
Formal Compositional Semantics for
Yakindu Statecharts

Bence Graics, Vince Molnár
Budapest University of Technology and Economics,

Department of Measurement and Information Systems
Budapest, Hungary

Email: bence.graics@inf.mit.bme.hu, molnarv@mit.bme.hu

Abstract—Many of today’s safety-critical systems are reactive,
embedded systems. Their internal behavior is usually represented
by state-based models. Furthermore, as the tasks carried out
by such systems are getting more and more complex, there is a
strong need for compositional modeling languages. Such modeling
formalisms start from the component-level and use composition
to build the system-level model as a collection of simple modules.
There are a number of solutions supporting the model-based
development of safety-critical embedded systems. One of the
popular open-source tools is Yakindu, a statechart editor with
a rich language and code generation capabilities. However,
Yakindu so far lacks support for compositional modeling. This
paper proposes a formal compositional language tailored to the
semantics of Yakindu statecharts. We propose precise semantics
for the composition to facilitate formal analysis and precise code
generation. Based on the formal basis laid out here, we plan
to build a complete tool-chain for the design and verification of
component-based reactive systems.

I. INTRODUCTION

Statechart [1] is a widely used formalism to design complex
and hierarchical reactive systems. Among the many statechart
tools, our work is based on the open-source Yakindu1, which
supports the development of complex hierarchical statecharts
with a graphical editor, validation and simulation features.
Yakindu also supports source code-generation from statecharts
to various languages (Java, C, C++).

The requirements embedded systems have to meet are
getting more and more complex. Therefore, the models cre-
ated for such systems tend to become unmanageably large,
which encumbers extensibility and maintenance. Instead, the
resulting models could be created by composing smaller
units. These units interact with each other using the specified
connections, thus implementing the original behavior. There
are several tools that aim to support this methodology.

SysML [2], [3] tools have a large set of modeling elements
which enables their users to express their thoughts and ideas as
freely and concisely as possible. On the other hand, they rarely
define precise semantics, which encumbers code generation
and analysis. BIP [4]–[6] is a compositional tool with well-
defined semantics that supports the formal verification of
modeled systems. Source code generation is also possible with

1https://itemis.com/en/yakindu/statechart-tools/

this tool. Scade2 [7], [8] is a tool that unifies the advantages of
design and analysis tools. It supports the generation of source
code as well as the formal verification of the modeled system.
It is a commercial tool and does not support extensibility.
Matlab Stateflow [9] is an environment for modeling and
simulating decision logic using statecharts and flow charts.
It is a leading tool for composing state-based models in
the domain of safety-critical embedded systems. It supports
the encapsulation of state-based logics which can be reused
throughout different models and diagrams.

Unfortunately, Yakindu does not support composition fea-
tures. The main goal of our work is to create a tool that
enables the users to compose individual statechart components
into a single composite system by constructing connections
through ports. The ultimate goal of this work is to enable
code generation and formal verification of composite models
with model transformations based on the proposed semantics.

We will call this type of composition an event-based au-
tomata network, as opposed to dataflow networks, which can
be considered message-based automata networks in this sense.
In event-based automata networks, data is only of secondary
importance – the occurrence of the event is in focus. In
message-based settings, data is more significant, thus message
queues are desirable to buffer the simultaneous messages.

This paper is structured as follows. Section II presents
the semantics of Yakindu statecharts serving as the basis of
the compositional language. The syntax and semantics of the
compositional language along with an example are introduced
in Section III. Finally, Section IV provides concluding remarks
and ideas for future work.

II. ABSTRACTING YAKINDU STATECHARTS

Yakindu adopts a statechart formalism which is the ex-
tension of the well-known state machine formalism. State-
charts support the definition of auxiliary variables as well
as concurrency and state refinement. This section introduces
a syntactical abstraction of Yakindu, i.e. the actual model
elements are ignored. We deal only with the input and output
events in addition to the actual state configuration, but not
the semantics. This way we can generalize the composition

2http://www.esterel-technologies.com/products/scade-suite/

22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/85132167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

System SystemInterface

Interface

interface inPorts

ports

interfaces

Instance

name : String

<<Enumeration>>

PortDirection

IN

OUT

Port

direction : PortDirection

signal : SignalDeclaration

Component

statechart :
StatechartSpecification

components

outPorts

component

name : String

SystemOutPort

name : String

SystemInPort

name : String

Channel

Input

Output

channels

inputs

outputsinstance

instance

port

port

input

output

instances

Fig. 1. Metamodel of the compositional language.

