
Getting the Priorities Right:
Saturation for Prioritised Petri Nets

Kristóf Marussy1, Vince Molnár1,2, András Vörös1,2, and István Majzik1

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics,

Budapest, Hungary
2 MTA-BME Lendület Cyber-Physical Systems Research Group,

Budapest, Hungary
{molnarv,vori}@mit.bme.hu

Abstract. Prioritised Petri net is a powerful modelling language that
often constitutes the core of even more expressive modelling languages
such as GSPNs (Generalized Stochastic Petri nets). The saturation state
space traversal algorithm has proved to be efficient for non-prioritised
concurrent models. Previous works showed that priorities may be en-
coded into the transition relation, but doing so defeats the main idea
of saturation by spoiling the locality of transitions. This paper presents
an extension of saturation to natively handle priorities by considering
the priority-related enabledness of transitions separately, adopting the
idea of constrained saturation. To encode the highest priority of enabled
transitions in every state we introduce edge-valued interval decision dia-
grams. We show that in case of Petri nets, this data structure can be con-
structed offline. According to preliminary measurements, the proposed
solution scales better than previously known matrix decision diagram-
based approaches, paving the way towards efficient stochastic analysis of
GSPNs and the model checking of prioritised models.

Keywords: saturation · priority · prioritised Petri net · Petri net · de-
cision diagram · edge-valued interval decision diagram · GSPN.

1 Introduction

Priorities in Petri nets provide a convenient way to represent dependencies be-
tween transitions, making them useful in the modelling of complex problems. One
particularly important subset of prioritised Petri nets is Generalized Stochastic
Petri nets (GSPN, [1]). To analyse the stochastic behaviour of a GSPN, the model
must not express any nondeterminism. One way to guarantee this is to assign
priorities to the transitions [12]. While explicit (graph-based) model checking al-
gorithms naturally handle priorities, symbolic model checkers often have trouble
representing the resulting complex transition relations compactly.

Saturation is one of the most efficient symbolic algorithms when it comes
to concurrent, asynchronous systems [4]. It works on a decision diagram rep-
resentation of the state space and its iteration strategy follows the structure

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/85132110?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

of the diagram. The original algorithm required the transition relation to be
Kroenecker-consistent, which was later overcome by the introduction of more
flexible representations, e.g. matrix decision diagrams [8].

Exploiting the ability to encode arbitrary relations, [8] also introduced a
way to encode priorities into the transition relations of Petri nets by removing
elements where the source state enables a higher-priority transition. Although
doing so spoils the locality property of concurrent systems (i.e. transitions be-
come dependent on additional components), [8] presents a method to factor the
relations such that saturation can still exploit some of the original locality.

The motivation of our work comes from the intuition that any alteration
to the transition relations (without priorities) that affects locality will hurt the
efficiency of saturation more than what is absolutely necessary. Therefore we de-
vised a solution that, with the modification of the saturation algorithm (inspired
by constrained saturation [15]), uses the transition relations as is and handles
the priority-related enabledness separately, encoded in a new kind of decision
diagram called edge-valued interval decision diagram (EVIDD). We show that
for Petri nets, such a diagram can be constructed offline.

We expect our approach to yield smaller intermediate decision diagrams and
thus result in better performance for the state space generation of prioritised
models. Our preliminary experiments comparing our results to that of [8] seems
to confirm this expectation, demonstrating that the presented algorithm scales
better with the size of benchmark models than previous implementations.

The paper is structured as follows. The rest of this section recalls the rele-
vant details about prioritised Petri nets and GSPNs, introduces our notations
for multivalued decision diagrams and briefly presents saturation. In Section 2,
we provide the details of our approach, including the definition and operations
of EVIDDs, the encoding of priority-related enabledness and the modified satu-
ration algorithm. The results of preliminary evaluation are presented in Section
3, while Section 4 provides concluding remarks and our plans for future work.

1.1 Petri Nets with Priority

Petri nets are a well-known and widespread modelling language mainly used to
describe and study concurrent, asynchronous and nondeterministic systems. Here
we present the notion of prioritised Petri nets, an extension of the traditional
formalism with priorities. The following definition also includes inhibitor arcs.

Definition 1 (Prioritised Petri nets). A prioritised Petri net is a tuple PN =
⟨P, T, W, M0, π⟩ where:

– P is the set of places (defining state variables);
– T is the set of transitions (defining behaviour) such that P ∩ T = ∅;
– W = W −∪W +∪W ◦ is a multiset of three types of arcs (the weight function),

where W −, W ◦ : P × T → N and W + : T × P → N are the set of input arcs,
inhibitor arcs and output arcs, respectively;

– M0 : P → N is the initial marking, i.e. the number of tokens on each place;

3

– π : T → N assigns priorities to transitions.
The three types of weight functions describe the structure of the Petri net:

there is an input or output arc between a place p and a transition t iff W −(p, t) >
0 and W +(t, p) > 0, respectively, and there is an inhibitor arc iff W ◦(p, t) < ∞.

The state of a Petri net is defined by the current marking M : P → N. The
dynamic behaviour of a prioritised Petri net is described as follows. A transition
t is enabled iff ∀p ∈ P : M(p) ∈

[
W −(p, t), W ◦(p, t)

)
. An enabled transition

is fireable iff there is no other enabled transition t′ such that π(t) < π(t′).
Upon firing transition t, the new marking M ′ of the Petri net will be as follows:
∀p ∈ P : M ′(p) = M(p) − W −(p, t) + W +(t, p). The firing of fireable transitions
is nondeterministic. We denote the firing of transition t in marking M resulting
in M ′ with M

t−→ M ′. A marking Mi is reachable from the initial marking if
there exists a sequence of markings such that M0

t1−→ M1
t2−→ · · · ti−→ Mi. The

set of reachable markings (i.e. the state space of the Petri net) is denoted by Sr.
This work assumes Sr to be finite.

