
Exploratory Analysis of the Performance
of a Configurable CEGAR Framework

Ákos Hajdu1,2, Zoltán Micskei1
1Budapest University of Technology and Economics, Department of Measurement and Information Systems

2MTA-BME Lendület Cyber-Physical Systems Research Group
Email: {hajdua, micskeiz}@mit.bme.hu

Abstract—Formal verification techniques can check the cor-
rectness of systems in a mathematically precise way. However,
their computational complexity often prevents their successful
application. The counterexample-guided abstraction refinement
(CEGAR) algorithm aims to overcome this problem by automati-
cally building abstractions for the system to reduce its complexity.
Previously, we developed a generic CEGAR framework, which
incorporates many configurations of the algorithm. In this paper
we focus on an exploratory analysis of our framework. We
identify parameters of the systems and algorithm configurations,
overview some possible analysis methods and present preliminary
results. We show that different variants are more efficient for
certain tasks and we also describe how the properties of the
system and parameters of the algorithm affect the success of
verification.

I. INTRODUCTION

As safety critical systems are becoming more and more
prevalent, assuring their correct operation is gaining increasing
importance. Formal verification techniques (such as model
checking [1]) can check whether the model (a formal represen-
tation) of a system meets certain requirements by traversing its
possible states and transitions. However, a typical drawback of
using formal methods is their high computational complexity.
Abstraction is a general technique to reduce complexity by
hiding irrelevant details. However, finding the proper preci-
sion of abstraction is a difficult task. Counterexample-guided
abstraction refinement (CEGAR) is an automatic verification
algorithm that starts with a coarse initial abstraction and refines
it iteratively until a sufficient precision is obtained [2].

In our previous work [3] we examined different variants of
the CEGAR algorithm and concluded that each of them has its
advantages and shortcomings. The foundations of a modular,
configurable CEGAR framework were also developed that can
incorporate the different CEGAR configurations (variants) in
a common environment. The framework relies on first order
logic (FOL): models are described with FOL formulas and the
algorithms use SAT/SMT solvers [4] as the underlying engine.

The framework is under development, but it already realizes
several configurations and permits the verification of some
input models. We performed an experiment by evaluating these
configurations on the models of some hardware and PLC
systems. In this paper we present an exploratory analysis of
the results: we identify parameters and metrics of the models
and configurations as input and output variables. We give an
overview on possible analysis methods and present preliminary

comparisons, revealing that different configurations are more
suitable for certain models. We show relationships between the
properties of the input model, the parameters of the algorithm
(e.g., abstraction method, refinement strategy) and the success
and efficiency of verification.

II. EXPERIMENT PLANNING

In our experiment several configurations of the CEGAR
algorithm were executed on various input models and the
results were analyzed [5].

A. Variables

Variables of the experiment are grouped into three main
categories: parameters of the model (input), parameters of
the configuration (input), metrics of the algorithm (output).
Variables along with their type and description are listed in
Table I. Some other parameters of the input models were also
identified, but these are domain specific and not applicable
to all inputs (e.g., number of gates in a hardware circuit).
Therefore, these parameters were omitted in this experiment.

There are some additional constraints on the variables.
UNSC refinement cannot be used in PRED domain, but besides
that, all combinations of the algorithm parameters are valid,
yielding a total number of 20 configurations. It is also possible
that the algorithm did not terminate within a specified time.
In this case all output variables are NA (not available) values.
Furthermore, the length of the counterexample is NA if the
model is safe.

B. Objects

As the framework is under development, its current perfor-
mance and limited input format only permits the verification
of smaller input models from certain domains. Nevertheless,
some smaller standard benchmark instances were used from
the Hardware Model Checking Competition [11]. These mod-
els encode hardware circuits with inputs, outputs, logical gates
and latches. Some industrial PLC software modules from a
particle accelerator were also verified. A total number of 18
models were used, consisting of 12 hardware and 6 PLCs.

C. Measurement Procedure

The framework is implemented in Java and it was deployed
as an executable jar file. Measurements were ran on a 64 bit
Windows 7 virtual machine with 2 cores (2.50 GHz), 16 GB

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/85132134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE I
VARIABLES OF THE EXPERIMENT.

Category Name Type Description

Input
(model)

Type Factor Type of the model. Possible values: hw (hardware), plc (PLC, i.e., Programmable Logic Controller).
Model String Unique name of the model.
Vars Integer Number of FOL variables in the model.
Size Integer Total size of the FOL formulas in the model.

