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Abstract

Assume K ⊂ Rd is a convex body and X is a (large) finite subset of
K. How many convex polytopes are there whose vertices belong to X.
Is there a typical shape of such polytopes? How well the maximal such
polytope (which is actually the convex hull of X) approximates K? We
are interested in these questions mainly in two cases. The first is when X
is a random sample of n uniform, independent points from K. In this case
motivation comes from Sylvester’s famous four-point problem, and from
the theory of random polytopes. The second case is when X = K ∩ Zd

where Zd is the lattice of integer points in Rd and the questions come
from integer programming and geometry of numbers. Surprisingly (or not
so surprisingly), the answers in the two cases are rather similar.

1 Sylvester’s four-point problem

The study of random points in convex bodies started with an innocent looking
question. The year was 1864. The place was London. The journal was the
Educational Times. Problem 1941 came from J. J. Sylvester [60]. It read: Show
that the chance of four points forming the apices of a reentrant quadrilateral
is 1/4 if they be taken at random in an indefinite plane. Several answers came
in. Most of them were different. In 1865 Sylvester [61] concluded that This
problem does not admit of a determinate solution. The reason is, as we all
know by now, in “at random in an indefinite plane” since there is no natural
probability measure on it. Sylvester immediately modified the question. Let
K be a convex body in the plane and choose four random, independent, and
uniform points from K. What is the probability that they form the vertices of
a reentrant quadrilateral, or, in recent terminology, that their convex hull is a
triangle. Further, for what K is this probability the smallest and the largest.

This question has become known as Sylvester’s four-point problem and has
proved to be extremely fertile. It took more than fifty years (and several er-
roneous proofs) to find the answer. Blaschke showed in [26] and [27] that the
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probability in question is largest for a triangle and smallest for the disk (or any
ellipse). His solution used the method of symmetrization and “shaking down”
that have become standard tools since.

Sylvester’s question, and its subsequent solution, determined the direction
of research for a long time. Many papers have been written starting with the
setting: let Xn = {x1, ..., xn} be a random, independent, uniform sample of n
points from some fixed d-dimensional convex body K and let Kn denote the
convex hull of Xn. Then Kn is a random polytope inscribed in K. Define, in
the style of Sylvester’s question, p(K, n) as the probability that Xn is in convex
position, that is, no xi lies in the convex hull of the others, or in other words,
that Kn has exactly n vertices. In this setting, the four-point problem asks for
the determination of (the complement of) p(K, 4). Several results have been
achieved about p(K, n) for various convex bodies in Rd with various values of
n. We return to them a little later.

2 Rényi and Sulanke

In 1963 a new question concerning random polytopes appeared in a much quoted
paper by Rényi and Sulanke [53]. Apparently, Blaschke played a role at the
origin of this new direction, almost fifty years after his solution of Sylvester’s
four-point problem. Here is how Sulanke remembers it [59].

“My motivation for considering problems on geometric probabilities origi-
nated in discussion with W. Blaschke on integral geometry: Express geometri-
cally invariant properties of figures by their integral invariants. Alfréd Rényi’s
idea was to pose problems on geometrical probabilities on the base of invariant
measures considered in integral geometry. The probabilistic description of ran-
dom figures, e.g. distributions, moments, asymptotic coefficients etc. should
yield new integral geometric entities containing information about the geometry
of the random figures. This general point of view has been the motivation of all
my papers about geometric probabilities. We did not consider, and I did not
know, Sylvester’s four-point problem.”

What Rényi and Sulanke observed is the following. For a fixed convex body
K ⊂ Rd the random polytopes Kn get closer and closer to K as n gets larger
and larger with high probability. So how does the random variable Vol (K \Kn)
behave? Also, how do the polytopal properties of Kn, for instance the number
of vertices, behave as n tends to infinity? They determined, asymptotically,
the expectation of these random variables when K is a polygon and when K
has smooth boundary see [53]. Their result was the starting point of, and the
motivation for, hundreds of papers. Most of them are about expectations of
various functionals associated with Kn. More recently there have been several
breakthrough results concerning the distribution of these random variables, in
particular central limit theorems and large deviations.

3 Lattice polytopes

In this third introductory section we just state two basic problems.
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Integer points in convex bodies, in particular disks, balls, and ellipsoids,
have been studied for a long time. The circle problem asks for the number of
lattice points in the circle rB2, of radius r centred at the origin. In this paper
we are interested in a different question. Namely, consider the integer convex
hull, I(K) of a convex body K in Rd which is defined as the convex hull of
K ∩Zd. Motivation for the definition of I(K) comes from integer programming
where one wants to maximize a linear function over all integer points in a fixed
convex body K, or, what is the same, over the integer convex hull, I(K).

The integer convex hull is clearly a polytope, moreover, it is a lattice poly-
tope meaning that all of its vertices belong to Zd. How many vertices, edges,
facets does it have, for instance when K = rBd, and r is large? We will come
back to this question later.

In a different direction, V I Arnold asked the following beautiful and in-
spiring question [3]. How many different lattice polytopes are there? Infinitely
many, of course. Refine the question then. Two lattice polytopes are said to
be equivalent if one can be carried to the other by a lattice preserving affine
transformation. This is an equivalence relation, and equivalent polytopes have
the same volume. The refined question is this: How many equivalence classes
are there in dimension d of volume at most W . The answer will be given in
Section 14.

The present survey aims at explaining the recent developments on random
polytopes, together with the asymptotic behaviour of the expectations. It will
also cover old and new results around Sylvester’s question. We will see further
that random polytopes and lattice polytopes behave quite similarly, although
the proof methods in the two cases are different. As a rule, proofs are not given
here, with some exceptions where I felt that a sketch can help the reader to un-
derstand the underlying ideas better. In particular, I explain how the economic
cap covering theorem can be used to estimate expectations and variances. It
is not my intention to present here every result: there are too many of them
anyway. I rather try to emphasize directions, new ideas, and basic results, and
their consequences.

4 Notation

A convex body in Rd is a convex compact set with non-empty interior. We
write K or Kd for the family of all convex bodies in Rd. The family of convex
polytopes, to be denoted by P = Pd, and the family of smooth convex bodies,
to be denoted by C = Cd will often be treated separately. We assume that each
K ∈ Cd has twice continuously differentiable boundary whose Gauss curvature
is positive everywhere. We won’t indicate the dimension if there is no danger
of ambiguity.

We write K1, P1 and C1 for the subfamilies where the volume is equal to 1.
This is often very convenient since for K ∈ K1 the probability measure and the
Lebesgue measure coincide.

As usual, fj(P ) denotes the number of j-dimensional faces of a polytope
P ∈ Pd. We write Vol S for the volume of a set S ⊂ Rd. Also, affX stand
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for its affine hull, and convX or simply [X] for its convex hull, and bdS for its
boundary.

As usual, we will write Eφ(Kn) for the expectation of the random variable
φ(Kn), and Var φ(Kn) for its variance. For instance, Ef0(K, n) is the expec-
tation of the number of vertices of Kn. Since Kn is very close to K with high
probability (as n gets large), we are interested in the difference Vol (K \ Kn)
which will be denoted by E(K, n).

On the technical side we will use the “big Oh” and “little oh” notation,
together with Vinogradov’s very convenient � and � symbols. So f(n) �
g(n) means that there are constants c1 and c2 such that f(n) ≤ c2g(n) for all
n ≥ c1. These constant of course do not depend on n. Unless otherwise stated,
they only depend on dimension. Sometimes we use f(n) ∼ g(n) meaning that
f(n) � g(n) � f(n). Constants will be denoted by c, ci, bj , D, α, β. They
usually depend on dimension and their value may vary from place to place.

To avoid complications with trivialities we assume throughout that the di-
mension d is at least two.

5 Asymptotic expectations

Expectations of φ(Kn), for certain functionals φ, can be computed with high
precision when K ∈ Kd is smooth and when it is a polytope. The basic method
for this appears already in Rényi, Sulanke [53]. We give a quick sketch in the
case when φ is of the form

φ(Kn) =
∑
F∈F

φ(F ),

where F is the set of facets of the polytope Kn. So the method applies for
instance when φ is fd−1, or surface area. Since Kn is a simplicial polytope with
probability one, each facet is of the form [xi1 . . . , xid ]. We write 1{A} for the
indicator function of the event A. Then, assuming K ∈ K1,

Eφ(Kn) =
∑

1≤i1<...<id≤n

∫
K

. . .

