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1. Introduction 

Decision-making is a fundamental aspect of human cognition and behaviour. Every day, we 

make a multitude of decisions, ranging from rather simple perceptual choices (e.g., about 

which objects we encounter in the world) to complex financial decisions (e.g., whether to 

spend money on a car today, or to save up for the future). The underlying cognitive and neural 

mechanisms appear to directly deploy external information, gathered by our senses, as well as 

internal information, such as preferences and beliefs. Ideally, this results in well-informed 

decisions and successful goal-directed behaviour. In reality, however, we are often faced with 

decision situations in which we do not have clear preferences, or access to all information. For 

example, we might be unsure about road signs while driving in heavy rain; we might not have 

clear preferences for all potential choice options when buying a new car; or we might be in 

doubt about whether or not to buy a car in the first place. Moreover, there seem to be a variety 

of rather arbitrary choice situations in which decisions appear random and inconsequential, 

for example when we have no idea behind which wardrobe door the rain jacket that we are 

searching for might be hidden, and we have to decide whether to try the left door or the right 

door first. It is in these situations, where external information is absent or not helpful and 

decision preferences are unstable, that contextual factors appear to have a stronger influence 

on decision-makers. For example, greater saliency might bias object choice (Itti & Koch, 

2001), encountering other objects with similar attribute profiles might shift preferences (e.g., 

Trueblood, Brown, Heathcote, & Busemeyer, 2013), certain contextual cues might shift 

individuals to be more reward-seeking (Woelbert & Goebel, 2013), and previous decisions 

might come to inform ensuing choices (Akaishi, Umeda, Nagase, & Sakai, 2014). The 

presented work will highlight research supporting the hypothesis that not only can the 

representation of goals be unconsciously biased (Custers & Aarts, 2010), but contextual 



	  

	   6 

information can also exert significant biases on a variety of decisions outside decision-

makers’ awareness.  

The decision scenarios outlined above roughly fall into three categories: a) perceptual 

decision-making, b) financial decision making / preference formation, and c) voluntary 

decision-making. Of course, this is not an exhaustive characterisation of all types of human 

decision-making, but these categories constitute three key research areas in psychology and 

cognitive neuroscience over the past few decades. They will also constitute the three strands 

of research described in the present work. From each of these fields, studies will be presented 

that exemplify a content-based cognitive neuroscience approach to human decision-making 

research, building on multivariate analysis techniques for brain imaging data that utilise 

machine learning algorithms to directly predict the content of decision-outcomes and other 

decision-related variables from brain activity. These techniques found their way into 

mainstream cognitive neuroscience, predominately for the analysis of spatially distributed 

patterns of functional magnetic resonance imaging (fMRI) data, in the first decade of the 21st 

century. They provided novel tools for making use of the full patterns of brain activation, as 

measured using blood-oxygen-level-depended (BOLD) signals, for the prediction of the 

content of cognitive processes (Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 

2006). Recently, similar approaches have also been applied to patterns of brain activity as 

measured using electroencephalography (EEG), and in particular to spatio-temporal patterns 

of the event-related potential (ERP; Bode, Sewell, Lilburn, Forte, Smith, & Stahl, 2012b; 

King & Dehaene, 2014). While the application of machine learning techniques to both 

neuroimaging methods is not entirely new, the discovery that cognitive processes might be 

‘encoded’ in – and moreover, be predictable from – patterns of noninvasively measurable 

brain signals has opened up new avenues for an information-based (or, content-based) 

cognitive neuroscience approach (Heinzle et al., 2012; Kriegeskorte, Goebel, & Bandettini, 

2006). These methods have since been used to study the representation of a variety of 
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cognitive functions, ranging from perceptual processes (e.g., Cox & Savoy, 2003; Haxby, 

Gobbini, Furey, Ishai, Schouten, & Pietrini, 2001; Haynes & Rees, 2005; Kay, Naselaris, 

Prenger, & Gallant, 2008; Kamitani & Tong, 2005; Williams, Dang, & Kanwisher, 2007), to 

more abstract cognitive processes, including the ones of interest for the present work: 

perceptual decisions (Bode, Bogler, Soon, & Haynes, 2012a; Bode, Bogler, & Haynes, 2013; 

Hebart, Schriever, Donner, & Haynes, 2016; Serences & Boynton, 2007), economic and 

financial decisions (e.g., Clithero, Carter, & Huettel, 2009; Murawski, Harris, Bode, 

Domínguez D, & Egan, 2012), preferences (Bode, Bennett, Stahl, & Murawski, 2014a; 

Tusche, Bode, & Haynes, 2010), and voluntary decisions (e.g., Bode, He, Soon, Trampel, 

Turner, & Haynes, 2011; Gilbert, 2011; Haynes, Sakai, Rees, Gibert, Frith, & Passingham, 

2007; Soon, Brass, Heinze, & Haynes, 2008; Soon, He, Bode, & Haynes, 2013).    

 The present work will first provide a short methodological introduction into 

multivariate pattern analysis (MVPA) for both fMRI and ERPs in Chapter 2. This chapter will 

briefly explain the core concepts and principles by referring to two exemplary studies: Bode 

and Haynes (2009) for fMRI (Appendix I), and Bode and Stahl (2014) for ERPs (Appendix 

II). Next, Chapter 3 will discuss the application of MVPA for the investigation of perceptual 

decision-making and decision biases in perceptually ambiguous situations. In Bode, Bogler, 

Soon, and Haynes (2012a), we showed that MVPA could be used for fMRI to predict 

decision outcomes for perceptual decisions as well as for perceptual guessing when 

participants had insufficient access to perceptual information (Appendix III). In Bode, 

Bogler, and Haynes (2013), again using MVPA for fMRI, a direct demonstration of strong 

pattern similarity between perceptual guesses and voluntary decision-making was provided, 

suggesting a shift from utilising external information to internal information in perceptually 

ambiguous situations (Appendix IV). In Bode, Sewell, Lilburn, Forte, Smith, and Stahl 

(2012b), we provided evidence from MVPA for ERPs that the internal information utilised in 

perceptual guessing was related to pre-existing information, which biased guessing decisions 
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on the following trial. We further showed, using mathematical modelling, that these biases 

originated from carry-over effects of participants’ previous choices, and therefore that the 

choice history itself constituted a significant, unconscious contextual driver for decision-

making (Appendix V). Chapter 4 discusses a study by Murawski, Harris, Bode, Domínguez 

D, and Egan (2012) showing that MVPA for fMRI could be used to predict choice outcomes 

for specific financial decisions, namely intertemporal decisions, in which participants made 

consecutive decisions between immediately available smaller rewards and larger rewards, 

which were only available in the future (Appendix VI). Furthermore, the study showed that 

strongly masked images of rewarding brand logos, used as prime images, could shift the 

neural representation of subjective values, highlighting the potential of contextual cues to 

exert unconscious biases on financial decisions. This chapter also discusses the study by 

Bode, Bennett, Stahl, and Murawski (2014a) that used MVPA for ERPs to investigate 

potential pathways for the unconscious influence of contextual cues on decision-making 

(Appendix VII). In particular, the study showed that some abstract stimulus features, such as a 

stimulus’ reference to time, were processed fast and unconsciously, even without directing 

attention to these particular features. If such automatically processed information maps onto 

important aspects of a subsequent decision problem, it could bias decision-making outside of 

awareness. Chapter 5 will then introduce several studies on voluntary decision-making. The 

study by Soon, He, Bode, and Haynes (2013) built on earlier work, which showed that 

arbitrary voluntary decisions between left and right button presses could be predicted from 

brain activity several seconds before decision-makers’ became aware of having made a 

decision. Soon and colleagues (2013) extended these findings using MVPA for fMRI to the 

prediction of more abstract voluntary decisions between two arithmetic operations (Appendix 

VIII). Using MVPA for ultra-high field 7 Tesla fMRI, Bode, He, Soon, Trampel, Turner, 

and Haynes (2011) consolidated evidence that arbitrary voluntary decisions between left and 

right button presses could be predicted several seconds before the reported conscious 
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decision, and additionally reported evidence for a slow build-up of decision-related patterns 

over time (Appendix IX). This chapter concludes with a discussion of how these findings can 

be explained by assuming the influence of hidden contextual effects – here participants’ 

choice history as well as their implicit interpretation of the decision task instructions – on the 

outcome of voluntary decisions. This discussion will draw on ideas presented in Bode, 

Murawski, Soon, Bode, Stahl, and Smith (2014b), which suggested that an evidence 

accumulation framework could account for the variety of decision situations as well as for 

contextual bias effects (Appendix X). Finally, Chapter 6 will provide a short conclusion of the 

work discussed here and remarks for future research. 
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2. Multivariate pattern analysis (MVPA) for brain activity 

2.1 MVPA for functional magnetic resonance imaging (fMRI) 

	  
One major challenge for a cognitive neuroscience of decision-making is the gap between the 

neural level of description (e.g., differences in BOLD signal for fMRI) and the cognitive level 

(Poldrack, 2006; Poldrack & Farah, 2015). In order to successfully inform cognitive models it 

is often not sufficient to show the involvement of a brain region during decision-making, for 

example by contrasting the average activation in a given region during a decision task with 

activation in a control task. This is because any observed difference in activation could simply 

be due to additional effort, modulation by attention, or some other confounded cognitive 

process, and must not necessarily reflect the decision process itself. Importantly, this problem 

is not unique to fMRI, and no neuroimaging method to date can directly monitor cognitive 

processes without strongly relying on reverse inference (Poldrack, 2006). However, it has 

been argued that demonstrating a representation of the content of cognitive processes (for 

example, the outcome of a decision) would indeed constitute stronger (albeit arguably still not 

conclusive) evidence for a more direct involvement of the respective brain regions in the 

decision process (e.g., Haynes, 2015; Heinzle et al., 2012), and thus, linking its function 

closer to decision-making per se. 

