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INTRINSIC VOLUMES OF RANDOM POLYTOPES WITH VERTICES ON THE BOUNDARY
OF A CONVEX BODY

KÁROLY J. BÖRÖCZKY, FERENC FODOR, AND DANIEL HUG

ABSTRACT. Let K be a convex body inRd, let j ∈ {1, . . . , d − 1}, and let̺ be a positive and continuous
probability density function with respect to the(d−1)-dimensional Hausdorff measure on the boundary∂K of
K. Denote byKn the convex hull ofn points chosen randomly and independently from∂K according to the
probability distribution determined by̺. For the case when∂K is aC2 submanifold ofRd with everywhere
positive Gauss curvature, M. Reitzner proved an asymptoticformula for the expectation of the difference of the
jth intrinsic volumes ofK andKn, asn → ∞. In this article, we extend this result to the case when the only
condition onK is that a ball rolls freely inK.

1. INTRODUCTION

Random polytopes in Euclidean spaceR
d can be defined in various ways. Ifx1, . . . , xn aren random

points sampled from a given convex bodyK ⊂ R
d, then the convex hull of these random points yields a

random polytope that has been studied extensively in the literature. The present focus is on a related though
different model of a random polytope that has not been explored to the same extent. Instead of choosing
the points from all ofK, we sample random points from the boundary ofK. The convex hull of these
points then provides a model of a random polytope that will beconsidered here. Our main focus is on the
convergence of the expectation of geometric functionals (intrinsic volumes) of such a random polytope.
The main result, stated in Theorem 1.2, extends previous work by relaxing the regularity assumptions on
K. This is a nontrivial task, since the speed of convergence depends in a crucial way on the boundary
structure, in particular on the (generalized) curvatures,of K. The present approach refines arguments that
have recently been developed in [4] to establish first order results for the aforementioned model of a random
polytope, and it combines geometric and probabilistic ideas.

Before stating our results explicitly, we provide the required background and notation. Our basic setting
is thed-dimensional Euclidean spaceRd, d ≥ 2, with scalar product〈·, ·〉 and norm‖ · ‖. By Hj we
denote thej-dimensional Hausdorff measure, whereHd is simply called the volumeVd. LetBj be the
unit ball of Rj with center at the origin, and letSj−1 be its boundary. Then we writeαj = Hj(Bj)
for the j-dimensional volume ofBj , and henceHj−1(Sj−1) = jαj is the surface content ofBj . The
relative boundary of a compact convex setC ⊂ R

d is denoted by∂C. Finally, the convex hull of subsets
X1, . . . , Xr and pointsz1, . . . , zs is denoted by[X1, . . . , Xr, z1, . . . , zs].

Throughout the following,K is a convex body (compact convex set) with interior points inR
d; for

notions of convexity we follow the monographs by Schneider [18] or Gruber [8]. The boundary ofK is
denoted by∂K. We say that∂K is twice differentiable in the generalized sense at a boundary pointx ∈ ∂K
if there exists a positive semi-definite quadratic formQ onR

d−1, the so called second fundamental form,
with the following property: IfK is positioned in such a way thatx = o andRd−1 is a support hyperplane
ofK, then in a neighborhood of the origino, ∂K is the graph of a convex functionf defined on a(d− 1)-
dimensional ball aroundo in R

d−1 satisfying

(1.1) f(z) = 1
2 Q(z) + o(‖z‖2),
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asz → o. According to a classical result of Alexandrov (see P.M. Gruber [8] or R. Schneider [18]),∂K is
twice differentiable in the generalized sense atHd−1 almost all pointsx ∈ ∂K. Such boundary points are
also called normal boundary points. We writek1(x), . . . , kd−1(x) for the (generalized) principal curvatures
of ∂K at x ∈ ∂K, which are just the eigenvalues ofQ. Furthermore,Hj(x) denotes the normalizedjth
elementary symmetric function of the principal curvaturesof ∂K at the normal boundary pointx. Here the
dependence of this function onK is not made explicit. Thus, forj ∈ {1, . . . , d− 1}, we have

Hj(x) =

(
d− 1

j

)−1 ∑

1≤i1<···<ij≤d−1

ki1(x) · · · kij (x),

and this definition is supplemented byH0(x) := 1. In particular,Hd−1(x) is the Gaussian curvature and
H1(x) is the mean curvature of∂K atx. We say that∂K isCk

+, for somek ≥ 2, if ∂K is aCk submanifold
of Rd and its Gaussian curvature is positive everywhere.

The intrinsic volumesVj(K), j = 0, . . . , d, of a convex bodyK ⊂ R
d can be introduced as coefficients

of the Steiner formula

Vd(K + λBd) =

d∑

j=0

λd−jαd−jVj(K),

whereK + λBd is the Minkowski sum ofK and the ballλBd of radiusλ ≥ 0. In particular,Vd is
the volume functional,V0(K) = 1, V1 is proportional to the mean width andVd−1 is a multiple of the
surface area. Alternately, intrinsic volumes can be obtained as mean projection volumes. Specifically, for
j = 1, . . . d− 1, it is well-known that

Vj(K) =

(
d
j

)
αd

αjαd−j

∫

Ld
j

Vj(K|L) νj(dL),

whereLd
j is the Grassmannian of allj-dimensional linear subspaces ofR

d equipped with the (unique)
Haar probability measureνj and, forL ∈ Ld

j , K|L denotes the orthogonal projection ofK ontoL. Here,
Vj(K|L) is just thej-dimensional volume (Lebesgue measure) ofK|L.

We say that a ball rolls freely in a convex bodyK ⊂ R
d if there exists somer > 0 such that anyx ∈ ∂K

lies on the boundary of some Euclidean ballB of radiusr with B ⊂ K. The existence of a rolling ball is
equivalent to saying that the exterior unit normal is a Lipschitz map on∂K (see D. Hug [14]). In particular,
W. Blaschke observed that if∂K isC2, thenK has a rolling ball (see D. Hug [14] or K. Leichtweiss [15]).
In turn, we say thatK rolls freely in a ball of radiusR > 0 if any x ∈ ∂K lies on the boundary of some
Euclidean ballB of radiusR with K ⊂ B.

In this paper, we shall consider the following probability model. LetK be a convex body with a rolling
ball of radiusr. Let ̺ be a continuous, positive probability density function defined on∂K; throughout
this paper this density is always considered with respect tothe boundary measure on∂K. Select the points
x1, . . . , xn randomly and independently from∂K according to the probability distribution determined by
̺. The convex hullKn := [x1, . . . , xn] then is a random polytope inscribed inK. We are going to study
the expectation of intrinsic volumes ofKn. In order to indicate the dependence on the probability density
̺, we writeP̺ to denote the probability of an event in this probability space andE̺ to denote the expected
value. For a convex bodyK, the expected valueE̺(Vj(Kn)) of thej-th intrinsic volume ofKn tends to
Vj(K) asn tends to infinity. It is clear that the asymptotic behavior ofVj(K)−E̺(Vj(Kn)) is determined
by the shape of the boundary ofK. In the case when the boundary ofK is aC2

+ submanifold ofRd, this
asymptotic behavior was described by M. Reitzner [16].

Theorem 1.1 (Reitzner, 2002). LetK be a convex body inRd withC2
+ boundary, and let̺ be a continuous,

positive probability density function on∂K. Denote byE̺(Vj(Kn)), j = 1, . . . , d, the expectedj-th
intrinsic volume of the convex hull ofn random points on∂K chosen independently and according to the
density function̺ . Then

(1.2) Vj(K)− E̺(Vj(Kn)) ∼ c(j,d)
∫

∂K

̺(x)−
2

d−1Hd−1(x)
1

d−1Hd−j(x)Hd−1(dx) · n− 2
d−1

asn→ ∞, where the constantc(j,d) only depends onj and the dimensiond.
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For j = d, that is in the case of the volume functional, C. Schütt and E. Werner [21] extended (1.2)
to any convex bodyK such that a ball of radiusr rolls freely inK and, in addition,K rolls freely in a
ball of radiusR, for someR > r > 0. The latter assumption ofK rolling freely inside a ball implies a
uniform positive lower bound for the principle curvatures of ∂K whenever they exist. They also calculated
the constantc(d,d) explicitly, that is

c(d,d) =
(d− 1)

d+1
d−1Γ(d+ 1 + 2

d−1 )

2(d+ 1)![(d− 1)αd−1]
2

d−1

.

Moreover, C. Schütt and E. Werner [21] showed that for fixedK, the minimum of the integral expression
in (1.2) is attained for the probability density function

̺0(x) =
Hd−1(x)

1
d+1

∫
∂K

Hd−1(x)
1

d+1 Hd−1(dx)
.

Our main goal is to extend Theorem 1.1 to the case whereK is only assumed to have a rolling ball,
for all j = 1, . . . , d. In particular, the Gauss curvature is allowed to be zero on aset of positive boundary
measure. More explicitly, we shall prove

Theorem 1.2. The asymptotic formula(1.2)holds ifK is a convex body inRd in which a ball rolls freely.

The present method of proof for Theorem 1.2 is different fromthe one used by Reitzner [16] or Schütt
and Werner [21]. It is inspired by the arguments from our previous paper [4] concerning random points
chosen from a convex body, however, the case of random pointschosen from the boundary is more delicate.

