can implement several con-
tracts and a contract can be implemented by several classes.

Therefore, when verifying a particular requirement, the
designer has to specify, for each component, which contract
from the component’s set of implemented contracts has to be
used for that requirement. We define a second relation, also
a subtype of Dependency, named ContractUse, that models
contract satisfaction at the components’ level and specifies
the requirement concerned by the satisfaction relation. This
prerequisite is modeled in Fig. 5 by the association from
ContractUse to SafetyProperty. For a ContractUse relation
to be correctly defined, an Implementation relation must exist
between the component’s type—a class—and the contract.

3.3.3 Modeling dominance

The dominance relation described in Sect. 2, between a more
general contract and a set of more specific contracts, is not
explicitly modeled in Fig. 5 since it can be deduced from
the ContractUse relations. Indeed, each component of the
system—atomic or composed—involved in the satisfaction
of a requirement R must have a ContractUse relation to a
contract supporting R, i.e., the reqTarget association of the
ContractUse has to point to R. Therefore, when applying the
methodology, in order to find the contracts that dominate a
contract C of a component K needed to prove R, one simply
has to look for the contracts of the subcomponents of K which
have R as reqTarget.

Since we want to apply the methodology for the veri-
fication of system models, we require that each deduced
dominance relation to be unique for a given context and a
given requirement, as expressed in the following rule:

Rule 3 There is one and only one ContractUse relation

between a Property, a SafetyProperty and one Contract.

A dominance relation can also be subject to signature
refinement. This condition is illustrated with a rule and the
corresponding formalization in [35].

3.3.4 Modeling conformance

Finally, the conformance relation is represented by the meta-
class Conformance of type Dependency between a Contract

and a SafetyProperty. We note that a contract can serve as
source for checking several requirements.

We ensure the completeness of the reasoning by the fol-
lowing rule:

Rule 4 Within a model, for any SafetyProperty, there is one

and only one contract conforming to it, implemented by the



component on which the requirement is expressed (which may

be the whole system).

This set of rules fully presented and formalized in [35]
allows us to generate an unambiguous set of proof obliga-
tions whose satisfaction ensure the satisfaction of system’s
requirements.

3.4 From domain meta-model to profile

In order to use contracts in a standard UML/SysML model,
our choice is to define a profile and use the stereotype mech-
anism on the base UML4SysML meta-classes from which
the new meta-classes from Fig. 5 are derived. For the meta-
class Class the stereotypes that apply are: ≪assumption≫,
≪guarantee≫, ≪contract≫ and ≪observer≫, where
observer is our instantiation of SafetyProperty presented
in Sect. 3.1. For the meta-class Dependency, we define the
≪contractConformance≫,≪contractImplementation≫ and
≪contractUse≫ stereotypes, where the latter stereotype
defines the reqTarget property (or tagged value) that refers
to the requirement for which the relation is defined.

3.5 Contracts in the sATM example

We describe in the following the instantiation of the contract
meta-model and the application methodology on the sATM
running example presented in Sect. 3.2, illustrated in Fig. 6.
With respect to Requirement 1, the system under study S is
given by the component atm of type sATM, while the envi-
ronment E consists of the component user.

We start by defining a global contract C_sATM for the
component under study atm. This contract is involved in
several relations: first, it is used to verify the satisfaction
of the expressed requirement which is modeled by the con-

tractConformance dependency pointing to Requirement1.
This contract is also used within the proof by the atm com-
ponent modeled with the contractUse dependency tagged
with Requirement1 as running requirement. There is also
a contractImplementation relation between sATM—the atm

component’s type—and C_sATM which is omitted from
Fig. 6 in order to not overload the model.

Next, we model a contract for each of the atm’s sub-
components: C_Controller for the controller component and
C_CardUnit for the cardUnit component. We link each
component to its corresponding contract by contractUse

relations tagged with the same Requirement1. Note that
there is a derived dominance relation between C_sATM

and {C_Controller, C_CardUnit}. Again, we omit from the
representation the contractImplementation relations corre-
sponding to the contractUse ones.

Finally, we detail each contract as a closed composite
structure and their assumption/guarantee behavior with a
state machine. Bear in mind that this behavior is described
with respect to Requirement 1.

Figure 7a presents the contract C_Controller for the con-

troller component. Since the requirement is expressed with
respect to the release money functionality, we can abstract
several interactions between the controller and its environ-
ment that do not impact its behavior: with the cardUnit

component on the initialization process and with the user

component on the display role. So, the signature of the

atm:sATM1

cardUnit:CardUnit1

controller:Controller1

CardUnit2Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr4CardUnit

CardUnit2Ctr_Eject
CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User

User4CardUnit

User2CardUnit

CardUnit4Ctr_Init

CardUnit2Ctr_Init
Ctr2CardUnit

Ctr2CardUnit

CardUnit4Ctr_Eject

CardUnit2Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Console2User

Console2User

Display2User

Display2User

User2Console

User4Console

Console2User

Console2User

Dispenser2User

Dispenser2User

User4CardUnit

User2CardUnit

CardUnit2User

CardUnit2User

C_Controller

«block,contract»

«contractUse»

C_CardUnit

«block,contract»

«contractUse»

C_sATM

«block,contract»

«contractUse»

Requirement1

«block,observer»

Attributes

t:Timer

Operations

amount(value:int)

releaseMoney(value:int)

«contractConformance»

reqTarget:Class=Requirement1

«Tag»

Fig. 6: Contracts and their relations in the sATM example



aCtr:A_Controller1

Dispenser2User

Dispenser4User

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

Ctr4CardUnit

Ctr2CardUnit

User2Console

User2Console

gCtr:G_Controller1

Dispenser2User
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CardUnit2Ctr_Eject

CardUnit4Ctr_Eject
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(a) (b)

Idle
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WaitForRemoval

RemoveCard

ejectCard

ok to CardUnit2Ctr_Eject

«lazy»

WaitForMoney

releaseMoney

Idle

EjectCard

amount

ejectCard to Ctr2CardUnit

«lazy»

WaitForRemoval

ReleaseMoney

ok

releaseMoney(amount.value) to Dispenser2User

«lazy»

(c)

Fig. 7: Contract modeling for the controller component. a Contract architecture. b Behavior of the assumption. c Behavior
of the guarantee

aCardUnit:A_CardUnit1

User2CardUnit

User2CardUnit

CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

CardUnit2User

CardUnit4User

Ctr2CardUnit

Ctr2CardUnit

gCardUnit:G_CardUnit1

User4CardUnit

User2CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User

Ctr4CardUnit

Ctr2CardUnit

(a)
Idle

WaitForRemoval

ejectCard to Ctr2CardUnit

RemoveCard

retrieveCard/t.setTime(0)

cardRemoved to User2CardUnit

«lazy»

[t.getTime() = 5]

WaitForAck
ok

cardInserted to User2CardUnit

EjectCard

«lazy»

Idle

EjectCard

retrieveCard to CardUnit2User

«lazy»

WaitForRemoval

AckRemoval

cardRemoved

ok to CardUnit2Ctr_Eject

«lazy»

CardInserted

ejectCard

cardInserted

(b) (c)

Fig. 8: Contract modeling for the cardUnit component. a Contract architecture. b Behavior of the assumption. c Behavior of
the guarantee

contract is refined and consists in {?amount, ?ok, ?nok,
!ejectCard, !releaseMoney}, where ? is used to denote an
input while ! marks an output. The assumption represented
in Fig. 7b models that after the amount is selected, the card is
removed without the occurrence of an error, i.e., we assume
that only ok may be sent. The component guarantees that
if the amount is eventually released then it will have the
same value as the one requested by the customer, modeled in
Fig. 7c by the parameter amount.value of releaseMoney. The

≪lazy≫ urgency annotations in the contract state machines
are justified by expressiveness constraints due to the seman-
tics of contracts, which cannot be explained at this point but
are detailed later in Sect. 5.2.

The contract for the cardUnit component, represented in
Fig. 8a, is also modeled on a subset of the component’s sig-
nature. Again, the initialization of the withdrawal process
is not of concern for Requirement 1, yet the card insertion
action has to be modeled in order not to encompass invalid



aATM:A_sATM1

User2CardUnit

User2CardUnit

Dispenser4User

Dispenser2User

CardUnit2User

CardUnit4User

User2Console

User2Console
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WaitForCard
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«lazy»

[t.getTime() = 5]

cardInserted to User2CardUnit

SelectAmount

Idle

AskForRemoval

WaitForRemoval

retrieveCard to CardUnit2User

«lazy»

ReleaseMoney

cardRemoved

releaseMoney(amount.value) to Dispenser2User
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WaitForAction

amount

cardInserted

(c)

Fig. 9: Contract modeling for the ATM component. a Contract architecture. b Behavior of the assumption. c Behavior of the
guarantee

executions of the component. Then, the contract signa-
ture consists of {?cardInserted, ?ejectCard, ?cardRemoved,
!retrieveCard, !ok, !nok}. The assumption A_CardUnit mod-
eled in Fig. 8b is informally described by the requirement:
once the signal retrieveCard is handled, a Timer t is set to
0; then, the card is removed within at most 5 time units.
This time delay is modeled by two outgoing transitions from
RemoveCard: one with a lazy semantics which lets time
elapse and one with an eager semantics enabled as the clock
value is equal to 5 time units which ensures the execution
of the action at the end of the deadline. The cardUnit will
guarantee that only the ok signal is raised during the remove
process thus eliminating the nok branch.

Finally, the top-level contract C_sATM is represented
in Fig. 9a. Similarly as with the previous contracts we
abstract the role of the display of the atm. Its signature is
the set {?cardInserted, ?amount, ?cardRe-moved, !retrieve-

Card, !releaseMoney}. This signature is identical on inputs
and outputs with the union signature of the G_Controller

and G_CardUnit composition. The assumption, modeled in
Fig. 9b, describes a behavior similar to the A_CardUnit.
The guarantee, represented in Fig. 9c, expresses that if the
amount is released then it will have the same value as the one
requested by the customer.

4 A formal model for semantics: timed

input/output automata

In order to apply verification and validation techniques on
system models, we have, at first, to provide a formal model

that describes their semantics. We chose to build our frame-
work on a variant of timed input/output automata (TIOA) as
defined in [42] since it is suitable to express the semantics
of the timed reactive components of SysML. Moreover, it is
thoroughly defined and it provides some ready-to-use com-
positionality results that are required by the meta-theory we
are instantiating. A discussion with respect to other variants
of TIOA is provided in Sect. 8. This formal framework is
described in Sect. 4.1, while our view of the mapping from
SysML notions to TIOA is presented in Sect. 4.2.

4.1 A flavor of timed input/output automata for SysML

semantics

A SysML component is represented at the semantic level by
a TIOA:

Definition 4 (Timed input/output automaton) A timed input/

output automaton A is a tuple (X, Clk, Q, θ, I, O, V, H,

D, T ) where:

– X is a finite set of discrete variable symbols and Clk is a
finite set of clock symbols. We denote by Y = X ∪ Clk

the set of all internal variable symbols of A.
– Q represents the set of states of A. A state q ∈ Q is a

function q : Y → DY which gives a value in a specific
domain to each variable from Y . Note that for a discrete
variable x ∈ X the domain Dx is a finite set, while for
clocks c ∈ Clk the domain is the set of reals R

+. Such
a state q is also called a valuation. Let val(Y ) be the set
of all valuations defined on Y ; then Q ⊆ val(Y ).



– θ ∈ Q is the start state.
– I is a set of input actions, O a set of output actions and

V a set of visible actions. We denote by E = I ∪ O ∪ V

the set of external actions which we call in the following
the signature of the automaton.

– H is a set of internal actions. We denote by A = E ∪ H

the set of all executable actions.
– I , O , V and H are pairwise disjoint sets.
– D ⊆ Q × A × Q is a set of discrete transitions.
– T is the set of trajectories. Each trajectory is a function

τ : Jτ → Q, where Jτ is a real interval of type [0, t] or
[0,∞) with t ∈ R

+, such that ∀u ∈ Jτ ,∀x ∈ X, τ (u)(x)

is constant, and ∀c ∈ Clk, τ (u)(c) = u + τ(0)(c).

We note that there are two differences between the pre-
vious definition and the one presented in [42]. The first
one relates to the extension of TIOA with visible actions,
in addition to inputs, outputs and internals. Such actions
find their rationale in the output–input matching of compo-
nents. When computing a composition, in the asynchronous
SysML semantics sending and receiving a signal (action)
need only to leave a visible trace, whereas in [42] it becomes
an output thus allowing for broadcast, which is inconsis-
tent with the SysML semantics. Then, the need for visible
actions is motivated by the system requirements which are
often described with respect to closed systems and usually
involve in their description the monitoring of input–output
synchronization. Furthermore, visible actions support the
definition of our refinement relation, as it will be shown in
Sect. 5.