Generalized Stochastic Petri nets Stochastic Petri nets (SPN) extend Petri
nets with timed behaviours, where transitions are equipped with exponentially
distributed firing delay random variables. Timed semantics of SPNs are defined
by continuous-time Markov chains. Generalized Stochastic Petri nets (GSPN)
further extend modelling capabilities to support both timed and instantaneous
behaviours [1]. In GSPNs, transitions with zero priority (called timed) have expo-
nentially distributed firing delays, while transitions with π(t) ≥ 1 are immediate.

A Prioritised Petri net marking M where no transition t with π(t) ≥ 1 is en-
abled is called tangible, while markings with an enabled transition with π(t) ≥ 1
are called vanishing. We write M ∈ T if M ∈ Sr is a reachable tangible marking
and M ∈ V if M is a reachable vanishing marking. In tangible markings, the
timed semantics of Stochastic Petri nets apply to GSPNs. In contrast, immedi-
ate transitions are fired in vanishing markings while no time elapses. Conflicts
between immediate transitions may yield nondeterministic behaviours. To en-
sure that probability distribution of GSPN markings evolve deterministically in
time, conflicts must be resolved by assigning probability weights and priorities [1].
Conflict resolution may yield Prioritised Petri nets with many priority levels [12].

1.2 Multivalued Decision Diagrams
Multivalued decision diagrams (MDD, [7]) can be regarded as the extensions of
binary decision diagrams. Symbolic model checking uses MDDs to compactly
represent the reachability set. Assuming the states are given as integer tuples
(each integer representing the state of a component, e.g. a place in a Petri net),
the state space can be encoded by a function f : NK → B, where the value of f
is ⊤ if the given state is part of the set and ⊥ otherwise.
Definition 2 (Multivalued Decision Diagram). An ordered quasi-reduced
multivalued decision diagram over K variables is a tuple ⟨K, V, r, lvl, children, val⟩
such that:

4

– V =
⨆K

i=0 Vi is the set of nodes, where items of V0 are terminal nodes, the
rest (V>0 = V \ V0) are internal nodes;

– lvl : V → {0, 1, . . . , K} assigns non-negative level numbers to each node,
associating them with variables (Vi = {n ∈ V | lvl(n) = i});

– r ∈ V is the root node of the MDD (lvl(r) = K);
– val : V0 → {⊥, ⊤} assigns a binary value to each terminal node (therefore

V0 = {0, 1}, where 0 is the terminal zero node (val(0) = ⊥) and 1 is the
terminal one node (val(1) = ⊤);

– children : V>0 × N → V defines edges between nodes labelled with elements
of N, denoted by n[i] (i.e. children(n, i) = n[i], n[i] is left-associative), such
that for each node n ∈ V>0 and value i ∈ N : lvl(n) = lvl(n[i])+1 or n[i] = 0;

– for every pair of nodes n, m ∈ V>0, if for all i ∈ N : n[i] = m[i], then n = m.

Note that in this form (contrary to the literature), the representation is not
finite due to the definition of children. In practice, we assume that n[i] = 0
for any node n and value i for which children is not defined explicitly and the
explicit definition will be finite at any point in the algorithms.

Definition 3 (Semantics of MDD). The function encoded by an MDD rooted
in node r is f(v) = f(v1, . . . , vK) = val(r[vK][vK−1] · · · [v1]), where vi ∈ N. The
set of tuples encoded by r is therefore S(r) = {v | f(v) = ⊤}.

Common set operations such as union and intersection can be efficiently
implemented directly over MDDs with recursive functions and caching [7].

1.3 Saturation

Saturation is a state space traversal strategy specifically tailored to work on
decision diagram representations [4]. The problem of state space generation is
the computation of the set of system states reachable from one or more initial
states I. This can be done by computing the reflexive transitive closure of the
next-state function N and applying it on the initial state, i.e. by computing the
least fixed point of N including I. One way of computing this fixed point is to
compute the series Si = Si−1 ∪N (Si−1) (with S0 = I) until two consecutive sets
are equal. This approach essentially implements a breadth-first search strategy
(BFS). Although the disadvantages of explicit graph-based BFS do not apply in
a symbolic setting, a huge disadvantage is that decision diagrams representing
the intermediate sets tend to be much larger than the final result. To do better,
saturation uses additional information from the high-level model.

Definition 4 (Component-based model). Given a system with K compo-
nents, saturation requires the models to be given as a 4-tuple ⟨S, I, E , N ⟩, where:

– S = S1 × · · · × SK is the set of potential global states with Sk being the set
of possible local states of the kth component;

– I ⊆ S is the set of initial states;
– E is the set of high-level events, i.e. the building blocks of behaviour;

5

– N ⊆ S × S is the next-state relation, also defined for every event ε ∈ E:
N =

⋃
ε∈E Nε.

The next-state relation in Definition 4 is equivalent to the next-state function
used before, N (S) meaning the relational product S ◦N . The reflexive transitive
closure of the next-state relation is denoted by N ∗.