Examples show that in general the condition that a ball rollsfreely insideK cannot be dropped in
Theorem 1.2. General bounds are provided in the following theorem.

Theorem 1.3. LetK be a convex body inRd, and let̺ be a continuous, positive probability density function
on∂K. Then there exist positive constantsc1, c2, depending onK and̺, such that for anyn ≥ d+ 1,

c1n
− 2

d−1 ≤ E̺(V1(K)− V1(Kn)) ≤ c2n
− 1

d−1 .

The lower bound is of optimal order ifK has a rolling ball, and the upper bound is of optimal order, ifK
is a polytope.

For comparison, let us review the main known results about the convex hullK(n) of n points chosen
randomly, independently and uniformly fromK. In the case where a ball rolls freely insideK, the analogue
of Theorem 1.2 is established in K. Böröczky Jr., L. M. Hoffmann and D. Hug [3]. For the case of the
volume functional and an arbitrary convex bodyK, C. Schütt [19] proved (see K.J. Böröczky, F. Fodor, D.
Hug [4] for some corrections and an extension) that

lim
n→∞

n
2

d+1 (Vd(K)− E(Vd(K(n))) = cdVd(K)
2

d+1

∫

∂K

Hd−1(x)
1

d+1 Hd−1(dx),

where the constantcd > 0 only depends on the dimensiond and is explicitly known. Concerning the order
of approximation, we have

(1.3) γ1n
−2/(d+1) < V1(K)− EV1(K(n)) < γ2n

−1/d,

(1.4) γ3n
−1 lnd−1 n < Vd(K)− EVd(K(n)) < γ4n

−2/(d+1),

whereγ1, . . . , γ4 > 0 are constants that may depend onK. The inequalities (1.3) are due to R. Schneider
[17], and (1.4) is due to I. Bárány and D. Larman [2]. The orders are best possible, being attained in
(1.3)(left) and (1.4)(right) by sufficiently smooth bodies, and in (1.3)(right) and (1.4)(left) by polytopes.

The proof of Theorem 1.2 is given in the following three sections. In Section 2, we rewrite the difference
Vj(K) − E̺(Vj(Kn)) in an integral geometric way. The inner integral involved inthis integral geometric
description is extended over the projectionK|L of K to L, whereL is a j-dimensional linear subspace.
Then we show that up to an error term of lower order the main contribution comes from a neighborhood of
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the (relative) boundary∂(K|L) of K|L with respect toL, where this neighborhood is shrinking at a well-
defined speedt(n) asn→ ∞. Further application of an integral geometric decomposition then shows that
the proof boils down to determining the limit

lim
n→∞

∫ t(n)

0

n
2

d−1 〈y, u(y)〉P̺ (yt /∈ Kn|L) dt,

wherey ∈ ∂(K|L) andx is a normal boundary point ofK with y = x|L. The case where the Gauss
curvature ofK at x is zero is treated directly. In Section 3, we deal with the case of positive Gauss
curvature. In a first step, we choose a reparametrization of the integral which relates the parametert to the
probability contents of that part of the boundary ofK nearx that is cut off by a cap determined by the
parametert. This reparametrization has the effect of extracting the relevant geometric information fromK.
What remains to be shown is that the transformed integrals are essentially independent ofK and yield the
same value for the unit ball with the uniform probability density on its boundary. This latter step is divided
into two lemmas in Section 3. Whereas both lemmas have analogues in our previous work [4], the present
arguments are more delicate and the second lemma has to be established by a reasoning different from the
one in [4]. The proof is then completed in Section 4, where, inaddition to the previous steps, a very special
case of Theorem 1.1 is employed (K being the unit ball) as well as an integral geometric lemma from [3].
The final section is devoted to a proof of Theorem 1.3.

2. GENERAL ESTIMATES

In order to prove Theorem 1.2, we start by rewritingVj(K) − E̺(Vj(Kn)) in an integral geometric
form. For this, we use Kubota’s formula and Fubini’s theoremto obtain

Vj(K)− E̺(Vj(Kn))

=

∫

∂K

. . .

∫

∂K

(Vj(K)− Vj(Kn))

n∏

i=1

̺(xi)Hd−1(dx1) . . .Hd−1(dxn)

=

(
d
j

)
αd

αjαd−j

∫

∂K

. . .

∫

∂K

∫

Ld
j

(Vj(K|L)− Vj(Kn|L))

×
n∏

i=1

̺(xi) νj(dL)Hd−1(dx1) . . .Hd−1(dxn)

=

(
d
j

)
αd

αjαd−j

∫

Ld
j

∫

L

∫

∂K

. . .

∫

∂K

1 {y ∈ K|L andy 6∈ Kn|L}

×
n∏

i=1

̺(xi)Hd−1(dx1) . . .Hd−1(dxn)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j

∫

Ld
j

∫

K|L
P̺(y 6∈ Kn|L)Hj(dy) νj(dL).(2.1)

Now we introduce some geometric tools. IfK has a rolling ball of radiusr, then so doesK|L for any
L ∈ Ld

j . Furthermore,∂K has a unique outer unit normal vectoru(x) at each boundary pointx ∈ ∂K. If
L ∈ Ld

j , y ∈ ∂(K|L) andx ∈ K such thaty = x|L, thenx ∈ ∂K and the outer unit normal of∂(K|L) at
y is equal tou(x).

Since the statement of the theorem is translation invariant, we may assume that

(2.2) rBd ⊂ K ⊂ RBd

for someR > 0. For t ∈ (0, 1), letKt := (1 − t)K, and forx ∈ ∂K, let xt := (1 − t)x. Similarly,
(K|L)t := (1− t)(K|L) andyt := (1− t)y for y ∈ ∂(K|L).

Forx ∈ ∂K andt ∈ (0, 1), let
x∗t := x− 〈tx, u(x)〉u(x).

If t ∈ (0, r
R ), then (2.2) implies that

(2.3) tr ≤ 〈x− x∗t , u(x)〉 = 〈x− xt, u(x)〉 < r.



INTRINSIC VOLUMES OF RANDOM POLYTOPES 5

The existence of a rolling ball atx yields that ift ∈ (0, r
R ), then

(2.4) x∗t + r
√
t(u(x)⊥ ∩Bd) ⊂ K.

On the other hand, we have

(2.5) ‖x∗t − xt‖ < Rt.

For real functionsf andg defined on the same space, we writef ≪ g or f = O(g) if there exists a
positive constantγ, depending only onK and̺, such that|f | ≤ γ · g.

We shall use the notion of a “coordinate corner”. Given an orthonormal basis in a lineari-dimensional
subspaceL, the corresponding(i − 1)-dimensional coordinate planes cutL into 2i convex cones, which
we call coordinate corners (with respect toL and the given basis). In the following, we writeγ1, γ2, . . . for
positive constants which merely depend onK and̺.

Let us estimate the probability thato 6∈ Kn. There exists a constantγ1 > 0 such that the probability
content of each of the parts of∂K contained in one of the2d coordinate corners ofRd is at leastγ1. Now if
o 6∈ Kn, theno can be strictly separated fromKn by a hyperplane. It follows that{x1, . . . , xn} is disjoint
from one of these coordinate corners, and hence

(2.6) P(o /∈ Kn) ≤ 2d(1 − γ1)
n.

This fact will be used, for instance, in the proof of the subsequent lemma. In the following, forx ∈ R
d we

use the shorthand notationR+x := {λx : λ ≥ 0}.

Lemma 2.1. There exist constantsδ, γ2 ∈ (0, 1), depending onK and̺, such that ifL ∈ Ld
j , y ∈ ∂(K|L)

andt ∈ (0, δ), then

P̺ (yt 6∈ Kn|L) ≪
(
1− γ2t

d−1
2

)n
.

Proof. Let y ∈ ∂(K|L) andx ∈ ∂K be such thaty = x|L. LetΘ′
1, . . . ,Θ

′
2d−1 be the coordinate corners

with respect to some basis vectors inu(x)⊥. In addition, fori = 1, . . . , 2d−1 andt ∈ (0, 1), let

Θi,t = ∂K ∩ (xt + [Θ′
i,R+x]) .

Since̺ is positive and continuous, we have
∫

Θi,t

̺(x)Hd−1(dx) ≥ γ3Hd−1(Θi,t).

If yt 6∈ Kn|L ando ∈ Kn, then there exists a(j−1)-dimensional affine planeHL inL throughyt, bounding
the halfspacesH−

L andH+
L in L, for whichKn|L ⊂ H−

L . Now, if L⊥ is the orthogonal complement ofL in
R

d, thenH := HL+L
⊥ is a hyperplane inRd with the property thatxt ∈ H andKn ⊂ H− := H−

L +L⊥.
Furthermore,Θi,t ⊂ H+ := H+

L + L⊥ for somei ∈ {1, . . . , 2d−1}, becauseo ∈ Kn ⊂ H−. Therefore

P̺ (yt 6∈ Kn|L, o ∈ Kn) ≤
2d−1∑

i=1

(
1− γ3Hd−1(Θi,t)

)n
.