The second difference consists in the restriction of the
state space: the domains of discrete variables are finite and
the only allowed trajectories are constant functions for dis-
crete variables and linear functions with the derivative equal
to 1 for clock variables. While the definition from [42]
allows for any functions to be used as trajectories and thus
covers general hybrid systems, this restriction makes our
timed model expressiveness equivalent to that of Alur–Dill
timed automata [3]. This restriction opens the possibility of
automatic reachability analysis or verification of simulation
relations, which are undecidable for the more general TIOA
of [42]. However, the compositionality results required by the
meta-theory and provided in Sect. 5 are independent from this
restriction, i.e., they can be proved also for hybrid systems
as described by Kaynar et al. [42].
Notation We often denote elements of a TIOA A by XA, QA,
θA, IA, etc. We omit these subscripts where no confusion

seems likely. We denote by x
a
−→A x′ any (x, a, x′) ∈ DA.

Again, we drop the subscript when A is clear from the con-
text. For a trajectory τ , we denote by τ. f val = τ(0) and
by τ.ltime the supremum of its domain. A trajectory τ is
closed if its domain is a closed interval. Then τ.ltime is

part of its domain, and we denote τ.lval = τ(τ.ltime). The
notation x

τ
−→A x′ can be used if ∃τ ∈ T , x = τ. f val and

x′ = τ.lval.
τ ′ = τ⌈[0, t] with t ∈ Jτ is called a prefix, where ⌈

denotes the operator which restricts a function to a subset of
its domain. τ ′ is a suffix if ∃t ∈ Jτ such that τ ′ : [0, τ.ltime−

t] → Q if τ is closed or τ ′ : [0,∞) → Q if τ is open, and
τ ′(u) = τ(t + u), i.e., τ ′ is obtained by restricting τ to
Jτ ∩ [t,∞) and left-shifting it such that Jτ ′ starts in 0.
Axioms A timed input/output automaton must satisfy the fol-
lowing axioms:

(A0) (Existence of point trajectories)
∀x ∈ Q, γ (x) ∈ T where γ (x) : [0, 0] → x maps 0 to
x.

(A1) (Prefix closure)
∀τ ∈ T , ∀τ ′ a prefix of τ , τ ′ ∈ T .

(A2) (Suffix closure)
∀τ ∈ T , ∀τ ′ a suffix of τ , τ ′ ∈ T .

(A3) (Concatenation closure)
Let τ0τ1τ2 . . . be a finite or countably infinite sequence
of trajectories in T such that, for each nonfinal
index i , τi is closed and τi .lval = τi+1. f val. Then

τ
�

0 τ
�

1 τ
�

2 . . . ∈ T , where � denotes the concatenation
operator. Informally, the concatenation operator mod-
els the union between a first closed trajectory and a
second one right-shifted such that its start time coin-
cides to the limit of the first one.

(A4) (Input actions enabling)
∀x ∈ Q,∀a ∈ I, ∃x′ ∈ Q such that x

a
−→ x′.

(A5) (Time-passage enabling)
∀x ∈ Q, ∃τ ∈ T such that τ(0) = x and either

1. τ.ltime = ∞, or
2. τ is closed and some l ∈ H ∪ V ∪ O is enabled in

τ.lval.

Axioms A0–A3 are basic properties ensuring that the
behavior of a TIOA is well defined (see definitions below).
Axiom A4 corresponds to a semantic choice which is also
made in [42]: a TIOA can never refuse an input; this choice
is consistent with component models based on asynchronous
messages such as that of SysML, in which a component can at
any time receive a message and stores it for later use. Axiom
A5 is a basic soundness property also: it states that a com-
ponent can never block time progress, it either performs an
action at a future moment or lets time pass up to infinity.
Behavior The behavior of timed input/output automaton
is given by a set of executions. Informally, an execution
records what happens during a particular run including dis-
crete changes of states as well as changes that occur during
time elapse (trajectories).



Definition 5 (Execution) An execution of a timed input/out-
put automaton A is a (possibly infinite) sequence α =

τ0a1τ1a2τ2 . . . where:

– each ai is an action in AA,
– each τi is a trajectory in TA,
– τ0. f val = θ ,
– all τi are closed except the last trajectory which can be

either open or closed and

– if τi is not the last trajectory in α then τi .lval
ai+1
−−→

τi+1. f val,
– if α is a finite sequence then it ends with a trajectory.

The last item is added for convenience of notation, since an
execution ending with a discrete transition can always be
extended with a point trajectory.

An execution preserves all the information from the TIOA
transitions. However, some elements do not present much
interest when observing the behavior or checking for behav-
ior refinement, such as the evolution of internal variables
during time elapse or the execution of internal actions. We
use the notion of trace introduced in [42] as the projection of
an execution on external actions and time elapse intervals.

Definition 6 (Trace) Let α be an execution. Then trace(α)

is the restriction of α to (EA,∅), denoted trace(α) =

α⌈(EA,∅), where:

– each ai appearing in trace(α) is an action in EA, i.e., all
actions from HA are removed from α, and

– each τi : Jτi
→ ∅, Jτi

⊆ R
+, records only the length of

time-passage and ignores the evolution of variables.

If after action removal the trace contains adjacent trajec-
tories, then the concatenation operator is applied in order to
obtain only one trajectory. We denote by tracesA the set of
traces of the automaton A and by f tracesA the set of finite
traces of A (traces with a finite number of discrete actions, but
not necessarily time-bounded). Then f tracesA ⊆ tracesA.
The set of traces of an automaton can present two properties:
closure under limits and closure under time extension. Clo-
sure under limits informally means that any infinite sequence
whose prefixes are traces is also a trace. Closure under time
extension means that any time-bounded trace can be extended
with an open-interval trajectory which lets time progress to
infinity without any other visible action occurring. The for-
mal definitions of these two notions are those presented in
[42].
Composition We define a parallel composition operator for
allowing the automata to communicate and be executed
in parallel. The following definition presents the condi-
tions that have to be satisfied in order to compose two
automata.

Definition 7 (Compatible components) Two timed input/out-
put automata A1 and A2 are compatible if YA1 ∩ YA2 =

HA1 ∩ AA2 = HA2 ∩ AA1 = VA1 ∩ AA2 = VA2 ∩ AA1 =

OA1 ∩ OA2 = IA1 ∩ IA2 = ∅.

The parallel composition operator is based on the syn-
chronization of inputs/outputs and on interleaving of all other
unmatched actions:

Definition 8 (Parallel composition) If A1 and A2 are two
compatible timed input/output automata then their composi-

tion A1 ‖ A2 is defined to be the tuple (X, Clk, Q, θ, I, O,

V, H, D, T ) where:

– X = XA1 ∪ XA2 and Clk = ClkA1 ∪ ClkA2 .
– Q = {xA1 ∪ xA2 |xA1 ∈ QA1 , xA2 ∈ QA2}. Note that

xA1 ∪xA2 , which denotes the union of functions xA1 and
xA2 is well defined since the domains of xA1 and xA2 are
disjoint.

– θ = θA1 ∪ θA2 .
– I = (IA1\OA2)∪(IA2\OA1), O = (OA1\IA2)∪(OA2\

IA1) and V = VA1 ∪ VA2 ∪ (IA1 ∩ OA2)∪ (IA2 ∩ OA1).
– H = HA1 ∪ HA2 .
– D is the set of discrete transitions where for each x =

xA1 ∪xA2 , x′ = x′
A1

∪x′
A2

∈ Q and each a ∈ A, x
a
−→ x′

if and only if for i ∈ {1, 2}, either

1. a ∈ AAi
and xAi

a
−→Ai

x′
Ai

, or
2. a �∈ AAi

and xAi
= x′

Ai
.

– τ ∈ T ⇔ τ⌈XAi
∈ TAi

, i ∈ {1, 2}.

The only difference between this definition and the one
presented in [42] is related to the signature of the compos-
ite timed input/output automata: the input and output sets of
actions consist in those that are not matched between compo-
nents, while matched inputs/outputs become visible actions.
By difference, in [42] matched inputs/outputs become out-
puts, which effectively means that outputs are treated as
broadcasts and does not conform to the usual SysML seman-
tics.

As we will show later in Sect. 4.2, although the semantics
of inputs/outputs is synchronous, component models based
in asynchronous communication such as that of SysML can
be modeled with TIOA. This is done by using an internal
queue variable and distinguishing between the input action
which receives a message and stores it in the queue, and an
internal consumption action which consumes the message
from the queue at a later time.

The following theorem ensures that the parallel composi-
tion operator gives consistent results regardless of the order
in which several components are composed:



Theorem 2 (A, ‖) is a commutative monoid.

The proofs of the theorems presented in this paper can be
found in “Appendix 3”.
Refinement As in [42], we use trace inclusion as the refine-
ment relation between automata, but we limit our attention to
finite traces, as we are interested in the satisfaction of safety
properties for which we do not need infinite traces. However,
as we will see, most results from the next section can easily
be extended to fit a definition of refinement based on finite
and infinite trace inclusion.

Definition 9 (Comparable components) Two timed input/
output automata A1 and A2 are comparable if they have the
same signature, EA1 = EA2 .

Definition 10 (Conformance) Let A1 and A2 be two com-
parable timed input/output automata. A1 refines (conforms

to) A2, denoted A1 � A2, if f tracesA1 ⊆ f tracesA2 .

Note that we use the refinement relation between com-
ponents also for checking conformance in the fourth step of
the methodology for verifying that a top contract satisfies
the requirement (A ‖ G � ϕ). In the following we will use
the term conforms to to denote the refinement of compo-
nents relation. The following Theorems 3 and 4 presented in
[42] and which are required by the meta-theory can be easily
extended to our variant of TIOA.

Theorem 3 The conformance relation is a preorder over a

set of comparable components.

Theorem 4 (Composability) Let A1 and A2 be two com-

parable timed input/output automata with A1 � A2 and B a

timed input/output automaton compatible with both A1 and

A2. Then A1 ‖ B � A2 ‖ B.

4.2 From timed SysML models to TIOA

In this section, we discuss the transformation of a component-
based system modeled with the SysML notions described in
Sect. 3.1 into a timed input/output automata network. Our
mapping rules are relatively straightforward and follow the
same strategy that has been described in previous work like
[43,46] or lately [48,51]; for this reason, we only give here an
informal description of the mapping that we illustrate on the
component from Fig. 8b—the assumption for the cardUnit

of our sATM example. The fact that this component is part of
a contract has no impact on the translation, the same mapping
rules apply to system components and contract assumption-
s/guarantees. The complete formalization of this component
is detailed in “Appendix 2.” It is understood that, in order
to have a fully formal approach, the mapping would have to
be formalized, for example within a model transformation

framework; however, this is a significant effort which goes
beyond the scope of this paper.

The transformation proceeds by mapping each SysML
component K to a timed input/output automaton AK . The set
of clocks ClkAK

consists in all the attributes defined by the
component of type Timer, while all the other attributes form
the set of discrete variables XAK

. In addition, each automaton
AK contains two implicit discrete variables: location models
the current control state of the component as defined in its
state machine and queue stores all incoming requests (inputs)
prior to their handling by the automaton, which is modeled
by an internal action consuming a message from queue. To
ease definitions, the type of queue is not explicitly bounded,
but the model checking method described in Sect. 6 works
only if all queues of a model are bounded by construction,
and our interactive simulation tool provides a method to eas-
ily detect situations where queues grow explosively. For the
example from Fig. 8b, the set of discrete variables is made
of the two predefined ones—location and queue previously
described—while the set of clocks contains the defined Timer
t.

In SysML, component types may model association and
generalization relations. Associations are handled based on
their end elements that represent attributes in the corre-
sponding classes, while generalization between classes is
flattened and all inherited attributes and association ends are
duplicated in the automaton corresponding to the child class
instance.

The set of states of the automaton AK is given by the
valuation of all variables, where the initial state θK contains
the initial value for discrete variables (which can be defined
in the model or predefined otherwise), the value 0 for clocks
and ∅ for the message queue. For the cardUnit’s assumption,
the initial state consists of Idle for the location, ∅ for the
queue and 0 as clock t value.

