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Abstract

We show that for a given planar convex set K of positive area there exist three pairwise internally disjoint
convex sets whose union is K such that they have equal area and equal perimeter.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction and main result

The following interesting and annoyingly resistant question has been recently asked by
R. Nandakumar and N. Ramana Rao [14] and [15]. A convex k-partition of the plane R

2 is,
quite naturally, a family of k internally disjoint convex sets P1, . . . ,Pk with R

2 = ⋃k
1 Pi . The

question is whether, given a convex set K of positive area and an integer k � 2, there exists
a convex k-partition of R

2 such that all parts K ∩ Pi have equal area and equal perimeter. For
k = 2 the answer is, quite trivially, yes. The main result of this paper implies that the answer is
also yes when k = 3. This is contained in Theorem 1.1 below.

The solution of the problem relies on the methods from equivariant topology and can be
considered as a continuation of [1] and [2] whose notation and terminology are used here without
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much change. A point x in the plane and three halflines, �1, �2, �3, starting from x form a 3-fan.
The halflines are in anticlockwise order around x. They determine three angular sectors σ1, σ2,
σ3 with σi between �i and �i+1. The 3-fan is convex if each of the sectors σi is convex.

Theorem 1.1. Assume μ is an absolutely continuous (with respect to the Lebesgue measure)
Borel probability measure on R

2, and f is a continuous function defined on the sectors in R
2.

Then there is a convex 3-fan (x;�1, �2, �3) with

μ(σ1) = μ(σ2) = μ(σ3) = 1

3
and f (σ1) = f (σ2) = f (σ3).

The case k = 3 of the Nandakumar–Rao conjecture follows from the theorem by taking f (σ )

to be the perimeter of K ∩σ . Also, the Lebesgue measure restricted to K has to be approximated
by absolutely continuous measures which is no problem. The same way Theorem 1.1 implies the
existence of a convex 3-partition of K where the pieces have equal diameter, or equal width, etc.
We mention that every convex 3-partition of R

2 comes from a convex 3-fan, including the convex
partition by two parallel lines when the center of the 3-fan is at infinity. One of the difficulties in
the case of k > 3 is the lack of nice or natural description of convex k-partitions.

About ten years ago Kaneko and Kano [10] raised a question which is similar to that of Nan-
dakumar and Ramana Rao, and which was solved, independently, by Bespamyatnikh et al. [4]
and by Sakai [16]. They showed that, given an integer k � 2 and two absolutely continuous
probability measures μ1 and μ2 in the plane, there exists a convex k-partition, P1, . . . ,Pk of the
plane with μi(Pj ) = 1

k
for all i = 1,2 and j = 1, . . . , k. Neither this result, nor its proof seem

to help with the problem raised by Nandakumar and Ramana Rao because the perimeter is not
a measure.

It is more convenient to lift the measure and the 3-fans from R
2 to the 2-sphere S2 mainly

because S2 is compact. So let S2 be the unit sphere of R
3 and let R

2 be embedded in R
3 as

the horizontal plane tangent to S2 (at the North Pole). Denote by ρ the projection of the upper
hemisphere from the origin to the embedded R

2. Clearly, ρ−1 lifts any Borel measure on R
2

to a Borel measure on the upper hemisphere of S2. A 3-fan in R
2 is lifted to a 3-fan in S2 in a

natural way: a spherical 3-fan (x, �1, �2, �3) is a point x ∈ S2 and three great half circles �1, �2, �3
starting at x (and ending at −x) that are ordered anticlockwise when viewed from x. The angular
sector between �i and �i+1 is σi . It is clear that a spherical 3-fan is projected by ρ to a 3-fan
in R

2, and conversely, a 3-fan in R
2 is mapped by ρ−1 to a spherical 3-fan on S2. A spherical

3-fan is convex if the angle of each sector is at most π . It is also evident that a spherical 3-fan
is convex if and only if the corresponding planar 3-fan is convex. We will prove Theorem 1.1 in
a slightly stronger form:

Theorem 1.2. Assume μ is an absolutely continuous (with respect to the Lebesgue measure)
Borel probability measure on S2 and f is a continuous function on the sectors in S2. Then there
is a convex 3-fan (x, �1, �2, �3) such that

μ(σ1) = μ(σ2) = μ(σ3) = 1

3
and f (σ1) = f (σ2) = f (σ3).

In fact, this theorem holds under the weaker assumption that μ is not positive on any great
circle. This follows from a routine compactness argument.
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Fig. 1. The sectors.

A measure on the sphere S2 will be called nice if it is a probability measure that has a con-
tinuous density function which is positive on S2. We will prove Theorem 1.2 assuming that μ

is nice. This will suffice for the general case by the same compactness argument. By the same
token it is enough to prove the theorem for a dense set of nice measures, and we will assume, in
case of need, that our measure satisfies certain extra properties.