Combining (2.4) and (2.5), we deduce the existence of a constantγ4 > 0 such that ift ≤ γ4, then the
orthogonal projection ofΘi,t into u(x)⊥ contains a translate ofΘ′

i ∩ (r/2)
√
tBd, and therefore

Hd−1(Θi,t) ≥ γ5t
d−1
2

for i = 1, . . . , 2d−1. In turn, we obtain

(2.7) P̺ (yt 6∈ Kn|L, o ∈ Kn) ≪
(
1− γ6t

d−1
2

)n
.

On the other hand, ifo 6∈ Kn|L, then (2.6) holds. Combining this with (2.7), we conclude the proof of the
lemma. �

Subsequently, the estimate of Lemma 2.1 will be used, for instance, to restrict the domain of integration
(cf. Lemma 2.3) and to justify an application of Lebesgue’s dominated convergence theorem (see (2.12)).
For these applications, we also need that ifx ∈ ∂K andc > 0 satisfies̄ω := cδ

d−1
2 < 1, then

(2.8)
∫ δ

0

(
1− ct

d−1
2

)n
dt = c

−2
d−1

2

d− 1

∫ ω̄

0

s
2

d−1−1(1− s)n ds≪ c
−2
d−1 · n −2

d−1 ,
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where we use that(1− s)n ≤ e−ns for s ∈ [0, 1] andn ∈ N.
The next lemma will allow us to decompose integrals in a suitable way. We writeu(y) to denote the

unique exterior unit normal to∂(K|L) aty ∈ ∂(K|L). It will always be clear from the context whether we
mean the exterior unit normal at a pointx ∈ ∂K or at a pointy ∈ ∂(K|L).

Lemma 2.2. If 0 ≤ t0 < t1 < δ andh : K|L→ [0,∞] is a measurable function, then
∫

(K|L)t0\(K|L)t1

P̺ (x /∈ Kn|L)h(x)Hj(dx)

=

∫

∂(K|L)

∫ t1

t0

(1− t)j−1
P̺ (yt /∈ Kn|L) 〈y, u(y)〉h(yt) dtHj−1(dy).

Proof. The set∂(K|L) is a(j − 1)-dimensional submanifold ofL of classC1, and the map

T : ∂(K|L)× (t0, t1) → int(K|L)t0 \ (K|L)t1 , (y, t) 7→ yt,

is aC1 diffeomorphism with JacobianJT (y, t) = (1 − t)j−1〈y, u(y)〉 ≥ 0. Thus the assertion follows
from Federer’s area/coarea theorem (see [7]). �

In the following, we use the abbreviationt(n) := n
−1
d−1 .

Lemma 2.3. Let1 ≤ j ≤ d− 1. Then we have
∫

Ld
j

∫

(K|L)t(n)

P̺ (y 6∈ Kn|L) Hj(dy) νj(dL) = o
(
n

−2
d−1

)
.

Proof. Let δ > 0 be chosen such that it satisfies the conditions of Lemma 2.1. We may assume thatn is
large enough to satisfyt(n) < δ andn ≥ (γ2)

2. First, we treat that part of the integral which extends over
the subset(K|L)δ of (K|L)t(n).

Letω := δr. Then (2.3) yields

(2.9) 〈x − xδ, u(x)〉 ≥ ω for x ∈ ∂K.

There exists a constantγ7 > 0 such that the probability measure of(x+ ω
2 B

d) ∩ ∂K is at leastγ7 for all
x ∈ ∂K. We choose a maximal set{z1, . . . , zm} ⊂ ∂K such that‖zi − zl‖ ≥ ω

2 for i 6= l.
ForL ∈ Ld

j , let y ∈ (K|L)δ. If y 6∈ Kn|L, then there exist a hyperplaneH in R
d and a half space

H− bounded byH such thaty ∈ H , H is orthogonal toL, andKn ⊂ int(H−). Choosex ∈ ∂K such
thatu(x) is an exterior unit normal toH−. SinceH intersectsKδ, we have〈x − y, u(x)〉 ≥ ω by (2.9).
Now there exists somei ∈ {1, . . . , n} with ‖x− zi‖ ≤ ω

2 , and hence{x1, . . . , xn} ⊂ int(H−) yields that
{x1, . . . , xn} is disjoint fromzi + ω

2 B
d. In particular, we have

(2.10) P̺ (y 6∈ Kn|L) ≤ m(1 − γ7)
n.

Next lety ∈ ∂(K|L). If t ∈ (t(n), δ), then Lemma 2.1 yields

(2.11) P̺ (yt 6∈ Kn|L) ≪
(
1− γ2n

− 1
2

)n
< e−γ2n

1
2 ≪ n

−3
d+1 .

In particular, writingI to denote the integral in Lemma 2.3, we obtain from Lemma 2.2,(2.10) and (2.11)
that

I ≪
∫

Ld
j

∫

(K|L)δ

P̺ (y 6∈ Kn|L) Hj(dy) νj(dL) +

+

∫

Ld
j

∫ δ

t(n)

∫

∂(K|L)

P̺ (yt 6∈ Kn|L) Hj−1(dy) dt νj(dL)

≪ m(1− γ7)
n +

∫

Ld
j

∫

∂(K|L)

n
−3
d−1 Hj−1(dy) νj(dL) = o

(
n

−2
d−1

)
,

which is the required estimate. �
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It follows by applying (2.1), Lemma 2.3 and Lemma 2.2, in thisorder, that

lim
n→∞

n
2

d−1 (Vj(K)− E̺(Vj(Kn)))

=

(
d
j

)
αd

αjαd−j
lim
n→∞

n
2

d−1

∫

Ld
j

∫

K|L
P̺(y /∈ Kn|L)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j
lim
n→∞

n
2

d−1

∫

Ld
j

∫

(K|L)\(K|L)t(n)

P̺(y /∈ Kn|L)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j
lim
n→∞

∫

Ld
j

∫

∂(K|L)

∫ t(n)

0

n
2

d−1P̺(yt /∈ Kn|L)(1− t)j−1〈y, u(y)〉 dtHj−1(dy) νj(dL).

We deduce from Lemma 2.1 and (2.8) that ifn > n0, L ∈ Ld
j andy ∈ ∂(K|L), then

∫ t(n)

0

n
2

d−1P̺ (yt 6∈ Kn|L) 〈y, u(y)〉(1− t)j−1 dt≪ C,

wheren0 andC depend onK and̺. Therefore, we may apply Lebesgue’s dominated convergencetheorem,
and thus we conclude

(2.12) lim
n→∞

n
2

d−1 (Vj(K)− E̺(Vj(Kn))) =

(
d
j

)
αd

αjαd−j

∫

Ld
j

∫

∂(K|L)

J̺(y, L)Hj−1(dy) νj(dL),

where, forL ∈ Ld
j andy ∈ ∂(K|L), we have

(2.13) J̺(y, L) := lim
n→∞

∫ t(n)

0

n
2

d−1 〈y, u(y)〉P̺ (yt /∈ Kn|L) dt.

Subsequently, we shall inspect this limit more closely. In afirst step, we shall consider those pointsy ∈
∂(K|L) for which there is a normal boundary pointx ∈ ∂K with y = x|L andHd−1(x) = 0.

Lemma 2.4. LetL ∈ Ld
j , and lety ∈ ∂(K|L). If x ∈ ∂K is a normal boundary point ofK with y = x|L

andHd−1(x) = 0, thenJ̺(y, L) = 0.

Proof. Let x ∈ ∂K be a normal boundary point withy = x|L andHd−1(x) = 0. First, we show the
existence of a decreasing functionϕ on (0, r

R ) with limt→0+ ϕ(t) = ∞ satisfying

(2.14) P̺ (yt 6∈ Kn|L) ≤ 2d−1
(
1− ϕ(t)t

d−1
2

)n
.

In the following, we always assume thatt > 0 is sufficiently small, that isn is sufficiently large, so that all
expressions that arise are well defined. Letv1, . . . , vd−1 be an orthonormal basis inu(x)⊥ such that these
vectors are principal directions of curvature ofK at x and such that the curvature is zero in the direction
of v1. In addition, letΘ′

1, . . . ,Θ
′
2d−1 be the coordinate corners inu(x)⊥, and, fori = 1, . . . , 2d−1 and

t ∈ (0, 1), letΘi,t = ∂K ∩ (xt + [Θ′
i,R+x]) as before. The continuity of̺ yields that

∫

Θi,t

̺(x)Hd−1(dx) ≫ Hd−1(Θi,t).

Since the curvature is zero in the direction ofv1, there exists a functionψ on(0, r
R ) with limt→0+ ψ(t) =

∞ satisfying

x∗t − ψ(t)
√
tv1 ∈ K and x∗t + ψ(t)

√
tv1 ∈ K.

Combining (2.4) and (2.5), we deduce the existence of a decreasing function ϕ̃ on (0, r
R ) with

limt→0+ ϕ̃(t) = ∞ satisfying ∫

Θi,t

̺(x)Hd−1(dx) ≥ ϕ̃(t)t
d−1
2 ,

for i = 1, . . . , 2d−1.
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First, we assume thatyt 6∈ Kn|L ando ∈ Kn. In particular, then we also havext 6∈ Kn, and hence
there exists a hyperplaneH throughxt such thatKn lies on one side ofH . Sinceo ∈ Kn, it follows that
H separatesKn from someΘi,t, and therefore

(2.15) P̺ (yt 6∈ Kn|L, o ∈ Kn) ≤ 2d−1
(
1− ϕ̃(t)t

d−1
2

)n
.