The behavior of the component is modeled by its type’s
state machine that describes the transitions and trajecto-
ries of the automaton. A state machine transition is defined
between a control source state s and a control target state s′ on
which we can evaluate a guard and execute several effects. A
transition is usually enabled by a trigger or time delay dead-
line. Thus, for each state machine transition, a set of TIOA
transitions is generated between two states q and q ′ where
q.location = s and q ′.location = s′. The guard models
the conditions for which the transition exists given that it is
satisfied in the starting state q, otherwise no transition is gen-
erated. In each state of the automaton there is a predefined
transition for each input action a. Its effect is to add the signal
to the queue, i.e., q ′.queue = [q.queue; a]. Then, a trigger
m is transformed into a transition executing an internal action
↓ m that consumes the message m; thus, s.queue = [m; a]

and s′.queue = a. The set of effects defined on a transi-
tion can consist in several signal outputs and assignments.



For each effect an independent TIOA transition is generated.
The signal sending action (or sendAction) becomes a transi-
tion with an output such that either the location in its target
state is the target control state if there is only this effect mod-
eled or an intermediate location is generated in case the effect
is structured. This transition will synchronize with the input
transition of the signal’s target at composition and will mod-
ify the value of the queue. The assignment effect for discrete
and clock variables is transformed into a TIOA transition that
exists if and only if q ′ can be obtained from q by applying the
assignment. As an example, from the state WaitForRemoval

from Fig. 8b, the following set of transitions is generated for
all the states q such that q.location = Wait For Removal:

– corresponding to the retrieveCard message consumption,

{q
↓retrieveCard
−−−−−−−−−→ q ′} if and only if the message is at

the top of the queue in state q, and the target state q ′ is
obtained from q by changing location to RemoveCard

(q.location = Wait For Removal and q ′.location =

RemoveCard), removing the message from the top
queue (q.queue = [retrieveCard; q ′.queue]) and
resetting the clock t (q ′.t = 0), and

– corresponding to the input actions a, {q
a
−→ q ′} where

q ′ is obtained from q by keeping the same location
(q.location = q ′.location = Wait For Removal), the
same value of the clock (q.t = q ′.t) and adding the
request a to the queue (q ′.queue = [q.queue; a]).

From the state RemoveCard, the following set of transi-
tions is generated for all the states q such that q.location

= RemoveCard:

– {q
a
−→ q ′} where a is an input action, where the state

stays the same and the request is added to the queue, as
described before, and

– {q
!card Removed
−−−−−−−−→ q ′} for the transition that sends

cardRemoved, where q ′ changes the location (q.location

= RemoveCard and q ′.location = Wait For Ack),
and the other two variables (queue and t) are constant.
As we will see below, this set of transitions is generated
for all states where q.t <= 5, and 5 is the upper bound
for the trajectories starting in q.

By default the time elapse in each state of the automa-
ton is given by the set of all possible trajectories defined on
{[0, t]|t ∈ R

+} ∪ {[0,∞)}. This set of trajectories can be
controlled by the urgency labels of the outgoing transitions
from s = q.location in the state machine as follows:

– lazy does not add any restrictions,
– eager with no clock guard restricts the set of trajectories

to point trajectory only,

– eager with a clock guard restricts the set of trajectories so
that they end in the smallest t where the guard is evaluated
to true.

In our example from Fig. 8b, the set of trajectories enabled
in a state q with q.location = RemoveCard are all the
trajectories defined for the domains [0, x] with x ∈ [0, 5 −

q.t]. Thus, the maximum length of the trajectories depends
on the initial value of t in q, q.t , such that the maximum
value for t reachable after a trajectory is 5. This is due to
the eager transition with the clock guard t == 5 which
only lets the time elapse up to 5 and enforces the output of
the signal cardRemoved. For the states q with q.location =

Wait For Removal, two possibilities exist: either the request
retrieveCard is present as the top of q.queue, in which case
the set of trajectories contains only the point trajectory, or the
request retrieveCard is not present as the top of the queue,
in which case the trajectories let time elapse for any duration
up to infinity.

In SysML, the set of signals that can be exchanged through
a port are defined by its required/provided interface, and the
set of signals exchanged by a component is the union of those
of its ports. Thus, the sets of input actions IAK

and output
actions OAK

of the automaton AK are derived from the types
of the ports of K . In the case of the running component, the
set of inputs is made of {retrieveCard, ok, nok} and the set
of outputs is {card I nserted, ejectCard, card Removed}.
The set of visible actions for an automaton mapped from
an atomic component is the empty set, VAK

= ∅. The set of
internal actions HAK

consists in the set of message consump-
tion actions ↓ m,∀m ∈ IAK

, plus a set of instantiations of
anonymous silent actions ε corresponding to transitions frag-
ments from the SysML state machine which do not have a
trigger and do not perform an output.

A particular attention must be brought to the name of sig-
nals since a model usually contains several components of
the same type and they react to the same stimuli, in contra-
diction with the compatibility condition. Our solution is to
rename conflicting signals in the sender/receiver automata
by appending their qualified name and the traveled chain of
ports that can be statically computed via connectors. Then,
if the receiving automaton handles a signal that has multiple
senders, the transition that handles the signal is duplicated
for each sender where the trigger contains the newly defined
names of the signal.

Finally, a composite component is translated into an
automaton obtained by applying the parallel composition
operator on its parts. The set of input and output actions
computed at composition must be identical to those defined
by the ports of the component.

The requirement formalization given by an observer in
our framework is also transformed into a TIOA by applying
the same rules. The difference consists in the fact that an



observer does not have any inputs or outputs, all its actions
being defined as visible. A transition is typed with a visible
action if it is preceded by a send clause and with an internal
action ↓ a if it is preceded by an acceptsignal clause. In each
state, the automaton defines visible transitions that add input
signals to the queue. The added signal can be handled later on
the consumption transitions. The timed semantics is defined
as lazy for transitions resulting from send match clauses and
as eager for the rest. This timed semantics formalizes a safety
property.

As it can be seen, also from the detailed example for-
malization from “Appendix 2”, the TIOA is an explicit
representation of the (potentially infinite and time-dense)
transition system, and although it is practical for reasoning
and proving results such as the ones from the next section,
it is ill suited for manipulating translations of real system
components. For this reason, in our tools we represent TIOA
symbolically in a timed automata-based language, IF [14].

5 Formal contract-based theory for timed systems

So far we have completely defined—by syntax and
semantics—the component framework for which we want
to use contract-based reasoning. In this section, we build the
formal contract framework on top of the component theory
and we show that this instantiation of the meta-theory from
Sect. 2 can be applied for system models by proving the
satisfaction of the required compositionality results. In this
section, the term component is used to designate a TIOA.

5.1 Contract theory for TIOA

Contracts have been introduced in SysML in Sect. 3 where
we have defined their syntax. In order to use them for the
behavioral verification of a requirement, we have to define
their semantics and several supporting concepts.

Definition 11 (Environment) An environment Env for a
component K is a timed input/output automaton compati-
ble with K and for which the following hold: IEnv ⊆ OK

and OEnv ⊆ IK .

Definition 12 (Closed/open component) A component K is
closed if IK = OK = ∅. A component is open if it is not
closed.

Closed components result from the composition of com-
ponents having complementary interfaces, like it is often
the case between a component and its environment. How-
ever, Definition 11 is relaxed and also includes partial

environments. This allows to reason independently and com-
positionally also about a component’s modeled environment
based on the system architecture, e.g., by integrating in the

component under study components that are part of its envi-
ronment.

Definition 13 (Contract) A contract for a component K is
a pair (A, G) of timed input/output automata such that:

– their composition gives a closed system, i.e., IA = OG

and IG = OA, and
– the signature of G is a subset of that of K , i.e., IG ⊆ IK ,

OG ⊆ OK and VG ⊆ VK .

In the following, we use the term signature of a contract

to designate the signature of the contract’s guarantee.
Contract satisfaction has been introduced in Definition 2

based on a refinement under context relation. In our contract
framework refinement under context at its turn relies on the
conformance relation introduced at Definition 10. Since we
are interested in allowing the concrete component Ki to have
a larger signature than the abstract K j and conformance can
be defined only between comparable components, we have to
compose each of the members of the obtained conformance
relation with additional timed input/output automata such
that the compatibility condition is satisfied.

Definition 14 (Refinement under context) Let K1 and K2

be two components such that IK2 ⊆ IK1 ∪ VK1 , OK2 ⊆

OK1 ∪ VK1 and VK2 ⊆ VK1 . Let Env be an environment for
K1 compatible with both K1 and K2. We say that K1 refines

K2 in the context of Env, denoted K1 ⊑Env K2, if

K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ K ′ ‖ Env′

where K ′ and Env′ are defined such that both members of the
conformance relation are closed and comparable, as follows:

– Env′ = (∅,∅, {φ}, φ, (OK1 \ IEnv), (IK1 \ OEnv),∅,∅,

DEnv′, TEnv′) where φ is the valuation without variables
(∅ → ∅), DEnv′ = {(φ, a, φ)|∀a ∈ EEnv′} and TEnv′ =

{τ : [0, t] → {φ}|t ∈ R
+} ∪ {τ : [0,∞) → {φ}} con-

tains all possible trajectories without variables.
– K ′ = (∅,∅, {φ}, φ, ((IK1 \ IK2)∪(VK1 ∩ OK2)), ((OK1 \

OK2) ∪ (VK1 ∩ IK2)), (VK1 \ EK2),∅,DK ′ , TK ′) where
φ is the valuation without variables (∅ → ∅), DK ′ =

{(φ, a, φ)|∀a ∈ EK ′} and TK ′ = {τ : [0, t] → {φ}|t ∈

R
+} ∪ {τ : [0,∞) → {φ}} contains all possible trajec-

tories without variables.

Informally, Env′ is a partial environment having as sig-
nature the actions of the concrete component K1 that are
not present in the actions of Env with reversed direction-
ality such that K1 ‖ Env ‖ Env′ is a closed component.
K ′ is a component that reacts to the actions defined as the
set difference between the signatures of K1 and the abstract



K2 such that K1 and K2 ‖ K ′ are comparable. Furthermore,
these definitions verify that both K1 ‖ Env ‖ Env′ and
K2 ‖ K ′ ‖ Env ‖ Env′ are closed comparable components.
Their behavior is such that all actions are enabled at any
moment and time can always elapse up to infinity.

The particular inclusion relation between the signatures
of K1 and K2 in the definition is due to the fact that both
K1 and K2 can be obtained from composition: K1 = K ′

1 ‖

K3 and K2 = K ′
2 ‖ K3, where IK ′

2
⊆ IK ′

1
, OK ′

2
⊆ OK ′

1

and VK ′
2

⊆ VK ′
1
. This happens in particular when K ′

2 is a
contract guarantee for K ′

1. Then, by composition, actions of
K3 may be matched by actions of K ′

1 but have no input/output
correspondent in K ′

2. This case also imposes the term VK1 ∩

OK2 for inputs of K ′, since the additional outputs of K2 may
belong to a different component, and the term VK1 ∩ IK2 for
the outputs of K ′.
Note Refinement under context can be easily extended to infi-
nite traces by replacing, within the trace inclusion operator
�, f traces with traces. We denote the extended refinement
under context operator with ⊑ω.

This definition of refinement under context satisfies the
conditions described in Sect. 2 required for the meta-theory
to hold, as shown in the following:

Theorem 5 Given a component Env and a set K of compo-

nents for which Env is an environment, the refinement under

context ⊑Env is a preorder over K.

The following theorem that allows for incremental design

holds in our framework:

Theorem 6 (Compositionality) Let K1 and K2 be two com-

ponents and E an environment compatible with both K1 and

K2 such that Env = Env1 ‖ Env2. Then K1 ⊑Env1‖Env2

K2 ⇔ K1 ‖ Env1 ⊑Env2 K2 ‖ Env1.

The proofs of the previous two theorems can be found in
“Appendix 3.”

The soundness of circular reasoning is the main result that
guarantees the correctness of the contract-based reasoning.

Theorem 7 (Circular reasoning) Let K be a component,

Env its environment and C = (A, G) a contract for K such

that K and G are compatible with both Env and A. If

1. f tracesG is closed under time extension,

2. K ⊑A G and

3. Env ⊑G A

then K ⊑Env G.

Proof sketch (the complete proof is found in [36]):
The proof is built by induction for every closed trace of

K .

1. If a closed trace α consists in a trajectory, from axiom A0
and closure under time extension, α is also a trace of G.

2. If a closed trace α is extended by an external action a, by
induction α is a trace of the right-hand side member that
can be extended by a executed either by G or one of the
additionally generated automata. ⊓⊔

Note This theorem holds also for infinite traces by replac-
ing ⊑ with ⊑ω, if in addition to the hypotheses we require
tracesG to be closed under limits and under time extension.
The complete proof from [36] is provided for infinite traces
and follows the same reasoning as Theorem 8.8 from [42] to
which it is similar. The difference with respect to [42] is that
we prove that K ‖ Env � G ‖ Env, while Theorem 8.8

states that K ‖ Env � G ‖ A, which is not sufficient for
guaranteeing soundness of circular reasoning.