The proof of Theorem 1.2 uses equivariant topology, whose basic phase space/test map
method, applied in our case, will be described in the next section, without considering con-
vexity. The phase space V is given in Section 2, and its restriction to the so-called convex part
V conv in Section 4. We will then reduce Theorem 1.2 to a statement in equivariant topology,
Theorem 4.6. Then in Sections 5 and 6 we give two proofs of Theorem 4.6. The topology of
V conv is needed in both proofs. The first uses basic algebraic topology: degree, linking number,
homology (Section 5), while the second applies the Serre spectral sequence (Section 6).

Besides Theorems 1.1 and 1.2, the main novelty of this paper is the description of the convex
part and understanding its topology. In geometric applications of equivariant topology the phase
space is usually given, but in our case it depends on the measure on S2. The description of the
convex part and of its topology is accomplished here by combining methods from convexity,
measure theory, and topology.

2. The proof without convexity

Write V = {(x, y) ∈ S2 × S2: x ⊥ y}; V is the Stiefel manifold of all orthogonal 2-frames
in R

3, which is homeomorphic to SO(3) and to the 3-dimensional projective space RP 3.
To every (x, y) ∈ V we assign the 3-fan (x;�1, �2, �3) as follows: y is the midpoint of the half

great circle �1 whose endpoints are x and −x, and �2, �3 are defined by the condition μ(σi) = 1
3

for all i. As μ is nice, the half great circles �i and the sectors σi are determined uniquely. Thus
the mapping (x, y) → (x;�1, �2, �3) is well defined (see Fig. 1). We will simply write �i or σi

for �i(x, y) and σi(x, y). This should not cause any confusion.
We are going to use equivariant topology. Write yi for the midpoint of the great half circle �i .

So y = y1. Define the homeomorphism ω :V → V via

ω(x, y) = ω
(
x, y1) = (

x, y2).
This homeomorphism is in fact determined by the measure μ. Further, ω2(x, y) = (x, y3) and
ω3 = idV . Thus the cyclic group Z3 acts on V and ω is the action of its generator. Further, ω has
no fixed point and is a V → V homeomorphism that keeps the orientation of V since ω3 = id.
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We wish to show the existence of a (convex) 3-fan equipartitioning μ such that f (σ1) =
f (σ2) = f (σ3). Define a continuous map f :V → R

3 by

f = (
f (σ1), f (σ2), f (σ3)

) ∈ R
3.

The group Z3 acts on R
3 by shifting the coordinates cyclicly. That is, writing ω for the action of

its generator,

ω(t1, t2, t3) = (t2, t3, t1).

It is clear that the just defined f is a Z3-equivariant map, that is,

f ◦ ω = ω ◦ f .

Here the first ω acts on V while the second ω acts on R
3.

We put aside the convexity condition for this section and prove the existence of an (x, y) ∈ V

with f equal on the three sectors. The proof is from [1] but the statement is slightly more general
since here f does not come from a measure.

Proposition 2.1. Under the above conditions there is (x, y) ∈ V such that f (σ1) = f (σ2) =
f (σ3).

Proof. We assume the contrary which means that f avoids the diagonal � = {(t, t, t) ∈ R
3}.

This gives rise to a chain of maps

V → R
3 → �⊥ → S1

where the first arrow is f , the second is the orthogonal projection onto �⊥ (the orthogonal
complement of �), and the last arrow maps v ∈ �⊥ (v �= 0) to v/|v| ∈ S1 (the unit circle in �⊥).
Let g denote composition map V → S1. On this S1 ⊂ R

3, ω acts as a rotation by 2π/3. It follows
that g is a Z3-equivariant map, again:

g ◦ ω = ω ◦ g.

The set C = {(e3, y) ∈ V : y ⊥ e3} is invariant under ω, that is, C = ωC. Further, C is home-
omorphic to the circle S1. Let c :S1 → V be an equivariant homeomorphism onto C. (The
Z3-action on S1 is the usual rotation by 2π/3.) Then g ◦ c is a Z3-map. Choose the orientations
so that this map has positive degree. By a theorem of Krasnoselsky and Zabrejko [11] (cf. [3]
and [6] as well), the degree of g ◦ c is 1 mod 3.

Next, let c̃ denote the cycle in V obtained as a composition of the standard double cover
S1 → S1 and c. It follows that g ◦ c̃ has degree 2 mod 3. On the other hand the fundamental group
of V is Z2, therefore c̃ is homotopic to 0 implying that g ◦ c̃ has degree 0. Contradiction. �
Remark. This proof does not go through when the 3-fan is required to be convex because the
fundamental group of the “convex part” of V does not have to be (and is not) Z2. We mention
further that the circle C ⊂ V and the cycle c :S1 → C ⊂ V are going to play an important role in
what follows.
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Fig. 2. The hemisphere H(z), its measure h(z) and the fiber bundle p.