On the other hand, ifo 6∈ Kn|L, then (2.6) holds. Combining this with (2.15), we conclude (2.14). In turn,
we deduce from (2.8) that

J̺(y, L) ≪ lim
n→∞

n
2

d−1

∫ t(n)

0

(1− ϕ(t(n))t
d−1
2 )n dt ≪ lim

n→∞
ϕ(t(n))

−2
d−1 = 0.

�

In the next section, we study the more difficult case of boundary points with positive Gauss curvature.

3. NORMAL BOUNDARY POINTS AND CAPS

LetL ∈ Ld
j , and lety ∈ ∂(K|L) be such thaty = x|L for some (uniquely determined) normal boundary

pointx ∈ ∂K with Hd−1(x) > 0. We keepx andy fixed throughout this section. First, we reparametrize
xt andyt in terms of the probability measure of the corresponding capof ∂K. Using this reparametrization,
we show thatJ̺(y, L) essentially depends only on the random points nearx (see Lemma 3.1), and then in
a second step we pass from the case of a general convex bodyK to the case of a Euclidean ball.

For t ∈ (0, 1), we consider the hyperplaneH(x, t) := {z ∈ R
d : 〈u(x), z〉 = 〈u(x), xt〉}, the half-

spaceH+(x, t) := {z ∈ R
d : 〈u(x), z〉 ≥ 〈u(x), xt〉}, and the capC(x, t) := K ∩ H+(x, t) whose

bounding hyperplane isH(x, t). Next we reparametrizext in terms of the induced probability measure of
the capC(x, t); namely,

x̃s := xt and ỹs := yt,

where, for a given sufficiently smalls ≥ 0, the parametert ≥ 0 is uniquely determined by the equation

(3.1) s =

∫

C(x,t)∩∂K

̺(w)Hd−1(dw).

Note thats is a strictly increasing and continuous function oft. We further define

(3.2) C̃(x, s) = C(x, t) and H̃(x, s) = H(x, t),

where again, for givens, the parametert is determined by (3.1). Observe that∂K ∩ H+(x, t) = ∂K ∩
C(x, t). Subsequently, we explore the relation betweens andt. Let f : u(x)⊥ → [0,∞] be a convex
function such that the restriction of the map

F : u(x)⊥ → R
d, z 7→ x+ z − f(z)u(x),

to a neighborhood ofo parametrizes∂K in a neighborhood ofx. Moreover, we consider the transforma-
tions

Π : Rd → u(x)⊥, y 7→ y − x− 〈y − x, u(x)〉u(x),
and

T : u(x)⊥ × R → u(x)⊥ × R, (z1, . . . , zd−1, α) 7→ (
√
k1z1, . . . ,

√
kd−1zd−1, α),

whereu(x)⊥ is considered to be a subset ofu(x)⊥×{0} andki = ki(x), i = 1, . . . , d−1, are the principle
curvatures of∂K atx. Then we obtain

∫

∂K∩H+(x,t)

̺(w)Hd−1(dw)

=

∫

Π(∂K∩H+(x,t))

̺(F (z))
√
1 + ‖∇f(z)‖2Hd−1(dz)

=

∫

T (Π(∂K∩H+(x,t)))

̺(F ◦ T−1(z))
√
1 + ‖∇f(T−1(z))‖2Hd−1(x)

−1/2 Hd−1(dz).
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LetK := T (K − x) + x, and henceT (Π(∂K ∩H+(x, t))) = Π(∂K ∩H+(x, t)). If f is defined forK
asf is defined forK, and

̺(w) := ̺(F ◦ T−1 ◦Π(w)), g(w) :=

√
1 + ‖∇f(T−1(Π(w)))‖2√

1 + ‖∇f(Π(w))‖2
,

for w ∈ ∂K ∩H+(x, t), then we obtain
∫

∂K∩H+(x,t)

̺(w)Hd−1(dw) = Hd−1(x)
−1/2

∫

∂K∩H+(x,t)

̺(w)g(w)Hd−1(dw).

Next we putH(r) := x− ru(x) + u(x)⊥ and denote bynK(w) the exterior unit normal ofK atw ∈ ∂K.
Since (cf. the notes for Section 1.5 (2) in [18])

f(z) =
1

2
‖z‖2 + o(‖z‖2), ‖∇f(z)‖ = ‖z‖+ o(‖z‖), nK(w) =

∇f(w̄) + u(x)√
1 + ‖∇f(w̄)‖2

with w̄ := Π(w) andz ∈ u(x)⊥, we get
√
1− 〈nK(w), u(x)〉2

−1

=

√
1 + (‖w̄‖+ o(‖w̄‖))2
‖w̄‖+ o(‖w̄‖) .

Thus a simple application of the coarea formula yields that,for t > 0 sufficiently small andd ≥ 2,
∫

∂K∩H+(x,t)

̺(w)Hd−1(dw)

= Hd−1(x)
−1/2

∫ t〈x,u(x)〉

0

∫

∂K∩H(r)

̺(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw) dr.

Since alsoK has a rolling ball, the mapw 7→ nK(w) is continuous, and therefore also

r 7→
∫

∂K∩H(r)

̺(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw)

is continuous. This implies that

∂

∂ t

∫

∂K∩H+(x,t)

̺(w)Hd−1(dw)

=
〈x, u(x)〉
Hd−1(x)1/2

∫

∂K∩H(t〈x,u(x)〉)
̺(w)g(w)

√
1− 〈nK(w), u(x)〉2

−1

Hd−2(dw)

=
〈x, u(x)〉
Hd−1(x)1/2

∫

∂K∩H(t〈x,u(x)〉)
̺(w)g(w)

√
1 + (

√
2t〈x, u(x)〉 + o(

√
t))2

√
2t〈x, u(x)〉+ o(

√
t)

Hd−2(dw).

Clearly, we have̺ (w) → ̺(x) = ̺(x) andg(w) → 1, as t → 0+, uniformly with respect tow ∈
∂K ∩H(t〈x, u(x)〉). Moreover, since

Γ :=

{
x+ z − 1

2
‖z‖2u(x) : z ∈ u(x)⊥

}

is the osculating paraboloid ofK andΓ has rotational symmetry, we obtain fors = s(t) that

lim
t→0+

t−
d−3
2 · ∂ s

∂ t
(t) =

̺(x)〈x, u(x)〉
Hd−1(x)1/2

lim
t→0+

(
t−

d−3
2 (d− 1)αd−1

√
2t〈x, u(x)〉d−2

√
2t〈x, u(x)〉

)

= (d− 1)αd−1Hd−1(x)
− 1

2 ̺(x) (2〈x, u(x)〉)
d−3
2 〈x, u(x)〉

= (d− 1)αd−1̺(x)2
d−3
2 〈x, u(x)〉 d−1

2 Hd−1(x)
− 1

2 .

Thus we have shown that

(3.3) lim
t→0+

t−
d−3
2 · ∂ s

∂ t
(t) = (d− 1) · ̺(x)2 d−3

2 〈x, u(x)〉 d−1
2 Hd−1(x)

− 1
2αd−1.
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In the same way, we also obtain

(3.4) lim
t→0+

t−
d−1
2 · s(t) = ̺(x)2

d−1
2 〈x, u(x)〉 d−1

2 Hd−1(x)
− 1

2αd−1.

Observe that (3.3) and (3.4) are valid also ford = 2. In particular, (3.3) and (3.4) imply thatJ̺(y, L) can
be rewritten as (cf. (2.13))

(3.5) J̺(y, L) = (d− 1)−1G(x)2 lim
n→∞

∫ g(y,n)

0

n
2

d−1P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds,

where
G(x) := (αd−1)

−1
d−1 ̺(x)

−1
d−1Hd−1(x)

1
2(d−1)

and
lim
n→∞

n
1
2 g(y, n) = αd−1̺(x)(2〈u(x), x〉)

d−1
2 Hd−1(x)

− 1
2 .

Now we show that in the domain of integrationg(y, n) can be replaced byn−1/2, that is

(3.6) J̺(y, L) = (d− 1)−1G(x)2 lim
n→∞

∫ n−1/2

0

n
2

d−1P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds.

It follows from Lemma 2.1 and (3.4) that there exist constantsc0 > 0 andc2 > c1 > 0 depending ony,K,
L, ̺ such that ifs > 0 is small enough, then

P̺ (ỹs 6∈ Kn|L) ≪ (1 − c0s)
n,

and ifn is large ands is betweeng(n, y) andn−1/2, thenc1n−1/2 < s < c2n
−1/2. In particular,

lim
n→∞

∫ c2n
−1/2

c1n−1/2

n
2

d−1P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds

≪ lim
n→∞

n
2

d−1

∫ c2n
−1/2

c1n−1/2

e−c0nss−
d−3
d−1 ds

≤ lim
n→∞

c2n
2

d−1− 1
2 e−c1c0n

1
2 c

−d−3
d−1

1 n
d−3

2(d−1) = 0,

and hence (3.5) yields (3.6).
Let π : Rd → u(x)⊥ denote the orthogonal projection tou(x)⊥. Using (2.5), (2.3) and (3.4), we obtain

lim
s→0+

s
−1
d−1 ‖π(x− x̃s)‖ = 0,(3.7)

lim
s→0+

s
−2
d−1 〈u(x), x − x̃s〉 =

1

2
G(x)2.

LetQ denote the second fundamental form of∂K atx (cf. (1.1)), considered as a function onu(x)⊥. Then
there are an orthonormal basisv1, . . . , vd−1 of u(x)⊥ and positive numbersk1, . . . , kd−1 > 0 such that

Q

(
d−1∑

i=1

zivi

)
=

d−1∑

i=1

kiz
2
i .

