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Abstract—Formal analysis of real time systems is important as
they are widely used in safety critical domains. Such systems com-
bine discrete behaviours represented by control states and timed
behaviours represented by clock variables. The counterexample-
guided abstraction refinement (CEGAR) algorithm utilizes the
fundamental technique of abstraction to system verification. We
propose a CEGAR-based algorithm for reachability analysis of
timed systems. The algorithm is specialized to handle the time
related behaviours efficiently by introducing a refinement tech-
nique tailored specially to clock variables. The performance of the
presented algorithm is demonstrated by runtime measurements
on models commonly used for benchmarking such algorithms.

I. INTRODUCTION

Safety critical systems, where failures can result in serious
damage, are becoming more and more ubiquitous. Conse-
quently, the importance of using mathematically precise veri-
fication techniques during their development is increasing.

Formal verification techniques are able to find design prob-
lems from early phases of the development, however, the
complexity of safety-critical systems often prevents their suc-
cessful application. The behaviour of a system is described by
the set of states that are reachable during execution (the state
space) and formal verification techniques like model checking
examine correctness by exploring it explicitly or implicitly.
However, the state space can be large or infinite, even for small
instances. Thus, selecting appropriate modeling formalisms
and efficient verification algorithms is very important. One of
the most common formalisms for describing timed systems is
the formalism of timed automata that extends finite automata
with clock variables to represent the elapse of time.

When applying formal verification, reachability becomes
an important aspect – that is, examining whether a given
erroneous state is reachable from an initial state. The com-
plexity of the problem is exponential, thus it can rarely be
solved for large models. A possible solution to overcome this
issue is to use abstraction, which simplifies the problem to be
solved by focusing on the relevant information. However, the
main difficulty when applying abstraction-based techniques is
finding the appropriate precision: if an abstraction is too coarse
it may not provide enough information to decide reachability,
whereas if it is too fine it may cause complexity problems.

There are several existing approaches in the literature for
CEGAR-based verification of timed automata, including [1]
where the abstraction is applied on the locations of the
automaton, [2] where the abstraction of a timed automaton is

an untimed automaton and [3]–[5] where abstraction is applied
on the clock variables of the automaton.

Our goal is to develop an efficient model checking algorithm
applying the CEGAR-approach to timed systems. The above-
mentioned algorithms modified the timed automaton itself
to gain a finer state space: our algorithm combines existing
approaches with new techniques to create a refinement strategy
that increases efficiency by refining the state space directly.

II. BACKGROUND

A. Timed Automata

Clock variables (clocks, for short) are a special type of
variables, whose value is constantly and steadily increasing.
Naturally, their values can be modified, but the only allowed
operation on clock variables is to reset them – i.e., to set their
value to 0. It’s an instantaneous operation, after which the
value of the clock will continue to increase.

A valuation v : C → R assigns a non-negative real value to
each clock variable c ∈ C, where C denotes the set of clock
variables. In other words a valuation defines the values of the
clocks at a given moment of time.

A clock constraint is a conjunctive formula of atomic con-
straints of the form x ∼ n or x−y ∼ n (difference constraint),
where x, y ∈ C are clock variables, ∼ ∈ {≤, <,=, >,≥} and
n ∈ N. In other words a clock constraint defines upper and
lower bounds on the values of clocks and the differences of
clocks. Note, that bounds are always integer numbers. The set
of clock constraints are denoted by B(C).

A timed automaton extends a finite automaton with clock
variables. It can be defined as a tuple A = ⟨L, l0, E, I⟩ where

• L is the set of locations (i.e. control states),
• l0 ∈ L is the initial location,
• E ⊆ L× B(C)× 2C × L is the set of edges and
• I : L → B(C) assigns invariants to locations [6].
The automaton’s edges are defined by the source location,

the guard (represented by a clock constraint), the set of clocks
to reset, and the target location.