3. Preparations

In this section we introduce the necessary definitions to handle the condition of convexity in
Theorem 1.2. The map p :V → S2 is defined for (x, y) ∈ V as

p(x, y) = x × y,

so z = p(x, y) is the cross product of x and y. Since z ∈ S2, p is indeed a map V → S2, see
Fig. 2. The following fact is well known.

Fact 3.1. The map p :V → S2 is a fiber bundle, and every fiber p−1(z) is an S1.

We will often encounter the situation when S ⊂ S2 is a circle, i.e., a homeomorphic image
of S1. Then S2 \S consists of two connected components, Ω and Ω ′, each homeomorphic to the
2-dimensional open (topological) disk. Set U = p−1(Ω), and restrict the fiber bundle p to U .
The base of this fiber bundle p :U → Ω is a disk which is, of course, contractible. By Feldbau’s
theorem (cf. [8]), the fiber bundle is trivial in the sense that U is homeomorphic to the product
of the fiber, S1, and the base Ω . Thus U is an open solid torus, and so is U ′ = p−1(Ω ′).

It is clear that the angle of at most one of the sectors σ1, σ2, σ3 can be larger than π . There
is a simple and useful reformulation of the fact that for some (x, y) ∈ V the sector σ3(x, y) is
non-convex. We need a few definitions. For z ∈ S2 let

H(z) = {
v ∈ S2: vz � 0

}
where vz stands for the scalar product of vectors v, z. Thus H(z) is a half-sphere, see Fig. 2.
Define h(z) as the μ-content of H(z), that is, h :S2 → R is the function

h(z) = μ
(
H(z)

)
.

Lemma 3.2. Assume (x, y) ∈ V and z = p(x, y). Then σ3(x, y) is not convex if and only if
h(z) < 1/3.

Proof. This is very simple: �1 is a great half circle on the boundary of H(z) and �1 bounds the
sector σ3. Now h(z) < 1/3 if and only if σ3 properly contains H(z), which is the same as σ3 is
not convex. �

In the proofs to come we need to establish the existence of a cycle C ⊂ V that is invariant un-
der ω, that is, ωC = C and has the extra property that for each (x, y) ∈ C the corresponding 3-fan
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Fig. 3. h−1(1/3).

is convex. The existence of such a cycle follows from the following result, proved independently
by Dolnikov [7] and Živaljević, Vrećica [18].

Theorem 3.3. Given k � d probability measures in R
d , there is a (k − 1)-dimensional affine

subspace such that the measure of every halfspace containing this affine subspace is at least
1/(d + 2 − k) in every one of the k measures.

We apply this theorem with d = 3 and k = 2: the first measure is μ and the second is con-
centrated at the origin. The affine subspace is a line, passing through the origin. We now fix the
coordinate system in R

3 so that this line passes through the points ±e3. Then h(z) � 1/3 for
every z ∈ S2 whose e3 component is zero. By adding a little extra measure at e3 we can achieve
that h(z) > 1/3 for every such z. So we have the following

Corollary 3.4. With the coordinate system fixed as above, the circle C = {(e3, y) ∈ V : y ⊥ e3}
is invariant under ω and each point (e3, y) ∈ C defines a convex 3-fan.

We need the following lemma saying that every nice measure μ can be approximated by
another nice measure ν for which the set {z ∈ S2: ν(H(z)) = 1/3} is a nice 1-manifold. The
technical proof of the lemma is given in the last section.

Lemma 3.5. For every ε > 0 and every nice measure μ on S2 there is a nice measure ν such that

(i) |μ(σ) − ν(σ )| < ε for every sector σ ⊂ S2, and
(ii) {z ∈ S2: ν(H(z)) = 1/3} is a piecewise smooth 1-manifold (without boundary) in S2.

4. The convex part of V

In this section we describe a particular partition of V into two pieces, the convex part V conv,
and the non-convex part V n-conv, and establish some of their properties. This partition will be
only given at the end of this section.

Lemma 3.5 implies, via a routine compactness argument, that it suffices to prove Theorem 1.2
for nice measures μ for which h−1(1/3) is a piecewise smooth 1-manifold in S2. From now
on we assume that μ is such a nice measure. We suppose further that there is a z ∈ S2 with
h(z) < 1/3 as otherwise Theorem 1.2 follows from Proposition 2.1. Then h−1(1/3) is nonempty
and is the union of disjoint cycles Si , i ∈ [m1], for some positive integer m1, where for a positive
integer k we denote the set {1,2, . . . , k} by [k] (see Fig. 3).

Observe now that p(C) is exactly the equator of S2, and h(z) > 1/3 for every z ∈ p(C). Then
each Si is disjoint from p(C), so it is contained either in the upper or in the lower hemisphere.
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Each Si splits S2 into two connected components, and both are homeomorphic to a disk, and one
of them contains the equator. Let Ωi denote the other one.