∫
K

1{[xi1 , . . . , xid ] ∈ F ]} ×

×φ[xi1 , . . . , xid ])dx1 . . . dxn

=

(
n

d

)∫
K

. . .

∫
K

1{[x1, . . . , xd] ∈ F}φ([x1, . . . , xd])dx1 . . . dxn.

Write V = Vol C(x1, . . . , xd) for the volume of the smaller cap, C(x1, . . . , xd),
cut off from K by H = aff{x1, . . . , xd} (which is a hyperplane, almost surely).
Since F = [x1 . . . , xd] is a facet if and only if xd+1, . . . , xn are all on one side of
H, we have the following.

Eφ(Kn) =

(
n

d

)∫
K

. . .

∫
K

[(1− V )n−d + V n−d]φ(F )dx1 . . . dxd. (5.1)

Next we use the Blaschke-Petkantschin [54] integral formula

Eφ(Kn) =

(
n

d

)∫
G
[(1− V )n−d + V n−d]φ∗(F )dH
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where the integral is taken over the Grassmannian of all hyperplanes with dH
denoting the corresponding measure, and where by Blaschke-Petkantschin

φ∗(F ) = (d− 1)!
∫

K∩H
. . .

∫
K∩H

φ(F )Vd−1(F )dx1 . . . dxd

with the variables in the last integral coming from K ∩H, and Vd−1(F ) is the
surface area of F .

Here V n−d ≤ 2−(n−d) which is very small. Moreover, (1 − V )n−d is small,
again, unless V ≤ cn−1 log n. So the dominating part of the integral comes
from hyperplanes H that are close to the boundary of K in the sense that they
cut off a cap of small volume from K.

One can give precise estimates for the last integral in several special cases.
For instance when φ = fd−1 (then φ(F ) = 1) the above formula can be directly
evaluated for smooth convex bodies, using local Taylor expansion of bdK, see
[53] for d = 2 and [70] for d ≥ 2. The result is that for K ∈ C1

Efd−1(Kn) = cdΩ(K)n
d−1
d+1 (1 + o(1)),

where Ω(K) is the affine surface area of K.
Rényi and Sulanke [53] used this method to determine Ef0(Kn) for convex

polygons and smooth planar convex bodies. In the plane f0(Kn) = f1(Kn), and
E(K, n) can be determined from Ef0(Kn) by Efron’s identity [34] stating that
for every convex body K ∈ K1

Ef0(Kn) = nE(K, n− 1). (5.2)

The technique also works in other cases as well. For small dimensions the
f -vector is completely determined by fd−1, and E(K, n) can be determined
by Efron’s identity. Schneider and Wieacker [56] computed the expectation of
the mean width, V1(K) − EV1(Kn), when K ∈ Cd using the above method.
Wieacker [70] determined E(K, n) for the case when K = Bd, the unit ball of
Rd. But often the integrals are too difficult to handle, and a different approach
is needed. We return to this question in Section 9.

The limitation of the integral geometric technique is that it can only apply
when K is a polytope or has smooth boundary. In the next two sections we
describe another method that works, with less precision though, for general
convex bodies.

6 Expectations and the floating body

A cap of a convex body K ∈ Kd is simply K∩H where H is a (closed) halfspace.
Let Xn be a random sample of n uniform, independent points from K. A cap of
volume 1/10n contains no point from Xn with high probability, while a cap of
volume 10/n does contain a point from Xn with high probability. This suggest
that Kn is close to what remains of K after deleting all caps of volume 1/n.
For the precise formulation we need some definitions.
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First we define the function v : K → R by

v(x) = min{Vol (K ∩H) : x ∈ H, and H is a halfspace},

The level sets of v are defined, as usual, via

K(v ≥ t) = {x ∈ K : v(x) ≥ t}.

The wet part of K with parameter t > 0 is

K(t) = K(v ≤ t) = {x ∈ K: : v(x) ≤ t}.

The name comes from the mental picture when K is a 3-dimensional convex
body containing t units of water. We call K(v ≥ t) the floating body of K with
parameter t > 0 as, in a similar picture, this is the part of K that floats above
water. The floating body is the intersection of halfspaces so it is convex.

The above philosophy suggests the Kn is close to the floating body K(v ≥
1/n). Even more importantly, K \Kn is close to the wet part K(1/n). This is
the content of the following theorem from [18].

Theorem 6.1 For every convex body K ∈ K1,

Vol K(1/n) � E(K, n) � Vol K(1/n).

We emphasize again that, here and later on, the constants applied by the �
notation depend only on dimension. Theorem 6.1 turns out to be useful when
considering the f -vector of Kn. Efron’s identity (5.2) and Theorem 6.1 give
that order of magnitude of Ef0(Kn) behaves exactly as nVol K(1/n). This fact
was extended to all fj in [8].

Theorem 6.2 For every convex body K ∈ K1, and for all j = 0, 1, . . . , d− 1

nVol K(1/n) � Efj(Kn) � nVol K(1/n).

The strength of these two theorems lies in the fact that they hold for all
convex bodies, not only for smooth ones or for polytopes. Note, further, that
both Kn and K(1/n) are affine equivariant, which is just as well. Theorem 6.1
says that in order to determine the order of magnitude of E(K, n) it suffices
to determine the volume of the wet part which is not a random quantity. An
analogous statement holds for Efj(Kn). So the next question is the volume of
the wet part Vol (K(t)). The following is known about it [18].

Theorem 6.3 For every convex body K ∈ K1, and for all positive t ≤ t0(d) =
(2d)−2d

t

(
log

1
t

)d−1

� Vol K(t) � t
2

d+1 .
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The estimate on the right hand side is essentially the affine isoperimetric
inequality, and the best constant is known. The left hand side inequality is of
the right order of magnitude when K is a polytope. It is conjectured that, in the
left hand side inequality, the best constant appears when K is a simplex. What
happens between these two special classes (Pd and Cd) is not a mystery; it is
the usual unpredictable behaviour. Informally stated, Vol K(t) approximates
the upper bound t2/(d+1) and the lower bound t(log 1

t )
d−1 infinitely often, as

t → 0, for a typical (in Baire category sense) convex body K.
Theorem 6.1 implies that for every convex body K ∈ K1,

1
n

(log n)d−1 � E(K, n) � n−
2

d+1 . (6.3)

The right hand side inequality, which is due to Groemer [36], can be formulated
more precisely. Among all convex bodies of volume one, E(K, n) is the largest
for the Euclidean ball (or any other ellipse) of volume one. We will see in
Section 9 that the quantity on the left (and right) hand side is the correct order
of magnitude for P1, the class of polytopes (and for C1, the smooth convex
bodies).

Theorem 6.1 extends to intrinsic volumes as well. But as intrinsic volumes
are not invariant under affine transformations, we have to assume that K ∈ Kd

contains a ball of radius r and is contained in a ball of radius R. Under these
conditions the following holds (cf. [8]). For all j = 1, . . . , d

Vj(K)− Vj(K(v ≥ 1/n) � Vj(K)− EVj(Kn) � Vj(K)− Vj(K(v ≥ 1/n),

where the implied constants depend on d, r, R. (Here Vj(K) denotes the jth
intrinsic volume of K.) But the behaviour of Vj(K)−Vj(K(v ≥ t) is not known
in general, so we do not have the analogs of Theorem 6.3 or the inequality (6.3).

The proof of Theorems 6.1 and 6.2 is simplified by the following

Fact 6.4 nE(K, n− 1) = Ef0(Kn) � Ef1(Kn) � . . . � Efd−1(Kn).

Here the equality is just Efron’s identity (5.2). The subsequent inequal-
ities are implied by the fact that Kn is simplicial with probability one, and
for a simplicial polytope fj(Kn) ≤ (j + 2)fj+1(Kn) when j = 0, 1, . . . , d − 2.
These inequalities follow easily by estimating, in two ways, the number of pairs
(Fj+1, Fj) where Fj is a j-dimensional face contained in Fj+1 which is a j + 1-
dimensional face.

Fact 6.4 implies that, for the proof of Theorems 6.1 and 6.2, it suffices to
prove two things:

Lemma 6.5 Vol K(1/n) � E(K, n)).

Lemma 6.6 Efd−1(Kn) � nVol K(1/n).

