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SUMMARY 

 

Background: 

I. Early Repolarization Syndrome (ERS) is characterized by J-point elevation in the 

lateral and/or inferolateral leads of the standard 12-lead ECG and  increased vulnerability to 

polymorphic ventricular tachycardia (VT) and fibrillation (VF) leading to sudden cardiac 

death. According to recent discoveries in this field, the phosphodiesterase-3 (PDE-3) inhibitor 

cilostazol may be a promising candidate to combat ERS-related VT/VF; whereas the Class 

I/A sodium channel (INa) blocker ajmaline exerts mild suppression on the electrocardiographic 

pattern of the syndrome (ERP), despite its unmasking effect on the other J wave syndrome 

congener, Brugada syndrome (BrS).  

II. Lately, the Class I/B INa blocker mexiletine has attracted attention afresh, due to its 

recently described potency to effectively terminate acquired long QT syndrome-related 

torsades de pointes (TdP) tachyarrhythmias and its lately emerged application opportunities in 

the therapy of certain neurologic and myotonic disorders. Studies directed to exhaustive 

comparison of the effects of mexiletine’s R-(-) and S-(+) optical isomers on the action 

potential duration (APD) of cardiac ventricular muscle preparations are scarce in the scientific 

literature as of now. 

Objective:  

I. The first part of the present study was aimed at giving an up-to-date overview about 

ERS and testing the electrophysiological mechanisms underlying its lately described 

pharmacological responses including the suppressing effect of phosphodiesterase-3 (PDE-3) 

inhibitors and ajmaline. 

II. The goal of the second part of the study was to investigate whether significant 

divergences in the APD-shortening effects of the two enantiomers of mexiletine exist, applied 

either alone or in combination with sotalol. 

Methods and Results:  

I. Transmembrane action potentials (AP) were simultaneously recorded from epicardial 

and endocardial regions of coronary-perfused canine ventricular wedge preparation, together 

with a transmural pseudo-ECG. The transient outward potassium currents (Ito) agonist 

NS5806 (7-15 μM) and the calcium current (ICa) blocker verapamil (2-3 uM) were used to 

induce an ERP and VT/VF. Following stable induction of arrhythmogenesis, the PDE-3 

inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All 

were effective in restoring the AP dome in the left ventricular (LV) epicardium, thus 
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abolishing the repolarization defects responsible for phase 2 reentry (P2R) and 

arrhythmogenesis. Using voltage clamp techniques applied to canine LV epicardial myocytes, 

both cilostazol (10 M) and milrinone (2.5 µM) were found to reduce Ito by 44.4% and 

40.4%, respectively, in addition to their known effects to augment ICa. 

 In another series of experiments we compared the effect of ajmaline on mild and 

accentuated ERS and BrS patterns. Brugada syndrome phenotype was mimicked by using the 

ATP-sensitive potassium current (IK-ATP) agonist pinacidil (1-5 µM) and Ito agonist NS5806 (7 

µM) prior to the addition of ajmaline. In response to ajmaline infusion, J wave syndrome 

phenotypes with different grade of aggravation behaved bidirectionally depending on the size 

of AP notch and J wave the preparation displayed before the administration of ajmaline. 

II. For analyzing the effects of mexiletine’s levo- and dextrorotatory isomers, APs were 

recorded from isolated canine papillary muscle preparation, using conventional capillary glass 

microelectrode technique. Recordings were obtained in the absence and presence of R- and S-

mexiletine alone, sotalol alone and sotalol combined with either R- or S-mexiletine. 

Significant differences in the effects of mexiletine’s enantiomers on the studied 

electrophysiological parameters could not be observed. 

 Conclusions:  

I. Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting 

of ERS by producing an inward shift in the balance of currents in the early phases of the 

epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing repolarization 

defects underlying the development of P2R and VT/VF. The ambiguous impact of ajmaline to 

suppress ERP but accentuate BrS pattern depends critically on the size of epicardial AP notch 

and consequent J wave. 

II. Both optical isomers of mexiletine have similar effect on basic electrophysiologic 

parameters of canine papillary muscle, including their action to reverse sotalol-induced APD-

prolongation. This significant re-abbreviating effect may also apply to other acquired long QT 

syndrome variants and explains racemic mexiletine’s potency to control the related TdP 

tachyarrhythmias. 
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Abbreviations: 

 

AP: transmembrane action potential 

APA: amplitude of action potential 

APD: action potential duration 

ATP: adenosine-triphosphate 

BrS: Brugada syndrome 

cAMP: cyclic adenosine-monophosphate 

CT: conduction time 

ECG: transmural electrocardiogram 

EG: bipolar electrogram recorded from the epicardial (or endocardial) surface 

EDR: epicardial dispersion of repolarization 

Endo: endocardium/ endocardial 

Epi: epicardium/epicardial 

ERP: early repolarization pattern  

ERS: early repolarization syndrome 

ICa: L-type calcium current 

IK-ATP: ATP-sensitive potassium current 

INa: cardiac voltage-gated fast sodium current  

Ito: transient outward current 

IVF: idiopathic ventricular fibrillation 

Jp: peak of the J wave (or the onset of end-QRS slur) 

LV: left ventricle 

MDP: maximal diastolic potential 

P2R: phase 2 reentry 

PDE-3: phosphodiesterase-3 

PKA: protein kinase A (cAMP-dependent protein kinase) 

Vmax: maximal upstroke velocity of phase 0 

VT: polymorphic ventricular tachycardia 

RV: right ventricle 

RVOT: right ventricular outflow tract 

SCD: sudden cardiac death 

TDR: transmural dispersion of repolarization 

VF: ventricular fibrillation 
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I. INTRODUCTION 

 

I.1. Early repolarization syndrome and early repolarization pattern 

I.1.1. Overview 

Early repolarization syndrome (ERS) is one of the main representatives of J wave 

syndromes, the unique group of electrical heart diseases characterized by the appearance of 

distinctive J waves in certain leads of the standard 12 lead ECG and increased vulnerability to 

malignant ventricular arrhythmias.  

Although the early repolarization ECG-pattern (ERP) has been first described more than 

90 years ago as an accompany of hypercalcaemia [Kraus 1920, Sridharan 1984] and 

hypothermia [Tomaszewski 1938; Osborn 1953, Phillipson 1967], it has drawn actual 

widespread attention of the scientific audience only in recent years, since its association with 

life-threatening arrhythmias including idiopathic ventricular fibrillation (IVF) has been 

suspected by experimental and later confirmed by several concurrent clinical studies  [Yan 

1996, Ant, Kalla 2000, Shu 2005, Letsas 2007, Haisaguerre 2008, Nam 2008, Rosso 2008, 

Tikkanen 2009, Derval 2011]. Thenceforth, the scientific literature in this field has shown an 

exponential expansion. 

 Why has it long been considered benign and why has its clinical impact remained 

hidden so long? One explanation is that the most malignant phenotype of ERP is rare and 

often displays a come-and-go nature, namely, it becomes accentuated mostly just directly 

before an arrhythmic event [Nam 2008, Aizawa 2012] – no wonder that its association with 

an increased arrhythmic risk has been recognized in the era of implantable recording devices. 

In this regard, it is also noteworthy that there is a significant discrepancy among studies when 

it comes to the definition of ERP [Patton 2016]: In the sense of earlier and some recent more 

permissive definitions, the pattern is so frequent in the general population that it is considered 

to be a benign normal variant of the ECG [Shipley 1936, Wasserburger 1961, Kambara 1976, 

Mehta 1995, Klatsky 2003, Maury 2013], and most individuals expressing an ERP are still at 

low risk for sudden arrhythmic death and remain lifelong asymptomatic. This leads us to the 

main challenge of the syndrome still to resolve: which ER-patients are vulnerable to sudden 

arrhythmic death and how to deal with those who are not. 
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I.1.2. Diagnosis, classification and risk stratification 

As we discussed above, there is still a semantic confusion regarding the definition of 

early repolarization pattern. The term early repolarization was originally applied for J-point 

and ST segment elevation without a chest pain or apparent heart diseases and was thought to 

be a benign variation of the normal ECG [Shipley 1936; Wasserburger 1961, Kambara 1976]. 

Because the recent literature linked the increased arrhythmic risk to the presence of a J wave 

rather than ST elevation, the focus shifted to the J wave, so thus most experts active in this 

field consider ST elevation no more diagnostic for ERP. The definition and diagnostic criteria 

used in this thesis are based on the latest and most comprehensive expert consensus 

recommendations by Macfarlane et al and Antzelevitch et al. [Macfarlane 2015, Antzelevitch 

2016]. Although some other studies challenge these approaches to the definition of ERP 

[Patton 2016], the aforementioned two are aimed at being more focused on the proarrhythmic 

aspects of ERP and ERS; therefore they are more likely to apply in the clinical practice, where 

the main challenge and absolute priority is to screen patients vulnerable to life-threatening 

ventricular arrhythmias.  

Early repolarization pattern (ERP) is characterized by a distinct or slurred J wave at the 

terminal part (final 50% of the descending slope) of a prominent QRS complex, in other terms 

an end-QRS notch or slur, in at least two contiguous ECG-leads other than V1-V3. A distinct 

J wave has been proposed to be defined by its onset denoted as Jo, peak designated as Jp and 

termination marked as Jt (Figure 1/A). In case of slurred J wave/end-QRS slur, in which the 

onset of J wave is buried by the area under the QRS, its junction to the QRS is accounted as Jp 

(Figure 1/B). The definitive diagnosis of ERP requires: Jp ≥0.1mV, QRS<120ms and the onset 

of the J wave (Jo by distinct J wave and Jp by slurred one) is above the zero-line. Although ST 

elevation is no more among the diagnostic criteria [Macfarlane 2015, Antzelevitch 2016], the 

course of the ST segment (ascending or horizontal/descending) is still informative in the 

classification and risk stratification of ERP/ERS (see below).  
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Figure 1: Schematic illustration of notched (A) and slurred (B) J wave. Jo: onset of J wave, Jp: 

peak of the J wave, Jt: termination (end) of J wave, M: 100ms interval measured from Jt.  J 

point elevation is to measure at Jp. The course of ST segment is to be defined at the M point 

(end of M interval). [Macfarlane 2015] 

The conventional classification of early repolarization is based on the localization of the 

J waves and the course of the subsequent ST segments.  

