
Graph Constraint Evaluation over
Partial Models by Constraint Rewriting

Oszkár Semeráth and Dániel Varró

Budapest University of Technology and Economics
MTA-BME Lendület Research Group on Cyber-Physical Systems

McGill University, Department of Electrical and Computer Engineering
{semerath,varro}@mit.bme.hu

Abstract. In the early stages of model driven development, models are
frequently incomplete and partial. Partial models represent multiple pos-
sible concrete models, and thus, they are able to capture uncertainty
and possible design decisions. When using models of a complex mod-
eling language, several well-formedness constraints need to be continu-
ously checked to highlight conceptual design flaws for the engineers in an
early phase. While well-formedness constraints can be efficiently checked
for (fully specified) concrete models, checking the same constraints over
partial models is more challenging since, for instance, a currently valid
constraint may be violated (or an invalid constraint may be respected)
when refining a partial model into a concrete model.
In this paper we propose a novel technique to evaluate well-formedness
constraints on partial models in order to detect if (i) a concretization
may potentially violate or (ii) any concretization will surely violate a
well-formedness constraint to help engineers gradually to resolve uncer-
tainty without violating well-formedness. For that purpose, we map the
problem of constraint evaluation over partial models into a regular graph
pattern matching problem over complete models by semantically equiv-
alent rewrites of graph queries.

1 Introduction

Model-Driven Engineering (MDE) is a widely used technique in many applica-
tion domains such as automotive, avionics or other cyber-physical systems [36].
MDE facilitates the use of models in different phases of design and on various
levels of abstraction. These models enable the automated synthesis of various
design artifacts (such as source code, configuration files, documentation) and
help catch design flaws early by model validation techniques. Model validation
highly depends on repeatedly checking multiple design rules and well-formedness
constraints captured in the form of graph constraints [21,3,17] over large (graph)
models to highlight violating model elements to systems engineers.

During the early phase of development as well as in case of software prod-
uct line engineering, the level of uncertainty represented in the models is still
high, which gradually decreases as more and more design decisions are made.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/85132260?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To support uncertainty during modeling, a rich formalism of partial models has
been proposed in [10] which marks model elements with four special annota-
tions (namely, may, set, variable and open) with well defined semantics. During
the design, these partial models can then be concretized into possible design
candidates [28,30].

However, evaluating well-formedness constraints over partial models is a chal-
lenging task. While existing graph pattern matching techniques provide efficient
support for checking well-formedness constraints over regular model instances
[17,20,34,7], SMT/SAT solvers have been needed so far to evaluate the same
constraints over partial models, which have major scalability problems [30].

Our objective is to evaluate well-formedness constraints over partial models
by graph pattern matching instead of SAT/SMT solving, which poses several
conceptual challenges. First, a single node in a graph constraint may be matched
to zero or more nodes in a concretization of a partial model. Moreover, graph
constraints need to be evaluated over partial models with open world semantics
as new elements may be added to the model during concretization.

In the paper, we propose (i) a new partial modeling formalism based on 3-
valued logic [16], (ii) a mapping of a popular partial modelling technique called
MAVO [10] into 3-valued partial models, and (iii) and novel technique that
rewrites the original graph constraints (to be matched over partial models) into
two graph constraints to be matched on 3-valued partial models. One constraint
will identify matches that must exist in all concretizations of the partial model
while the other constraint will identify matches that may exist. Although the
complexity of the pattern increases by the proposed rewrite, we can still rely
upon efficient existing graph pattern matching techniques for evaluating the
constraints, which is a major practical benefit. As a result, engineers can detect
if concretizations of a partial model will (surely) violate or may (potentially)
violate a well-formedness constraint which helps them gradually to resolve un-
certainty. Our approach is built on top of mainstream modeling technologies:
Partial models are represented in Eclipse Modeling Framework [33] annotated in
accordance with [10], well-formedness constraints are captured as graph queries
[3].

The rest of the paper is structured as follows: Section 2 summarizes core
modeling concepts of partial models and queries in the context of a motivat-
ing example. Section 3 provides an overview on 3-valued partial models with a
graph constraint evaluation technique. Section 4 provides initial scalability eval-
uation of the approach, Section 5 overviews related approaches available in the
literature. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Motivating example: Validation of Partial Yakindu Statecharts

Yakindu Statechart Tools [37] is an industrial integrated development environ-
ment (IDE) for developing reactive, event-driven systems captured by statecharts
using a combined graphical and textual syntax.

Partial Model Example Concretization

Service

change

TODO

drink

Filling

Finish Init
[VAR]

Ready Select

[SET]

TakeDrink

[MAY]

[MAY]

[MAY]

[MAY]

select

filleddrinkTaken

money

money

selectmoney

money

filleddrinkTaken

E3

E4

E2

E1
[SET]

Open
Service

change

GiveBack

Finish

drink

Filling

Finish

Ready Select selectAmoney

noChange

hasChange

money

filled

selectB

selectAmoney

money

filled

selectB

hasChange

noChange

E5

Fig. 1: A partial statechart model and a sample concretization.

A partial model of a coffee machine is illustrated on the left part of Figure 1
together with a sample concrete model on the right. Initially, the machine starts
in state Ready and after inserting coins by money events, a drink can be selected
in state Select. While multiple concrete drink options may be available in the
concrete model (like selectA and selectB), but in the partial model each one
is represented by a generic select event. After the selection, the machine starts
filling coffee, and gives back the change in state Service. The change manage-
ment region is missing in the partial model, while a drink preparation region
already contains some details. As the developer is uncertain about the initial
state in this region, a placeholder state Init is created. In the partial model, it
is undecided if it is required to wait until the previous drink is taken (in state
TakeDrink), or the machine can enter its initial Ready state immediately.