Based on the previous results, we can now establish the
sufficient condition for dominance to be used in the “dom-
inance” step of the reasoning methodology. The following
theorem is a variant of Theorem 1, with the difference that,
where the hypothesis of Theorem 1 was that circular reason-
ing is sound, this hypothesis is rewritten in Theorem 8 as
“guarantees must be closed under time-extension”, which,
by Theorem 7, ensures that circular reasoning is sound. Note
that, although Theorem 1 was already proved in [61] (The-

orem 2.3.5 therein), since that proof uses different notations
and a quite different notion of composition operator, we feel
compelled to restate the proof in “Appendix 3” with our own
notions and notations. The proof technique is, however, fully
inspired from [61].

Theorem 8 {Ci }
n
i=1 dominates C if, ∀i , tracesGi

and

tracesG are closed under time extension and

{

G1 ‖ . . . ‖ Gn ⊑A G

A ‖ G1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai ,∀i

Note This theorem holds also for infinite traces by replacing
⊑ with ⊑ω and by requiring tracesG and tracesGi

,∀i , to
also be closed under limits.

5.2 Contract expressiveness for timed SysML models

This theory can be applied on system models extended with
contracts if the component playing the role of the guarantee
satisfies the closure under time extension constraint. There-
fore, we discuss here the restrictions that are imposed on the
language for modeling contracts by this constraint.

Informally, closure under time extension lets time to
elapse in any state of the automaton. An easy way to achieve
time progress in all states of a state machine is to stereotype
all outgoing transitions from the control states as lazy. How-
ever, this is not necessary for all types of transitions, and it is



actually sufficient that transitions which perform an output

be lazy. This allows for guarantees to specify more precise
time progress constraints, e.g., by specifying transitions con-
sisting only of internal actions (internal computation actions,
internal signal consumption actions ↓) as eager.

Indeed, this setting of urgency is sufficient to ensure clo-
sure under time extension, provided that the state machine is
non-Zeno, i.e., does not execute an infinity of internal actions
in a finite time. This is because eager transitions are executed
as soon as they are enabled thus eventually leading either to
a state where an output may occur or to a final user-defined
state. Transitions with an output are lazy, and therefore, time
can progress to infinity. The case of final user-defined states
is similar since they are termination states or states without
outgoing transitions and time may progress to infinity.

We remark that this restriction does not allow our guaran-
tees to specify that a certain output !o will eventually occur,
but they can specify hard deadlines such as “if the output !o

occurs, it will occur before a time instant T .” Technically,
the former type of property is a liveness property, while the
latter is merely a safety property, although such properties
are sometimes called bounded liveness properties. For this
reason, we emphasize that our contract framework allows to
specify and verify only safety properties, albeit these can be
timed safety properties and thus quite expressive.

5.3 Application to the running example

For the example described in Sect. 3.5, the contract satisfac-
tion step generates the following relations:

1. controller ⊑aCtr gCtr and
2. cardUnit ⊑aCardUnit gCardUnit .

For the dominance step, since G_ATM, G_Controller and
G_CardUnit satisfy the closure under time extension condi-
tion, we apply Theorem 8 and we obtain the following proof
obligations:

3. gCtr ‖ gCardUnit ⊑a AT M g AT M ,
4. a AT M ‖ gCardUnit ⊑gCtr aCtr and
5. a AT M ‖ gCtr ⊑gCardUnit aCardUnit .

We remark that output actions (e.g., !ejectCard, !ok) have
a lazy semantics within the guarantees to ensure their closure
under time extension, as explained above in Sect. 5.2. Since,
within the dominance conditions, a guarantee composed with
the global assumption a AT M must refine the assumption of
the opposite component, it explains why output actions also
have a lazy semantics in assumptions in Figs. 7b and 8b.

Note that outputs of the global environment (e.g., !card-
Removed) are not subject to the same restrictions when

captured in the assumptions, as they do not appear in the
guarantee of any component.

The satisfaction of the “mirror” C_ATM generates the next
proof obligation:

6. user ⊑g AT M a AT M

We remark that a AT M is a loose abstraction of the behav-
ior of the user , as the !cardRemoved signal is assumed to
arrive within a maximum of 5 time units. This is implied
by the two transitions from state RemoveCard: the exam-
ple shows how a couple of lazy/eager transitions are used to
model a transition that may occur anywhere within a bounded
interval, [0, 5] in this case.

The last proof obligation corresponds to the conformance
step:

7. a AT M ‖ g AT M � Property

6 Automatic verification of generated proof

obligations

The contract theory we defined is based on the trace inclusion
relation. However, this relation is undecidable in the general
case and cannot be automatically verified by tools except for
restricted categories of timed automata [57,66]. Two options
are available to automatically verify refinement under con-
text: either by making additional hypotheses on the form of
the right-hand side (the abstract component), which allow one
to use reachability analysis for guaranteeing trace inclusion
or by using timed simulation [65] which also guarantees trace
inclusion. In the following, we describe our technique for
the automatic verification based on reachability analysis for
property automata, which relies on the fact that the abstract
component represents a deterministic safety property. This
method is implemented in the IFx toolset [14] which allows
to verify and simulate asynchronous communicating timed
automata.

6.1 A method of automatic verification of refinement

relations

Our method uses the notion of property automata. A property

automaton is a complete definition of a safety requirement for
a closed component C: it defines an error state π to which
incorrect behaviors will lead and synchronizes with C on
common actions. The reasoning for proving contract satis-
faction proceeds as follows: (1) transform the guarantee into
a property automaton, (2) run in parallel the component C

and the property automaton, and (3) explore the final state
graph to check if the error state π has been reached. Reach-



ing the error state π signifies the violation of the contract
satisfaction.

We start by defining the transformation process from a
deterministic guarantee automaton to a property automaton.
The idea is similar to the one defined in [16] and later used
for automated assume–guarantee reasoning in the LTSA tool
[11,38], and is based on the classical method for constructing
the complement of a deterministic timed automaton [3]. Note
that the requirement of determinism is necessary because
non-deterministic timed automata are not determinizable in
general and are not closed under complement [3].

Definition 15 (Property automaton) Given a deterministic

TIOA A = (XA, ClkA, QA, θA, IA, OA, VA, HA,DA,

TA), the property automaton for A is defined as the TIOA
OA = (XA, ClkA, Q, θA,∅,∅, V, HA,D, TA) where:

– Q = QA ∪ {π}, where π is an additional error state,
– V = IA ∪ OA ∪ VA,
– D = DA ∪ {(x, a, π)|x ∈ QA, a ∈ V such that (� ∃x′.

(x, a, x′) ∈ DA) ∧ (� ∃ε ∈ HA ∧ x′ ∈ QA.(x, ε, x′) ∈

DA)}.

The idea behind this transformation is that sequences of
actions that are not explicitly modeled should be consid-
ered as erroneous behaviors. Since a property automaton is
defined for a closed component, we consider the signature
of OA to contain only visible actions, corresponding to the
inputs, outputs and visible actions of A. Then, in every state
of the automaton from which there is no outgoing internal
transition, we complement the set of transitions with those
missing: for each visible action there must be a discrete tran-
sition either leading to a state defined in A or to π . So, the
actions leading to π model the discrete actions that are not
allowed to occur in a given timed sequence of A.

However, for this method to work the component A must
be a deterministic safety property both for visible actions and
for internal actions. For internal actions, determinism means
that there is at most one outgoing transition from a state.
We remark that these conditions have to hold in the TIOA
framework. It implies that in a SysML state machine, one is
still able to model several outgoing internal transitions given
that they are not to be enabled at the same time, e.g., two
transitions having disjoint guards.

The synchronization at run-time between C and the prop-
erty automaton OA is defined by the following composition
operator, denoted ⊲⊳. It is similar with the previous par-
allel composition operator described in Definition 8 with
synchronization on the common visible actions and inter-
leaving of the others. The operator can be applied on two
timed input/output automata if they do not share any internal
actions (by label) and they do not exhibit any inputs/outputs.

The latter condition is motivated by the fact that the property
automaton always surveys a closed component.

Definition 16 (Observer composition) Let A1 be a closed
component and A2 a property automaton such that EA2 ⊆

AA1 . Then A1 ⊲⊳ A2 = A1 ‖ A2 where the compatibility
condition (see Definition 7) is relaxed, the only remaining
constraint being that HA1 ∩ HA2 = ∅.

The following result links the unreachability of the error
state of an observer with the trace inclusion relation. We
denote the set of all reachable states of the automaton by
reach(A) ⊆ Q.

Theorem 9 K1 ⊑E K2 if K2 is a deterministic safety prop-

erty and reach((K1 ‖ E ‖ E ′) ⊲⊳ OK2) ∩ {π} = ∅.

The proof of this theorem can be found in “Appendix 3.”

6.2 Verifying compliance to assumptions

The fact that the abstract TIOA has to be deterministic is
a limitation of this verification method that has to be taken
into account in the methodology. The limitation is usually
not problematic for verifying contract satisfaction as safety
guarantees have to be expressed as time- and limit-closed
TIOA and they can often be determinized. However, in
order to establish dominance, one has to verify also “mir-
ror” contract satisfaction, which is more problematic since
we do not require assumptions to be safety properties. In
consequence, modeling assumptions as deterministic safety
properties becomes necessary for using model checking in
combination with timed property automata on all proof oblig-
ations.

When the assumptions cannot be described using deter-
ministic safety properties, there are two solutions which
may open up the possibility of automatically verifying proof
obligations. The first option is to use as assumption the com-
ponent’s actual environment, if its model is available (i.e.,
if the modeled system is closed). In this case, the proof
obligations concerning “mirror” contract satisfaction (sec-
ond hypothesis of Theorem 8) become trivial, as the left and
right-hand side members of a satisfaction relation are iden-
tical, and the dominance step sums up to verifying only the
refinement of the global guarantee by individual ones in this
concrete environment (first hypothesis of Theorem 8). This
situation is exemplified on the case study from Sect. 7. Note
that this case also allows using more expressive assump-
tions which could include non-deterministic behavior. The
second option could be to verify timed simulation, which
implies trace inclusion and is decidable for certain classes
of automata, but for which we lack tool support for the time
being. Note that replacing timed trace inclusion with a sim-
ulation relation could, in addition, relax the constraint of



closure under time extension for guarantees. This idea con-
stitutes future work.

6.3 Error diagnostic for contract-based reasoning

Within the proof obligations set, one or even several checks
may not be satisfied. In this case, we have to perform a diag-
nosis in order to establish if either the requirement is not
satisfied or the set of defined contracts needs to be refined in
order to prove the satisfaction of the requirement. We base
this diagnosis on the generation of a counterexample which
for the previous method will lead to the error state π and use
the same approach as for counterexample guided abstraction
refinement [22].

We can distinguish two cases for which the solution
depends on whether the reasoning has been applied for
design or for verification: (1) a contract satisfaction or dom-
inance verification fails or (2) the conformance verification
fails. For the first case, if we are in a design approach and
all previous steps have been proved correct, we have to
refine the source component/contracts such that the coun-
terexample is eliminated. This guarantees that the developed
components are correct by construction with respect to the
requirement. If we are in a verification approach with a
completely modeled system, one should refine the target
contract(s) since it is more frequent that the abstraction is
erroneous.

For the latter case, we have at first to verify on the con-
crete system if the generated counterexample is a spurious
one due to the abstractions defined or is a relevant one, which
means that the system does not satisfy the requirement. For a
spurious counterexample, one should refine the top contract
and re-verify at least the upper dominance step and the “mir-
ror” contract satisfaction. Possibly, iterations of refinement
of contracts must be performed until all checks pass. For
a correct counterexample, the modeler should redesign the
implementations i.e., leaf components, on which the require-
ment is expressed. For this, the contract-based reasoning can
be applied in a design approach in order to refine the cor-
rect contracts that satisfy the relations they are involved in,
toward correct implementations.

We remark that, in the case of our tools, the gener-
ated counterexample is expressed on the TIOA level, while
the refinement of contracts/components is specified in a
high-level modeling language. The bridge between the two
frameworks is unidirectional, since the transformation pre-
sented above is given from SysML to TIOA. In order to
exploit the error scenario, the developer has to apprehend
in detail the system and to make use of his experience for
performing refinement. This point is an open question for
which current research provides some options [2,24] but is
out of the scope of this paper.