ST is considered ascending if it courses above Jt when measured at 100ms after (M 

interval on Figure 1). Individuals displaying ERP with ascending ST segment, especially only 

in the lateral leads, are generally at low risk for VT/VF. It is a typical and frequent finding in 

young male athletes and is thought to be benign [Tikkanen 2011]. ST segment is to be 

evaluated as horizontal/descending when ST measured at the M interval tracks in line or 

below Jt (Figure 1.) [Tikkanen 2011]. ERP with horizontal/descending ST segment is 

generally recognized as a more malignant pattern with an increased risk for VT/VF and 

cardiac mortality. [Tikkanen 2011, Rosso 2012, Rollin 2012] 

ERP emerges in three typical line-ups on the standard 12-lead ECG: It is denoted as 

Type I if the pattern is displayed in lateral leads. Healthy individuals expressing Type I ERP 

are reportedly at lower risk for life-threating arrhythmias; moreover, many authors still 

account it as a benign ECG-variant when followed by an ascending ST segment [Patton 

2016].  Type II indicates ERP manifesting in the inferior/inferolateral leads, whereas Type III, 

named also as global ERP, encompasses appearance of the pattern in multiple localizations 

including inferolateral + anterior and right ventricular leads. The latter one can fuel 

confusions to clear: If J waves appear exclusively in right ventricular (RV) leads, they are not 

diagnostic to ERP but Brugada syndrome. The diagnosis of Type III ERP requires 

inferior/inferolateral involment. Interestingly, global ERP is usually a temporary finding in 
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individuals with a basal inferolateral ERP, often only appearing at the time of arrhythmic 

episodes (“come-and-go”). In this sense, Type III can be considered as the more advanced 

phenotype of Type II. Patients displaying inferolateral or global early repolarization have 

higher risk for experiencing ventricular arrhythmias during their life. Global early 

repolarization is associated with the highest vulnerability to VT/VF including electrical 

storms [Tikkanen 2009, Rosso 2012, Rollin 2012].    

Notwithstanding their presumably common electrophysiological basis, it is substantial 

to distinguish between early repolarization pattern (ERP) and early repolarization syndrome 

(ERS). ERP is a relatively common finding in both physiologic and acquired conditions, such 

as athlete’s heart, hypothermia, a long list of cardiac diseases, neurologic injury, electrolyte-

imbalance, cocaine abuse, etc.; whereas ERS is considered to be a primary arrhythmia 

syndrome with much lower prevalence. 

Early repolarization syndrome (ERS) is conventionally diagnosed when ERP coexists 

with documented aborted sudden cardiac death (SCD), ventricular fibrillation (VF) or 

polymorphic ventricular tachycardia (VT) with the exclusion of an organic heart disease. 

These traditional criteria have been refined and further specified by a newly proposed 

diagnostic score system, named Shanghai score system (Table 1), which pays regard also to 

the major risk factors for SCD associated with the syndrome, including J point elevation in the 

inferior leads, ERP with horizontal/descending ST segment, Jp ≥0.2mV especially with T 

wave inversion, dynamic J wave/ST changes, clinical history of suspected or documented 

VT/VF and family history of SCD or ERP (Table 1.).[Antzelevitch 2016]  

The pre- or coexistence of several other cardiac conditions with an early repolarization 

pattern have also been shown to predispose to sudden arrhythmic death or even increased all-

cause mortality. These include Brugada- and short QT syndromes (or patterns), heart failure, 

hypothermia and ischemic heart diseases especially with newly emerging J wave.[Letsas 

2008, Kawata 2013, Takagi 2013; Hasegawa 2016, Federman 2013, Bastiaenen 2010, Rudic 

2012, Patel 2010, Patel 2012, Naruse 2012, Demidova 2014].  

It has to be emphasized that the diagnostic criteria and risk stratification of both ERP 

and ERS have steadily been in progression, keeping up with the expanding clinical and 

experimental experience gathered in this field recently, and this evolution seems unlikely to 

stop at the current level. The recent consensus criteria should be approached as 

recommendations for the better comparability and risk assessment, and beyond doubt, 
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outcome-driven investigations should be directed to confirm or disprove their validity in the 

future. 

 

 

Table1: Shanghai score system for the diagnosis of early repolarization syndrome [from 

Antzelevitch 2016] 

 

I.1.3. Epidemiology 

An ERP is a relatively common electrographic finding, with a strong male 

predominance. Depending on anthropologic differences and the definition used for ERP, the 

prevalence ranges between 0.6% and 24% in the general population. Jp-elevation ≥ 0.2mV 

was reported in 0.3-0.64% of the general population. ERP is reportedly more prevalent in 

South-East Asia. Interestingly, ERP is more frequently observed among black and Australian 

aboriginal males but it is associated with lower arrhythmic risk in these anthropologic groups. 
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[Tikkanen 2009, Sinner 2010, Haruta 2011, Hayashi 2015, Perez 2012, Brosnan 2015]. 

VF/VT episodes occur mostly at increased vagal tone, during night or rest. Interestingly, the 

incidence of ventricular arrhythmias in the Japanese population has been reported to inversely 

correlate with air temperature, peaking in winter and early spring [Mizumaki 2012, Kim 2012, 

Maeda 2015, Shinohara 2016]. 

 

I.1.4. Cellular electrophysiology 

The pathophysiological background of the electrographic J waves has long been a 

matter of debate. The two main hypotheses are repolarization theory (1) and depolarization 

theory (2).  

(1) In the sense of repolarization hypothesis, a net outward shift in the balance of 

currents active during the early phases of the cardiomyocyte’s action potential (AP) leads to 

pronounced action potential notch in the ventricular epicardium but not in the endocardium 

(Figure 2 and 3), resulting in voltage gradient across the ventricular wall, which depicts on the 

ECG as J wave. A further accentuation of the action potential notch can lead to the highly 

proarrhythmic heterogeneous loss of the AP dome in the epicardium, giving rise to 

propagation of the second upstroke of the AP from sites where it is maintained to sites where 

it is lost(Figure 6). When this (concealed) phase 2 reentry (P2R) catches a vulnerable window 

opened up by increased dispersion of repolarization (lost AP domes), it can serve as trigger 

for premature ventricular complexes (PVCs) and VT/VF. [Yan 1996; Gussak 2000, Koncz 

2013, Gurabi 2013] 

(2) Depolarization hypothesis maintains that regional conduction delay is the cause 

underlying the electrographic manifestation of a J wave [Hoogendijk 2013, Meiborg 2016]. In 

this sense, ERP is considered to be a distinctly fragmented QRS complex, so thus J wave is 

actually an r’ or R’ wave [Huikuri 2015, Aizawa 2015].  

 

Distinguishing between a J wave and an r’ wave is not always possible with absolute 

confidence, but there exist tools and factors helping the distinction: J waves due to 

repolarization abnormality are likely augmented by pause and diminished by increased heart 

rate (Figures 2 and 3). Accordingly, ERS-patients usually suffer from arrhythmic episodes 

during rest, night or increased vagal tone [Mizumaki 2012, Kim 2012, Maeda 2015, 

Shinohara 2016]. On the contrary, QRS fragmentation usually aggravates by increased rate. A 

QRS fragmentation masquerading a J wave is unlikely to be an isolated finding in healthy 
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individuals. If the r’ is present also in other leads but on the upslope or above the 50% of the 

QRS amplitude, especially in individuals present with organic heart disease, it is not definitive 

for ERP.  

Although repolarization and depolarization abnormalities are certainly not mutually 

exclusive and their joint effect can be synergistic or potentiating, as of now only 

repolarization defect models are capable of recapitulating and explaining all features of the 

pattern and the syndrome, e.g. regional intracardiac differences [Koncz 2013], abnormally 

short activation–recovery intervals and marked dispersion of repolarization in the inferior and 

lateral regions of the LV [Ghosh 2010], response to changes in heart rate, quinidine, 

isoproterenol, hypothermia and increased vagal tone [Koncz 2013, Gurabi 2014, Patocskai 

2016, Antzelevitch 2015]. Our research group pioneered in this work by publishing several 

studies using J wave syndrome models in the recent past [Koncz 2013, Gurabi 2014, 

Patocskai 2016 HR, Patocskai 2016 JACC-EP].  

 

Figure 2: The pathophysiology and dynamics of J wave. Left panel: each column shows 

simultaneous action potentials recorded from one endocardial (Endo) and two epicardial sites 

(Epi) of canine left ventricular wedge preparation, together with a pseudo-ECG. Transmural 

voltage gradient depicts as J wave (red arrows), as a result of increased epicardial but not 

endocardial action potential notch (red arrows) under the application of Ito agonist NS5806. 

An early premature beat caused J wave diminution (blue arrows), as a result of the reduced 

action potential notch secondary to the shortened RR interval. Right panel: Clinical ECG-
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recordings of a patient with early repolarization syndrome. Similarly to our experimental 

setting, an early premature ventricular complex leads to a vast attenuation of J wave 

[Patocskai 2013, modified from Koncz 2013]. 

As discussed above, the corner stone of early repolarization syndrome is the transmural 

difference in the AP morphology across the ventricular myocardium, with special focus on the 

notch at phase 1, which is shaped by the balance of depolarizing and repolarizing early 

currents (Figure 3).  

 

 

Figure 3: Cardiac action potentials are shaped by the balance of inward and outward ion 

currents. Schematic, non-exhaustive epitome of the main ion currents of multiple cardiac cell 

types. [Modified from Nattel 2006]  

 

Among these currents, under physiologic conditions, the transient outward potassium current 

(Ito) plays to most prominent role: A long list of experimental evidences demonstrates that 

augmenting the Ito accentuates [Calloe 2009, Koncz 2013, Gurabi 2014], whereas blocking Ito 

with 4-aminopyridine or quinidine abolishes the AP notch and J wave [Litovsky 1988, Yan 

1996, Yan 1999, Koncz 2013, Gurabi 2014]. The magnitude of the AP notch closely follows 

the Ito current density not just across the ventricular wall but also within the different regions 
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of the ventricles. Higher intrinsic level of Ito current and consequently higher AP notch 

magnitude has been observed in epicardium vs. endocardium, apical vs. basal left ventricle 

(Figure 4-5), and right ventricle (especially outflow tract) vs. left ventricle [Litovsky 1988, 

DiDiego 1996; Szabo 2005, Szentandrassy 2005, Koncz 2013]. Interestingly, the higher Ito 

current density correlates with higher expression of not the alpha channel subunits but an 

accessory subunit, KChIP2 (Figure 4C) [Rosati 2001; Rosati 2003; Zicha 2004, Gaborit 

2007]. 