Lemma 6.5 is very easy to prove. The minimal cap belonging to x ∈ K is a
cap C(x) of K with x ∈ C(x) and Vol C(x) = v(x). Note that the minimal cap
C(x) need not be unique, so our notation is a little ambiguous. Observe that

Prob[x /∈ Kn] ≥ Prob[C(x) ∩Xn = ∅] = (1− v(x))n,

7



which implies that, for every t ∈ [0, 1]

E(K, n) =
∫

K
Prob[x /∈ Kn]dx ≥

∫
K

(1− v(x))ndx

≥
∫

K(t)
(1− t)ndx = (1− t)nVol K(t).

Choosing here t = 1/n finishes the proof. (We mention that this method works
in much more general setting as well.)

The proof of Lemma 6.6 is more difficult yet interesting and instructive, so
I will give a sketch. It uses the so called economic cap covering theorem which
is stated in the next section. Afterward we return to the proof of Lemma 6.6

7 Economic cap coverings

The economic cap covering theorem is from [18] and [8]. It says the wet part
K(t) can be covered by caps of volume � t economically.

Theorem 7.1 Given K ∈ K1 and a positive t < (2d)−2d, there exist caps
C1, . . . , Cm and pairwise disjoint convex sets C ′

1, . . . , C
′
m with C ′

i ⊂ Ci such
that

(i) ∪m
1 C ′

i ⊂ K(t) ⊂ ∪m
1 Ci

(ii) Vol Ci � t, (i = 1, . . . ,m), and Vol C ′
i � t, (i = 1, . . . ,m).

(iii) every cap C of volume t is contained in some Ci.

Here (i) and (ii) just say that the Ci cover the wet part, but do not overcover
it. These conditions show how many caps are needed in the economic covering:

Vol K(t)/t � m � Vol K(t)/t. (7.4)

We will write Kd for the set of ordered d-tuples (x1, . . . , xd) from K. Recall
that such a d tuple defines, with probability 1, the smaller cap C(x1, . . . , xd)
cut off by the hyperplane H = aff{x1, . . . , xd} from K. Its volume is V =
Vol C(x1, . . . , xd). Condition (iii) of the economic cap covering theorem directly
implies the following

Corollary 7.2 If K ∈ K1 and t ≤ (2d)−2d, then

{(x1, . . . , xd) ∈ Kd : V ≤ t} ⊂
m⋃
1

(Ci, . . . , Ci).

where C1, . . . , Cm are from Theorem 7.1.

The next corollary expresses a useful concavity property of the function
t → Vol K(t). It says that, apart from the constant implied by the � notation,
the dth root of Vol K(t) is a concave function. This will be sufficient for our
purposes, that is, for the proof of Lemma 6.6.
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Corollary 7.3 If K ∈ K1 and t ≤ (2d)−2d, and λ ≥ 1, then

Vol K(t) � λ−dVol K(λt).

Theorem 6.1 is based on the idea that K \Kn and the wet part K(1/n) are
close to each other. The cap covering theorem can be used to prove that Kn

contains the wet part K(c log n/n) with high probability.

Theorem 7.4 For every d ≥ 2 every c > 1 there is c′ > 0 such that for every
K ∈ K1 and for large enough n

Prob
(
K(c′ log n/n) ⊂ Kn

)
≥ n−c.

This useful fact is proved in [15]. Another and more general proof, using
VC-dimension, was given by Van Vu [67].

8 Proof of Lemma 6.6

We are going to use (5.1) with φ = fd−1 in which case φ(F ) = 1 if F is a facet
of Kn and 0 otherwise.

Efd−1(Kn) =

(
n

d

)∫
K

. . .

∫
K

[(1− V )n−d + V n−d]dx1 . . . dxd, (8.5)

We split the domain of integration into two parts: K∗ is the subset of
Kd where the function V is smaller than (c log n)/n, and K0 is where V ≥
(c log n)/n. The constant c will be chosen large but depending only on d.
Clearly V ≤ 1/2. The integrand over K0 is small:

(1− V )n−d + V n−d ≤ 2(1− V )n−d ≤ 2 exp{−(n− d)V }
≤ 2 exp{−(n− d)(c log n)/n} = 2n−c(n−d)/n

which is smaller than n−(d+1) if c is chosen large enough (depending only on
d). Then the contribution of the integral on K0 to Efd−1(Kn) is at most 1/n
so it is very small since, trivially, Efd−1(Kn) is at least one.

Now let h be an integer with 2−h ≤ (c log n)/n. For each such h let Mh be
the collection of caps {C1, . . . , Cm(h)} forming the economic cap covering from
Theorem 7.1 with t = 2−h.

Assume now that (x1, . . . , xd) ∈ K∗. The cap C(x1, . . . , xd) has volume V .
We associate with (x1, . . . , xd) the maximal h such that, for some Ci ∈ Mh,
C(x1, . . . , xd) ⊂ Ci. Such a maximal h exists by (iii) of Theorem 7.1. It follows
that

V = Vol C(x1, . . . , xd) ≤ Vol Ci � 2−h

and, by the maximality of h,

V = Vol C(x1, . . . , xd) ≥ 2−h−1

since otherwise C(x1, . . . , xd) would be contained in a cap from Mh+1.
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For such an (x1, . . . , xd) we have

(1− V )n−d + V n−d ≤ 2(1− V )n−d ≤ 2(1− 2−h−1)n−d ≤ 2 exp{−(n− d)2−h−1}.

Instead of integrating over K∗, we integrate each (x1, . . . , xd) on its associ-
ated Ci ∈Mh. In formula (8.5) the integral on Ci ∈Mh is bounded by

2 exp{−(n− d)2−h−1}Vol (Ci)d � exp{−(n− d)2−h−1}(2−h)d

as all the xi come from Ci. Summing this for all Ci ∈Mh and all h ≥ h0 where
h0 = b(c log n)/nc we get that

Efd−1(Kn) �
(

n

d

) ∞∑
h0

∑
Ci∈Mh

exp{−(n− d)2−h−1}2−hd

�
(

n

d

) ∞∑
h0

exp{−(n− d)2−h+1}2−hd|Mh|

�
(

n

d

) ∞∑
h0

exp{−(n− d)2−h+1}2−h(d−1)Vol K(2−h)

where the last inequality follows from (7.4).
The rest of the proof is a direct computation using properties of the cap

covering. We sum first for h ≥ h1 where h1 is defined by 2−h1 ≤ 1/n < 2−h1+1.
The sum from h1 to infinity is estimated via:

∞∑
h1

.. ≤
∞∑
h1

exp{−(n− d)2−h+1}2−h(d−1)Vol K(1/n)

≤ Vol K(1/n)
∞∑
h1

2−h(d−1) ≤ n−(d−1)Vol K(1/n).

When h0 ≤ h < h1 we set h = h1 − k so k runs from 1 to k1 = log log n + log c.
Corollary 7.3 shows that Vol K(2−h) ≤ Vol K(2k/n) � 2kdVol K(1/n). Thus

h1−1∑
h0

.. �
k1∑

k=1

exp{−(n− d)2−h1+k−1}2(−h1+k)(d−1)2kdVol K(1/n)

� n−(d−1)Vol K(1/n)
k1∑

k=1

exp{−(n− d)2k/n}2k(d−1)2kd

� n−(d−1)Vol K(1/n)

where the last step is justified easily.

Remark. This proof shows the power and usefulness of the economic cap
covering theorem. It gives a new method for estimating integrals of the type
(8.5): instead of integrating over all d-tuples from K, we split integration on
suitably chosen caps from Mh. On each cap the integral can be estimated
directly. The computation is then reduced to estimating an infinite sum which
can be done by standard methods using properties of the cap covering.
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9 Further expectations

The integral geometric technique of Section 5 did not work for Ef0(Kn) or for
E(K, n). Determining them had been an open problem for some time. Solution
in the case when K ∈ C1 came from Bárány [9], and somewhat more generally
from Schütt [57]. The cap covering technique was used in [9] to show that
Kn behaves essentially independently in the vicinity of two points from bdK
when n is large enough. The method is a combination of the integral geometric
approach with this independence structure. The result is similar to Efd−1(Kn),
only the constants differ. For all K ∈ C1

Ef0(Kn) = c0Ω(K)n
d−1
d+1 (1 + o(1)),

where Ω(K) is the affine surface area of K and c0 is a constant depending only
on d. By Efron’s identity, the analogous result holds for E(K, n).