These uncertainties are captured by special annotations introduced in [10]
such as may (elements can be omitted), var (elements that can be merged), set
(representing sets of elements) or open (new elements can be added).

The Yakindu IDE checks several well-formedness rules on the statecharts:

C1 Each region shall have exactly one entry, which has a transition to a state
in the same region.

C2 The target and source states of a synchronization shall be contained in the
same parent state.

Both constraints can be defined (e.g. in OCL [21] or graph constraints [3]) and
checked over complete models, but our paper focuses on detecting (potential and
certain) conceptual errors (marked by E1-4 in Figure 1) in partial models.

E1 marks that an entry state is missing from region change, thus violating
C1. However, as the model is under construction, it can be repaired in a later
stage. The other region (marked by E2) already contains an entry state, thus
the WF constraint is currently satisfied, but it can potentially be violated in a
future refinement by connecting it to a state located in a different region. E3
shows evidence of an invalid synchronization of parallel states Finish and its
parent Service violating C2. This error will be present in all possible concretiza-
tions (or completions) of the partial model, e.g. as E5 in Figure 1. Finally, E4
marks a possible error for synchronizing two target states that are not parallel
(TakeDrink and Ready if all may elements are preserved).

2.2 Metamodels and Instance Models

A domain-specific (modeling) language (DSL) is typically defined by ametamodel
and several well-formedness constraints. A metamodel defines the main concepts
and relations in a domain, and specifies the basic graph structure of the models.
In this paper, domain models are captured by the Eclipse Modeling Framework
(EMF) [33], which is widely used in industrial modeling tools including Yakindu
statecharts.

A metamodel defines a vocabulary Σ = {C1, . . . , Cn, exist , R1, . . . , Rm,∼}
where a unary predicate symbol Ci (1 ≤ i ≤ n) is defined for each EClass,
and a binary predicate symbol Rj (1 ≤ j ≤ m) is derived for each EReference.
Moreover, we define a unary exist predicate to denote the existence of an object
in a given model, while ∼ denotes an equivalence relation over objects. For a
set of unique Id constants, id1, . . . , idk, k ∈ Z+ well-formed terms can be con-
structed as C(idi), exist (idi), R(idi, idj) and idi ∼ idj , where 1 ≤ i, j ≤ k. For
space considerations, we omit the precise handling of attributes from this paper,
which could be introduced accordingly.

An instance model can formally be represented as a logic structure M =
⟨ObjM , IM ⟩ where ObjM is the finite, nonempty set of individuals in the model
(i.e. the objects), and IM provides interpretation for all constants in Id and
predicate symbols in Σ as follows:

– the interpretation of a constant idi (denoted as IM (id) : Id → ObjM) is an
element from ObjM ;

– the 2-valued interpretation of a unary predicate symbol Ci (and similarly
exist) is defined in accordance with the existence of objects in the EMF
model and denoted as IM (Ci) : ObjM → {1, 0};

– the 2-valued interpretation of a binary predicate symbol Rj (and also ∼)
is defined in accordance with the links in the EMF model and denoted as
IM (Rj) : ObjM ×ObjM → {1, 0};

For a notational shortcut, we will use existM (x) instead of IM (exist)(x) and
x ∼M y in place of IM (∼)(x, y) (where x and y could be variables or constants).
For a simple instance model M we assume the following S1-4 properties:

S1 ∀o ∈ ObjM : (o ∼M o) > 0 (reflexive).
S2 ∀o ∈ o1, o2 ∈ ObjM : (o1 ∼M o2) = (o2 ∼M o1) (symmetric)
S3 ∀o1, o2 ∈ ObjM : (o1 ̸= o2) ⇒ (o1 ∼M o2 < 1) (unique objects)
S4 ∀o ∈ ObjM : existM (o) > 0 (model does not contain not existing objects)

Which means that in a simple instance model M , ∼ is the same as =, and for
all objects o existence predicate is always evaluated to true: existM (o) = 1.

2.3 Graph Patterns as Logic Formulae

In many industrial modeling tools, WF constraints are captured either by stan-
dard OCL constraints [21] or alternatively, by graph patterns (GP) [17,20,3],

[[C(v)]]MZ :=IM (C)(Z(v)) [[R(v1, v2)]]
M
Z :=IM (R)(Z(v1), Z(v2))

[[exist(v)]]MZ :=IM (exist)(Z(v)) [[v1 ∼ v2]]
M
Z :=IM (∼)(Z(v1), Z(v2))

[[ϕ1 ∧ ϕ2]]
M
Z :=min([[ϕ1]]

M
Z , [[ϕ2]]

M
Z) [[ϕ1 ∨ ϕ2]]

M
Z :=max ([[ϕ1]]

M
Z , [[ϕ2]]

M
Z)

[[¬ϕ]]MZ :=1− [[ϕ]]MZ
[[∃v : ϕ]]MZ := max{[[exist (x) ∧ ϕ]]MZ,v ↦→x : x ∈ ObjM}
[[∀v : ϕ]]MZ := min{[[¬exist (x) ∨ ϕ]]MZ,v ↦→x : x ∈ ObjM}

Fig. 2: Semantics of graph logic expressions (defined inductively)

which provide an expressive formalism. A graph pattern (or constraint) cap-
tures structural conditions over an instance model as paths in a graph. In order
to have a unified and semantically precise handling of evaluating graph patterns
for regular and partial models, we use a tool-independent logic representation
(which was influenced by [35,25]) that covers the key features of several concrete
graph pattern languages.