For example, in case of (non-prioritised) Petri nets, usually every transition
is considered a separate event and places are assigned to components. In the
common case when every place is considered as a separate component, a single
state is a tuple defined by the marking (assigning a local state to every place).

Saturation for MDDs uses an MDD representation to encode and handle the
set of reachable states Sr. The encoding requires a total ordering of the system
components, i.e. the assignment of local state variables to decision diagram levels.
Based on this indexing, we can also partition the events of the model.

Definition 5 (Partitioning of the next-state relation). An event ε ∈ E is
independent from component k if 1) its firing does not change the state of the
component and 2) it is enabled independently of the state of the component (i.e.
the projection of Nε to component k is an identity relation). Other components
are said to be in the support of ε: k ∈ supp(ε). Let Top(ε) = max(supp(ε)) denote
the supporting component of ε with the highest index. Along the value of Top,
events can be grouped: Ek = {ε ∈ E | Top(ε) = k}. The partitioning of the next-
state relation is then defined based on this notion of levelling: Nk =

⋃
ε∈Ek

Nε.

The defined partitioning aims to exploit a common feature of concurrent
models: locality. Due to locality, events in such systems tend to depend on only
a small number of components. Saturation exploits this by applying the next-
state functions on the lowest level possible (i.e. on level Top), iterating through
them in a bottom-up fashion. In addition, at every level k, the algorithm applies
Nk exhaustively until a local fixed point is reached, recursively processing lower
levels again if necessary. Hence the definition of a saturated MDD node: node
n on level k is saturated if all of its child nodes are saturated and S(n) is a
fixed point of Nk. Saturating the root node r of an MDD representing the initial
states therefore means that S(r) = N ∗(I) will hold.

Another benefit of considering locality is the reduced size of the next-state
function representation. By the introduction of Top and the similarly defined
Bot(ε) = min(supp(ε)), most variants of the saturation algorithm consider the
next-state function only between these levels.

2 State Space Exploration with Priorities

In this chapter, we investigate the problem of state space generation for models
with priorities. Our goal is to efficiently build the handling of priorities into
saturation – which in its original form does not consider priorities directly.

Previous works has addressed this problem by encoding the effect of priori-
ties into the transition relations. In [8], the author had two main goals. Firstly,

6

Boolean matrix decision diagrams have been introduced to encode the transition
relations, thus relaxing the requirement of having to use Kroenecker-consistent
next-state relations. This was necessary because the modification of the rela-
tions to exclude states in which a higher-priority transition is enabled almost
always spoils Kroenecker-consistency. Although it is possible to decompose such
a relation into Kroenecker-consistent relations, this was deemed inefficient.

Secondly, [8] has also pointed out that the modified next-state relations lose
the property of locality. With regard to saturation, this means a drastic raise in
the Top values of events, degrading saturation to the previously described BFS
strategy. This problem has been alleviated by slicing the relations to extract
the part which really depends on the additional components and keeping the
rest lower. This way they have managed to preserve locality as much as possible
without modifying the saturation algorithm.

On the contrary, we chose to extend saturation and use every next-state rela-
tion as is in the hopes of achieving better scalability. Assuming the priorities are
given as integers (contrary to [8] but in accordance with [12]), the highest pri-
ority among enabled transitions πmax is encoded into a separate data structure.
This information is passed along with recursive calls in a modified saturation
algorithm and used to decide whether a transition can be fired, similarly to the
passing of constraints in constrained saturation [15].

The highest priority of enabled transitions πmax(M) depends on the current
marking M of the Petri net. Thus the encoding must be suitable to compute
πmax for any marking M encountered by saturation, in one of the following ways.

Firstly, an overapproximation Ŝr of the prioritised model’s reachable state
space Sr can be calculated. As saturation only encounters reachable markings
M ∈ Sr, it is sufficient to encode πmax(M) for the elements for Ŝr. The ap-
proximation may come from knowing bounds of places a priori, deriving bounds
from P -invariants or exploring the state space of the unprioritised version of the
model. However, this calculation may not always be possible, e.g. due to lack
of known place bounds or the unprioritised model being unbounded. Moreover,
poor overapproximations may produce unneccessarily large encodings.

Secondly, the encoding of πmax(M) may be calculated on the fly. When sat-
uration encounters a new local state, the data structure can be updated accord-
ingly. We aim to explore this approach in future work.

Thirdly, a specialized data structure may be introduced that can encode πmax
for any reachable or unreachable marking and compiled before saturation. To this
end, we introduce edge-valued interval decision diagrams (EVIDD) to encode for
each state the maximum of the priorities of enabled transitions (Section 2.1). We
show that in case of Petri nets this information can be compiled offline (Section
2.3). The extended saturation algorithm and a more detailed comparison of our
approach and that of [8] will be discussed in Section 2.4.

2.1 Edge-valued Interval Decision Diagrams

This section introduces edge-valued interval decision diagrams, a hybrid between
edge-valued decision diagrams [11] and interval decision diagrams [13].

7

n1

n2

n3

n4

n5

1

1; 0

0; 0
1; 0

0; 2

4; 0

0; 3 7; 4

0; 0

3; 0

0; 2

x3 x2 x1 g⟨0,n1⟩(x)

[0, 1) [0,∞) [0,∞) 3
[1, 7) [0, 1) [0, 4) 2

. [4,∞) 0

. . . [1,∞) [0,∞) 0
[7,∞) [0,∞) [0, 3) 6

. [3,∞) 4

Fig. 1: Example quasi-reduced and ordered EVIDD. Nodes are denoted by
squares and the terminal node by a circle. The edges are represented by the
labels lbi; vi of the directed arcs. The table shows the semantics of a 0-valued
root handle ⟨0, n1⟩ (columns encode the relevant intervals of input variables and
the corresponding function value g⟨0,n1⟩(x) for each row).