We write P instead of K when the mother body is a polytope, and write
Pn instead of Kn for the corresponding random polytope. In the case of simple
polytopes, Affentranger and Wieacker [1] extended the integral geometric ap-
proach to the case when φ(F ) (F is a facet of Pn) is of special form, namely,
when φ(F ) = (w(F )Vd−1(F ))q. Here w(F ) is the width of the cap cut off by
aff(F ) from P , in the direction of the outer normal to F , and q is a positive
integer. Using this result, the case of general, non-simple polytopes was solved
by Bárány and Buchta [14]:

Theorem 9.1 For a polytope P ∈ K1

E(P, n) =
T (P )

(d + 1)d−1(d− 1)!
logd−1 n

n
(1 + o(1)) .

Here T (P ) is the number towers of P , where a tower of P is a chain F0 ⊂
F1 ⊂ . . . ⊂ Fd−1, where Fi is an i-dimensional face of P .

The main novelty in the proof of Theorem 9.1 is that most of the volume
missed by Pn is concentrated in small simplices associated with the towers of
P . Another feature of the proof is “independence of shape”: the missed volume
near a fixed point of the boundary is almost independent of other parts of the
boundary. This implies that what happens in one of those small simplices is
essentially independent of what happens in another small simplex. Then the
missed volume in each small simplex is the same and can be determined from
the result of Affentranger and Wieacker [1].

The difference between the random polytopes Kn (coming from K ∈ Cd)
and Pn (coming from P ∈ Pd) is beautifully highlighted here. The vertices
of Kn are distributed almost uniformly near the boundary of K, their density
depends on the local curvature. The vertices of Pn are distributed in the small
simplices. In both cases, the independence of shape phenomenon prevails.

Recently, Matthias Reitzner [49] found a way to extend the integral geo-
metric method so that it becomes applicable in many more cases. To explain
what the main novelty is, assume that the convex hull of the random points
x1, . . . , xk ∈ Xn determines a (k − 1)-face, F , of Kn. Let L be the orthogonal
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complement of F , and let K ′
n be the projection of Kn onto L. It is clear that

F is a (k− 1) face of Kn if and only if the projection of F onto L is a vertex of
K ′

n. This transforms the determination of Efk−1(Kn) into a lower dimensional
problem, provided all positions of affF , together with the choice of k uniform,
independent points in K∩affF are taken into account. The method leads, again,
to Blaschke-Petkantschin type integral geometric formulae. After lengthy and
nontrivial computations, these formulae can be evaluated in the case when K
is smooth and when K is a simple polytope. (The extension to the non-simple
case uses the independence structure and the small simplices from [14].) The
outcome is that Efj(Kn) is asymptotically equal to cjΩ(K)n(d−1)/(d+1) for con-
vex bodies in C1, and to bjT (P )(log n)d−1 for polytopes P ∈ Pd, with constant
depending on j and d.

10 Variances

Many papers have been devoted to determine the expectation of various func-
tionals of Kn. Yet up to quite recently, very little has been known about the
distribution of these functionals. A few notable exception will be mentioned in
Section 11. Wieacker and Weil, in their survey article [69] in 1993 complain
that the determination of the variance, for instance, is a major open problem.

The first result in this direction is due to Küfer [45]. He shows the up-
per bound O(n−(d+3)/(d+1)) for the variance of the missed volume when the
mother body is the unit ball. He extends this result for spherically symmetric
distributions with regularly varying tails.

The first general result concerning variances comes from a remarkable paper
of M. Reitzner [50]. He has established an upper bound on the variance of the
volume of Kn (which is the same as the variance of the missed volume) and on
fj(Kn) in the case of smooth convex bodies K:

Var Vol Kn ≤ c(K)n−(d+3)/(d+1)

Var fj(Kn) ≤ c(K)n(d−1)/(d+1)

where the constants c(K) depend on K and dimension only. These estimates
are based on the jackknife inequality of Efron and Stein [35], which implies (we
omit the details) that

Var Vol Kn ≤ (n + 1)E(Vol Kn+1 −Vol Kn)2

On the next page I give a short sketch of the method. It starts, quite
naturally, with a coupling argument since Kn+1 is just the convex hull of Kn

and xn+1, the last point from the random sample Xn+1. For simpler notation
we write y for xn+1. Let F be the collection of those facets F of Kn for which y
is not on the same side of the hyperplane affF as Kn. Clearly F = ∅ if y ∈ Kn.
We write [n] for the set {1, . . . , n}. The difference Kn+1 \ Kn is the union of
(pairwise internally disjoint) simplices [F, y] with F ∈ F . For a d-subset I of [n]
let FI denote the convex hull of {xi: i ∈ I}. Then, with

∑
I denoting summation

12



over all d-element subsets of [n],

Vol Kn+1 − Vol Kn =
∑
F∈F

Vol [F, y]

=
∑
I

1{FI ∈ F}Vol [FI , y] ≤
∑
I

1{FI ∈ F}V (FI),

where V (FI) denotes the volume of the cap C(FI) containing y which is cut
off by the hyperplane affFI . (This is well defined if FI ∈ F , and irrelevant
otherwise.) Now

(Vol Kn+1 −Vol Kn)2 =
∑
I

∑
J

1{FI ∈ F}V (FI)1{FJ ∈ F}V (FJ)

By symmetry we can assume V (FI) ≥ V (FJ) at the price of a factor 2. When
integrating, we can assume, again by symmetry, that I = [d], I ∩ J = [k] and
J = [k] ∪ {d + 1, . . . , 2d− k} and k ∈ {0, 1, . . . , d}. Write F = FI and G = FJ

with these I and J . So we have

E(Vol Kn+1 − Vol Kn)2 ≤ 2
d∑

k=0

(
n

d

)(
d

k

)(
n− d

d− k

)∫
K

. . .

∫
K

1{F ∈ F} ×

× V (F )1{G ∈ F}V (G)1{V (F ) ≥ V (G)}dx1 . . . dxndy

with the extra condition that y ∈ C(F )∩C(G). Consider now the above integral
for a fixed k. Using Theorem 7.4 it is not hard to see that this integral is
concentrated on the part where V (F ) ≤ (c log n)/n. Since F ∈ F , the variables
x2d−k+1, . . . , xn all lie in the complement of C(F ), their total contribution is at
most (1− V (F ))n−(2d−k). This shows that the integral for a fixed k is at most∫

K
. . .

∫
K

(1− V (F ))n−2d+k V (F )V (G)1{y ∈ C(F ) ∩ C(G)} ×

× 1{V (G) ≤ V (F ) ≤ c log n

n
}dx1 . . . dx2d−kdy.

When K is smooth the last integral can be estimated using local approximation
of K and integral geometric methods. This is what happens in [50]. But the
cap covering technique, the one used in Section 8 works just as well. Moreover,
it works not only for smooth convex bodies, but for polytopes as well. The
outcome is that for a polytope K ∈ P1

Var Vol Kn ≤ c(K)
1
n2

(log n)d−1 (10.6)

and the constant c(K) is proportional to the number of towers of K. The
variance of fj(Kn) can also be estimated analogously. In that case we have,
with the same remark about c(K) as above,

Var fj(Kn) ≤ c(K)(log n)d−1.

These results are stated, without proof, in Bárány, Reitzner [22].
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The upper bounds imply a strong law of large numbers for the corresponding
functionals.

What about lower bounds for the variances? In [51] Reitzner gives a match-
ing lower bound when K ∈ C1:

Var Vol Kn ≥ c(K)n−(d+3)/(d+1),

Var fj(Kn) ≥ c(K)n(d−1)/(d+1).

These lower bounds have been extended to every convex body K ∈ K1 in the
following form:

Var Vol Kn � 1
n

Vol K(1/n), (10.7)

Var fj(Kn) � Vol K(1/n).

The proof is given in [22]. It is based on properly decomposing the variance
(just like in [51]), and on the cap covering technique combined with a little
convex geometry.

The last results suggest that in general

Var Vol Kn ∼ 1
n

Vol K(1/n), and

Var fj(Kn) ∼ Vol K(1/n).

for all convex bodies in K1, with the implied constants depending only on
dimension. This is confirmed in the case when K is in P1 or in C1 by the
previously given upper bounds. Also, it can be proved in the planar case with
ad hoc methods.