Syntax. Syntactically, a graph pattern is a first order predicate ϕ(v1, . . . , vn)
over (object) variables. A graph formula ϕ can be inductively constructed (see
Figure 2) by using class and relation predicates C(v) and R(v1, v2), equivalence
check =, standard first order logic connectives ¬, ∨, ∧, and quantifiers ∃ and ∀.

Semantics. A predicate ϕ(v1, . . . , vn) can be evaluated on model M along a
variable binding Z, which is a mapping Z : {v1, . . . , vn} → ObjM from variables
to objects in M . The truth value of ϕ can be evaluated over model M and Z
(denoted by [[ϕ(v1, . . . , vn)]]

M
Z) in accordance with the semantic rules defined in

Figure 2. Note that min and max takes the numeric minimum and maximum
values of 0 and 1, and the rules follow the construction of standard first order
logic formulae as used in [35,25].

A variable binding Z where the predicate ϕ is evaluated to 1 over M is often
called a pattern match, formally [[ϕ]]

M
Z = 1. Otherwise, if there are no bindings Z

to satisfy a predicate, i.e. [[ϕ]]
M
Z = 0 for all Z, then the predicate ϕ is evaluated

to 0 over M . Graph query engines like [3,5] can retrieve (one or all) matches of a
pattern over a model. When using graph patterns for validating WF constraints,
a match of a pattern usually denotes a violation, thus the corresponding graph
formula needs to capture the erroneous case.

Example. To capture the erroneous case as a pattern match, the WF constraints
C1 and C2 from the Yakindu documentation need to be reformulated as follows:

ϕ1a There is an entry state without an outgoing transition.
ϕ1b There is an entry state with a transition to a vertex in a different region.
ϕ2 The target and source states of a synchronization are contained in different

regions of the same parent state.

Graph patterns and the corresponding logic formulae for ϕ1a and ϕ2 are de-
picted in Figure 3. With a negative condition (marked by NEG) in noOutgoing,

noOutgoing(e) :=
Entry(e) ∧ ¬∃t , trg : from(t , e) ∧ to(t , trg)
synchSameRegion(s) := ∃t1 , t2 , v1 , v2 , r :
Synchronization(s)∧ from(t1 , v1)∧ to(t1 , s)∧
from(t2 , v2) ∧ to(t2 , s) ∧ vertices(r , v1) ∧
vertices(r , v2) ∧ ¬t1 ∼ t2

Fig. 3: Sample graph patterns for statecharts with their equivalent logic formula

Entry states can be detected without any outgoing transitions. Moreover pat-
tern synchSameRegion searches for synchronizations between vertices v1 and v2
which are in the same region.

3 Formalism of 3-Valued Partial Models

Partial modeling [10,15,29] is a generic technique to introduce uncertainty into
instance models. Semantically, one abstract partial model represents a range of
possible instance models, which are called concretizations. During the develop-
ment, the level of uncertainty can be gradually reduced by refinements, which
results in partial model with less concretizations. In the following we present a
novel 3-valued partial modeling formalism, and give a method to evaluate graph
patterns on it.

3.1 Properties of 3-Valued Logic

In this paper 3-valued logic [16,25] is used to explicitly represent unspecified or
unknown properties of the models with a third 1/2 logic value (beside 1 and 0
which means a value must be true or false). During a refinement, 1/2 properties
are gradually refined to either 0 or 1. This refinement is defined by an information
ordering relation X ⊑ Y , which specifies that either X = 1/2 and Y refined to a
more specific 1 or 0, or X = Y .

X ⊑ Y := (X = 1/2) ∨ (X = Y)

Information ordering X ⊑ Y has two important properties: first, if we know
that X = 1 then it can be deduced that Y must be 1, and secondly, if Y = 1
then X ≥ 1/2 (i.e. 1 or 1/2). Those two properties will be used to approximate
possible values of a concrete model by checking the property on a partial model.

3.2 Partial Models based on 3-Valued Logic

In this paper we propose a generic, 3-valued partial modeling formalism. A par-
tial model of the same vocabulary Σ = {C1, . . . , Cn, exist , R1 . . . Rm,∼} is a 3-
valued logic structure P = ⟨ObjP , IP ⟩, where ObjP is the finite set of symbolic
objects, and IP provides 3-valued interpretation for all constants in Id and pred-
icate symbols in Σ.

Fig. 4: Example 3-valued partial model with refinements

Uncertain Types. IP gives a 3-valued interpretation to each EClass symbol
Ci in Σ: IP (Ci) : ObjP → {1, 0, 1/2}, where an 1/2 value represents a case where
it is unknown if an object has a type C or not.
Uncertain References. IP gives a 3-valued interpretation to each EReference
symbol Rj in Σ: IP (Rj) : ObjP ×ObjP → {1, 0, 1/2}. An uncertain 1/2 value
represent possible references.
Uncertain Equivalence. IP gives a 3-valued interpretation for the equivalence
relation IP (∼) : ObjP ×ObjP → {1, 0, 1/2}. An uncertain 1/2 value relation
between two objects means that the object might be equals and they can be
potentially merged. For an object o where o ∼P o = 1/2 it means that the object
may represent multiple different objects, and can be split later on.
Uncertain Existence. IP gives a 3-valued interpretation for the existence re-
lation IP (exist) : ObjP → {1, 0, 1/2}, where an 1/2 value represents objects that
may be removed from the model.