A state of A is a pair ⟨l, v⟩ where l ∈ L is a location and
v is the current valuation satisfying I(l). In the initial state
⟨l0, v0⟩ v0 assigns 0 to each clock variable.

Two kinds of operations are defined that modify the state
of the automaton. The state ⟨l, v⟩ has a discrete transition to
⟨l′, v′⟩ if there is an edge e(l, g, r, l′) ∈ E in the automaton
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such that v satisfies g, v′ assigns 0 to any c ∈ r and assigns
v(c) to any c ̸∈ r, and v′ satisfies I(l′).

The state ⟨l, v⟩ has a time transition (or delay, for short) to
⟨l, v′⟩ if v′ assigns v(c) + d for some non-negative d to each
c ∈ C and v′ satisfies I(l).

B. Reachability Analysis

In case of timed automata the reachability problem can be
defined as follows.

Input: An automaton ⟨L, l0, E, I⟩, and a location lerr ∈ L.
Output: An execution trace σ = l0

t0−→ l1
t1−→ · · · tn−→ lerr

from l0 to lerr or No, if lerr is unreachable.
One of the most efficient algorithms for deciding reacha-

bility is the one used by Uppaal1, a model checker for timed
automata. The core of the algorithm is published in [6]. Before
presenting the approach, some basic definitions are provided.

A zone z is a set of non-negative clock valuations satisfying
a clock constraint. A zone graph is a finite graph consisting of
⟨l, z⟩ pairs as nodes, where l ∈ L refers to some location of a
timed automaton and z is a zone. Edges represent transitions.

A node ⟨l, z⟩ of a zone graph represents all states ⟨l, v⟩
where v ∈ z. Since edges of the zone graph denote transitions,
a zone graph can be considered as an (exact) abstraction of the
state space. The main idea of the algorithm is to explore the
zone graph of the automaton, and if a node ⟨lerr, z⟩ exists in
the graph for some z ̸= ∅, lerr is reachable, and the execution
trace can be provided by some pathfinding algorithm.

The construction of the graph starts with the initial node
⟨l0, z0⟩, where l0 is the initial location and z0 contains the
valuations reachable in the initial location by time transitions.
Next, for each outgoing edge e of the initial location (in the
automaton) a new node ⟨l, z⟩ is created (in the zone graph)
with an edge ⟨l0, z0⟩ → ⟨l, z⟩, where ⟨l, z⟩ contains the states
to which the states in ⟨l0, z0⟩ have a discrete transition through
e. Afterwards z is replaced by z↑ where ⟨l, z↑⟩ represents the
set of all states reachable from a zone ⟨l, z⟩ by time transitions.
The procedure is repeated on every node of the zone graph. If
the states defined by a new node ⟨l, z⟩ are all contained in an
already existing node ⟨l, z′⟩ (z ⊆ z′), ⟨l, z⟩ can be removed,
and the incoming edge can be redirected to ⟨l, z′⟩.

Unfortunately, it is possible that the described graph be-
comes infinite. In order to prevent this, [6] introduces an op-
eration called normalization to apply on z↑ before inclusion is
checked. Let k(c) denote the greatest value to which clock c is
compared in the automaton. This operation overapproximates
the zone treating the interval (k(c),∞) as one, abstract value
for each c ∈ C, since for any valuation v such that v(c) > k(c)
constraints of the form c > n are satisfied, and constraints of
the form c = n or c < n are unsatisfied.

Using normalization the zone graph is finite, and if there are
no difference constraints in the automaton, reachability will be
decided correctly, however, in case of difference constraints
the algorithm may terminate with a false positive result.

1http://www.uppaal.org/

The operation split [6] is introduced to assure correctness.
Instead of normalizing the complete zone, it is first split along
the difference constraints, then each subzone is normalized,
and finally the initially satisfied constraints are reapplied to
each normalized subzone. The result is a set of zones (not
just one zone like before), which means multiple new nodes
have to be created in the zone graph (with edges from the
original node). Applying split results in a zone graph, that is
a correct and finite representation of the state space [6].