7 The solar generation wing management case

study

This section presents the Solar Generation Wing Manage-
ment System (SGS) of the automated transfer vehicle (ATV)
and its verification and validation with the contract-based
reasoning technique. The ATV, developed by Airbus Defence
and Space3 (ADS) is a space cargo ship launched into orbit by
the European Ariane-5 launcher with the aim of resupplying
the International Space Station. The SGS system described
here is responsible for the management of the solar arrays
that provide the vehicle with the energy needed to fulfill its
mission. It contains the functional chains that perform the
solar arrays deployment and rotation.

7.1 System description and architecture

The model represented in Fig. 10 has been reverse engineered
from the actual system by the ADS engineers, for the purpose
of this case study. It is described in SysML within the IBM
Rhapsody tool. The model has a 4-layer architecture struc-
tured in a set of hardware and software entities that capture
its timed behavior. Figure 10 adopts a high-level view of the
main components, without the details of their substructures:

– the mission and vehicle management component (MVM)
that “simulates” a mission scenario going through the two
operating modes of the SGS that are described below.

– the SOFTWARE component that consists of three sub-
components, each with a specific function. They react to
requests coming from the MVM and control the hardware
by executing automated procedures in response to MVM

demands.
– the HARDWARE component that contains the four solar

arrays of the ATV. This component has more than 70
pieces of equipment with multiple levels of redundancy
for achieving reliability and availability in case of fail-
ures. Every wing is held in its initial position by four
hold-down and release systems (HDRS). In order for the
deployment to occur, each HDRS has to be set loose.
This is realized by eight thermal knives (TK) for each
wing, two for each HDRS, one for the nominal case, and
a redundant one in case of anomaly. Each time a HDRS
is cut, a wing locking mechanism evolves to a deployed
state for that array.

– the command units (CU) component which may also
be subject to failure. It has numerous interconnections
both nominal and redundant with the wings, connections
that are abstracted to 4 in Fig. 10. It contains 4 power
units (PCDU) and 4 thermal control units (TCU) that
are responsible for the enabling/deactivation of the TKs,

3 http://www.astrium.eads.net/.



Fig. 10: An overview of the
SGS model in Rhapsody
SysML
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each of them being connected to two different wings.
Two command and monitoring units (CMU) supervise
the entire system, i.e., all requests from the software tran-
sit the CMUs.

The SGS describes two operating modes: (1) the deploy-
ment of the solar arrays and (2) their rotation. We are
interested here only in the first mode. Initially, the four solar
arrays of the ATV are stowed. Their deployment starts by
removing the safety barriers from the thermal control units.
Safety barriers prevent an unwanted unfolding of the wings
by blocking the enabling of the thermal knives. Next the
HDRSs are cut by at least 4 of the 8 thermal knives of each
wing. In order for a HDRS to be cut, the knife has to be
active for 50 consecutive seconds. The deployment of the
wing starts immediately after the last HDRS is cut. After the
deployment is completed, the safety barriers are restored.

The system’s redundancy, if an anomaly occurs at exe-
cution, is explicitly modeled for the TKs and HDRSs of
each wing, TCUs and PCDUs. There are 56 possible failures
and each may occur at an arbitrary moment during execu-
tion. The hypothesis is that the system may be subject to
at most one failure, i.e., 1-fault tolerance. In order to ease
the generation of verification configurations, a special SIM-

ULATION component is added to the model to command
non-deterministically the failure of an equipment based on a
parameter that can be provided prior to the verification ses-
sion.

In terms of metrics, the model defines a total of 21 block
types (7 of which are refined by means of 24 Internal Block
Diagrams) with 348 port types and 372 connector types for
communication. At run-time, the system contains 96 block

instances running in parallel with a total of 651 ports and 504
connectors.

We are interested in proving that the system is indeed 1-
fault tolerant. Informally, it means that no matter what error
occurs to equipment devices and at what moment, the soft-
ware will attain its purpose—the correct deployment of the
wings. It is expressed by the following requirement modeled
in Fig. 11.

Requirement 2 At the end of the deployment sequence, all

four wings are deployed.

We formalize this requirement also with an observer.
We add to the system model a block phi whose state
machine describes the safety property to be verified: ini-
tially we wait in the state SYSTEM_IS_ON for the wing
status interrogation to be executed. After the entire sequence
deployment is executed, a software piece verifies the locked
status of the wings. When asked, the target wings answer
with a SGS_DEPLOY_WING_STATUS message that has as
parameter its current status. When the action is matched,
the automaton passes into the VERIFY_DEPLOYMENT

state where it checks the value of the parameter. If it is
LOCKED_DEPLOYED, then it will wait for another occur-
rence of the interrogation for another or the same wing.
Otherwise, something wrong has occurred at deployment
and it advances to the error state NO_DEPLOYMENT. The
reaching of the error state during verification means that the
requirement is violated.

7.2 Preliminary verification results without contracts

We start by reviewing the system model and performing some
preliminary verification and validation in order to detect



Fig. 11: SysML
formalization of the
Requirement 2 modeling
that all four wings are
deployed

SYSTEM_IS_ON

VERIFY_DEPLOYMENT

/match send SGS_DEPLOY_WING_STATUS //

[SGS_DEPLOY_WING_STATUS.STATUS == 
     T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

NO_DEPLOYMENT

«error»

[SGS_DEPLOY_WING_STATUS.STATUS !=
      T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

modeling errors that may lead to the violation of the require-
ment. In this, we do not yet make use of contracts. The results
presented here pre-date the work on contracts and are thor-
oughly described in [34]. Yet we chose to review them here
briefly, since they participated in eliminating some errors
in the model and in showing that directly model checking
Requirement 2 is not feasible.

Interactive simulation of nominal scenarios and execution
of random scenarios allowed us to discover several modeling
errors. Most of them concerned unexpected message recep-
tions that blocked the execution of components thus leading
to general deadlocks, as it was the case for TKs. Message
receptions had to be modeled for correct behavior. Other
modeling errors were due to the intricate behaviors and the
incomplete specification of the system. An examined system
scenario has around 2400 transitions fired and needs around
a minute to be executed on a regular desktop machine.

We also inspected formally the system model for the
absence of deadlocks. A deadlock may also occur due to
incorrect interpretations of the model that lead to unrealistic
behaviors as it was the case for the MVM.

Yet, performing model checking on the current configura-
tion is not possible due to the combinatorial explosion of the
state space. This is caused by the large number of component
instances at run-time, which can be seen in the communi-
cation graph represented in Fig. 12. As a first way around
the explosion problem, we used in the beginning a non-
exhaustive exploration by limiting concurrency in the system
to two threads, one for the SIMULATION component and
one for all the other components. This allowed us to discover
several missing transition for TKs and, most importantly,
incorrect connections between the PCDU and the wings.
Each PCDU was erroneously connected to the same wing
by both connections, while it had to be nominally connected
to one wing and redundantly connected to another wing.

Once corrections were made to the model, the exploration
of the state space in the 2-thread configuration produced no

further errors. However, this is not sufficient to establish the
satisfaction of the requirement in the general case. For this
reason, we set out to use contract-based reasoning, which is
described in the following section.

7.3 Applying the contract-based verification technique

We start by identifying the components that represent the
system under study S and the environment E . Since Require-
ment 2 is expressed with respect to the behavior of the four
wings that are contained in the HARDWARE block, with
regard to the methodology of Fig. 1, we consider the sub-
system S to be the HARDWARE and the Ki the WINGi,
i = 1, 4. The environment of the subsystem is given by
the parts with which it communicates: bidirectional com-
munication is established between CU and HARDWARE,
while CU depends on the behavior of SOFTWARE and MVM.
So, the environment E of Fig. 1 is represented here by the
composition of MVM, SOFTWARE and CU. The applica-
tion methodology on the SGS system model is illustrated in
Fig. 13.

Next, we define a contract C_Wi = (A_Wi, G_Wi) for
each WINGi and prove that WINGi satisfies C_Wi , i = 1, 4.
We chose for WINGi to use as assumption the concrete envi-
ronment of the subsystem HARDWARE composed with an
abstraction WAj for each WINGj with j �= i . We propose the
following abstraction WAj: the wing consumes all requests
coming from the environment, and answers to any status
request with deployed. Then, the assumption Ai is given by
the parallel composition of MVM, SOFTWARE, CU and WAj

with j �= i . This abstraction of the environment is suffi-
cient to drastically reduce the state space of the verification
model, since the exponential explosion in the original model
is mainly due to the parallelism of the hardware pieces which
are abstracted to the three leaf parts WAj. We want to guar-
antee that even if WINGi exhibits a failure it ends up being
deployed. The contract C_Wi is defined as follows:
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Fig. 13: The SGS model extended with contracts for verifying Requirement 2

Contract C_Wi = (A_Wi, G_Wi) where:

– A_Wi = MVM ‖ SOFTWARE ‖ CU ‖ (‖ j �=i WAj).
– G_Wi = WAi: the wing answers to requests about its

status with deployed and ignores all other requests.

The contract is modeled in Fig. 14, while Fig. 15 presents
the behavior of the guarantee. We note that since we use
as assumption the concrete environment, the signature of the
guarantee remains the same as that of the component. For this
reason, we have to add consuming transitions in every state
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for all inputs corresponding to the wing deployment process.
Also, the guarantee G_Wi is identical to the abstraction WAi.
Furthermore, one can remark that the guarantee is stronger
than the projection of the Requirement 2 on WINGi. The
abstraction WAj can also be subject to one failure since this
case was not excluded from its behavior. Then, the fault tol-
erance property that we verify via contracts is stronger than
the one intended: we guarantee that the system is four-fault
tolerant if faults occur in separate wings.

Secondly, we define a global contract C_H W = (A_H W,

G_H W ) for HARDWARE and prove that the contract is dom-
inated by {C_W 1, C_W 2, C_W 3, C_W 4}. Again, we use
as assumption A_H W the concrete environment of HARD-

WARE. The guarantee G_H W is the composition of the four

WAi. All WAi, i = 1, 4, and G_H W as defined satisfy the
closure conditions for applying Theorem 8.

Contract C_H W = (A_H W, G_H W ) where:

– A_H W = MVM ‖ SOFTWARE ‖ CU

– G_H W : for each wing status interrogation answers with
deployed, while all other requests are ignored.

The next step of the reasoning consists in proving the satis-
faction of the “mirror” contract C_H W −1. This verification
is trivial since the concrete environment is used as assump-
tion and the proof obligation is written: MVM ‖ SOFTWARE

‖ CU ⊑G_H W MVM ‖ SOFTWARE ‖ CU.



Table 1: Average verification time for each contract Ci per
induced failure group

Average verification time (s)

Type of induced failure Wing 1 Wing 2 Wing 3 Wing 4

Thermal knife 13,993 6869 18,842 11,412

Hold-down and release system 12,672 6516 16,578 9980

Solar array driving group 11,527 5432 13,548 6807

The last step consists in verifying that the composition
A_H W ‖ G_H W conforms to Requirement 2.

The proofs of all three steps have been automatically
verified within the OMEGA-IFx Toolset with the method
described in Sect. 6. For each step of the verification method-
ology, we have manually modeled the contracts: assumptions
as blocks that we had to connect via ports to the other compo-
nents and guarantees as independent components. The first
step gave 4 possible configurations with one concrete wing
and 3 abstract ones that were each verified with respect to
all 14 possible failures. The average time in seconds needed
for the verification of the satisfaction relation for each con-
tract with respect to each class of failures is presented in
Table 1. Even though the system model looks symmetrical,
the command units do not have a symmetrical behavior and
due to their interconnections with the wings the state space
of system’s abstraction for WING1 and WING3 is larger than
the one of WING2 and WING4: the CMU1 is responsible
for WING1 and WING3 during wing deployment but trans-
fers requests to the four wings during preparation, whereas
CMU2 handles only the wing deployment for WING2 and
WING4. For the second step, the following obligations proofs
have to be verified:

1. WA1 ‖ WA2 ‖ WA3 ‖ WA4 ⊑MV M‖SO FT W ARE‖CU

G_HW

2. MVM ‖ SOFTWARE ‖ CU ‖ WA2 ‖ WA3 ‖ WA4 ⊑W A1

MVM ‖ SOFTWARE ‖ CU ‖ WA2 ‖ WA3 ‖ WA4

3. MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA3 ‖ WA4 ⊑W A2

MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA3 ‖ WA4

4. MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA4 ⊑W A3

MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA4

5. MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA3 ⊑W A4

MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA3

We remark that the last 4 items are trivial since we have
the same member on both sides of the relations. Then, only
the verification of the first item was necessary, which took 1
second. Finally, the verification that contract C conforms to
Requirement 2 also took 1 second.