Definition 6 (Edge-valued interval decision diagram). An (ordered)
edge-valued interval decision diagram (EVIDD) over K variables is a tuple
⟨K, V, H, r, rh, lvl, edges⟩ such that:

– V =
⨆K

i=0 Vi is the set of nodes with V0 = {1} (the single terminal node)
and V≥1 = V \ V0 being the set of internal nodes;

– H =
⨆K

i=0 Hi is the set of handles where Hi = N × (Vi ∪ {1}), i.e. every
handle is a pair of a value and a node;

– lvl : (V ∪H) → {0, 1, . . . , K} assigns non-negative level numbers to each node
and handle, associating them with the variables (Vi = {n ∈ V | lvl(n) = i}
and Hi = {h ∈ H | lvl(h) = i});

– The root node r is the single node on level K (VK = {r}) and rh = ⟨v, r⟩ is
the root handle with value v, representing the encoded function;

– edges : V≥1 → (N × H)∗ assigns an edge list (a sequence of edges) to inter-
nal nodes, i.e. for any node n ∈ V≥1, edges(n) =

(
⟨lb1, h1⟩, . . . , ⟨lbc, hc⟩

)
, c

denoting the number of edges of n. Each edge consists of a lower bound lbj

and a handle hj such that hj ∈ Hi−1. We require that lb1 = 0 and for all
1 < j ≤ c : lbj−1 < lbj, i.e. the lower bounds form an increasing sequence.

An EVIDD may be represented by a directed graph (see Fig. 1 for an ex-
ample). Internal nodes of the EVIDD have several outgoing edges. Each edge
⟨lbj , hj⟩ ∈ edges(n) is labelled with a lower bound lbj and value v of the handle
hj = ⟨v, m⟩, connecting n to m. The terminal node 1 has no outgoing edge.

If ⟨v, n⟩ is a handle and w ∈ N, let ⟨v, n⟩+w and ⟨v, n⟩−w denote ⟨v +w, n⟩,
⟨v − w, n⟩, respectively. The latter is defined only when w ≤ v.

The edge lower bounds lbj of some internal EVIDD node n partition N into
disjoint intervals [lb1 = 0, lb2), [lb2, lb3), . . . , [lbc−1, lbc), [lbc, ∞). For convenience
we will write lbc+1 = ∞. For any x ∈ N there is a unique highest index j
of edges(n) such that lbj ≤ x, which corresponds to the interval [lbj , lbj+1)
containing x. Let ⟨v, n⟩[x] = hj + v, where ⟨lbj , hj⟩ ∈ edges(n) and j is the
index defined above. Moreover, let ⟨v, 1⟩[x] = ⟨v, 1⟩ for any x.

8

Definition 7 (Semantics of EVIDD). An EVIDD rooted in handle h encodes
the function gh : NK → N such that gh(x) = gh(xK , . . . , x1) = w, iff ⟨w, 1⟩ =
h[x] = h[xK][xK−1] · · · [x1], where x ∈ NK .

Since h[x] ∈ Hi−1 for all h ∈ Hi, the result of K-fold indexing is always
defined for root handles and it always returns a handle of the form ⟨w, 1⟩.

Lemma 1. For every suffix x≥k = (xk, xk+1, . . . , xK) of x, gh(x≥k) ≤ gh(x).

Proof. Due to nonnegative edge values, h[x≥k] = ⟨z, m⟩ implies gh(y) ≥ z for
all y = (y1, y2, . . . , yk−1, x≥k). Note that if h[x≥k] = ⟨z, 1⟩, then gh(y) = z.

Definition 8. An internal EVIDD node n ∈ V≥1 is canonical if 1) for all ad-
jacent edges (⟨lbi, hi⟩, ⟨lbi+1, hi+1⟩) ⊆ edges(n), hi ̸= hi+1 and 2) there is an
edge ⟨lbi, ⟨vi, mi⟩⟩ ∈ edges(n) such that vi = 0; The terminal EVIDD node 1
is canonical. An (ordered) EVIDD is quasi-reduced if 1) all nodes are canoni-
cal, 2) no two internal nodes have equal edge lists and 3) if the following holds:
ifedges(n) = (⟨0, ⟨v1, m1⟩⟩) for some internal node n, then m1 ̸= 1.

In the rest of this paper we assume all EVIDDs to be quasi-reduced and ordered.
The following lemma shows that the handle h uniquely represents gh, which

means caching may be used to speed up operations with functions gh.

Lemma 2. Let h = ⟨v, n⟩ and q = ⟨w, m⟩ be handles of nodes in a quasi-reduced
ordered EVIDD such that h, q ∈ Hi. If gh(x) = gq(x) for all x ∈ Ni, then h = q.

Proof. We proceed by induction by increasing i. If i = 0, the claim is trivial.
In the inductive case, we need to consider handles h ∈ Hi \ H0. Thanks

to the induction hypothesis, it suffices to show that h[x] = q[x] for all x ∈ N
implies h = q. Let x be such that v′ is minimized in h[x] = q[x] = ⟨v′, n′⟩. Then
v′ = v + min(vj) = w + min(wj), where vj and wj range over the edge values
of n and m, respectively. For canonical n and m, min(vj) = min(wj) = 0, thus
v = w.