of abstract models with minimal restrictions to the usable for-
malisms. In this approach, a Yakindu statechart is considered
a 5-tuple: S = 〈I,O, S, s0, T 〉 where:

• I is a finite set of input events (from the environment)
• O is a finite set of output events (for the environment)
• S = {s1, s2, · · · , sn} is a finite set of states, including a

state configuration and values of variables
• s0 ∈ S is the initial state
• T ⊆ (2I×S)×(S×2O) is a finite set of transitions, that

represent changes of state in response to a set of input
events and generate a set of output events

Yakindu statecharts adopt a turn-based semantics. The fol-
lowing paragraphs introduce the interpretation of turns as well
as how the raising of events is associated to them.

Events represent signal receptions. There are two types of
events: simple or void events and parameterized or typed
events. The latter enables the modeling of parameterized sig-
nals, which can describe additional details. Note that multiple
input events can be raised in a single turn according to the
abstract formalism defined above. In Yakindu the raising of
events is interpreted as setting a boolean flag to true. Yakindu
therefore does not support message queues. Owing to this
semantics raising the same simple event in a particular turn
once or several times has the same effect. On the other hand,
parameterized events are defined by their parameter as well,
so a new event raising with a different parameter overwrites
the former one. Although this behavior is an essential part
of the semantics of Yakindu, it is not relevant either in the
abstract formalism presented above or the semantics of the
composition language defined in Section III-B.

All turns consist of two distinct sections, a raising section
and a running section. In the raising section input events of
the statechart are raised as presented in the previous paragraph.

This is followed by the running section where a new stable
state of the statechart is defined. It starts with the examination
of the transitions going out of the particular state configuration.
The goal is to specify the firing transition. At this point a
race condition might exist if multiple outgoing transitions
are enabled, e.g. more of them are triggered by raised input
events. Yakindu intends to solve ambiguity by introducing the
concept of transition priority: users can specify which of the
outgoing transitions of a state should be fired in case of a race
condition by defining a total ordering of the transitions. The
firing transition specifies the next stable state of the statechart,
including the state configuration, values of variables and events
for the environment.

III. LANGUAGE FOR COMPOSITION

This section defines the syntax of the compositional lan-
guage and introduces the semantics the composite system
conforms to. This semantics is heavily influenced by the
statechart semantics defined by Yakindu and strives to address
some of its problems, e.g. gives the ability to parallel regions
to communicate with each other.

A. Syntax

Figure 1 depicts the metamodel of the compositional lan-
guage. The root element in the metamodel is the System.
A System contains Components which refer to Yakindu
statecharts as well as Instances of such Components. Each
Component has an Interface that contains Ports. Through
Ports, signals of statecharts can be transmitted or received
according to their directions.

Channels can be used for defining the emergent behavior
of the composite system. A Channel has one or more Inputs
and one or more Outputs. An Input of a Channel connects
to an output Port of an Instance and vice versa. Whenever a

23

Channel receives a signal through any of its Inputs, the signal

is sent to each Output, i.e. to the corresponding input Ports of

Instances. The language does not support connecting Ports of

the same direction and a validation rule is defined that marks

incorrect connections.

The language supports the definition of an interface through

which the composite system interacts with its environment.

This is the SystemInterface that contains SystemPorts. Sys-
temPorts are aliases of Ports of Instances. If a signal arrives to

a SystemInPort, it will be forwarded to the Port of the referred

Instance instantly. SystemOutPorts work similarly, but with

output Ports of Instances.

For ease of understanding, an example is presented that

defines a composition of statecharts using the specified com-

positional language. The system consists of two Components,

CoffeMachineComponent and LightComponent referring to a

coffee machine (CoffeMachine) statechart and a light switch

(LightSwitch) statechart, respectively. CoffeMachine has sig-

nal declarations for turning it on and off, for ordering a

cappuchino and for putting its light on and off. A LightSwitch

models a lamp that can be turned on and off.