Further, letπ be the orthogonal projection tou(x)⊥, and define

E := {z ∈ u(x)⊥ : Q(z) ≤ 1},
which is the Dupin indicatrix ofK atx, whose half axes areki(x)−1/2, i = 1, . . . , d− 1. In addition, let
Γ be the convex hull of the osculating paraboloid ofK atx ∈ ∂K, that is

Γ = {x+ z − tu(x) : z ∈ u(x)⊥, t ≥ 1
2 Q(z)}.

Hence, we have
Γ ∩H(x, t) = x∗t +

√
2t〈x, u(x)〉E,

and there exists an increasing functionµ̃(s) with lims→0+ µ̃(s) = 1 such that

(3.8) x̃∗s + µ̃(s)−1G(x) · s 1
d−1E ⊂ K ∩ H̃(x, s) ⊂ x̃∗s + µ̃(s)G(x) · s 1

d−1E,
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wherex̃∗s := x∗t ∈ (x−R+u(x))∩H̃(x, s), ands andt are related by equation (3.1). From (3.7) it follows
that also

(3.9) x̃s + µ̃(s)−1G(x) · s 1
d−1E ⊂ K ∩ H̃(x, s) ⊂ x̃s + µ̃(s)G(x) · s 1

d−1E,

The rest of the proof is devoted to identifying the asymptotic behavior of the integral (3.6). First,
we adjust the domain of integration and the integrand in a suitable way. In a second step, the resulting
expression is compared to the case whereK is the unit ball. We recall thatx1, . . . , xn are random points
in ∂K, and we putΞn := {x1, . . . , xn}, henceKn = [Ξn]. For a finite setX ⊂ R

d, let #X denote the
cardinality ofX .

Lemma 3.1. For ε ∈ (0, 1), there existα, β > 1 and an integerk > d, depending only onε andd, with the
following property. IfL ∈ Ld

j , y ∈ ∂(K|L), x ∈ ∂K is a normal boundary point ofK such thaty = x|L
andHd−1(x) > 0, and ifn > n0, wheren0 depends onε, x,K, ̺, L, then

∫ n−1/2

0

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

ϕ(K,L, y, ̺, ε, s)s−
d−3
d−1 ds+O

(
ε

n
2

d−1

)
,

where

ϕ(K,L, y, ̺, ε, s) = P̺

((
ỹs 6∈ ([C̃(x, βs) ∩ Ξn]|L)

)
and

(
#(C̃(x, βs) ∩ Ξn) ≤ k

))
.

Proof. Let ε ∈ (0, 1) be given. Thenα > 1 is chosen such that

(3.10) 2d−1+ 2d
d−1

∫ ∞

2−dα

e−rr
2

d−1−1 dr < ε.

Further, we chooseβ ≥ (162(d− 1))d−1 such that

(3.11) 2d−1e−2−3d+2√β·ε
d−1
2 < ε · α −2

d−1 ,

and then we fix an integerk > d such that

(3.12)
(αβ)k

k!
<

ε

α
2

d−1

.

Lemma 3.1 follows from the following three statements, which we will prove assuming thatn is sufficiently
large.

(i)
∫ n−1/2

0

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds+O

(
ε

n
2

d−1

)
.

(ii) If ε(d−1)/2/n < s < α/n, then

P̺

(
#
(
C̃(x, βs) ∩ Ξn

)
≥ k

)
≤ ε

α
2

d−1

.

(iii) If ε(d−1)/2/n < s < α/n, then

P̺ (ỹs 6∈ Kn|L) = P̺

(
ỹs 6∈

[
(C̃(x, βs) ∩ Ξn)|L

])
+O

(
ε

α
2

d−1

)
.

Before proving (i), (ii) and (iii), we note that they imply
∫ n−1/2

0

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

ϕ(K,L, y, ̺, ε, s)s−
d−3
d−1 ds+

+O

(
ε

α
2

d−1

)∫ α
n

ε(d−1)/2

n

s−
d−3
d−1 ds+O

(
ε

n
2

d−1

)
,

which in turn yields Lemma 3.1.
First, we introduce some notation. As before, letQ be the second fundamental form atx ∈ ∂K, and

let v1, . . . , vd−1 be an orthonormal basis ofu(x)⊥ representing the principal directions. In addition, let
Θ′

1, . . . ,Θ
′
2d−1 be the corresponding coordinate corners, and fori = 1, . . . , 2d−1 ands ∈ (0, n−1/2), let

Θ̃i,s = C̃(x, s) ∩ (x̃s + [Θ′
i,R+x]) .
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Subsequently, we show that

(3.13) lim
s→0+

s−1

∫

Θ̃i,s∩∂K

̺(z)Hd−1(dz) = 2−(d−1).

In fact, since a ball rolls freely insideK, ̺ is continuous and positive atx, and by (3.7) we deduce that

lim
s→0+

s−1

∫

Θ̃i,s∩∂K

̺(z)Hd−1(dz)

= ̺(x) lim
s→0+

s−1Hd−1
(
Θ̃i,s ∩ ∂K

)

= ̺(x) lim
s→0+

s−1Hd−1
(
∂K ∩ C̃(x, s) ∩ (x̃∗s + [Θ′

i,R+u(x)])
)
.

Let Ψ : ∂Γ ∩ C(x, r/R) → ∂K ∩ C(x, r/R) be the diffeomorphism which assigns to a pointz ∈
∂Γ∩ H̃(x, s) the unique pointΨ(z) ∈ ∂K ∩ (x̃∗s + R+(z − x̃∗s)). It follows from (3.8) that there exists an
increasing functionµ : R+ → R+ with lims→0+ µ(s) = 1 such that

µ(s)−1 ≤ Lip(ψ|(∂Γ ∩ C̃(x, s))) ≤ µ(s).

Thus we get

lim
s→0+

s−1Hd−1
(
∂K ∩ C̃(x, s) ∩ (x̃∗s + [Θ′

i,R+u(x)])
)

= lim
s→0+

s−1Hd−1
(
Ψ
(
∂Γ ∩ C̃(x, s) ∩ (x̃∗s + [Θ′

i,R+u(x)])
))

= lim
s→0+

s−1Hd−1
(
∂Γ ∩ C̃(x, s) ∩ (x̃∗s + [Θ′

i,R+u(x)])
)

= 2−(d−1) lim
s→0+

s−1Hd−1
(
∂Γ ∩ C̃(x, s)

)
.

Now we can repeat the preceding argument in reverse order andfinally use (3.1) to arrive at the assertion
(3.13).

To prove (i), we observe that

∫ ε(d−1)/2

n

0

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds ≤

∫ ε(d−1)/2

n

0

s−
d−3
d−1 ds≪ ε

n
2

d−1

.

Letα/n < s < n−1/2, and letn be sufficiently large. First, (2.6) yields that

P̺ (o 6∈ Kn, ỹs 6∈ Kn|L) ≤ εn− 2
d−1 .

On the other hand, ifo ∈ Kn, thenỹs 6∈ Kn|L implies thatΘ̃i,s ∩Kn = ∅ for somei ∈ {1, . . . , 2d−1},
and hence (3.13) yields

(3.14) P̺ (o ∈ Kn, ỹs 6∈ Kn|L) ≤ 2d−1(1− 2−ds)n < 2d−1e−2−dns.

Therefore, by (3.10) we get
∫ n−1/2

α/n

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds ≪ 2d−1

∫ ∞

α/n

e−2−dnss
2

d−1−1 ds+
ε

n
2

d−1

=
2d−1+ 2d

d−1

n
2

d−1

∫ ∞

2−dα

e−rr
2

d−1−1 dr +
ε

n
2

d−1

≤ 2ε

n
2

d−1

,

which verifies (i).
Next (ii) simply follows from (3.1) and (3.12). In fact, if0 < s < α/n, then

P̺

(
#
(
C̃(x, βs) ∩ Ξn

)
≥ k

)
≤
(
n

k

)
(βs)k ≤

(
n

k

)(
αβ

n

)k

<
(αβ)k

k!
≤ ε

α
2

d−1

.
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Finally, we prove (iii). To this end, ifε(d−1)/2/n < s < α/n andi ∈ {1, . . . , 2d−1}, then we define
wi ∈ Θ′

i by

(3.15) wi :=
(√

βs
) 1

d−1
d−1∑

m=1

ηmG(x)

4
√
(d− 1)km(x)

vm,

whereηm = ηim ∈ {−1, 1} form = 1, . . . , 2d−1. Now let

Ω̃i,s := ∂K ∩ [x̃s +Θ′
i, x̃

√
β s + wi +Θ′

i].

