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CONCORDANCE HOMOMORPHISMS FROM KNOT FLOER HOMOLOGY

PETER S. OZSVÁTH, ANDRÁS I. STIPSICZ, AND ZOLTÁN SZABÓ

Abstract. We modify the construction of knot Floer homology to produce a one-parameter family
of homologies tHFK for knots in S

3. These invariants can be used to give homomorphisms from
the smooth concordance group C to Z, giving bounds on the four-ball genus and the concordance
genus of knots. We give some applications of these homomorphisms.

1. Introduction

The signature of the symmetrized Seifert matrix gives a knot invariant σ(K) satisfying a number
of basic properties [23]: it is additive under connected sums, it changes in a controlled manner under
crossing changes, and it gives a lower bound on the genus of a slice surface. Levine and Tristram [40]
extend this invariant to a one-parameter family of knot invariants σω indexed by points ω on the
unit circle. More recently, knot invariants whose properties are similar to those of σ have been
constructed using techniques such as knot Floer homology, resulting in the invariant τ(K) [28, 37];
and Khovanov homology, resulting in Rasmussen’s s invariant [39]. While σ and σω bound the
topological slice genus, the newer invariants often give better bounds for the smooth slice genus.

The goal of the present paper is to use methods of knot Floer homology to construct a one-
parameter family of knot invariants {ΥK(t)}t∈[0,2], upsilon of K at t, which fit together to give
a real-valued function ΥK : [0, 2] → R. These invariants are additive under connected sums, they
behave in a controlled manner under crossing changes, and they give lower bounds on the smooth
slice genus. This invariant is extracted from the filtered knot Floer complex, and it is similar to,
and indeed inspired by, the work of Jen Hom [11]. (For a comparison of Υ to [11], see Section 9.)

The invariants {ΥK(t)}t∈[0,2] are extracted from a suitably modified variant of knot Floer ho-
mology [30, 37]. Recall that knot Floer homology is defined as the homology of a bigraded chain
complex over the base ring F[U ], the ring of polynomials over the field F of two elements. (In the
following we will use coefficients in F[U ], although, with the appropriate use of signs, the construc-
tions and results admit extensions to give invariants over Z[U ].) This chain complex is associated
to a doubly pointed Heegaard diagram representing the knot K (equipped with some orientation).
Denote the two basepoints by w and z. The generators of the knot Floer complex over F[U ] are
given combinatorially from the Heegaard diagram, the differential of the complex counts pseudo-
holomorphic disks that do not cross z, while the exponent of U records the multiplicity with which
the pseudo-holomorphic disk crosses w. The complex is also equipped with a pair of gradings, the
Maslov grading M and the Alexander grading A, which descends to homology, endowing HFK−(K)
with the structure of a bigraded F[U ]-module.

The above construction of HFK−(K) admits the following variation. Fix a rational number
t ∈ [0, 2] ∩Q, and let t = m

n where m and n are relatively prime integers. The modified complex is

defined over the polynomial algebra in v1/n. The generators of the modified theory are the same as
those in the traditional knot Floer complex; and there is a single grading, now by a rational number,
given by M − t · A. The exponent of v records (2 − t) times the multiplicity with which the disk
crosses w and t times the multiplicity with which it crosses z. Multiplication by v drops grading
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by 1, as does the differential. The modified theory provides a family tHFK(K) (t ∈ [0, 2] ∩ Q) of

t-modified knot Floer homologies, which is a Q-graded module over the polynomial algebra in v1/n.

Theorem 1.1. For all rational t = m
n ∈ [0, 2] the t-modified knot Floer homology tHFK(K), thought

of as a graded F[v1/n]-module, is an invariant of the knot K.

A homology class ξ is said to be homogeneous if it is represented by a cycle in a fixed grading.
It is called non-torsion if vdξ 6= 0 for all d ∈ 1

nZ. We define the invariant ΥK(t) to be the maximal
degree of any homogeneous, non-torsion homology class in tHFK(K). It follows immediately from
Theorem 1.1 that ΥK(t) is also a knot invariant (see Corollary 3.7 below).

1.1. The behaviour of ΥK(t) as a function of t. The function ΥK satisfies the following
symmetry:

Proposition 1.2. For any knot K, ΥK(t) = ΥK(2− t).

Υ also satisfies the following integrality properties (compare also Proposition 1.7 below).

Proposition 1.3. The quantity ΥK(mn ) lies in 1
nZ.

Indeed, the above definition of tHFK and ΥK(t) for rational t can be extended to any real
t ∈ [0, 2], giving a knot invariant ΥK : [0, 2]→ R, with the following properties:

Proposition 1.4. For any knot K, the function ΥK (defined on [0, 2] ∩ Q) has a continuous
extension to a real-valued function on [0, 2], which is a piecewise linear function of t, and whose
derivative has finitely many discontinuities. Each slope is equal to some Alexander grading s for

which ĤFK∗(K, s) 6= 0; hence, in particular, each slope is an integer.

The following two propositions determine the behaviour of ΥK near 0 (and so near 2, in view of
Proposition 1.2).

Proposition 1.5. ΥK(0) = 0.

Proposition 1.6. The slope of ΥK(t) at t = 0 is given by −τ(K), where τ(K) denotes the con-
cordance invariant of the knot K defined from the knot Floer homology module HFK−(K).

Sometimes it is convenient to consider discontinuities of the derivative of ΥK(t). To this end, let

∆Υ′
K(t0) = lim

tցt0
Υ′

K(t)− lim
tրt0

Υ′
K(t).

Note that by Proposition 1.6 the quantity ∆Υ′
K and τ together determine ΥK :

ΥK(t) = −τ(K) · t+
∑

0<s<t

∆Υ′
K(s) · (t− s).

For the function ΥK : [0, 2]→ R we have the following extension of Proposition 1.3:

Proposition 1.7. For any t ∈ [0, 2], t ·∆Υ′
K(t) is an even integer.

Propositions 1.2 and 1.3 are proved in Section 4; Propositions 1.4, 1.5, and 1.6 are proved in
Section 5.

1.2. Topological properties of ΥK(t). Topological properties of ΥK(t) follow from correspond-
ing properties of knot Floer homology:

Proposition 1.8. ΥK is additive under connected sum of knots; i.e.

ΥK1#K2(t) = ΥK1(t) + ΥK2(t).

Proposition 1.9. Let m(K) denote the mirror of the knot K. Then

Υm(K)(t) = −ΥK(t).
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The invariant ΥK changes in a controlled manner under crossing changes:

Proposition 1.10. Let K+ and K− be two knots which differ in a crossing change. Then, for
0 ≤ t ≤ 1 we have that

ΥK+(t) ≤ ΥK−
(t) ≤ ΥK+(t) + t.

For 1 ≤ t ≤ 2, symmetry and the above inequality implies that

ΥK+(t) ≤ ΥK−
(t) ≤ ΥK+(t) + (2− t).

The invariant ΥK(t) also provides a lower bound for the (smooth) slice genus gs(K) of the knot
K as follows:

Theorem 1.11. The invariants ΥK(t) bound the slice genus of K; more precisely, for 0 ≤ t ≤ 1,

|ΥK(t)| ≤ t · gs(K).

The bounds on the slice genus are no stronger than the bounds coming from Rasmussen’s “local
h invariants” [37], see also [17, 38]; in fact, the slice bounds are proven by bounding ΥK in terms
of h invariants (see Proposition 4.7 below). The bounds based on ΥK(t) are convenient, though,
as they come from homomorphisms:

Corollary 1.12. For each fixed t, the map K 7→ ΥK(t) gives a homomorphism from the (smooth)
knot concordance group C to R; indeed, ΥK(t) induces a homomorphism Υ: C → Cont([0, 2]) from
the concordance group C to the vector space of continuous functions on [0, 2]. �

Proof. It follows from Theorem 1.11 and Proposition 1.8 that if K1 and K2 are concordant,
then ΥK1 = ΥK2 ; i.e. Υ is a well-defined function on the concordance group. Proposition 1.8 now
implies that it is a homomorphism.

In a different direction, recall that the concordance genus of K, written gc(K), is the minimal
Seifert genus of any knot K ′ which is concordant to K. The invariant ΥK can be used to bound
this quantity, according to the following:

Theorem 1.13. Let s denote the maximum of the finitely many slopes appearing in the graph of
ΥK(t) (c.f. Proposition 1.4). Then,

s ≤ gc(K).

It is interesting to compare this result to [12].
Propositions 1.8, 1.9, 1.10 and Theorem 1.11 are all proved in Section 4.

1.3. Calculations. The invariant ΥK can be explicitly computed for some classes of knots. For
alternating knots we have

Theorem 1.14. Let K be an alternating knot (or, more generally, a quasi-alternating one) with
signature σ. Then,

ΥK(t) = (1− |t− 1|)
σ

2
.

In particular, the derivative of ΥK(t) has at most one discontinuity, which can occur at t = 1.

The knot Floer homology of torus knots was determined in [33]. These computations lead to
the following computation of their ΥK invariant, which can be phrased purely in terms of their
Alexander polynomial. If K = Tp,q is the (p, q) torus knot (where p and q are positive, relatively
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prime integers), then the nonzero coefficients in the Alexander polynomial ∆K(t) are all ±1, and
they alternate in sign. Write the Alexander polynomial of K as

∆K(t) = t−
pq−p−q+1

2
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
=

=
n∑

k=0

(−1)ktαk ,

where {αk}
n
k=0 is a decreasing sequence of integers. Consider a corresponding sequence {mk}

n
k=0

of integers, defined inductively by the formulae

m0 = 0

m2k = m2k−1 − 1

m2k+1 = m2k − 2(α2k − α2k+1) + 1.

From these integers the invariant ΥK(t) is computed by the following formula:

Theorem 1.15. Let K be a positive torus knot, and let {mk, αk}
n
k=0 be the above sequences extracted

from its Alexander polynomial. Then,

ΥK(t) = max
{i
∣∣0≤2i≤n}

{m2i − tα2i}.

In fact, we will prove a more general analogue of the above theorem (Theorem 6.2), which holds
for any knot on which some positive surgery gives an L-space, in the sense of [33].

Example 1.16. Let K = T3,4 be the (3, 4) torus knot. Since ∆K(t) = t3 − t2 + 1 − t−2 + t−3, the
function ΥK(t) is given by

ΥK(t) =




−3t t ∈ [0, 23 ]
−2 t ∈ [23 ,

4
3 ]

−6 + 3t t ∈ [43 , 2].

Theorems 1.14 and 1.15 are proved in Section 6. For an inductive formula computing ΥTp,q in
terms of the functions ΥTn,n+1 see [5].

1.4. Applications of Υ to the concordance group. Partially computing ΥK for an infinite
family of torus knots, we get

Theorem 1.17. The function

K 7→

(
1

n
∆Υ′

K(
2

n
)

)∞

n=2

from the concordance group C to Z∞ =
⊕∞

n=2 Z is surjective.

Remark 1.18. Implicit in the above theorem is the statement that (a) for any knot K, the invariant
∆Υ′

K( 2n) is divisible by n (as a consequence of Proposition 1.7), and that (b) for a knot K the

value ∆Υ′
K( 2n) is non-zero for only finitely many n (which follows from Proposition 1.4).

Theorem 1.17 then easily implies the (well-known) existence of a direct summand of C isomorphic
to Z∞ [20].

By examining discontinuities of Υ′
K , Theorem 1.14 and Example 1.16 have the following imme-

diate corollary (which indeed can be seen by other means, as well):

Corollary 1.19. In the smooth concordance group C the torus knot T3,4 is linearly independent
from all alternating knots. �
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The Levine-Tristram signature function is a powerful tool for studying the concordance group;
see for instance [20, 40]. However, ΥK(t) can also be used to study knots for which such topological
methods yield no information: using Υ we can prove results for the subgroup CTS ⊂ C given by
topologically slice knots, while the Levine-Tristram signature function vanishes on this subgroup.
We illustrate this phenomenon by reproving a recent result of J. Hom [11], which states that CTS

admits a direct summand isomorphic to Z∞.
For a given knot K, let W+

0 (K) denote its untwisted positive Whitehead double; and let Cp,q(K)
denote its (p, q) cable (for p and q relatively prime). Consider the family of knots

(1) Kn = Cn,2n−1(W
+
0 (K))#(−Tn,2n−1).

Observe that Kn are topologically slice: by a theorem of Freedman [6] the knot W+
0 (K) is topo-

logically slice, hence the cable Cn,2n−1(W
+
0 (K)) is topologically concordant to the same cable of

the unknot, consequently Kn is topologically slice. The partial computation of ΥKn, and the same
map as used in Theorem 1.17, now yields the following:

Theorem 1.20. Consider the topologically slice knots {Kn}
∞
n=2 given in (1). These form a basis

for a free direct summand of the subgroup CTS of the concordance group given by topologically slice
knots. In fact, the map C →

⊕∞
n=2 Z defined by

K 7→

(
1

2n− 1
∆Υ′

K(
2

2n − 1
)

)∞

n=2

maps the span of {Kn}
∞
n=2 isomorphically onto Z∞ =

⊕∞
n=2 Z.

Remark 1.21. The fact that the group CTS of topologically slice knots contains a Z∞ direct summand
was first proved by Jen Hom in [11]. Her examples are very similar to the ones we have given here:
only the cabling parameters are different. (We chose our parameters out of convenience for our
computations.) Her homomorphisms also use the knot Floer complex, but they appear to use it
differently from ours; see especially Proposition 9.4 below.

Remark 1.22. Corollary 8.15 provides a refinement of Theorem 1.20, giving lower bounds on the
concordance genera of linear combinations of the Kn. Compare also [3] for a generalization of the
above result.

1.5. Outline of the paper. In Section 2, we review some notation from knot Floer homology, as
well as some of its key results. In Section 3, we spell out the definition of ΥK(t) in more detail,
extracted from t-modified knot Floer homology. Invariance of the t-modified theory is seen as a
special case of a formal construction described in Section 4. The behaviour of ΥK(t) as a function
of t is studied in Section 5, where we also verify Proposition 1.4. In Section 6, we give some
computations, verifying the computations for alternating and torus knots. In Section 7, we recall
the essentials of bordered Floer homology, which will be used in the computations from Section 8,
where we prove Theorem 1.20. In Section 9, we compare the homomorphism ΥK(t) with those
arising from the work of Hom [11]. Finally, in Section 10, we give a generalization to the case of
links.

1.6. Further remarks and questions. Note that t-modified knot Floer homology has a special
behaviour when we specialize to t = 1. In that case, one can associate moves to unoriented saddles.
This will be further pursued in [24].

The results from Section 1.1 can be thought of as giving linear relations between the values of
ΥK at various values of t: ΥK(t) = ΥK(2 − t) and ΥK(0) = 0. It is natural to wonder if there are
any further linear relations between the various values of ΥK(t) for t ∈ [0, 1]. We conjecture that
there are none.

More explicitly, for each rational number t, consider the homomorphism

φt : C → Z
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defined in terms of the expression t = m
n where m and n are relatively prime integers by

φm
n
(K) =





1
2n∆Υ′

K(mn ) if m is odd

1
n∆Υ′

K(mn ) if m is even.

Conjecture 1.23. The map K 7→ (φt(K))
{t∈Q

∣∣0<t<1}
, where t = m

n with (m,n) relatively prime

integers, induces a surjection onto
⊕

{t∈Q
∣∣0<t<1}

Z.

A more challenging variant of the above conjecture is the following:

Conjecture 1.24. The map K 7→ (φt(K))
{t∈Q

∣∣0<t<1}
, where t = m

n with (m,n) relatively prime

integers, induces a surjection from the subgroup CTS of topologically slice knots onto
⊕

{t∈Q
∣∣0<t<1}

Z.

It is natural to wonder what the image of the above map is, when further restricted to knots
with ǫ = 0, in the sense of [11]; in particular, for those knots which are in the kernel of Hom’s
homomorphisms [11]. (For a brief discussion about ǫ, see Section 9.)