/ / System i n t e r f a c e d e f i n i t i o n
i n t e r f a c e {

i n {
on : machine . on
o f f : machine . o f f
c a p p u c h i n o : machine . c a p p u c h i n o

}
}

/ / Component i n t e r f a c e d e f i n i t i o n s
CoffeeMachine CoffeMachineComponent {

i n t e r f a c e {
on : IN on
o f f : IN o f f
c a p p u c h i n o : IN c a p p u c h i n o
l i g h t O n : OUT f l a s h L i g h t
l i g h t O f f : OUT t u r n O f f L i g h t

}
}

L i g h t S w i t c h LightComponent {
i n t e r f a c e {

on : IN onBut ton
o f f : IN o f f B u t t o n

}
}

/ / Component i n s t a n t i a t i o n s
CoffeMachineComponent machine
LightComponent l i g h t

/ / Channel d e f i n i t i o n s
c h a n n e l s {

[machine . l i g h t O n] −> [l i g h t . on]
[machine . l i g h t O f f] −> [l i g h t . o f f]

}
Note that a composite system description constists of the

following parts:

• System interface definition: All input Ports of machine
are published to the interface of the system enabling the

cappuchinooffon

lightOfflightOn

machine : CoffeMachineComponent

cappuchinooffon

light : LightComponent

offon

Fig. 2. A composite system of a CoffeMachine and a LightSwitch statechart.

users to turn machine on and off or order a cappuchino.

• Component interface definitions: CoffeMachineCompo-
nent refers to on, off and cappuchino through input Ports
(denoted by the IN keyword) and flashLight, turnOffLight
through output Ports (denoted by the OUT keyword).

Both signal declarations of LightSwitch are referred to

by input Ports.

• Component instantiations: Both Components are instan-

tiated: machine and light.
• Channel definitions: The output Ports of machine are

connected to the input Ports of light, making it possible

for machine to turn on light at choice.

Figure 2 depicts the composite system described by the

previous code section. Note that the individual components

of the system are encapsulated. Interactions can be specified

only through the defined interface.

B. Semantics

During the design of the semantics one of our goal was to

define a language that enables the reuse of the source code

generator of Yakindu. Therefore the semantics of supported

Yakindu statecharts elements had to be considered, most

importantly event raising.

This section introduces the semantics of the composi-

tional language. The compositional language enables to cre-

ate a composite system, that is formally a 4-tuple: C =
〈SC ,CA, IN ,OUT 〉 where:

• SC = {〈S1, s
0
1, T1, I1, O1〉, · · · , 〈Sn, s

0
n, Tn, In, On〉} is

a finite set of state machines.

• I =
⊔n

j=1 Ij , i.e. the union of all in events of state

machine components

• O =
⊔n

j=1 Oj , i.e. the union of all out events of state

machine components

• CA ⊆ 2O × 2I , i.e. channel associations relate a finite

set of outputs to a finite set of inputs

• IN ⊆ I , i.e. the input interface is a subset of the union

of the in events of state machine components

• OUT ⊆ O, i.e. the output interface is a subset of the

union of the out events of state machine components

24

A sequence of steps % = (τ1, τ2, · · ·) is called a complete run
of C if the following conditions hold.
• τj = (sj , ij , s

′
j , oj) is a single step that consists of a state

vector representing each state of each component before
the step, a finite set of inputs, a state vector representing
each state of each component after the step and a finite set
of outputs generated by each state machine components,
where for all 1 ≤ k ≤ n at least one of the following
conditions holds:

– (ij ∩ Ik, sj [k], s′j [k], oj [k]) ∈ Tk, i.e. if a transition
is defined in a state machine component that is trig-
gered by the input set, then the transition fires taking
the state machine to its target state and producing the
corresponding outputs;

– (sj [k] = s′j [k] ∧ oj [k] = ∅ ∧ @s′, o′ : (ij ∩
Ik, sj [k], s′, o′) ∈ Tj), i.e. a component is allowed
to do nothing if and only if it has no transition that
is triggered by input ij in state sj [k];

• s1 = (s01, s
0
2, · · · , s0n,), i.e. at the beginning of the run,

all state machine components are in their initial states;
• s′j = sj+1, i.e. the state vector at the end of a step and

at the beginning of the next step are equal;
• tgd(

⋃n
k=1 oj [k]) ⊆ ij+1 ⊆ tgd(

⋃n
k=1 oj [k]) ∪ IN where

tgd(Ω) =
⋃

ω∈2Ω ω ◦ CA, i.e. the inputs of a step is at
least the inputs triggered through a channel by outputs of
the previous step and maybe some additional events of
the input interface;

• % is either infinite or the following condition holds:
– @(o, i) ∈ CA : o∩ on 6= ∅, i.e. the execution of steps

can terminate only if the last step does not produce
any outputs that will be inputs in the next step.