Multivariate pattern classification analyses (e.g., Haxby, et al., 2001; Haynes & Rees, 

2006; Kriegeskorte, et al., 2006; Norman, et al., 2006; Tong & Pratte, 2012), often referred to 

as neural ‘decoding’ methods, provide a novel set of tools that have been used to predict the 

content of cognitive processes from patterns of spatially distributed brain activity. These 

methods have been increasingly applied to fMRI, which is based on the blood-oxygen-level-

dependent (BOLD) signal (Logothetis & Wandell, 2004). In short, oxyhaemoglobin (Hb), 

which is needed for glucose metabolism during local neural activity, is diamagnetic, and 
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henceforth enhances the local BOLD signal. Because task-induced neural activity is 

accompanied by a local increase in – and oversupply of – oxygenated blood, the BOLD signal 

can be utilised as an (indirect) indicator of the ‘involvement’ (activation) of a particular brain 

region during the cognitive process, which is assumed to be critical for the experimental task. 

Classically, fMRI data is analysed using a mass-univariate general linear model (GLM) 

approach (Friston, Holmes, Worsley, Poline, Frith, & Frackowiak, 1995). Signals in each 

three-dimensional, cubic measurement unit, termed ‘voxel’ (usually 1-4 mm3 in size), are 

separately fitted by a GLM, which convolves the heamodynamic response function (HRF) 

with all event onsets, which are expected to elicit a neural response in the experiment. It is 

then statistically analysed how well the model fits the data, and the model fit is interpreted as 

task-induced activity at this particular position in the brain, usually compared to a baseline or 

an adequate control task (Friston et al., 1995). In order to account for anatomical variability, 

and to satisfy the assumption of Gaussian random field theory, activity from adjacent voxels 

is pooled by spatial smoothing, preceding statistical group-level analysis. In publications, 

usually only the activation in larger, connected clusters of voxels is reported, while sub-

threshold clusters and single, isolated supra-threshold voxels are treated as noise. This 

classical approach, however, neglects the possibility that the aggregation and smoothing of 

activation might result in a significant loss of information, which may have been contained in 

the full fine-grained local spatial activation patterns.  

MVPA, on the other hand, can provide a more sensitive measure than conventional 

mass-univariate analyses, because even if the signal in single voxels might not be strongly 

associated with a cognitive process, larger patterns of activity might indeed show stable and 

reliable associations (Kamitani & Tong, 2005; Haynes & Rees, 2006). This could be the result 

of weak but nevertheless stable associations (or biases) of single voxels, related to the 

encoding of stimulus properties. For example, orientation preference has been suggested to be 

organised in cortical columns in early visual cortex, and thus neurons coding for single spatial 
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orientations would cluster together. If orientation columns can be assumed to be spatially 

distributed across parts of the visual cortex, and the voxel-grid is randomly applied to the 

cortical surface during scanning (as it usually is the case), this would result in weak, 

idiosyncratic biases for some orientations in single voxels (Kamitani & Tong, 2005; Haynes 

& Rees, 2006; Swisher, et al., 2010; for further discussions of coding principles see: Haynes, 

2015; Op de Beeck, 2010; Kamitani, & Sawahata, 2010; Swisher, Gatenby, Gore, Wolfe, 

Moon, Kim, & Tong, 2010). A cluster of adjacent voxels, each with a weak but stable coding 

bias, would then result in meaningful patterns, containing information that can be picked up 

with MVPA. The assumption of weak but stable biases can be extended to other visual 

properties for higher-level representations of object categories in the ventral (and potentially 

the dorsal) visual pathway (e.g., Carlson, Schrater, & He, 2003; Cox & Savoy, 2003; 

Williams et al., 2007), and also to other modalities (e.g., Howard, Plailly, Grueschow, 

Haynes, & Gottfried, 2009). Whether or not similar clustering could explain decodable 

representations in other brain areas, such as prefrontal and parietal cortex, is still an open 

question; however, a variety of cognitive processes have been predicted from regions beyond 

sensory cortex, including stimulus saliency (Bogler, Bode, & Haynes, 2011), deception 

(Davatzikos et al., 2005), emotion regulation strategies (Morawetz, Bode, Baudewig, Jacobs, 

& Heekeren, 2016), decisions (Soon, Brass, Heinze, & Haynes, 2008; Soon, et al, 2013; Bode 

et al., 2011), intentions (Haynes et al., 2007; Gilbert, 2011), and decision rules (Bode & 

Haynes, 2009; Woolgar, Thompson, Bor, & Duncan, 2011). The increased sensitivity of 

MVPA has led some authors to suspect that sometimes, one might decode only confounds 

rather than the cognitive processes of interest (Todd, Nystrom, & Cohen, 2013). Firstly, 

however, simple confound controls can be incorporated into experimental designs and GLMs 

that protect from such spurious findings; and secondly, an increased sensitivity per se is 

always advantageous as it increases a method’s applicability and should not be regarded as a 

limitation (for a detailed discussion see: Woolgar, Golland, & Bode, 2014). 
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The general approach taken in MVPA is to train a pattern classifier, usually adopted 

from machine learning (e.g., Chang & Lin, 2011) on several exemplars of neural activation 

patterns from a cluster of voxels (as opposed to each voxel separately), acquired when 

participants are engaged in an experimental task. In one of the first studies to use this 

approach for the investigation of higher-level cognitive processes, Bode and Haynes (2009) 

(Appendix I) asked participants to apply one of two task rules while being scanned using 3 

Tesla MRI: the display of cue A instructed them to press a joystick to the right when 

presented with one specific colourful, moving stimulus, and to the left when presented with 

the alternative stimulus. Cue B instructed the reverse mapping. The presentation of task 

components (cue: 1400ms, delay: 2800ms, stimulus: 4200ms, response screen: 2800ms) was 

spaced in time, which allowed the temporally staggered prediction of task rules, presented 

stimuli, and responses during the entire process of task preparation (see Materials and 

Methods in Bode & Haynes, 2009). The experimental data was then divided into four separate 

sets, corresponding to the four experimental runs (comprising 64 trials each). After data pre-

processing, which only involved the spatial realignment to the first recorded image (volume) 

of the first run to correct for head motion, and slice-timing correction of each volume to 

correct for differences in recording time of each slice, a GLM (Finite Impulse Response 

model, FIR; for details see Materials and Methods in Bode & Haynes, 2009) was fitted to the 

data, modelling the two rules, two target stimuli, and both motor responses separately for each 

task phase. Then, a linear support vector machine (SVM) classifier was trained on data from 

three of the four runs (i.e., the beta-images, representing the model-derived regressors for 

each event-of-interest in each run) for a series of three-dimensional ‘searchlight’ clusters 

(Kriegeskorte et al., 2006; Haynes et al., 2007) with a radius of r=4 voxels. Note that 

classifiers can be applied to brain activation patterns in different ways, including analysing 

the entire brain, or analysing specific regions of interests (ROIs). The ‘searchlight’ approach, 

however, as used in all studies described in this work, first requires the definition of a cluster, 
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usually a sphere with a radius of 3-5 voxels, created around an arbitrary voxel in the brain, 

whose activation pattern is then analysed (Figure 1A). In Bode and Haynes’ (2009) study, this 

cluster was subsequently rebuilt around every voxel in the brain, and all possible positions 

were analysed separately and independently. One important advantage of this approach is that 

it is spatially unbiased and does not rely on any assumptions or potentially circular analyses 

(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009) to define or identify candidate brain 

regions for MVPA. For each ‘searchlight’ cluster, the classifier then estimated a decision 

boundary (or, hyperplane) to distinguish between patterns associated with each rule, stimulus 

and motor response (also see: Mur, Bandettini, & Kriegeskorte, 2009). In order to determine 

whether these activation patterns contained information about the experimental conditions, the 

trained classifier was then used to predict rules, stimuli and responses from patterns of 

independent data (i.e., the left-out run). For statistical testing, a leave-one-out cross-validation 

procedure was applied, and data from each run served as test data once while training was 

performed on the data from the other runs (Figure 1A). Finally, the resulting average 

classification (or ‘decoding’) accuracy from each ‘searchlight’ cluster was attributed to the 

central voxel of the respective cluster, and a three-dimensional map of classification 

accuracies was generated to represent information about each of the three task components in 

the brain. This procedure was repeated for all consecutive time steps (2800ms, corresponding 

to the TR) of the experiment, making it possible to map the temporal evolution of information 

regarding rules, stimuli and responses as they became available to the decision-maker during 

the task. The main finding of this study was that the location of the representation of abstract 

rules, which guided decisions for motor responses, shifted over time, depending on the task 

phase. Rules were first encoded in visual cortex during the presentation of the cue, but during 

the following memory delay period, their representation could be decoded from the 

intraparietal sulcus, a region in posterior parietal cortex that is known to be involved in task 

switching and cognitive control (Singh-Curry & Hussain, 2009). Subsequently, during active 



	  

	   15 

decision-making, and during preparation and execution of the motor response, the task rules, 

together with a representation of the stimulus, were represented in ventrolateral prefrontal 

cortex (VLPFC). These VLPFC regions have also been suggested to be key regions for 

cognitive control and decision-making (Bunge, 2004). Methodologically, this study paved the 

way for the application of MVPA in the following fMRI studies discussed in this work. 

