
Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

243

ENHANCED PARALLEL SOM BASED ON HETEROGENEOUS
SYSTEM PLATFORM

Muhammad Firdaus Mustapha1, Noor Elaiza Abd Khalid2, Mazani Manaf3
and Azlan Ismail4

1Universiti Teknologi MARA, Shah Alam, Malaysia, firdaus19@gmail.com
2Universiti Teknologi MARA, Shah Alam, Malaysia, elaiza@tmsk.uitm.edu.my

3 Universiti Teknologi MARA, Shah Alam, Malaysia, mazani@tmsk.uitm.edu.my
4 Universiti Teknologi MARA, Shah Alam, Malaysia, azlanismail08@gmail.com

ABSTRACT. In this paper, we propose an enhanced parallel Self-

organizing Map (SOM) framework based on heterogeneous system plat-

form, specifically Central Processing Unit (CPU) and Graphic Processing

Unit (GPU) soldered together on a single chip. The framework is to improve

speed of parallel SOM using GPU since processing parallel SOM on GPU

burden by communication latency due to isolate device architecture with

CPU. The parallel SOM has been extended to heterogeneous system plat-

form and double kernel for calculation distance and find Best Matching Unit

(BMU) are introduced. The results are tested using benchmark data on two

different platforms: GPU and heterogeneous system. The proposed frame-

work shows improvement compared to standard parallel SOM on GPU and

heterogeneous system.

Keywords: Parallel Self-organizing map, GPU computing, OpenCL, HSA

INTRODUCTION

Self-organizing Map (SOM) is one of the data analysis techniques that have gained popu-

larity over the past few decades. The main disadvantage of SOM is training process is quite

time consuming especially for processing distance calculation and update the weight of neu-

rons on SOM map (Xiao, Feng, Han, & Leung, 2014). In order to increase SOM processing,

many researchers parallelized the algorithm. One of the promising solutions is using Graphic

Processing Unit (GPU) (De, Zhang, & Guo, 2016; Richardson & Winer, 2015). Lachmair et.

al (2013) and Wittek & Darányi (2013) reported that running the parallel SOM on GPU vari-

ant achieve the speed up for large data compared to Central Processing Unit (CPU). Mean-

while, Gajdos & Platos (2013) reported that executing parallel SOM on GPU reduces compu-

tation time when input dimension and SOM mapping size are increasing compared to CPU

version. However, some researchers stated that processing of the parallel SOM on GPU could

be burden by imposing larger mapping size and feature dimensions (Gajdos & Platos, 2013;

Hasan, Shamsuddin, & Lopes, 2014; McConnell, Sturgeon, Henry, Mayne, & Hurley, 2012).

Moreover, memory utilization will increase when processing large mapping size which leads

to high rate of memory transfer (Hasan et al., 2014).

A quite recent trend in GPU computing is to simplify the programming model for GPU

based program. Heterogeneous Uniform Memory Access (HUMA) specification has released

by Heterogeneous System Architecture (HSA) foundation, a consortium of companies and

How to cite this paper:

Muhammad Firdaus Mustapha, Noor Elaiza Abd Khalid, Mazani Manaf, & Azlan Ismail. (2017). Enhanced parallel
SOM based on heterogeneous system platform in Zulikha, J. & N. H. Zakaria (Eds.), Proceedings of the 6th
International Conference of Computing & Informatics (pp 243-249). Sintok: School of Computing.

http://www.uum.edu.my/
mailto:zulie@uum.edu.my

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

244

universities that provides the programmer with shared virtual address space between CPU and

GPU (Power, Hestness, Orr, Hill, & Wood, 2015). One of the GPU programming framework

companies, Khronos Group has released OpenCL 2.0 which supports HUMA specification

(Opencl, 2014). The heterogeneous systems that combine CPU and GPU on a single chip are

capable to share the same memory which leads to improve communication between each oth-

er. One of the features in OpenCL 2.0 is Shared Virtual Memory (SVM) introduced to reduce

overhead by eliminating deep copies during host-to-device and device-to-host data transfers

(Mukherjee, Sun, Blinzer, Ziabari, & Kaeli, 2016). There are two ways of implementing

SVM: coarse-grained and fine-grained. The coarse-grained SVM provides synchronization

during mapping and unmapping of memory objects meanwhile for fine-grained SVM, the

synchronization occurs during the implementation of program (Mukherjee et al., 2016).