As we have seen the set Ui = p−1(Ωi) is an open solid torus and Ti = p−1(Si) is an ordinary
torus. Since ω :V → V is a homeomorphism, ωαUi is an open solid torus, and ωαTi is an ordi-
nary torus for each i = [m1] and every α = 0,1,2. A few properties of these tori are established
next. The first one is very simple.

Claim 4.1. The circle C is disjoint from all ωαUi .

Claim 4.2. For all i, j ∈ [m1] and α,β = 0,1,2 the sets ωαTi and ωβTj are disjoint unless i = j

and α = β .

Proof. Assume the contrary, then ωαTi ∩ ωβTj �= ∅. We can assume, by symmetry, that α � β .
If α = β , then Ti = p−1(Si) and Tj = p−1(Sj ) intersect, yet Si and Sj are disjoint. Simplify-
ing by ω once or twice if necessary we can assume that α = 0 and β = 1 or 2. Suppose β = 1.
Then there is (x, y) ∈ Ti ∩ ω1Tj , implying (x, y) = (x, y1) ∈ Ti and ω−1(x, y) = ω2(x, y) =
(x, y3) ∈ Tj . Thus σ3(x, y) is a hemisphere, and so is σ2(x, y), which is impossible. The as-
sumption β = 2 implies, the same way, that σ3(x, y) and σ1(x, y) are both hemispheres. �
Claim 4.3. For all i ∈ [m1] the sets Ui , ωUi and ω2Ui are disjoint.

Proof. The key fact here is that each ωαTi is a torus and so it splits V into two disjoint compo-
nents.

Assume the statement is false. The condition ωαUi ∩ωβUi �= ∅ implies (via simplifying by ω

or ω2) that Ui ∩ ωUi �= ∅. It follows easily from Ti ∩ ωTi = ∅ and from H2(V ;Z) = 0 that
V \(Ti ∪ωTi) consists of 3 connected components. Clearly, Ui ∩ωUi is one of them. Its boundary
is either Ti or ωTi or Ti ∪ ωTi . In the first case Ui ⊂ ωUi which implies Ui ⊂ ωUi ⊂ ω2Ui ⊂
ω3Ui = Ui showing that Ui = ωUi and then Ti = ωTi , contradicting Claim 4.2. The second case
implies ωUi ⊂ Ui which leads to the same contradiction.

We show finally that the third case cannot come up. If it did, then Ti ⊂ ωUi and ωTi ⊂ Ui ,
and so Ui ∪ ωUi = V . But this is impossible since C is disjoint from both U and ωUi . �

Recall that the cycles Si are pairwise disjoint. Then, for distinct i, j ∈ [m1], Ωi and Ωj are
either disjoint or one is contained in the other. To have simpler notation, let [m2] be the set of
those i ∈ [m1] for which Ui is not contained in any other Uj . Of course, 1 � m2 � m1, and the
disks Ωi , i ∈ [m2], are pairwise disjoint.

The orbit of Ui is simply O(Ui) = Ui ∪ ωUi ∪ ω2Ui .

Claim 4.4. For distinct i, j ∈ [m2], the orbits O(Ui) and O(Uj ) are either disjoint or one is
contained in the other.

Proof. This proof is almost identical with the previous one. Assume that O(Ui) and O(Uj ) are
not disjoint: ωαUi ∩ ωβUj �= ∅. We can suppose again that α � β and α = 0. In case β = 0,
Ui and Uj would have a common point which is excluded since i, j ∈ [m2].

Thus β = 1 or 2. Consider the case β = 1; the other one is analogous. The tori Ti and ωTj

are disjoint so their union splits V into three connected components. Clearly, Ui ∩ ωUj is one
of them. Its boundary is either Ti or ωTj or Ti ∪ ωTj . In the first case ωUj ⊂ Ui which implies



586 I. Bárány et al. / Advances in Mathematics 223 (2010) 579–593
ω2Uj ⊂ ωUi and Uj = ω3Uj ⊂ ω2Ui showing that O(Uj ) ⊂ O(Ui), indeed. In the second case
ωUi ⊂ Uj which implies, the same way, that O(Ui) ⊂ O(Uj ).

Again, the third case cannot come up. If it did, then Ti ⊂ ωUj and ωTj ⊂ Ui , and so Ui ∪
ωUj = V . But this is impossible since C is disjoint from both Ui and ωUj . �

Now we define the convex part V conv. To keep notation simple let [m] be the set of those
subscripts i ∈ [m2] for which the orbit O(Ui) is not contained in any other O(Uj ). Set

V n-conv =
⋃

i∈[m]

⋃
α=0,1,2

ωαUi and V conv = V \ V n-conv.

The above definitions and results are summarized as follows.