Input
(config.)

Domain Factor Domain of the abstraction. Possible values: PRED (predicate [6]), EXPL (explicit value [7]).
Refinement Factor Abstraction refinement strategy. Possible values: CRAIGI (Craig interpolation [8]), SEQI (sequence interpola-

tion [9]), UNSC (unsat core [10]).
InitPrec Factor Initial precision of the abstraction. Possible values: EMPTY (empty), PROP (property-based).
Search Factor Search strategy in the abstract state space. Possible values: BFS, DFS (breadth- and depth-first search).

Output
(metrics)

Safe Boolean Result of the algorithm, indicates whether the model meets the requirement according to the algorithm.
TimeMs Integer Execution time of the algorithm (in milliseconds).
Iterations Integer Number of refinement iterations until the sufficiently precise abstraction was reached.
ARGsize Integer Number of nodes in the Abstract Reachability Graph (ARG), i.e., the number of explored abstract states.
ARGdepth Integer Depth of the ARG.
CEXlen Integer Length of the counterexample, i.e., a path leading to a state of the model that does not meet the requirement.

RAM and JRE 8. No other virtual machines were running
on the host during the measurements. Z3 [12] was used as the
underlying SAT/SMT solver. The measurement procedure was
fully automated. The configurations and models were listed in
csv files and a script was written that loops through each
configuration and model pair and runs the framework with the
appropriate parameters (based on the configuration and the
model). The script waits until the verification finishes or a
certain time limit is reached, outputs the result (or timeout) to
a csv file and repeats the procedure a given number of times.

In our current setting, 20 configurations were executed on
18 input models and each execution was repeated 5 times,
yielding a total number of 18 · 20 · 5 = 1800 measurements.
The time limit for each measurement was 8 minutes. With this
limit, 1120 executions terminated (successful verifications).

D. Research Questions

In our current work we focus on a preliminary, exploratory
analysis of the measurement results. The following research
questions are investigated.

RQ1 What are the overall, high level properties of the data
set, e.g., distribution of execution time, percentage of
safe models?

RQ2 How do individual parameters of the configuration
affect certain output variables, e.g., PRED or EXPL
domain yields faster execution time?

RQ3 Which input parameters influence certain output vari-
ables the most, e.g., is the Domain or the Refinement
more influential on the execution time?

E. Analysis Methods

RQ1 can be answered with basic descriptive statistics and
summarizing plots (e.g., box plots, heat maps), yielding a
good overview on the characteristics of the data. RQ2 can
be examined with the aid of interactive, visual tools. Parallel
coordinates, scatter plots and correlation diagrams are suitable
for this purpose, where relationships between the different

dimensions can be quickly revealed. RQ3 can be analyzed
with decision trees, principle component analysis and other
methods that can extract the most relevant information from a
set of data. This analysis can also provide an aid to pick the
most appropriate configuration for a given task.

F. Threats to Validity

External validity can be guaranteed by selecting represen-
tative input models. As mentioned in Section II-B, smaller
hardware and software instances were used. As the perfor-
mance and the input formats of the framework will increase,
it will be possible to verify more, larger instances and other
kinds of models (e.g., tasks from the Software Verification
Competition [13]), which improves the external validity of
the analysis. Other tools were not evaluated, because this
experiment focused only on our framework. Internal validity
is increased by running the measurements repeatedly on a
dedicated machine. Furthermore, the framework has also been
undergone unit and integration testing.

III. ANALYSIS

This section presents the analyses and results to our research
questions. The results of measurements were collected to a
single csv file, which was analyzed using the R software
environment version 3.3.2 [14].

Let D denote the whole data set, Dsucc ⊆ D the successful
executions (no timeout) and Dcex ⊆ Dsucc the successful
executions where the model is not safe (i.e., a counterexample
is present). The relation of the data sets along with their size
is depicted in Figure 1.

D Dsucc Dcex

610510680

|D| = 1800
|Dsucc| = 1120
|Dcex| = 610

Fig. 1. Overview of the data sets with the number of measurements.

A. RQ1: High Level Overview

First we checked that (1) either all executions of a con-
figuration on a model gives the same safety result and (2)
all configurations agree on the results for each model. The
lack of the previous properties would obviously mean that the
algorithms are not sound, but for our data set they hold.