The simplicity requirements S1-4 defined on page 4 are also assumed on
partial models, which, in this case, allow uncertain 1/2 equivalences and existence.

Figure 4 illustrates three partial models, where P1 shows a submodel of the
coffee machine from Figure 1. The objects are represented with nodes labelled
with a unique name of its class. Solid and dashed lines represent references with
1 value and 1/2 references respectively, and missing edges represent 0 values.
For example, in P1 state Init must be the target of transition t1, and Filling
and Finish are potential targets. Uncertain 1/2 equivalences are also marked by
dashed line with an = symbol. In P1 this means that state Init may be merged
to states Filling and Finish, or t2 may be split into multiple objects between
Filling and Finish.

3.3 Refinement and Concretization

By resolving some uncertain parts, a partial model P can be refined to a more
concrete partial model Q (denoted as P Q). A refinement is defined by a
function refine : ObjP → 2ObjQ , which maps each object of P to a set of objects
in the refined partial model Q. A valid refinement refine respects the information
order of type, reference, equivalence and existence predicates:

– for each class C and for each p ∈ ObjP and q ∈ refine(p): [[C(p)]]
P ⊑ [[C(q)]]

Q
.

– for each reference R and for each p1, p2 ∈ ObjP , q1 ∈ refine(p1), q2 ∈ refine(p2):

[[R(p1, p2)]]
P ⊑ [[R(q1, q2)]]

Q

– for each p1, p2 ∈ P, q1 ∈ refine(p1), q2 ∈ refine(p2): [[p1 ∼ p2]]
P ⊑ [[q1 ∼ q2]]

Q

– for each p ∈ ObjP and q ∈ refine(p): [[exist (p)]]
P ⊑ [[exist (q)]]

Q

– for each p ∈ ObjP if [[exist (p)]]
P
= 1 then refine(p) is not empty

Figure 4 illustrates two partial models P2 and P3 as possible refinements of
P1. P2 represents a refinement scenario where Init and Filling are mapped to
the same objects FillingInit, and the equivalence between the two objects are re-
fined to 1 from 1/2. Simultaneously, the possible equivalence between FillingInit
and Finish must be refined to 0 to satisfy the information order, because
[[Filling ∼ Finish]]

P1
was 0. In P2 the equivalence on Transition t2 is re-

fined to 1 from 1/2, and mapped to a single object. P3 represents another valid
refinement, where the Init and Finish are merged, and t2 is refined into two
different objects t21 and t22, where t22 still represents a set of objects.

If a refinement resolves all uncertainty, and there are no 1/2 values in a partial
model P = ⟨ObjP , IP ⟩, and P is simple, then P represents a concrete (simple)
instance model M = ⟨ObjM , IM ⟩ where ObjM = ObjP and IM = IP , which is
called concretization and also marked with P M . As P2 in Figure 4 does not
contain any 1/2 values, it can be interpreted as concretization of P1.

3.4 Evaluating Predicates on 3-Valued Partial Models

The main goal of this paper is to evaluate graph patterns on partial models
in order to check possible matches on all possible concretizations. Evaluating a
graph query over a partial model may have multiple outcomes: a pattern may
(1/2), must (1) or cannot (0) have a match depending on whether the partial
model can possibly be concretized in a way to fulfill the condition of the pattern.

Syntax. The same syntax is used for defining predicates on partial models
as for concrete models, therefore the same well-formedness constraints can be
used to check the correctness of partial models as for instance models.

Semantics. The predicates are evaluated in two steps: first, some expres-
sion rewriting is required to resolve implicit equivalence checks, then the rewrit-
ten pattern can be directly evaluated on the partial model. Implicit equivalence
means that a match has to substitute the same value for each occurrence of a
single pattern variable. For example in predicate noOutgoing(e) in Figure 3 the
expression from(t, e) ∧ to(t, trg) implicitly states that the value of the two t is
the same. Our technique requires the explicit notation of equivalences, which can
be achieved by rewriting each variable occurrence (except for those in equality
constraints) to a new variable, and explicitly defining the equivalence between
the new variables, by creating a logically equivalent expression. For example, the
previous expression is changed to from(t1, e) ∧ to(t2, trg) ∧ t1 ∼ t2.

We have constructed the semantic derivation rules of 2-valued logic in Fig-
ure 2 to evaluate 3-valued logic by using a numeric value of the unknown symbol

1/2, resulting in a 3-valued logic (similar to [16,25]). Therefore the same deriva-
tion rules can be used to evaluate the rewritten (but logically equivalent) rules
on partial model. Additionally, the truth value of the expression follows the ⊑
information ordering, which has two important consequences:

Theorem 1 (Forward concretization). If [[ϕ]]
P

= 1 in a partial model P ,

then [[ϕ]]
Q
= 1 in each partial model Q where P Q, and [[ϕ]]

M
= 1 in a each

M concretization where P M . Similarly, if [[ϕ]]
P
= 0, then [[ϕ]]

Q
= [[ϕ]]

M
= 0.

Theorem 2 (Backward concretization). If [[ϕ]]
M

= 1 in a concrete model

M , then [[ϕ]]
P ≥ 1/2 in a partial model P where P M . Similarly, if [[ϕ]]

M
= 0

then [[ϕ]]
P ≤ 1/2.

Therefore, if an error predicate evaluates to 1, then it identifies an invalid partial
model that cannot be repaired in any concretization. If it evaluates to 1/2 it
highlights possible ways to inject errors. And finally, a 0 value can prove that an
error cannot occur in the concretizations.