Theorem 4.5. The sets ωαUi (α = 0,1,2 and i ∈ [m]) are pairwise disjoint open solid tori.
Moreover, for every point (x, y) of the set V conv the corresponding 3-fan is convex. Further,
C ⊂ V conv, and both V conv and V n-conv are invariant under ω. �
Remark. It is not hard to construct a nice probability measure μ on S2 so that some disk Ωi

contains another disk Ωj . Then Uj ⊂ Ui showing that there may be a point (x, y) ∈ V n-conv such
that all σi(x, y) are convex. So the name “convex part” is slightly misleading. This should not
cause any confusion, though.

The proof of Theorem 1.2 starts the same way as that of Proposition 2.1, just replace V by
the ω-invariant subset V conv. We get the same chain of maps V conv → R

3 → �⊥ → S1 and
the composition Z3-equivariant map V conv → S1. Thus Theorem 1.2 is a consequence of the
following Borsuk–Ulam type result.

Theorem 4.6. There is no Z3-equivariant map F :V conv → S1.

In the next two sections we are going to give two different proofs of Theorem 4.6.

5. The first proof of Theorem 4.6

Assume that such a map F exists, and consider, again, the cycle c :S1 → C ⊂ V conv. The
composition of F ◦ c is clearly well defined and is, again, an S1 → S1

Z3-map. As we have seen
in the proof of Proposition 2.1, the degree of F ◦ c is 1 mod 3. We show, however, that its degree
is divisible by 3. This contradiction will prove the theorem.

Theorem 5.1. The composition F ◦ c :S1 → S1 has degree zero mod 3.

Proof. Note that the Z3-action on V = RP 3 can be lifted to that on S3 using the standard double
covering map π :S3 → RP 3. Let us denote by Sconv the preimage π−1(V conv). The preimage
π−1(Ui) is an open solid torus, to be denoted by Wi . (Indeed, the composition p ◦ π :S3 → S2

is the Hopf bundle and Wi = π−1(Ui) = (p ◦ π)−1(Ωi) is a solid torus.) Then Sconv is the
complement of the union of open solid tori embedded in S3:

Sconv = S3 \
(

m⋃
Wi

m⋃
W ′

i

m⋃
W ′′

i

)

i=1 i=1 i=1
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where W ′
i and W ′′

i are the images of the solid torus Wi under the Z3-action on S3, if ω ∈ Z3 is
a selected generator, then W ′

i = ωWi and W ′′
i = ω2Wi . Of course, W ′

i = π−1(ωUi) but we do
not really need this.

Let γi be an embedded closed curve on the torus surface ∂Wi null-homologous in Wi but not
in ∂Wi . Then there is a 2-dimensional disc Di in Wi such that ∂Di = γi . Let us denote by γ ′

i

and γ ′′
i the images of γi under ω and ω2 respectively.

Remark. Note that the 3m curves γi , γ ′
i , γ ′′

i for i = 1,2, . . . ,m, form a minimal set of generators
in the group Z

3m ≈ H1(S
conv;Z).

The last isomorphism follows from the Alexander duality. In the lemma after the present proof
we give an elementary proof for the statement of the remark.

Let L = π−1(C) be the preimage of C. Clearly, L is a cycle in S3 which is invariant under ω.
Its homology class in H1(S

conv;Z) can be expressed in a unique way as a linear combination of
the classes of γi , γ ′

i , γ ′′
i , i = 1,2, . . . ,m:

L ∼=
∑

αiγi +
∑

α′
iγ

′
i +

∑
α′′

i γ ′′
i .

Then

ωL ∼=
∑

αiγ
′
i +

∑
α′

iγ
′′
i +

∑
α′′

i γi .

The coefficients in these decompositions are unique. But L = ωL, so we have αi = α′
i = α′′

i .
Let G denote the map Sconv → S1, obtained as the composition F ◦ π :Sconv → V conv → S1.

For any closed curve τ we denote by [τ ] its homology class. The classes G∗[γi], G∗[γ ′
i ],

G∗[γ ′′
i ] in H1(S

1;Z) coincide, because ω ∈ Z3 acts on H1(S
1;Z) trivially.

Hence

G∗[L] =
∑

αi

(
G∗[γi] + G∗

[
γ ′
i

] + G∗
[
γ ′′
i

]) = 3
∑

αiG∗[γi].

So the class G∗[L] ∈ H1(S
1;Z) = Z is divisible by 3. Since π gives a double cover L → C we

have G∗[L] = 2F∗[C], and so F∗[C] is divisible by 3, and this means that the degree of the map
F ◦ c :S1 → S1 is divisible by 3. �

The proof of the theorem is now complete except for the promised lemma.