We claim that for largen, if ỹs ∈ Kn|L but ỹs 6∈
[
(C̃(x, βs) ∩ Ξn)|L

]
, then there existsi ∈ {1, . . . , 2d−1}

such that

(3.16) Ξn ∩ Ω̃i,s = ∅.
Moreover, for alli = 1, . . . , 2d−1, we have

(3.17)
∫

Ω̃i,s

̺(z)Hd−1(dz) ≥ 2−3d+2
√
βs.

To justify (3.17), leti ∈ {1, . . . , 2d−1} be fixed. It follows from the definition ofwi that

wi ∈
(√

βs
) 1

d−1 G(x)

4
· ∂E.

Recall thatπ : Rd → u(x)⊥ denotes the orthogonal projection tou(x)⊥. If n is large enough, and hence
0 < s < α/n is sufficiently small, then (3.7), (3.9) and (3.15) yield that wi ∈ π(Ω̃i,s), since by assumption√
β
1/(d−1)

/4 > 2, and therefore

(wi +Θ′
i) ∩

(
wi +

(√
βs
) 1

d−1 G(x)

4
· E
)

⊂ π(Ω̃i,s).

In particular, (3.17) now follows from
∫

Ω̃i,s

̺(z)Hd−1(dz) ≥ ̺(x)

2
· Hd−1(Ω̃i,s)

≥ ̺(x)

2
· Hd−1(π(Ω̃i,s))

≥ ̺(x)

2
· 1

2d−1

√
βs
G(x)d−1

4d−1
αd−1Hd−1(x)

−1/2

= 2−d41−d
√
βs.

Next we verify (3.16). We assume thatỹs ∈ Kn|L but ỹs 6∈
[
(C̃(x, βs) ∩ Ξn)|L

]
. Then there exista ∈

[
(C̃(x, βs) ∩ Ξn)|L

]
andb ∈

(
Kn \ C̃(x, βs)

)
|L such that̃ys ∈ (a, b). Thus there exists a hyperplane

H in R
d containingỹs+L⊥ and bounding the halfspacesH+ andH− such thatC̃(x, βs)∩Ξn ⊂ int(H+)

andb ∈ int(H−). In addition, there existsi ∈ {1, . . . , 2d−1} such that

(3.18) x̃s +Θ′
i ⊂ H−.

Now we define pointsq andq′ by

{q} = [ỹs, b] ∩ H̃(x,
√
βs), {q′} = [ỹs, b] ∩ H̃(x, βs).

Relation (3.8) implies that
H̃(x, βs) ∩K ⊂ x̃∗βs + 2G(x)(βs)

1
d−1E

if s > 0 is sufficiently small. Arguing as in [4], we obtain that

〈u(x), ỹs − ỹβs〉 <
β1/(d−1)

β1/(d−1) − 1
〈u(x), ỹ√βs − ỹβs〉

and
‖q − ỹ√βs‖
‖q′ − ỹβs‖

=
〈u(x), ỹs − ỹ√βs〉
〈u(x), ỹs − ỹβs〉

,
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which yields (cf. [4])
q ∈ ỹ√βs + 2s

1
d−1G(x)E.

Sinceβ ≥ [82(d− 1)]d−1, we thus arrive at

(3.19) q ∈ ỹ√βs +
1

4
√
d− 1

(
√
βs)

1
d−1G(x)E.

Now (3.18) implies thatq+Θ′
i ⊂ H−. Hence it follows from (3.19) that̃y√βs +wi ⊂ q+Θ′

i ⊂ H−, and

therefore alsõy√βs + wi +Θ′
i ⊂ H−. ThusΩ̃i,s ⊂ H−, which yieldsΞn ∩ Ω̃i,s = ∅.

Assertion (iii) follows from (3.16) and (3.17). In fact, ifε(d−1)/2/n < s < α/n, then

P̺

(
ỹs 6∈

[
(C̃(y, βs) ∩ Ξn)|L

])
− P̺ (ỹs 6∈ (Kn|L))

≤
2d−1∑

i=1

(
1−

∫

Ω̃i,s

̺(z)Hd−1(dz)

)n

≤ 2d−1e−2−3d+2√β·sn

≤ ε α− 2
d+1 ,

by the choice ofβ. �

To actually compare the situation near the normal boundary pointx ofK with Hd−1(x) > 0 to the case
of the unit ball, letσ = (dαd)

−1 be the constant density of the corresponding probability distribution on
Sd−1. Letw ∈ Sd−1 be thed-th coordinate vector inRd, and henceRd−1 = w⊥. We writeBn to denote
the convex hull ofn random points distributed uniformly and independently onSd−1 according toσ. For
s ∈ (0, 12 ), we fix a linear subspaceL0 ∈ Ld

j with w ∈ L0, and letw̃s be of the formλw for λ ∈ (0, 1)
such that

(dαd)
−1 · Hd−1({z ∈ Sd−1 : 〈z, w〉 ≥ 〈w̃s, w〉}) = s.

In particular,w̃s|L0 = w̃s.

Lemma 3.2. If L ∈ Ld
j , y ∈ ∂(K|L) andx ∈ ∂K is a normal boundary point such thaty = x|L and

Hd−1(x) > 0, then

lim
n→∞

∫ n−1/2

0

n
2

d−1P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds = lim

n→∞

∫ n−1/2

0

n
2

d−1Pσ (w̃s 6∈ Bn|L0) s
− d−3

d−1 ds.

Proof. First, we assumed ≥ 3. It is sufficient to prove that for anyε ∈ (0, 1) there existsn0 > 0,
depending onε, x,K, ̺, L, such that ifn > n0, then

(3.20)
∫ n−1/2

0

P̺ (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ n−1/2

0

Pσ (w̃s 6∈ Bn|L0) s
− d−3

d−1 ds+O

(
ε

n
2

d−1

)
.

Let α, β andk be the quantities associated withε, x,K, ̺, L in Lemma 3.1, letC̃(x, s) denote the cap of
K defined in (3.2), and let̃C(w, s) denote the corresponding cap ofBd atw. We define the densities̺s on
∂C̃(x, βs) andσs on∂C̃(w, βs) of probability distributions by

̺s(z) =

{
̺(z)/(βs), if z ∈ ∂K ∩ C̃(x, βs),

0, if z ∈ ∂C̃(x, βs)\∂K,

σs(z) =

{
σ(z)/(βs), if z ∈ Sd−1 ∩ C̃(w, βs),

0, if z ∈ ∂C̃(w, βs)\Sd−1.

For i = 0, . . . , k, we write C̃(x, βs)i andC̃(w, βs)i to denote the convex hulls ofi random points dis-
tributed uniformly and independently on∂C̃(x, βs) and∂C̃(w, βs) according to̺ s andσs, respectively.

If n is large, then Lemma 3.1 yields that the left-hand and the right-hand side of (3.20) are

O

(
ε

n
2

d−1

)
+

k∑

i=0

(
n

i

)∫ α
n

ε(d−1)/2

n

(βs)i(1− βs)n−i × P̺s

(
ỹs 6∈ C̃(x, βs)i|L

)
s−

d−3
d−1 ds,
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O

(
ε

n
2

d−1

)
+

k∑

i=0

(
n

i

)∫ α
n

ε(d−1)/2

n

(βs)i(1 − βs)n−i × Pσs

(
w̃s 6∈ C̃(w, βs)i|L0

)
s−

d−3
d−1 ds.

For eachi ≤ k, the representation of the beta function by the gamma function and the Stirling formula (see
E. Artin [1]) imply

(3.21) lim
n→∞

n
2

d−1

(
n

i

)∫ 1/β

0

(βs)i(1− βs)n−is−
d−3
d−1 ds =

β
−2
d−1Γ

(
i+ 2

d−1

)

i!
< 1.

Therefore to prove (3.20), it is sufficient to verify that foreachi = 0, . . . , k, if s > 0 is small, then

(3.22)
∣∣∣P̺s

(
ỹs 6∈ C̃(x, βs)i|L

)
− Pσs

(
w̃s 6∈ C̃(w, βs)i|L0

)∣∣∣≪ ε

k
.

If i ≤ j, then (3.22) readily holds as its left-hand side is zero.
To prove (3.22) ifi ∈ {j + 1, . . . , k}, we transform bothK andBd in such a way that their osculat-

ing paraboloid isΩ = {z − ‖z‖2w : z ∈ R
d−1}, and the images of the caps̃C(x, βs) andC̃(w, βs)

are very close. Using these caps, we construct equivalent representations ofP̺s

(
ỹs 6∈ C̃(x, βs)i|L

)
and

Pσs

(
w̃s 6∈ C̃(w, βs)i|L0

)
, based on the same spaceΞs and on comparable probability measures and ran-

dom variables.
We may assume thatu(x) = w. Let v1, . . . , vd−1 be an orthonormal basis ofw⊥ in the principal

directions of the fundamental formQ of K atx ∈ ∂K. We define the linear transformAs of Rd by

As(w) = 2(βs)
−2
d−1G(x)−2w,

As(vi) = (βs)
−1
d−1

√
ki(x)G(x)

−1vi, i = 1, . . . , d− 1,

and choose an orthonormal linear transformPs such thatPsw = w, andPs ◦ As(L
⊥) = L⊥

0 . Based on
these linear transforms, letΦs be the affine transformation

Φs(z) = Ps ◦As(z − x).