 

 

 

Figure 1: Illustration of multivariate pattern classification analysis (MVPA) A) MVPA for fMRI. After fitting a 

GLM, data is extracted from moving ‘searchlight’ clusters with a pre-defined radius for the experimental 

conditions and transformed into vectors. These represent the local spatial activation patterns for each condition. 

A classifier, usually a linear support vector machine (SVM) classifier, is trained on data from all but one run 

and consecutively tested on data from the left-out run. A cross-validation procedure is applied, which means that 

classification is repeated until each run served as the test data set once. The average classification accuracy is 

assigned to the central voxel of the ‘searchlight’ cluster. This procedure is repeated for all possible ‘searchlight’ 

clusters in all participants (modified from Bode & Haynes, 2009). B) MVPA for ERPs. A moving analysis time 

window is defined for event-locked ERP data and applied to all possible time steps throughout the trial. For 

each analysis step, spatiotemporal patterns of activity are extracted and transformed into vectors. A classifier, 
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usually a linear SVM classifier, is trained on 90% of all trials and consecutively tested on the left-out 10% of 

trials. For cross-validation this is repeated until all sets of 10% of trials have served as the test data set once. 

This procedure is usually repeated ten times to avoid drawing biases, and results are tested against a shuffled-

label test distribution for each analysis time window (modified from Bode & Stahl, 2014). 

 

2.2 MVPA for event-related potentials (ERPs) 

One major shortcoming of fMRI for the investigation of cognitive processes is its very limited 

temporal resolution. Even though latest methodological improvements (for example the use of 

multi-band sequences and ultra-high field MRI at 7 Tesla and above) can push the time it 

takes to record a brain volume (time to repeat, TR) to one second or below, most standard 

fMRI studies using 3 Tesla MRI scanners typically operate with a TR of 1.5 to 3s. The 

attempts to track the evolution of predictive brain activation patterns therefore remain at a 

rather coarse scale (Bode & Haynes, 2009; Bode et al., 2011; Soon et al., 2008; 2013). EEG, 

on the other hand, offers a continuous measurement up to 4 kHz, meaning that one or more 

data points are available per millisecond (500-1000 Hz are standard). Given that most 

decision processes are fast, and their temporal scale is often below 100 ms (e.g., Smith & 

Ratcliff, 2004), the EEG signal allows for more precise correlations with the processes of 

interest. In particular, the event-related potential (ERP) method has been widely applied to 

study cognition. For this, electrical activity recorded at the scalp is time-locked to 

experimental events-of-interest (Luck, 2005). The general approach is to repeatedly measure 

the cortical response to identical events, defined as voltage differences recorded at the scalp, 

and to derive an estimate of the ERP by averaging across measurements. This has the 

advantage that specific components of the ERP, which are observed at known scalp locations, 

can be linked to manipulations in the experimental paradigm, which are thought to involve, or 

modulate, different cognitive processes. As in fMRI, averaging serves the improvement of the 

signal-to-noise ratio. The most commonly used parameters, which are believed to be linked to 
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relevant aspects of cognitive processes, are the polarity of the difference signal, the mean or 

peak amplitude, and the latency of specific components (for an introduction see Luck, 2005).  

 While classical ERP analyses have been (and still are) highly successful, they also 

face some serious limitations. First, at times it is difficult to clearly identify specific ERP 

components at the level of single participants. Second, there is a great deal of variance in the 

expression of these components. Third, for a particular research question, no specific ERP 

components might have been described in order to formulate meaningful a priori hypotheses. 

Finally, similar to mass-univariate analysis of fMRI data, there might be more information 

contained in the distributed patterns of ERPs then is extracted by analysing specific ERP 

components at circumscribed locations. In particular, the question of whether the content of a 

specific cognitive process is represented in brain activity at a given point in time is often 

difficult to answer using classical approaches. However, patterns of ERPs are also 

multivariate in nature as they consist of distinct time series of signal at all recorded sites 

(channels; usually between 32 and 128). This means, instead of dismissing signals from most 

channels as noise, it is possible to apply MVPA to the full pattern of activity with the aim to 

predict the content of the cognitive process at hand. This approach has been taken recently to 

investigate decision-making and error processing (Bode & Stahl, 2014; Bode et al., 2012; 

Charles, King, & Dehaene, 2014; Das, Giesbrecht, & Eckstein, 2010; related multivariate 

approaches can be found in: Philiastides & Sajda, 2006; van Vugt, Simen, Nystrom, Holmes, 

& Cohen, 2012). It has been suggested that MVPA also allows for investigating the temporal 

stability of mental representations (King & Dehaene, 2014).  

 The general MVPA approach for ERPs, as applied in all studies discussed in the 

present work, will be illustrated in the reminder of this chapter, using the example of the study 

by Bode and Stahl (2014) (Appendix II). In this study, participants were presented with a 

display containing a central digit between 1 and 9, which could be odd or even, flanked by 
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two different, identical digits, which could also be odd or even. Their task was to make simple 

parity judgements about the central digit while the EEG was recorded at 61 channels using 

active Ag/AgCl electrodes (actiCAP, Brain Products) at 500 Hz. Standard artefact removal 

was applied that involved screening for technical artefacts (±100 microvolt [µV]), the 

elimination of eye movements by applying an ocular correction algorithm (Gratton, Coles, & 

Donchin, 1983), and re-referencing using a current-source density (CSD) analysis (Perrin, 

Bertrand, & Pernier, 1987). The CSD analysis rendered the signal independent of the location 

of the reference electrode, acted as a spatial filter that decreased the blur distortion caused by 

skull resistance (Katznelson, 1981), and reduced the effect of adjacent currents on the local 

recordings by emphasizing shallow neural generators. Then, a spatio-temporal MVPA 

analysis was conducted using the Decision Decoding ToolBOX (DDTBOX; Bode, Bennett, 

Feuerriegel, & Alday, 2016). The aim of this analysis was to predict whether each parity 

decision was correct or incorrect before the motor response was made. This was based on the 

observation that all known ERP components, which reflect error processing, reach their peak 

only after the response is made. For example, the error-related negativity (Ne/ERN) 

(Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & 

Donchin, 1993) peaks ∼80–100 ms after an overt erroneous response, and the error positivity 

(Pe) (Falkenstein et al., 1991) peaks ~300 ms after the response error. However, the Ne/ERN 

component displays an early rise, starting before response execution (typically without 

differentiation between errors and correct responses), which suggests the existence of early 

generators of error-related signals. Bode and Stahl (2014) first identified the onset of the 

motor response at a cortical level ~100 ms preceding the response by means of analysing the 

response-locked lateralised readiness potential (R-LRP) (for details see Material and Methods 

in Bode & Stahl, 2014). They then used a sliding window approach to dissect each trial into 

small analysis time windows of 10 ms leading up to the overt response (containing 305 data 

points per analysis time window with a sampling rate of 500 Hz; 5 data points x 61 EEG 
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channels). Spatio-temporal patterns of ERPs were extracted from these time windows for 

when participants made errors and when they made correct responses. Data from all available 

trials (strictly controlled for the number of trials per condition) were then randomly sorted 

into ten sets; nine of which were used for training a linear SVM classifier, and the left-out set 

was used for testing. Using a ten-fold cross-validation procedure, which was additionally 

repeated ten times (resulting in 100 analyses), the average classification accuracy was 

determined for each analysis time window (see Figure 1B). Results were then statistically 

compared to classification results from an identical analysis, which used the same data but 

shuffled labels in each iteration of the cross-validation procedure, providing a strict empirical 

chance distribution (i.e. permutation test). Note that several variations of this approach have 

been applied in the studies described in this work: for example, the sets of trials can be de-

noised first by averaging across trials within each set (similar to fMRI beta-estimates), and 

classification is subsequently performed on these average sets (Bode et al., 2012). It is also 

possible to classify based only on purely spatial patterns (by averaging across all temporal 

information within the analysis time windows), or only on temporal patterns (by conducting 

separate, independent analyses for each channel and treating the temporal information as a 

pattern) (Bode et al., 2012). Furthermore, instead of using SVM classification for two 

conditions, multivariate support vector regression (SVR) can be used to regress, for example, 

continuous data such as ratings (e.g., Bode et al., 2014). Other parameters that can be varied 

are the analysis window width and the step size (Figure 1B). To date, there is no conclusive 

guideline for which parameters are favourable, and their effectiveness might strongly depend 

on the nature of the cognitive processes of interest and their associated ERP profile. 