The higher Ito density in the right ventricle and the apical left ventricle (Figures 4 and 5) 

explains why the global and inferior/inferolateral ERP implies more arrhythmic risk when 

compared to the lateral type. The channel kinetics of Ito, its relatively slow recovery from 

inactivation, is responsible for the inverse rate dependency and pause-dependent accentuation 

of epicardial AP notch and electrographic J wave [Koncz 2013, Huikuri 2015]. 

 

  

Figure 4: Distribution of Ito current and expression of KChIP2 mRNA in the canine ventricles 

[modified from Rosati 2003]. 

C 
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A: Representative Ito current traces from various regions and layers of the canine ventricles. 

Current responses to steps from a holding potential of -70 mV to -20 mV (lower trace) and 

+50 mV (upper trace) are shown in each set of recordings. The sodium current was partially 

inactivated by a preceding 10 ms step to -45 mV at both traces. 

B: Comparison of peak Ito current densities (mean ± SEM) from each region and layer of the 

ventricles. Epi: epicardium, Mid: midmyocardium, Endo: endocardium, RV: right ventricle, 

LV: left ventricle, septum:  interventricular septum. 

C: KChIP2 mRNA expression (mean ± SEM) as determined by quantitation of RNAse 

protection gels using a PhosphorImager. 

 

 

Figure 5: The inferior left ventricular (LV) epicardium expresses higher Ito density and 

consequently higher action potential notch magnitude compared to the epicardium of the 

lateral wall, serving as the cellular basis for greater vulnerability of the inferior wall to early 

repolarization syndrome-associated arrhythmias. A: Simultaneous action potential and ECG 

recordings from canine LV wedge preparations isolated from the inferior and lateral regions 

of the same hearts. Groupings are identical as shown in Figure 2. First two column: under 

baseline conditions, second two column: under the administration of the provocative agents: a 

combination of NS5806 (7 μM) + verapamil (3 μM) + acetylcholine (ACh) (3 μM).  

B: Current-voltage relation for Ito density in inferior vs. lateral LV epicardial cardiomyocytes 

[modified from Koncz 2013]. 
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Ito current is strictly regulated by the vegetative system via the cAMP/PKA pathway 

[Gallego 2005]. The aggravating effect of increased vagal tone and the ameliorative impact of 

isoproterenol on ERP are attributed to their action to decrease or elevate the cardiomycyte’s 

cAMP level, via activating muscarinic or adrenergic receptors, respectively. Our research 

group has recently demonstrated, in the setting of ERS, that acetylcholine (ACh) is capable of 

augmenting action potential notch and even triggering phase 2 reentrant arrhythmias; whereas 

isoproterenol exerts opposing effects [Koncz 2013]. However it should be noted that 

sympath(omim)ethic/ parasympath(omim)ethic effects and  intracellular cAMP have an 

extremely broad-range impact on cellular functions including other membrane currents e.g. 

the L-type calcium-current (ICaL).  

Although Ito is crucial, it is not the only contributor of forming the action potential 

notch. Loss of function or block of the cardiac fast sodium current (INa) has been shown to 

augment AP notch and J waves by numerous studies. However, in the absence of a prominent 

AP notch and Ito, loss of INa in itself is incapable of producing any sign of J wave syndrome 

pattern (Figures 14-16) [Park 2015, Patocskai 2016 JACC-EP].  

The other main depolarizing early current in ventricular cardiomyocytes is ICaL. It plays 

the principal role in the creation of the 2nd upstroke and plateau-phase of an action potential 

with spike-and-dome morphology (Figure 3); therefore it is the ultimate “executor” of phase 2 

reentry (P2R). One of the physiological roles for Ito is thought to be to increase the 

electrochemical driving force for calcium ions, via counteracting the intracellular positive 

charge-load produced by the influx of sodium and calcium ions. At an extreme unfortunate 

constellation of co-factors, this counteraction can reach beyond the activation threshold of 

ICaL, leading to all-or-none repolarization at the end of phase 1 (Figure 6). At this point, one 

cell loses its AP dome; meanwhile others produce an increased delay of the 2nd upstroke. P2R 

occurs when this maintained but delayed 2nd upstroke propagates to sites where it is lost 

(Figure 6). This AP-combination of maintained and lost domes can develop even without any 

baseline difference between the two cells. The development of an action potential can be best 

described mathematically as a diverse nonlinear dynamical system. At a certain balance of the 

co-factors, the behavior of this type of systems (“output”) is often bistable, even in the 

absence of any alterations in intrinsic or extrinsic effectors (“input”). The dynamics of the 

development of  all-or-none depolarization at the nadir of phase 1 of the AP is similar to the 

random and unpredictable development of early afterdepolarizations, action potential 

alternans and other AP-instabilities (beat-to-beat fluctuations) described by several in vivo 

and in silico studies [Bien 2006, Chialvo 1990, Karagueuzian 2013, Lerma 2007, Maoz 2009. 
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Maoz 2014, Sato 2010, Tran 2009, Watanabe 1995,  Xie 2007] : At a certain point of the end 

of an accentuated-enough phase 1, either all-depolarization or none-depolarization has the 

same chance to develop as “output” of the system, without any difference in the “input” of the 

system. Ergo, even if the cells are completely identical to each other in every aspect, there is 

still a great chance that one will lose its action potential dome whereas the other one will turn 

into depolarization, purely due to the “dynamical chaos” (in its mathematical sense), as it has 

been described by studies modelling the development of P2R [Maoz 2009, Maoz 2014].  

 

 

Figure 6: Development of phase 2 reentry in a canine ventricular model of J wave syndromes 

induced by the addition of Ito agonist NS5806 and ICa blocker verapamil to the coronary-

perfusate. Traces are as shown in Figure 2. Extreme and heterogeneous accentuation of the 

epicardial but not endocardial action potential (AP) notch reaches beyond the level of all-or-

none depolarization at the end of phase1, leading to loss of the AP dome and subsequent re-

excitation at one site (Epi1) by propagation of the delayed second upstroke of the AP from a 

neighbor-site with maintained AP-dome (Epi2). [Patocskai and Antzelevitch 2014, 

unpublished data] 
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I.1.5. Genetic background  

Family members of patients suffering from ERS are more frequently affected by the 

syndrome than random individuals, and have an increased arrhythmic risk for SCD, 

suggesting a genetic background for the syndrome. The outward shift in the balance of 

currents, as the cellular basis for ERS, has been attributed to mutations in genes causing a 

gain of function in ATP-dependent potassium current (IK-ATP) (KCNJ8 and ABCC9) or Ito [Hu 

2014, Barajas-Martinez 2012, Haisaguerre 2009, Medeiros-Domingo 2010, Perrin 2014] or 

loss of function in ICaL (CACNA1C, CACNB2 and CACNA2D1) [Burashnikov 2010, 

Napolitano 2011] or INa (SCN5A and SCN10A) [Watanabe 2011, Hu 2014]. Gain of function 

mutations in Ito-coding or associated genes have been also linked to IVF and sudden 

unexplained death [Alders 2009, Guidicessi 2012]. Familial clustering of ERS has been 

reported with an autosomal dominant inheritance pattern with incomplete penetrance. 

Population-based studies have also suggested a degree of inheritance of ERP in the general 

population [Nosewothy 2011, Reinhard 2011] but the familial inheritance of malignant ER 

pattern is questionable [Haissaguerre 2008]. Taking into regard that many ERS-cases could 

not be linked to one well-defined ion channel mutation, a multigenetic/epigenetic 

predisposition for the syndrome is also reasonable to suggest (“extreme bad luck syndrome”). 

 

I.1.6. Current approaches to therapy and pharmacologic responses 

Intracardiac (transluminal) implantable cardioverter defibrillator (ICD) 

ERS patients with survived sudden cardiac arrest or documented VF/VT episodes 

should receive an ICD (Class I recommendation). ICD has a Class IIb (may be considered) 

recommendation for individuals present with high-risk ERP plus a family history of sudden 

unexplained cardiac arrest, as well as for ERP-patients with syncope, seizures, or nocturnal 

agonal breathing plus family history of a definitive ERS (SCD or VT/VF) [Priori 2013].  

The therapy of asymptomatic ERP-patients requires careful consideration. Although 

they have an increased risk for VT/VF compared to the general population (odds ratio ~ 3:1), 

the overall arrhythmia-incidence in these patients is still low; whereas the armamentarium of 

tools for risk stratification is quite limited at present. Taking into account also the high 

complication rate of transluminal implantation and chronic presence of intracardiac and 

intravessel electrodes, an ICD is not recommended (Class III) for asymptomatic individuals 

displaying an isolated ERP [Priori 2013].  
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A completely subcutaneous ICD offers a novel alternative therapeutic option for infants, 

young patients or patients with active lifestyle or with severe complications of implanted 

devices. Although its application in the other J wave syndrome sibling, Brugada syndrome, 

met with a warm response, long-term clinical experience or data regarding its application in 

ERS patients are lacking at present.  [De Maria 2012, Griksaitis 2013, Rowley 2012, Bardy 

2010] 

 

Pharmacologic responses and therapy 

ICD implantation is not an appropriate solution for infants and young children, or for 

low-risk patients, or for patients residing in regions of the world where an ICD is out of reach 

because of economic factors. The unique goal of a pharmacologic approach to therapy is to 

produce an inward shift in the balance of currents flowing during the early AP-phases of 

ventricular epicardium. No wonder that most of the conventional antiarrhythmics, like beta-

blockers, verapamil, lidocaine/mexiletine and amiodarone are ineffective in supressing ERS-

related VF/VT episodes either as acute or long-term therapy [Haisaguerre 2009].  