Temporarily, several steps in SOM algorithm had been decomposed by researchers in or-

der to execute in parallel. There are many different formations of parallelized SOM found in

the literature. It could be stated that most researchers attempt to parallelize calculate distance

and find Best Matching Unit (BMU) steps. Both steps is identified as most time consuming

steps in SOM processing (Kohonen, 2013). There are several researchers who decomposed

SOM algorithm into three steps: calculate distance, find BMU, and update neurons’ weights

(De et al., 2016; Gajdos & Platos, 2013; McConnell et al., 2012; Wang, Zhang, & Créput,

2013). Some of the researchers decomposed initialize neuron weights (De et al., 2016;

Lachmair et al., 2013).

Accordingly, this paper proposes an enhanced parallel SOM framework based on hetero-

geneous system platform. The design of this framework is to improve processing speed which

triggered by SVM feature in OpenCL 2.0. Basically, the framework consists of three parallel-

ize steps in SOM algorithm that has been separated into three kernels. Moreover, duplicate

kernels have been introduced to calculate distance and find BMU kernels. The framework has

been evaluated by measuring total computation time and compared with parallel SOM GPU

version and parallel SOM heterogeneous system version.

METHODOLOGY

Previous studies that highlight parallel SOM have been successfully executed on GPU.

Almost all the researchers in the literature apply parallelism at calculate distance and find

BMU steps. There are many of them apply parallelism at update weight step. Consequent of

that we propose to parallelize these three steps into the proposed framework. Meanwhile,

heterogeneous system compromises a promising solution for reducing latency in communica-

tion between CPU and GPU. In order to gain these advantages, our proposed work is utilizing

OpenCL 2.0 platform which specifically SVM feature. The implementation of our work is

based on fined-grained SVM buffers. The fined-grained SVM buffers are synchronized during

the implementation of SVM buffer which could reduce communication latency between CPU

and GPU. The design of proposed framework is extended from our previous work (Mustapha,

Abd Khalid, & Ismail, 2017) where the proposed framework introduces the duplicate kernels

for distance calculation and find BMU as depicted in Figure 1. The main reason of duplicating

the kernels is to increase utilization of work units in GPU. This work is supported by OpenCL

where OpenCL allows a programmer to create more than one queue for execution. The queue

will process based on out-of-order execution (Opencl, 2014). In out-of-order execution mode

there is no guarantee that the enqueued commands will finish in order they were queued. For

instance, the execution of the Calculate Distance Kernel_1 and Calculate Distance Kernel_2

might overlapping in the same time which could lead to increase the utilization of work units

in GPU side.

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

245

In depth of our proposed framework, the framework begins with initializing SOM parame-

ters such as learning factor and weights at the host side. The input data is retrieved and stored

into an array. These tasks are performed at host side. Each kernel at the GPU side is provoked

by function respectively. The functions also provide setting, initializing parameters, and call

the kernels. For example, the calculate distance function is used to call Calculate Distance

kernel and it is done the same way with the other two kernels.

The first kernel is Calculate Distance kernel that is used to calculate the distance between

neurons and current input vector. The amount of work units are employed to parallelize the

calculation distance step is mapped by amount of work-items on GPU where the amount of

work-items is equal to the number of neurons in the SOM map. Specifically, each work-item

of the kernel is responsible for finding the distance between a single neuron and the current

input vector. This research applies Manhattan distance calculation.

Figure 1. Enhanced parallel SOM framework.

In the meantime, the Find BMU kernel applies two stages reduction method (Bryan

Catanzaro, 2010). The kernel utilizes work items the same amount of neurons on SOM map.

The first stage of reduction method is to find the minimum distance for each local work

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

246

group. The values of minimum distances of each work group will be stored into local array.

The second stage is to find the minimum distance for each Compute Unit (CU). The minimum

values of each CU are then stored into global array and the host will determine the winning

neurons.