Now we show that edges(n) = edges(m), which implies n = m. Consider some
y ∈ N such that h[y − 1] ̸= h[y]. Then ⟨y, h[y] − v⟩ must appear in edges(m).
Conversely, if h[y − 1] = h[y] and m is canonical, no edge with lower bound
y may appear in edges(m). Finally, note that the first element of edges(m) is
⟨0, h[0] − v⟩, which is also the first element on edges(m).

2.2 EVIDD Operations

Building Canonical EVIDDs Fig. 2a shows the procedure EviddCheckIn
that creates a canonical EVIDD node from a list of edges. Callers must ensure
that the edge list contains no invalid level skipping, i.e. all child nodes are located
on the same level or are the terminal node 1. Adjacent edges with equal values
and child nodes are removed in lines 4–6. If only a single edge to 1 remains, a
handle to the terminal node is returned instead of a new node in line 8. Oth-
erwise, the edge list is brought into canonical form in lines 9–10 by subtracting
offset = min(vi) from the edge values so that a zero valued edge appears.

9

Input: edges E = (⟨lbi, ⟨vi, mi⟩⟩)c
i=1

Output: checked in EVIDD handle
1 if lb1 ̸= 0 then fail
2 for i← 2 to c do
3 if lbi−1 ≥ lbi then fail
4 if vi = vi−1 and mi = mi−1 then
5 drop ⟨lbi, ⟨vi, mi⟩⟩ from E
6 i← i− 1, c← c− 1

7 if c = 1 and m1 = 1 then
8 return ⟨v, 1⟩
9 offset ← mini=1,2,...,c vi

10 for i← 1 to c do vi ← vi − offset
11 n← EviddNode(E)
12 if ¬UniqueTableGet(n) then
13 UniqueTablePut(n)
14 return ⟨offset, n⟩

(a) Procedure EviddCheckIn.

Input: a = ⟨v, n⟩, b = ⟨w, m⟩ ∈ Hℓ

Output: max{a, b}
1 if n = 1 and m = 1 then
2 return ⟨max{v, w}, 1⟩
3 offset ← min{v, w}
4 a← a− offset
5 b← b− offset
6 if ¬MaxCacheGet({a, b}, h) then
7 if n = 1 then
8 h←MergeConstant(b, v)
9 else if m = 1 then

10 h←MergeConstant(a, w)
11 else
12 h←Merge(a, b)
13 MaxCachePut({a, b}, h)
14 return h + offset

(b) Procedure Maximum.

Fig. 2: Basic EVIDD operations.

Lines 11–13 depend on three other routines to produce a node object in
memory. The constructor EviddNode(E) creates a new node object from a
canonical list of edges E. As in other decision diagram implementations, space
is conserved and comparisons of nodes are made more efficient by the use of
a unique table. If the unique table contains a node with the same edges as
n, UniqueTableGet(n) disposes of the object pointed by n, replaces n with
a reference to the equivalent node from the unique table and returns true.
Otherwise false is returned and UniqueTablePut(n) is used to add n to the
unique table. Finally, offset is recovered as the value of the returned handle
⟨offset, n⟩.

Elementwise Maximum
Definition 9. The elementwise maximum of the EVIDD handles a, b ∈ Hℓ is
the handle h = max{a, b}, such that max{ga(x), gb(x)} = gh(x) for all x ∈ Nℓ.

The semantics of EVIDDs together with the definition of max{a, b} im-
ply that max{ga(x), gb(x)} = max{ga[xℓ](x≤ℓ−1), gb[xℓ](x≤ℓ−1)}. Therefore
max{a, b}[x] = max{a[x], b[x]} for all x ∈ N, which allows recursive calculation
of max{a, b}. The operation has two further properties which will be exploited
in our implementation to facilitate caching. Firstly, the operation is symmetric:
max{a, b} = max{b, a}. Secondly, because q = h + w implies gq(x) = gh(x) + w
for all x, the elementwise maximum is offset invariant. If h = max{a, b}, we
have h + w = max{a + w, b + w} and h − w = max{a − w, b − w}.

Fig. 2b shows the implementation Maximum of the elementwise maximum
operation. The algorithm is divided into four cases based on whether the handles

10

Input: a = ⟨v, n⟩ and w ∈ N
Output: max{a, ⟨w, 1⟩}

1 E ← ()
2 for each ⟨lbi, hi⟩ ∈ edges(n) do E ← E ++ (⟨lbi, Maximum(hi + v, ⟨w, 1⟩)⟩)
3 return EviddCheckIn(E)

(a) Procedure MergeConstant.

Input: a = ⟨v, n⟩, b = ⟨w, m⟩ ∈ Hℓ

Output: max{a, b}
1 c← |edges(n)|, c′ ← |edges(m)|, i← 1, j ← 1, E ← (), lbout ← 0
2 let us denote edges(n) by (⟨lbk, hk⟩)c

k=1 and edges(n) by (⟨lb′
k, h′

k⟩)c′
k=1

3 while i ≤ c and j ≤ c′ do
4 E ← E ++ (⟨lbout, Maximum(hi + v, h′

j + w)⟩)
5 if i = c then nextA←∞ else nextA← lbi+1
6 if j = c′ then nextB ←∞ else nextB ← lb′

j+1
7 lbout ← max{nextA, nextB}
8 if nextA = lbout then i← i + 1
9 if nextB = lbout then j ← j + 1

10 return EviddCheckIn(E)
(b) Procedure Merge.