In contrast, the adrenergic agonist isoproterenol has been found to be quite useful in 

reversing acute VT/VF and electrical storms, and quinidine ‒in its Ito-blocking concentration 

range‒ is effective in the long-term prevention of arrhythmic episodes and suppression of 

ERP [Nam 2008, Haisaguerre 2009, Aizawa 2013, Sacher 2014]. The cellular basis for their 

ameliorative effect has been described by our research team in a recent experimental study 

[Koncz 2013]: Both agents are capable of reducing dispersion of repolarization and abolishing 

P2R activity, via diminishing the AP notch and restoring AP dome (Figure 7) by their virtue 

of boosting ICa (beta-adrenergic stimulation) and blocking Ito current, respectively. According 

to the latest HRS/EHRA/APHRS guideline, isoproterenol have a Class IIa recommendation 

for the acute suppression of electrical storms. Quinidine received also a Class IIa designation 

for long-term prevention of arrhythmic episodes as adjuvant therapy to ICD. [Priori 2013]  
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Figure 7: Quinidine terminates VF via restoring normal AP morphology in a pharmacologic 

early repolarization model. Each column shows simultaneous action potentials recorded from 

the endocardium (Endo) and epicardium (Epi1 and Epi2) of arterially perfused canine left 

ventricular wedge preparation together with an ECG positioned along the transmural axis. 

Traces are grouped as in Figure 2. [modified from Koncz 2013] 

For many patients neither isoproterenol nor quinidine offers an optimal long-term 

solution. Isoproterenol is a drug for acute use, and by (concealed) co-existence of other 

cardiac conditions, its application can be disadvantageous [Kondo 2015]. Quinidine seems to 

be beneficial only in a relatively high concentration, frequently accompanied by 

gastrointestinal side effects. Moreover, none of the compounds are 100% efficient, and both 

can facilitate other types of proarrhythmic activities in certain cases. Therefore, there is still a 

pressing need to find new, safe and effective pharmacologic therapeutic options. Recent 

clinical case reports demonstrated the efficacy of two novel candidates to control ERS-related 

VT/VF: The multi-channel blocker bepridil [Aizawa 2013, Shinohara 2014, Kaneko 2014] 

and the phospho-diesterase-3 (PDE3) inhibitor Cilostazol, or the combination of the two 

[Iguchi 2013, Shinohara 2014, Katsumi 2014].  

ERS is not the only clinical entity embraced under the umbrella of the term J wave 

syndromes: Brugada syndrome (BrS) is also characterized by electrographic J waves (or ST 
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elevation), is associated with VT/VF and supposedly shares common cellular basis with ERS. 

Although overlap-phenotypes are also frequent, ERS mainly involves the LV, whilst BrS 

preferentially affects the right ventricular outflow tract (RVOT), so thus its ECG-sign is 

depicted in right precordial leads [Patocskai 2015, Antzelevitch 2016 CPC, Antzelevitch 2016 

Springer]. Lately, clinical studies tested the effect of ajmaline on early repolarization pattern 

[Roten 2012, Bastiaenen 2013]. Ajmaline is originally a Class I/A sodium channel blocker, 

but it exerts multiple effects also on other ion-channels including Ito. The drug is in wide-

spread clinical use to unmask Brugada syndrome, because it usually provokes or accentuates 

the isolated J wave/ ST-elevation in V1-V3 ECG-leads, the diagnostic ECG-pattern of the 

syndrome. It has also been observed that the compound aggravates (i.e. prolongs and splits) 

epicardial bipolar electrogram abnormalities [Sacher 2013]. Interestingly, the clinical works 

of Bastiaenen et al. [Bastiaenen 2013] and Roten et al. [Roten 2012] reported the opposite 

effect on early repolarization pattern: administration of ajmaline infusion suppressed the 

manifestation of mild ERP.  

 

I.1.7. Goals of the study  

The first part of the present study was aimed at investigating the electrophysiological 

basis for the latest advances experienced in the field of ERS and ERP. Our principal aims 

were to (1) assess the cellular electrophysiological mechanisms underlying the antifibrillatory 

effects of cilostazol in ERS; (2) on this basis, test the applicability of a more potent PDE-3 

inhibitor, milrinone; (3) compare their efficiency to the conventional choice of therapy, 

isoproterenol; (4) and to provide a direct test of the hypothesis that both PDE-3 inhibitors 

reduce Ito, significantly contributing to their ameliorative effect in J wave syndromes. (5) As 

an additional goal, our study is sought to resolve the controversy regarding ajmaline’s 

dissonant effect to augment or diminish the ECG pattern of J wave syndromes. 

 

I.2. Optical isomers of mexiletine and their co-administration with sotalol  

        Mexiletine is a Class I/B sodium channel blocker with similar cardiac actions to 

lidocaine but with good oral availability and longer half-life [Vaughan Williams 1998]. Its 

racemic form (containing both R-(-) and S-(+) enenatiomers) is in clinical use for the 

suppression of ventricular arrhythmias [Mason 1993, Singh 1990]. Racemic mexiletine use-

dependently reduces the magnitude of fast sodium current [Hering 1983], decreases the 
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maximal velocity (slope) of phase-0 depolarization (Vmax) with a relatively fast onset and 

offset kinetics [Campbell 1983, Varró 1985], markedly slows premature conduction 

[Hohnloser 1982], suppresses abnormal automacity in Purkinje fibers [Sarkozy 2007] and 

shortens the durations of action potentials (APD) [Arita et al. 1979; Yamaguchi et al. 1979]. 

Lately, mexiletine has attracted attention afresh, due to its recently described potency to 

effectively terminate acquired long QT syndrome (LQTS)-related torsades de pointes (TdP) 

tachyarrhythmias [Badri 2015] and lately emerged  application opportunities in the therapy of 

certain neurologic and myotonic disorders including neuropathic and chronic pain [O’Connor 

2009, Park 2010], amyotrophic lateralsclerosis (ALS) [Weiss 2016], dystrophic and non-

distrophic myotonia [Logigian 2010, Statland 2012] and Timothy syndrome [Gao 2013]. 

Mexiletine is reasonable to apply in combination with the drug sotalol, a beta-

adrenergic receptor blocker that also possesses Class III antiarrhythmic effects by blocking 

the IKr current and prolonging action potential duration (APD) and refractoriness. The 

combination of the two compounds has been reported to have an enhanced antiarrhythmic 

efficiency and less proarrhythmic side effects, especially TdP [Wagner 1987, Chézalviel 

Guilbert 1995, Ermakov 2014]. The benefits of this combination therapy have been attributed 

to the effect of mexiletine to counteract sotalol-induced APD-prolongation, early 

afterdepolarizations (EADs) and increased APD-range of premature action potentials [Varró 

1990].  

As mentioned above, mexiletine is administered as racemic compound. Although the 

differential effects of its stereoisomers on sodium current and excitability of skeletal muscle 

has been established more than twenty years ago  [De Luca 1995], studies directed to 

exhaustive comparison of the electrophysiological effects of the R-(-) and S-(+) mexiletine 

isomers on cardiac ventricular muscle preparations were scarce until the recent past: In a 

lately published work of our research team we have investigated the 

electrophysiological effects of the levo- and dextrorotatory isomers of mexiletine in isolated 

rabbit cardiac muscle [Gurabi 2017]. We have observed a slower dissociation (offset) 

kinetics for R-(-) mexiletine from sodium channels than that for the S-(+) enantiomer. 

The corresponding (second) part of the present study was directed to compare the 

effects of mexiletine’s R-(-) and S-(+) optical isomers on the basic electrophysiological 

parameters of canine papillary muscle, with special focus on their effect either to shorten 

normal action potential duration or to re-abbreviate APD-prolongation of an acquired cause 

(i.e. IKr-block by sotalol), thus making an attempt to predict their consequential potency to 

reverse LQTS-related TdP tachyarrhythmias in a comparative manner. 
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II. METHODS 

 

II.1. J wave syndrome models 

 

II.1.1. Coronary-perfused canine ventricular wedge preparation 

Our J wave syndrome models were created using coronary-perfused wedge preparation 

isolated from the hearts of adult mongrel dogs of either sex in conformance with the Guide for 

Care and Use of Laboratory Animals published by the National Institutes of Health (NIH 

publication No 85-23, Revised 1996) and approved by the Institutional Animal Care and Use 

Committee. 

Wedge preparations for modelling ERS were excised from the free lateral and the free 

inferior wall of the LV and were perfused via distal branches of the left anterior descending 

coronary artery, left marginal artery or left posterior artery. For Brugada syndrome model, 

preparations were excised from the free anterior wall of the RV, and were perfused through 

the right marginal branch of the right coronary artery (RCA). The preparations were then 

placed in a tissue bath and perfused with oxygenated Tyrode’s solution (mM): NaCl 129, KCl 

4, NaH2PO4 0.9, NaHCO3 20, CaCl2 1.8, MgSO4 0.5, glucose 5.5, pH 7.4. The solution was 

bubbled with 95% O2 and 5% CO2, and maintained at 37±0.5°C. The perfusate was delivered 

using a peristaltic pump (Masterflex peristaltic pump, Cole Parmer Instrument Co, Niles, 

Illinois, USA) at a constant flow rate at 8-14 ml/min (1–2ml/min per gram of tissue). The 

preparations were equilibrated in the tissue bath until electrically stable, usually 1 hour, while 

stimulated at a basic cycle length of 1000 ms using bipolar silver electrodes insulated except 

at the tips, applied to the endocardial (Endo) surface. 

 A transmural ECG was recorded using two electrodes consisting of AgCl half cells 

placed in the tissue bath, 1.0 to 1.5 cm from the epicardial (Epi) and Endo surfaces of the 

preparation (Epi electrode is connected to the positive input of the ECG amplifier). Together 

with the ECG, transmembrane action potentials (AP) were simultaneously recorded from two 

epicardial (Epi 1 and Epi 2) and one endocardial site with the use of floating-glass 

microelectrodes (DC resistance = 10 to 20 MΩ) filled with 2.7 mol/l KCl, each connected to a 

high-input impedance amplifier. Impalements were obtained from the Epi and Endo surfaces 

of the preparation at positions approximating the transmural axis of the ECG recording. Spike 

2 for Windows (Cambridge Electronic Design, Cambridge, England) was used to record and 

analyze the ECG and the AP. Together with the transmural ECG and AP recordings, bipolar 
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electrograms (EG) were recorded from the epicardial surface of the prepaprations. Bipolar 

surface electrograms were obtained using  quadripolar electrophysiology  catheters (St. Jude 

Medical Livewire™ 7F with 4 mm tip and 2-5-2 mm spacing), as well as Teflon-insulated 

(except at the tip) silver electrodes spaced 2 mm apart. Bipolar EG recordings were 

simultaneously band-pass filtered at 0.1-1000Hz, 10-1000Hz, 30-1000Hz and 10-250Hz, 30-

250 Hz and 100-250 Hz to differentiate low and high frequency (slope) changes. In figures 

where the band-pass filter setting of the EG is not specified, the traces recorded with 0.1-

1000Hz bandwidth are shown. The Epi and Endo surface of the preparation was mapped by 

using the transmembrane microelectrodes and the above mentioned electrophysiology catheter 

to reveal arrhythmic substrates. 