The limitations of ΥK(t) become apparent when we consider alternating knots: Theorem 1.14 can
be interpreted as saying that the span of all alternating knots has a one-dimensional image under
ΥK . By contrast, alternating torus knots T2,2n+1 are linearly independent in C; more generally, a
theorem of Litherland [20] states that all torus knots are linearly indepedent in the concordance
group. These limitations notwithstanding, it seems likely that one can get more information by
pushing the present techniques further. For instance, in the spirit of [2], one can consider branched
covers to construct further invariants. The simplest of these branched covers is the double branched
cover Σ(K) of a knot K ⊂ S3, which is a rational homology sphere. The branch locus forms a
null-homologous knot in Σ(K). It would be natural to consider an analogue of Υ in that double
branched cover to try to get further concordance information.

According to a recent result of Jen Hom [16], there are knots for which Υ ≡ 0, but her invariant
ǫ is non-zero.

Acknowledgements: The first author wishes to thank Matt Hedden, Robert Lipshitz, and
Dylan Thurston for many memorable hours, computing knot Floer homology groups of various
satellite knots. We would like to thank Tim Cochran and Dan Dore for their feedback, and Linh
Truong for detailed corrections to an early draft of this paper. We also wish to thank Jen Hom
and Chuck Livingston for very interesting conversations and suggestions. We did not take the
parity of the numerator of t ∈ Q into account properly in an earlier draft of this paper; we are
particularly indebted to Chuck for having pointed out the mistake, which led to a correction in the
statement of the above conjectures. We also would like to thank the referees for helpful comments
and suggestions.

2. Notions from knot Floer homology

The knot Floer complex from [30] (which will be briefly recalled below) fits into the following
formal framework:

Definition 2.1. An Alexander filtered, Maslov graded chain complex C is a chain complex
over F[U ] with the following additional structure:

• The chain complex is a finitely generated free module over F[U ].
• The complex is generated over F by a generating set equipped with two integer-valued func-
tions, called the Maslov and the Alexander functions.
• Multiplication by U drops the Maslov function by two.
• Multiplication by U drops the Alexander function by one.
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The Maslov and Alexander functions induce a grading and a filtration, the Maslov grading and
the Alexander filtration respectively. We require the following further properties:

• The differential drops Maslov grading by one.
• The Alexander function induces a filtration and the differential respects this Alexander fil-
tration (i.e. elements with Alexander filtration ≤ t are mapped to elements with Alexander
filtration ≤ t for all t).

A chain complex with the above properties can be associated to a doubly pointed Heegaard
diagram representing a knot K ⊂ S3 [30, 37]. Let H = (Σ,α,β, w, z) be such a Heegaard diagram
for K. The chain complex CFK−(H) is generated over F[U ] by the same generating set S =
Tα ∩Tβ ⊂ Symg(Σ) as the Heegaard Floer chain complex CF− of the ambient 3-manifold S3. The
generators of the complex come equipped with two integer-valued functions, the Maslov function
and the Alexander function. Up to an additive constant, these functions are characterized as follows
(the additive indeterminacy will be removed later). If x and y are two generators, there is a space
of homotopy classes of maps which connect them, written π2(x,y). These homotopy classes are
equipped with two additive functions (i.e. additive under juxtaposition): the Maslov index, written
µ(φ), and, for a point p ∈ Σ−α− β in the Heegaard surface, the multiplicity at p, written np(φ),
which measures the algebraic intersection number of φ with the divisor {p} × Symg−1(Σ).

The Maslov and Alexander functions are characterized up to overall additive shifts by the equa-
tions:

M(x) −M(y) = µ(φ)− 2nw(φ),(2)

A(x)−A(y) = nz(φ) − nw(φ),(3)

for any φ ∈ π2(x,y).
With the generating set and grading defined as above, the differential ∂− counts pseudo-holomorphic

representatives of some φ ∈ π2(x,y) with Maslov index one, and it records the multiplicity at w in
the exponent of a formal variable U . Explicitly, the differential on CFK−(H) is defined by

(4) ∂−x =
∑

{y∈S}

∑

{φ∈π2(x,y)
∣∣µ(φ)=1}

#
(M(φ)

R

)
Unw(φ)y.

Here M(φ) is the space of holomorphic representatives of φ ∈ π2(x,y), and once its dimension

(which is equal to µ(φ)) is one, the symbol #
(M(φ)

R

)
denotes the mod 2 count of the elements in the

factor space M(φ)
R . The Alexander function gives a filtration, ultimately resulting in the Alexander

filtered, Maslov graded chain complex CFK−(H). (Note that CFK−(H) is a filtered complex. It
is the object which was denoted CFK−,∗(S3,K) in [30]. The homology of the associated graded
object of CFK−(H) gives the knot Floer homology HFK−(K).)

The total homology of CFK−(H) can be shown to be isomorphic to F[U ], cf. [32]; see Proposi-
tion 2.4 below. Equation (2) determines M only up to an overall additive constant. That indeter-
minacy is removed by requiring that the the generator of CFK−(H) has Maslov grading equal to
0. (Note that this convention differs from the grading convention from [32], where this generator
had grading −2; hopefully, no confusion will arise.)

Likewise, the Alexander function is specified by Equation (3) up to an overall additive constant.
We remove that indeterminacy as follows. First specialize the chain complex CFK−(H) to U = 0,
and take the homology of the associated (Alexander) graded object, to get the knot Floer homology

group ĤFK(K). The Maslov and Alexander gradings now descend to a bigrading on ĤFK(K) =⊕
d,s∈Z ĤFKd(K, s), which is a finite dimensional vector space over F. (Here, d is induced from

the Maslov grading and s from the Alexander grading.) Equivalently, we consider the F-vector

space ĈFK(H) generated over F by S = Tα ∩ Tβ, endowed with the differential ∂̂ counting only
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those holomorphic disks which satisfy that nz = nw = 0 (dropping the formal variable U from the
formula of Equation (4)). The normalization of A is chosen so that the graded Euler characteristic

χ =
∑

d,s(−1)
d dimF ĤFKd(K, s) · ts is a symmetric polynomial in t; in fact, it is the symmetrized

Alexander polynomial of K.
We can tensor a Maslov graded, Alexander filtered chain complex C (as in Definition 2.1) with

F[U,U−1] to obtain a complex C∞ with a second Z-filtration, given by the powers of U . More
precisely, we say that for a generator x of C over F[U ] an element U i · x has algebraic filtration
level −i. There is no loss of information in doing this: C can be recovered from C∞ by taking the
F[U ]-subcomplex of C∞ consisting of elements of algebraic filtration level ≤ 0.

In the case of knot Floer homology, by applying the above procedure to CFK−(H) we get the
chain complex CFK∞(H).

Theorem 2.2. ([30]) The Z⊕ Z-filtered chain homotopy type of the resulting Alexander and alge-
braically filtered, Maslov graded complex CFK∞(H) is a knot invariant. (In particular, the Z ⊕ Z
filtered chain homotopy type is independent of the orientation.) �

Using the Alexander filtration on CFK−(H) we can consider the homology of the associated
graded object. Explicitly, we endow the same F[U ]-module freely generated by the set S equipped
with a differential ∂−

K that counts only those holomorphic disks which satisfy nz = 0. The homology
of this associated graded object is called the knot Floer homology group HFK−(K), which is a
bigraded F[U ]-module.

2.1. Results from knot Floer homology. We will be using several theorems about knot Floer
homology in the present paper. The invariance of knot Floer homology in this setting means
that for two Heegaard diagrams H1 and H2 representing the same knot K the corresponding
Maslov graded, Alexander filtered chain complexes CFK−(H1) and CFK

−(H2) are Maslov graded,
Alexander filtered chain homotopy equivalent. From now on, this filtered chain homotopy type will
be denoted by CFK−(K); similarly, we write CFK∞(K) for the filtered chain homotopy type of
the corresponding complex over F[U,U−1]. We have the following Künneth principle for connected
sums:

Theorem 2.3. ([30, Theorem 7.1]) Suppose that K1 and K2 are two knots in S3 and K1#K2 is
their connected sum. Then, there is a Maslov graded, Alexander filtered chain homotopy equivalence

CFK−(K1#K2) ∼ CFK
−(K1)⊗F[U ] CFK

−(K2).

�

Another key result is the following:

Proposition 2.4. The total homology of CFK−(K) (i.e. taking the homology after forgetting the
filtration) is isomorphic to F[U ], and the Maslov grading of the generator is 0.

Proof. This complex computes the Heegaard Floer homology of S3, cf. [32]. The Maslov grading
has been normalized so that the homology has its generator in Maslov grading 0.

The above statement has the following restatement in terms of the structure of HFK−(K)
(thought of as a module over F[U ]). Consider the submodule of torsion elements

(5) Tors = {x ∈ HFK−(K) | p · x = 0 for some polynomial p ∈ F[U ]− {0}};

and consider the quotient HFK−(K)/Tors, which is a free F[U ]-module. Then, the free quotient is
isomorphic to F[U ] or, more succinctly, the module HFK−(K) has rank one over F[U ].

It can be shown that any non-torsion element in the F[U ]-module HFK−(K) has even Maslov
grading.
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The symmetry in ΥK (given in Proposition 1.2) is a consequence of the following symmetry in
knot Floer homology:

Proposition 2.5. ([30, Proposition 3.9]) There is a symmetry of CFK∞(K) which switches the role
of the algebraic and Alexander filtrations; i.e. if CFK∞(K)′ denotes the Z⊕Z-filtered chain complex
obtained from CFK∞ by exchanging the two factors in the filtration, then there if a Z ⊕ Z-filtered
chain homotopy equivalence betwee CFK∞(K)′ and CFK∞(K).

For a Maslov graded, Alexander filtered chain complex (C, ∂) over F[U ] we define the dual
complex (C∗, d) as follows. As a module, C∗ = MorF[U ](C,F[U ]); that is, C∗ is the set of F[U ]-
module homomorphisms from C to the ground ring F[U ]. It is naturally an F[U ]-module, by
considering the action of p ∈ F[U ] on φ ∈ C∗, defined by (p · φ)(x) = φ(p · x), for all x ∈ C. The
differential d is uniquely characterized by the property that (dφ)(x) = φ(∂x) for all x ∈ C.

The grading on C∗ is defined as follows. First, equip F[U ] with the Maslov grading and Alexan-
der filtration so that M(Ud) = −2d and A(Ud) = −d. Now a morphism φ ∈ C∗ is said to be
homogeneous if there are integers m and a so that φ takes any element of C with degree n and
filtration level b to an element of F[U ] with grading m+n and filtration level a+ b. This induces a
grading and a filtration on C∗, where the homogeneous element φ ∈ C∗ has grading m and filtration
level a.

The following is essentially a restatement of [30, Proposition 3.7]:

Proposition 2.6. Let K be a knot, and m(K) denote its mirror. Then, there is an identification
CFK−(m(K)) ∼= (CFK−(K))∗ of Alexander filtered, Maslov graded chain complexes over F[U ].

Proof. If (Σ,α,β, w, z) represents K, then (−Σ,α,β, w, z) represents m(K). Reflection identifies
moduli spaces of pseudo-holomorphic disks from x to y in Σ with corresponding moduli spaces of
pseudo-holomorphic disks from y to x in −Σ.

Recall that the τ -invariant τ(K) of a knot K is defined as

τ(K) = −max{A(x) | x ∈ HFK−(K) is homogeneous and non-torsion}.

(Note that this is not the definition of τ from [28]; but the equivalence of the two definitions was
established in [35, Lemma A.2].) This invariant provides a non-trivial lower bound for the slice
genus of K:

|τ(K)| ≤ gs(K).

The identification of CFK−(m(K)) as the dual of CFK−(K) (together with the grading conventions
applied) then easily implies that

τ(m(K)) = −τ(K).

By considering a Heegaard diagram for a knot K adapted to a Seifert surface, a strong relation
between the Seifert genus and the knot Floer homology of a knot K can be proved:

Proposition 2.7. Let K be a knot with Seifert genus g(K). Then,

max{s
∣∣ĤFK∗(K, s) 6= 0} ≤ g(K).

�

In fact, the above inequality is sharp [29], but that is not of importance to the present applica-
tions.
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2.2. Computations. Knot Floer homology groups can be easily computed for certain special
classes of knots. We will use the following computation of knot Floer homology for alternating
knots [27]:

Theorem 2.8. ([27]) Let K be an alternating knot. Then, ĤFKd(K, s) 6= 0 only if d− s = σ(K)
2 ,

where σ(K) denotes the knot signature. In particular, τ(K) = −σ(K)
2 . �

Remark 2.9. The normalization of the signature in the above theorem is such that σ of the right-
handed trefoil knot is −2. Since the graded Euler characteristic of knot Floer homology is the

Alexander polynomial, the above theorem determines ĤFK(K) for an alternating knot K in terms
of its signature and Alexander polynomial. As explained in [25, Corollary 10.3.2], HFK−(K) of an
alternating knot K is also determined by its signature and Alexander polynomial.

Finally, we will use the computation of knot Floer homology for torus knots. We state a slightly
more general version, as follows. An L-space is a three-manifold Y that is a rational homology
sphere (i.e. b1(Y ) = 0), with the additional property that the total rank of its Floer homology

ĤF(Y ) coincides with the number of elements in H1(Y ;Z). All lens spaces are L-spaces.
The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that

is an L-space. (Since (pq − 1)-surgery on the torus knot Tp,q is the lens space L(pq − 1, p2), any
positive torus knot is an L-space knot.) Let K be an L-space knot. The invariants of K are heavily
constrained [33]. Specifically, the non-zero coefficients of the Alexander polynomial are all ±1, and
they alternate in sign, hence there is a decreasing sequence of integers {αk}

n
k=0 with the property

that the symmetrized Alexander polynomial of K can be written

(6) ∆K(t) =
n∑

k=0

(−1)ktαk .

Define another sequence of integers {mk}
n
k=0 by

m0 = 0

m2k = m2k−1 − 1(7)

m2k+1 = m2k − 2(α2k − α2k+1) + 1.

The polynomial ∆K(t) determines a Maslov graded, Alexander filtered chain complex C∞(∆K)
as follows. The complex is generated over F[U,U−1] by generators {xk}

n
k=0 with grading and

filtration level specified by

M(xk) = mk and A(xk) = αk,

and differential (for all 0 ≤ 2k − 1 ≤ n):

(8) ∂x2k−1 = Uα2k−2−α2k−1x2k−2 + x2k, ∂x2k = 0.

Theorem 2.10. Suppose that K is an L-space knot. Then, the chain complex C∞(∆K(t)) repre-
sents the Z⊕ Z-filtered chain homotopy type CFK∞(K).

Proof. This is equivalent to the main result from [33].

2.3. Slice genus bounds. The slice genus bounds for ΥK(t) will come from certain slice genus
bounds from knot Floer homology. First, we make a formal definition:

Definition 2.11. For a chain complex C over F[U ] equipped with a (Maslov) grading, let δ(C)
denote the maximal grading of any homogenous non-torsion class in the homology H∗(C) of C.
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Starting from the knot Floer complex CFK−(K), we can consider a new subcomplex A(K, s),
generated by all elements c ∈ CFK−(K) with A(c) ≤ s.

It is perhaps easiest to think of A(K, s) as generated over F by elements U ix, where x is a
preferred generator of CFK−(K) over F[U ] with i ≥ max(A(x) − s, 0). The complexes A(K, s)
govern the behaviour of the Heegaard Floer homologies HF−(S3

n(K)) of the 3-manifolds S3
n(K)

obtained by sufficiently large surgeries on K. Functorial properties of the cobordism map then
allow one to extract slice genus bounds from these subcomplexes; see especially [37, Corollary 7.4].
Here we use a formulation akin to that of Hom and Wu [17].

Definition 2.12. Let ν−(K) be the minimal s so that δ(A(K, s)) = 0.

Strictly speaking, Hom and Wu formulate their invariant ν+(K) in terms of HF+, rather than
HF−. The two definitions give the same result:

Proposition 2.13. The invariant ν−(K) agrees with the invariant ν+(K) defined by Hom and Wu
in [17].