Implementation is also provided in [6]. The zones are
stored in an n × n matrix form (the so-called Difference
Bound Matrix, DBM), where n = |C| + 1, and each row
and column represents a clock, except for the first ones that
represent the constant 0. An entry D[i, j] = (m,≺), where
m ∈ Z ∪ {∞},≺∈ {<,≤} of the DBM D represents the
constraint ci − cj ≺ m, where c0 = 0. (It is proven, that
all atomic clock constraints can be transformed to this form.)
Each entry of a DBM represents the strongest bound that can
be derived from the constraints defining the zone.

Pseudocodes are also provided for operations, such as add()
(adds an atomic constraint to the zone), reset() (resets the given
clock), up() (calculates z↑), norm() and split() to calculate
successor states automatically, as well as some additional
operations, such as free() (removes all constraints on a clock).

C. Activity

The (exact) activity abstraction is proposed in [7] to reduce
the number of clock variables without affecting the state space.
A clock c is considered active at some location l (denoted by
c ∈ Act(l)) if its value at l may influence the future operation
of the system. It might be because c appears in the I(l), or
in the guard g of some outgoing edge (l, g, r, l′), or because
c ∈ Act(l′) for some l′ reachable from l without resetting c.

If Act(l) < |C| holds for each l ∈ L, the number of clock
variables can be reduced by reconstructing the automaton, by
removing all c ̸∈ Act(l) and renaming c ∈ Act(l) for each
l ∈ L such that after renaming less clocks remain. This is
possible, even if all c ∈ C is active in at least one location,
since clocks can be renamed differently in distinct locations.

Before presenting how activity is calculated some new
notations are introduced. Let clk : B(C) → 2C assign to
each clock constraint the set of clocks appearing in it. Define
clk : L → 2C such that c ∈ clk(l) iff c ∈ clk(I(l)) or there
exist an edge (l, g, r, l′) such that c ∈ clk(g).

Activity is calculated by an iterative algorithm starting from
Act0(l) = clk(l) for each l ∈ L. In the ith iteration Acti(l)
is derived by extending Acti−1(l) by Acti−1(l

′) \ r for each
edge (l, g, r, l′). The algorithm terminates when it reaches a
fix point, i.e. when Acti(l) = Acti−1(l) for each l ∈ L.

D. CEGAR

In order to increase the efficiency of model checking, (ap-
proximate) abstraction can be used [8]: a less detailed system
model is constructed with a state space overapproximating that
of the original one, model checking is applied to this simple
model, and if the erroneous state is unreachable in the abstract
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model, the system is correct. Otherwise the model checker
produces an abstract counterexample that is examined on the
original system, and if it is feasible, the system is incorrect. If
it is invalid, the abstraction is too coarse to decide reachability.

Counterexample-guided abstraction refinement (CEGAR)
[9] extends this approach into an iterative algorithm, by
refining the abstract state space in order to eliminate the invalid
counterexample. Model checking is applied on the refined state
space (that is still an abstraction of the original one) and the
so-called CEGAR-loop starts over.

III. ACTIVITY-BASED ABSTRACTION ALGORITHM

The main idea of our new algorithm is to explore the
state space without considering clock variables and refining
it (calculating zones) trace by trace, based on the discovered
counterexamples. Figure 1 depicts the basic operation of the
algorithm. Note, that the phases of this algorithm correspond
to the phases of CEGAR.

To increase efficiency not all clock variables are included –
the relevant clocks for each node in the path (the precision)
are chosen by an algorithm we have developed based on the
one described in Section II-C. To avoid confusion, zones will
appear with their precision denoted, e.g. zC denotes a zone z
of precision C ⊆ C.