 

II.1.2. Pharmacologic models 

J wave syndromes were pharmacologically mimicked by targeting ion-channel currents 

affected by mutations associated with ERS and Brugada syndrome. In each model, the 

concentration of the mimicking compounds was increased until the stable induction of 

pronounced ERP or Brugada pattern, closely coupled premature ventricular complexes 

(PVCs), polymorphic tachycardia (VT) and/or fibrillation (VF). 

ERS model was created using a combination of agents that inhibit inward (depolarizing) 

currents and that increase outward (repolarizing) currents: The model was designed to mimic 

a gain of function of the transient outward potassium current (Ito) using the Ito agonist NS5806 

(7-15 µM) and a loss of function of calcium channel current (ICa) using the ICa blocker 

verapamil (2-3µM). Following stable induction of arrhythmogenesis, the PDE-3 inhibitors 

cilostazol and milrinone or isoproterenol were added to the coronary perfusate and then 

washed-out. In a second series of experiments, ajmaline alone was added to the coronary 

perfusate (without the previous administration of the provocative agents). 

A Brugada syndrome model was designed to mimic a gain of function of the ATP-

sensitive potassium current (IK-ATP) using the IK-ATP agonist pinacidil (1-5 µM) and a loss of 

function of fast sodium channel current (INa) using the Class IA INa blocker ajmaline (2-10 

µM). A second Brugada syndrome model was created in order to compare the inducibility of 

preparations displaying small or pronounced AP notch, by applying ajmaline (10 µM) in the 

presence and absence of the Ito agonist NS5806 (7 µM). 
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II.1.3. Voltage-clamp measurement of Ito 

Cardiomyocytes were isolated from the epicardium of the canine left ventricle as 

described in details by Zygmunt et al. [Zygmunt 1997]. Ito was measured at 36.5 ºC using the 

conventional whole-cell patch clamp techniques as specified by Hamill et al. [Hamill 1981]. 

Ito was analyzed using series of 370 ms voltage steps ranged from -40 mV to +40 mV, each 

preceded by a 40 ms prepulse to -30 mV to discharge the sodium current. Holding potential 

was maintained at -80 mV. Series resistance was compensated at ~80% and cells with an Rs 

value greater than 5 MΩ were discarded from analysis. External solutions contained (in mM): 

127 NaCl, 4 KCl, 10 HEPES, 1.8 CaCl2, 1.0 MgCl2, 10 glucose; pH=7.35 with NaOH. The 

pipette solution contained (in mM): 125 Potassium aspartate, 10 KCl, 10 NaCl, 1 MgCl2, 10 

HEPES, 5 EGTA, 5 Mg2ATP; pH = 7.2 with KOH.  

 

II.1.4. Measurements and calculations 

The area of the epicardial action potential notch (Figure 8A) was quantified by notch-

index (NI), calculated as the product of notch magnitude (NM) and notch duration (tph2-tPh0):  

NI = NM x (tph2-tph0). The epicardial NM was expressed as a percent of phase-0 amplitude: 

NM = (phase 1 magnitude / phase 0 amplitude) x 100.  The epicardial AP notch duration was 

calculated as phase 0 to phase 2 interval (tph2-tph0), measured as the time-difference between 

the first two peaks of the 1st derivative of the AP:  Notch duration = tph2 - tph0. The J wave area 

under the curve (AUC) was measured as illustrated in the ECG depicted in Figure 8A. The 

start of J-wave was defined using derivative of the ECG signal. In case of clear separation it 

was set at the time when this derivative is zero which corresponds to the notch between R 

wave and J wave. When this separation was not clearly visible, this time was set at the 

moment when the negative derivative attains its maximal value (i.e. minimal rate of decline) 

after the maximal downslope of the R wave. For a better basis of comparison, J wave area was 

normalized to R wave amplitude as follows: J wave AUCr = J wave AUC/ R wave amplitude.   

Epicardial dispersion of repolarization (EDR) was calculated as the difference of the 

epicardial AP durations at 90% of repolarization (APD90) in simultaneous recordings (Figure 

8B). Activation time (AT) difference was accounted for as follows:  EDR = (APD90Epi1 + 

ATEpi1) – (APD90Epi2 + ATEpi2). Transmural dispersion of repolarization (TDR) was calculated 

as the APD90 difference of endocardial (Endo) and epicardial (Epi) action potentials 

simultaneously recorded (Figure 8B). Activation time differences were accounted for as 

follows:  TDR = (APD90Endo + ATEndo) – (APD90Epi + ATEpi). 
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Figure 8: Calculation of AP and ECG parameters. A/ Top: Quantification of the AP notch 

area. The AP notch index (NI) was calculated as the product of phase 0 to phase 2 interval 

(tph2 – tph0) and notch magnitude (NM). NI = NM x (tph2 – tph0) (see in the “Methods” section). 

A/ Bottom: Definition of J wave AUC with the assistance of 1st derivative of the ECG (see in 

the “Methods” section). B: Definition of epicardial dispersion of repolarization (EDR) and 

transmural dispersion of repolarization (TDR). [from Patocskai 2016 Heart Rhythm] 

 

 

II.2. Stereoisomers of mexiletine and their co-administration with sotalol 

 

II.2.1. Isolated canine papillary muscle preparation 

Adult mongrel dogs were anaesthetized by using sodium pentobarbital (30 mg/kg) 

administered intravenously. After the hearts were removed through right lateral thoracotomy, 

the right papillary muscles were excised and immediately immersed into tissue bath and 

allowed to equilibrate for at least one hour, while superfused (flow rate 4–5 ml/min) with 

Locke's solution containing (in mM): NaCl 120, KCl 4, CaCl2 2, MgCl2 1, NaHCO3 22 and 

glucose 11. The solution was maintained at 37 °C and bubbled with 95% O2 and 5% CO2, so 

thus its pH ranged between 7.40 and 7.45.  During the equilibration period, the ventricular 

muscle tissues were stimulated at a basic cycle length of 1000 ms. Electrical pulses of 2 ms in 
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duration and twice diastolic threshold in intensity were delivered to the preparations through 

bipolar platinum electrodes. Transmembrane potentials were recorded with the use of glass 

capillary microelectrodes filled with 3 M KCl (tip resistance: 5 to 15 MΩ). The 

microelectrodes were coupled through an Ag–AgCl junction to the input of high impedance, 

capacitance-neutralizing amplifier (Experimetria 2004). Transmembrane AP recordings were 

processed by using APES software designed for instant (on-live) calculation and display of 

the following parameters: resting membrane potential, action potential amplitude, action 

potential duration at 10%, 25%, 50% and 90% repolarization and the maximum rate of rise of 

the action potential upstroke (Vmax).  The preparations were stimulated with 1000 ms basic 

cycle length. After obtaining control measurements, the preparation was superfused either 

with 20 μM sotalol, or 20 μM R-(-)mexiletine or S-(+) mexiletine. In a second series of 

experiments, control recordings were followed by the combined application of sotalol and R- 

or S-mexiletine. 

 

II.3. Statistical analysis 

Results are presented as mean ± S.E.M. Statistical analysis was performed using paired 

Student’s t-test  and one-way ANOVA for repeated measurements followed by pairwise 

comparisons corrected using the Holm-Sidak method, as appropriate.  Statistical significance 

was considered at p< 0.05. 

 

III. RESULTS 

III.1 J wave syndromes 

III.1.1. Pharmacologic induction of early repolarization pattern  

ERP was induced by adding the transient outward potassium current (Ito) agonist 

NS5806 (7-15 μM) and the calcium channel blocker verapamil (2-3 µM) to the coronary 

perfusate, leading to accentuation of the action potential notch in epicardium but not 

endocardium. This heterogeneous accentuation resulted in augmentation of the 

electrocardiographic J wave secondary to amplification of the transmural voltage gradients 

(Figures 9-11). Increased concentrations of provocative agents caused a further increase of J 

wave area and notch-index (Figures 9-12; Table 2), leading to all-or-none repolarization at the 

end of phase 1 of the Epi AP (Figures 9-11). Loss of the Epi AP dome at some sites but not 

others resulted in a prominent increase in epicardial dispersion of repolarization (EDR) and 
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transmural dispersion of repolarization (TDR) (Figures 9-12; Table 2). The voltage gradient 

between the abbreviated Epi AP and the relatively normal Endo AP produced a prominent ST 

segment elevation (Figures 9-11). A prominent APD gradient developed between sites at 

which the dome was maintained and where the dome was lost, thus creating a vulnerable 

window within epicardium as well as between epicardium and endocardium across the left 

ventricular wall.  Propagation of the AP dome from regions at which it was maintained to 

regions at which it was lost, caused local re-excitation via a P2R mechanism, leading to the 

development of closely coupled extrasystoles and polymorphic VT/VF (Figures 9-11). 

Induction of ERP was observed in all experiments with. Table 2 and Figure 12 show 

the effect of the provocative agents to significantly increase notch-index, J wave area, EDR 

and TDR compared to the controls.  PVT and/or VF developed in 26 of 28 LV wedge 

preparations, compared with 0 of 28 cases under control conditions.  