Lemma 5.2. Let K be an oriented link in S3, i.e. a set of disjoint embedded oriented closed
curves K1, . . . ,Kn, and let γi be closed curves such that lk(γi,Kj ) = δij , where lk denotes the
linking number, and δij the Kronecker δ. Then the curves γi form a minimal set of generators
in H1(S

3 \ K;Z). Moreover if we denote by ϕ the map H1(S
3 \ K;Z) → Z

n associating to the
homology class of a curve τ in S3 \ K the vector of linking numbers ϕi([τ ]) = lk(τ, γi), i.e.,
ϕ([τ ]) = (ϕ1([τ ]), . . . , ϕn([τ ])), then ϕ is an isomorphism.

Proof. By definition ϕ([γi]) = (0, . . . ,0,1,0, . . . ,0) (digit 1 is at the i-th place) and so ϕ is
surjective. If D is a compact surface in S3 such that its boundary is c, and D is transverse to
each Ki , then there is another surface D′ with the same boundary and disjoint from K . Therefore
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[c] is zero in H1(S
3 \ K;Z) and so ϕ is injective. The construction of the surface D′ goes

by the following procedure. Take two (transverse or even orthogonal) intersection points of D

with a Ki of opposite signs and neighboring in the sense that (at least) one of the arcs of Ki

between these two intersection points does not contain any more intersection points. Call this arc
“empty”. Now omit small disks of radius ε centered at these two intersection points from D and
add a tube of radius ε along the “empty” arc of Ki . Thus we have a new surface having fewer
intersection points with K . Repeating this procedure until we have no intersection point we get
the surface D′. �
6. The second proof

This proof is obtained by studying the homomorphism of the Serre spectral sequence associ-
ated with the Borel construction of S1 (equipped with the standard Z3-action) to that of V conv.
We denote the cohomology of the group Z3 with F3 coefficients by H ∗(Z3;F3). It is well known
that

H ∗(Z3;F3) = F3[t] ⊗ (
F3[e]/e2)

where deg t = 2 and deg e = 1, see [9, p. 251].

Lemma 6.1. (a) H 0(V conv;F3) = F3, (b) H 1(V conv;F3) = ⊕m
i=1 F3[Z3].

Proof. Recall that V n-conv is a set of solid tori that are permuted by the Z3-action, each orbit con-
sists of three tori, their total number is denoted by 3m. Part (a) is clear since V conv is connected.
Part (b) follows by the sequence of isomorphisms:

H 1(V conv;F3
) ∼= H2

(
V,V n-conv;F3

) ∼= H1
(
V n-conv;F3

) ∼=
m⊕

i=1

F3[Z3].

Here the first isomorphism holds by the Poincaré–Lefschetz duality [13, Theorem 70.2,
p. 415], the second comes from the homology exact sequence of the pair (V ,V n-conv) since
H1(V ;F3) = 0 and H2(V ;F3) = 0. The third isomorphism is clear since V n-conv is homotopy
equivalent to the disjoint union of 3m circles (the notation indicates the Z3-action as well). �

Let us consider the Serre spectral sequence of the fibration V conv ×Z3 EZ3 → BZ3. The
E2-term of this sequence is the following: E

p,q

2 = Hp(Z3,H
q(V conv;F3)) with twisted coeffi-

cients. The twisting is induced by the action ω on V conv. We shall need only the first two rows of
this spectral sequence, i.e. the groups E

p,0
2 and E

p,1
2 . Clearly E

p,0
2 = F3 by part (a) of the lemma

above.
From part (b) of the lemma we obtain that

E
p,1
2 = Hp

(
Z3;

m⊕
i=1

F3[Z3]
)

=
{⊕m

i=1 F3, p = 0,

0, p �= 0.

Here for p > 0 we used the fact that

Hp
(
Z3;F[Z3]

) = Hp(EZ3;F3) = 0,

see [9, Proposition 3.55, p. 321].
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Fig. 4. E2-terms of V conv ×Z3 EZ3 and S1 ×Z3 EZ3 spectral sequence.

Fig. 5. E3-terms of V conv ×Z3 EZ3 and S1 ×Z3 EZ3 spectral sequence.

Since the differentials in the spectral sequence are H ∗(Z3;F3)-module maps [5, p. 247],
we have d

0,1
2 = 0. (Indeed, if d

0,1
2 �= 0, then there exist x ∈ E

0,1
2 and α ∈ F3 \ {0} such that

d
0,1
2 (x) = αt . Denoting by a dot the H ∗(Z;F3)-module action one has that 0 �= t · (αt) =

t · d0,1
2 (x) = d

2,1
2 (t · x) = d

2,1
2 (0) = 0.) In particular the element t ∈ H 2(Z3;F3) = E

2,0
2 survives

to the E∞-term (left-hand side in Figs. 4 and 5).
Next we consider the Serre spectral sequence of the fibration S1 ×Z3 EZ3 → BZ3. The E2-

term of this sequence is

E
p,q

2 = Hp
(
Z3;Hq

(
S1;F3

)) = Hp(Z3;F3) ⊗ Hq
(
S1;F3

) =
{

Hp(Z3;F3), q = 0,1,

0, otherwise.