This industrial-grade system model shows how our
approach can be applied, but also provides positive feedback

with respect to the verification results. We can ascertain that
previously intractable models can be tamed by the verifica-
tion methodology and technique described in this paper.

8 Related work

Recent work has explored the notion of contract in the form of
meta-theories, but also to directly provide theories and tools
for specific component formalisms. However, the applica-
tion of these theories in high-level modeling languages has
been left aside. Until now, the concept of contract as it is
used in systems engineering refers to pre-/post-conditions for
operations or for model transformations. To the best of our
knowledge, this work is the first to propose a reasoning the-
ory based on behavioral contracts for timed asynchronously
communicating components within UML/SysML together
with a framework that facilitates its use.

8.1 Contract-based meta-theories and their

implementations

The meta-theory that we use as basis in this paper [61] has
already been instantiated for other formalisms: Labeled Tran-
sition Systems with priorities [61] and data [41], Modal
Transition Systems [62], BIP components [6,39] and Het-
erogeneous Rich Components [9]. Yet, this is the first
documented application for timed systems.

For this meta-theory to hold, circular reasoning has to be
sound: for K and E two components and C=(A,G) a contract
for K such that K ⊑A G and E ⊑G A then K ⊑E G. A
slightly different version of reasoning on which most of the
related work relies consists in strengthening the hypothesis
and requiring for the assumption of a contract to be refined by
the environment regardless of how the component behaves.
Formally, this rule called in general assume/guarantee rea-

soning is expressed as follows: if K ⊑A G and E ⊑ A then
K ⊑E G. Assume/guarantee reasoning is harder to achieve
for complex systems such as ours that have mutual dependen-
cies between components: it demands to find a strategy for
breaking the symmetry of the dependency between the com-
ponent and its environment by finding a component which
can guarantee its property independently of its environment.
Therefore, we consider that sound circular reasoning is more
interesting in a contract-based approach and, at the same
time, sufficient to allow for independent implementability of
components.

Contract meta-theories have been developed also for
specification theories. A specification theory is a complete
algebra that, besides the parallel composition and refine-
ment operators, defines a logical conjunction operator which
allows to derive a component satisfying two different spec-
ifications and a quotient operator, which allows to compute



from a system specification that is partially implemented,
the coarsest specification of the remaining (not implemented)
part. Therefore, the aim for a specification theory is to provide
substitutability results allowing for compositional design,
while its usage in compositional verification did not receive
as much attention. In contrast, the meta-theory we use pro-
vides the minimal set of operators needed for both design and
verification, even thought it may incur an important overhead
especially during design. Logical conjunction and quotient
can be formalized and added to our framework, whereas
their use should be independent from the reasoning described
above that is sound and sufficient for verification.

The meta-theory of [7] is built on a specification theory
and is similar in many points with [61]. The main differences
concern (1) the specification of contracts and (2) the method
for reasoning with contracts. Regarding the first item, the
framework of [7] does not support signature refinement, i.e.,
the ability of a contract to concentrate only on some of the
inputs/outputs of the component while abstracting away the
others, which is explicitly handled in our framework. A par-
tial solution is presented in [8] where contracts are defined
on a subset of the component’s signature via ports. However,
[8] does not allow to reason individually on contracts: at each
design step, a specification consists in a component and the
set of contracts on ports such that the union of their signa-
tures is equal to the signature of the component. Moreover,
signature refinement between specifications is not allowed
since the definitions of refinement for both component and
contract require for all elements from specifications to have
the same signature.

Regarding the method for reasoning with contracts, the
meta-theories from [7,8] subscribe to the assume/ guaran-
tee reasoning. For proving dominance, the meta-theory of
[7] makes use of a (derived) contract composition operator,
which can be used to compute the “strongest” contract C1 ⊠

C2 satisfied by the composition of two components that sat-
isfy C1 and, respectively, C2. The dominance step is reduced
to the following proof obligation: C1 ⊠ C2 ⊠ · · · ⊠ Cn � C ,
where C is the dominated contract. However, contract com-
position is partial, i.e., it can be undefined for certain pair
of contracts since it is based on the quotient operator which
is itself partial. The meta-theory of [8] also uses a specifica-
tion composition operator which in this case requires for port
contracts and the contained components to be pairwise com-
posed. So, the use of such operators may turn out difficult for
large and complex systems. Moreover, in both meta-theories,
the failure of proving dominance is not explicitly discussed
and it is not clear how the user could derive a counterex-
ample, identify the cause, and mitigate it. In contrast, the
method from [61] allows to infer, based on the proof obliga-
tions that constitute the sufficient conditions for dominance,
which contract is faulty. In the case of our TIOA framework,
it is possible to derive a counterexample trace. On a more

general note, neither the meta-theory of [7] nor [8] explicitly
describe how a system requirement has to be formalized and
how its satisfaction can be achieved via contracts. We con-
sider that the reasoning methodology introduced by Quinton
et al. [61,62] and depicted in Sect. 2 is an important asset in
the application of the meta-theory to concrete domains.

The meta-theory of [7] has been applied in [27] for a
Timed Input/Output Automata specification theory [29,30]
and implemented in the ECDAR toolset [28]. However, some
aspects of this theory make it impractical for representing
the semantics of timed components described in SysML or
UML. The synchronization between an input of one com-
ponent and an output of another component becomes an
output of the composite, which equates to considering out-
puts as broadcasts and which is not consistent with the
UML/SysML semantics. Moreover, the formalism forbids
non-determinism due to the timed game semantics [13] and
does not handle silent transitions, which is problematic for
representing the semantics of complex components perform-
ing internal computation steps. Finally, alternating timed
simulation is used as refinement relation which is rather
tailored for verifying composition compatibility, not the sat-
isfaction of general safety properties. The same meta-theory
has been applied for communicating components modeled
as a set of traces in [20,21] and is implemented in the OCRA
tool [19]. In this instantiation, a contract is given by a pair of
hybrid LTL assertions on the set of traces and dominance is
verified with a sufficient condition similar to the one defined
in [61], even though circular reasoning is not explicitly stated
and proved.

Assume–guarantee reasoning is a long-standing line of
research, although classical approaches deal with logical
specifications [1,23,40]. The more recent approach of [17]
deals with specifications in the form of sets of I/O traces
and handles the signature refinement in contract satisfaction
although only for untimed specifications. Working directly
on traces without an intermediate operational specification is
delicate since system engineering teams are not necessarily
experts in behavior formalization. Moreover, the reasoning
approach is similar with the one proposed in [7], in par-
ticular with regard to contract composition. As such, the
remarks made above with respect to the reasoning method-
ology remain valid for [17].

Interface theories [15,31–33,44] are also related to con-
tracts since they can be used to express assumptions and
guarantees for a component, albeit they do it in the same
specification. An interface encompasses the assumption rep-
resented by its inputs and the guarantee represented by its
outputs and describes how a component and its environment
are expected to interact. Some of the specification theories
developed in this context are based on variants of TIOA close
to the one that we are using, like in the case of [18]. The the-
ory of [18] allows reasoning for safety and bounded liveness



properties on finite-timed traces. Generally, the notion of a
contract that merges the assumption and the guarantee is well
suited to derive compatible environments in which compo-
nents can work together since it models how a component
should behave. In fact, an interface plays the same role as the
composition between an assumption and a guarantee as they
are presented in our framework and which has to be manually
computed by the designer. Keeping assumptions and guar-
antees separate has several advantages: (1) allows to model
component properties as standalone automata and (2) allows
for the refinement of the assumption or guarantee as well as
the component to be performed independently.

8.2 Contracts in high-level modeling languages

Contracts in software engineering are classified in [10] in four
categories: syntactical ones that describe the types a compo-
nent can handle, behavioral ones that add constraints about
the use of a component, synchronization ones that specify the
global behavior and interaction of components, and quality-

of-service ones that can quantify the expected behavior of
components. Our definition of contracts, even though we call
them behavioral due to the fact that they model a behavior,
falls under the category of synchronization contracts since
they explicitly describe the call order of requests and their
synchronization. However, we consider that our contracts can
also be used as syntactical and behavioral ones: the contract
signature specifies also the signature of the component and
assumption/guarantee can be considered as a generic view of
the pre-/post-condition for component use.

Plentiful work has focused on syntactic and behavioral
contracts in order to provide a mechanism for the compos-
ability problem. In [67], the authors make the distinction
between an output contract which is offered by the compo-
nent and an input contract on which the component relies,
where a contract is a generic view of an interface. Then con-
tracts serve as type specifications for components during the
development phases of a system.

The Kmelia component model [4,45] provides means to
verify the functional correctness of behavioral contracts for
services, as well as compatibility issues between compo-
nents. The meta-model defines contracts for operations or
interfaces and models explicitly the verification results. With
respect to behavioral contracts, one is modeled for an oper-
ation as a pre-/post-condition pair, while the behavior of the
operation is modeled as an extended Labeled Transition Sys-
tem. Formal verification of contract satisfaction is performed
by transformation of the component language to formalisms
such as CADP4 or AtelierB.5

4 http://www.inrialpes.fr/vasy/cadp/.
5 http://www.atelierb.eu/.

Synchronization contracts have been considered in [59]
where on each component boundary an interface is defined
with attributes, operations and a protocol state machine that
describes the response of the component to sequences of
events constraining their order. A contract is defined on con-
nectors between two component boundaries, where protocol
state machines are used to verify the compatibility of com-
ponents. Despite the instantiation of these notions in SysML
via the stereotype mechanism, the theory is not supported
by a formal framework which can provide answers about the
satisfaction of a contract.

In [5], the notion of contract is used as means to formal-
ize requirements which are verified on system-of-systems
expressed as Stochastic State Transition Systems. A contract
is modeled by an OCL expression which may contain Con-
tract Specification Language patterns [64] that correspond
to Bounded Linear Temporal Logic operators. Then model
checking is directly applied in order to prove the satisfaction
of the requirement. Yet, this approach does not offer a com-
positional reasoning for the design of systems or for their
verification. Their notion of contract equates to our formal-
ization of requirements by observers which in our theory can
be further decomposed.

Contracts have also been considered for synchronous
SysML and AADL architectures in [37,68] which pro-
pose a reasoning similar to ours. A contract is defined as
a pre-/post-condition pair on components with respect to
their inputs/outputs, while each condition is modeled by a
past-time linear temporal logic formula. Informally, contract
satisfaction models that if the assumption holds at any previ-
ous moments, then the guarantee will also hold at the current
moment. The theory provides a mechanism to verify dom-
inance directly on contracts similar to Theorem 8: iterative
verification of the satisfaction of individual assumptions by
the other guarantees on which it depends and the global
assumption and verification of the global guarantee by the
global assumption and individual guarantees. However, cir-
cular reasoning is required to hold only locally at one moment
in time: components are allowed to refer to guarantees of the
others in earlier instants in time such that at one particular
moment there is no circularity in the model. This is sup-
ported by the synchronous communication of components
with one-step communication delay.

On the modeling side, requirements—both globally and
locally in the form of guarantees—are modeled with the
Property Specification Language for each component, there-
fore having a textual representation [47]. Several require-
ments can be proved by using the same set of contracts, yet
the case when different contracts are needed is not explicitly
handled. By difference, we use the same graphical language
to represent components and contracts, thus removing the
need for field engineers to master another specification lan-
guage.



To conclude, our contract theory is complementary with
respect to the previous presented approaches for SysML and
it deals with the timed behavior of system models and require-
ment satisfaction via contracts.

9 Conclusion

In this paper, we described a complete method for reasoning
with behavioral contracts both for the design and the verifi-
cation of system models in SysML. Firstly, we proposed an
extension of UML/SysML allowing to model contracts and to
use them for the compositional verification of requirements.
The extension is defined as a meta-model enriched with well-
formedness rules such that a system model extended with
contracts is unambiguous and sound. An instantiation of the
meta-model based on the stereotype mechanism was pro-
vided in order to make the extension usable with standard
model editors.

Next, we formalized the semantics of the SysML compo-
nent framework by a variant of timed input/output automata
and we provided a mapping between the SysML notions and
their TIOA counterparts. We built upon the TIOA framework
a formal contract-based theory and we established composi-
tionality results that allow reasoning with contracts for the
satisfaction of timed safety requirements. Automatic veri-
fication can be achieved based on a reachability analysis
method given that the contract satisfies certain constraints,
while the entire technique is partially implemented in the
IFx toolset. Yet, some of the steps for generating the inter-
mediate contract-based verification models remain manual.
Future work consists in automating all intermediate model
generation steps and adding functionality to manage the proof
obligations and results.