A partial run of a composite system can be any prefix of
a complete run (any other sequence is not considered to be a
behavior of the composite system).

It is important to note that message queues (buffering) are
not included, the semantics guarantees only that event raising
and event receptions are in a causal relationship. Therefore,
if a component does not buffer events (such as Yakindu),
parameterized events may overwrite each other.

The operational semantics presented above provides a way
to reduce the semantics of the composite system to the
semantics of the components. To formally analyze the system,
denotational semantics has to be provided, e.g. by model
transformations converting the composite system model into a
formal model, in accordance with the operational semantics.

IV. CONCLUSIONS AND FUTURE WORK

Yakindu is a popular open-source tool for the design of
statechart models with support for code generation. It has a
rich language to model a single hierarchical statechart, but
it lacks the ability to compose statecharts into a component-
based model. For the design of complex, embedded reactive
systems, compositionality is essential to handle the design
complexity. Moreover, a precise formal semantics is necessary
to facilitate code generation and formal analysis.

The defined compositional language enables to instantiate
Yakindu statecharts, specify ports for these instances and join
these instances through port connections. The semantics of the
language is well-defined and suits the statechart semantics of
Yakindu soundly.

Subject to future work, we plan to extend the composi-
tional language to allow hierarchical compositions, i.e. the
composition of composite systems. Additionally, we intend
to design a whole framework around the language that 1)
enables the generation of source code which connects the
Yakindu statecharts according to the defined semantics and
2) provides automated model transformation to formal models
of composite systems on which exhaustive analysis can be
performed by model-checkers.

The automatic model transformers will utilize a graph-
pattern-based approach to generate the traceability information
that will facilitate the back-annotation of the results of formal
analysis to the engineering domain. This way, we hope to
support formal verification without requiring the designers to
get familiar with the formal languages involved.

ACKNOWLEDGMENT

This work was partially supported by IncQuery Labs Ltd.
and MTA-BME Lendület Research Group on Cyber-Physical
Systems.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987. [Online].
Available: http://dx.doi.org/10.1016/0167-6423(87)90035-9

[2] OMG, OMG Systems Modeling Language (OMG SysML), Version
1.3, Object Management Group Std., 2012. [Online]. Available:
http://www.omg.org/spec/SysML/1.3/

[3] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling
Language, 1st ed. Addison-Wesley Professional, 2013.

[4] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in BIP,” in Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, ser. SEFM
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3–12.
[Online]. Available: http://dx.doi.org/10.1109/SEFM.2006.27

[5] I. Konnov, T. Kotek, Q. Wang, H. Veith, S. Bliudze, and J. Sifakis,
“Parameterized Systems in BIP: Design and Model Checking,” in 27th
International Conference on Concurrency Theory (CONCUR 2016), ser.
Leibniz International Proceedings in Informatics (LIPIcs), J. Desharnais
and R. Jagadeesan, Eds., vol. 59. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 30:1–30:16.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/6167

[6] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous
systems in BIP,” in Proceedings of the Seventh ACM International
Conference on Embedded Software, ser. EMSOFT ’09. New
York, NY, USA: ACM, 2009, pp. 77–86. [Online]. Available:
http://doi.acm.org/10.1145/1629335.1629347

[7] H. Basold, M. Huhn, H. Günther, and S. Milius, “An open alternative
for SMT-based verification of SCADE models,” in Proc. 19th Inter-
national Workshop on Formal Methods for Industrial Critical Systems
(FMICS’14), ser. Lecture Notes Comput. Sci., F. Lang and F. Flammini,
Eds., vol. 8718. Springer, 2014, pp. 124–139.

[8] R. Venky, S. Ulka, A. Kulkarni, and P. Bokil, “Statemate to scade model
translation,” in ISEC ’08: Proceedings of the 1st conference on India
software engineering conference. New York, NY, USA: ACM, 2008, pp.
145–146. [Online]. Available: http://dx.doi.org/10.1145/1342211.1342245

[9] J. Chen, T. R. Dean, and M. H. Alalfi, “Clone detection in matlab
stateflow models,” Software Quality Journal, vol. 24, no. 4, pp. 917–946,
2016. [Online]. Available: http://dx.doi.org/10.1007/s11219-015-9296-0

25

	Proceedings_of_the_24th_PhD_Mini-Symposium