Here a priori the coefficients should be twisted, but a Z3-action on H ∗(S1;F3) is clearly trivial,
hence the coefficients are untwisted. The action of Z3 on S1 is free and therefore S1 ×Z3 EZ3 �
S1/Z3. Hence this spectral sequence converges to H ∗(S1 ×Z3 EZ3;F3) = H ∗(S1;F3) and so all
the groups the E

p,q∞ for p + q > 1 must vanish. The only possibly non-zero differential is d
0,1
2 ,

therefore d
0,1
2 (1 ⊗ l) = t or 2t ∈ H ∗(Z3;F3) = E

2,0
2 . Here l ∈ H 1(S1;F3) denotes a generator.

Anyway the element t ∈ H ∗(Z3;F3) = E
2,0
2 vanishes in the E3-term (right-hand side in Figs. 4

and 5).

Proof of Theorem 4.6. Let us assume that there is a Z3-map f :V conv → S1. Then f induces
a map between

(1) Borel constructions V conv ×Z3 EZ3 → S1 ×Z3 EZ3,
(2) equivariant cohomologies f ∗ :H ∗ (S1;F3) → H ∗ (V conv;F3), and
Z3 Z3
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(3) associated Serre spectral sequences E
p,q
r (f ) :Ep,q

r (S1;F3) → E
p,q
r (V conv;F3) such that in

the 0-row

E
p,0
2 (f ) :

(
E

p,0
2

(
S1;F3

) = Hp(Z3;F3)
) → (

E
p,0
2

(
V conv;F3

) = Hp(Z3;F3)
)

it is the identity map.

The contradiction is obtained by tracking the behavior of the E
2,0
r (f )-images of t ∈ H 2(Z3;F3)

as r grows from 2 to 3 (see Figs. 4 and 5). Explicitly,

E
2,0
2

(
S1;F3

) � t
E

2,0
2 (f )�−→ t ∈ E

2,0
2

(
V conv;F3

)
,

and

E
2,0
3

(
S1;F3

) � 0
E

2,0
3 (f )�−→ t ∈ E

2,0
3

(
V conv;F3

)
.

Since the image of zero cannot be different from zero we have reached a contradiction. Theo-
rem 4.6 is proved. �
7. Proof of Lemma 3.5

We assume that μ is a nice probability measure on S2 and ε is a small positive number. Let
λ0 denote the uniform probability measure on S2.

We are going to construct the measure ν. We use a result of Vapnik and Chervonenkis [17]
(cf. [12] as well) saying, in our case, that there is a finite set X ⊂ S2 such that∣∣∣∣μ(σ) − |σ ∩ X|

|X|
∣∣∣∣ <

ε

2
(1)

for every sector σ ⊂ S2. The proof shows that X is a random set of points (of large enough size)
chosen from S2 according to μ. So we can assume that |X| = 3n + 1, where n is as large as we
want, and further, that no three points of X are contained in a 2-dimensional plane through the
origin. Now for each x ∈ X, let Sx denote the 2-dimensional sphere centered at x and of radius η.
Here we choose η > 0 so small that no 2-plane through the origin intersects more than two small
spheres Sx . Let λx denote the uniform probability measure on the small sphere Sx . We write
H−(z) for the halfspace {v ∈ S2: zv � 0}, this is the halfspace with H−(z) ∩ S2 = H(z).

With this definition the computations will be easy since λx(H
−(z)∩Sx) is proportional to the

width of H−(z) ∩ Sx . Precisely, Sx ⊂ H−(z) iff xz � −η in which case, of course, λx(H
−(z) ∩

Sx) = 1, and Sx is disjoint from H−(z) iff xz > η and then λx(H
−(z) ∩ Sx) = 0, and further,

λx

(
H−(z) ∩ Sx

) = η − xz

2η
, if −η � xz � η. (2)

Next we define a probability measure ν∗ on R
3 as

ν∗ = δλ0 + 1 − δ

3n + 1

∑
λx,
x∈X
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here δ is a small positive number, for instance δ = n−2 will certainly do, as the reader can readily
check. Finally, ν is the radial projection of ν∗ onto S2. We have to prove that ν has the required
properties. Clearly, ν is a nice probability measure on S2 since its density function is continuous
and positive (that’s why λ0 is needed).