This approach provides a conservative approximation for 1 and 0 values,
where inaccurate cases are considered as 1/2. In other words, the match result
is approximated in the direction of 1/2, which also includes the unknown cases.
That is a safe compromise in many application areas such as model validation.

3.5 Rewriting Predicates to Must and May Predicates

In the previous section we defined the resolution rules for evaluating a graph
predicate over a 3-valued partial model, which can result in three possible val-
ues: 1, 1/2, or 0. However, traditional query engines support only 2-valued pat-
tern evaluation on 2-valued models. Therefore, to utilise efficient graph pat-
tern matching engines like introduced in [3], we introduce a predicate rewriting
technique to calculate 3-valued predicate using two 2-valued predicates called
must and may predicates, and combining the into 3 logic value. A predicate
must(ϕ) is a must predicate of ϕ, if [[must(ϕ)]]

P
Z = 1 when [[ϕ]]

P
Z = 1, other-

wise [[ϕmust]]
P
Z = 0. Similarly a predicate may(ϕ) is a may predicate of ϕ, if

[[may(ϕ)]]
P
Z = 1 when [[ϕ]]

P
Z ≥ 1/2, otherwise [[ϕmay]]

P
Z = 0.

In the following, we give expression rewriting rules (illustrated in Figure 5)
to create may and must predicates from a predicate. First, atomic expressions
C(v), R(v1, v2), exist(v) and v1 ∼ v2 are replaced by (ϕ ≥ 1/2) and (ϕ = 1)
2-valued predicates in order to round 1/2 values up or down for maximizing the
result for may(ϕ) predicates, or to minimize the result for may(ϕ) predicates.

Secondly, as the lower part of Figure 5 describes,may andmust predicates are
constructed from complex expression ϕ by recursively rewriting all subexpres-
sions. It is important to note that the rewriting rule of the negated expression
¬ϕ changes the modality of the inner expression from may to must and vica
versa. Figure 6 illustrates the rewriting steps of an example graph previously
introduced in Figure 3 into a may predicate.

Finally, may(ϕ) and must(ϕ) predicates are traditional 2-valued predicates,
whose can be combined to encode 3 possible truth values:

May and Must rewriting of atomic expressions

may(C(v)):=(C(v) ≥ 1/2) must(C(v)):=(C(v) = 1)
may(R(v1, v2)):=(R(v1, v2) ≥ 1/2) must(R(v1, v2)):=(R(v1, v2) = 1)
may(exist(v)):=(exist(v) ≥ 1/2) must(exist(v)):=(exist(v) = 1)
may(v1 ∼ v2):=(v1 ∼ v2 ≥ 1/2) must(v1 ∼ v2):=(v1 ∼ v2 = 1)

May and Must rewriting of complex predicates

may(ϕ1 ∧ ϕ2):=may(ϕ1) ∧may(ϕ2) must(ϕ1 ∧ ϕ2):=must(ϕ1) ∧must(ϕ2)
may(ϕ1 ∨ ϕ2):=may(ϕ1) ∨may(ϕ2) must(ϕ1 ∨ ϕ2):=must(ϕ1) ∨must(ϕ2)

may(¬ϕ):=¬must(ϕ) must(¬ϕ):=¬may(ϕ)

may(∃v : ϕ):=∃v : may(exist(v)) ∧may(ϕ)
must(∃v : ϕ):=∃v : must(exist(v)) ∧must(ϕ)
may(∀v : ϕ):=∀v : may(¬exist(v)) ∨may(ϕ)
must(∀v : ϕ):=∀v : must(¬exist(v)) ∨must(ϕ)

Fig. 5: May and Must rewriting rules for graph predicates

original pattern: noOutgoing(e) := Entry(e) ∧ ¬∃t , trg : from(t , e) ∧ to(t , trg)
may(noOutgoing(e)) := may(Entry(e)) ∧may(¬∃t , trg : from(t , e) ∧ to(t , trg)) =

= may(Entry(e)) ∧ ¬∃t , trg : must(exist(t)) ∧must(exist(trg))∧
must(from(t , e)) ∧must(to(t , trg)) =

= (Entry(e) ≥ 1/2) ∧ ¬∃t , trg : (exist(t) = 1) ∧ (exist(trg) = 1)∧
(from(t , e) = 1) ∧ (to(t , trg) = 1)

Fig. 6: Example graph pattern rewriting

– If [[must(ϕ)]]
P
Z = 1 and [[may(ϕ)]]

P
Z = 1 then [[ϕ]]

P
Z = 1

– If [[must(ϕ)]]
P
Z = 0 and [[may(ϕ)]]

P
Z = 1 then [[ϕ]]

P
Z = 1/2

– If [[must(ϕ)]]
P
Z = 0 and [[may(ϕ)]]

P
Z = 0 then [[ϕ]]

P
Z = 0

3.6 Transforming MAVO Uncertainty to 3-Valued Partial Models

MAVO uncertainty (which stands for May-Abstract-Variable-Open world) is a
well-known and user-friendly partial modeling formalism [10,28,27] with several
use-cases and tool support [4]. In the following we present a mapping of MAVO
partial models to 3-valued partial models, enabling the evaluation of graph con-
straints on it.