11 Central limit theorems

The few exceptions where the variance had been known are connected to the
few cases when the central limit theorem had been established. One of them is
Groeneboom’s result [37] proving a central limit theorem (CLT from now on)
in the following form. For a polygon P is the plane, the distribution of f0(Pn)
is close to normal. Namely, if P has r vertices, then

f0(Pn)− 2
3r log n√

10
27r log n

→ N (0, 1)

in distribution, where N (0, 1) is the standard normal distribution. Further,
Cabo and Groeneboom [31] proved for a polygon P of area 1, in a version
suggested by Buchta [30], that

(1−Vol Pn)− 2
3r log n

n√
28
27r log n

n2

→ N (0, 1),
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again in distribution. Groeneboom showed the central limit theorem for the
case of the unit disk and f0, with the variances evaluated numerically. Hsing
[40] proved that, with K = B2 the unit disk,

(π −Vol Kn)− c1n
−2/3√

c2n−5/3
→ N (0, 1)

in distribution, again, with more or less explicit constants c1 and c2. The
asymptotic distribution of the Hausdorff distance between a planar convex body
K and Kn has been determined with high precision by Bräker, Hsing, and
Bingham [28].

A general central limit theorem was proved by Matthias Reitzner [51]. It
applies in the case when K ∈ C1, and it is about the Poisson random polytope
Πn (and not the usual random polytope Kn). The Poisson polytope is defined
by Πn = [K ∩ X(n)] where X(n) is a Poisson process of intensity n. For an
alternative definition let N be a random variable which is Poisson distributed
with mean n. Then Km is equal to Πn|N = m. Reitzner proved the CLT for
Vol Πn and fj(Πn), a remarkable achievement, in the following form.

Theorem 11.1 There is function ε(n), tending to zero as n → ∞, such that
for every K ⊂ C1,∣∣∣∣Prob

(
Vol Πn − EVol Πn√

Var Vol Πn
≤ x

)
− Φ(x)

∣∣∣∣ ≤ c(K)ε(n),

and for all j = 0, . . . , d− 1∣∣∣∣∣∣Prob

fj(Πn)− Efj(Πn)√
Var fj(Πn)

≤ x

− Φ(x)

∣∣∣∣∣∣ ≤ c(K)ε(n),

where c(K) is a constant depending only on K.

Here ε(n) = n−1/2+1/(d+1)(log n)c where c depends only on d.
The basic idea of the proof is to use a CLT with weak dependence (instead of

the usual independence condition). This idea was actually suggested by Avram
and Bertsimas [4], and the right CLT for this purpose is Rinott’s theorem [52]
(or another one by Baldi and Rinott [5]) which is often the convenient form of
C. Stein’s version of the CLT.

The weak dependence is given by the so-called dependency graph which is
defined as follows: Let ζi, i ∈ W , be a finite collection of random variables.
The graph G = (W,E) is said to be a dependency graph for ζi if for any pair
of disjoint sets W1,W2 ⊂ W such that no edge in E goes between W1 and W2,
the sets of random variables {ζi : i ∈ W1} and {ζi : i ∈ W2} are independent.

Theorem 11.2 (Rinott) Let ζi, i ∈ W be random variables having a depen-
dency graph G. Set ζ =

∑
i∈W ζi and σ2(ζ) = Var ζ. Denote the maximal

degree of G by D and suppose that |ζi − Eζi| ≤ M almost surely. Then∣∣∣∣Prob
(

ζ − Eζ√
Var ζ

≤ x

)
− Φ(x)

∣∣∣∣ ≤ 1√
2π

DM

σ(ζ)
+ 16

|W |
1
2 D

3
2 M2

σ2(ζ)
+ 10

|W |D2M3

σ3(ζ)
.
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When using this theorem one has to construct the dependency graph, define
the random variables ζi, and prove the necessary properties. Also, one needs a
lower bound on Var ζ.

Here is a sketch of how the construction goes for the case of Vol Πn. Set
T = (c log n)/n where c is a large constant, and take an economic cap covering of
the wet part K(v ≤ T ), with covering caps C1, . . . , Cm. Introduce the condition
K(v ≥ T ) ⊂ Πn and denote it by A. (By Theorem 7.4, K(v ≥ T ) ⊂ Kn happens
with very high probability. It is not hard to see that condition A holds with
high probability as well.)

We prove first the CLT under condition A. Choose a subset Si ⊂ Ci∩K(v ≤
T ) so that the Si are pairwise internally disjoint and their union is K(v ≤ T ).
This is clearly possible. The random variables are ζi = Vol (Si ∩ Πn). The
vertex set of the graph G is then [m]. In order to define the edges of G, let
Li be the set of points x ∈ K(v ≤ T ) visible from Si within K(v ≤ T ). This
means that x ∈ Li if there is a ∈ Si such that the segment [x, a] ⊂ K(v ≤ T ),
or, what is the same, [x, a] ∩K(v > T ) = ∅. Now two vertices i, j ∈ [m] form
an edge in G if there is a point visible within K(v ≤ T ) from both Si and Sj ,
that is, Li ∩ Lj 6= ∅. It is not hard to see that the maximal degree of G is
bounded by a constant that depends only on d. (The proof is based on the fact
that only a bounded number of caps can have a common point, which follows
from K ∈ Cd.) The next lemma shows that G is the independence graph with
random variables ζi.

Lemma 11.3 Assume condition A holds. Given disjoint subsets W1,W2 of W
with no edge between them, the random variables {ζi : i ∈ W1} are independent
of the random variables {ζj : j ∈ W2}.

The explanation is simple. Under condition A the random variable ζi is
determined by those facets of Πn that intersect Si. Thus each vertex b on such
a facet is visible from an a ∈ Si within K(v ≤ T ). So all vertices that belong to
a facet intersecting Si come from Li. If there is no edge between W1 and W2,
then ∪{Li : i ∈ W1} and ∪{Lj : j ∈ W2} are disjoint, and so the corresponding
variables are independent, due to a basic property of the Poisson process.

It is also clear that, under condition A, ζ =
∑

ζi = Vol Πn−Vol K(v ≥ T ).
The lower bound (10.7) on the variance Var Vol Kn carries over to that of
πn showing that Var Vol Πn ≥ c(K)n−(d+3)/(d+1). Also, Vol Si ≤ Vol Ci ≤
(c log n)/n. Thus Rinott’s theorem applies, and a quick checking proves Theo-
rem 11.1 under condition A.

The next task is to remove condition A. This can be done by the following
transference lemma from [25], which has been used in an implicit form in [51]
and in [68], and perhaps elsewhere as well.

Lemma 11.4 Let ξn and ξ′n be two series of random variables with means µn

and µ′n, variances σ2
n and σ′2n, respectively. Assume that there are functions

ε1(n), ε2(n), ε3(n), ε4(n), all tending to zero as n tends to infinity such that

(i) |µ′n − µn| ≤ ε1(n)σn.
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(ii) |σ′2n − σ2
n| ≤ ε2(n)σ2

n.

(iii) For every x, |Prob(ξ′n ≤ x)− Prob(ξn ≤ x)| ≤ ε3(n).

(iv) For every x, ∣∣∣∣Prob
(ξ′n − µ′n

σ′n
≤ x

)
− Φ(x)

∣∣∣∣ ≤ ε4(n).

Then there is a positive constant C such that for every x,∣∣∣∣Prob
(ξn − µn

σn
≤ x

)
− Φ(x)

∣∣∣∣ ≤ C
4∑

i=1

εi(n).

It is quite easy, though technical, to finish the proof of the CLT for Vol Πn.
The proof for fj(Πn) goes along very similar lines.

Next comes the CLT for Kn and one would like to use the transference
lemma between Kn and Πn, or rather, between Vol Kn and Vol Πn. The difficult
point is to prove condition (ii), that is, the corresponding variances are very
close to each other. This was achieved by Van Vu in [68] using his tail estimates
from [67]. Here is Van Vu’s remarkable central limit theorem.

Theorem 11.5 There is function ε(n), tending to zero as n → ∞, such that
for every K ⊂ C1,∣∣∣∣Prob

(
Vol Kn − EVol Kn√

Var Vol Kn
≤ x

)
− Φ(x)

∣∣∣∣ ≤ c(K)ε(n),

and for all j = 0, . . . , d− 1∣∣∣∣∣∣Prob

fj(Kn)− Efj(Kn)√
Var fj(Kn)

≤ x

− Φ(x)

∣∣∣∣∣∣ ≤ c(K)ε(n),

where c(K) is a constant depending only on K.

Here ε(n) = n−1/(d+1)+o(1).
The method has been extended to other cases as well, for instance when K

is a polytope. The following CLT has been proved by Reitzner and myself [22].