Fig. 3: Subroutines for the Maximum operation (++ denotes concatenation).

a and b point to terminal or internal EVIDD nodes. If a and b are both handles
of the terminal node 1 (line 1), the functions ga and gb are constant. This base
case is processed directly without caching. The remaining recursive cases make
use of caching. Maximum depends on the routines MaxCacheGet and Max-
CachePut to manage the cache. MaxCacheGet({a, b}, h) takes an unordered
caching key {a, b} and sets the reference h to the cached result max{a, b}. Suc-
cessful retrievals are indicated by returning true, while false is returned on cache
misses. MaxCacheGet({a, b}, h) associates the result h with the key {a, b}.

To increase the number of potential cache hits, lines 3–5 subtract the min-
imum of their values from the handles a = ⟨v, n⟩ and b = ⟨w, m⟩, so that at
least one of v and w is 0. After possibly retrieving max{a, b} from the cache,
this offset is added back to the result in line 14.

The function MergeConstant in Fig. 3a processes the two cases when one
of a and b is a handle to 1, while the the other references an internal node. Due
to symmetry, we may assume that a = ⟨v, n⟩ ∈ Hℓ and b = ⟨w, 1⟩ ∈ Hℓ. Because
⟨w, 1⟩[x] = ⟨w, 1⟩, max{a, b}[x] must be set to min{a[x], ⟨w, 1⟩} for all x ∈ N.
This is accomplished by replacing all edges ⟨lbi, hi⟩ of n with max{a[lbi], ⟨w, 1⟩}.

The most interesting case, when the handles a = ⟨v, n⟩, b = ⟨w, m⟩ both refer
to internal nodes n, m ∈ Vℓ is processed by Merge in Fig. 3b. The difficulty
arises from the edge lists edges(n) = (⟨lbk, hk⟩)c

k=1 and edges(m) = (⟨lb′
k, h′

k⟩)c′

k=1
having possibly different lower bound sequences lbi and lb′

j . Therefore a new edge
list E with a new sequence of lower bounds {lbi} ∪ {lb′

j} must be constructed.

11

Input: transition t
Output: priority EVIDD handle

1 if π(t) = 0 then return ⟨0, 1⟩
2 h(0) ← ⟨π(t), 1⟩
3 for i← 1 to K do
4 if W −(t, pi) > W ◦(t, pi) then
5 return ⟨0, 1⟩
6 if W −(t, pi) > 0 then
7 E ← (⟨0, ⟨0, 1⟩⟩,

⟨W −(t, pi), h(i−1)⟩)
8 else E ← (⟨0, ⟨0, h(i−1)⟩⟩)
9 if W ◦(t, pi) <∞ then

10 E ← E ++ (⟨W ◦(t, pi), ⟨0, 1⟩⟩)
11 h(i) ← EviddCheckIn(E)
12 return h(k)

(a) Procedure TransitionHandle.

Input: set of all transitions T
Output: EVIDD handle encoding

the highesty priority of
enabled transitions

1 h← ⟨0, 1⟩
2 order T by Top(t) nondecreasing
3 for each t ∈ T do
4 q ← TransitionHandle(t)
5 h←Maximum(h, q)
6 return h

(b) Procedure HighestPriority.

Fig. 4: Encoding the highest priority of enabled transitions.

Since lb1 = lb′
1 = 0, the first edge of the new edge list is ⟨0, max{a[0], b[0]}⟩ =

⟨0, max{h1 + v, h′
1 + w}⟩. The loop in lines 3–9 of Merge traverses the lower

bounds lbi and lb′
j with the indices i and j. Lines 5 and 6 peek at the next

elements nextA = lbi+1 and nextB = lb′
j+1 of the lower bound sequences. We

follow the convention that lbc+1 = lb′
c′+1 = ∞. The lower bound lbout of the

next edge to be created is equal to the smaller of the two next elements. Thus
an intersection of the interval partitions of N induced by edges(n) and edges(m) is
built. If both edge lists are exhausted, lbout = nextA = nextB = ∞, which causes
both i and j to be incremented beyond their limits and the loop to terminate.

2.3 Encoding the Highest Priority of Enabled Transitions

In this section we construct an EVIDD and a handle h that encodes the highest
priority of enabled transitions of a prioritised Petri net for any state. We will
have gh(M(pk), M(pk−1), . . . , M(p1)) = πmax(M) for a marking M of the Petri
net if a transition with priority π has the highest priority among all enabled
transitions in M . If there are no enabled transitions in M , we set πmax(M) = 0.

TransitionHandle(t), which is shown in Fig. 4a, associates an EVIDD
handle h to a prioritised Petri net transition t. The handle encodes the function

gh(M(pk), M(pk−1), . . . , M(p1)) =
{

π(t), if M ∈ En(t),
0, if M /∈ En(t),

12

where En(t) is the set of markings in which t is enabled:

En(t) =
k∏

i=1

[
W −(t, pi), W ◦(t, pi)

)
∩ Nk,

i.e. En(t) is the set of integer vectors where the component corresponding to
the place pi lies in the interval

[
W −(t, pi), W ◦(t, pi)

)
. Recall that if there are no

inhibitor edges between t and the place pi, then W ◦(t, pi) = ∞. If π(t) = 0 or
En(t) = ∅, gh is constant and h is ⟨0, 1⟩.