 The result of each classification step described above is an average classification 

accuracy, which can then be assigned to the respective analysis time window, resulting in an 

information time course for the entire the trial. Using this approach, Bode and Stahl (2014) 

showed that information about upcoming errors indeed started to be predictable at ~90 ms 
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before response execution. This information most likely originated from strong contributions 

of visual and motor channels, supporting the hypothesis that it was based on an ongoing 

analysis of the perceptual input, which increasingly accumulated evidence that the already 

initiated response was incorrect. Furthermore, decision errors were committed using less 

response force compared to correct responses. It could be speculated that this reduction in 

force reflected unsuccessful attempts to use the accumulated sensory information to prevent 

the erroneous response (Bode & Stahl, 2014). More importantly for the present work, these 

findings confirmed the high sensitivity of MVPA for ERPs to detect even subtle and early 

decision-related information in patterns of brain activity that would be overlooked if only 

conventional analyses were used.  
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3. Contextual biases in perceptual decision-making 

Perceptual decision-making is a fast process, which usually happens without effort and 

deliberation. It involves comparing noisy sensory representations of objects to memory 

representations of choice options. Cognitive models of perceptual decisions usually share the 

general idea that noisy evidence is accumulated over time until a decision boundary 

(threshold, or criterion) is reached (Ratcliff, 1978; Smith & Ratcliff, 2004; Ratcliff, Smith, 

Brown, & McKoon, 2016). Once sufficient evidence has been accumulated for one choice 

alternative, a decision is triggered, and a response can be prepared. The dominant Diffusion 

Decision Model (DDM) conceptualises this evidence accumulation as a stochastic, noisy drift, 

starting at a neutral mid-position (in the standard model), and continuing until a decision 

threshold is reached. The evidence accumulation process is always noisy, due to internal noise 

(e.g., noise due to fluctuations in firing rates of neurons) and external noise (e.g., the number 

of photons reaching the retina). Perceptual decisions are relatively well understood 

psychologically as well as neurobiologically, and psychological models that were designed to 

explain behaviour have been successfully applied to models of activity of single neurons and 

populations of neurons (Heekeren, Marrett, & Ungerleider, 2008; Gold & Shadlen, 2007; 

Romo & Salinas, 2003; Smith & Ratcliff, 2004). These models, however, often fall short in 

explaining decision-making under ambiguous perceptual situations, and do not explicitly 

address decisions, which cannot be guided by sensory evidence. Fluctuations in neural noise 

have been discussed as a key factor in determining choice outcomes in these cases (Deco & 

Romo, 2008). For example, in an ambiguous face vs. vase detection experiment, incidental 

activation levels in a brain region in the ventral visual cortex, specialised for face processing, 

have been suggested to be associated with an advantage for face-decisions (Hesselmann, Kell, 

Eger, & Kleinschmidt, 2008). The two fMRI MVPA studies described in the following 

paragraphs (Bode, et al., 2012a, Appendix III; and Bode, et al., 2013, Appendix IV) were 
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designed to investigate whether perceptual decisions for objects in ambiguous perceptual 

situations could nevertheless be predicted from brain activation patterns in sensory, object-

processing brain regions.  

In the fMRI study by Bode and colleagues (2012a), participants were presented in 

each trial with one of two object stimuli (an image of a piano or a chair) or a pure-noise 

stimulus, which contained no meaningful object and consisted of scrambled phase textures 

with the same power spectra as the images from both object categories. Stimuli were 

presented in a randomised order in two possible discriminability conditions: either relatively 

easy to detect (~79-90% correct decisions) or near impossible to detect with performance 

around chance level (~34-45% correct decisions) due to differences in the masking procedure. 

Images were presented for 66.67 ms, followed by a post-mask for 433.33 ms for high 

discriminability, or for 16.67 ms followed by a post-mask for 483.33 ms for low 

discriminability (for details see Materials and Methods in Bode et al., 2012a). Importantly, 

participants attempted to make perceptual decisions in both conditions but needed to revert to 

guessing in the difficult condition. Participants indicated their choices using three response 

buttons, operated with the index-, middle and ring finger of the right hand. The response 

mapping was randomised on a trial-by-trial basis to de-correlate category choices and motor 

responses. The ‘searchlight’ variant of MVPA, as described above, was used to search for 

brain regions that allowed the prediction of choices under high discriminability and extremely 

low discriminability. It was found that in the high discriminability condition choices could be 

predicted from regions in ventral visual cortex, namely the lateral-occipital complex (LOC) 

and medial temporal cortex (Figure 2A). These regions have been associated with the 

encoding and processing of object information (e.g., Schwarzlose, Swisher, Dang, & 

Kanwisher, 2008). Hence, these findings support the assumption that under high 

discriminability, visual information was successfully sampled to guide subsequent decision-

making. However, no decision-related information was found in the ventral object-related 
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brain regions for choices made under low discriminability. Instead, choices in the guessing 

situation could only be predicted from activity patterns in the medial posterior parietal cortex, 

a region located in the precuneus, and lateral parts of the posterior parietal lobe (Figure 2A). 

There are several potential interpretations for finding these representations. First, the 

precuneus is not known to be part of the visual system, but it has been discussed to be 

involved in mental imagery and self-related cognitive functions (Cavanna & Trimble, 2006), 

and this area also overlapped with posterior parietal brain regions that were found to be 

predictive of voluntary decisions (Soon et al., 2008). Furthermore, electrophysiology studies 

with monkeys have repeatedly shown that posterior parietal cortex, in particular the lateral 

intraparietal area (LIP), was related to processing the computation of a decision variable, 

indexing the integration of all available information into a decision signal (e.g., Shadlen & 

Newsome, 2001). This means, the findings by Bode and colleagues (2012a) could reflect 

either an attenuation of internal signals (as opposed to external sensory information) during 

decision-making, or some other properties of the decision-making process that might be 

enhanced, or only decodable, under perceptual ambiguity. 

 To further investigate the association between perceptual guessing and voluntary 

decision-making, Bode and colleagues (2013) replicated the previous findings using a close-

to-identical fMRI paradigm with some minor modifications in the same 3 Tesla MRI scanner. 

Since the overlap in predictive patterns between the previous study and voluntary decision-

making studies (Soon et al., 2008) could be incidental, for example because the medial 

parietal cortex is involved in multiple cognitive functions (Margulies et al., 2009), Bode and 

colleagues’ (2013) study directly investigated how similar the neural activation patterns for 

perceptual guesses and voluntary decision were. For this, a different sample of participants 

made perceptual decisions between the same two object categories (pianos and chairs), again 

for highly discriminable objects as well as fully invisible objects, using the same masking 

procedure as described above. In order to rule out any effects of residual visual information 
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on decision-making, this time no object stimuli were actually shown in the low 

discriminability condition, but only a phase-randomised noise image was presented below 

perceptual threshold. This manipulation made it a true zero-discriminability (or, guessing) 

condition (for details see Materials and Methods in Bode et al., 2013). As a third condition, 

this experiment included a voluntary choice condition (indicated by the colour of the fixation 

cross shown at the beginning of each trial) using the same decision between pianos and chairs. 

In this condition, participants were instructed to freely and spontaneously choose one of the 

two categories, regardless of the visual presentation (which was identical to the guessing 

condition). The response mapping was again randomised on a trial-by-trial basis, thus de-

correlating category choices and motor responses. ‘Searchlight’ MVPA was used to find brain 

regions, which allowed for the prediction of choices in each condition. The crucial analysis 

involved a cross-condition classification approach: As before, the classifier was trained on 

activation patterns associated with piano and chair choices from four out of five runs from the 

guessing condition. The trained classifier, however, was then used to predict category 

decisions from activation patterns from the respective left-out run from the voluntary decision 

condition. This analysis was then repeated the other way round, this time training on data 

from the voluntary decision condition and predicting test data from the guessing condition. 

The average cross-condition classification accuracy then denoted the degree of inter-

changeability between activation patterns, which was used as an indicator for the similarity in 

the neural patterns between the two different types of decisions. It was shown that the 

posterior parietal regions found in the previous study (Bode et al., 2012a) indeed cross-

predicted both types of decisions, while medial prefrontal cortex only predicted choices in the 

voluntary decision condition. However, patterns in medial prefrontal cortex did not generalise 

to guesses. 
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Figure 2: Prediction of perceptual guesses. A) Choice classification for highly discriminable objects and 

perceptual guessing. ‘Searchlight’ MVPA for fMRI revealed significant classification accuracies for high 

discriminability in bilateral LOC, and for guessing in medial and lateral posterior parietal cortex (modified 

from Bode et al., 2012a), B) Prediction of choice outcomes for guesses from patterns of pre-stimulus ERPs. 

Using a moving analysis window MVPA approach, significant classification accuracies were found in the 100ms 

preceding the stimulus presentation when the following object stimulus did not contain any object-related visual 

information (modified from Bode et al., 2012b). C) Illustration of the shift in starting point (as conceptualised in 

the Diffusion Decision Model) for evidence accumulation in a series of consecutive guessing trials in which 

stimuli did not contain any object-related visual information (modified from Bode et al., 2012b). 