MAVO specifies partial models with a concrete instance model B called base
model, and introduces uncertainty annotations on the objects and references of
B. The transformation starts with the mapping of the base model, then the
annotations are transformed separately.
Base Model. First, a logic structure P = ⟨ObjP , IP ⟩ of Σ is created from the
base model B, where ObjP := ObjB , and IP := IB .
Mapping of May. In MAVO, may annotation marks uncertainty about the
existence of an object or reference. For each object o marked by may , uncertain
existence can be expressed by IP (exist)(o) := 1/2. For each reference R, holds
that if a link between o1 and o2 is marked by may , then IP (R)(o1, o2) := 1/2.

Mapping of Abstract. Abstract objects marked by set annotation marks un-
certainty about the number of elements represented by an object. In 3-valued
partiality, this can be represented by uncertain equivalence: for each object o
marked by set , IP (∼)(o, o) := 1/2.
Mapping of Variable. var annotation marks uncertainty about the distinct-
ness of an object from another (which is not necessarily marked by var). In
MAVO, objects with the same type are compatible for merging. Additionally, a
var annotation implicitly specifies that the incoming and outgoing references of
the compatible objects may be added to each other. For example, in the partial
model in Figure 1, each incoming reference to Init may be redirected to Filling
upon a merge. So for each object o1 marked by var , and for each object o2 with
the same class predicate values (IP (C)(o1) = IP (C)(o2) for each C) holds that:

– IP (∼)(o1, o2) := 1/2, meaning that o1 and o2 may be merged
– for each incoming reference R from another object src to o1 holds that: if

IP (R)(src, o2) = 0 then IP (R)(src, o2) := 1/2. The outgoing references are
handled similarly.

Mapping of Open. open is a global property of a MAVO partial model which
marks uncertainty about the completeness of the model. If a model is open, then
it can be extended by new objects and references in a refinement. Otherwise,
only the existing elements can be resolved. In 3-valued partial models, this can
be represented in the following way:

– a new object other is added to ObjP , which represents the new objects.
– IP (∼)(other , other) = 1/2, so other represent a set of objects.
– IP (exist)(other) = 1/2, so new objects are not necessarily added.
– for each class C: IP (C)(other) = 1/2, so other represents all types.
– for each reference R and each object pair o1, o2: if IP (R)(o1, o2) = 0, then

IP (R)(o1, o2) := 1/2. Therefore new references can be added.

Cleaning of the Partial Model. During the translation of uncertainty anno-
tations, new 1/2 references are added to the partial model without considering
the structural constraints imposed by the target metamodel. Therefore, in order
to exclude malformed instances from the analysis, when a 1/2 reference is added
during the translation, (1) the ending types, (2) the multiplicity, (3) the con-
tainment hierarchy and (4) possible inverse relations are checked. If a possible
reference would violate a structural constraint, then it is not added to P , so the
precision of the approach can be increased by excluding invalid extensions only.

4 Scalability Evaluation

We carried out an initial scalability evaluation1 of our approach using 3 models
(with 157, 347 and 1765 objects, respectively) and 5 queries available from the

1 A detailed description at https://github.com/FTSRG/publication-pages/wiki/

Graph-Constraint-Evaluation-over-Partial-Models-by-Constraint-Rewriting.

https://github.com/FTSRG/publication-pages/wiki/Graph-Constraint-Evaluation-over-Partial-Models-by-Constraint-Rewriting
https://github.com/FTSRG/publication-pages/wiki/Graph-Constraint-Evaluation-over-Partial-Models-by-Constraint-Rewriting

Local Search

Incremental

Valid Invalid Valid Invalid Valid Invalid Valid Invalid Valid Invalid Valid Invalid

must 1.40 1.36 1.39 1.37 1.79 1.96 1.73 2.07 28.41 68.97 27.96 68.71

may 1.47 - 57.62 - 1.93 - - - - - - -

must 1.40 1.30 1.35 1.45 1.72 1.92 1.74 2.20 25.28 70.70 26.79 70.23

may 1.45 1.48 1.46 1.64 1.62 7.53 1.82 14.60 15.88 - 19.20 -

must 1.67 1.54 1.68 1.68 4.18 3.77 4.19 3.18 - - - -

may 1.49 - 46.93 - 2.80 - - - - - - -

must 1.79 1.69 1.81 1.68 8.50 4.66 8.87 4.41 - - - -

may 1.88 8.86 4.14 - 8.62 - 117.79 - - - - -

must 1.21 1.26 1.22 1.34 1.41 1.70 1.55 1.70 14.63 32.50 16.72 35.71

may 1.13 1.11 1.06 1.12 1.27 1.30 1.31 1.30 12.55 31.30 12.46 29.22

Connected-

Segments

RouteSensor

Semaphore-

Neighbor

SwitchSet

Switch-

Monitored

#Obj = 157 #Ref= 604 #Obj=347 #Ref=1340 #Obj=1765 #Ref=6904

Open Closed Open Closed Open Closed

Table 1: Evaluation time of validation patterns on partial models (in sec)

open TrainBenchmark [32]. We generated randomly assigned MAVO annotations
for 5% of the model elements (e.g. with 7, 17, 88 uncertainties respectively). We
evaluated the performance of (1) each graph query individually for (2) both
may- and must-patterns (may/must) using (3) two pattern matching strate-
gies (incremental/local-search) with (4) open world or closed world assumption
(open/closed) after an optional (5) fault injection step (valid/invalid) to intro-
duce some constraint violations. We measured the execution time for evaluating
the queries in seconds with a timeout of 2 minutes using a laptop computer
(CPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 10 Pro). Our experi-
ments were executed 10 times and the median of execution time is reported in
Table 1 (table entries with a dash denote a timeout). We

Our main observations can be summarized as follows:

– Pattern matching over partial models is complex. To position our experimen-
tal results, it is worth highlighting that most solutions of the Train Bench-
mark [32] evaluate graph queries for regular models very fast (scales up to
millions of objects) for all these cases thus pattern matching over partial
models must likely be in a different complexity class.