Finally, we illustrated our method on a case study extracted
from an industrial-scale system model, and we showed how
contract-based reasoning can alleviate the problem of com-
binatorial explosion for the verification of large systems.

However, the method described does not explicitly pre-
scribe how to derive contracts for the whole system and for its
components. In our case study, the task was rather straightfor-
ward: the guarantee G is almost identical to the requirement
to satisfy, while component guarantees are the projection of
G on each component. There may be cases where the model
for contracts is less obvious and the overhead may be sig-
nificant. This is one of the reasons why previous attempts

to introduce contracts in programming languages have not
enjoyed an extensive popularity. Nevertheless, we believe
that the case for contracts in early phases of development
is different and the contract concept is necessary in order
to cope with the growing complexity of system models that
need to be verified before implementation. We consider that
applying verification techniques is less expensive than find-
ing errors in the hardware or software after implementation.
Future work is guided by the urgency to make contract-based
reasoning widespread in systems engineering, which can be
achieved by providing methods or methodological guidelines
for deriving intermediate contracts from the properties one
is trying to prove.

Appendix 1: OCL formalization of the

well-formedness set of rules for contracts

in UML/SysML

In this appendix, we discuss the OCL formalization of the
well-formedness rules presented in Sect. 3.3.

Listing 1 presents the OCL code corresponding to Rules 1
and 2. For their formalization, we have defined two helper
functions isConjugated and isIdenticalTo for the verification
of conjugated, respectively, corresponding, ports. The for-
malization of Rule 1 consists in verifying that for each port
of one type there is at least one port of the other matching
the criteria. In order to avoid possible broadcast, we verify
that the assumption and guarantee have the same number of
ports. The formalization of Rule 2 summarizes to iterating
the set of ports of the guarantee and verifying that for each
port there is one and only one correspondent in the definition
of the component.

Rule 3 ensures the uniqueness of a dominance relation in
a given context. Indeed, if a component uses a contract for
which a correct refinement is provided based on its subcom-
ponents, there is no need to define a second refinement for the
same contract and the same components. Listing 2 provides
the OCL formalization of this rule: for each component we
compute the set of contractUse relations and we verify that
the set does not include two or more relations pointing to the
same requirement.

Finally, Listing 3 describes the completeness Rule 4:
within the set of conformance relations defined in a model,
there is one and only one relation having as target the current
SafetyProperty.



Listing 1 OCL code for well-formedness of contracts.

context Port

def : isConjugatedOf(p: Port ) : Boolean = self . direction <> p. direction and self . interface = p. interface
def : isIdenticalTo(p: Port ) : Boolean = self .name = p.name and self . direction = p. direction and self .

interface = p. interface

context Contract

−− Rule: The assumption and guarantee of a contract define a closed system with respect to ports

def : haveIdenticalNoOfPorts : Boolean =
self . itsAssumption .ownedPort−>size () = self . itsGuarantee .ownedPort−>size ()

def : assumptionPortsSubsetGuaranteePorts : Boolean =
self . itsAssumption .ownedPort−>forAll (p1 | self . itsGuarantee .ownedPort−>select (p2 | p1. isConjugatedOf(

p2) )−>size () >= 1)
def : guaranteePortsSubsetAssumptionPorts : Boolean =

self . itsGuarantee .ownedPort−>forAll (p1 | self . itsAssumption .ownedPort−>select (p2 | p1. isConjugatedOf
(p2) )−>size () >= 1)

def : contractAGPortsWellFormed : Boolean =
self . haveIdenticalNoOfPorts and self . assumptionPortsSubsetGuaranteePorts and self .

guaranteePortsSubsetAssumptionPorts

inv contractClosedSystem : self .contractAGPortsWellFormed

context Implementation

−− Rule: The set of ports of the guarantee is a subset or equal to the set of ports of the part

implementing i t

def : guaranteePortsSubsetPartPorts : Boolean =
self . implTarget . itsGuarantee .ownedPort−>forAll (p1 | self . implSource .ownedPort−>select (p2 | p2.

isIdenticalTo(p1) )−>size () = 1)

def : guaranteePortsWellFormed : Boolean =
self . guaranteePortsSubsetPartPorts

inv implementationGuaranteePortsWellFormed : self .guaranteePortsWellFormed

Listing 2 OCL code for uniqueness of contract-based proof obligations.

context Property

def : getContractUseRelations : Set(Dependency) = self . clientDependency−>select (d | d. isUsage)
def : isUsingContracts : Boolean = self . getContractUseRelations−>size () > 0

−− Rule: A component can use at most one contract for the satisfaction of one requirement and within

one dominance

def : isContractUniqueForRequirementAndRefinement : Boolean =
let r :Set(Dependency) = self . getContractUseRelations in
i f self . type .oclIsTypeOf(uml: : Class) and self . isUsingContracts



then r−>forAll (d1 | r−>excluding(d1)−>select (d2 | d1. reqTarget = d2. reqTarget)−>size () = 0)
else

true
endif

inv contractUseUniqueRR : self . isContractUniqueForRequirementAndRefinement

Listing 3 OCL code for completeness of contract-based proof obligations.

context SafetyProperty

−− Rule: All safety properties have a contract conforming to them

def : isVerified : Boolean =
self .oclAsType(uml: : Classifier ) .getModel() . getDependencies−>select (d | d. isConformance and d.

confTarget−>includes( self ) )−>size () = 1

inv safetyPropertyIsVerified : self . isVerified

Appendix 2: SysML-TIOA mapping example

The TIOA corresponding to the component from Fig. 8b is the tuple (X, Clk, Q, θ, I, O, V, H, D, T ) defined as follows:

– X = {location, queue} only contains the predefined variables for the state machine location and for the input queue. The
domains of these are as follows:

– Domlocation = {I dle, E jectCard, Wait For Removal, RemoveCard, Wait For Ack}

– Domqueue = I ∗, i.e., the set of finite sequences of elements of I (the input actions, defined below). The concatenation
of two sequences a and b of I ∗ is denoted by [a; b].

– Clk = {t} contains the Timer t .
– Q = Domlocation × Domqueue × R is the set of possible valuations of the variables (location, queue, t) listed above. For

a triple q = (λ, ρ, δ) ∈ Q, for simplicity, we denote λ as q.location, ρ as q.queue and δ as q.t .
– θ = (I dle,∅, 0) is the initial state, where ∅ denotes the empty sequence of signals from I .
– I = {retrieveCard, ok, nok}

– O = {card I nserted, ejectCard, card Removed}

– V = ∅

– H = {↓ retrieveCard,↓ ok} is the set of internal actions corresponding to the consumption of the input signals from
the queue. In other contexts, there may be additional internal actions corresponding to transitions without any visible
activity, however this is not the case for the state machine in Fig. 8b.

– D = I np ∪ (∪loc∈Domlocation
Dloc) where

– I np represents the input transitions, defined as follows (remember that the TIOA is input-complete): I np = {q
i

−→

q ′|i ∈ I ∧ q ′.location = q.location ∧ q ′.t = q.t ∧ q ′.queue = [q.queue; i]}

– Dloc represents the discrete TIO transitions corresponding to the state machine transitions leaving state loc in Fig. 8(b):

• DI dle = {q
!card I nserted
−−−−−−−−→ q ′)|q.location = I dle ∧ q ′.location = E jectCard ∧ q.queue = q ′.queue ∧ q.t =

q ′.t}

• DE jectCard = {q
!ejectCard
−−−−−−→ q ′|q.location = E jectCard ∧ q ′.location = Wait For Removal ∧ q.queue =

q ′.queue ∧ q.t = q ′.t}

• DWait For Removal = {q
↓retrieveCard
−−−−−−−−−→ q ′|q.location = Wait For Removal ∧ q ′.location = RemoveCard ∧

q.queue = [retrieveCard; q ′.queue] ∧ q ′.t = 0}



• DRemoveCard = {q
!card Removed
−−−−−−−−→ q ′|q.location = RemoveCard ∧ q ′.location = Wait For Ack ∧ q.queue =

q ′.queue ∧ q.t = q ′.t}

• DWait For Ack = {q
↓ok
−−→ q ′|q.location = Wait For Ack ∧ q ′.location = I dle ∧ q.queue = [ok; q ′.queue] ∧

q.t = q ′.t}

– T = ∪loc∈Domlocation
Tloc where Tloc represents the trajectories starting in states q with loc = q.location. They are defined

as follows:

– TI dle = {τ : [0, 0] → Q|τ(0) = q,∀q ∈ Q with q.location = I dle}

(i.e., only point trajectories are allowed since the outgoing transition is eager and has no input)
– TE jectCard = {τ : I → Q | I is any interval of form [0, x] or [0,∞) ∧ ∀y ∈ I. (τ (y)(location) = E jectCard ∧

τ(y)(queue) = τ(0)(queue) ∧ τ(y)(t) = y + τ(0)(t))}

(i.e., trajectories may go to infinity, and only change t with derivative 1)
– TWait For Removal = T Pres

Wait For Removal ∪ T Abs
Wait For Removal where:

• T Pres
Wait For Removal are (point) trajectories from states in which the signal retrieveCard is present in front of the

queue:
T Pres

Wait For Removal = {τ : [0, 0] → Q|τ(0) = q,∀q ∈ Q with q.location = Wait For Removal ∧

∃w such that q.queue = [retrieveCard;w]}

• T Abs
Wait For Removal are trajectories (to infinity) from states in which the signal retrieveCard is not in front of the

queue:
T Abs

Wait For Removal = {τ : I → Q | I is any interval of form [0, x] or [0,∞) ∧ ∀y ∈ I. (τ (y)(location) =

Wait For Removal ∧ τ(y)(queue) = τ(0)(queue) ∧ τ(y)(t) = y + τ(0)(t) ∧ � ∃w such that q.queue =

[retrieveCard;w])}

– TRemoveCard = {τ : [0, x] → Q|x ∈ [0, 5 − τ(0)(t)] ∧ ∀y ∈ [0, x]. (τ (y)(location) = RemoveCard ∧

τ(y)(queue) = τ(0)(queue) ∧ τ(y)(t) = y + τ(0)(t))}

(i.e., trajectories may go up to t = 5 and only change t with derivative 1)
– TWait For Ack = T Pres

Wait For Ack ∪ T Abs
Wait For Ack where:

• T Pres
Wait For Ack are (point) trajectories from states in which the signal ok is present in front of the queue:

T Pres
Wait For Ack = {τ : [0, 0] → Q|τ(0) = q,∀q ∈ Q with q.location = Wait For Ack ∧∃w such that q.queue =

[ok;w]}

• T Abs
Wait For Ack are trajectories (to infinity) from states in which the signal ok is not in front of the queue:

T Abs
Wait For Ack = {τ : I → Q | I is any interval of form [0, x] or [0,∞) ∧ ∀y ∈ I.(τ (y)(location) =

Wait For Ack ∧ τ(y)(queue) = τ(0)(queue) ∧ τ(y)(t) = y + τ(0)(t) ∧ � ∃w such that q.queue = [ok;w])}

Appendix 3: Proofs for the formal contract-based framework

Theorem 2 (A, ‖) is a commutative monoid.

Proof Let A1, A2 and A3 be three timed input/output automata.

1. Commutativity: A1 ‖ A2 = A2 ‖ A1 is true since only set operations are used by the composition operator.
2. Associativity: By applying the composition operator we obtain (A1 ‖ A2) ‖ A3 = A1 ‖ (A2 ‖ A3) =

(X, Clk, Q, θ, I, O, V, H, D, T ) where:

– X = XA1 ∪ XA2 ∪ XA3 .
– Clk = ClkA1 ∪ ClkA2 ∪ ClkA3 .
– Q = {xA1 ∪ xA2 ∪ xA3 |xA1 ∈ QA1 , xA2 ∈ QA2 and xA3 ∈ QA3}.
– θ = θA1 ∪ θA2 ∪ θA3 .
– I = (IA1 \ (OA2 ∪ OA3)) ∪ (IA2 \ (OA1 ∪ OA3)) ∪ (IA3 \ (OA1 ∪ OA2)).
– O = (OA1 \ (IA2 ∪ IA3)) ∪ (OA2 \ (IA1 ∪ IA3)) ∪ (OA3 \ (IA1 ∪ IA3)).
– V = VA1 ∪ VA2 ∪ VA3 ∪ (OA1 ∩ (IA2 ∪ IA3)) ∪ (OA2 ∩ (IA1 ∪ IA3)) ∪ (OA3 ∩ (IA1 ∪ IA2)).
– H = HA1 ∪ HA2 ∪ HA3 .