 

The findings of both fMRI studies (Bode et al., 2012a; Bode et al., 2013) strongly 

suggested an attenuation of internal (as opposed to external sensory) decision-related signals, 

which might drive choice under conditions of strong perceptual ambiguity. However, the 

questions regarding the origins of these choice-predictive signals, and how they might relate 

to the decision-making process, remained unanswered. One plausible explanation, which does 

not require the postulation of a fundamentally different symmetry-breaking decision 

mechanism, is that this activation reflected the state of the decision system before decision-

making. However, both fMRI studies used a TR or 2.8 s and were therefore unable to provide 

the required temporal resolution to test this assumption. In order to overcome this limitation, 

Bode and colleagues (2012b) conducted a study that used a similar perceptual decision-

making paradigm in combination with MVPA for ERPs (Appendix V) that allowed for the 
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prediction of decision outcomes on a millisecond time-scale before and after the decision was 

triggered. The study incorporated four discriminability conditions, again by varying the ratio 

of the presentation of an object stimulus (pianos and chairs at 16.67 ms, 33.33 ms, 50.00 ms, 

and 66.67 ms) and the post-mask (500 ms minus target object duration). Additionally, a true 

zero-discriminability condition was again included in which only a strongly masked noise 

stimulus was shown for 16.67 ms, as in Bode and colleagues’ (2013) study. A randomised 

response-mapping screen was used as in the studies before, and participants indicated their 

category decisions using the left and right index finger. 63-channel EEG was recorded at a 

sampling rate of 500 Hz. After standard off-line pre-processing, a current source density 

(CSD) analysis was performed (for details see Material and Methods in Bode et al., 2012). 

For the MVPA analysis, signals time-locked to the pre-mask were averaged from piano trials 

and chair trials individually for each participant within each of the five runs and each 

experimental condition. A sliding analysis time window of 80 ms was moved in steps of 20 

ms through the trial. Similar to the fMRI studies described above, a linear SVM classifier was 

trained on patterns of ERPs associated with piano choices and chair choices from all but one 

run, and tested on data from the left-out run. Notably, averaging was performed across all data 

points at each channel within each analysis time window (spatial decoding). A five-fold 

cross-validation procedure was applied, and statistical testing was performed against chance 

level as well as using a permutation test with randomised labels (see Chapter 2). In addition to 

this purely spatial decoding approach, a temporal decoding analysis was conducted separately 

for each of the 63 channels. For this, all 40 data points within each analysis time window were 

used as the relevant patterns on which classification was conducted. This analysis served as an 

independent method to localise channel-specific information for significant time windows 

from the spatial decoding analysis.  

The results of this study confirmed that spatial activity patterns from 200 ms after the 

presentation of fairly discriminable object stimuli predicted the outcome of perceptual 
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decisions. Classification accuracies were strongest for the highest discriminability condition 

during the entire post-mask period and into the response period, but accuracies dropped with 

decreasing discriminability. The temporal decoding analyses revealed that during early stages 

of the trial information was as mainly represented in occipital and occipito-parietal channels, 

while during later stages, around response initiation, information was primarily present in 

prefrontal channels (see Fig. 5 in Bode et al., 2012b). This study further replicated the 

prediction of decision outcomes in the zero-discriminability / guessing condition. Importantly, 

however, it was found that only the 100 ms time period preceding the stimulus presentation 

contained information about the upcoming choices. The temporal decoding analysis showed 

that for this pre-stimulus time period, prefrontal, posterior parietal and occipito-parietal 

channels were predictive of choice outcomes (Figure 2B). These findings confirmed the 

hypothesis that under perceptual ambiguity, the decision-related information predicted from 

patterns of brain activity might indeed reflect the state of the decision system immediately 

before the decision situation. This is particularly plausible given that the following stimulus 

did not contain any additional perceptual information, which could have over-written this pre-

existing state to then drive the decision process. To further investigate the origin of this pre-

stimulus information, Bode and colleagues (2012b) fitted the DDM (Ratcliff, 1978; Ratcliff et 

al., 2016; Smith & Ratcliff, 2004) to their behavioural data and obtained an excellent fit. They 

then allowed various model parameters to vary. It was found that the best fitting model 

showed substantial systematic starting point variability, meaning that the starting point for the 

evidence accumulation process in each trial was not neutral but systematically shifted towards 

the decision boundary of the previous choice (see Figure 2C). An analysis of choice ratios for 

zero-discriminability trials further confirmed these results: on consecutive pure-noise trials, 

participants were more likely to repeat their previous choices, and they were faster when 

repeating choices, most likely due to the shift in starting point towards the previous decision 

boundary, as predicted by the model.  
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In conclusion, the internal decision-related signals that were predictive for choice 

outcomes in ambiguous perceptual situations in all three studies (Bode et al., 2012a; 2012b; 

2013) were most likely related to carry-over effects of decision biases, reflected in a 

systematic shift of starting point for evidence accumulation. Notably, these biases were 

dependent on participants’ own choice history. This finding has several important 

implications. First, it shows that even in the absence of usable perceptual information, the 

decision system will never be in a true stalemate situation, because each decision will 

influence the following decisions to some degree. Second, contextual biases on perceptual 

decision-making exist (for explicit manipulations of biases see, e.g.: Chen, Jimura, White, 

Maddox, & Poldrack, 2015; Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; van 

Ravenzwaaij, Mulder, Tuerlinckx, & Wagenmakers, 2012), and can even result from the 

decision-makers’ own previous choices (see also Fründ, Wichmann, & Macke, 2014; for other 

effects of previous choice see also: Bronfman, Brezis, Moran, Tsetsos, Donner, & Usher, 

2015; Hawkins, Brown, Steyvers, & Wagenmakers, 2012). Third, MVPA appears to have 

sufficient sensitivity to detect these biases, and in combination with an appropriate analysis of 

behavioural data (here computational modelling), it has the potential to shed light on 

otherwise hidden cognitive decision processes.  
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4. Contextual biases in financial decision-making 

Many everyday decisions differ from perceptual decisions in that they are more complex, 

based on existing preferences and subjective values, and might involve explicit monetary 

returns or other benefits. The decision to purchase a car, for example, requires the integration 

of several sources of information, often including knowledge about potential products or 

product features (e.g., quality, prices, brands), as well as information inherent to the decision-

maker, including financial situation, motivational state, past experiences, attitudes and 

preferences (Glimcher, 2004; Rangel, Camerer, & Montague, 2008). The integration of all 

these aspects will result in assigning subjective values to potential choice options, which then 

might drive choice behaviour. However, this is not necessarily a conscious process, and 

contextual factors might bias decision goals (Custers & Aarts, 2010), even though, intuitively, 

we might believe that such decisions should depend strongly on exiting, stable preferences. 

The interesting scenarios, however, are those in which no strong preferences for any of the 

choice options exist, which will be termed preference ambiguity here, similar to perceptual 

ambiguity as in the previous chapter. One experimental task, which has frequently been used 

to create such ambiguous preference situations, is temporal discounting (TD) in which 

participants are asked to choose between a smaller, sooner reward and a larger, later reward 

(e.g., Berns, Laibson, & Loewenstein, 2007). In this task participants usually discount the 

delayed reward, meaning that they need to be compensated for waiting, which typically leads 

to hyperbolic discounting (e.g., Kable & Glimcher, 2007). Based on such a discounting 

model, it is then possible to vary reward sizes and delay periods to elicit participants’ 

indifference point, or indecision point, which is the point where the smaller, sooner reward 

and the larger, later reward are statistically equally likely to be chosen, constituting a measure 

of participants’ intertemporal preferences. These preferences are rather stable and often show 

systematic differences between personality types, such as trait impulsivity, and associations 
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with specific clinical populations (Peters & Büchel, 2011). However, it has also been 

suggested that situation-specific intertemporal preferences can be biased by contextual cues, 

such as rewarding images and positive mental imagery (Cheng, Shein, & Chiou, 2012; Peters 

& Büchel, 2010; Simmank, Murawski, Bode, & Horstmann, 2015; Wilson & Daly, 2004; 

Woelbert & Goebel, 2013; Zhong & DeVoe, 2010). In the following section, the study by 

Murawski and colleagues (2012) will be described that combined a classical TD task with a 

subliminal priming procedure (e.g., Dehaene et al., 2003; Krüger, Klapötke, Bode, & Mattler, 

2013; Vorberg, Mattler, Heinecke, Schmidt, & Schwarzbach, 2003) conducted in a Siemens 

MRI scanner at 3 Tesla, to investigate the influence of rewarding but otherwise incidental 

contextual cues on participants’ intertemporal preferences. 

 Murawski and colleagues (2012) (Appendix VI) asked their participants to choose 

between a smaller, immediately available reward (always $20 today) and a larger reward 

available in the near future (e.g. $50 in 10 days) in every trial. The study incorporated the 

combination of six different delays (1, 10, 21, 55, 90, and 180 days) and six different amounts 

per delay (ranging from $20.10 to $385.16). Indifference points (assuming hyperbolic 

discounting; for details see Materials and Methods in Murawski et al., 2012) were calculated 

from participants’ choice behaviour. In order to encourage decisions that accorded with 

participants’ true preferences, they could win one of their choices after the experiment (paid 

out immediately, or after the chosen delay). The crucial manipulation in the experiment was 

the implementation of two priming conditions: preceding each temporal discounting decision, 

participants were presented with either an image of the Apple Inc. ® logo, acting as the 

incidental rewarding prime (its effectiveness was determined using an independent 

behavioural experiment; see Murawski et al., 2012), or a perceptually closely matched 

‘neutral’ image of a coffee cup, which had no strong rewarding properties. Each prime image 

was shown for only 16.67 ms and was strongly masked using a sandwich pattern mask such 

that participants reported not having been able to identify the images during the experiment. 
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The results showed that in trials in which participants were exposed to the Apple Inc. ® logo, 

they significantly shifted their intertemporal preferences towards immediate rewards, 

compared to neutral coffee cup priming trials in which no shift in preferences was observed. 