Proof. For a chain complex C over F[U ], let C+ denote the cokernel of the localization map
C → C⊗FF[U,U

−1]. Write CF−(S3), CF∞(S3) and CF+(S3) for CFK−(K), CFK−(K)⊗F[U,U−1],
and (CFK−(K))+ respectively. Let A+(K, s) denote the cokernel of the natural inclusion A(K, s)
to CF∞(S3). The definition also induces a map v+s : A+(K, s)→ CF+(S3). In fact, there is a map
of short exact sequences:

0 −−−−→ A(K, s) −−−−→ CF∞(S3) −−−−→ A+(K, s) −−−−→ 0

v−s

y
y

yv+s

0 −−−−→ CF−(S3) −−−−→ CF∞(S3) −−−−→ CF+(S3) −−−−→ 0

In [17], the invariant ν+(K) is defined to be the minimal s for which v+s takes the image of
CF∞(S3) in H(A+(K, s)) isomorphically onto H(CF+(S3)). Now this condition on s is equivalent
to the condition that v−s is surjective, which in turn is equivalent to the condition that v−s contains
the generator 1 ∈ F[U ] ∼= H(CF−(S3)). But v−s is a Maslov graded map; so this latter condition in
turn is equivalent to the condition that δ(A(K, s)) = 0. This establishes the desired equality.

Theorem 2.14. Let K ⊂ S3 be a knot. Then, ν−(K) ≤ gs(K).

Proof. This is [17, Proposition 2.4]; see also [37, Corollary 7.4].

3. Definitions of t-modified knot Floer homology and ΥK(t)

The aim of this section is to describe the definition of t-modified knot Floer homology of a knot
K ⊂ S3 and its corresponding numerical invariant ΥK(t). (See [21] for an alternative description
of these constructions.)

We describe the definition first for rational t, and then extend the definition for the general case.
For rational t the base ring can be chosen to be a polynomial ring, while for the general case we
need to work with a slightly larger ring R, which will be described below.

Fix a rational number 0 ≤ t = m
n ≤ 2, and consider the chain complex over F[v1/n], generated

by the same generators that were used to generate CFK− over F[U ]. Equip this module with the
grading

grt(x) = M(x)− tA(x)
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on the generators and take grt(v
αx) = grt(x)−α for α ∈ 1

nZ, that is, multiplication by v drops the
grading by one. Define the differential

(9) ∂tx =
∑

y∈S

∑

{φ∈π2(x,y)
∣∣µ(φ)=1}

#

(
M(φ)

R

)
vtnz(φ)+(2−t)nw(φ)y.

This construction makes sense even when t ∈ [0, 2] is real, once we choose a little more complicated
base ring. The ring described below was chosen so that the definition of ∂t makes sense, while the
ring retains a convenient property of F[U ]: finitely generated modules decompose as direct sums of
cyclic modules.

Definition 3.1. Let R≥0 denote the set of nonnegative real numbers. The ring of long power series
R defined as follows. As an abelian group, R is the group of formal sums

{
∑

α∈A

vα | A ⊂ R≥0, A well-ordered},

where we use the order on A induced from R. Note that if A and B are well ordered subsets of R,
then so is their sum

A+B = {γ ∈ R
∣∣γ = α+ β for some α ∈ A and β ∈ B}.

The product in R is given by the formula

(
∑

α∈A

vα) · (
∑

β∈B

vβ) =
∑

γ∈A+B

#{(α, β) ∈ A×B
∣∣α+ β = γ} · vγ ,

where the count appearing as the coefficient of vγ is of course to be interpreted as a number modulo
2.

It is straightforward to verify that the above defined product is well-defined. The field of fractions
R∗ of the ring R above can be identified with

{
∑

α∈A

vα | A ⊂ R, A well-ordered}.

Define the rank of a module M over R as the dimension of the R∗-vector space M ⊗R R
∗.

In the interest of uniformity, we will henceforth always consider the t-modified knot complex
over R, bearing in mind that F[v1/n] (used in the definition for rational t) is a subring of R, so we
can naturally extend the base ring in the rational case. This does not affect what we mean by Υ;
see Proposition 4.9.

Remark 3.2. The ring R is the unique valuation ring with valuation group R and quotient field
Z/2Z. For more information on this ring, see [1, Section 11] and [7].

Lemma 3.3. The endomorphism defined in Equation (9) is a differential. The differential drops
the grading grt by one.

Proof. The fact that the endomorphism is a differential can be seen directly from the fact that
nz and nw are additive under juxtaposition of flows and that ∂ in CFK− is a differential.

The grading properties follow quickly from Equations (2) and (3). Specifically, if vαy appears
with non-zero multiplicity in ∂tx, then there is a homotopy class φ ∈ π2(x,y) with

µ(φ) = 1,

tnz(φ) + (2− t)nw(φ) = α.
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In this case,

grt(x)− grt(v
tnz(φ)+(2−t)nw(φ)y) = M(x) −M(y)− tA(x) + tA(y) + t(nz(φ)− nw(φ)) + 2nw(φ)

= µ(φ) = 1.

Definition 3.4. We call the resulting grt-graded chain complex the t-modified knot Floer com-

plex, and denote it by tCFK(K). Its homology, denoted by tHFK(K), is called the t-modified

knot Floer homology; it is a finitely generated grt-graded module over R.

The construction of tCFK(K) can be thought of as coming from a formal construction associated
to Alexander filtered, Maslov graded complexes, as it will be explained in Section 4.

Theorem 3.5. tHFK(K), thought of as an isomorphism class of grt-graded module over R, is a
knot invariant.

One could repeat the invariance proof for knot Floer homology (relying on handle slide and sta-
bilization invariances) to prove Theorem 3.5. We prefer instead to appeal directly to the invariance
of CFK∞(K), combined with functoriality properties of the formal construction. This proof will
be given in Section 4.1.

Next we give the definition of ΥK(t):

Definition 3.6. ΥK(t) ∈ R is the maximal grt-grading of any homogeneous non-torsion element
of tHFK(K).

Theorem 3.5 has the following immediate consequence:

Corollary 3.7. ΥK(t) is a knot invariant.

4. t-modified knot Floer homology as a formal construction

In this section we describe a way to associate new chain complexes to a given Maslov graded,
Alexander filtered chain complex C over F[U ], in the sense of Definition 2.1. The t-modified knot
complexes can be thought of as associated to CFK−(K) in this manner. Since the association
is functorial under filtered chain homotopy equivalences (of C), the invariance of the t-modified
homology groups are quickly seen to follow from the invariance of CFK−(K).

Suppose that C is a finitely generated, Maslov graded, Alexander filtered chain complex over
F[U ]. Let x be a generator of C over F[U ], with Maslov grading M(x). Since multiplication by U
decreases the Maslov grading by 2, elements of Maslov grading M(x) − 1 are linear combinations

of elements of the form U
M(y)−M(x)+1

2 y, where y is a generator. In particular, M(U
M(y)−M(x)+1

2 y) =
M(x)−1 implies that M(y) ≥M(x)−1, and M(x) andM(y) have opposite parity. The differential
on C can be written as

(10) ∂x =
∑

y

cx,y · U
M(y)−M(x)+1

2 y,

where cx,y ∈ F.

Definition 4.1. Suppose that C is a finitely generated, Maslov graded, Alexander filtered chain
complex over F[U ], and let R be the ring of Definition 3.1 (containing F[U ] by U = v2). For
t ∈ [0, 2] the t-modified complex Ct of C is defined as follows:

• As an R-module, Ct is equal to CR = C ⊗F[U ] R.

• For each generator x of C over F[U ], define grt(x) = M(x)− tA(x), and extend this to Ct

by the convention that grt(v
αx) = grt(x) − α. Thus, grt induces a real-valued grading on

Ct with the property that multiplication by v drops grading by 1.
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• Endow the graded module Ct with a differential

∂tx =
∑

y

cx,y · v
grt(y)−grt(x)+1y,

where the coefficients cx,y ∈ F are taken from the differential of C through Equation (10).

The exponent of v is chosen so that the differential drops grt by exactly one. The relevance of
the construction is the following:

Proposition 4.2. Starting from the Maslov graded, Alexander filtered chain complex (CFK−(K), ∂−)
of a knot K over F[U ], the associated t-modified complex (CFK−(K))t (following Definition 4.1)
agrees with the t-modified knot Floer complex tCFK(K) (in the sense of Definition 3.4).

Proof. After identifying the generators and their gradings, we only need to check that if cx,y 6= 0,
then

tnz(φ) + (2− t)nw(φ) = grt(y) − grt(x) + 1;

but this was verified in the proof of Lemma 3.3.

We give the t-modified complex Ct the following second, more transparently functorial descrip-
tion. As before, let C be a finitely generated, Maslov graded, Alexander filtered chain complex
over F[U ], and think of F[U ] as a subring of R (with variable v) where U = v2. Consider the tensor
product of C now with the field R∗ of fractions:

CR∗ = C ⊗F[U ] R
∗.

The Maslov grading and Alexander filtration on C induce real-valued Maslov gradings and Alexan-
der filtrations on CR∗ by the convention that

A(vαx) = A(x) −
α

2
and M(vαx) = M(x)− α,

where x is a homogeneous generator of C as a F[U ]-module Just as in the discussion preceding
Subsection 2.1, CR∗ admits and algebraic filtration (given by −α

2 for vα · x), and CR = C ⊗F[U ] R
can be recovered from CR∗ by taking the elements with algebraic filtration level ≤ 0.

Rewrite the boundary operator from Equation (10) as

∂x =
∑

y

cx,y · v
M(y)−M(x)+1y.

For each t ∈ [0, 2], there is a new filtration F t on CR∗ defined by t
2 times the Alexander filtration

plus (1 − t
2 ) times the algebraic filtration. Clearly, this filtration depends on t. Observe that

multiplication by v drops the algebraic filtration by 1
2 and the Alexander filtration by 1

2 , and hence

it drops the F t filtration level by 1
2 . Consider the subcomplex Et of CR∗ (as an R-module) with

filtration level F t ≤ 0. This subcomplex retains a Maslov grading (and multiplication by v drops
the Maslov grading by one).

Lemma 4.3. The chain complex Et with its induced Maslov grading is isomorphic to the chain
complex Ct from Definition 4.1.

Proof. Consider the R-module map φ : Ct → CR∗ defined by x 7→ vtA(x)x. It is straightforward
to check the image of φ lies in Et, and indeed φ : Ct → Et induces an R-module isomorphism. This
isomorphism respects grading, since

M(φ(x)) = M(vtA(x)x) = M(x)− tA(x) = grt(x).
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Write ∂′ for the differential on Et and ∂ for the differential on Ct. We verify that φ is a chain
map:

∂′φ(x) = ∂′(vtA(x)x) = vtA(x)∂′x = vtA(x)
∑

y

cx,yv
M(y)−M(x)+1 · y

=
∑

y

cx,yv
M(y)−M(x)+1+tA(x)−tA(y) · vtA(y)y =

∑

y

cx,yv
grt(y)−grt(x)+1φ(y) = φ(∂x),

since tA(x)− tA(y) +M(y) −M(x) + 1 = grt(y) − grt(x) + 1.

We state functoriality in terms of maps between Alexander filtered, Maslov graded chain com-
plexes. A morphism φ : C → C ′ of degree m ∈ Z between two Alexander filtered, Maslov graded
chain complexes (in the sense of Definition 2.1) is an F[U ]-module map from C to C ′ that respects
filtration levels (i.e. if ξ ∈ C has filtration level ≤ t, then φ(ξ) ∈ C ′ has filtration level ≤ t, as
well) and that sends elements in Cd to elements in C ′

d+m. A homomorphism f : C → C ′ between
two Alexander filtered, Maslov graded chain complexes is a morphism of degree 0 that also satisfies
∂′ ◦ f + f ◦ ∂ = 0. For instance, the identity map from C to itself is a homomorphism. Two
homomorphisms f, g : C → C ′ are said to be homotopic if there is a morphism h : C → C ′ of degree
1 with f + g = ∂′ ◦ h + h ◦ ∂. As usual, C and C ′ are called filtered chain homotopy equivalent if
there are homomorphisms f : C → C ′ and g : C ′ → C so that f ◦ g and g ◦ f are homotopic to the
respective identity maps.

With the above definitions in place, functoriality follows immediately from the second version of
the t-modified construction (given in Lemma 4.3):

Proposition 4.4. Let f : C → C ′ be a Maslov graded, Alexander filtered chain map between chain
complexes over F[U ]. There is a corresponding graded chain map f t : Ct → (C ′)t, with the following
properties:

• If f : C → C ′ and g : C ′ → C ′′ are two Maslov graded, Alexander filtered chain maps, then

(g ◦ f)t = gt ◦ f t.

• If f, g : C → C ′ Maslov graded, Alexander filtered chain maps are chain homotopic to each
other, then f t and gt are chain homotopic to one another. In particular, filtered chain
homotopy equivalent complexes are transformed by the construction C 7→ Ct into homotopy
equivalent complexes.
• For C and C ′ Maslov graded, Alexander filtered chain complexes over F[U ] we have

(C ⊗F[U ] C
′)t ∼= (Ct)⊗R (C ′)t.

�

The dual complex of a chain complex C over R can be defined by a simple adaptation of the
definitions we had earlier for chain complexes over F[U ]. In particular, if C is a finitely generated
chain complex over R, we can consider its dual complex C∗ = MorR(C,R), as the module of maps

φ : C →R

which commute with the R-action, i.e. for x ∈ C and r ∈ R we have

φ(r · x) = r · φ(x).

There is a natural Kronecker pairing

C ⊗R MorR(C,R)→R,

denoted 〈·, ·〉 and defined as 〈x, φ〉 = φ(x). The dual complex MorR(C,R) is equipped with the
differential d : MorR(C,R)→ MorR(C,R) determined by

〈x, dφ〉 = 〈∂x, φ〉.
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Equipping the ring R with the grading gr(vα) = −α, we define the degree of a morphism in C∗

to be m if it takes elements in C of degree n to algebra elements of degree m+ n.
As the results of the above construction, for a graded chain complex C over R we get the dual

chain complex C∗, which is also graded. (Note that in this way we get the usual cochain complex,
only equipped with (−1)-times its usual grading.) With this notion in place, we get

Proposition 4.5. For a Maslov graded, Alexander filtered chain complex C over F[U ] and for its
dual complex C∗ = Hom(C,F[U ]) we have that

(C∗)t ∼= (Ct)∗.

Proof. The proof follows quickly from the definitions.

4.1. Consequences for ΥK(t). Some basic properties of ΥK(t) enumerated in Section 1 are con-
sequences of corresponding properties of knot Floer homology, and the formal properties of t-
modification. Before turning to the proofs, however, we complete the discussion of Section 3 by
verifying invariance of t-modified knot Floer homology.

Proof of Theorem 3.5. As shown in [30], the Maslov graded, Alexander filtered chain complexes
over F[U ] associated to two Heegaard diagrams representing the same knot K are filtered homotopy
equivalent. (Independence of the Heegaard diagram and the knot orientation are verified in [30,
Theorem 3.1 and Proposition 3.9] respectively.) According to Proposition 4.4, the filtered homotopy
equivalence induces homotopy equivalence of t-modified complexes, concluding the proof.

Notice that this result then proves Theorem 1.1.

Proof of Corollary 3.7. According to Theorem 3.5, the graded R-module tHFK(K) is a knot
invariant. Since ΥK(t) is extracted from the graded R-module structure of tHFK(K), the claim of
the corollary follows.

Having established the invariance of tHFK(K) and ΥK , we turn to the basic properties of ΥK

stated in Section 1.

Proof of Proposition 1.2. Suppose that C is a chain complex for knot Floer homology derived
from a Heegaard diagram representing the knot K with two basepoints w and z. Let C ′ be the
chain complex with the roles of the two basepoints switched. As stated in Proposition 2.5, there is
a filtered quasi-isomorphism between C and C ′. The image of a generator x of C is mapped to a
generator x′ of C ′ with

M ′(x′) = M(x)− 2A(x)

A′(x′) = −A(x).

Thus, grt(x) = gr′2−t(x
′), and since the algebraic structure of C and C ′ is the same, the equality

(11) ΥK(t) = ΥK(2− t)

follows.