The Update Weight kernel is the third kernel in the framework updates the weight of neu-

rons based on learning rate and neighborhood function. The learning rate defines how much a

neuron’s vector is altered through an update with referring to how far the distance of the neu-

ron from the BMU on the map. The BMU and its close neighbors will be altered the most,

while the neurons on the outer edges of the neighborhood are slightly changed. Immediately

after executing the three kernels, the learning factor and neighborhood radius are updated with

the new values. All of the steps include in the loop block will be repeated until n iteration or

epoch before the SOM map is generated.

COMPUTATIONAL RESULTS

Two series of experiments have been conducted to evaluate the proposed framework. The

experiments employ Bank Marketing benchmark data set that was taken from UCI Machine

Learning Repository. For each experiment, three versions of parallel SOM have been tested:

parallel SOM on GPU (PSG), parallel SOM on heterogeneous system (PSH), and enhanced

parallel SOM on heterogeneous system (ePSH). The experimental design of the experiments

is depicted in Table 1. In the experiments, each dataset is tested using four different map sizes

in order to find the best map size (Mustapha et al., 2017). The performance measurement is

based on time in seconds. Four kinds of time have calculated from the execution of each ker-

nel and the total time. These experiments have been conducted on a laptop equipped with

Intel Skylake i7-6700HQ processor which built in Intel® HD Graphics 530. The processor

supports OpenCL 2.0 specifications.

Table 1. The experimental design.

Dataset pa-

rameters

SOM parameters Performance Meas-

urement

Algorithm versions

No. of Sam-

ples

Iterations Map sizes Time, s

5000

(3 parameters)

30 10x10

20x20

30x30

40x40

1) Calculate Distance,

2) Update weight,

3) Find BMU,

4) Total time

1) Parallel SOM on GPU

(PSG),

2) Parallel SOM on HSA

(PSH),

3)Enhanced Parallel

SOM HSA (ePSH)

15000

(3 parameters)

The results for each experiment have been collected are shown in Figure 2 and Figure 3.

Figure 2 depicts the results of the first series of experiments which employ 5000 dataset.

From the graph, the ePSH that consists of the proposed framework capable to reduce total

time compared to PSH and PSG. Based on relative different of total time, ePSH reduces time

4 to 10 percent over PSH and 34 to 39 percent over PSG.

Meanwhile, the second series of experiments also prove ePSH perform faster than PSG

and PSH. Figure 3 shows the results of the second series of experiments that apply 15000

dataset. The ePSH shows better results which score 6 to 15 percent over PSH and 39 to 43

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

247

percent over PSG. Moreover, both series of experiments illustrate that ePSH perform better

when utilizes larger dataset as the relative different values increase.

Figure 2. The results of the first series of experiments

Figure 3. The results of the second series of experiments

CONCLUSION

In this paper, we propose an enhanced parallel SOM framework that based on heterogene-

ous system. The framework is extended from parallel SOM researches that consist of three

kernels: calculate distance kernel, find BMU kernel, and update weight kernel. The proposed

framework is included with two calculate distance kernel and two find BMU kernel. The pro-

posed framework is designed with the aim to increase the utilization of processing element on

GPU. From the experimental results, the proposed framework achieves better in total time

processing compared to PSG and PSH. The proposed framework also can be realized by using

heterogeneous platform where it offers efficient communication between CPU and GPU. In

the future, we will extend the proposed framework with more duplicating kernels in order to

study their performances.

0

500

1000

1500

2000

1
0

x1
0

2
0

x2
0

3
0

x3
0

4
0

x4
0

1
0

x1
0

2
0

x2
0

3
0

x3
0

4
0

x4
0

1
0

x1
0

2
0

x2
0

3
0

x3
0

4
0

x4
0

5000 (PSG)
5000 (PSH)

5000 (ePSH)

Series 1 - 5000 Dataset

Calc Distance

Update Weight

Find BMU

Total Time

0

2000

4000

6000

1
0

x1
0

2
0

x2
0

3
0

x3
0

4
0

x4
0

1
0

x1
0

2
0

x2
0

3
0

x3
0

4
0

x4
0

1
0

x1
0

2
0

x2
0

3
0

x3
0

4
0

x4
0

15000 (PSG)
15000 (PSH)

15000 (ePSH)

Series 2 - 15000 Dataset

Calc Distance

Update Weight

Find BMU

Total Time

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

248

ACKNOWLEDGMENTS

This work was funded by Ministry of Higher Education (MOHE) of Malaysia, under the

FRGS, grant no. FRGS/1/2015/ICT02/UITM/02/6 and Academic Staff Bumiputera Training

Scheme (SLAB). The authors also would like to thank the Universiti Teknologi MARA for

supporting this study.