In support, a computational model, which incorporated the priming effect, fitted the 

behavioural data better than a standard discounting model, which did not incorporate the 

priming effect (confirmed by likelihood ratio tests for individual participants by means of 

Bayesian Information Criterion, BIC, and Akaike Information Criterion, AIC; significant for 

nine out of 13 participants). On average, participants needed to receive $1.17 more for the 

delayed option at a delay of 180 days in order to be indifferent between both options. The 

fMRI analysis first used ‘searchlight’ MVPA (see Chapter 2) to identify brain regions in 

which spatial activation patterns were predictive for the decision outcomes (‘sooner option’ 

vs. ‘later option’). These were found in the medial orbito-frontal cortex (mOFC), medial 

prefrontal cortex (mPFC), anterior parts of the anterior cingulate cortex (ACC), and medial 

frontopolar cortex (FPC). Second, in a mass-univariate GLM analysis, parametric regressors 

were first used to search for brain region in which the BOLD signal was systematically altered 

by changes in assigned subjective values while controlling for the priming effect; and the 

second, crucial analysis searched for brain regions in which activation reflected changes in 

subjective value due to priming while controlling for subjective value encoding that was not 

influenced by the primes (for details see Materials and Methods in Murawski et al., 2012). It 

was found that most regions, which encoded subjective value, were also sensitive for the 

priming-induced changes in subjective value, as predicted by the computational model. These 

regions included mPFC, mOFC, ACC, and extended to medial posterior parietal cortex 

(mPPC), inferior temporal sulcus, and the striatum (Figure 3A). Importantly, these regions in 

which activation reflected the priming-related modulation of subjective value were not 

restricted to the regions that encoded choice outcomes, as revealed by MVPA. In fact, most of 
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the regions comprising the brain’s reward-network appeared to change their activation profile 

when participants were primed with the incidental rewarding images.  

 

 

Figure 3: Contextual effects on financial decision-making. A) Priming intertemporal preferences using 

subliminal rewarding cues. Displayed is the shift in discount function when primed with the logo of Apple Inc. ©, 

as compared to an image of a coffee cup as a control stimulus for an exemplary participant. The brain image 

shows some medial prefrontal, striatal and posterior parietal brain regions in which the priming effect 

systematically changed the representation of subjective value at group level. See text for a full list of regions 

(modified from Murawski et al., 2012). B) Information time-course for the prediction of post-experiment ‘time-

reference’ ratings for rewarding images, which were passively presented in the background during the 

experiment. Results from a SVR analysis on distributed spatio-temporal patterns of ERPs showed that significant 

prediction was possible during early visual processing, providing evidence for an automatic processing of 

abstract, decision-relevant stimulus features (modified from Bode et al., 2014a). 

 

The study by Murawski and colleagues (2012) provided behavioural and neural 

evidence for the influence of incidental, rewarding contextual cues on financial choices. In 

another study it has since been shown that rewarding images might not only bias decision-

makers towards more impatient choices (i.e., amplifying the tendency to choose immediate 

rewards), but some images might have the opposite effect and bias decision-makers towards 

more future-oriented decisions (Simmank et al., 2015). This means that contextual biases 
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might operate at a higher level than simply activating the brain’s reward network, and that 

some decision-relevant semantic properties of contextual cues might be automatically 

processed. In support of this hypothesis, it has been shown that neural activation patterns 

measured using fMRI during exposure to task-irrelevant stimuli, such as images of cars in the 

background, allowed for the prediction of hypothetical future purchase decisions for the same 

cars later on (Tusche, Bode, & Haynes, 2010). These results strongly suggest that high-level 

abstract features of these stimuli might be automatically processed during passive exposure, 

even though participants did not pay attention to the images because they were distracted 

using an attention-demanding foreground task (Tusche et al., 2010). Further evidence for this 

assumption comes from several studies showing that exposure to unattended stimuli can 

indeed elicit neural activation, which reflects more abstract category information, such as 

attractiveness and preferences (O’Doherty, Winston, Critchley, Perrett, Burt, & Dolan, 2003; 

Tusche, Kahnt, Wisniewski, & Haynes, 2013). In conclusion, the observed effects of 

incidental rewarding images on intertemporal preferences (Murawski et al., 2012; Simmank et 

al., 2015) could potentially have resulted from fast and automatic (and not necessarily 

conscious) processing of the temporal dimension (here termed time reference) of the stimuli, 

i.e. whether stimuli were perceived by the decision-makers as being related to the present or 

to the future. ‘Present-related’ rewarding images might then bias decision-makers towards 

impatient choices for immediate rewards (e.g., the Apple Inc. ® logo might be strongly 

associated with the wish to immediately acquire highly desirable products), while ‘future-

related’ images might exert biases towards more patient choices and delayed gratification. In 

the following section, the study by Bode and colleagues (2014a) is described that used MVPA 

for ERPs to investigate whether information about the abstract time reference dimension of 

rewarding images could be processed automatically and unconsciously during passive 

stimulus exposure (Appendix VII). 
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In each trial, Bode and colleagues (2014) presented their participants with one of 24 

positive, rewarding images (according to available norms, and confirmed by participants’ 

post-experimental ratings) for a duration of 3.2 s. Images were taken from the International 

Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2008) and preselected in an 

independent behavioural experiment such that they were all positive, but varied substantially 

on the dimensions arousal and time reference (for details see Material and Methods in Bode 

et al., 2014a). In the EEG experiment, each image was shown three times in a randomised 

order in each of the six experimental runs. Importantly, the images were completely task-

irrelevant, and at this stage, participants were unaware of the purpose of the experiment. 

Participants were only asked to closely monitor a small fixation box in the centre of the screen 

and press the left or right response button with their respective index finger whenever the box 

opened to the left or to the right. Each trial always began with the presentation of an image 

and a superimposed fixation box for 400 ms, which subsequently opened to a randomly 

selected side for a period of 400 ms, and continued to alternate between being closed and 

open in steps of 400 ms until the trial concluded. This task was adapted from similar 

attention-demanding foreground tasks used in previous studies to withdraw attention from 

background images (Tusche et al., 2010; Bogler et al., 2011). During the experiment, 64-

channel EEG was recorded at a sampling rate of 512 Hz. Standard off-line pre-processing was 

conducted using the EEGLab toolbox for MATLAB (Delorme & Makeig, 2004), followed by 

a current source density (CSD) analysis (Perrin et al., 1987) (for details see Materials and 

Methods in Bode et al., 2014a). After the experiment, participants were shown the same 

images again and were asked to rate them on several dimensions, including arousal (“How 

arousing/exciting do you think the image is?”) and time reference (“How strongly do you 

think the image is associated with the present or the future?”). They gave their answers on a 

nine-point Likert-scale (from “very arousing / exciting” to “not arousing / exciting at all”; and 

“strongly related to the present” to “strongly related to the future”), which was subsequently 
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converted into increments of ‘low’, ‘medium’ and ‘high’ for both dimensions to facilitate the 

MVPA ERP analysis. For this analysis, individual trials were sorted according to their ratings 

on both dimensions independently, and a linear SVR algorithm was used to regress individual 

ratings from the distributed patterns of ERPs in independent analysis time windows of 40 ms, 

which were moved through the trial with a steps size of 20 ms. This analysis was similar to 

SVM classification, but it allowed the regression of the continuous measures directly from 

patterns of ERPs (see Chapter 2). Each analysis time window contained spatial information 

from all 64 channels as well as temporal information from 20 data points (= 1280 features). 

The results showed that ratings for both dimensions could be regressed significantly above 

chance level (as determined using a strict shuffled-label control analysis; see Chapter 2) from 

distributed patterns of ERPs within the first 100 to 200 ms of visual processing (see Figure 3B 

for time reference results). The underlying feature weight maps (an approximate scalp 

topography index for the sources of this information) as well as the results of an additional 

temporal SVR analysis for each channel suggested that the origin of the predictive 

information differed between both dimensions. 