In addition, we define the linear transformRs of Rd by

Rs(w) = 2(βs)
−2
d−1

(
αd−1

dαd

) 2
d−1

w,

Rs(vi) = (βs)
−1
d−1

(
αd−1

dαd

) 1
d−1

vi, i = 1, . . . , d− 1,

and letΨs be the affine transformation

Ψs(z) = Rs(z − x).

Subsequently, we also writeΦsz for Φs(z) orΦsz|L0 for Φs(z)|L0, and similarly forΨs. We observe that
Ω is the osculating paraboloid of bothΦsK andΨsB

d ato, and

lim
s→0+

Φsx̃s = lim
s→0+

Ψsw̃s = −β −2
d−1w =: w∗,

lim
s→0+

ΦsC̃(x, βs) = lim
s→0+

ΨsC̃(w, βs) = {z − τ w : z ∈ Bd−1 and‖z‖2 ≤ τ ≤ 1}.

For p ∈ C̃(x, βs) ∩ ∂K andz = π ◦ Φs(p), letD(p) be the Jacobian ofπ ◦ Φs at p as a mapπ ◦ Φs :

C̃(x, βs) ∩ ∂K → R
d−1, and let

˜̺s(z) = ̺s(p) ·D(p)−1.

In addition, forp ∈ C̃(w, βs) ∩ Sd−1 andz = π ◦Ψs(p), let D̃(p) be the Jacobian ofπ ◦Ψs atp as a map
π ◦Ψs : C̃(w, βs) ∩ Sd−1 → R

d−1, and let

σ̃s(z) = σs(p) · D̃(p)−1.

We define
Ξs =

[
π ◦ ΦsC̃(x, βs)

]
∪
[
π ◦ΨsC̃(w, βs)

]
,
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and extend̺̃ s andσ̃s toΞs by

˜̺s(z) = 0, if z ∈
[
π ◦ΨsC̃(w, βs)

]
\
[
π ◦ ΦsC̃(x, βs)

]
,

σ̃s(z) = 0, if
[
π ◦ ΦsC̃(x, βs)

]
\
[
π ◦ΨsC̃(w, βs)

]
.

Therefore˜̺s andσ̃s are densities of probability distributions onΞs. For z ∈ Ξs, let ϕs(z) ∈ Φs∂K and
ψs(z) ∈ ΨsS

d−1 be the points nearz whose orthogonal projection intoRd−1 is z. For random variables
z1, . . . , zi ∈ Ξs either with respect tõ̺s or σ̃s, the quantities above were defined so as to satisfy

P̺s

(
ỹs 6∈ C̃(x, βs)i|L

)
= P ˜̺s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0) ,(3.23)

Pσs

(
w̃s 6∈ C̃(w, βs)i|L

)
= Pσ̃s (Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0) .(3.24)

Now there exists an increasing functions 7→ µ∗(s) with lims→0+ µ
∗(s) = 1 such that

µ∗(s)−1Bd−1 ⊂
[
π ◦ ΦsC̃(x, βs)

]
∩
[
π ◦ΨsC̃(w, βs)

]
⊂ Ξs ⊂ µ∗(s)Bd−1,

we haveµ∗(s)−1ϕs(z) ≤ ψs(z) ≤ µ∗(s)ϕs(z) for all z ∈ Ξs, and

µ∗(s)−1α−1
d−1 ≤ ˜̺s(z) ≤ µ∗(s)α−1

d−1, if z ∈ π ◦ ΦsC̃(x, βs),

µ∗(s)−1α−1
d−1 ≤ σ̃s(z) ≤ µ∗(s)α−1

d−1, if z ∈ π ◦ΨsC̃(w, βs).

Therefore

(3.25) lim
s→0+

∫

Ξs

| ˜̺s(z)− σ̃s(z)| Hd−1(dz) = 0.

From (3.25) we deduce that ifs > 0 is small, then

|P ˜̺s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 andΨsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0)−(3.26)

Pσ̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 andΨsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0)| ≤ ε

k
.

Next, if s > 0 is small, then

‖w∗ − Φsx̃s‖ ≤ ε

kj+1
and ‖w∗ −Ψsw̃s‖ ≤ ε

kj+1
,

and in addition
‖ϕs(z)− ψs(z)‖ ≤ ε

kj+1
for all z ∈ Ξs.

Let us assume thatΦsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 but Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0 for some
z1, . . . , zi ∈ Ξs. In this case, the pointa of [ϕs(z1), . . . , ϕs(zi)]|L0 closest toΦsx̃s|L0 is contained in
some(j − 1)-simplex [ϕs(zm1), . . . , ϕs(zmj )]|L0, i.e. there areλ1, . . . , λj ≥ 0, λ1 + . . . + λj = 1,

such thata =
∑j

r=1 λrϕ(zmr )|L0. Moreover, there areµ1, . . . , µi ≥ 0, µ1 + . . . + µi = 1, so that
Ψsw̃s =

∑i
r=1 µrψs(zr)|L0. Then we have

‖Φsx̃s|L0 − a‖ ≤
∥∥∥∥∥Φsx̃s|L0 −

i∑

r=1

µrϕs(zr)|L0

∥∥∥∥∥

≤ ‖Φsx̃s|L0 − w∗‖+ ‖w∗ −Ψsw̃s‖+
∥∥∥∥∥

i∑

r=1

µr(ψs(zr)− ϕs(zr))|L0

∥∥∥∥∥

≤ ε

kj+1
+

ε

kj+1
+

ε

kj+1
=

3ε

kj+1
,

and hence

‖w∗ − a‖ ≤ 4ǫ

kj+1
.

Choose a maximal setv1, . . . , vl ∈ Sd−1 ∩ L0 such that the distance between any two points is at least
εk−(j+1), in particular

l ≪ ε−(j−1)k(j−1)(j+1).
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Sincea, ϕs(zm1)|L0, . . . , ϕs(zmj )|L0 lie in a (j − 1)-dimensional affine subspace ofL0, there is a unit
vectorv ∈ Sd−1 ∩ L0 such that|〈ϕs(zmr )− w∗, v〉| ≤ 4εk−(j+1) for r = 1, . . . , j, and thus

|〈ϕs(zmr)− w∗, vm〉| ≤ 6ε

kj+1

for r = 1, . . . , j and a suitably chosenm ∈ {1, . . . , l}. In fact, for the given vectorv ∈ Sd−1 ∩ L0, there
is somem ∈ {1, . . . , l} such that‖v − vm‖ ≤ εk−(j+1). SinceΦsC̃(x, βs) ⊂ w∗ + 2Bd, we deduce that

|〈ϕs(zmr)− w∗, vm〉| ≤ |〈ϕs(zmr)− w∗, v〉|+ ‖ϕs(zmr )− w∗‖ · ‖vm − v‖

≤ 4ǫ

kj+1
+ 2 · ǫ

kj+1
=

6ǫ

kj+1
.

Therefore, if we define, form = 1, . . . , l,

Πm :=
{
p ∈ ∂ΦsC̃(x, βs) : |〈p− w∗, vm〉| ≤ 6εk−(j+1)

}
,

we get the following: ifΦsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 but Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0 for
somez1, . . . , zi ∈ Ξs, then there existsm ∈ {1, . . . , l} such thatΠm contains somej of the points
ϕs(z1), . . . , ϕs(zi). SinceHd−1(Πm) ≪ εk−(j+1), we have

P ˜̺s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 andΨsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0)

≤
(
i

j

) l∑

m=1

P ˜̺s (ϕs(z1), . . . , ϕs(zj) ∈ Πm)

≪
(
i

j

)
· l · (εk−(j+1))j ≪ ε

k
.(3.27)

Similarly, we have

(3.28) Pσ̃s (Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0 andΦsx̃s|L0 ∈ [ϕs(z1), . . . , ϕs(zi)]|L0) ≪
ε

k
.

Combining (3.23), (3.24) as well as (3.26), (3.27) and (3.28) yields (3.22), and in turn Lemma 3.2 ifd ≥ 3.
If d = 2, then a similar argument works, only some of the constrains should be modified as follows. In

(3.21), we only haveβ
−2
d−1Γ

(
i+ 2

d−1

)
/i! < k + 1, and hence in (3.22), we should verify an upper bound

of order ε
k2 , not of orderεk . Therefore the upper bound in (3.26) should beε

k2 . �

4. COMPLETING THE PROOF OFTHEOREM 1.2

In order to transfer an integral over an average of projections of a convex body to a boundary integral,
we are going to use the following lemma from K. Böröczky Jr., L. M. Hoffmann, D. Hug [3].

ForL ∈ Ld
j andy ∈ ∂(K|L), we choose a pointx(y) ∈ ∂K such thaty = x(y)|L. In general,x(y) is

not uniquely determined, but we can fix a measurable choice (cf. [3, p. 152]). Recall, however, thatx(y) is
uniquely determined forνj a.e.L ∈ Ld

j andHj−1 a.e.y ∈ ∂(K|L).