These intervals are encoded by the loop in lines 3–11 from the lowest to
the top level of the EVIDD. If t is never enabled due to an empty interval,
a zero handle is returned in line 5. The function checks in handles h(i) ∈ Hi

such that gh(i)(x≤i) = π(t) for all x≤i ∈
∏i

j=1
[
W −(t, pj), W ◦(t, pj)

)
∩ Ni,

otherwise 0. For all i < Bot(t), h(i) = ⟨π(t), 1⟩ due to the reduction of zero
nodes in EviddCheckIn. Moreover, for all i > Top(t), h(i) = ⟨π(t), n⟩, where
edges(n) = (⟨0, h(i−1)⟩) and the EVIDD is a single path, because W −(t, pi) = 0
and W ◦(t, pi) = ∞.

HighestPriority in Fig. 4b encodes πmax as an EVIDD handle. For each
transition t the EVIDD handle describing the enabling states En(t) and the
priority π(t) is constructed by TransitionHandle. The Maximum operation
is used to merge the transition handles into a single handle. Analogously to a
heuristic in constraint programming with MDDs [10], Maximum is called for the
transition handles ordered by Top(t) nondecreasing. Hence upper levels of the
EVIDD are left as a single path for as long as possible, which we have found to
improve performance.

2.4 Saturation with Priority Constraints

In the following paragraphs, we characterize an abstract form of next-state rep-
resentation to use in the saturation algorithm, then our extension is discussed in
detail. We also give some remarks about its advantages over previous approaches.

Encoding the Next-state Function Saturation has been designed with var-
ious next-state representations, including Kroenecker matrices [3], MDDs with
2K levels [6] or matrix-decision diagrams [8]. For simple Petri nets (without
priorities), transitions can be described by for each place an interval over the
natural numbers (how many tokens can enable the transitions) and an offset
(how the marking will change on the corresponding place), which is already en-
coded in the weight function W [13]. All of these approaches has been shown to
work with saturation.

In the following definition, we characterize the minimum requirement towards
a next-state representation to be “compatible” with saturation and, in particular,
our extended version of it that is capable of handling priorities natively.

Definition 10 (Abstract next-state diagram). An abstract next-state dia-
gram is a tuple ⟨D, next, r, 1, 0⟩ where:

13

– D is the set of descriptors, such that r ∈ D is the root descriptor, 1 ∈ D is
the identity descriptor and 0 ∈ D is the empty descriptor

– next : D × N × N → D is the indexing function that given a descrip-
tor and a pair returns another descriptor. Also denoted by d[x, x′] =
d′ ⇔ ⟨d, x, x′, d′⟩ ∈ next (with d, d′ ∈ D, x, x′ ∈ N) and d[x, x′] =
d[(x1, . . . , xK), (x′

1, . . . , x′
K)] = d[xK , x′

K] · · · [x1, x′
1]. We require for any

x, x′, x′′ ∈ N and x ̸= x′ that 1[x, x] = 1, 1[x, x′] = 0, and 0[x, x′′] = 0.

The abstract next-state diagram rooted in r encodes the relation R ⊆ NK × NK

iff for all x, x′ ∈ NK the following holds:(
⟨x, x′⟩ ∈ R ⇔ r[x, x′] = 1

)
∧

(
⟨x, x′⟩ /∈ R ⇔ r[x, x′] = 0

)
Decision diagram-based representations such as MDDs with 2K levels or

matrix decision diagrams naturally implement abstract next-state diagrams –
descriptors are nodes of the diagram, the identity descriptor is the terminal one
node (1), the empty descriptor is the terminal zero node (0) and the indexing is
the same (in case of MDDs with 2K levels d[x, x′] is implemented by d[x][x′]).

In our work, we use the simplest encoding for Petri nets: the structure of the
model itself. We can do so, because we encode the priority-related enabledness
separately in an EVIDD and it is not possible nor necessary to split or combine
the relations any further in order to lower the Top values as done in [8]. Thus,
given a Petri net with K = |P | places each constituting a separate component (pk

denoting the single place belonging to the kth component), our implementation
of the abstract next-state diagram for every transition t ∈ T is as follows.

– The set of descriptors is D = ({t} × {Bot(t), . . . , Top(t)}) ∪ {1, 0}, i.e. pairs
of the transition and a level number.

– The root descriptor is r = ⟨t, Top(t)⟩.
– The next function (assuming that the local state of a place is its marking) is

⟨t, k⟩[x, x′] =

⎧⎨⎩lower(t, k), if x ∈
[
W −(pk, t), W ◦(pk, t)

)
and x′ = x − W −(pk, t) + W +(pk, t),

0, otherwise,
where

lower(t, k) =
{

⟨t, k − 1⟩, if k > Bot(t),
1, if k = Bot(t).

Note that in this case, a descriptor is identified by the transition and the
level number, i.e. two descriptors will be equal only if both the transition and
the level number is the same. This is somewhat weaker than the equality of
decision diagram nodes in the sense that it will sometimes fail to recognize equal
constructs. This could occur, for example, when two descriptors belonging to the
same level but different transitions have the same weight functions on the lower
levels. Because the transitions are not the same, our definition will say that the
descriptors are not equal, even though they actually have the same meaning.
There is no minimal requirement for the strength of equality of descriptors, but
stronger equality relations make caching more efficient.