Theorem 11.6 There is function ε(n), tending to zero as n → ∞, such that
for every polytope K ⊂ P1,∣∣∣∣Prob

(
Vol Kn − EVol Kn√

Var Vol Kn
≤ x

)
− Φ(x)

∣∣∣∣ ≤ c(K)ε(n),

and for all j = 0, . . . , d− 1∣∣∣∣∣∣Prob

fj(Kn)− Efj(Kn)√
Var fj(Kn)

≤ x

− Φ(x)

∣∣∣∣∣∣ ≤ c(K)ε(n),

where c(K) is a constant depending only on K.
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Here εi(n) is of order (log n)−
d−1
2

+o(1), and c(K) is constant times a power
of the number of towers of K. I describe the proof in a nutshell. It uses the
transference lemma several times. First, one works with Poisson polytopes Πn,
under the condition that Πn is sandwiched between the floating bodies K(v ≥ s)
and K(v ≥ T ) where T = (α log log n)/n and s = 1/(n logβ n), where α and
β are suitable constants depending only on dimension. Note that both s and
T are very close to 1/n. The sandwiching happens with high probability. The
vertex set of dependency graph G is defined similarly, using a cap covering of
K(v ≤ T ) consisting of caps C1, . . . , Cm, just Si is a subset of Ci∩K(s ≤ v ≤ T ).
A pair i, j ∈ [m] is an edge of G a point b ∈ K(s ≤ v ≤ T ) is visible from both
Si and Sj within K(v ≤ T ). This time it is harder to give an upper bound on
the maximal degree, D, of G.

Theorem 11.7 D � T (K)4(log log n)4(d−1).

Of course, ζi = Vol (Πn ∩K(v ≤ T ), and again ζ = Vol Πn−Vol K(v ≥ T ).
The variance is known (see the previous section). All conditions of Rinott’s the-
orem are satisfied. Its conclusion gives the CLT for Vol Πn under the condition
of sandwiching. Removing this condition is technical and lengthy. The trans-
ference lemma is applied again, this time between Vol Πn and Vol Kn, which
is technical and exhausting but no serious difficulties. (The case of fj(Kn) is
worse.)

Finally we mention one of the geometric lemmas that is crucial for the proof.
Given z ∈ K(v ≤ T ), define S(z, T ) as the set of points x ∈ K that see z within
K(v ≤ T ), that is, the segment [z, x] is disjoint from K(v > T ). We need a
bound on the volume of S(z, T ), assuming that K ∈ P1.

Lemma 11.8 If 0 < 2v(z) ≤ T ≤ 1/2, then

Vol S(z, T ) � F (P ) T logd−1
(

T

v(z)

)
.

Note that the inequality Vol S(z, T ) � F (P ) T (log 1/T )d−1 follows imme-
diately from the fact that S(z, T ) ⊂ P (v ≤ T ). The improvement from 1/T to
T/v(z) (which is an improvement only if v(z) > T 2) is a significant step in the
proof of Theorem 11.6.

One remark is in place here. Perhaps it is more natural to work with Poisson
polytopes Πn than with ordinary random polytopes.

12 Tail estimates

Let Yn be a functional on the random polytope Kn, for instance Yn = Vol Kn.
We have seen that its expectation can be determined with high precision, its
variance can be estimated quite well, and Yn obeys the CLT near its expectation.
The next target is to estimate the tail probabilities

Prob(|Yn − EYn| ≥ T ).
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Of course, a precise and complete description of the tail probability would tell
almost everything one may wish to know about Yn. But such a description is,
in general, hopeless. Still, one can prove good estimates on these probabilities.
For instance, the inequality

Prob(|Yn − EYn| ≥
√

λVar Yn) ≤ c1 exp{−c2λ}

would say that Yn has exponential, or subgaussian tail. (Here c1, c2 are posi-
tive constants.) Such an inequality would have important consequences on the
higher moments of Yn, or the concentration of Yn around its expectation, etc.

An inequality of exponential type has been proved by Van Vu in the break-
through paper [67]. To present his results, we assume that K ∈ K1, z ∈ K(v ≤
t) with t ∈ (0, (2d)]−2d. Recall the definition from the previous section:

S(z, t) = {x ∈ K : [x, z] ∩K(v > t) = ∅}.

So S(z, t) is the set of points, visible from z within K(v ≤ t). Also, S(z, t) is
the union of all caps of volume t that contain z. Define next

g(t) = sup
z∈K(v≤t)

Vol S(z, t).

Note that for K ∈ C1, g(t) ∼ t, while for a polytope K, g(t) ∼ t(log 1/t)d−1.
This follows since for a polytope, Vol S(z, t) is maximal when z is a vertex, and
the union of S(z, t) over all vertices z of K contains K(v ≤ t). Set, finally,

Ṽ = Ṽ (n, t) = 36ng2(t)Vol K(t),

which is, as we will see soon, not far from the variance. Here is Van Vu’s
exponential tail inequality.

Theorem 12.1 Assume K ∈ K1. Then there are positive constants α, c, t0
such that the following holds. For every t ∈ ((α log n)/n, t0], and for every
λ ∈ (0, nVol K(t)] we have

Prob
(
|Vol Kn − EVol Kn| ≥

√
λṼ

)
≤ 2 exp{−λ/4}+ exp{−ctn}.

It is hard to appreciate the importance of this result at the first sight. We
present some of its consequences. Set t = (α log n)/n and define with this value
of t

Ṽn = Ṽ (n, t) = Ṽ (n, (α log n)/n).

Corollary 12.2 Assume K ∈ K1. Then the kth moment, Mk, of Vol Kn sat-
isfies

Mk = O(Ṽ k/2
n ).

In particular, for a polytope, Mk = O(n−2(log n)3kd/2).

Note that for the variance (which is the second moment) this estimate is
just a little weaker than the truth (10.6) and (10.7). Another consequence is the
concentration of Vol Kn near its expectation which we present for the polytopal
case.
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Corollary 12.3 Assume K ∈ K1 and f(n) = δ(n)n2(log n)−3d−1/2 where δ(n)
is a function tending to zero arbitrarily slowly. Then, almost surely,

lim
n→∞

∣∣∣∣ Vol Kn

EVol Kn
− 1

∣∣∣∣ f(n) = 0.

In the case when K ∈ C1, Corollary 12.2 gives an estimate for the variance
which is a power of a log n factor off the true variance. For this case, Van Vu
proves a more precise version of Theorem 12.1.

Theorem 12.4 Assume K ∈ C1. Then there are positive constants α, c such

that the following holds. For every λ ∈
(

0, αn
(d−1)(d+3)
(d+1)(3d+5)

]
and with Ṽ = 4αn

d+3
d+1

we have

Prob
(
|Vol Kn − EVol Kn| ≥

√
λṼ

)
≤ 2 exp{−λ/4}+ exp{−cn(d−1)/(3d+5)}.

We state, rather informally, the two consequences of this theorem that are
analogous to the two corollaries above. If K ∈ C1, then the kth moment, Mk,
of Vol Kn satisfies

Mk = O

(
n

k
2

d+3
d+1

)
.

Note that this estimate gives the right order of magnitude for the variance. For
the concentration of Vol Kn we have

lim
n→∞

∣∣∣∣ Vol Kn

EVol Kn
− 1

∣∣∣∣ δ(n)n(d+3)/(d+1)(log n)−1/2 = 0

for any function δ(n) tending to zero as n →∞.
The proof of Theorem 12.1 is based on a divide and conquer martingale

technique due to Van Vu [65] and Kim and Vu [43]. It is a strengthening of
Azuma’s inequality, and it has proved very powerful in other cases as well (cf.
[66], [43]). The method works for other functionals like fj(Kn) although there
are serious difficulties and new ideas are needed. Also, the proof of Theorem
12.4 is not straightforward, several novel ideas are used including interesting
geometric properties of the wet part and of S(z, t). The interested reader is
advised to read Van Vu’s excellent paper [68].

Here is a large deviation theorem, due to Calka and Schreiber [32], which is
similar to Theorem 2.11 from Van Vu’s paper [67]. It is about the number of
vertices of Kn when the underlying body K = Bd. Write Zn for f0(Kn) in this
case. The result says that for every ε > 0

lim inf
n→∞

1
log n

log (− log Prob{|Zn − EZn| > εEZn}) ≥
d− 1
3d + 5

.

There is another approach to random polytopes, using Poisson approxima-
tion and the theory of stochastic processes which is beyond the scope of this
survey. The generic result of this approach can be summarized as follows: The
random point measures induced by the vertices of the convex hull of a Pois-
son sample from the unit ball, when properly rescaled and centred, converge to
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those of a mean zero Gaussian field. Such a result gives more than just, say, the
central limit theorem for the number of vertices of the convex hull. However,
it does not seem to cover other functionals like Vol Kn or fj(Kn). For more
information see for instance Penrose and Yukich [47] and the references there.