 

 Notch-Index EDR (ms) TDR (ms) J-w-AUCr 

(mV x ms) 

Epi1 

APD90 (ms) 

Epi2  

APD90 (ms) 

Endo 

APD90 (ms) 

Cilostazol        

Control 199.07±44.9 16.2±8.2 17.8±4.3 4.3±2.0 203.6±7.8 182.8±5.6 217.7±5.1 

NS (7-15 µM) 

+Ver. (2-3µM) 

 

4863.6±669.4* 137.9±8.1* 111.8±13.4* 56.6±12.2* 252.2±7.8† 109.4±5.6* 237.2±14.3¶ 

+ Cilostazol  

(10µM) 

1041.7±124.2* 11.9±3.8* 21.3±3.8* 15.0±4.0* 218.4±7.5§ 205.3±4.4* 235.6±7.3¶ 

Washout 

Cilostazol 

4809.8±590.7* 123.3±10.6* 106.9±11.2* 53.0±6.2* 252.7±10.1§ 121.8±9.4* 237.3±11.5¶ 

        

Milrinone        

Control 198.2±287 17.3±9.3 17.8±3.8 4.0±2.5 215.7±6.9 194.8±5.9 227.3±5.92 

NS  (7-15 µM) 

+Ver. (2-3µM) 

4732.0±764.8* 143.0±12.2* 110±7.9* 68.4±19.5* 250.1±14.1§ 104.9±8* 230.1±4.7¶ 

+Milrinone 

(2.5µM) 

1181.8±170.1* 3.9±0.7* 11.6±3.7* 12.268±1.5* 213.3±6.1¶ 212.6±6.6* 232.6±5.9¶ 

Washout 

Milrinone 

4668.5±583.6* 150.4±15.1* 115.6±12.4* 51.7±2.6†  267.8±10.7† 114.2±9.23* 243.5±6.3¶ 

        

Isoproterenol        

Control 176.8±19.9 13.5±5.6 14.9±5 1.6±0.4 206.5±6.9 190.7±5.9 213.4±4.9 

NS  (7-15 µM) 

+Ver. (2-3 µM) 

4114.7±400.8* 123.9±11.9* 88.9±5.2* 46.0.0±4.9.* 234.5±12¶ 111.2±9.3* 198.5±6.3¶ 

+Iso.  (1µM) 406.9±65.6* 5.9±1.6* 13.6±4* 7.8±2.7* 164.1±8.3* 158.6±7.7* 179.±7.8¶ 

Washout Iso 3628.6.±795.9* 87.7±25.4* 67.1±15.0* 39.5±8.2* 207.9±22.6¶ 116.0±14.3§ 195.4±11.5¶ 
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Table 2: Effect of cilostazol, milrinone and isoproterenol on electrophysiological parameters 

in an experimental model of early repolarization syndrome. NS=NS5806; Ver.=Verapamil; 

Iso=Isoproterenol; J-w-AUCr=J wave area (normalized). Data are presented as mean ± SEM; 

* p=<0.001; † p=<0.004; §: p<0.05; ¶ p>0.05.  n=7 for cilostazol, n=6 for milrinone, n=7 for 

isoproterenol (Epi1 represents the longer, Epi2 the shorter epicardial APD90).[from Patocskai 

2016, HR] 
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Figure 9: Ameliorative effect of cilostazol (10µM) in an arterially perfused canine left 

ventricular model of early repolarization syndrome. Each panel shows simultaneously 

recorded epicardial (Epi1, Epi2) and endocardial (Endo) action potentials, together with a 

pseudo-ECG. A: Control. B: Recorded 20 min and 30 min after addition of verapamil (2 μM) 

and NS5806 (7 μM) to the coronary perfusate. C: 15 minutes after addition of 10 M 

cilostazol to the coronary perfusate. D: Recorded 15 min after withdrawal of cilostazol.  

[from Patocskai 2016 Heart Rhythm] 

 

 

 

 



33 
 

III.1.2. Ameliorative effects of cilostazol, milrinone and isoproterenol 

Addition of cilostazol (10 μM), milrinone (2.5 μM) or isoproterenol (0.1-1 μM) to the 

coronary perfusate restored the AP dome at all epicardial sites, reduced epicardial and 

transmural dispersion of repolarization, decreased J point and ST segment elevation and 

terminated all arrhythmic activity. Figures 9-11 show representative recordings of APs from 

LV wedge preparations obtained under baseline conditions, after NS5806 (7-15 μM), + 

verapamil (2-3 µM), + PDE-3 inhibitor (10 µM cilostazol or 2.5 µM milrinone) or the 

sympathomimetic agent isoproterenol (0.1-1 µM) and after washout of the therapeutic 

compounds. 

 The effects of milrinone, cilostazol and isoproterenol on epicardial AP notch index, J 

wave area, EDR and TDR as well as APD90 values for Epi1, Epi2 and Endo are summarized 

in Figures 12 and Table 2. All three agents, by virtue of their action to produce an inward shift 

of balance of currents, reversed the effect of the provocative agents, restoring all 

electrophysiologic parameters towards normal. Cilostazol (10 µM), milrinone (2.5 µM) and 

isoproterenol (0.1-1 µM) restored the AP dome at all epicardial sites, thus reducing notch 

index, J wave area, as well as epicardial and transmural dispersion of repolarization  (Figures 

9-12 and Table 2).  

Figures 9-12 illustrate the development of polymorphic VT following exposure to 

NS5806 and verapamil and the effect of cilostazol (10 μM), milrinone (2.5 μM) and 

isoproterenol (0.2 μM) to normalize the ECG and to terminate all arrhythmic activity. 

Cilostazol (10 M) abolished VT/VF in 7 of 8 preparations, whereas milrinone (2.5 M) 

abolished VT/VF in 6 out of 7 preparations, and isoproterenol terminated VT/VF in 7 of 8. In 

all cases, washout of the drug resulted in reappearance of arrhythmic activity (Figures 9-11).  



34 
 

Epi2

Epi1

Endo

Pace

ECG

200 ms

4  m
V

4  m
V

A B D EC

20 s+ NS. 5 µM

200 ms

F

 

Figure 10: Ameliorative effect of milrinone (2.5µM) in an arterially perfused canine left 

ventricular model of early repolarization syndrome. Each panel shows simultaneously 

recorded epicardial (Epi1, Epi2) and endocardial (Endo) action potentials, together with a 

pseudo-ECG.  A: Control. B: Traces recorded 40 min after the addition of Ca2+-channel 

blocker verapamil (2µM) and Ito-agonist NS5806 (7 µM). C: 15 minutes after raising NS5806 

concentration to 12 µM. D: 10 minutes after addition of milrinone 2.5µM to the coronary 

perfusate. E: 20 minutes after the discontinuation of milrinone infusion.  F: 20 seconds later. 

[from Patocskai 2016 Heart Rhythm]  
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Figure 11: Ameliorative effects of isoproterenol (0.2 µM) in an arterially perfused canine 

left ventricular model of early repolarization syndrome. Simultaneously recorded epicardial 

(Epi1, Epi2) and endocardial (Endo) action potentials, together with pseudo-ECG positioned 

in the transmural axis. A: Control. B: 20 min after addition of the Ito agonist NS5806 (12µM) 

to the coronary perfusate. C: After 16 min exposure time of verapamil (2µM), in addition to 

NS5806 (12µM).D: 3 minutes later.  E: 5 min after the start of isoproterenol (0.2µM) 

infusion. F: 5 min after the discontinuation of isoproterenol infusion. [from Patocskai 2016 

Heart Rhythm] 

 

 

       

Figure 12:  Electrophysiological effect of cilostazol, milrinone and isoproterenol on early 

repolarization model. Left panels: Notch-index (left) and normalized J wave area (right) at 

each experimental step. In each panel: a. Control; b. Recorded after application of the Ito 

agonist NS5806 and ICa antagonist verapamil; c. Recorded after addition of cilostazol 10µM 

(top row), milrinone 2.5µM (middle row), or isoproterenol 1µM (bottom row); d. Recorded 

after wash-out of drugs. Data are presented as mean ± SEM. Significance is shown relative to 

previous experimental step: * p=<0.001; †p=<0.004.  (n = 7 for cilostazol; n = 6 for 

milrinone; n = 7 for isoproterenol). Right panels: Epicardial (EDR, left) and transmural 

(TDR, right) dispersion of repolarization at each experimental step. In each panel: a. Control; 

b. Recorded after application of the Ito agonist NS5806 and ICa antagonist verapamil; c. 
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Recorded after addition of cilostazol 10µM (top row), milrinone 2.5µM (middle row), or 

isoproterenol 1µM (bottom row); d. Recorded after wash-out of drugs. Data are presented as 

mean ± SEM. Significance is shown relative to previous experimental step:  * p=<0.001 (n = 

7 for cilostazol; n = 6 for milrinone; n = 7 for isoproterenol). [from Patocskai 2016 Heart 

Rhythm] 

 

III.1.3. Effect of cilostazol and milrinone to reduce Ito 

The next step in our study was the evaluation of the effect of cilostazol and milrinone 

on transient outward potassium current of canine left ventricular epicardial myocytes using 

whole cell patch clamp techniques. Both PDE3 inhibitors led to a markedly reduced 

macroscopic Ito current, contributing to their ameliorative effect in J wave syndrome models. 

It should be noted that milrinone exerted a similar reduction in peak Ito current density to 

cilostazol, but already in a much lower concentration.  

Results are shown in Figure 13. Left block represents the effect of cilostazol (10 µM), 

right block shows the effect of milrinone (2.5 µM). On each block, panels “A” show 

representative macroscopic Ito traces recorded under control conditions and reduction of the 

current after addition of cilostazol (10 µM) or milrinone (2.5 µM). Peak Ito was evaluated 

using a square depolarization pulse from -40 mV to +40 mV applied once every 5 seconds. 

Panels “B” represent the effect of cilostazol (10 µM) and milrinone (2.5 µM) on the current-

voltage (I-V) relationship. Panels “C” show the normalized Ito current density at +20 mV and 

+40 mV in control condition and after the addition of cilostazol or milrinone. At +40 mV, 

cilostazol (10 µM) reduced Ito by 44.4 % (n=6, p<0.02), whereas milrinone (2.5 µM) reduced 

Ito by 40.4 % (n=8, p<0.02). 
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Figure 13: PDE3 inhibitors reduce the transient outward potassium current (Ito). 

Left block: effect of cilostazol (10 µM). Right block: effect of milrinone (2.5 µM).   