Proof of Proposition 1.5. Observe that when t = 0, then tCFK(K) agrees with the usual
differential on CF−(S3) (the Heegaard Floer chain complex of S3), with its standard Maslov grading.
In turn, CF−(S3) is graded so that its generator has grading 0, so ΥK(0) = 0.

Proof of Proposition 1.8. This follows from the Künneth formula for connected sums (c.f. [30,
Theorem 7.1], restated here as Theorem 2.3), together with Propositions 4.2 and 4.4.
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Proof of Proposition 1.9. Combining Propositions 4.2, 4.5, and 2.6, we have

tCFK(m(K)) = (CFK−(m(K)))t

= (CFK−(K)∗)t

= (CFK−(K)t)∗

= (tCFK(K))∗.

It follows from the universal coefficient theorem, together with our grading conventions on dual
complexes, that

Υm(K)(t) = −ΥK(t),

concluding the proof.

4.2. Slice genus bounds. The slice genus bound of Theorem 1.11 (and of Proposition 1.10) will
be seen as consequences of the slice genus bounds coming from Theorem 2.14, and a simple algebraic
principle.

Recall that if C is a finitely generated, graded chain complex over F[U ], then δ(C) is by definition
the maximal grading of any non-torsion element in the homology H∗(C).

Lemma 4.6. Let C → C ′ be a grading-preserving map of finitely generated, graded chain complexes
over F[U ] with the property that the induced map H(C)⊗F[U ] F[U,U

−1]→ H(C ′)⊗F[U ] F[U,U
−1] is

an isomorphism. Then, δ(C) ≤ δ(C ′).

Proof. If c ∈ C represents a non-torsion homology class, then so does its image in H(C ′) (by the
hypothesis). Thus δ(C), which coincides with the grading of some c ∈ C, is less than or equal to
δ(C ′), as needed.

Obviously, a similar inequality holds for complexes over the ring R (after we replace F[U,U−1]
with R∗ in the hypothesis).

Proposition 4.7. For 0 ≤ t ≤ 1, there is an inequality

−tν−(K) ≤ ΥK(t).

Proof. This claim follows from the second construction of the t-modified complex, from Lemma 4.3.
Adapting the corresponding notion for F[U ]-modules, let AR(K, s) denote the subcomplex of CR

generated by the elements of CR satisfying A ≤ s. There is an inclusion (of subcomplexes over R)

vts · AR(K, s) ⊂ tCFK(K)

which induces isomorphisms after we tensor with R∗. Then

δ(AR(K, s)) − ts ≤ δ(tCFK(K));

so if δ(AR(K, s)) = 0, then

−ts ≤ δ(tCFK(K)).

Minimizing over all s with δ(A(K, s)) = 0, we obtain the claimed inequality.

Proof of Theorem 1.11. By taking also the mirror m(K) of K, and using the fact that
Υm(K)(t) = −ΥK(t) from Proposition 1.9, we conclude that

|ΥK(t)| ≤ tmax(ν−(K), ν−(m(K)).

The theorem now follows from Theorem 2.14.
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Proof of Proposition 1.10. Since K−#(m(K+)) has slice genus less than or equal to one,
Theorem 1.11 gives ΥK−#(m(K+))(t) ≤ t, so

ΥK−
(t) ≤ ΥK+(t) + t

follows from Proposition 1.8.
To see that ΥK+(t) ≤ ΥK−

(t), we proceed as follows. The triangle counting map used in the proof
of the skein exact sequence [30, Theorem 10.2] induces a filtered map CFK∞(K+)→ CFK∞(K−).
This is a sum over Spinc structures (on the cobordism W ) of maps; but restricting to either Spinc

structure with minimal |c1(s)| (evaluated on the generator of H2(W )), we get an isomorphism on
HF−. Apply t-modification to this map, as in Proposition 4.4, and notice that Lemma 4.6 applies.

Remark 4.8. The above proposition could alternatively be seen as a consequence of the skein
inequality for ν−(K). This follows quickly from the behaviour of the maps associated to negative
definite cobordisms, see [26].

4.3. Special behaviour for t ∈ [0, 2]∩Q. The following proposition indicates that we obtain the
same Υ-invariant, regardless of the base ring used in the definition. Indeed, for rational t = m

n , the

complex tCFK(K) can be defined over the subring F[v1/n] of R (this is how we defined Υ in the
introduction).

Proposition 4.9. Let C be a finitely generated, free, graded chain complex over F[v1/n], and
consider the induced chain complex C ⊗F[v1/n] R. Then, the maximal grading of any homogeneous

non-torsion element of H(C) agrees with the maximal grading of any homogeneous non-torsion
element of H(C⊗F[v1/n]R). In particular, for rational t, the invariant ΥK , defined using tCFK(K)

with coefficients in F[v1/n], coincides with ΥK , defined using tCFK(K) with coefficients in R.

Proof. For a graded module M over F[v1/n], let Tors(M) denote its torsion submodule. We argue
first that

(12) (M ⊗R)/Tors(M ⊗R) = (M/Tors(M)) ⊗R.

To see this, consider the short exact sequnece

0→ Tors(M)→M →M/Tors(M)→ 0,

where M/Tors(M) is a free module. Since R is torsion-free as a module over F[v1/n], we can tensor
the above short exact sequence with R to get

0→ Tors(M)⊗R →M ⊗R → (M/Tors(M)) ⊗R → 0.

Since the image of Tors(M)⊗R is contained in Tors(M⊗R), and (M/Tors(M))⊗R is torsion-free,
we conclude that Tors(M)⊗R = Tors(M ⊗R) and hence Equation (12) holds.

By the universal coefficients theorem (with coefficient ring F[v1/n]), there is an isomorphism

H(C ⊗F[v1/n] R)
∼= H(C)⊗F[v1/n] R,

since R is a torsion-free module over F[v1/n]. Applying Equation (12), we conclude that

H(C ⊗F[v1/n] R)/Tors(H(C ⊗F[v1/n] R))
∼= (H(C)/Tors(H(C)))⊗R.

The maximal grading of any non-torsion element in H(C) is, in fact, the maximal grading of
a generator of the free module H(C)/Tors(H(C)), which of course coincides with the maximal
grading of H(C ⊗R)/Tors(H(C ⊗R)).
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Proof of Proposition 1.3. The grading on tCFK(K), when considered over F[v1/n], lies in 1
nZ.

Therefore ΥK(mn ) ∈
1
nZ follows from Proposition 4.9.

5. ΥK(t) as a function of t

5.1. Continuously varying homologies. Proposition 1.4 will be seen as the special case of a
general construction. As before, let R denote the ring of long power series, defined in Definition 3.1.
We grade this ring (by real numbers) so that v has grading −1; i.e. vα has grading −α.

Let C be a finitely generated complex over R. Define Υ(C) to be the maximal grading of any
non-torsion element in H∗(C).

Note that R has a unique maximal ideal denoted v>0R, which is the union ∪α>0v
α · R. If C is

a finitely generated complex over R, let C/v>0C denote the induced complex

C ⊗R (R/v>0R) = C/
⋃

α>0

vα · C.

Definition 5.1. A continuously varying family of finitely generated chain complexeses {Ct} over
R, indexed by t ∈ [0, 2], is the following data:

• Generators {xi}
n
i=1 (which generate each Ct as R-modules), so that the grading grt(xi) ∈ R

is a continuous function of t.
• Differentials Dt : Ct → Ct which drop the grading grt by one, and which vary continuously
in t; i.e.

Dtxi =
∑

j

ai,j(t)xj ,

where ai,j(t) is either zero for all t, or it is of the form ai,j(t) = vgi,j(t) for some continuous
function gi,j of t. In fact, grading considerations ensure gi,j(t) = grt(xj)− grt(xi) + 1.

Proposition 5.2. Let {Ct}t∈[0,2] be a continuously varying family of finitely generated chain com-

plexes over R. Suppose moreover that the rank of H∗(C
t) is one. Then, Υ(Ct) is a continuous

function of t. Moreover, for each t, there is a corresponding generator x(t) in the finite generating
set with the property that

Υ(Ct) = grt(x(t)).

In fact, there is some non-zero homology class in H∗(C
t/v>0Ct) whose grading agrees with Υ(Ct).

Before proving the statement, recall the following:

Lemma 5.3. Let C be a graded, finitely generated module over R. Then, the homology of C splits
as a direct sum of graded cyclic modules; i.e. modules of the form R or R/vαR for some α ∈ R≥0

(with a possible shift in degree).

Proof. Although the ring R is not a principal ideal domain, it is a valuation ring, so every finitely
generated ideal in R is principal, see [1, Section 11]. (In fact, the proof of this fact for R is so simple
that we sketch it here. Suppose that f1, . . . , fn generate the ideal I, and write fi = vαiqi where
qi ∈ R is a unit. Choosing α = min{α1, . . . , αn}, it is easy to see that the element vα generates the
ideal I.) Adapting the proof of the usual classification of modules over a principal ideal domain, it
follows immediately that any finitely generated module is a sum of cyclic modules.

Recall the definition of the dual complex C∗ = MorR(C,R) for a complex C over R, with the
Kronecker pairing

〈·, ·〉 : C ⊗R MorR(C,R)→R,

defined by the formula 〈c, φ〉 = φ(c). The module C∗ is equipped with a differential d that is dual
to the differential on C.
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Lemma 5.4. Let C be a finitely generated chain complex over R, generated by the elements
{x1, . . . , xk}, and suppose that the rank of H∗(C) is one. Then there is a morphism φ : C →R with
dφ = 0 and an element x ∈ C with ∂x = 0, so that 〈x, φ〉 = 1. In fact, for any such pair (x, φ), the
degree of x is Υ(C) and the degree of φ is −Υ(C), and there is some generator xi of C with the
property that

grxi = grx.

Proof. By the universal coefficients theorem, H∗(C) contains a direct summand which is iso-
morphic to R. The grading of the generator x of this R-summand is Υ(C). Consider the splitting
of H∗(C) as the sum of cyclic modules, and take the map to R which takes x to 1. By the uni-
versal coefficients theorem in cohomology, there is a cohomology class [φ] with the property that
Kronecker pairing with φ realizes this map; i.e. there is a cocycle so that

〈x, φ〉 = 1.

It follows that φ cannot be realized as v times any other cocycle, therefore gr(φ) = Υ(MorR(C,R)).
Since the grading of 1 is zero, it also follows that gr(φ) + gr(x) = 0, implying the statement.

To show that gr(x) = gr(xi) for some i ∈ {1, . . . , k}, we express x in terms of the basis for C:

x =
∑

i∈I

vαi · xi,

where I ⊂ {1, . . . k}, and the αi are real numbers with αi ≥ 0, and gr(x) = gr(xi) − αi. Let
α = mini∈I αi. Clearly, x = tα · x′, where x′ is a cycle representing a non-torsion homology class,
with grt(x) = gr(x′)− α. It follows that α = 0, as desired.

Proof of Proposition 5.2. Fix some s ∈ [0, 2], and let ti be any sequence with limi→∞ ti = s.
Lemma 5.4 gives sequences of cycles xti and φti with

〈xti , φti〉 = 1

and grti(x
ti) ∈ {grti(x1), . . . , grti(xk)}. It follows that there is a uniform bound on grti(x

ti) or,

equivalently, on the exponents of v in the expression of xti in terms of the basis. Thus, we can find
a subsequence {ni}

∞
i=1 ⊂ N so that the xtni converge to xs ∈ Cs. Passing to a further subequence

if needed, we can assume that the φtni converge to some φs ∈ MorR(C
s,R). Since ∂t(x

tni ) = 0,
by continuity we conclude that ∂s(x

s) = 0. Similarly, dtni
φtni = 0 imply dsφ

s = 0. Now, by

continuity, limi→∞ grtni
(xtni ) = grs(x

s), and we conclude from Lemma 5.4 that Υ(Ctni )→ Υ(Cs).

Since this holds for any sequence of {ti} which converges to s, we conclude that the function Υ(Ct)
is continuous at s. Since s is arbitrary, we conclude that Υ(Ct) is a continuous function.

Now, there are n continuous functions gr(xti), and for any t, the value Υ(Ct) agrees with at least
one of them (again, according to Lemma 5.4).

Finally, observe that if xti represents a boundary in Ctni/v>0Ctni , then in fact xti would be
homologous (in Ctni ) to vα times a different cycle in Ctni . But this would contradict the statement
that xti is a maximal grading, non-torsion homogeneous element.

5.2. Applications to ΥK(t). Proposition 1.4 is an immediate consequence of Proposition 5.2:

Proof of Proposition 1.4. Consider the complexes tCFK(K) over R. These have a fixed
generating set, and the differential is specified by

∂tx =
∑

y∈S

∑

{φ∈π2(x,y)
∣∣µ(φ)=1}

#

(
M(φ)

R

)
vtnz(φ)+(2−t)nw(φ)y.
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We clearly obtain a continously varying family of chain complexes Ct (over R) in the sense of
Definition 5.1.

We can now apply Proposition 5.2 (whose hypotheses are satisfied, thanks to Proposition 2.4)
to conclude that ΥK(t) is a continuous function of t, which agrees, at any t, with one of the
finitely many linear functions {grt(x)}x∈S (recall that S = Tα ∩ Tβ is the set of generators and
grt(x) = M(x) − tA(x)), as stated in Proposition 5.2. Note that since the various slopes of the
functions {grt(x)}x∈S are (−1)-times the Alexander gradings of those elements, it follows at once
that the finitely many slopes of ΥK(t) are all integers.

Proof of Theorem 1.13. This follows from Proposition 1.4, together with Proposition 2.7 and
the concordance invariance of Υ.

Proof of Proposition 1.6. Consider a sequence of cycles xt indexed by t > 0 satisfying the
following properties:

(1) (homogeneity) xt is homogeneous with grading grt;
(2) (non-torsion) xt is non-torsion;
(3) (maximality) xt maximizes grt among all grt-homogeneous, non-torsion elements.

Write xt in terms of a basis of generators

xt =
∑

ai(t)v
ǫi(t)xi,

(with ai(t) ∈ F and ǫi(t) ∈ R). By passing to a subsequence in t, we can make the following further
assumptions:

(4) The ai(t) = ai are constant; i.e. the xt converge as t → ∞. Equivalently, there is some
fixed set I with the property that

xt =
∑

i∈I

vǫi(t)xi.

(5) There is some i0 ∈ I with the property that ǫi0(t) ≡ 0. (This final property follows from
maximality.)

Maximality further ensures that

ΥK(t) = grt(x
t) = M(xi)− tA(xi)− ǫi(t)

for t > 0. Since ΥK(0) = 0 (Proposition 1.5), continuity of Υ (Proposition 5.2) ensures that for
those j with ǫj(0) = 0 (and those exist by Property (5)), we have

grt(x
t) = −tA(xj).

This ensures the limiting cycle x0 = limt→0 x
t is a sum of chains with fixed Alexander grading,

which in fact is A(xj) (for any j with ǫj(0) = 0). Observe that tCFK(K)/v>0 ·tCFK(K) = ĈF(S3),

a chain complex whose homology is ĤF(S3) ∼= F. The image of x0 in the homology of this quotient

complex generates ĤF(S3). We conclude at once that A(xj) = A(x0) ≥ τ(K). Thus,

(13) ΥK(t) ≤ −t · τ(K)

for all sufficiently small t.
For the converse, we find it convenient to work in the model for Ct considered in Lemma 4.3.

Take a chain y0 ∈ ĈF(S3) with the following properties:

• The chain y0 is a cycle, which represents the non-trivial homology class in ĤF(S3).
• The chain y0 is homogeneous in Maslov and Alexander gradings; in particular, M(y0) = 0.
• The Alexander grading of y0 is τ(K).
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We can extend y0 to a Maslov-homogeneous cycle y representing the generator HF−(S3) by adding
only terms with non-zero U powers in them.

Write y = y0+U ·y1. Next, consider y as a cycle in Ct. Since Uy1 = v2y1 has algebraic filtration
less than 2, and there is a uniform upper bound on the Alexander gradings of any element, we
conclude that for all 0 ≤ t sufficiently small, F t(y) ≤ 0. Indeed, by making the upper bound

smaller if needed, for all 0 ≤ t sufficiently small, F t(vt·τ(K) · y) ≤ 0, so we can view vt·τ · y as an
element of Et. Since y represents a non-zero class in HF−(S3), the class vt·τ(K) · y represents a
non-torsion homology class in Et.