– Fast inconsistency detection for must-matches. The detection of a must-
match over partial models is fast for both case of closed world and with
open world assumption, especially, when using local-search graph pattern
matching. It is also in line with previous observations in [29] using SMT-
solvers.

– Scalable detection of may-matches with closed world assumption. Our ap-
proach may identify potential inconsistencies (i.e. may-matches) over partial
models with closed world semantics containing more than 1500 objects us-
ing incremental pattern matching. It is more than one order of magnitude
increase compared to previous results reported in [12,10] using Alloy.

– Full match set of may-matches and open world is impractical. As a negative
result, calculating the full match set of graph patterns for may-matches and
open world assumption frequently resulted in a timeout for models over
160 objects due to the excessively large size of the match set. For practical

analysis, we believe that open annotation in MAVO should be restricted to
be defined in the context of specific model elements.

– Selection of graph pattern matching strategy. In case of timeouts, we observed
that large match sets caused problems for an incremental evaluation strategy
while the lack of matches caused problems for local-search strategy.

5 Related Work

Analysis of Uncertain/Partial Models. Uncertain models [10] provide user-friendly
languages for defining partial models. Such models document semantic variation
points generically by annotations on a regular instance model. Most analysis of
uncertain models focuses on the generation of possible concrete models or the
refinement of partial models. Potential concrete models compliant with an un-
certain model can be synthesized by the Alloy Analyzer and its back-end SAT
solvers [28,27], or refined by graph transformation rules [26].

Approaches [11,12] analyse possible matching and execution of model trans-
formation rules on partial models by using a SAT solver (MathSAT4) or by
automated graph approximation (referred to as “lifting”), or by graph query en-
gines [?]. The main difference is that their approach inspects possible partitions
of a finite concrete model while we instead aim at (potentially infinite number
of) extensions of a partial model. As a further difference, we use existing graph
query engine instead of a SAT solver, which has a very positive effect on scala-
bility (17 objects and 14 may annotations reported in [12] vs. over 1700 objects
with 88 MAVO annotations in our paper).

Verification of Model Transformations. There are several formal methods that
aim to evaluate graph patterns on abstract graph models (by either abstract
interpretation [23,24], or predicate abstraction [25]) in order to detect possi-
bly invalid concretizations. Those techniques typically employ techniques called
pre-matching to create may-matches that are further analyzed. In [22] graph
constraints are mapped to a type structure in order to differentiate objects that
satisfy a specific predicate from objects that do not which could be used in our
technique to further increase the precision of the matches.

In the previous cases an abstract graph similarly represents a range of possible
models, and graph patterns are evaluated on abstract models to analyze their
concretization. However, all of those technique expect a restricted structure in
the abstract model, which is not available in partial models that are created by
the developer.

Logic Solver Approaches. There are several approaches that map a (complete)
initial instance model and WF constraints into a logic problem, which are solved
by underlying CSP/SAT/SMT-solvers. In principle, the satisfaction of well-
formedness constraints over a partial model (i.e. may- and must-matches) could
be reformulated also using these techniques, although the same challenge has not

been addressed so far. Complete frameworks with standalone specification lan-
guages include Formula [15] (which uses Z3 SMT- solver [19]), Alloy [14] (which
relies on SAT solvers) and Clafer [1] or a combination of solvers [29].

There are several approaches to validate models enriched with OCL con-
straints [13] by relying upon different back-end logic-based approaches such
as constraint logic programming [9,8], SAT-based model finders (like Alloy)
[31,18], first-order logic [2] or higher-order logic [6]. As a common issue of such
SAT/SMT-based approaches, the scalability is limited to small models.

DLL62 and

6 Conclusion and Future Work

Conclusions. In this paper, we proposed a technique to evaluate graph queries
capturing constraints over partial models. Since a partial model may be extended
by the designer in future refinement steps, we defined may- and must-matches
of a graph query correspondingly to denote potential and real violations of con-
straints. We also defined conservative approximations of may- and must-matches
by rewriting of graph patterns in accordance with MAVO semantics.

Our initial scalability evaluation using the open Train Benchmark [32] shows
that (1) finding real constraint violations over partial models is fast; (2) identify-
ing potential inconsistencies with either open world or closed world assumption
may scale for partial models with over 1500 model elements (which is one order
of magnitude larger than reported in previous papers).

Future work. Although we motivated our work to check well-formedness con-
straints over uncertain models, our current results provide a key milestone for
an ongoing project, which aims at the automated generation of scalable and con-
sistent domain-specific graph models (aka a graph-based model finder). While
metamodels of industrial modeling language often contain several hundreds of
classes, existing logic solvers fail to produce an instances model containing over
150 objects, which is a major limitation for industrial use. Since the actual val-
idation of complex graph constraints consumes significant amount of time in
existing SAT/SMT-solvers, our current approach (which exploits efficient check-
ing of graph constraints) can nicely complement traditional logic solvers.

Acknowedgement

This paper is partially supporded by MTA-BME Lendület Research Group on
Cyber-Physical Systems, and NSERC RGPIN-04573-16 project. Additionally,
we would like to thank Gábor Bergmann and the anonymous reviewers for their
insightful comments.