On both blocks: A: Representative macroscopic Ito current traces for control and cilostazol 

(10 µM) or milrinone (2.5 µM). B. Current-voltage (I-V) relationship for normalized Ito 

density in control and in response to 10 µM cilostazol (n=6 for each) or 2.5 µM milrinone 

(n=8 for each). C. Bar diagram showing Ito (mean ± SEM) following a step to +20 and +40 

mV in presence (red bars) and absence (black bars) of cilostazol or milrinone.  Results are 

shown as mean ± SEM. [from Patocskai 2016 Heart Rhythm] 

 

III.1.4. Bidirectional effects of ajmaline on J wave syndrome pattern 

 

The size of baseline AP notch and J wave showed a relative high variability in our 

preparations (e.g. apical vs. basal LV and RV vs. LV), providing us a great opportunity to 

diversify the behavior of J waves in response to ajmaline depending on the intrinsic level of 

the tissue’s AP notch.  In preparations displaying small basal AP notch (Figures 14B and 15), 

ajmaline decreased the area of J wave and AP notch, presumably due to the multiple effects 

on various ion currents including Ito, as well as widening of the QRS, thus engulfing the J 

wave. These observations are consistent with clinical studies reporting improvement in the 
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ECG manifestation of early repolarization pattern following ajmaline-infusion [Bastiaenen 

2013, Roten 2012]. For quantifying this association we compared the AP notch and J wave 

area of “inducible” and “non-inducible” cases of Brugada model experiments. Preparations 

that failed to develop the Brugada pattern (BrP) and arrhythmic activity (“non-inducible”), 

either spontaneously or in response to PES, displayed significantly lower J wave and AP 

notch area at baseline and after the addition of the provocative agents, than those in which the 

provocative agents were successful in inducing the ECG and arrhythmic manifestations of 

BrS (“inducible”) (Fig. 14A). At baseline, inducible vs. non-inducible values were 4.5±1.1 vs. 

1.1±0.2 (p=0.0238) for J wave area, and were 9.4±1.5 vs. 2.4±0.3 (p=0.002) for AP notch area 

(Figure 14C-D). 

To confirm these findings, we compared the effect of high dose ajmaline (10µM) in the 

absence and presence of the Ito agonist NS5806, in the same preparations. The results 

supported our conclusion that the effect of ajmaline is dependent on the magnitude of AP 

notch prior to introduction of ajmaline. This also provides an explanation for the RVOT-

predominance of Brugada syndrome since this region of the heart displays the most prominent 

AP notch.  As illustrated in Figure 15 and 16B, ajmaline (10µM), when applied alone, slightly 

reduced the size of the J wave and AP notch. Ajmaline, in this setting, produced a mild effect 

on the ST segment and epicardial electrogram despite prolongation of QRS and slowing of 

transmural conduction (Figure 16B). The effect was reversible upon washout (Figure 16C). 

When the epicardial AP notch was accentuated by pre-treatment with the Ito agonist NS 5806 

(7 µM) (Figure 16D), addition of ajmaline (10µM) led to marked accentuation of Epi AP 

notch, leading to the development of abnormal electrogram activity, Type I ST-elevation and 

concealed P2R. The appearance of abnormal electrogram activity was secondary to the 

inhomogeneous accentuation of the AP notch, loss of the AP dome and P2R (Figure 16E-F). 

This association was further supported by the observation that at the maximal effect of high-

dose ajmaline, loss of the epicardial AP dome throughout the entire epicardium and 

subepicardium resulted in loss of the fractionated EG activity, despite the further prolongation 

of QRS and further slowing of transmural conduction (Figure 16G).   
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Figure 14: Inducibilty of aggravated J wave and phase 2 reentry depends on the magnitude of 

the epicardial action potential notch and consequentional J wave at baseline. Pharmacologic 

model of pinacidil + ajmaline in arterially perfused ventricular wedge praparation.  Panels A 

and B: Each column shows action potentials (AP) simultaneously recorded from an 
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endocardial (Endo) and 2 epicardial (Epi1 and Epi2) sites together with  a bipolar epicardial 

electrogram (Bipol. Epi EG) and an ECG recorded accross the bath. A: Preparation exhibiting 

a large spike and dome action potential morphology at baseline (control). The provocative 

agents induce a BrS ECG and concealed phase 2 reentrry giving rise to distinct late potentials 

(Bipol. Epi EG). B: Preparation exhibiting a relatively small spike and dome action potential 

morphology at baseline. The provocative agents do not induce a BrS ECG, but diminish the J 

wave. Panels C and D: Comparison of epicardial AP notch arear and J wave arear of 

preparations vulnerable (inducible) and non-vulnerable (non-inducible) to the induction of 

BrS pattern and arrhythmias. n=6 for inducible and n=5 for non-inducible preparations. C: 

Parameters at baseline. Inducible preparations showed an avarege 3.9 fold higher AP notch 

and 4.3 fold higher J wave  area at baseline, compared to the non-inducible ones (inducible vs 

noninducible: p=0.002 and p=0.024  for notch arear and J wave arear, respectively). D: After 

the addition of provocative agents, inducible preparations showed a pronounced increase 

(p=0.004 vs baseline), whereas non-inducible peparations showed a significant decrease 

(p=0.017 vs baseline) in both J wave and AP notch area. The provocative agents produced an 

avarage 60.5 fold higher notch area and 88.7 fold higher J wave area in inducible compared to 

non-inducible preparations (inducible vs. non-inducible: p<0.001 and p=0.004 for notch area 

and J wave arear, respectively).[from Patocskai 2016, JACC-EP] 
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Figure 15: Ajmaline decreases early repolarization pattern displaying small J waves. 

Canine left ventricular wedge preparation. Traces are denoted as in figure 14. Prolongation of 

QRS duration and diminished epicardial action potential notch led to disappearence of the J 

wave. The effects were reversible upon washout. These results explain the clinical 

observations of Bastiaenen et al. and Roten et al. [Bastiaenen 2013, Roten 2012], who 

reported improvement of early repolarization pattern in response to ajmaline. [from Patocskai 

2016 JACC-EP] 
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Figure 16: The basal level of Ito-mediated action potential (AP) notch determines the dual effects of 

ajmaline to mask or accentuate the J wave. Each column represents simultaneous recordings of 

arterially perfused right ventricular wedge preparation. Subendo/Mid: APs from the 

subendocardium/midmyocardium. Bipolar surface-electrograms (Bip. Epi EG) were recorded from 

the epicardium using 3 different low cut filter settings (10Hz, 30Hz and 100Hz) and 250Hz “high 

cut” filter. Other traces are as described in Figure 14.  When AP notch was small (A), 10 M 

ajmaline produced a decrease in J wave -and AP notch area (B). The effect was reversible upon 

wash-out (C). However when the AP notch was amplified using the Ito agonist NS5806 (D), the 

same concentration of ajmaline caused a marked accentuation of the J wave appearing as an ST 

segment elevation(E, F, G). Fragmented electrogram activity developed progressively as the 

repolarization defects became more pronounced and heterogeneous (D, E, F). Pronounced AP notch 

(without re-entry) produced delayed potentials in a lower frequency range (D), whereas phase 2 

reentry depicted as “high-frequency” spike (E, F). After 15 min of ajmaline, loss of the action 

potential dome occurred throughout the preparation which led to disappearance of the late potentials 

(G). [from Patocskai 2016 JACC-EP]  

 

III.2. Effects of R- and S-mexiletine alone and in combination with sotalol 

The effects of R-(-) and S-(+) mexiletine (20 µM) alone or in co-administration with sotalol 

(20 µM) on the AP parameters of dog papillary muscles paced at a stimulation cycle length of 1000 

ms are summarized in Table 3, and illustrated in Figures 17 and 18 with representative traces. 

None of these treatments changed the maximum diastolic potential (MDP), AP amplitude (APA), 

maximum rising velocity of the AP upstroke (Vmax) or conduction time (CT).  

     In single application, sotalol significantly lenghtened AP duration measured at 90% of 

repolarization (APD90), whereas both enantiomers of mexiletine reduced Vmax and mildly 

shortened APD90. When co-administered with sotalol, both R-(-) and S-(+) mexiletine were capable 

of significantly moderating sotalol-induced AP-prolongation in a similar extent (p=0.026 for 

ΔAPD90(R-mexiletine + sotalol) vs. ΔAPD90(Sotalol), p=0.007 for ΔAPD90(S-mexiletine + sotalol) vs. ΔAPD90(Sotalol) 

and p=0.2633 for ΔAPD90(R-mexiletine + sotalol) vs. ΔAPD90(S-mexiletine + sotalol). Significant differences 

between the effects of mexiletine’s dextro- and levo-rotatory isomers on the studied 

electrophysiological parameters could not be observed. 

 



44 
 

 

Table 3: The electrophysiological effects of sotalol, R-mexiletine, S-mexiletine and their 

combination in canine papillary muscle preparations at basic cycle length of 1000 ms. Results are 

mean ± S.E.M. *p<0.05 vs Control. MDP, maximum diastolic potential; APA, action potential 

amplitude; APD50, action potential duration at 50% of repolarization; APD90, action potential 

duration at 90% of repolarization; Vmax, maximum rising velocity of the action potential upstroke; 

ERP, effective refractory period; CT, conduction time; (n), number of observations (i.e., number of 

preparations obtained from different animals). 

 

 

Figure 17: Effects of the two enantiomers of mexiletine on action potential duration (APD). 

Representative traces recorded from superfused canine papillary muscle. Both R- and S-mexiletine 

caused a moderate shortening in APD.    
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Figure 18:  Representative traces depicting the effect of sotalol applied alone (A) or combined with 

R-mexiletine (B) and S-mexiletine (C) on the morphology of canine papillary muscle action 

potential. Both enantiomers of mexiletine were able to moderate the prolonging effect of sotalol. 

 

IV. DISCUSSION 

 

IV.1 J wave syndromes 

IV.1.1. Mechanisms underlying the action of cilostazol, mirinone and isoproterenol 

Our data indicates that both PDE3-inhibitors, cilostazol and milrinone, exert significant Ito-

blocking action, pointing to this as an important mechanism for their ameliorative effect in ERS, in 

addition to their previously described virtue of augmenting ICa [Atarashi 1998, Endoh 1986, Matsui 
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1999, Cone 1999]. We measured a 44.4% and 40.4 % reduction of Ito at +40 mV in response to 10 

µM of cilostazol and 2.5 µM of milrinone, respectively, in LV epicardial cardiomyocytes. The 

much greater potency of milrinone is consistent with the results of previous studies reporting that 

the same concentration of milrinone produces a greater increase in cytosolic cyclic adenosine 

monophosphate than does cilostazol [Cone 1999, Shakur 2002] possibly because milrinone blocks 

both PDE-3 and PDE-4 [Shakur 2002]. Ito has previously been reported to be regulated by the 

cAMP/ phosphokinase-A pathway, suggesting that inhibition of Ito may also apply to isoproterenol 

(and other sympathomimetics) in addition to its boosting effect on ICa via direct stimulation of the 

beta adrenergic receptors. Although there is a relative consensus in that α1-adrenoceptor stimulation 

reduces Ito current via Gαs-mediated pathway [Apkon 1988, Ravens 1989, Martinez 2000, Gallego 

2005], the net effect of acute β-adrenergic or general sympatethic stimulation under physiologic 

conditions is yet to be clarified [van der Heyden 2006]. Future experiments should be directed to 

test this hypothesis in human ventricular cardiomyocytes. It is noteworthy that cilostazol, milrinone 

and isoproterenol all produce positive inotropic and chronotropic effects. The elevation in heart rate 

would also be expected to indirectly decrease Ito because the current is relatively slow to recover 

form inactivation. However, it also should be noted that all of these agents have the potential to 

enhance not only automaticity, but triggered activity as well, and thus may promote extrasystolic 

activity that may have unfavorable outcomes in certain cases [Kondo 2015]. 