13 The integer convex hull

We return now to the question posed in Section 3. Recall that the integer
convex hull, I(K), of a (large) convex body K ∈ Kd has been defined as

I(K) = conv(K ∩ Zd) = [K ∩ Zd].

Define Zd ⊂ Pd as the family of lattice polytope (with positive volume). Thus
I(K) ∈ Zd, if K is “large”. We are interested in the number of vertices,
f0(I(K)). For simplicity we consider the case K = rBd, r large. (Other smooth
convex bodies behave very similarly.)

We start by quoting a beautiful theorem of G. E. Andrews [2] from 1963.

Theorem 13.1 For all P ∈ Zd,

f0(P ) � (Vol P )
d−1
d+1 .

The proof is not easy. By now there are several other proofs available, by
Konyagin and Sevastyanov [44], Schmidt [55], Bárány and Vershik [24], Bárány
and Larman [19], and Reisner, Schütt and Werner [48]. All of them are based
on different ideas and none of them is simple.

The following even more general statement was proved in [44] and [19]. For
all P ∈ Zd

T (P ) � (Vol P )
d−1
d+1 .

For simpler notation write Pr = I(rBd). The result implies, of course, that

fj(Pr)) � rd(d−1)/(d+1)

It has been proved in [6] (case d = 2) and in [19] that

fj(Pr) � rd(d−1)/(d+1). (13.8)

The proof in [19] is based on estimating the volume missed by Pr, which is
defined, as expected, as Mr = Vol rBd −Vol Pr.

Lemma 13.2 Mr � rd d−1
d+1 .

The proof of the Lemma relies the Flatness Theorem (cf [42], [41]) saying
that the lattice width of a convex body K ∈ Kd with K ∩ Zd = ∅ is bounded
by a number depending only on d. The proof of (13.8) is finished by invoking
a result from the theory of approximation of convex bodies by polytopes. It is
well known that a polytope with n vertices and inscribed in Bd misses � n−

2
d−1

volume of Bd. After suitable scaling we get

(f0(Pr))
− 2

d−1 � Mr

Vol rBd
� rd d−1

d+1
−d = r−

2d
d+1 ,
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directly implying (13.8).
The method works for fj(Pr) as well (by suitably extending the approxima-

tion result from vertices to j-dimensional faces), and gives

fj(Pr) � rd d−1
d+1 .

The example Pr shows that the exponent in Andrews’ theorem is best pos-
sible. Another, earlier example of the same type was given by V I Arnold in
[3]. We explain it in the planar case, extending it to higher dimensions is left
to the reader. Let P be the convex hull of the points (x, x2) where x ∈ Z and
−(n − 1)/2 ≤ x ≤ (n − 1)/2 when n is odd, and −(n − 2)/2 ≤ x ≤ n/2 when
n is even. Trivially, f0(P ) = n. It is easy to check that the area of P is very
close to n3/12.

Actually, the result fj(Pr) ∼ rd d−1
d+1 is what one would expect if random

polytopes and the integer convex hull of convex bodies (of rBd in particular)
behave similarly. For proper scaling we have to assume that n = Vol rBd ∼
rd. The expected number of vertices of the random polytope Kn in rBd (or,
what is the same, in Bd) is of order n(d−1)/(d+1) ∼ rd d−1

d+1 . Note however, that
while Ef0(Kn) is known asymptotically, only the order of magnitude of f0(Pr)
has been established. A little more is known in the planar case. Balog and
Deshoullier [7] determined the limit, as R → ∞ of the average of r−2/3f0(Pr)
on the interval r ∈ [R,R + H]. Here H slowly goes to infinity with R.

Motivation for considering the integer convex hull comes from the geometry
of numbers, the circle problem, and from integer programming. In integer
programming one wants to know that I(K) does not have too many vertices,
assuming, say, that K is a rational polytope. This simply means that K is
given by m inequalities with integral coefficients. The size of such an inequality
is the number of bits necessary to encode it as a binary string. Then the size of
the rational polytope is the sum of the sizes of the defining inequalities. Cook,
Hartman, Kannan, and McDiarmid [33] showed that for a rational polytope
K ∈ Pd of size φ

f0(I(K)) ≤ 2md(12d2φ)d−1.

Most likely, the inequality fj(I(K)) � φd−1 holds for all j = 1, . . . , d − 1 as
well (with the implied constant depend on d and m) but there is no proof in
sight.

The above inequality for f0(I(K)) is best possible, as shown by Bárány,
Howe, and Lovász in [17]. The construction uses algebraic number theory. It
shows further that the estimate fj(I(K)) � φd−1, for all j, is best possible, if
true.

There is a further parallel between random polytopes and the integer convex
hull, to be more precise, the randomized integer convex hull. Randomization
is introduced here since the usual integer convex hull of an individual convex
body may have few vertices. For instance, if Q is an aligned cube (or box)
in Rd, then I(Q) always has 2d, while the integer convex hull of a randomly
rotated copy of Q can have many more vertices. For randomization, the lattice
Zd is replaced by L, a randomly translated and rotated copy of Zd, and we
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investigate the randomized integer convex hull

IL(K) = conv(K ∩ L)

for a fixed convex body K. More precisely, for a translation vector t ∈ [0, 1)d

and a rotation ρ ∈ SO(d) around the origin, we set Lt,ρ = ρ(Zd + t), and define

L = {Lt,ρ : t ∈ [0, 1)d, ρ ∈ SO(d)}.

A natural probability measure on L is defined as the product of the Lebesgue
measure on [0, 1)d and of the normalized Haar measure on SO(d). This measure
is invariant under isometries of Rd.

If the convex body K is too flat, it may not contain a single lattice point.
That’s why we need to assume that our convex body K is round. We say that
K ∈ Kd is D-rounded if K contains a ball of radius r and is contained in a
concentric ball of radius R and R/r ≤ D. It is clear that Vol I(K) > 0, and
then I(K) ∈ Zd, if K ∈ K is D-rounded and has large enough volume. The
next result is from Bárány, Matoušek [20].

Theorem 13.3 Given d and D, there exist positive constant c0, depending only
on d and D, such that for all D-rounded K ∈ Kd with Vol K > c0,

Vol K(v < 1) � Ef0(IL(K)) � Vol K(v < 1)

where the implied constant depend only on d and D.

When comparing the randomized integer convex hull with a random poly-
tope in K, the proper scaling is again Vol K = n. Under this convention, case
j = 0 of Theorem 6.2 says that

Vol K(v < 1) � Ef0(Kn) � Vol K(v < 1)

as n → ∞, with the implied constants depending only on d. This inequality
and Theorem 13.3 show a strong analogy between random polytopes and the
randomized integer convex hull. Most likely, Efj(IL(K)) behaves like Efj(Kn)
for all j, but a proof looks hopeless for the time being.

We mention that the analogy, surprisingly, does not extend to the expected
missed area, which is just EVol (K \ IL(K)). In the case when, say, Q ∈ K2

is a square of (large) area A, the expected missed area of I(Q) is of order
(log A)2, while with the proper normalization n = A, E(Q,n) is only of order
log A. Details can be found in [20]. When working on the expected missed
area, we encountered (and solved) the following interesting question, a relative
of Buffon’s needle problem. Given a convex body C ∈ K2, determine the
probability that L ∩ C is lattice point free when L ∈ L is a random lattice.

14 Arnold’s question

Recall that two convex lattice polytope, P,Q ∈ Zd are said to be equivalent,
if there is a lattice-preserving affine transformation T : Rd → Rd such that
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TP = Q. Equivalent polytopes have the same volume. Let Nd(V ) denote the
number of equivalence classes whose volume is at most V . In [3] Arnold asks
for the determination of log Nd(V ). He proves that, in the planar case,

V 1/3 � log N2(V ) � V 1/3 log V

as V goes to infinity. Arnold’s proof is based on the estimate in Theorem 13.1
in the planar case (that he found independently of Andrews [2]), and on the
square lemma. This lemma states that every convex lattice polygon of area V is
contained in an aligned square of side length 36V . From this the upper bound
follows easily.

Arnold’s question turned out to be fertile, and Konyagin and Sevastyanov
[44] proved Theorem 13.1, again independently of Andrews [2]. They used it,
together with an extension of the square lemma, to show that

V
d−1
d+1 � log Nd(V ) � V

d−1
d+1 log V.