REFERENCES

Bryan Catanzaro. (2010). OpenCL
TM

 Optimization Case Study: Simple Reductions. Retrieved from

http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-

simple-reductions/

De, A., Zhang, Y., & Guo, C. (2016). A parallel image segmentation method based on SOM and GPU

with application to MRI image processing. Neurocomputing, 198, 180–189.

http://doi.org/10.1007/978-3-319-12436-0_71

Gajdos, P., & Platos, J. (2013). GPU Based Parallelism for Self-Organizing Map. In Advances in

Intelligent Systems and Computing (Vol. 179, pp. 3–12). Berlin, Heidelberg: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-642-31603-6

Hasan, S., Shamsuddin, S. M., & Lopes, N. (2014). Machine Learning Big Data Framework and

Analytics for Big Data Problems. International Journal Advance Soft Computing Applications,

6(2), 1–17.

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks : The Official Journal of

the International Neural Network Society, 37, 52–65.

http://doi.org/10.1016/j.neunet.2012.09.018

Lachmair, J., Merényi, E., Porrmann, M., & Rückert, U. (2013). A reconfigurable neuroprocessor for

self-organizing feature maps. Neurocomputing, 112, 189–199.

http://doi.org/10.1016/j.neucom.2012.11.045

McConnell, S., Sturgeon, R., Henry, G., Mayne, A., & Hurley, R. (2012). Scalability of Self-organizing

Maps on a GPU cluster using OpenCL and CUDA. Journal of Physics: Conference Series, 341,

12018. http://doi.org/10.1088/1742-6596/341/1/012018

Mukherjee, S., Sun, Y., Blinzer, P., Ziabari, A. K., & Kaeli, D. (2016). A Comprehensive Performance

Analysis of HSA and OpenCL 2.0. 2016 IEEE International Symposium on Performance

Analysis of Systems and Software, (April). http://doi.org/10.1109/ISPASS.2016.7482093

Mustapha, M. F., Abd Khalid, N. E., & Ismail, A. (2017). Research Article Evaluation of Parallel Self-

organizing Map Using Heterogeneous System Platform. J. Applied Sci.

http://doi.org/10.3923/jas.2017.Research

Opencl, K. (2014). OpenCL Specification. ReVision. http://doi.org/10.1016/j.actamat.2006.08.044

Power, J., Hestness, J., Orr, M. S., Hill, M. D., & Wood, D. A. (2015). gem5-gpu: A Heterogeneous

CPU-GPU Simulator. IEEE Computer Architecture Letters, 14(1), 34–36.

http://doi.org/10.1109/LCA.2014.2299539

Richardson, T., & Winer, E. (2015). Extending parallelization of the self-organizing map by combining

data and network partitioned methods. Advances in Engineering Software, 88, 1–7.

http://doi.org/10.1016/j.advengsoft.2015.05.003

Wang, H., Zhang, N., & Créput, J.-C. (2013). A Massive Parallel Cellular GPU Implementation of

Neural Network to Large Scale Euclidean TSP. In F. Castro, A. Gelbukh, & M. González (Eds.),

Advances in Soft Computing and Its Applications: 12th Mexican International Conference on

Artificial Intelligence, MICAI 2013, Mexico City, Mexico, November 24-30, 2013, Proceedings,

Part II (pp. 118–129). Berlin, Heidelberg: Springer Berlin Heidelberg.

http://doi.org/10.1007/978-3-642-45111-9_10

http://www.uum.edu.my/

Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017

25-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

108

249

Wittek, P., & Darányi, S. (2013). Accelerating text mining workloads in a MapReduce-based

distributed GPU environment. Journal of Parallel and Distributed Computing, 73(2), 198–206.

http://doi.org/10.1016/j.jpdc.2012.10.001

Xiao, Y., Feng, R.-B., Han, Z.-F., & Leung, C.-S. (2014). GPU Accelerated Self-Organizing Map for

High Dimensional Data. Neural Processing Letters. http://doi.org/10.1007/s11063-014-9383-4

http://www.uum.edu.my/