To establish properties (i) and (ii) we introduce some notation. Let L(z) be the bounding
hyperplane of H−(z). Set X(z) = {x ∈ X: Sx ⊂ H−(z)} and m(z) = |X(z)|. Define �(z) =
{x ∈ X: Sx ∩ L(z) �= ∅}. By the properties of X, |�(z)| � 2 for every z ∈ S2. Moreover, h∗(z) =
ν(H(z)) = ν∗(H−(z)) can be computed easily:

h∗(z) = 1

2
δ + 1 − δ

3n + 1

(
m(z) +

∑
x∈�(z)

η − zx

2η

)
. (3)

We check condition (i) first. Every sector σ is the intersection or the union of two hemispheres
H(z1) and H(z2). We check the case σ = H(z1)∩H(z2), and then (i) follows for unions as well
by considering the complement of σ . It is evident that X(z1) ∩ X(z2) ⊂ X ∩ σ . Also, these sets
differ by at most four elements because L(zi) intersects at most two small spheres. Consequently∣∣∣∣ν(σ ) − |X ∩ σ |

3n + 1

∣∣∣∣ � 1

2
δ + 4δ

3n + 1
<

ε

2
,

if n is large enough and δ is small enough. This, together with inequality (1) implies condition (i).
Finally we go for condition (ii). We will show that h∗−1(1/3) consists of circular arcs. With

each arc we associate a pair (Y,�) where both Y and � are subsets of X. For different arcs, the
associated pairs (Y,�) will be different. This will prove that there are finitely many circular arcs
in h∗−1(1/3). We will show further that these arcs are internally disjoint and that each endpoint
of an arc coincides with a uniquely determined endpoint of another, also uniquely determined,
circular arc. This is what is needed for condition (ii).

Suppose h∗(z) = 1/3. We claim that �(z) contains at least one element, a say, with −η <

az < η. Indeed, otherwise Eq. (3) implies that

1

2
δ + 1 − δ

3n + 1
m(z) = 1

3

which has no solution with m(z) an integer. Since |�(z)| � 2 for every z ∈ S2, �(z) has one or
two elements.

Assume first that h∗(z0) = 1/3 and �(z0) consists of a single element a ∈ X. Of course,
−η < az0 < η. Then, in a small neighborhood of z0, X(z) = X(z0) and �(z) = �(z0). Thus
Eq. (3) holds in this neighborhood if and only if az = az0. This is the intersection of S2 with the
plane az = az0, which is clearly a circular arc. This circular arc belongs to h∗−1(1/3) as long as
X(z) and �(z) and az remain the same. Let A(Y,�) denote this (open) arc where Y = X(z0)

and � = �(z0), here (Y,�) is the pair associated with the arc under consideration. Of course,
Y = X(z) and � = �(z) for every z ∈ A(Y,�). It is clear that for distinct arcs of the type
|�(z)| = 1, the associated pairs are also distinct. So there are finitely many such arcs. It is also
clear that two such arcs have no point in common.

At an endpoint z of the arc A(Y,�) a small sphere, say Sb , becomes tangent to L(z), and �(z)

will have two elements. Note that Sa �= Sb since az = az0 for all z ∈ A(Y,�) while bz = ±η

when Sb is tangent to L(z).
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Assume, next, that h∗(z0) = 1/3 and �(z0) consists of two elements, a and b say, and −η <

az0, bz0 < η. Again, for z ∈ S2 in a small neighborhood of z0, X(z) = X(z0), �(z) = �(z0).
Consequently Eq. (3) holds in this neighborhood if and only if (a + b)z = (a + b)z0. This is
again a circular arc which belongs to h∗−1(1/3) as long as X(z) and �(z) and az remain the
same. Let A(Y,�) denote this (open) arc where Y = X(z0) and � = �(z0), and let (Y,�) be
the pair associated with this arc. Again, Y = X(z) and � = �(z) for every z ∈ A(Y,�). It is
clear that for distinct arcs of the type |�(z)| = 2, the associated pairs are also distinct. So there
are finitely many such arcs. It is also clear that two arcs of this type have no point in common,
and, further, that an arc of this type, and another one of type |�| = 1 are disjoint.

At an endpoint z of the arc A(Y,�) some small sphere becomes tangent to L(z). This sphere
must be either Sa or Sb since otherwise �(z) would contain three elements of X. It is not hard to
see that at one endpoint Sa , and at the other endpoint Sb, becomes tangent to the corresponding
plane L(z).

The remaining case is when h∗(z0) = 1/3 and �(z0) = {a, b} and for one element, say
b ∈ �(z0), Sb is tangent to L(z0). The reader will have no difficulty checking that such a z0 is the
endpoint of exactly two circular arcs: one of them is A(Y1, {a}) and the other one is A(Y2, {a, b})
where Y1 = Y2 = X(z0) if b /∈ X(z0) and Y1 = X(z0) and Y2 = X(z0) \ {b} if b ∈ X(z0).
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[18] R.T. Živaljević, S.T. Vrećica, An extension of the ham sandwich theorem, Bull. London Math. Soc. 22 (1990)
183–186.


	Equipartitioning by a convex 3-fan
	Introduction and main result
	The proof without convexity
	Preparations
	The convex part of V
	The first proof of Theorem 4.6
	The second proof
	Proof of Lemma 3.5
	Acknowledgments
	References