These results strongly suggest that the abstract feature dimension time reference was 

automatically processed during relatively early stages of visual processing, even though 

participants did neither pay attention to the stimuli nor were they aware of the importance of 

their temporal aspect. These findings therefore lent plausibility to the assumption that time 

reference could be an important stimulus feature, which decision-makers automatically assess 

when being exposed to stimuli in their environment. This is particularly plausible when 

considering that, when processing most (if not all) rewarding stimuli in the environment, their 

potential for consumption and their hedonistic value might be analysed fast and 

unconsciously, as one must constantly decide whether the stimulus constitutes an immediately 

available option, or whether it should be considered in the future. This is surely true for any 

food displayed in windows of bakeries and restaurants, or for most non-consumable products 
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in shopping windows, but also for more abstract stimuli such as advertisements for holiday 

trips. The same further applies to all situations, which lend themselves to rewarding social 

interactions, as these could also take place immediately but might sometimes be wisely 

postponed to the future. Thus, the results from Bode and colleagues’ (2014a) study provide an 

important insight into potential mechanisms driving the influence of contextual cues on 

decision-making, and suggest that decision-relevant properties of rewarding cues are 

automatically extracted and could have carry-over effects on incidental decision problems 

under preference ambiguity. This means, similar to decisions in perceptually ambiguous 

situations, more complex financial and intertemporal decisions are also susceptible to the 

decision context, potentially modulated by similar decision-making mechanisms (Hare, 

Schultz, Camerer, O'Doherty, & Rangel, 2011; Krajbich, Lu, Camerer, & Rangel, 2012).  
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5. Contextual biases in voluntary decision-making 

In recent years, another area that has received substantial attention and has been a vibrant 

field of research is voluntary decision-making (Brass, Lynn, Demanet, & Rigoni, 2013; 

Haggard, 2008; Haynes, 2011). This topic draws its attractiveness from its apparent relevance 

to philosophical problems such as the ‘free will’ debate, and some earlier attention-grabbing 

findings in cognitive neuroscience demonstrating decision-related neural signals in the human 

ERP several hundred milliseconds before the decision-makers were aware of ‘wanting’ to 

make a decision (Libet, Gleason, Wright, & Pearl, 1983; Libet, 1985). These findings have 

been replicated and expanded on many times (e.g., Fried, Mukamel, & Kreiman, 2011; 

Haggard & Eimer, 1999; Schneider, Houdayer, Bai, & Hallett, 2013), but their validity as 

well as the origin and meaning of these signals have been intensely debated (e.g., Batthyany, 

2009; Bode et al., 2014; Brembs, 2012; Haynes, 2011; Joordens, van Duijn, & Spalek, 2002; 

Roskies, 2010; Trevena & Miller, 2002). One attractive feature of voluntary decisions for the 

current work is that they are conceptualised as ambiguous decision scenarios in which neither 

decision outcome is associated with a stronger preference, with more sensory evidence, or 

with any other benefit, which should drive choice. The idea behind the experimental approach 

is to create decision problems that are “maximally non-stimulus driven” (Haggard, 2008) such 

that participants are as free as possible to choose one out of several (usually two) available 

choice options (e.g., Mueller, Brass, Waszak, & Prinz, 2007), or to choose the time point at 

which a behaviour (usually a motor action) occurs (e.g., Brass & Haggard, 2007). This 

obviously constitutes an extremely artificial choice situation, and it is indeed questionable to 

what extent such a free-choice scenario can truly be achieved. We have argued that such 

choice scenarios are more likely to conceal the true drivers of individual decisions than being 

truly non-stimulus driven, as the latter would require the absence of all external stimulation 

and all potential internal variables (e.g., memory, preference, physiological states), which is 
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highly unlikely to be possible (Bode et al., 2014; also see Schüür & Haggard, 2011). 

Nevertheless, as an extreme case of ambiguous choice scenarios, Libet-style voluntary 

decision experiments are highly suitable for the investigation of contextual effects on 

decision-making. The following section will first briefly introduce a seminal experiment by 

Soon and colleagues (2008), which used a novel adaptation of Libet’s original experiment for 

fMRI and MVPA. Then our experiment will be discussed, which incorporated one important 

extension to the original study and provided evidence for early choice predictive brain activity 

for abstract voluntary decisions (Soon et al., 2013; Appendix VIII). This will be followed by 

a discussion of a direct replication of Soon and colleagues’ (2008) original study, conducted 

by Bode and colleagues (2011) that additionally allowed for the investigation of the potential 

formation of choice biases (Appendix IX). 

 In their fMRI study, Soon and colleagues (2008) asked participants to make simple 

voluntary motor decisions by pressing the left or the right button with the respective index 

finger at a time point of their own choosing. Participants were additionally asked to report the 

time point at which they became aware of their decision immediately before performing the 

action, by recounting the letter that was displayed on the screen at that moment. For this 

purpose, letters on the screen were refreshed every 500 ms, providing participants with a 

‘clock’ to measure their ‘time of will’. The authors then used MVPA in a time-resolved 

fashion to predict the outcome of the decisions before the reported time point of conscious 

decision-making. It was found that decisions could be predicted significantly above chance 

from spatial patterns of brain activation in the medial posterior parietal cortex (mPPC), 

mainly in the precuneus and the posterior cingulate cortex (PCC), as well as in the medial 

frontopolar cortex (FPC), which has been associated with high-level planning and information 

integration (e.g., Burgess, Dumontheil, & Gilbert, 2007; Koechlin & Hyafil, 2007). Crucially, 

the onset of predictive activation was found ~7 s (possibly 10 s when taking into account the 

lag in the haemodynamic response) before the reported time point of conscious decision-
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making. As it has been argued that ‘real’ decisions require more complex choice options than 

motor actions, which may be driven by simpler unconscious ‘urges’ (Batthyany, 2009), the 

study by Soon and colleagues (2013) aimed at replicating the original findings using abstract 

decisions in a similarly ambiguous choice situation. Their task required participants to make 

decisions between two possible arithmetic tasks: adding or subtracting two numbers. 

Participants were again placed in a Siemens 3 Tesla MRI scanner and were instructed to relax 

while a continuous stream of letters and single digit numbers was presented in the centre of 

the screen, refreshed every 500 ms. The letters again served as the clock, and participants 

were asked to remember the letter on the screen when they first became aware of their 

decision to add or to subtract. Once they had made their decision, they were instructed to 

immediately perform the mental calculation using the two digits presented on the next two 

consecutive screens. This procedure prevented the use of favourite numbers to trigger 

decision-making, as the numbers to perform the arithmetic operation on were revealed only 

after the decision was made. In order to keep both mental operations equally simple, the 

smaller number always had to be subtracted from the higher number. In addition to the central 

numbers and letters, each screen also contained four single digit numbers displayed in the four 

corners of the screen. These always contained the correct answers for adding and subtracting 

the previous two numbers, as well as two incorrect solutions (as a control for task 

engagement), which were always one digit smaller or higher than the correct solutions. The 

positions of the correct solutions were pseudo-randomised across screens. Participants used 

four response buttons, mapped onto the four corners of the screen, to indicate their responses. 

After having revealed their choice by selecting one of the solutions, a second response screen 

asked them to state which letter was on the screen when they made their conscious decision to 

add or subtract. The MVPA analysis then followed the logic of Soon and colleagues’ (2008) 

study and used a time-resolved ‘searchlight’ decoding approach based on an FIR model that 

allowed for the analysis of brain activation patterns in time-steps of 2 s (see Chapter 2, and 
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Experimental Procedures in Soon et al., 2013). The results showed that the same brain 

regions as reported in the original study, comprising of mPPC, including the precuneus and 

PCC, and anterior FPC, encoded the upcoming abstract decisions up to ~5s before (possibly 

even earlier) the reported conscious time point of decision-making. These findings confirmed 

that predictive information for decisions of different levels of abstraction was represented in 

activation patterns seconds before the decision-makers’ reported consciously deciding on an 

option. While the time point of decision prediction was astonishingly early in these studies, 

the question how these signals were generated was left unanswered. 

  In order to further investigate the nature of the choice-predictive activity patterns, in 

particular in medial FPC, Bode and colleagues (2011) replicated Soon and colleagues (2008) 

paradigm for voluntary motor decision in combination with 7 Tesla ultra-high field fMRI. 

Their task was identical to the original study: participants were asked to relax until they felt 

the urge to make a decision for either the left or the right response button, and they again used 

the letters on the screen (refreshed every 500 ms) to report the time point of their conscious 

decision. Using an improved TR of 1.5 s, and an improved spatial resolution of 1 mm3 

isotropic voxels (i.e., 27-times smaller MVPA ‘searchlight’ clusters; Figure 4A), this study 

could investigate the evolution of pattern similarity and stability over time (for details see 

Materials and Methods in Bode et al., 2011). The study replicated the original findings and 

showed that decision outcomes could be predicted with significant accuracy from clusters in 

anterior FPC ~7 s before the reported the conscious decision. Furthermore, with increasing 

temporal proximity to the time point of the decision, the prediction accuracy increased (Figure 

4B); and importantly, the similarity of activation patterns with the activation pattern at the 

time point just before becoming aware of the decision (i.e. the most prototypical decision-

related activation pattern) increased as well (Figure 4C). One plausible explanation for this 

finding is that during the unconscious phase of decision-formation, the activation patterns 

slowly evolved towards a pattern that was then strongly associated with the final conscious 
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decision. This process at the neural level had remarkable resemblance to a diffusion process 

towards a decision boundary (albeit much slower), as conceptualised in the DDM (Smith & 

Ratcliff, 2004). It can therefore be speculated that something similar was reflected in these 

slowly evolving neural patterns, potentially the accumulation of internal decision-related 

signals. In support, other authors have offered similar explanations for evolving voluntary 

decisions that are based on evidence accumulation models (Mattler & Palmer, 2012; 

Schurger, Sitt, & Dehaene, 2012). 

 

 

Figure 4: Prediction of voluntary decisions for left and right button presses from brain activity before reported 

conscious awareness. A) Illustration of the construction of ‘searchlight’ clusters from anterior FPC using ultra 

high-field fMRI at 7 Tesla. The voxel size was 1 x 1 x 1 mm, and the cluster radius was 3 voxels (modified from 

Bode et al., 2011). B) Prediction of decision outcomes from most informative cluster in anterior FPC over time. 

These findings show a slow build-up of information towards the reported time point of conscious decision-

making, starting several seconds before (modified from Bode et al., 2011). C) Correlation of activation patterns 

from the most informative cluster in anterior FPC from each time window with the activation patterns from the 

following analysis time windows (averaged across both decisions). An increase in pattern similarity was 

observed until the time point of the reported conscious decision was reached (modified from Bode et al., 2011). 