According to Lemma 4.3, in the model for Et the Maslov grading of vt·τ(K) ·y, which is −t ·τ(K),
corresponds to the grading in Ct.

We conclude that, for all sufficiently small t ≥ 0,

ΥK(t) ≥ −t · τ(K).

Combining this with Equation (13), we conclude that for all sufficiently small ≥ 0,

ΥK(t) = −t · τ(K),

from which Proposition 1.6 follows immediately.

Proof of Propositions 1.7. Suppose that t is a point where ∆Υ′
K(t) 6= 0. By Proposition 5.2,

there are two different generators x and y with grt(x) = grt(y), but A(x) 6= A(y) and

∆Υ′
K(t) = A(x)−A(y).

The condition grt(x) = grt(y) (that is, M(x)− tA(x) = M(y)− tA(y)) ensures that

t∆Υ′
K(t) = t(A(x)−A(y)) = M(x)−M(y)

is an even integer. (Recall that a non-torison element has even Maslov grading; cf. Proposition 2.4.)

6. Computations

Theorems 1.14 and 1.15 are quick consequences of the corresponding knot Floer homology com-
putations.

Proof of Theorem 1.14. Apply Theorem 2.8. In view of Lemma 1.9, we can assume without
loss of generality that τ(K) = −σ(K)/2 is non-negative.

In this case, there is a sequence of elements x0, . . . , xn, and y0, . . . , yn−1 in CFK∞(K), with
∂yi = Uxi + xi+1, and

A(xi) = τ(K)− 2i

M(xi) = −2i.

Clearly, x0 represents a non-torsion generator. In fact, any non-torsion class must contain at least
one of the xi. Moreover, for 0 ≤ t ≤ 1, grt(x0) is maximal among grt(xi). Thus,

ΥK(t) = grt(x0) = −A(x0) · t =
σ(K)

2
· t.

The values for 1 ≤ t ≤ 2 now follow from Proposition 1.2.

Remark 6.1. Theorem 2.8 can be generalized immediately to quasi-alternating knots in the sense
of [33], using the appropriate generalization of Theorem 1.14 from [22].
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Theorem 6.2. Let K be an L-space knot, and let {αi}
n
i=0 and {mi}

n
i=0 be the associated sequence

of integers, as defined in Equation (6) and (7) respectively. Then,

ΥK(t) = max
{i
∣∣0≤2i≤n}

{m2i − tα2i}.

Proof. According to Theorem 2.10, we can consider the model complex specified by Equation (8)
in place of the knot Floer complex. Glancing at the differential, it is clear that the non-torsion part
is generated (over R) by one of the even generators x2k with 0 ≤ 2k ≤ n (and k is an integer). It
follows that

ΥK(t) = max
0≤2k≤n

{grt(x2k)} = max
0≤2k≤n

{m2k − tα2k}.

The above result immediately implies:

Proof of Theorem 1.15. The statement follows immediately from Theorem 6.2, since lens spaces
are L-spaces [31, Proposition 3.1], and pq ± 1 surgery on the torus knot Tp,q is a lens space.

Example 1.16 from the introduction follows immediately. We generalize it to the family Tn,n+1,
as follows:

Proposition 6.3. Consider the torus knot Tn,n+1. Then, ΥTn,n+1(t) is the piecewise linear function

whose values for t ∈ [2in ,
2i+2
n ] (for i = 0, . . . n− 1) are given by

ΥTn,n+1(t) = −i(i+ 1)−
1

2
n(n− 2i− 1)t.

In particular,
1

2
t ·∆Υ′

Tn,n+1
(t) =

{
1 for t = 2i

n
0 otherwise.

Proof. The Alexander polynomial ∆n,n+1(t) of Tn,n+1 is t−
1
2
n(n−1) (tn(n+1)−1)(t−1)

(tn−1)(tn+1−1)
. Let

p(t) =

n−1∑

i=0

tni − t

n−2∑

i=0

t(n+1)i.

Since

(tn − 1)(tn+1 − 1)p(t) = (t− 1)(tn(n+1) − 1),

we conclude that

p(t) = t
1
2
n(n−1) ·∆Tn,n+1(t).

Thus,

α2i = n(n− i)−
1

2
n(n− 1) =

1

2
n(n− 2i− 1),

and the formula for ΥTn,n+1(t) now follows from Theorem 1.15.

The above examples show that for each rational number t, the homomorphism

1

2
t ·∆Υ′

K(t) : C → Z

is surjective. As the next lemma shows, the existence of this map implies the existence of the stated
direct summand in the concordance group.
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Lemma 6.4. Let G be an Abelian group, and H ⊂ G be a subgroup generated by the elements
(hi)

∞
i=1. Suppose that (λn : G → Z)∞n=1 is a collection of homomorphisms with the property that

λn(hn) = 1 and λm(hn) = 0 for m > n. Then, H is a Z∞ direct summand of G.

Proof. Consider the map Λ: G→ Z∞ given by

g 7→ (λn(g))
∞
n=1.

Consider the linear transformation Z∞ → Z∞ given by

(an)
∞
n=1 7→

(
λn(

∞∑

i=1

aihi)
)∞
n=1

.

The hypothesis ensures that this is the identity map plus a nilponent transformation. Such a map
is necessarily invertible, concluding the proof.

Proof of Theorem 1.17. Consider the homomorphisms K 7→ (λn(K) = 1
n∆Υ′

K( 2n))
∞
n=1 and the

elements {[Tn,n+1]}
∞
n=1 ⊂ C. According to Proposition 6.3, λn(Tn,n+1) = 1 and λm(Tn,n+1) = 0 for

m > n. Thus, Lemma 6.4 applies and concludes the proof.

7. Generalities on bordered Floer homology (with torus boundary)

The proof of Theorem 1.20 involves computations of knot invariants for satellite knots. This
problem is well suited to bordered Floer homology [18].

Bordered Floer homology is an invariant for three-manifolds with parameterized (bordered)
boundary. To a parameterized surface, this invariant associates a differential graded algebra, to a
three-manifold with boundary it associates two kinds of modules over this algebra, called the type
D and type A modules. Let Y be a connected, closed, oriented three-manifold equipped with a
parameterized separating surface F , expressing Y = Y1 ∪F Y2. A pairing theorem expresses the

Heegaard Floer homology ĤF(Y ) as an algebraic pairing (the “box tensor product”) of the type D
structure of Y1 and of the type A structure of Y2.

For the reader’s convenience we collect here some useful facts about bordered Floer homology (in
the case of three-manifolds with torus boundary). This material can be found in [18, Chapter 11];
see also [19] for a general overview of the theory.

7.1. The torus algebra. In this section we follow [18, Section 11.1]. The algebra A(T) associated
to a torus has two minimal idempotents ι0 and ι1, and six other basic generators:

ρ1 ρ2 ρ3 ρ12 ρ23 ρ123.

The differential is zero, and the non-zero products are

ρ1ρ2 = ρ12 ρ2ρ3 = ρ23 ρ1ρ23 = ρ123 ρ12ρ3 = ρ123.

(All other products of two non-idempotent basic generators vanish identically.) There are also
compatibility conditions with the idempotents:

ρ1 = ι0ρ1ι1 ρ2 = ι1ρ2ι0 ρ3 = ι0ρ3ι1

ρ12 = ι0ρ12ι0 ρ23 = ι1ρ23ι1 ρ123 = ι0ρ123ι1.

This algebra is graded by a non-commutative group G. One model for G is a group generated
by triples (j; p, q) where j, p, q ∈ 1

2Z and p+ q ∈ Z. The group law is

(j1; p1, q1) · (j2; p2, q2) =

(
j1 + j2 +

∣∣∣∣
p1 q1
p2 q2

∣∣∣∣ ; p1 + p2, q1 + q2

)
.
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This group has a distinguished central element λ = (1; 0, 0). (The group G({T}), introduced in [18,
Section 11.1] naturally grades the torus algebra; G({T}) can be defined as a certain subgroup of G
we discussed above.)

The gradings of the algebra elements are specified by the following formulae:

(14) gr(ρ1) =
(
−
1

2
;
1

2
,−

1

2

)
gr(ρ2) =

(
−
1

2
;
1

2
,
1

2

)
gr(ρ3) =

(
−
1

2
;−

1

2
,
1

2

)
.

This is extended to all other group elements by the rule gr(ab) = gr(a)gr(b).

7.2. Gradings on modules. Let YR be a torus-bordered three-manifold, and assume for simplicity
that YR is a homology knot complement; that is, H1(YR;Z) ∼= Z.

According to [18, Chapter 6], this bordered manifold has an associated type D structure in the

sense of [18, Section 2.3], denoted ĈFD(YR). As a vector space, this is graded by a homogeneous
G-space. In fact, there is an element p which is homogeneous with grading 〈p〉 and with the property

that ĈFD(YR) is graded by the space of left cosets G/〈p〉. The type D structure is equipped with
a structure map

δ1 : ĈFD(YR)→ A⊗ ĈFD(YR),

(where A is the torus algebra A(T) recalled above) which respects the grading, in the sense that if
x is some generator and a⊗ y appears with non-zero multiplicity in δ1(x), then

λ−1gr(x) = gr(a) · gr(y),

where gr(a) is the grading in the algebra and gr(x) and gr(y) denote gradings in the module.
Let YL be a torus-bordered three-manifold, and assume again the YL is a homology knot com-

plement. According to [18, Chapter 7], there is a right A∞ module associated to YL, the type A

invariant of YL, denoted ĈFD(YL). Moreover, there is an element q with the property that the

type A invariant ĈFA(YL) is graded by the right coset space 〈q〉\G.
TheA∞ operations respect these gradings, in the sense that if x is some generator, and y appears

with non-zero multiplicity in mn(x, a1, . . . , an−1), then

(15) λn−2gr(x)gr(a1) · · · gr(an−1) = gr(y).

The pairing theorem [18, Theorem 1.3] identifies the quasi-isomorphism type of ĈF(YL ∪ YR)

with that of the tensor product ĈFA(YL)⊠ ĈFD(YR), as defined in [18, Section 2.4]. The grading

set of ĈF(YL ∪ YR) is some cyclic group (given by the Maslov grading). The pairing theorem also
identifies this grading set with a subset of the double coset space 〈q〉\G/〈p〉. The latter space has
an action by Z, induced from translation by the central element λ.

7.3. The pairing theorem and knots. Suppose now that YL contains a knot, in addition to
a bordered boundary. In this case, the diagram for YL contains yet another basepoint (w), and

ĈFA(YL) can correspondingly be thought of as a type A structure (for example) over the torus
algebra, where the base ring is F[U ]. The grading group can be correspondingly enriched to G×Z,
where the additional Z-factor is called the Alexander factor.

According to [18, Theorem 11.19] the pairing ĈFA(YL, z, w) ⊠ ĈFD(YR) now represents the
knot Floer homology HFK− of YL ∪ YR, equipped with the knot (supported in YL). The tensor
product is graded by a double coset space 〈p〉\G×Z/〈q〉. Translation on the Alexander factor now
corresponds to changing the Alexander grading for the induced knot in YL ∪ YR. We will use this
(as in [18, Chapter 11]) to study satellite operations (where YL is a solid torus).
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8. Linear independence

Using bordered Floer homology computations, in this section we will determine parts of the knot
Floer chain complex of the knots of Equation (1) from the introduction. These computations will
enable us to give a proof of Theorem 1.20. In this proof we need to consider cables of the Whitehead
double W+

0 (T2,3) of the trefoil knot T2,3. We start with a simpler computation of considering some
cables of the trefoil, and then turn to cables of the Whitehead double.

See also [3, 14, 36] for similar computations.

8.1. A warm-up: cables of the trefoil knot. Given a knot K and relatively prime integers
(p, q), let Cp,q(K) denote the (p, q) cable of K. Let Tp,q be the (p, q) torus knot (Cp,q of the
unknot). For integers n ≥ 2 consider the family of knots Cn,2n−1(T2,3). As a warm-up to our future
calculations, we prove the following:

Lemma 8.1. The values of ΥCn,2n−1(T2,3) on the interval [0, 1
n−1 ] are determined by

ΥCn,2n−1(T2,3)(t) =

{
−(n2 − n+ 1) · t t ∈ [0, 2

2n−1 ]

2− (n2 − 3n + 2) · t t ∈ [ 2
2n−1 ,

1
n−1 ].

In fact, it is not difficult to describe ΥCn,2n−1(T2,3)(t) completely; but the above partial compu-
tation will be sufficient for our immediate needs.

We prove Lemma 8.1 after a little preparation. The proof relies on a computation of knot
Floer homology, which can be done by a number of different techniques; see for example [8]. In
fact, according to [10, Theorem 1.10], Cn,2n−1(T2,3) has an L-space surgery, so one could apply
Theorem 6.2; see also [13]. We prefer instead to proceed using bordered Floer homology (see [18,
Chapter 11] for n = 2 and [36] for general n; see also [14]), as the computation will serve as a
warm-up to a later computation given in Lemma 8.8, where Theorem 6.2 does not apply.

Lemma 8.2. The type D module of the +2-framed right-handed trefoil knot complement has grading
set given by G/λgr(ρ12)gr(ρ23)

2. It has five generators, I, J , K, P , and Q, with gradings specified
by:

(16)
gr(I) = λ−2gr(ρ23)

−1 gr(J) = λ−1 gr(K) = gr(ρ23)

gr(P ) = λ−2gr(ρ3)
−1 gr(Q) = λ−2gr(ρ1)

−1

The differential is specified by:

(17)

I P J

Q

K

ρ3ρ2

ρ1

ρ123

ρ
12

where the arrows connecting generators represent terms in δ1, and the labels specify algebra ele-
ments; e.g.

δ1J = ρ3 ⊗ P + ρ1 ⊗Q.

Proof. Recall that the knot Floer homology group ĤFK(T2,3) of the right-handed trefoil has three
generators, which we label i, j, and k; with gradings A(i) = 1, A(j) = 0, A(k) = −1, M(i) = 0,
M(j) = −1, M(k) = −2; and a differential (in CFK∞) with ∂j = U · i+ k. The type D module of
the lemma follows from the HFK-to-type D algorithm, given in [18, Theorem 11.27].



CONCORDANCE HOMOMORPHISMS FROM KNOT FLOER HOMOLOGY 27

B1B2 A2A1

B1B2 A2A1

w

ρ3 ρ2

ρ1z

X X

Figure 1. Heegaard diagram for the n = 2 cabling piece. This is taking place
on the punctured torus, with the usual opposite sides identifications. The Heegaard
diagram represents a bordered diagram for an (n,−1) cabling piece.

To compute the cable, we tensor with the type A module for the (n,−1) cabling module; see [14,
36]. This graded module can be described as follows:

Lemma 8.3. The (n,−1) cabling module has grading set λgr(Un)gr(ρ3)gr(ρ2)\G. Its generators
are X and {Ai, Bi}

n
i=1, with gradings specified by

gr(X) = e(18)

gr(Ai) = λi−ngr(ρ2)
−1(gr(ρ2)gr(ρ1))

i−n(19)

gr(Bi) = = λi−ngr(U)n−igr(ρ3)(gr(ρ2)gr(ρ1))
i−n.(20)

The operations are specified by the following graph:

(21) X

An

Bn

An−1

Bn−1

. . .

. . .

Ai

Bi

. . .

. . .

A1

B1

Un Un−1 U i U

ρ2

ρ3

Uρ2 ⊗ ρ1

ρ2 ⊗ ρ1 ρ2 ⊗ ρ1

Uρ2 ⊗ ρ1

ρ2 ⊗ ρ1

Uρ2 ⊗ ρ1

ρ2 ⊗ ρ1

ρ2 ⊗ ρ1

ρ2 ⊗ ρ1

Uρ2 ⊗ ρ1

Proof. The cabling module is the type A module associated to a doubly-pointed Heegaard
diagram. Since that diagram has genus one, the holomorphic curve counting can be done combi-
natorially; see Figure 1 for a picture with n = 2. The computation was done in [36] (see also [14]);
we recall here highlights for the reader’s convenience.