A. Data structure

In our algorithm the formalism that represents the abstract
state space can be defined as a tuple ⟨Ne, Nu, E

↑, E↓⟩ where
• Ne ⊆ L× B(C) is the set of explored nodes,
• Nu ⊆ L× B(C) is the set of unexplored nodes,
• E↑ ⊆ (Ne × N), where N = Ne ∪ Nu is the set of

upward edges and
• E↓ ⊆ (Ne ×N) is the set of downward edges.

The sets Ne and Nu as well as the sets E↑ and E↓ are disjoint.
T ↓ = (N,E↓) is a tree.

Nodes are built from a location and a zone and (downward)
edges represent transitions like in the zone graph but in this
case nodes are distinguished by the trace through which they
are reachable. This means the graph can contain multiple
nodes with the same zone and the same location, if the
represented states can be reached through different traces.

The root of T is the initial node. Downward edges have
similar roles to edges of the zone graph, while upward edges
are used to avoid exploring the same states multiple times. An
upward edge from a node n to a previously explored node
n′ means that the states represented by n are a subset of
the states represented by n′, thus it is unnecessary to keep

searching for a counterexample from n, because if there exists
one, another one will exist from n′. Searching for new traces
is only continued on nodes without an outgoing upward edge.
This way, the graph can be kept finite.

Initially, the graph contains only one, unexplored node
n0 = ⟨l0, z∅⟩, and as the state space is explored, unexplored
nodes become explored nodes, new unexplored nodes and
edges appear, until a counterexample is found, or there are
no remaining unexplored nodes. During the refinement phase
zones are calculated, new nodes and edges appear and com-
plete subtrees disappear. State space exploration will then be
continued from the unexplored nodes, and so on.

B. State space exploration

State space exploration is performed in the following way.
In each iteration a node n = ⟨l, zC⟩ ∈ Nu is chosen. First, it
is checked if the states n represents are included in some other
node n′ = ⟨l, z′C′⟩ where C = C ′. In this case an upward edge
n → n′ is introduced and n becomes explored. Otherwise, n
has yet to be explored. For each outgoing edge e(l, g, r, l′)
of l in the automaton a new node ⟨l′, z∅⟩ ∈ Nu is introduced
with an edge pointing to it from n, which becomes explored. If
any of the new nodes contains lerr, the state space exploration
phase terminates and the proposed counterexample σ = n0

t0−→
n1

t1−→ · · · tn−→ nerr = ⟨lerr, z∅⟩ is the trace reaching nerr in
T ↓. Otherwise, another n ∈ Nu is chosen, and so on.

If the state space is explored and lerr does not appear in it,
the erroneous states are unreachable, and the system is correct.

C. Trace activity

After finding a possible counterexample the next task is to
calculate the necessary precisions. The presented algorithm is
a modified version of the one described in Section II-C.

Based on activity we introduce a new abstraction Actσ(n),
called trace activity which assigns precisions to nodes on the
trace (instead of locations of the automaton), that only include
the clocks whose value affects the reachable states of the trace.

Trace activity is calculated iterating backwards on the trace.
In the final node nerr the valuations are not relevant, as the
only question is whether it is reachable – Actσ(nerr) = ∅.
For ni ̸= nerr, Actσ(ni) can be calculated from Actσ(ni+1)
and the edge ei(li, gi, ri, li+1) used by transition ti. Since all
c ∈ ri are reset, their previous values will have no effect
on the system’s future behaviour – they can be excluded. It is
necessary to know if ti is enabled, so clk(gi) must be active, as
well as clk(I(li)) since I(li) have to be satisfied. This gives us
the formula Actσ(ni) = (Actσ(ni+1)\ri)∪clk(gi)∪clk(I(li)).

D. Refinement

The task of the refinement phase is to assign correct zones
of the given precision for each node in the trace and to decide
if the counterexample is feasible. It is important to mention
that the zones on the trace may already be refined to some
precision C ′ that is independent from the new precision C. In
this case the zone has to be refined to the precision C ∪ C ′.



Refinement starts from the initial zone z0 that can be refined
to zC0 =

⋀
ci,cj∈C0

ci = cj , where C0 is the required precision.