 

Finally, the question that arises is why predictive information in brain activity patterns 

is found so early, and what might drive decision-making in these seemingly arbitrary choice 
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scenarios. The following discussion is partly based on ideas expressed in Bode and colleagues 

(2014b), which provided an in depth theoretical analysis of the nature of voluntary decisions, 

and the role of contextual information (Appendix X). In the absence of external factors, 

several scenarios that could explain the early predictive activation patterns are conceivable. 

First, decisions in each trial might be truly random. This is unlikely, however, considering 

that Bode and colleagues (2012b) demonstrated significant choice sequence effects in a 

related scenario where external information was absent. Indeed, while on average participants 

in Bode and colleagues (2011) chose each choice option equally often, and indicated having 

been ‘spontaneous most of the time’ (as assessed by post-experimental questionnaires), the 

analysis of sequential effects at a participant level remained inconclusive due to the low 

number of trials in each run (on average only 11 trials per 5min run were available). If 

anything, it should be surprising that participants were rather balanced in their choices, given 

that truly random sequences could be expected to be far more imbalanced for such short 

sequence lengths. This suggests a more likely second possibility – that participants produced, 

to some extent, predictable choice patterns. The higher frequency of short sequence lengths in 

these studies further point towards this possibility (Lages, Boyle, & Jaworska, 2013). In 

support, it has been shown recently that in the absence of external information that could 

otherwise guide decision-making, the previous choice can become the only ‘feedback’ 

available (Akaishi et al., 2014). These authors suggested that having chosen an option before 

might add value to the respective choice option, thereby increasing the likelihood of choice 

repetitions. Complex choice history effects have also been shown in monkeys, and the 

expression of these effects strongly depended on the exact nature of the task (Mochizuki & 

Funahashi, 2014). The most direct demonstration of choice history effects in voluntary 

decision-making comes from a behavioural study by Lages and Jaworska (2012), who directly 

replicated the experimental paradigms by Soon and colleagues (2008) and Bode and 

colleagues (2011). These authors found that in ten out of twelve of their participants it was 
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possible to use the same multivariate classification approach as in the fMRI studies to predict 

the upcoming choices from the previous choice history alone, without any reference to brain 

activity. Their classification accuracy was significant at group level and of similar magnitude 

to the accuracies reported in the original studies (Lages & Jaworska, 2012). Even though this 

demonstration of dependencies in sequences of voluntary decisions does not invalidate that 

brain activation patterns preceding choices strongly predict the upcoming choice (Soon et al., 

2014), their existence again supports the hypothesis that contextual effects have a significant 

influence in shaping decisions in ambiguous decision situations (Bode et al., 2014).  

Moreover, it is highly likely that in voluntary decision tasks another important factor 

might influence choice behaviour, namely participants’ implicit understanding of task 

instructions. These tasks are, as argued above, extremely artificial in that there appear to be 

neither preferences, external evidence, nor explicit instructions for why one should choose 

one alternative over the other. But participants are always instructed to choose something – 

they are offered a limited set of alternatives (usually two), from which they are expected to 

choose repeatedly, and both alternatives are always available in each trial. It is difficult to 

conceive how such a situation would not trigger an implicit idea of what kind of choice 

behaviour might be expected from them. Indeed, in most voluntary decision-making studies 

mentioned above (Bode et al., 2011; Soon et al., 2008; 2013), while participants were not 

explicitly told how to choose, they were nevertheless preselected with respect to their natural 

tendency to be “inherently” balanced between the available choice options (e.g., Bode et al., 

2011). This means, their initial implicit understanding of the task instructions might have been 

to be rather balanced between the two options – and this then constituted an important – but 

hidden – contextual driver of their decision-making. As argued above, typical voluntary 

decision tasks conceal these influences, and participants who might become aware of their 

existence and report them afterwards might even be excluded from the analyses. Importantly, 

however, counter-measures such as not explicitly instructing balanced choices and post-hoc 
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exclusions do not protect against the existence of such biases – these measures would simply 

render their origins invisible, make them inaccessible for analyses, and create the spurious 

assumption that participants’ decision behaviour was random and spontaneous. A decision 

situation, which is truly independent from any external and internal context, is simply 

unconceivable (Bode et al., 2014; Schüür & Haggard, 2011). As already Thorndike (1911) 

noted at the beginning of the 20th century, “[...] voluntary behaviour might be organised in 

loops rather than in single chains of events, as they do not need an initial cause; a free 

decision might be best described as “intelligent interaction with the animal’s current and 

historical context”. In that sense, voluntary decisions would be, even more than any other type 

of decision-making discussed in this work, susceptible to subtle contextual influences, 

because they create their own context.  
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6. Conclusion and remarks 

Using a MVPA approach for patterns of fMRI data and ERPs (Bode & Haynes, 2009; Bode & 

Stahl, 2014), the present work has demonstrated significant biases exerted by contextual 

information on decision-making across a variety of decision types. These biases can originate 

from external factors, such as contextual cues in the environment. This was shown using the 

example of shifts in intertemporal preferences after exposure to incidental rewarding cues in 

situations of preference ambiguity (Murawski et al., 2012). An explanation for this effect 

could be that participants automatically processed higher-level semantic attributes, such as 

stimuli’s time reference, even from contextual stimuli that were not attended and task-

irrelevant (Bode et al., 2014a). Contextual biases can further originate from the history of 

previous choices, as shown for perceptual decisions in situations of perceptual ambiguity in 

which guessing was required (Bode et al., 2012b). Results from this study provided support 

for the hypothesis that these biases were expressed as a shift in starting point for the following 

evidence accumulation process, as conceptualised in the DDM. This was reflected in the 

neural state of the decision system prior to perceptual processing, and became assessable 

using MVPA (Bode et al., 2012a; 2012b; 2013). Similarly, participants’ choice history has 

been argued to be an important contextual factor explaining early decision-predictive brain 

signals in fMRI studies on voluntary decision-making (Bode et al., 2011; Soon et al., 2013). 

In addition, the internalised implicit understanding of the task instructions in these ambiguous 

choice situations is highly likely to constitute another, often overlooked contextual factor 

biasing sequences in voluntary decision-making (Bode et al., 2014b).  

 The present work demonstrated that multivariate analysis methods constitute a 

powerful toolset for the investigation of human decision-making and contextual biases. First, 

in several of the studies discussed here, the decision-related information could not have been 

revealed using conventional methods. This is because activation patterns can represent 
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information without a significant enhancement of the local average BOLD signal (e.g., Bode 

et al., 2011; Bode & Haynes, 2009), and without strong differences between conditions of 

interest in single ERP components (e.g., Bode et al., 2014a; Bode & Stahl, 2014). Often, 

however, it is not sufficient to demonstrate the presence of information in brain activity that 

may give rise to the misleading impression of having discovered a novel neural mechanism 

(see the initial interpretations in Bode et al., 2012a; 2013), and that alone do not necessarily 

add much to the understanding of the underlying cognitive processes (as in Bode et al., 2011; 

Soon et al., 2013). Instead, the careful combination of MVPA with analysis of behaviour, for 

example by means of response times, error rates, choice probabilities, response force, or 

cognitive modelling (e.g., Bode et al., 2012b; Bode & Stahl, 2014a; Murawski et al., 2012), is 

highly advisable to gain a better understanding of the origins of the uncovered information in 

the neural signals. 

 The studies discussed here also reflect a recent trend in the cognitive sciences to 

investigate contextual influences on choice behaviour. However, despite this topic’s current 

attractiveness, it is also obvious that much more work is needed to understand the full extent – 

as well as the limits – of contextual biases on various decision types. In particular, the field of 

voluntary decision-making still mostly ignores the idea of sequential effects, and several 

authors maintain their (unrealistic) assumption that decisions can be truly spontaneous and 

unbiased. It would be most desirable if this assumption could finally be abandoned; and 

instead of concealing contextual influences, studies would focus more strongly on addressing 

them. In other scenarios, it will be of great importance to further explore under which 

circumstances contextual information can bias decisions, in particular for applications such as 

‘nudging’ decision-makers towards desirable choice options (e.g., Felsen & Reiner, 2015), for 

example when changing behaviour towards more healthy choices (e.g., Schonberg, Bakkour, 

Hover, Mumford, & Poldrack, 2014). All examples discussed here explored the influence of 

contextual cues in situations of strong preference ambiguity, perceptual ambiguity, or choice 
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ambiguity. But how indifferent between available options must a decision-maker be in order 

to be successfully biased by contextual cues? Or, in other words, how strong must a 

contextual cue be in order to still be successful if the decision-maker already has some (weak) 

preference for a specific option? 

Finally, despite the great importance of contextual biases, this work is not meant to 

depict humans as purely context-driven agents. It should be noted that situational contextual 

factors are only one class of variables that can bias behaviour, while in real life the much 

more important driver for decision-making is the interplay of people’s preferences, 

personality, motivations, memory, and learning. These factors constitute the (often 

unconscious) ‘internalised’ context against which decisions are made every day. Gaining a 

better understanding of how such preferences and motivations are shaped by constant 

updating of beliefs, learning, and making of new experiences in our interactions with the 

world, and how these updates are represented in the brain (e.g., Bennett, Murawski, & Bode, 

2015), constitutes another exiting strand of research strongly related to the questions 

discussed here. 
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