Lately published studies from our group have provided evidence in support of a preferential 

accentuation of the AP notch in LV epicardium as the cellular basis for electrographic and 

arrhythmic manifestations of ERS [Koncz 2013]. Isolated accentuation of the epicardial but not 

endocardial AP notch leads to the development of transmural gradients across the LV wall and 

thereby the appearance of prominent J point elevation, distinct J waves, or slurring of the 

descending limb of the QRS complex.  

In the present study, we pharmacologically modeled the genetic defects and attendant ionic 

changes with the use of verapamil to block ICa and NS5806 to augment Ito.  NS5806-induced 

augmentation of Ito sensitized our preparations to the effects of verapamil consistent with the 

association of a higher density of this current in the inferior wall with a higher arrhythmic risk. 

Addition of verapamil further accentuates the AP notch, leading to the development of a more 

prominent J point and ST segment elevation. Increased concentration of these agents can then elicit 

all-or-none repolarization, leading to loss of the AP dome at some epicardial sites but not others 

(Figure 6), resulting in an epicardial dispersion of repolarization (EDR) (Figure 12; Table 2). 

Propagation of the AP dome from sites at which it was maintained to sites at which it was lost 

created a local re-excitation via a phase 2 reentry mechanism within the left ventricular epicardium. 
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Loss of the dome in the epicardium also creates a transmural dispersion of repolarization (TDR) 

giving rise to a vulnerable window across the ventricular wall which, when captured by a closely 

coupled extrasystole generated in the epicardium, induces VT/VF (Figures 9-11). 

 

IV.1.2. Mechanisms underlying the effect of ajmaline to unmask or blunt J wave  

 The term J wave syndromes includes ERS and Brugada syndrome, because their 

electrocardiographic and arrhythmic manifestations are associated with accentuation of J waves. By 

testing the effects of ajmaline on ERS and Bugada syndrome models, our results point out again the 

crucial role of epicardial action potential notch in the pathophysiology of J wave syndromes. 

Depending on the size of the notch, ajmaline is capable of both diminishing and accentuating the 

pattern by its virtue to block both depolarizing currents like INa and ICa and repolarizing currents 

like Ito and IK-ATP [Bebarova 2005].  In preparations exhibiting a relatively small action potential 

notch, ajmaline mildly diminished ERP (Figure 15) and failed to produce any sign of BrS (Figures 

14B and 16B).  These observations explain why ajmaline produces ST-elevation exclusively in the 

right precordial ECG leads of BrS patients (Figures 14A, 16E-G), but fails to provoke a Brugada 

pattern in other ECG-leads or in healthy subject, or in individuals with early repolarization pattern 

(Figure 15). 

When the action potential notch was great enough, in addition to ajmaline’s accentuating 

impact on Brugada syndrome ECG pattern, the drug prolonged the delay of late potentials in the 

epicardial bipolar electrogram recordings, as these post-QRS potentials were the depictions of the 

delayed 2nd upstrokes of the epicardial APs and phase 2 reentries. The splitting and fragmentation of 

the epicardial bipolar EG and appearance of late potentials following the addition of ajmaline is 

very similar to those recorded by Sacher et al. in the epicardium of the RVOT of a BrS patient 

[Sacher 2014]. Although their report interpreted this phenomenon as a proof of depolarization 

abnormality, in our experiments, ajmaline exerted these effects via accentuation of the AP notch 

and induction of P2R, and not via a conduction slowing (Figures 14A and and 16E-F). In support of 

this association, abnormal EG activity disappeared when the second upstroke of the AP and P2R 

has been lost homogeneously throughout the entire epicardium and subepicardium, despite further 

slowing of conduction (Figure 16-G). Our conclusion that late potentials were the consequence of 

repolarization defects was further verified by their behavior in response to cilostazol, milrinone and 

isoprotenol: all three agents concordantly suppressed the fragmentation, delay and amplitude of 

post-QRS potentials, secondary to their virtue of reducing of AP notch and terminating P2Rs. 

Although repolarization models can recapitulate and explain every aspect of the syndrome, we 

have to emphasize that our studies are not aimed at proving the exclusivity of repolarization 
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hypothesis. There is no doubt that depolarization abnormalities can contribute to development of J 

waves and related arrhythmogenesis [Meijborg 2016, Hoogendijk 2013], and several factors can 

modulate the transmural heterogeneity and the degree of both repolarization and depolarization 

abnormalities, including electrotonic coupling, “source-sink” relationship, transmural differences in 

tissue resistivity and transmural and regional distribution of other ion channels and gap junctions 

[Yan 1998, LeGrice 1995, Liu 1995, Nguyen 2012, Xie 2010, Poelzing 2004, Yamada 2004, 

Gaborit 2007, Szabo 2005, Szentandrassy 2005, Rosati 2006, Soltysinska 2009, McKinnon 2016]. 

From one point of view, accentuated AP notch and phase 2 reentry, in turn, can be interpreted as a 

disruption between the two main depolarizing “pulses” of an AP, produced by a robust 

repolarization “pulse”. In this aspect, regardless of the indirect or direct cause, it would be 

thoughtlessness to exclude the potential role of either repolarization or depolarization abnormality 

in the pathophysiology of J wave syndromes. 

IV.1.4. Limitations of the study 

We designed our pharmacologic models to mimic the genetic defects associated with ERS 

(or Brugada syndrome) and to test the effects of agents with therapeutic and unmasking potentials. 

To assay the effects of these compounds on every single known mutation associated with J wave 

syndromes is clearly beyond the scope of our (or any) study. Our pharmacological models may not 

perfectly mimic the phenotypic manifestation of every mutation, but they do serve to recapitulate 

the net result of the ion-current imbalance created and thus provide a reasonable platform to test the 

effects of PDE inhibitors, beta adrenergic agents or sodium channel blockers. 

 It would certainly be preferable to study the effect of these agents in transgenic animal 

models too, but none at present are capable of recapitulating the arrhythmic and electrographic 

manifestations of J wave syndromes. In a recent study, Park et al attempted to mimic Brugada 

syndrome phenotype in Yucatan minipigs by heterozygous expression of a nonsense mutation in 

SCN5A (E558X) identified in a child with Brugada syndrome [Park 2015]. Myocytes isolated from 

the SCN5AE558X/+ pigs showed a loss of function of INa. Various conduction abnormalities were 

observed but not a BrS phenotype, not even after flecainide-test, because pigs lack the Ito current 

and AP notch in ventricular cardiomyocytes. These observations point to the crucial importance of 

Ito in the development of J wave syndrome phenotype. Transgenic mice are not helpful because the 

fundamental differences in their repolarization characteristics.  

It might also be contended that arterially perfused wedge preparations do not cover the 

complete anatomical and electrical structure of the heart and thus may not fully recapitulate the 
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disease phenotype, i.e., artificial stimulation and the lack of the His-Purkinje system may alter the 

normal activation pattern.  

However, all these possible objections may be counter-argued by the fact that the arterially 

perfused ventricular wedge preparation is currently the only model capable of recapitulating all 

features of ERS and BrS (e.g., response to pharmacologic agents, response to ablation, response to 

changes in heart rate and electrographic and arrhythmic manifestations). This model has pioneered 

in permitting researchers to elucidate the cellular mechanisms and thus to recommend novel 

therapeutic approaches in several cardiac diseases. Studies conducted on these models were the first 

to recommend the use of quinidine and isoproterenol for the treatment of the J wave syndromes 

[Yan 1999], which are widely used in the clinical practice today to deal with J wave syndrome-

associated electrical storms or as an adjunct to ICD therapy. These models have also identified ECG 

markers such as Tpeak-Tend and QT/RR relationships that have proved useful in risk stratification 

of patients with LQTS, BrS and SQTS [Extramiana 2004, Antzelevitch 2006, Antzelevitch 2007, 

Patel 2008,].  

As with any study involving experimental animal models, extrapolation of the data to the 

clinic must be approached with great caution. 

 

 

IV.2. Enantiomers of mexiletine and their co-administration with sotalol 

 

Previously [Gurabi 2017] our research group analysed the effects of R-(-) and S-(+) 

enantiomers of mexiletine on AP parameters in rabbit right ventricular papillary muscle 

preparations. We have found that R-(-) optical isomer displays a tendency to a more potent 

inhibitory effect on Vmax when compared to the S-(+) stereoisomer.  

In our present work, our primary aim was to compare the ability of the two enantiomers to 

abbreviate APD, especially when APD is abnormally prolonged secondary to an „acquired” 

condition, i.e. IKr-block by sotalol. A possibly more pronounced AP shortening effect of one of the 

enantiomers would have a remarkable clinical impact. A recent study by Badri et al. reported that 

mexiletine is a promising treatment approach to terminate refractory TdP tachyarrhthmia in several 

acquired forms of LQTS [Badri 2015]. A mexiletine enantiomer with higher abbreviating-potency 

would supposedly offer a more effective therapeutic option for these individuals. 

In our recent study, performed on isolated canine papillary muscle preparation, significant 

differences in the effects of mexiletine’s levo- and dextrorotatory isomers could not be observed, 

suggesting that the separate application of neither enantiomer offers a therapeutic advantage 
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compared to the use of the racemic form. However, it has to be emphasized that we cannot exclude 

the possibility that in human heart or in cardiomyocytes of other ventricular regions, layers or 

functions, the two optical isomers would display meaningfully divergent electrophysiological 

effects. It is also noteworthy that we did not implement direct tests on TdP- or other arrhythmia 

models; therefore or conslusions are extrapolative. Further researches in this field are most 

welcome. 
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