The diagram appearing in the statement of the lemma is a shorthand: dashed arrows representm1

actions (labelled by their outputs in F[U ]), and all other operations are obtained by concatenating
undashed paths (labelled by elements in A or A⊗ A). If there is a sequence of (undashed) arrows
connecting some generator P to some generator Q, there is a corresponding algebra operation from
P to Q whose sequence of input algebra elements is obtained from the sequences appearing on the
edges by multiplying the last algebra element on some arrow with the first algebra element on the
next arrow. For instance, concatenating the path from An−1 to An (which is labelled ρ2⊗ ρ1) with
the path from An to X (which is labelled by ρ2) we obtain an operation

m3(An−1, ρ2 ⊗ ρ1 · ρ2) = X.

After verifying Equation (21), Equations (18), (19), and (20) follow from Equation (15).
The verification of the grading set follows immediately from Equations (19) and (20) for i = 1,

and the fact that λ−1gr(A1) = gr(U)grB1.
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For simplicity, we have also reproduced the above answer in the special case where n = 2, see
Equation (22). The corresponding Heegaard diagram is pictured in Figure 1. (Note that our
numbering is slightly different from the one from [36].)

(22) X

A2

B2

A1

B1

U2 U1

ρ2

ρ3

Uρ2 ⊗ ρ1

ρ2 ⊗ ρ1

The next lemma describes the chain homotopy type of the bigraded chain complex CFK−(Cn,2n−1(T2,3))
over F[U ], whose homology is the knot Floer homology HFK−(Cn,2n−1(T2,3)). This is the chain
complex obtained by taking the associated graded object for CFK−(Cn,2n−1(T2,3)).

Lemma 8.4. The chain homotopy type of the complex CFK−(Cn,2n−1(T2,3)) has a representative
with generators {Ai ⊗ P}ni=1, {Bi ⊗ P}ni=1 {Ai ⊗ Q}ni=1, {Bi ⊗ Q}ni=1 and three more generators
{X ⊗ I,X ⊗ J,X ⊗K}. The differential is specified by

∂(Ai ⊗Q) = U iBi ⊗Q

∂(Ai ⊗ P ) =





U iBi ⊗ P if i < n− 2
Un−2Bn−2 ⊗ P +Bn ⊗Q if i = n− 2
Un−1Bn−1 ⊗ P +X ⊗K if i = n− 1
UnBn ⊗ P +X ⊗ I if i = n

∂(X ⊗ J) = Bn ⊗ P

∂(X ⊗ I) = 0

∂(X ⊗K) = 0

∂(Bi ⊗Q) = 0

∂(Bi ⊗ P ) = 0.

Relative bigradings are specified by

(23)
M(B1 ⊗Q)−M(A1 ⊗Q) = 1 A(B1 ⊗Q)−A(A1 ⊗Q) = 1

M(A1 ⊗Q)−M(B2 ⊗Q) = 1 A(A1 ⊗Q)−A(B2 ⊗Q) = 2n − 2.

For i = 2, . . . , n− 1

(24)

M(Bi ⊗Q)−M(Ai ⊗Q) = 2i− 1 A(Bi ⊗Q)−A(Ai ⊗Q) = i

M(Ai ⊗Q)−M(Bi−1 ⊗ P ) = 1 A(Ai ⊗Q)−A(Bi−1 ⊗ P ) = n− i+ 1

M(Bi−1 ⊗ P )−M(Ai−1 ⊗ P ) = 2i− 3 A(Bi−1 ⊗ P )−A(Ai−1 ⊗ P ) = i− 1

M(Ai−1 ⊗ P )−M(Bi+1 ⊗Q) = 1 A(Ai−1 ⊗ P )−A(Bi+1 ⊗Q) = n− i− 1

and

(25)

M(Bn ⊗Q)−M(An ⊗Q) = 2n− 1 A(Bn ⊗Q)−A(An ⊗Q) = n

M(An ⊗Q)−M(Bn−1 ⊗ P ) = 1 A(An ⊗Q)−A(Bn−1 ⊗ P ) = 1

M(Bn−1 ⊗ P )−M(An−1 ⊗ P ) = 2n− 3 A(Bn−1 ⊗ P )−A(An−1 ⊗ P ) = n− 1

M(An−1 ⊗ P )−M(X ⊗K) = 1 A(An−1 ⊗ P )−A(X ⊗K) = 0

M(X ⊗ J)−M(Bn ⊗ P ) = 1 A(Bn ⊗ P )−A(X ⊗ J) = 0

M(An ⊗ P )−M(X ⊗ I) = 1 A(An ⊗ P )−A(X ⊗ I) = 0
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B3Q B2Q B1Q

A3Q A2Q A1Q

A2P A1P

1

B3P B2P B1P

XI XJ

XK

1

1

U2 U

z2

z4

z

U3

U3 U2 U1

A3P

1

Figure 2. Knot Floer complex CFK−(C3,5(T2,3)) of C3,5(T2,3). Solid arrows
(which are all labelled with U -powers) indicate differentials (and the labels indicate
the coefficients); dashed arrows are not differentials, but they connect pairs of gen-
erators of Maslov grading difference 1 and Alexander grading difference recorded in
the z exponent of the labels. The complex for Cn,2n−1(T2,3) with n > 3 has very
similar structure; the case n = 2 is slightly degenerate; see Figure 3.

and finally

(26)
M(X ⊗ J)−M(X ⊗K) = 2n− 1 A(X ⊗ J)−A(X ⊗K) = n

M(Bn ⊗ P )−M(An ⊗ P ) = 2n− 1 A(Bn ⊗ P )−A(An ⊗ P ) = n.

These are calibrated by

(27) M(B1 ⊗Q) = 0 A(B1 ⊗Q) = n2 − n+ 1.

Remark 8.5. The equations are stated in the above order in order to draw attention to the ordering
of the generators by Alexander grading; e.g. the following sequence of generators have decreasing
Alexander grading:

B1 ⊗Q, A1 ⊗Q, B2 ⊗Q,

then (for i = 2, . . . , n− 1)

Bi ⊗Q, Ai ⊗Q, Bi−1 ⊗ P, Ai−1 ⊗ P, Bi+1 ⊗Q,

and finally
An ⊗Q, Bn−1 ⊗ P, An−1 ⊗ P.

(The gradings of other generators will be irrelevant, as they do not represent homology classes in

ĤFK.)

For future reference, notice that all other generators of CFK−(Cn,2n−1(W
+
0 (T2,3))) have Alexan-

der grading < g− 2n+ 1 and Maslov grading < −2. See Figure 4 for an illustration of the portion
of CFK− (with Alexander grading ≥ A(B2 ⊗Qr)).

Remark 8.6. See Figure 2 for an illustration of the chain complex with n = 3 (the general n > 2
case looks similar); see Figure 3 for the degenerate case where n = 2.

Proof of Lemma 8.4. The lemma is a straightforward pairing of the module from Lemma 8.3
with the one from Lemma 8.2 (in view of the pairing theorem, [18, Theorem 11.19]).

To illustrate this, we verify that

∂(An−2 ⊗ P ) = Un−2Bn−2 ⊗ P +Bn ⊗Q.
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XI

1

U

z

U2

U2 U

A2P

B2P B1P

A1P

A2Q A1Q

B2Q B1Q

z2

XJ

XK

1

1

Figure 3. Knot Floer complex of C2,3(T2,3). This is the complex for
CFK−(C2,3(T2,3)), with the notational conventions from Figure 2.

Lemma 8.3 states that m1(An−2) = Un−2Bn−2. This gives rise to the first term in the above
boundary map. For the second term, we pair the sequence

δ1P = ρ2 ⊗ I, δ1I = ρ12 ⊗K, δ1K = ρ123 ⊗Q.

with the action

m4(An−2, ρ2 ⊗ ρ12 ⊗ ρ123) = Bn

coming from the concatenation of four arrows in Equation (21). It is easy to see that there are no
other terms in the differential. The other differentials are verified similarly.

The pairing theorem can also be used to compute the stated bigradings. We illustrate this by
computing the grading of Ai ⊗ P , as follows:

gr(Ai ⊗ P ) = gr(Ai) · gr(P )

= λi−ngr(ρ2)
−1(gr(ρ2)gr(ρ1))

i−n · λ−2gr(ρ3)
−1

∼ (λgr(Un)gr(ρ3)gr(ρ2))
2i+1−2n

(
λi−ngr(ρ2)

−1(gr(ρ2)gr(ρ1))
i−n · λ−2gr(ρ3)

−1
)

(
λgr(ρ12)gr(ρ23)

2
)n−i

= λ−1−4i−2i2+4n+4in−2n2
un(−1−2i+2n).

In the above, ∼ denotes the equivalence relation of double cosets; the exponent n−i of λgr(ρ12)gr(ρ23)
is chosen to cancel all factors of gr(ρ12) (up to overall factors of λ); and the exponent (2i+1− 2n)
of λgr(Un)gr(ρ3)gr(ρ2) is chosen to cancel the factors of gr(ρ23) (up to factors of u and λ). The
final step is a straightforward computation in the grading group, using the formulas recalled in
Section 7.1. As in [18, Section 11.9], the pairing theorem interprets this double coset element as
computing the Maslov/Alexander bigrading of generators. Specifically, the exponent of λ computes
M − 2A, while the exponent of u computes −A. Thus the above computation shows that, the
Maslov/Alexander bigrading of Ai ⊗ P (up to overall shifts) is

M(Ai ⊗ P ) = −1− 4i− 2i2 + 2n+ 2n2 A(Ai ⊗ P ) = −(n(−1− 2i+ 2n)).
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Proceeding in a similar manner, we find:

M(Bi ⊗ P ) = −2(1 + i+ i2 − n− n2) A(Bi ⊗ P ) = (i− n)(−1 + 2n)

M(Ai ⊗Q) = −2i2 + 2i+ 2n2 + 2n − 1 A(Ai ⊗Q) = −2n(−i+ n+ 1)

M(Bi ⊗Q) = −2
(
i2 + i− n2 − n+ 1

)
A(Bi ⊗Q) = (2n− 1)(i − n)

M(X ⊗ I) = −2n− 2 A(X ⊗ I) = n

M(X ⊗ J) = −1 A(X ⊗ J) = 0

M(X ⊗K) = 2n A(X ⊗K) = −n.

The relative bigrading statements in the statement of the lemma are a direct consequence of these
computations.

The non-trivial homology class in ĤFK with minimal Alexander grading is represented by Bn−1⊗
P ; in fact, that class descends to a non-torsion class in HFK−. By symmetry, it follows that the
cycle B1 ⊗ Q with maximal Alexander grading represents the τ -invariant of Cn,2n−1(T2,3) (in the

sense that it descends to a generator for ĈF(S3)); in particular M(B1 ⊗ Q) = 0. Its Alexander
grading can be read off from the Alexander polynomial.

By Lemma 8.4, the tensor product of these two modules has generating set

{Ai ⊗ P,Bi ⊗ P,Ai ⊗Q,Bi ⊗Q,X ⊗ I,X ⊗ J,X ⊗K}ni=1.

When n > 2, there are four differentials (not decorated by U): from X⊗J to Bn⊗P ; from An⊗P
to X ⊗ I; and from An−2 ⊗ P to X ⊗K; and from An−1 ⊗ P to Bn ⊗Q.

Lemma 8.7. Let K be a knot so that ĈFK(K) has three generators a, b, and c with the property
that there are integers 1 ≤ k and 0 ≤ ℓ with

M(a)−M(b) = 2k − 1 A(a)−A(b) = k

M(b)−M(c) = 1 A(b)−A(c) = ℓ.

Then, for any integer n > max(2, ℓ), if t < 1
n−1 , then

grt(a) > grt(b) > grt(c).

Proof. This is straightforward arithmetic.

Proof of Lemma 8.1. Let Ln = Cn,2n−1(T2,3).
By the computation of the differentials in Lemma 8.4, it follows that the set

{Ai ⊗ P}n−3
i=1 , {Bi ⊗ P}n−1

i=1 , {Ai ⊗Q}ni=1, {Bi ⊗Q}n−1
i=1 , {An ⊗Q+ UnAn−1 ⊗ P}

of cycles in CFK−(Ln) generate the homology HFK−(Ln). Note the ranges of the indices: the
computation of the differential allows us to remove the chain complex generators X ⊗ I, X ⊗ J ,
X ⊗K, An−1⊗P , Bn−1⊗P , and An−2⊗P . The final generator takes into account the differential
which eliminates Bn⊗Q. Similarly, the corresponding subset of generators in tCFK(Ln) (where the

last generator is replaced by vc−grt(An⊗Q)An⊗Q+vc−grt(An−1⊗P )An−1⊗P with c = max(grt(An−1⊗
Q), grt(An ⊗ P ))) span a quasi-isomorphic subcomplex of tCFK(Ln).

In view of Lemma 8.4, we can apply Lemma 8.7 repeatedly to conclude that for t ≤ 1
n−1 , we

have that for all i = 2 . . . n− 1,

grt(Bi ⊗Q) > grt(Ai ⊗Q) > gr(Bi−1 ⊗ P ) > grt(Ai−1 ⊗ P ) > grt(Bi+1 ⊗Q);

and also

grt(Bn ⊗Q) > grt(An ⊗Q) > grt(Bn−1 ⊗ P ) > grt(An−1 ⊗ P ).
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Using the grading computations from Lemma 8.4, we also see that for t ≤ 1
n−1 ,

grt(B1 ⊗Q) > grt(A2 ⊗Q) and grt(A1 ⊗Q) > grt(A2 ⊗Q).

Thus, the generators B1⊗Q, A1⊗Q, and B2⊗Q are the three homology generators with maximal
grt.

We verify next that B1 ⊗Q is a cycle, representing a non-torsion homology class in tHFK(Ln).
From the gradings computed in Lemma 8.4, it follows that the Maslov grading of B1⊗Q is greater
by at least 2 than the Maslov gradings of all other elements, except for A1 ⊗ Q. But ∂(B1 ⊗ Q)
cannot equal A1⊗Q, because that would violate ∂2 = 0. It follows that B1⊗Q represents a cycle in
CFK−(Ln). Moreover, since its Alexander grading is greater than the Alexander grading of all other
generators, it follows that B1⊗Q represents a non-trivial homology class in H(CFK−(Ln)) ∼= F[U ].
We conclude that B1 ⊗ Q, now thought of as an element of tHFK(Ln), has non-trivial image in
H(tCFK(Ln ⊗R

∗)) ∼= R∗; i.e. it is a non-torsion homology class.
Next, we claim that

(28) ∂(A1 ⊗Q) = U · B1 ⊗Q+B2 ⊗Q

in CFK−(Cn,2n−1(K)). Observe first that the Maslov gradings of U ·B1⊗Q and B2⊗Q are strictly
greater than the Maslov gradings of all generators of CFK−, other than A1 ⊗ Q. It follows that
∂(A1 ⊗Q) can contain no other terms. By the computation of CFK−(Cn,2n−1(K)), it follows that
U ·B1 ⊗Q appears with non-zero coefficient in ∂(A1 ⊗Q). We wish to verify that ∂(A1 ⊗Q) also
contains B2 ⊗ Q, an element whose Alexander filtration level is 2n − 2 less than that of A1 ⊗ Q.
Since the Alexander filtration levels are different, the existence of this term in the differential is
not visible directly from the differential in the associated graded graded object CFK−(Ln); rather,
its existence is verified by the following indirect argument.

When n > 2, we argue as follows. By Lemma 8.4, the three homology classes in ĤFK(Ln) with
minimal Alexander grading are represented by Bn−1 ⊗ P , An ⊗ Q + UnAn−2 ⊗ P , and Bn−2 ⊗ P
(noting that Bn ⊗ Q is homologous to Un−2Bn−2 ⊗ P ); and that lemma gives a differential in
CFK−(Ln) from An ⊗Q+ UnAn−2 ⊗ P to U2n−2 · Bn−2 ⊗ P .