The histograms and box plots in Figure 2 give a high level
overview of the distribution and range of output variables. It
can be seen that for most of the variables, the IQR is small
and there are many outliers.

0

200

400

600

fa
ls

e
tr

ue

S
af

e

0e+00

1e+05

2e+05

3e+05

4e+05

T
im

eM
s

0

10

20

30

40

50

Ite
ra

tio
ns

0

2000

4000

6000

8000

A
R

G
si

ze

0

100

200
A

R
G

de
pt

h

0

20

40

60

C
E

X
le

n

Fig. 2. Overview of individual output variables.

Figure 3 gives an overview on execution time. Each cell
of the grid represents the average time of the 5 repeated
executions of a configuration on a model. Configurations are
abbreviated with the first letters of their parameters, e.g.,
PSED means PRED domain, SEQI refinement, EMPTY initial
precision and DFS search. The maximal relative standard
deviation (RSD) of the repeated executions is 10.5%, which is
a low value. This is not surprising because our algorithms are
deterministic, with the possible exception of some heuristics in
external solvers. This low RSD value suggests internal validity
and allows us to represent repeated measurements with their
average. White cells mean that all executions timed out and
colored cells correspond to a logarithmic scale in milliseconds.
It can be seen that each model was verified by at least one
configuration. It is interesting that plc3 was only verified by a
single configuration, but in a rather short time. Also, there is
no single configuration that can verify each model, but some
of them can verify almost all models. Some of the models
(e.g., hw9) are easy for all configurations, but some of them
(e.g., plc1) expose 2–3 orders of magnitude difference between
the configurations.

B. RQ2: Effect of Individual Parameters

Effect of individual parameters on certain output variables
were also compared. The most interesting observation was the
effect of the domain on the execution time. This analysis was
done by forming pairs from the measurements, similarly to the
join operation known from databases. We calculated D×D and
kept rows where every input variable is the same, except the
domain, which is different. This means that each row contains
an execution for PRED and EXPL domains with the rest of

ECEB
ECED
ECPB
ECPD
ESEB
ESED
ESPB
ESPD
EUEB
EUED
EUPB
EUPD
PCEB
PCED
PCPB
PCPD
PSEB
PSED
PSPB
PSPD

hw
1

hw
2

hw
3

hw
5

hw
4

hw
6

hw
7

hw
8

hw
9

hw
10

hw
11

hw
12

pl
c1

pl
c2

pl
c3

pl
c4

pl
c5

pl
c6

Model

C
on

fig
ur

at
io

n

3

4

5

Tavg

Fig. 3. Average execution time (milliseconds, logarithmic scale).

the configuration (and the model) being the same. Only those
rows were kept where at least one domain was successful.
Each point in Figure 4 represents a row, where the x and
y coordinates correspond to the execution time of PRED and
EXPL respectively. Furthermore, points have different colors
based on Type. Points at the right and top edges correspond to
timeouts. An important property of this kind of plot is that
points above the identity line mean that PRED was faster,
while points below mean the opposite. It can be observed
that verification of PLC models is more efficient in the EXPL
domain. Hardware models however, show some diversity, both
domains have good results.

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

PRED

E
X

P
L

100

200

300

400
count

Type

hw

plc

Fig. 4. Comparison of execution time for the different domains.

An other interesting result was the comparison of the
number of iterations for CRAIGI and SEQI refinements. Only
those rows were kept where both refinements were successful.

It can be seen in Figure 5 that SEQI yields less iterations in
almost all cases. It can also be observed, that the difference
between the two refinement strategies is small for hardware
models, but it can be much larger for certain PLC models.

0

5

10

15

20

0 10 20 30 40 50

CRAIGI

S
E

Q
I

Type

hw

plc

100

200

300

400

500

600
count

Fig. 5. Comparison of iterations for the different refinements.

C. RQ3: Influence of Input Parameters on Output Variables
The influence of input parameters on certain output variables

were also examined. Amongst the observations, the most
interesting was the influence of Type and the parameters of
the configuration on the success of verification (i.e., a non-
timeout). Figure 6 shows the decision tree. It can be seen that
the most influential parameters are Domain, Type and Refinement.
In the terminal nodes SUCC and TO represent success and
timeout respectively. It can be observed that for example
choosing PRED domain for PLCs will most likely not succeed.
On the other hand, it is likely to succeed for hardware models.
It can also be seen that EXPL domain with CRAIGI refinement
is likely to succeed regardless of the type of the model. This
fact is also confirmed by the small number of white cells in
the bottom four rows of Figure 3.