The extra log factor was removed in [24] by A M Vershik and the present author.
(In the planar case this had been done earlier in [21].)

Theorem 14.1 When d ≥ 2 and V →∞, then

V
d−1
d+1 � log Nd(V ) � V

d−1
d+1 .

The proof is based on several ideas from number theory, convexity, and
geometry of numbers. It uses the following extension of the square lemma.
First, let Zd

+ be the set of all a = (a1, . . . , ad) ∈ Zd where each ai > 0. Next,
given z ∈ Zd

+, we define the box of a as

Box(a) = {x ∈ Rd : 0 ≤ xi ≤ ai}.

For simplicity set
∏

a =
∏d

1 ai. Here is the box lemma which replaces the square
lemma in the proof.

Lemma 14.2 For every P ∈ Zd there is an a ∈ Zd
+ with

∏
a � Vol P such

that an equivalent copy of P is contained in Box(a). The implied constant
depends only on d.

As the number of boxes with
∏

a � V is less than V d (actually, much less),
the next step in the proof of the upper bound in Theorem 14.1 is the following
fact.

Lemma 14.3 For every a ∈ Zd
+ the number of convex lattice polytopes con-

tained in Box(a) is at most

exp
{

cd(
∏

a)
d−1
d+1

}
,

where cd is a constant depending only on d.
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The proof of this lemma is quite intricate, using ideas from generating func-
tions, convex geometry, and geometry of numbers. It is too involved to be
explained here.

The proof of the lower bound in Theorem 14.1 is easier. Consider P ∈ Zd

with n = f0(P ) � (Vol P )
d−1
d+1 , for instance Pr, the integer convex hull of rBd.

Let X be the set of vertices of P . For each nonempty subset Y of X, convY
is a convex lattice polytope in Rd, of volume at most Vol P . There are 2n − 1
such polytopes. It is not hard to see that most of them are d-dimensional and
very few of them are equivalent. This shows the lower bound in Theorem 14.1.

We remark that this argument can be turned around and used for the
proof of Andrews’ Theorem 13.1. Suppose that P ∈ Zd and Vol P ≤ V . By
Lemma 14.2 we can assume that P lies in some Box(a) with

∏
a � V . Again,

let X be the set of vertices of P . For each (nonempty) subset Y of X, convY is
a convex polytope in Box(a). These polytopes are all distinct and their number
is 2|X| − 1. By Lemma 14.3,

2|X| − 1 ≤ exp
{

cd(
∏

a)
d−1
d+1

}
� exp

{
c′dV

d−1
d+1

}

with a suitable constant c′d, implying, in turn, that |X| = f0(P ) � V
d−1
d+1 .

Theorem 14.1 immediately raises the following problem. Decide whether

lim
V→∞

V − d−1
d+1 log Nd(V )

exists or not. Determine the limit if it exists. This problem looks hard. The
answer is not known even in the planar case. Even if this problem is too hard,
we may be able see to how many convex lattice polytopes there are in Box(a).
The planar version of this question will be considered in the remainder of this
section.

We set up the problem a little differently. Define the lattice Zt as 1
t Z

2, t is
large, so Zt is a shrunken copy of Z2. Let K ∈ K2 be a convex body, and define
P(K, t) as the family of all convex Zt-lattice polygons that are contained in K.
How many such polygons are there, and what do they look like? This beautiful
and inspiring question is due to A M Vershik.

It comes as a pleasant surprise that log |P(K, t)| can be determined quite
precisely. The following result is from [11].

Theorem 14.4 For every K ∈ K2

lim
t→∞

t−2/3 log |P(K, t)| = 3 3

√
ζ(3

4ζ(2)
A∗(K).

Here A∗(K) is the supremum (actually, maximum) of the affine perimeter
that a convex body contained in K can have. See Blaschke [27], or Bárány [11]
for the definition and properties of affine perimeter. It is shown in [11] that there
is a unique convex body K0 ⊂ K whose affine perimeter equals A∗(K). The
correspondence K 7→ K0 gives a map K2 → K2 which is affinely equivariant,
that is, for every nondegenerate affine transformation T , (TK)0 = T (K0). The
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unique K0 has interesting properties. For instance, it contains no line segments
on its boundary, and its boundary is a parabola arc whenever it lies in the
interior of K. See [11] and [12] for further properties of K0.

The convex polygons in P(K, t) have a limit shape: almost all of them are
very close to K0. This is the content of the next theorem, where dist(X, Y )
denotes the Hausdorff distance of X, Y ⊂ R2.

Theorem 14.5 For every K ∈ K2 and every ε > 0,

lim
t→∞

|{P ∈ P(K, t) : dist(P,K0) < ε}|
|P(K, t)|

= 1.

This theorem was first proved in the case when K is the unit square. Then
K0 is bounded by four parabola arcs, each touching consecutive edges of the
unit square at their midpoints. This case was proved by Vershik [63] and Bárány
[10]. Sinai [58] gave a probabilistic proof, together with a central limit theorem
on the distribution of the convex Zt-lattice polygons lying in the vicinity of K0.
The case of general K ∈ K2 comes from [11].

More recently, Vershik and Zeitouni [64] established central limit theorems
and large deviation results about how big a fraction of P(K, t) is close to K0.

15 Back to Sylvester

Recall the definition from Section 15: for K ∈ K, p(K, n) denotes the proba-
bility that Xn, a random sample of n independent, uniform points from K, is
in convex position. Blaschke’s solution [26] to Sylvester’s four-point problem is
that for every convex body K ∈ K2

p(triangle, 4) ≤ p(K, n) ≤ p(disk, n).

Of course, p(K, n) can be defined for convex bodies K ∈ Kd with d > 2 as well.
Most of the known results are about the case when K = Bd, the Euclidean
unit ball: Hostinsky [38] determined p(B3, 5), later Kingman [39] calculated
p(Bd, d + 2). Miles [46] showed limd→∞ p(Bd, d + 3) = 1. He conjectured and
Buchta [29] showed limd→∞ p(Bd, d + m) = 1 for every fixed m > 3. Bárány
and Füredi [16] proved that p(Bd, n) is close to one as long as n < d−12d/2 and
close to zero for n > d2d/2.

Returning to the planar case Valtr [62] showed in 1997 that

p(triangle, n) =
2n(3n− 3)!

(n− 1)!3(2n)!
,

a surprisingly exact result.
Theorems 14.4 and 14.5 offer a new way to look at Sylvester’s four-point

problem. We can determine the size of P(K, t) with high precision, and the
typical shape of a polygon in it. So we may be able to do the same when the
points are chosen randomly from K. This is indeed the case for K ∈ K2. Even
the probability p(K, n) can be determined [12]:
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Theorem 15.1 For every K ⊂ K2
1

lim n2 n

√
p(n, K)

exists and equals e2

4 (A∗(K))3.

Here A∗(K) is the same as in Theorem 14.4. Moreover, conditional on Xn

being in convex position, the polygon [Xn] is very close K0, the unique convex
subset of K having maximal affine perimeter.

The proof of Theorem 15.1 is based on various properties of K0 and an
interesting probabilistic/geometric lemma. The setting is this. Let T be a
triangle with two distinguished vertices a, b. Again, Xn is a random sample
from T . We say that Xn forms a convex chain in T if the points of Xn together
with a and b are in convex position. The lemma (from [62] and [12]) says that
the probability that Xn forms a convex chain in T is equal to

2n

n!(n + 1)!
,

a surprisingly exact result again.
Theorem 14.4 has its analog in the random case. Let Q(Xn) be the random

collection of all convex polygons spanned by the points of Xn, i.e., P ∈ Q(Xn)
if and only if P = conv{xi1 , . . . , xik} for some k–tuple xi1 , . . . , xik ⊂ X that is
in convex position (k ≥ 3). The expectation of |Q(Xn)| can be determined, cf
[12]:

Theorem 15.2 For each K ∈ K2
1 we have

lim
n→∞

n−1/3 log E|Q(Xn)| = 3 · 2−2/3A∗(K).

Again, there is a limit shape to the elements of Q(Xn): the overwhelming
majority of the polygons in Q(Xn) are very close to K0. Also, a version of the
central limit theorem can be proved in this case [23].

Something can be saved in higher dimensions. It is shown in [13] that for
K ∈ Kd

1

c1 ≤ n
2

d−1 n

√
p(K, n) ≤ c2

with positive constants c1, c2 that depend on dimension only.
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