Consider now the complex C′ = CFK−(Ln)
′ appearing in Proposition 2.5, which is obtained from

CFK−(Ln) by reversing the roles of the algebraic and Alexander filtrations. Generators for C′ are of

the form x′ = UA(x)·x, where x is a generator for CFK−(Ln). The fact that U
2n−2·Bn−2⊗P appears

in ∂(An⊗Q+Un ·An−2⊗P ) ensures that the element (Bn−2⊗P )′, whose Alexander grading is 2n−2
smaller than that of (An⊗Q+Un ·An−2⊗P )′, appears in ∂(An⊗Q+Un ·An−2⊗P )′. The filtered
chain homotopy equivalence from C′ to CFK−(Ln) sends (Bn−1 ⊗ P )′, (An ⊗Q+Un ·An−2 ⊗ P )′,
and (Bn−2⊗P )′ to B1⊗Q, A1⊗Q, and B2⊗Q respectively, as those are the only generators in the
corresponding bigradings. It follows that there is a non-zero term in the differential from A1 ⊗Q
to B2 ⊗ Q, which drops Alexander filtration level by 2n − 2, i.e. establishing Equation (28) when
n > 2. We say that this differential from A1 ⊗Q to B2 ⊗ Q is symmetric to the differential from
An ⊗Q+ UnAn−2 ⊗ P to U2n−2 ·Bn−2 ⊗ P .

When n = 2, there is no generator An−2 ⊗ P . Instead, the three generators in ĤFK(Ln) with
minimal Alexander grading are B1 ⊗ P , A2 ⊗ Q, and B2 ⊗ Q. In this case, the differential from
A2⊗Q to U2 ·B2⊗Q is symmetric to the differential from A1⊗Q to B2⊗Q which drops Alexander
grading by 2n− 2 = 2, completing the verification of Equation (28).

Since B1 ⊗Q represents a non-torsion class in tHFK(Ln) and Equation (28) holds, we conclude
that B2 ⊗Q also represents a non-torsion class in tHFK(Ln). Since

grt(B1 ⊗Q) = −(n2 − n+ 1)t,

grt(B2 ⊗Q) = −2− (n2 − 3n+ 2)t,

the computation of ΥLn(t) for t ∈ [0, 1
n−1 ] now follows.
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8.2. Cables of the Whitehead double. Now we turn to the (partial) computation of the knot
Floer complex of the knot Cn,2n−1(W

+
0 (T2,3)). Our goal is to determine Υ of this knot on the

interval [0, 1
n−1 ].

Lemma 8.8. The values of ΥCn,2n−1(W
+
0 (T2,3))

(t) on the interval [0, 1
n−1 ] are determined by

ΥCn,2n−1(W
+
0 (T2,3))

(t) =

{
−(n2 − n+ 1) · t t ∈ [0, 2

2n−1 ]

2− (n2 − 3n+ 2) · t t ∈ [ 2
2n−1 ,

1
n−1 ].

Recall that for a knot K, its 0-twisted Whitehead double (with a positive clasp) is denoted by
W+

0 (K). The knot Floer homology for this knot was computed (in terms of the knot Floer complex
for K) in [9]; see also [4]. In the special case where K is the right-handed trefoil knot T2,3, his
result specializes to the following:

Theorem 8.9. (Hedden, [9]) For the 0-twisted Whitehead double of the right-handed trefoil (with
its positive clasp), the knot Floer homology has 15 generators, which we denote ir, jr, kr for
r = 0, 1, 2, 3 and ls for s = 1, 2, 3. The Alexander gradings of these elements are given (for
r = 0, 1, 2, 3 and s = 1, 2, 3) by

A(ir) = A(ls) = 0 A(jr) = 1 A(kr) = −1.

The Maslov gradings are given by

M(i0) = −1, M(j0) = 0, M(k0) = −2,

M(i1) = −1 = M(l1), M(j1) = 0, M(k1) = −2,

M(ir) = −2 = M(ls), M(js) = −1, M(ks) = −2,

for s = 2, 3. Moreover, for r = 0, 1, 2, 3 and s = 1, 2, 3

∂ir = U jr, ∂ks = ls;

similarly, if we let ∂1
z denote the component of the differential which crosses the z basepoint exactly

once, but not the w basepoint, then

∂1
z i

r = kr, ∂1
z j

s = ls.

�

Informally, Theorem 8.9 says that the knot Floer complex splits as a sum of a component which
looks like the knot Floer complex for the right-handed trefoil, and three further “boxes”: four
generators connected with four arrows, two vertical and two horizontal. This direct sum description
is a little misleading: there might in principle be further horizontal arrows which cross both w and
z basepoints. However, these are not relevant in the algorithm for reconstructing the corresponding
type D structure.

Proposition 8.10. The type D structure of the complement of the 0-framed positive Whitehead
double of the right-handed trefoil knot, with framing +2, splits as a direct sum of four summands;
one of these is the type D structure of the right-handed trefoil, spelled out in Lemma 8.2 (though
we will now keep the superscript 0 in the notation for the five generators, I0, P 0, J0, Q0, and K0).
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There are three further summands, with eight generators apiece {It, J t,Kt, P t, Qt, Rt, St} with
t = 1, 2, 3 and differential

(29)

It P t J t

Qt

Kt

Rt

StLt

ρ3ρ2

ρ1

ρ123

ρ1

ρ123

ρ2 ρ3

Gradings for these generators, thought of as elements of G/λgr(ρ12)gr(ρ23)
2, are given by:

(30)
gr(I1) = λ−2gr(ρ23)

−1 gr(J1) = λ−1 gr(K) = gr(ρ23) gr(L1) = λ−1

gr(P 1) = λ−2gr(ρ3)
−1 gr(Q1) = λ−2gr(ρ1)

−1 gr(S1) = λ−1gr(ρ3)gr(ρ23) gr(R1) = λ−2gr(ρ1)
−1.

For s = 2, 3, corresponding eight generators have grading λ−1 times their s = 1 counterparts; e.g.
gr(Is) = λ−3gr(ρ23)

−1. (For s = 0, the gradings are as specified in Lemma 8.2; note that for those
five generators, the gradings are the same as the gradings of the corresponding s = 1 generators.)

Proof. This is a straightforward combination of Theorem 8.9 with the HFK-to-type D module
result [18, Theorem 11.27].

Thus, to compute the knot Floer homology of Cn,2n−1(W
+
0 (T2,3)), it remains to compute the

pairing of the cabling type A module with a “square” (on the eight generators It, J t, Kt, Lt, P t,
Qt, St, Rt). This computation was done by Petkova [36]. Those results can be summarized as
follows:

Lemma 8.11. (See [36]) Consider the square type D module with eight generators and differentials
according to the following diagram:

(31)

I P J

Q

K

R

SL

ρ3ρ2

ρ1

ρ123

ρ1

ρ123

ρ2 ρ3

Gradings for these generators, thought of as elements of G/λgr(ρ12)gr(ρ23)
2, are given by:

(32)
gr(I) = λ−2gr(ρ23)

−1 gr(J) = λ−1 gr(K) = gr(ρ23) gr(L) = λ−1

gr(P ) = λ−2gr(ρ3)
−1 gr(Q) = λ−2gr(ρ1)

−1 gr(S) = λ−1gr(ρ3)
−1gr(ρ23) gr(R) = λ−2gr(ρ1)

−1.

The pairing of this type D module with the cabling type A module from Lemma 8.3 gives a chain
complex with generators

{Ai ⊗ P,Ai ⊗Q,Ai ⊗R,Ai ⊗ S,Bi ⊗ P,Bi ⊗Q,Bi ⊗R,Bi ⊗ S,X ⊗ I,X ⊗ J,X ⊗K,X ⊗ L}ni=1.

Let
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• i denote any integer between 1, . . . , n,
• j denote any integer between 1, . . . , n− 1,
• k any integer between 1, . . . , n− 2;

then the differential is specified by:

∂(Aj ⊗ P ) = Aj+1 ⊗R+ U j · Bj ⊗ P

∂(An ⊗ P ) = Un · Bn ⊗ P + J ⊗X

∂(Ai ⊗Q) = U i · Bi ⊗Q

∂(Ai ⊗R) = U i · Bi ⊗R

∂(Ak ⊗ S) = Uk ·Bk ⊗ S

∂(An−1 ⊗ S) = Bn ⊗R+ Un−1 · Bn−1 ⊗ S

∂(An ⊗ S) = UnBn · ⊗S + L⊗X

∂(Bj ⊗ P ) = U · Bj+1 ⊗R

∂(X ⊗ J) = Bn ⊗ P

∂(X ⊗ I) = 0

∂(X ⊗K) = Bn ⊗ S.

Relative gradings are specified as follows. The relative bigradings of the generators Ai⊗P , Bi⊗P ,
Ai ⊗Q, and Bi ⊗Q, X ⊗ I, X ⊗ J , and X ⊗K are as in Lemma 8.4. For j = 1, . . . , n− 1

M(Bj+1 ⊗Q)−M(Aj ⊗Q) = 1 A(Bj+1 ⊗Q)−M(Aj ⊗Q) = 1

M(Bj+1 ⊗ P )−M(Bj ⊗R) = 1 A(Bj+1 ⊗ P )−A(Bj ⊗R) = 1(33)

M(Bi ⊗ S)−M(Ai ⊗ S) = 2i− 1 A(Bi ⊗ S)−A(Ai ⊗ S) = i.

Remark 8.12. The results of the above lemma can be paraphrased as follows. If a and b are two
generators with M(a)−M(b) = 1 and A(a)−A(b) = i, we write a dashed line from a to b labelled
by zi. (Note that this does not indicate a differential, hence the dashing on the line.) With this
notation, the tensor product of the box with the cabling bimodule produces a cyclic summand and
further n distinct summands; one of these has the form

(34)

A1 ⊗QB1 ⊗Q

A1 ⊗RB1 ⊗R

U

U

znzn
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For j between 1, . . . , n− 1, the additional summands are

(35)

Bj+1 ⊗Q Aj+1 ⊗Q

Bj ⊗ S Aj ⊗ S

Bj+1 ⊗R Bj ⊗ P Aj ⊗ P

Aj+1 ⊗R

U j+1

z

U j

zn−j−1

U U j

U j+1

zn−j

Proof of Lemma 8.11. Again, this is a straightforward computation in the spirit of Lemma 8.4.

Now we are in the position to give a partial computation of the Υ-invariant of Cn,2n−1(W
+
0 (T2,3)).

Proof of Lemma 8.8. Let K ′
n = Cn,2n−1(W

+
0 (T2,3)). Consider the eighteen generators of

CFK−(K ′
n) indexed by r = 0, 1, 2, 3, s = 1, 2, 3:

(36) B1 ⊗Qr, A1 ⊗Qr, B2 ⊗Qr, B1 ⊗Rs, A1 ⊗Rs,

obtained by tensoring the generators A1 and B2 of the cabling piece with type D generators Qr

and Rs of the type D structure of the complement of W+
0 (T2,3) from Proposition 8.10 (and the

superscripts are as in the statement of that proposition).
It will be useful to identify the bigradings of these generators. To this end, let

g = n2 − n+ 1, and ǫi =

{
0 i = 0, 1
−1 i = 2, 3.

For r = 0, 1 and s = 1, 2, 3, we have that

M(B1 ⊗Qr) = 0 + ǫr A(B1 ⊗Qr) = g

M(A1 ⊗Qr) = −1 + ǫr A(A1 ⊗Qr) = g − 1

M(B1 ⊗Rs) = −1 + ǫs A(B1 ⊗Rs) = g − n

M(A1 ⊗Rs) = −2 + ǫs A(A1 ⊗Rs) = g − n− 1

M(B2 ⊗Qr) = −2 + ǫr A(B2 ⊗Qr) = g − 2n + 1.

The computation of Υ will follow from partial information about CFK− that can be extracted
from the above computations. This partial information is broken into a sequence of successively
verified claims.

Claim 1. For t < 1
n−1 , the generators ofK

′
n enumerated in Equation (36) have grt strictly greater

than all of its other generators. This follows from the argument of Lemma 8.1 and Equation (33).
Claim 2. There are non-zero elements x1, y, and x2 in CFK−, which are in the span (over F)

of the eighteen generators from Equation (36), satisfying the following further properties:

(X-1) x1 is in the same bigrading as B1 ⊗Q0

(X-2) y is in the same bigrading is A1 ⊗Q0

(X-3) x2 is in the same bigrading as B2 ⊗Q2
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A1Q
r

B2Q
r

B1Q
r

A1R
s

B1R
s

1

1

2n-1

n

n

n

U ·B1Q
r

U ·B1R
s

Figure 4. Portion of the knot Floer complex of Cn,2n−1(W
+
0 (T2,3)). We

have illustrated generators in Alexander gradings ≥ A(B2 ⊗ Qr), and appearing
with U multiplies with exponent ≤ 1. The convention here is that r = 0, 1, 2, 3
and s = 1, 2, 3. The horizontal coordinate represents the number of U powers, and
the vertical coordinate indicates the Alexander grading. We have also illustrated
all vertical and horizontal differentials connecting these elements; more precisely, a
collection of parallel arrows indicates a linear map connecting spans of generators,
and the number of parallel arrows indicates the dimension of its image. The integers
indicate the lengths of these arrows.

(X-4) ∂vx1 = 0
(X-5) ∂hy = x1
(X-6) ∂vy = x2.

We find these elements as follows. First we find some element y in the same bigrading as A1⊗Q with
the property that ∂vy = x2, where x2 is a non-zero element in the same bigrading as B2 ⊗Q. The
element y corresponds, under the conjugation symmetry of knot Floer homology, to the element of
CFK− represented by

ξ = An ⊗Q0 + UnAn−2 ⊗ P 0

(in case n > 2; when n = 2, take ξ = A2).
Since ∂ξ = U2n−2Bn−2 ⊗ P 0, there is a symmetric differential ∂hy = Ux1, for some non-zero

element x1 in the same bigrading as B1 ⊗ Q0. In fact, the bordered computation shows that all
non-zero elements in the bigrading of y have non-zero ∂h in the bigrading of Ux1. Thus, the fact
that ∂vx1 = 0 is a consequence of ∂2 = 0. This completes the construction of x1, x2, and y satisfying
Properties (X-1)-(X-6).

Claim 3. The element x1 constructed above is a cycle in CFK−(K ′
n), which represents a non-

trivial homology class. The fact that x1 is a cycle follows from the fact that ∂v(x1) = 0, so ∂x1
contains terms with non-zero U power, and, according to the above grading computations, all such
elements have Maslov grading < −2; but M(x1) = 0. Moreover, since x1 has maximal Alexander
grading among all generators, it follows that x1 represents a homologically non-trivial class in

ĈF(S3) = CFK−/(U = 0) and hence also in CFK−, whose homology is F[U ]. It follows that x1
represents a non-torsion homology class in tHFK(K ′

n).
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Claim 4. The following equation holds in CFK−(K ′
n),

(37) ∂y = Ux1 + x2.

To see this, observe that the definitions of ∂v and ∂h ensure that

∂y = Ux1 + x2 + Uz,

where z is some element in Alexander filtration level is less than or equal to that of y. But the above
grading computations show that such an element z has Maslov grading < 0, and so M(Uz) < −2.
Since M(y) = −1, we conclude that z = 0, verifying Equation (37).

Claim 5. The elements x1 and x2 represent non-torsion homology classes in tHFK(K ′
n) The

statement for x1 follows immediately from Claim 3, and the statement for x2 follows from that,
together with Claim 4.

Claim 6. For t < 1
n−1 , the elements x1 and x2 are the two non-torsion elements of tHFK(K ′

n)

with maximal grt. Elements with the same bigrading as A1⊗Qr have grt(A1⊗Qr) > grt(B1⊗Qr)
for all t. However, the differential ∂h is injective on the span of A1⊗Qr, which implies also that the
cycles in tCFK(K ′

n) cannot contain components among the A1 ⊗Qr. Similarly, the differential ∂v
is injective on the span of B1 ⊗Qr so cycles in tCFK(K ′

n) cannot contain components among the
B1 ⊗Qr. Finally, if a cycle in tCFK(K ′

n) contains a component among B1 ⊗Rs, then that cycle is
homologous to another one, obtained by adding ∂(B1 ⊗Qs). It follows from Claim 1 now that x1
and x2 are two non-torsion elements with maximal grt for t ∈ [0, 1

n−1 ].
In view of Claim 6, the result follows from the fact that

grt(x1) = −(n
2 − n+ 1)t and grt(x2) = −2− (n2 − 3n+ 2).