IV. CONCLUSIONS

In our paper we evaluated various configurations of our
CEGAR framework on different models, including hardware
and PLCs. We identified properties of models and parameters
of the algorithm that can serve as input and output variables.
We presented some possible analysis methods with the corre-
sponding results, including descriptive statistics, different plots
and decision trees. Although the results being preliminary,
we showed that different configurations are more suitable for
certain tasks and we also revealed connections between the
type of the model, the parameters of the algorithm and the
success of verification. Based on these results we will be able
to improve the framework and perform measurements with a
larger number of input models and configurations, yielding a
larger data set. We hope that further analysis on this data set
will allow us to automatically determine the most appropriate
configuration of the algorithm for a given verification task.

Domain

EXPL PRED

Refinement

CRAIGI SEQI, UNSC

n = 360

TO
S

U
C

C

0
0.2
0.4
0.6
0.8
1

Type

hw plc

Refinement

UNSC SEQI

n = 240

TO
S

U
C

C

0
0.2
0.4
0.6
0.8
1

n = 240

TO
S

U
C

C

0
0.2
0.4
0.6
0.8
1

n = 240

TO
S

U
C

C

0
0.2
0.4
0.6
0.8
1

Type

hw plc

n = 480

TO
S

U
C

C

0
0.2
0.4
0.6
0.8
1

n = 240

TO
S

U
C

C

0
0.2
0.4
0.6
0.8
1

Fig. 6. Decision tree on the success of verification.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” Journal of
the ACM, vol. 50, no. 5, pp. 752–794, 2003.

[3] A. Hajdu, T. Tóth, A. Vörös, and I. Majzik, “A configurable CEGAR
framework with interpolation-based refinements,” in Formal Techniques
for Distributed Objects, Components and Systems, ser. LNCS. Springer,
2016, vol. 9688, pp. 158–174.

[4] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability.
IOS press, 2009.

[5] P. Antal, A. Antos, G. Horváth, G. Hullám, I. Kocsis, P. Marx,
A. Millinghoffer, A. Pataricza, and A. Salánki, Intelligens adatelemzés.
Typotex, 2014.

[6] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification, ser. LNCS. Springer, 1997, vol. 1254,
pp. 72–83.

[7] E. M. Clarke, A. Gupta, and O. Strichman, “SAT-based counterexample-
guided abstraction refinement,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1113–1123, 2004.

[8] K. McMillan, “Applications of Craig interpolants in model checking,”
in Tools and Algorithms for the Construction and Analysis of Systems,
ser. LNCS. Springer, 2005, vol. 3440, pp. 1–12.

[9] Y. Vizel and O. Grumberg, “Interpolation-sequence based model check-
ing,” in Formal Methods in Computer-Aided Design. IEEE, 2009, pp.
1–8.

[10] M. Leucker, G. Markin, and M. Neuhäußer, “A new refinement strategy
for CEGAR-based industrial model checking,” in Hardware and Soft-
ware: Verification and Testing, ser. LNCS, vol. 9434. Springer, 2015,
pp. 155–170.

[11] G. Cabodi, C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, D. Ven-
draminetto, A. Biere, K. Heljanko, and J. Baumgartner, “Hardware
model checking competition 2014: An analysis and comparison of
solvers and benchmarks,” Journal on Satisfiability, Boolean Modeling
and Computation, vol. 9, pp. 135–172, 2016.

[12] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. LNCS.
Springer, 2008, vol. 4963, pp. 337–340.

[13] D. Beyer, “Reliable and reproducible competition results with Bench-
Exec and witnesses (report on SV-COMP 2016),” in Tools and Al-
gorithms for the Construction and Analysis of Systems, ser. LNCS.
Springer, 2016, vol. 9636, pp. 887–904.

[14] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2016. [Online]. Available: https://www.R-project.org/

https://www.R-project.org/

	Introduction
	Experiment Planning
	Variables
	Objects
	Measurement Procedure
	Research Questions
	Analysis Methods
	Threats to Validity

	Analysis
	RQ1: High Level Overview
	RQ2: Effect of Individual Parameters
	RQ3: Influence of Input Parameters on Output Variables

	Conclusions
	References