– D is the set of discrete transitions where for each x = xA1 ∪ xA2 ∪ xA3 and x′ = x′
A1

∪ x′
A2

∪ x′
A3

∈ Q and each

a ∈ A, x
a
−→ x′ if and only if for i ∈ {1, 2, 3}, either

(a) a ∈ Ai and xi
a
−→ x′

i , or
(b) a �∈ Ai and xi = x′

i .
– T ⊆ tra js(Q) is given by τ ∈ T ⇔ τ⌈X i ∈ Ti , i ∈ {1, 2, 3}.

3. The identity element is the empty timed input/output automaton: it has no internal variables, it does not perform any
actions and can let time elapse to infinity. ⊓⊔

Theorem 5 Given a component Env and a set K of components for which Env is an environment, the refinement under
context ⊑Env is a preorder over K.

Proof 1. Reflexivity: K ⊑Env K
�
⇔ K ‖ Env ‖ Env′ � K ‖ Env ‖ Env′ which is true from the definition of the

conformance relation. K ′ is not represented since it is the identity element of the composition operator.
2. Transitivity: K1 ⊑Env K2 ∧ K2 ⊑Env K3 �⇒ K1 ⊑Env K3.

K1 ⊑Env K2
�
⇔ K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ K ′

2 ‖ Env′ (1)

We write the automaton Env′ = Env′
1 ‖ Env′

2 where :

– Env′
1 = (∅,∅, {φ}, φ, ((OK1 ∩ OK2) \ IE ), ((IK1 ∩ IK2) \ OE ),∅,∅, DEnv′

1
, TEnv′

1
),

– Env′
2 = (∅,∅, {φ}, φ, ((OK1 \ OK2) \ IE ), ((IK1 \ IK2) \ OE ),∅,∅, DEnv′

2
, TEnv′

2
).

Remark that the sets of input and output actions are pairwise disjoint for Env′
1 and Env′

2.
We write the automaton K ′

2 = K ′′
2 ‖ Env′

3 where:

– K ′′
2 = (∅,∅, {φ}, φ, (IK1 \ IK2), (OK1 \ OK2), (VK1 \ EK2),∅, DK ′′

2
, TK ′′

2
,

– Env′
3 = (∅,∅, {φ}, φ, (VK1 ∩ OK2), (VK1 ∩ IK2),∅,∅, DEnv′

3
, TEnv′

3
).

Similarly, the sets of inputs, outputs and visible actions are pairwise disjoint for K ′′
2 and Env′

3.
With this notation:

(1) ⇔ K1 ‖ Env ‖ Env′
1 ‖ Env′

2 � K2 ‖ Env ‖ K ′′
2 ‖ Env′

3 ‖ Env′
1 ‖ Env′

2 (2)

K2 ⊑Env K3
�
⇔ K2 ‖ Env ‖ Env′′ � K3 ‖ Env ‖ K ′

3 ‖ Env′′ (3)

With the same notation we obtain that Env′′ = Env′
1 ‖ Env′

3, and

(3) ⇔ K2 ‖ E ‖ Env′
1 ‖ Env′

3 � K3 ‖ E ‖ K ′
3 ‖ Env′

1 ‖ Env′
3 (4)

Composing (4) with K ′′
2 ‖ Env′

2 and from Theorem 4 we get:

K2 ‖ Env ‖ Env′
1 ‖ Env′

3 ‖ K ′′
2 ‖ Env′

2 � K3 ‖ Env ‖ K ′
3 ‖ Env′

1 ‖ Env′
3 ‖ K ′′

2 ‖ Env′
2 ⇔

⇔ K2 ‖ Env ‖ K ′′
2 ‖ Env′

3 ‖ Env′
1 ‖ Env′

2 � K3 ‖ Env ‖ K ′
3 ‖ K ′

2 ‖ Env′
1 ‖ Env′

2

(2) K1 ‖ Env ‖ Env′
1 ‖ Env′

2 � K2 ‖ Env ‖ K ′′
2 ‖ Env′

3 ‖ Env′
1 ‖ Env′

2

}

T ransi tivi t y o f �
�⇒

�⇒ K1 ‖ Env ‖ Env′
1 ‖ Env′

2 � K3 ‖ Env ‖ K ′
3 ‖ K ′

2 ‖ Env′
1 ‖ Env′

2 ⇔⇔ K1 ‖ Env ‖ Env′

� K3 ‖ Env ‖ K ′
2 ‖ K ′

3 ‖ Env′

By denoting K ′ = K ′
2 ‖ K ′

3 we have:

K1 ‖ Env ‖ Env′ � K3 ‖ Env ‖ K ′ ‖ Env′ �
⇔ K1 ⊑Env K3



The last step consists in proving that K ′ is indeed the automaton generated by the refinement under context relation. Since
K ′

2 and K ′
3 are built from the hypothesis by the refinement under context relation, by composition they define the correct

structure for K ′. Moreover:

– IK ′ = (IK1 \ IK3) ∪ (VK1 ∩ OK3),
– OK ′ = (OK1 \ OK3) ∪ (VK1 ∩ IK3) and
– VK ′ = VK1 \ EK3 .

The proofs on the sets of actions for Env′′ and K ′ are detailed in [36]. ⊓⊔

Theorem 6 Let K1 and K2 be two components and E an environment compatible with both K1 and K2 such that Env =

Env1 ‖ Env2. Then K1 ⊑Env1‖Env2 K2 ⇔ K1 ‖ Env1 ⊑Env2 K2 ‖ Env1.

Proof First, let us rewrite the two refinement relations to be proved equivalent as conformance relations, based on the definition
of refinement under context:

– K1 ⊑Env1‖Env2 K2 ⇔ K1 ‖ (Env1 ‖ Env2) ‖ Env′ � K2 ‖ (Env1 ‖ Env2) ‖ K ′ ‖ Env′

– K1 ‖ Env1 ⊑Env2 K2 ‖ Env1 ⇔ (K1 ‖ Env1) ‖ Env2 ‖ Env′′ � (K2 ‖ Env1) ‖ Env2 ‖ K ′′ ‖ Env′′

Based of the associativity of ‖ we have that the two relations are identical, where: Env′ = Env′′ = (∅,∅, {φ}, φ, (OK1 \

(IEnv1 ∪ IEnv2)), (IK1 \ (OEnv1 ∪ OEnv2)),∅,∅, DEnv′ , TEnv′) and K ′ = K ′′ = (∅,∅, {φ}, φ, ((IK1 \ IK2) ∪ (VK1 ∩

OK2)), ((OK1 \ OK2) ∪ (VK1 ∩ IK1)), (VK1 \ EK2),∅, DK ′ , TK ′). ⊓⊔

Theorem 8 {Ci }
n
i=1 dominates C if, ∀i , tracesGi

and tracesG are closed under time extension and

{

G1 ‖ ... ‖ Gn ⊑A G

A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn ⊑Gi
Ai , ∀i

Proof Let Ki , i = 1, n, a set of components such that:

(1) Ki ⊑Ai
Gi ,

(2) G1 ‖ G2 ‖ . . . ‖ Gn ⊑A G,
(3) A ‖ G1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi

Ai ,∀i .

We have to prove that K1 ‖ K2 ‖ . . . ‖ Kn ⊑A G.
The proof is built by induction on j where j = 0, n is the number of guarantees replaced by their corresponding component.
More precisely, we will prove by induction that K1 ‖ ... ‖ K j−1 ‖ G j ‖ ... ‖ Gn ⊑A G. In parallel, we will also need to
prove that A ‖ K1 ‖ K2 ‖ . . . ‖ K j ‖ G j+1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi

Ai , ∀i > j .

Step j = 0. Then the conclusion becomes G1 ‖ G2 ‖ . . . ‖ Gn ⊑A G which is true by hypothesis (2)

Step j = 1.

(1) K1 ⊑A1 G1

From (2) for i=1 ⇒ A ‖ G2 ‖ . . . ‖ Gn ⊑G1 A1

}

T heorem 7
⇒

⇒ K1 ⊑A‖G2‖...‖Gn G1 (4)

(4)
T heorem 6

⇒ K1 ‖ G2 ‖ . . . ‖ Gn ⊑A G1 ‖ G2 ‖ . . . ‖ Gn

(2) G1 ‖ . . . ‖ Gn ⊑A G

}

T ransi tivi t y
⇒

⇒ K1 ‖ G2 ‖ . . . ‖ Gn ⊑A G (5)

(4)
T heorem 6

⇒ A ‖ K1 ‖ G2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
A ‖ G1 ‖ G2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖

‖ Gn,∀i > 1

(3) A ‖ G1 ‖ . . . Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai ,∀i















T ransi tivi t y
⇒

⇒ A ‖ K1 ‖ G2 ‖ . . . Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai ,∀i > 1 (6)



Relations (5) and (6) constitute the hypotheses for the induction step at j = 2.

Induction step Let j be fixed. The induction hypotheses for this step are:

K1 ‖ . . . ‖ K j ‖ G j+1 ‖ . . . ‖ Gn ⊑A G (7)

A ‖ K1 ‖ K2 ‖ . . . ‖ K j ‖ G j+1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai , ∀i > j (8)

Then we want to prove that:

K1 ‖ . . . ‖ K j ‖ K j+1 ‖ G j+2 ‖ Gn ⊑A G (9) and

A ‖ K1 ‖ . . . ‖ K j+1 ‖ G j+2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai , ∀i > j + 1 (10)

We proceed as follows:

(1) K j+1 ⊑A j+1 G j+1

From (8) for i = j + 1 ⇒ A ‖ K1 ‖ K2 ‖ . . . ‖ K j ‖ G j+2 ‖ . . . ‖ Gn ⊑G j+1 A j+1

}

T heorem 7
⇒

⇒ K j+1 ⊑A‖K1‖...‖K j ‖G j+2‖...‖Gn G j+1 (11)

(11)
T heorem 6

⇒ K1 ‖ . . . ‖ K j ‖ K j+1 ‖ G j+2 ‖ . . . ‖ Gn ⊑A K1 ‖ . . . ‖ K j ‖ G j+1 ‖ G j+2 ‖ . . . ‖ Gn

(7) K1 ‖ . . . ‖ K j ‖ G j+1 ‖ . . . ‖ Gn ⊑A G

}

T ransi tivi t y
⇒

⇒ K1 ‖ . . . ‖ K j ‖ K j+1 ‖ G j+2 ‖ Gn ⊑A G (9)

(11)
T heorem 6

⇒ A ‖ K1 ‖ . . . ‖ K j+1 ‖ G j+2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
A ‖ K1 ‖ . . . ‖

‖ K j ‖ G j+1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn,∀i > j + 1

(8) A ‖ K1 ‖ . . . ‖ K j ‖ G j+1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai ,∀i > j + 1















T ransi tivi t y
⇒

⇒ A ‖ K1 ‖ . . . ‖ K j+1 ‖ G j+2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn ⊑Gi
Ai ,∀i > j + 1 (10)

Step j = n. From (9), for j = n, we obtain K1 ‖ K2 ‖ . . . ‖ Kn ⊑A G which implies dominance. ⊓⊔

Theorem 9 K1 ⊑E K2 if K2 is a deterministic safety property and reach((K1 ‖ E ‖ E ′) ⊲⊳ OK2) ∩ {π} = ∅.

Proof Notation. We note by reach(A)(σ ) the set of reached states after the execution σ

This proof is built by contradiction. We suppose that K1 �⊑E K2.
It implies that ∃σ ∈ tr(K1 ‖ E ‖ E ′) ∧ σ �∈ tr(K2 ‖ E ‖ E ′ ‖ K ′).
Let σ ′a be a prefix of σ such that σ ′ ∈ tr(K1 ‖ E ‖ E ′) ∩ tr(K2 ‖ E ‖ E ′ ‖ K ′) and σ ′a �∈ tr(K2 ‖ E ‖ E ′ ‖ K ′), where
a is a visible action. Such a prefix exists because K2 is a safety property.
Then reach((K1 ‖ E ‖ E ′) ⊲⊳ OK2)(σ

′) = {(q1, q2)}.

Concatenating a we obtain: (q1, q2)
a
−→(K1‖E‖E ′)⊲⊳OK2

π �⇒ reach((K1 ‖ E ‖ E ′) ⊲⊳ OK2) ∩ {π} �= ∅ in contradiction
with the hypothesis. ⊓⊔
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