In the proof of Theorem 1.20 we need to compare the above result with ΥTn,2n−1 .

Lemma 8.13.

ΥTn,2n−1(t) = −(n− 1)2 · t

for t ≤ 2
n .

That latter function can be computed explicitly from the Alexander polynomials, as in Theo-
rem 1.15. Thus, we could obtain the theorem by playing around with coefficients of the Alexander
polynomial; we prefer instead to obtain these bounds via bordered Floer homology, in the spirit of
the previous computations.

Proof of Lemma 8.13. Recall [18, Theorem A.11] that the 2-framed unknot complement has
type D module with three generators which we write as P , Q, and I, and coefficient maps

(38)

P

Q

I ρ23

ρ123

ρ2

By the pairing theorem [18, Theorem 11.19], the tensor product of this with the cabling type A
module computes CFK−(Tn,2n−1). In the tensor product, we obtain a sequence starting with

Bi ⊗ P
U i

← Ai ⊗ P
zn−i

99K Bi ⊗Q
U i

← Ai ⊗Q
zn−i−1

99K Bi+1 ⊗ P,
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U3 U2 U1

A3Q A2Q A1Q

B3Q B2Q B1Q

B3P B2P B1P

U2 UU3

A3P A1P

z2

1

A2P

IX

z z11

Figure 5. Knot Floer complex of T3,5. The complex for T3,5, as computed by
the pairing theorem.

for i = 1, . . . , n− 2, terminating at

Bn−1 ⊗ P
Un−1

← An−1 ⊗ P
z

99K Bn−1 ⊗ P.

Note that the remaining generators cancel in homology. See Figure 5 for an example.
The generators Bi⊗P and Bi⊗Q are the ones that can represent torsion homology classes, since

they are the ones with even Maslov gradings. Moreover, it follows from the above computations
that for all i = 1, . . . , 2n − 2, if t < 2

n

grt(Bi ⊗ P )− grt(Bi ⊗Q) = 2i− nt > 0

grt(Bi ⊗Q)− grt(Bi+1 ⊗Q) = 2i− (n − 1)t > 0,

so B1⊗Q is a non-torsion class with maximal grt for t <
2
n ; and M(B1⊗Q) = 0 and A(B1⊗Q) =

(n− 1)2. It follows that

ΥTn,2n−1(t) = −(n− 1)2 · t

for t ≤ 2
n .

Putting the (partial) computations of ΥCn,2n−1(W
+
0 (T2,3))

and of ΥTn,2n−1 together, we get

Proof of Theorem 1.20. Observe that K 7→ ∆Υ′
K(t) is a concordance homomorphism. For

t ≤ 2
2n−1 , this homomorphism vanishes for Tn,2n−1 (by Lemma 8.13); thus,

∆Υ′
Kn

(t) =

{
0 for t < 2

2n−1

2n− 1 for t = 2
2n−1 .

We can now apply Lemma 6.4 to the homomorphisms { 1
2n−1∆Υ′

K( 2
2n−1)}

∞
n=2 and the knots Kn.

Remark 8.14. When n = 1, the knot Kn is simply the Whitehead double of the trefoil. Using
Theorem 8.9 directly, we can see that the family of knots Kn for all n ≥ 1 is linearly indepen-
dent. But for this linear independence result, we use the homomorphism 1

2∆Υ′
K(1), as well as the

1
2n−1∆Υ′

K( 2
2n−1 ) for n ≥ 2.

The above linear independence result can be stated in terms of the concordance genus.

Corollary 8.15. Let {an}
∞
n=2 be a sequence of integers with finitely many non-zero terms. Consider

the knot K = #∞
n=2anKn. Let

c =
∑

anτ(Kn) =
∑

an

(
n2 − 3n + 2

2

)
;

and let m = max{n | an 6= 0}. Then, the concordance genus of K is bounded below by

max{|c|, |c + am · 2m+ 1|}.
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Proof. This is a direct application of Theorem 1.13, combined with computations in the proof of
Theorem 1.20.

9. Comparison with Hom’s homomorphisms

It is interesting to compare the concordance homomorphisms constructed here with those defined
by Hom [11]. By a recent result of Hom [16] there are knots for which our invariant ΥK(t) ≡ 0, but
for which her invariant ǫ (which she uses to construct concordance homomorphisms) is non-zero.
We expect conversely that there are also knots K with ΥK(t) 6≡ 0 but ǫ = 0. In this section, we
give a formal construction which shows that there is no algebraic obstruction to the existence of
such knots.

Just like ΥK , Hom’s homomorphisms are constructed from invariants of (suitable) Maslov graded,
Alexander filtered chain complexes over F[U ]. By construction, her homomorphisms vanish on a
particular subset of such complexes. Let us recall this set.

Definition 9.1. Let C be a Maslov graded, Alexander filtered chain complex which is free over
F[U ]. Suppose moreover that H∗(C) ∼= F[U ], with generator in Maslov grading 0. Let A(C) be
the subcomplex of C generated by all elements with Alexander filtration A ≤ 0. Let A′(C) be
subcomplex of C ⊗F[U ] F[U,U

−1] which is generated by C ⊂ C ⊗F[U ] F[U,U
−1] and all elements of

C ⊗F[U ] F[U,U
−1] with A ≤ 0.

We say that C is strongly trivial if the map A(C)→ A′(C) induces an isomorphism

H∗(A(C))/Tors→ H∗(A
′(C))/Tors.

(Here Tors denotes the torsion part of an F[U ]-module.) In the case where the rank of H∗(C) is
equal to one, this is equivalent to the condition that δ(A(C)) = δ(C) = δ(A′(C)), in the notation
of Definition 2.11.

We say that C is ǫ-trivial if the map

A(C)/U → A′(C)/U

on A(C)/U = A(C)/(U · A(C)) given by the embedding induces a non-zero map in homology.

Note that the map A(C) → A′(C) naturally factors through C itself; similarly A(C)/U →
A′(C)/U factors through C/U . In [15, Definition 3.1] Hom defines a complex C to have ǫ(C) = 0
if both maps

H∗(A(C)/U)→ H∗(C/U) and H∗(C/U)→ H∗(A
′(C)/U)

are non-trivial. Since, H∗(C/U) = F, this condition is equivalent to the condition that C is ǫ-trivial,
in the above sense. The relevance of strong triviality is the following:

Proposition 9.2. If C is strongly trivial, then ΥC(t) ≡ 0.

Proof. There are inclusions A(CR) ⊂ Et ⊂ A′(CR) for all t, hence by Lemma 4.6 we get that
δ(A(C)) ≤ δ(Et) ≤ δ(A′(C)). (Note that δ(A(CR)) = δ(A(C)) by Proposition 4.9.) Since C is
strongly trivial, it follows that δ(A(C)) = δ(A′(C)), implying that δ(Et) is constant. Since for
t = 0 we have that δ(Et) = 0, the claim of the lemma follows.

Proposition 9.3. If C is strongly trivial, then it is also ǫ-trivial.

Proof. Consider a generator of H∗(A(C))/Tors. This can be lifted to an element ξ of H∗(A(C))

which is in the cokernel of U , i.e. which injects into H∗(A(C)/U). Call the image ξ̂. Moreover,
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b3,0a0,0

c0,3 d3,3

e1,1

U3

U3

U

1 1

Figure 6. An ǫ-trivial chain complex with non-trivial Υ. Arrows represent
terms in the differentials, and the labels represent the algebra element appearing in
the corresponding term.

since its image in H∗(A
′(C)) induces a generator of H∗(A

′(C))/Tors, it follows that its image also
injects in H∗(A

′(C)/U). By commutativity of the diagram

A(C) −−−−→ C −−−−→ A′(C)
y

y
y

A(C)/U −−−−→ C/U −−−−→ A′(C)/U,

we conclude that ξ̂ is mapped non-trivially into H∗(A
′(C)/U), as desired.

The converse of the above proposition is not true. An ǫ-trivial complex with ΥC not identically
zero (hence C not strongly trivial) can be given as follows.

Consider the Z⊕ Z-filtered complex C∞ over F[U,U−1] with five generators a0,0, b3,0, c0,3, d3,3,
and e1,1, satisfying the grading conditions

M(a0,0) = 1

M(b3,0) = −4

M(c0,3) = 2

M(d3,3) = −3

M(e1,1) = 0

and

A(a0,0) = A(d3,3) = A(e1,1) = 0

A(c0,3) = −A(b3,0) = 3;

and equipped with the differential

∂a0,0 = 0

∂b3,0 = U3 · a0,0

∂c0,3 = a0,0

∂d3,3 = b3,0 + U3 · c0,3

∂e1,1 = U · a0,0,

pictured in Figure 6.
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Proposition 9.4. The above complex is ǫ-trivial, but

ΥC(t) =





0 for 0 ≤ t ≤ 2
3

2− 3t for 2
3 ≤ t ≤ 1

−4 + 3t for 1 ≤ t ≤ 4
3

0 for 4
3 ≤ t ≤ 2.

Proof. It is easy to see that H∗(A(C)/U) ∼= F3, generated by the elements a0,0, e1,1 and b3,0. A
similar computation shows that H∗(A

′(C)/U) ∼= F3, generated by d3,3, e1,1 and c0,3+U−3b3,0. The
map on homology induced by the map A(C)/U → A′(C)/U maps e1,1 to e1,1, hence it is non-zero,
showing that C is ǫ-trivial.

Since

∂ta0,0 = 0

∂tb3,0 = v3(2−t) · a0,0

∂c0,3 = v3t · a0,0

∂d3,3 = v3(2−t) · b3,0 + v3t · c0,3

∂e1,1 = v2 · a0,0,

we can easily see that for t ≤ 2
3 the elements

z1 = b3,0 + v4−3t · e1,1 and z2 = v2−3t · c0,3 + e1,1

generate the torsion-free quotient, while for t ∈ [23 , 1] the elements

z1 = b3,0 + v4−3t · e1,1 and z′2 = c0,3 + v3t−2 · e1,1

play the same role. Since grt(z1) = −4 + 3t, grt(z2) = 0, and grt(z
′
2) = 2 − 3t, we get the desired

shape of ΥC(t) on [0, 1]. A similar computation (or the symmetry ΥC(t) = ΥC(2−t)) then computes
ΥC on [0, 2], concluding the proof of the proposition.

10. The case of links

Knot Floer homology can be generalized to links in several ways; see for instance [34]. There are
analogous generalizations of the t-modified theory to links. We describe here one such generaliza-
tion, which will be useful in [24].

An ℓ-component oriented link L = (L1, . . . , Lℓ) can be represented by a Heegaard diagram
H = (Σ,α,β,w, z), where:

• Σ is a surface of genus g,
• α and β are g + ℓ− 1-tuples of pairwise disjoint, simple closed curves,
• and the pair (w, z) = {(wi, zi)}

ℓ
i=1 is an ℓ-tuple of pairs of basepoints;

see [34, Section 3]. The diagram equips each component of L with an orientation; we assume that
this orientation matches with the given orientation of L.

The generating set of the free R-module tCFL(H) is given by the intersection points S =
Tα ∩ Tβ ∈ Symg+ℓ−1(Σ). For φ ∈ π2(x,y), let

nw(φ) =

ℓ∑

i=1

nwi(φ) and nz(φ) =

ℓ∑

i=1

nzi(φ).
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The Maslov and Alexander functions are once again characterized up to an overall additive shift
by the equations

M(x)−M(y) = µ(φ)− 2nw(φ),(39)

A(x) −A(y) = nz(φ)− nw(φ),(40)

for any φ ∈ π2(x,y). Before pinning down the additive indeterminacy on these functions, we
consider the differential on tCFL(H):

(41) ∂tx =
∑

y∈S

∑

{φ∈π2(x,y)
∣∣µ(φ)=1}

#

(
M(φ)

R

)
vtnz(φ)+(2−t)nw(φ)y.

Lemma 10.1. The homology of the t = 0 specialization of the above complex is a free R-module
of rank 2ℓ−1. In fact, up to an overall shift in gradings, there is a graded isomorphism

(42) H∗(tCFL|t=0(H)) ∼= (R− 1
2
⊕R 1

2
)ℓ−1.

The same holds when t = 2:

(43) H∗(tCFL|t=2(H)) ∼= (R− 1
2
⊕R 1

2
)ℓ−1.

Proof. The t = 0 specialization is independent of the placement of z. (This specialization is
equipped with the Maslov grading.) Consider the chain complex over F[U1, . . . , Uℓ] with the same
generators as before, but with differential specified by

∂x =
∑

y∈S

∑

{φ∈π2(x,y)
∣∣µ(φ)=1}

#

(
M(φ)

R

)
U

nw1 (φ)
1 · · ·U

nwℓ
(φ)

ℓ y.

According to [34, Theorem 4.4], this chain complex computes HF−(S3) ∼= F[U ], where all the Ui

act as translations by U . Thus, if we set them equal to one another, the resulting complex is
F[U ] ⊗ V ℓ−1. The t = 0 complex is gotten by changing the base ring to R with variable v (and
with the understanding of U = v2), equipped with the Maslov grading.

The t = 2 specialization is independent of the placement of w (even in the defintion of gr2 =
M − 2A).

Definition 10.2. Let L be an oriented link. Eliminate the additive indeterminacy in M by the
requirement that Equation (42) holds without shifting the grading. Next, eliminate the additive
indeterminacy in A by the requirement that Equation (43) holds without shifting the grading. Using
these normalizations, we define the grading grt on the generator x of tCFL(H) by the usual formula

grt(x) = M(x)− tA(x),

and extend it to the R-module by grt(v
αx) = grt(x) − α. The homology tHFL(H) of the resulting

graded chain complex is a graded R-moduli, called the t-modified link homology of L.

We have the following analogue of Theorem 1.1:

Theorem 10.3. The t-modified link homology tHFL(H) of the Heegaard diagram H is an invariant
of the underlying oriented link L, and is denoted by tHFL(L).

Proof. In [34], the link complex CFL−(H) is a Zℓ-filtered chain complex which is also equipped
with a Maslov grading. The Alexander multi-grading is specified by the vector

A = (A1, . . . , Aℓ),

and the underlying algebra is F[U1, . . . , Uℓ].
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We can specialize the link complex by setting U1 = · · · = Uℓ to get a variant which is defined over

F[U ], endowed with the Z-filtration A =
∑ℓ

i=1 Ai (specified again up to an overall shift). We call
the resulting complex the algebraically collapsed link complex cCFL−(H). It follows that tCFL(H)
is simply the t-modification (in the sense of Section 4) of the algebraically collapsed link complex.

It is easy to see that Zℓ-filtered homotopy equivalences between CFL−(H)’s for different Heegaard
diagrams representing L induce Z-filtered homotopy equivalences of the corresponding collapsed
complex. Thus, since the filtered homotopy type of CFL−(H) is a link invariant [34, Theorem 4.7],
functoriality of the t-modification (Proposition 4.4) implies the result.

The definition of the knot invariant ΥK(t) extends to links as follows.

Definition 10.4. For t ∈ [0, 2] choose a homogeneous basis {ei(t)}
n
i=1 for the free R-module

tHFL(L)/Tors. The Υ-set of the oriented link L at t is the set {grt(ei(t))}
n
i=1 (a set with

possible repetitions).

Theorem 10.5. The Υ-set of L at any t ∈ [0, 2] is a set with 2ℓ−1 elements (counted with repeti-
tions). It is an invariant of the oriented link L.

Proof. The proof consists of two parts. First, we must show that tHFL(L)/Tors is a free module
of rank 2ℓ−1. Second, we must show that the set is a link invariant.

To see that tHFL(L)/Tors is a free module of rank 2ℓ−1, we use the fact that HFK∞(L) ∼=
F[U,U−1]⊗ (F⊕ F)⊗(ℓ−1). This follows from an application of [34, Theorem 4.7] (exactly as in the
proof of Lemma 10.1).

Invariance follows immediately from Theorem 10.3.
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