After that zCi of node ni on the trace can be calculated from
zCi−1 of node ni−1 with the operations mentioned in Section
II-B, with some modifications to handle the precision change.

First, the guard has to be checked. If there are no states in
zCi−1 that satisfy gi−1, the counterexample is invalid, and the
abstract state space has to be refined: since ti−1 is not enabled,
the corresponding edge, and the belonging subtree has to be
removed from the graph, and the algorithm can continue by
searching for another counterexample.

Next, the clocks in ri−1 are reset. This can be performed
using operation reset(). Change of precision is also applied at
this point. Assume that the precision of the source zone is Ci

and the target zone has to be refined to precision Ci+1.
Variables Cold = Ci \ Ci+1 have to be excluded before

executing the transition. Consider the DBM implementation
of zones. Excluding the unnecessary clocks from the zone can
be performed by free(c) for each c ∈ Cold, but according to
the pseudocode in [6] the operation only affects the row and
the column belonging to c. Thus, for space saving purposes,
the row and column of c can simply be deleted from the DBM.

Variables Cnew = Ci+1 \ Ci have to be introduced. Trace
activity guarantees that clocks are only introduced when they
are reset, thus, it can be performed by adding a new row and
column to the DBM, that belong to c and calling reset(c).

The next step is to apply the invariant. If this results in an
empty zone, the transition is not enabled – the subtree has
to be deleted, and the algorithm continues by searching for
another counterexample. Otherwise, up(), split(), and norm()
has to be applied to calculate the precise zone (or zones).

The node ni can be refined by replacing the current zone
with the calculated one, however, the incoming upward edges
have to be considered first. An edge n → ni ∈ E↑ means ni

represents all states that n represents – this may not be true
after the refinement. Thus, the upcoming edges are removed
and their sources are marked unexplored.

It is important to consider that sometimes the split() oper-
ation results in more than one zones. Similarly to the case of
the zone graph, this can be handled by replicating the node.
Refinement has to be continued from each new node, thus
the refinement of a trace may introduce new subtrees. The
tree structure allows this, however, it is important to mark
the new nodes unexplored, since only the outgoing edges
representing the transition on the trace are created, the other
possible outgoing edges have yet to be explored.

IV. EVALUATION

We evaluated the performance of the presented algorithm
with measurements. The inputs are scalable automata chosen
from Uppaal’s benchmark data2 that is widely used for com-
paring the efficiency of such algorithms. Network automata
with discrete variables were unfolded to timed automata before
the measurements. The results are depicted in Table I.

2https://www.it.uu.se/research/group/darts/uppaal/benchmarks/

TABLE I
MEASUREMENT RESULTS (MS)

CSMA2 CSMA3 CSMA4 Fisch2 Fisch3
264 1 113.5 9 808 292 5 650

Token8 Token32 Token128 Token512 Token2048
838 2 173 4 966 12 580 100 892

The models are denoted by CSMAn, Fischn, and Tokenn
for the CSMA/CD, Fischer and Token ring/FDDI protocols
of n participants, respectively. The Token ring protocol is
a special input, since the examined safety property can be
proven solely based on the structure of the automaton, thus the
analysis of the initial abstraction is able to prove the property.
This proves how useful abstraction is, but the measurements
on this automaton can only demonstrate the efficiency of
the pathfinding algorithm, which turned out to be O(n2).
Memory problems occurred at the Fischer protocol of four
processes and the CSMA/CD protocol of five stations. For
smaller instances the algorithm always terminated with the
expected result.

V. CONCLUSIONS

This paper provided a CEGAR-based algorithm for reach-
ability analysis of timed automata, that applies abstraction on
the zone graph, and calculates the required precision for the
refinement using trace activity. The efficiency of the algorithm
was demonstrated by measurements. Results suggest that the
pathfinding algorithm is efficient, but the memory usage has
yet to improve.
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