References

1. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Software & Systems Modeling pp. 1–35 (2013)

2. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Language
into First-order Predicate Logic. In: Proc. of the VERIFY, Workshop at Federated
Logic Conferences (FLoC), Copenhagen, Denmark (2002)

3. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A Graph Query Language for EMF
models. In: Fourth International Conference on Theory and Practice of Model
Transformations. LNCS, vol. 6707, pp. 167–182. Springer (June 2011)

4. Bertolino, A., Canfora, G., Elbaum, S.G. (eds.): 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 2. IEEE Computer Society (2015), http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7174815

5. Biermann, E., Ehrig, K., Ermel, C., Köhler, C., Taentzer, G.: The EMF model
transformation framework. In: AGTIVE. pp. 566–567 (2007)

6. Brucker, A.D., Wolff, B.: The HOL-OCL tool (2007), http://www.brucker.ch/
7. Búr, M., Ujhelyi, Z., Horváth, Á., Varró, D.: Local search-based pattern matching

features in EMF-IncQuery. In: 8th International Conference on Graph Transfor-
mation (2015)

8. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Software Testing Verification and Validation Work-
shop, 2008. ICSTW ’08. IEEE International Conf. on. pp. 73–80 (April 2008)

9. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verifi-
cation of UML/OCL models using constraint programming. In: Proc. of the
22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE’07). pp. 547–548 (2007)

10. Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and rea-
soning with uncertainty. In: Proceedings of the 34th International Conference on
Software Engineering. pp. 573–583. IEEE Press, Piscataway, NJ, USA (2012)

11. Famelis, M., Salay, R., Chechik, M.: The semantics of partial model transforma-
tions. In: Proceedings of the 4th International Workshop on Modeling in Software
Engineering. pp. 64–69. IEEE Press (2012)

12. Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of models
containing uncertainty. In: International Conference on Model Driven Engineering
Languages and Systems. pp. 673–689. Springer (2013)

13. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE by
automatic snapshot generation. Software and Systems Modeling 4, 386–398 (2005)

14. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

15. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Model Driven Engi-
neering Languages and Systems, pp. 653–667. Springer (2011)

16. Kleene, S.C., De Bruijn, N., de Groot, J., Zaanen, A.C.: Introduction to meta-
mathematics, vol. 483. van Nostrand New York (1952)

17. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of ocl for capturing
structural constraints in modelling languages. In: Rigorous Methods for Software
Construction and Analysis, pp. 204–218 (2009)

18. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into use. In: TOOLS’11 - Objects, Models, Components
and Patterns. LNCS, vol. 6705, pp. 290–306 (2011)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174815
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174815
http://www.brucker.ch/

19. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference (TACAS
2008). LNCS, vol. 4963, pp. 337–340. Springer (2008)

20. Nickel, U., Niere, J., Zündorf, A.: The fujaba environment. In: Proceedings of the
22nd international conference on Software engineering. pp. 742–745. ACM (2000)

21. The Object Management Group: Object Constraint Language, v2.0 (May 2006)
22. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential

ocl invariants to nested graph constraints focusing on set operations. In: Interna-
tional Conference on Graph Transformation. pp. 155–170. Springer (2015)

23. Rensink, A., Distefano, D.: Abstract graph transformation. Electronic Notes in
Theoretical Computer Science 157(1), 39–59 (2006)

24. Rensink, A., Zambon, E.: Pattern-based graph abstraction. In: Graph Transforma-
tions - 6th International Conference, ICGT 2012, Bremen, Germany, September
24-29, 2012. Proceedings. pp. 66–80 (2012)

25. Reps, T.W., Sagiv, M., Wilhelm, R.: Static program analysis via 3-valued logic.
In: International Conference on Computer Aided Verification. pp. 15–30 (2004)

26. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A methodology for verifying re-
finements of partial models. Journal of Object Technology 14(3), 3:1–31 (2015)

27. Salay, R., Chechik, M., Gorzny, J.: Towards a methodology for verifying partial
model refinements. In: 2012 IEEE Fifth International Conference on Software Test-
ing, Verification and Validation. pp. 938–945. IEEE (2012)

28. Salay, R., Famelis, M., Chechik, M.: Language independent refinement using partial
modeling. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering, LNCS, vol. 7212, pp. 224–239. Springer Berlin Heidelberg (2012)

29. Semeráth, O., Barta, A., Horváth, A., Szatmári, Z., Varró, D.: Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Software and Systems Modeling pp. 1–36 (2015)

30. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: 19th International Conference on Fundamental Approaches to
Software Engineering. pp. 87–103 (2016)

31. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDeVVa ’09: Proceedings of the 6th International Workshop on Model-Driven
Engineering, Verification and Validation. pp. 1–10. ACM (2009)

32. Szárnyas, G., Semeráth, O., Ráth, I., Varró, D.: The TTC 2015 train benchmark
case for incremental model validation. In: 8th Transformation Tool Contest, (STAF
2015). pp. 129–141 (2015)

33. The Eclipse Project: Eclipse Modeling Framework, //www.eclipse.org/emf
34. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,

Z., Varró, D.: Emf-incquery: An integrated development environment for live model
queries. Science of Computer Programming 98 (02/2015 2015)

35. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2
Framework. Science of Computer Programming 68(3), 214–234 (October 2007)

36. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE software 31(3), 79–85 (2014)

37. Yakindu Statechart Tools: Yakindu, http://statecharts.org/

//www.eclipse.org/emf
http://statecharts.org/

	Graph Constraint Evaluation over Partial Models by Constraint Rewriting