Lemma 4.1. LetK ⊂ R
d be a convex body in which a ball rolls freely, letf : ∂K → [0,∞) be nonnegative

and measurable, and letj ∈ {1, . . . , d− 1}. Then

jαj

dαd

∫

∂K

f(x)Hd−j(x)Hd−1(dx) =

∫

Ld
j

∫

∂(K|L)

f(x(y))Hj−1(dy) νj(dL).

By the very special caseK = Bd of (1.2), due to M. Reitzner [16], we have

lim
n→∞

n
2

d−1

[
Vj(B

d)− EσVj(Bn)
]
= c(j,d)(dαd)

d+1
d−1 .

Therefore the rotational symmetry ofBd, (2.12) and (3.6) yield

c(j,d)(dαd)
d+1
d−1 =

(
d
j

)
αd

αd−jαj
· jαj(dαd)

2
d−1

d− 1
(αd−1)

− 2
d−1

× lim
n→∞

∫ n−1/2

0

n
2

d−1Pσ (w̃s 6∈ Bn|L0) s
− d−3

d−1 ds.(4.1)
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We can now transform the asymptotic formulas toK. Let L ∈ Ld
j and lety ∈ ∂(K|L) be such that

y = x|L for some normal boundary pointx = x(y) ∈ ∂K. If Hd−1(x) = 0, thenJ̺(y, L) = 0 by
Lemma 2.4. IfHd−1(x) > 0, then it follows from (3.6), Lemma 3.2 and (4.1) that

J̺(y, L) = (d− 1)−1(αd−1)
− 2

d−1 ̺(x)
−2
d−1Hd−1(x)

1
d−1

× lim
n→∞

∫ n−1/2

0

n
2

d−1Pσ (w̃s 6∈ Bn|L0) s
− d−3

d−1 ds

= c(j,d)̺(x)
−2
d−1Hd−1(x)

1
d−1

( (
d
j

)
αd

αd−jαj
· jαj

dαd

)−1

,

wherex = x(y). Finally, we apply first (2.12), and afterwards Lemma 4.1, todeduce

lim
n→∞

n
2

d−1 [Vj(K)− E̺(Vj(Kn))]

= c(j,d)
dαd

jαj

∫

Ld
j

∫

∂(K|L)

̺(x(y))
−2
d−1Hd−1(x(y))

1
d−1 Hj−1(dy) νj(dL)

= c(j,d)
∫

∂K

̺(x)
−2
d−1Hd−1(x)

1
d−1 Hd−j(x)Hd−1(dx),

which concludes the proof of Theorem 1.2.

5. PROOF OFTHEOREM 1.3

Using the Stirling formulaΓ(n + 1) ∼ (ne )
n
√
2πn, asn → ∞ (see E. Artin [1]), for anyα > 0 and

γ ∈ (0, 1], we deduce

lim
n→∞

nα

∫ γ

0

sα−1(1− s)n ds = lim
n→∞

nα

∫ 1

0

sα−1(1− s)n ds

= lim
n→∞

nαΓ(α)Γ(n+ 1)

Γ(n+ 1 + α)
= Γ(α).(5.1)

In the following argument,γ1, γ2, . . . again denote positive constants that may depend onK and̺. We
can assume thato ∈ int(K). Further, let(∂K)n∗ denote the set of allx1, . . . , xn ∈ ∂K such thato ∈
[x1, . . . , xn]. Foru ∈ Sd−1 andt ≥ 0, let

C(u, t) := {x ∈ K : 〈x, u〉 ≥ hK(u)− t},
wherehK denotes the support function ofK. To deduce the upper bound, we start with the estimates

E̺(V1(K)− V1(Kn))

=
1

αd−1

∫

(∂K)n

∫

Sd−1

(hK(u)− hKn(u))Hd−1(du)̺(x1) · · · ̺(xn)Hd−1(dx1) . . .Hd−1(dxn)

≤ 1

αd−1

∫

(∂K)n
∗

∫

Sd−1

(hK(u)− hKn(u))Hd−1(du)̺(x1) · · · ̺(xn)Hd−1(dx1) . . .Hd−1(dxn)

+ 2d(1 − γ1)
n

≤ 1

αd−1

∫

Sd−1

∫ hK(u)

0

∫

(∂K)n
1{x1, . . . , xn ∈ ∂K \ C(u, s)}̺(x1) · · · ̺(xn)

Hd−1(dx1) . . .Hd−1(dxn) dsHd−1(du) + 2d(1− γ1)
n

≤ 1

αd−1

∫

Sd−1

∫ hK(u)

0

(
1−

∫

∂K∩C(u,t)

̺(x)Hd−1(dx)

)n

dtHd−1(du) + 2d(1− γ1)
n.(5.2)

For suitable positive constantsγ2, γ3, γ4 we get, foru ∈ Sd−1 andt ∈ (0, γ2),

(5.3)
∫

∂K∩C(u,t)

̺(x)Hd−1(dx)

{
> γ3t

d−1, if t ∈ (0, γ2),

> γ4, if t ≥ γ2.



INTRINSIC VOLUMES OF RANDOM POLYTOPES 19

In particular,γ4, γ3(γ2)d−1 ∈ (0, 1). We deduce from (5.2), (5.3) and (5.1) that, for suitableγ5, . . . , γ9
with γ7, γ9 ∈ (0, 1),

E̺(V1(K)− V1(Kn)) ≤ γ5

∫ γ2

0

(1− γ3t
d−1)n dt+ γ6γ

n
7

= γ8

∫ γ9

0

s
1

d−1−1 · (1− s)n ds+ γ6γ
n
7 ≤ γ10n

−1
d−1 .

To prove the lower bound forE̺(V1(K)− V1(Kn)), we need the following observation.

Lemma 5.1. LetK ⊂ R
d be a convex body, and lethK be twice differentiable atu0 ∈ Sd−1. Then there

is someR > 0 such thatK ⊂ x0 − Ru0 + RBd, wherex0 = ∇hK(u0) ∈ ∂K. In particular, there exist
a measurable setΣ ⊂ Sd−1 with Hd−1(Σ) > 0 and someR > 0, all depending onK, such that for any
u ∈ Σ there is somex ∈ ∂Ksuch thatK ⊂ x−Ru+RBd.

Proof. For the proof of the first assertion, we may assume thatx0 = o, hence alsohK(u0) = 0. We put
h := hK . By assumption, there is a functionR : R+ → [0,∞) with limt→0+ R(t) = 0 and

∣∣∣∣h(u)−
1

2
· d2h(u− u0, u− u0)

∣∣∣∣ ≤ R(‖u− u0‖)‖u− u0‖2.

Thus there is a constantR1 > 0 and δ > 0 such thath(u) ≤ R1‖u − u0‖2 for all u ∈ Sd−1 with
〈u, u0〉 ≥ 1 − δ. But then forR2 := max{2R1,max{h(u) : u ∈ Sd−1}/(2δ)} and allu ∈ Sd−1, we
obtain

h(u) ≤ R2 (1− 〈u0, u〉) = h(−R2u0 +R2B
d, u),

that isK ⊂ −R2u0 +R2B
d.

The second assertion follows immediately from the first assertion. �

Let t0 be the inradius ofK. Now Lemma 5.1 yields, foru ∈ Σ andt ∈ (0, t0), that
∫

∂K∩C(u,t)

̺(x)Hd−1(dx) < γ11 · t
d−1
2 .

Choosing a constantγ12 ∈ (0, t0) satisfyingγ11(γ12)
d−1
2 < 1, it follows as in the derivation of (5.2) that,

with a suitable constantγ13 ∈ (0, 1), we have

E̺(V1(K)− V1(Kn)) ≥ 1

αd−1

∫

Σ

∫ γ12

0

(
1− γ11t

d−1
2

)n
dtHd−1(dx)

=

∫ γ13

0

s
2

d−1−1 · (1− s)n ds > γ14 · n
−2
d−1 .

Theorem 1.2 shows that the lower bound of Lemma 1.3 is of optimal order ifK has a rolling ball. In
fact, the assumption of a rolling ball ensures that the integral on the right side of (1.2) is positive. This
follows, for instance, from the absolute continuity of the Gauss curvature measure of a convex body which
has a rolling ball (cf. [12]).

On the other hand, the upper bound forE̺(V1(K)−V1(Kn)) is of optimal order ifK is a polytope. To
explain this, letΣ0 ⊂ Sn−1 be contained in the interior of the exterior normal cone of one of the vertices
of K and such thatHd−1(Σ0) > 0. In this case

∫

∂K∩C(u,t)

̺(x)Hd−1(dx) < γ15 · td−1,

for u ∈ Σ0 andt ∈ (0, γ16), and henceE̺(V1(K)− V1(Kn)) ≥ γ17 · n
−1
d−1 .
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2. I. Bárány, D.G. Larman: Convex bodies, economic cap coverings, random polytopes. Mathematika35 (1988), 274-291.
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Current address: Universitat Politécnica de Catalunya, BarcelonaTech, Spain
E-mail address: carlos@renyi.hu

DEPARTMENT OF GEOMETRY, UNIVERSITY OF SZEGED, ARADI V ÉRTANÚK TERE 1, H-6720 SZEGED, HUNGARY AND
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