14

Details of the Algorithm Given the EVIDD notation and the operations de-
fined so far, as well as the abstract next-state diagram notation, Fig. 5 presents
the pseudocode of the extended saturation algorithm capable of handling priori-
tised models natively. The pseudocode uses Eπ

k = {ε ∈ Ek | π(ε) = π} to denote
the set of events “belonging” to level k (as defined in Definition 5) and having
priority π, as well as the self-explanatory Eπ≥v

k (v is a given priority level). The
abstract next-state diagram descriptor corresponding to event ε and therefore
encoding Nε without priority considerations is denoted by d(ε).

The procedure Saturate (Fig. 5a) takes an MDD node n and an EVIDD
handle h – which are initially the root of the MDD representing the set of
initial states (I in Definition 4) and the root handle of the EVIDD as returned
by HighestPriority (Fig. 4b) – and saturates n. Recall that when the root
node gets saturated, it represents the set of reachable states Sr = N ∗(I). The
procedure first recursively saturates every child node (lines 3–5). The constructor
MddNode creates a new node on the current level which will hold the new
(saturated) children. Similarly to EviddCheckIn, CheckIn in line 6 ensures
that the resulting node n′ is unique (i.e. the MDD currently being processed is
quasi-reduced). Lines 7–12 perform the fixed point computation with the next-
state functions corresponding to Eπ≥v

lvl(n), i.e. those events that “belong” to the
current level and have a priority of at least v, the value of handle h. Note that
v is indeed a lower bound of the priority of any fireable transition, as shown by
Lemma 1. Terminal nodes are returned immediately.

The procedure SatFire computes the image of Nε on S(n). RelProdSat is
used to compute the image recursively for every component, also saturating new
nodes during the process (line 9 of Fig. 5c). Due to this, both procedures return
a saturated (and also quasi-reduced) node. SatFire uses the priority and the
descriptor belonging to event ε to evaluate base cases. If S(n) is empty or the
value of the priority handle h is higher than π(t) (i.e. there is at least one enabled
transition with a higher priority), the terminal zero node is returned immediately.
On the other hand, if the descriptor d is the identity descriptor and the node
of the handle is the terminal EVIDD node, we expect that the priority of the
current transition will be v and then we can return n as is (because of the identity
relation). If v is lower than the current priority, then either the descriptor or the
priority EVIDD is invalid, since the event ε is enabled and has higher priority
than any enabled transition (including itself), which is an obvious contradiction.
Lines 5–8 recursively compute the image of Nε. RelProdSat does essentially
the same, but it also saturates the resulting node before returning it (line 9 of
Fig. 5c). Note, however, that in RelProdSat we consider two EVIDD handles
– one for the source state (h) and one for the target state (h′). The former is
used to evaluate the enabledness of the transition currently being fired, while
the latter will be used to saturate the resulting node.

To exploit the structure of decision diagrams (i.e. the same node may be
reached on multiple paths), Saturate and RelProdSat use caches to store
previously computed results (lines 2, 14 of Fig. 5a and lines 4, 9 of Fig. 5c).

15

Input: MDD node n,
EVIDD handle h = ⟨v, m⟩

Output: saturated MDD node n′

1 if n = 0 or n = 1 then return n
2 if ¬SatCacheGet(n, h, n′) then
3 n′ ←MddNode(lvl(n))
4 for each x where n[x] ̸= 0 do
5 n′[x]← Saturate(n[x], h[x])
6 CheckIn(n′)
7 repeat
8 changed ← false
9 for each ε ∈ Eπ≥v

lvl(n) do
10 n′′ ← SatFire(ε, n, h)
11 if n′ ̸= n′′ then
12 n′ ← n′′, changed ← true

13 until ¬changed
14 SatCachePut(n, h, n′)
15 return n′

(a) Procedure Saturate.

Input: event ε, MDD node n,
EVIDD handle h = ⟨v, m⟩

Output: the result of firing d from
the states n with the
children saturated

1 π ← π(ε), d← d(ε)
2 if n = 0 or π < v then return 0
3 if d = 1 and m = 1 then
4 if π = v then return n

else fail “invalid descriptor”
5 n′ ←MddNode(lvl(n))
6 for each x, y where d[x, y] ̸= 0 do
7 s← RelProdSat(π, d[x, y], n[x],

h[x], h[y])
8 n′[y]← Union(n′[y], s)
9 CheckIn(n′)

10 return n′

(b) Procedure SatFire.

Input: priority π, descriptor d, MDD node n, EVIDD handles h = ⟨v, m⟩, h′

Output: saturated MDD node n′′, which is the result of firing d from n
1 if n = 0 or π < v then return 0
2 if d = 1 and m = 1 then
3 if π = v then return n else fail “invalid descriptor”
4 if ¬RelProdCacheGet(π, d, n, h, h′, n′′) then
5 n′ ←MddNode(lvl(n))
6 for each x, y where d[x, y] ̸= 0 do
7 s← RelProdSat(π, d[x, y], n[x], h[x], h′[y])
8 n′[y]← Union(n′[y], s)
9 CheckIn(n′), n′′ ← Saturate(n′, h′), RelProdCachePut(π, d, n, h, h′, n′′)

10 return n′′

(c) Procedure RelProdSat.

Fig. 5: Saturation with EVIDDs for prioritised models.

Discussion The correctness of the presented algorithm can be proved along the
following (schematic) considerations. Suppose that we decompose the next-state
relation into Nε = N̂ε \Eε such that N̂ε is the next-state relation without consid-
ering priorities (which is by definition a superset of Nε) and Eε = Enπ>π(ε) × S
where Enπ>π(ε) =

⋃
ε′∈Eπ>π(ε) En(ε′), i.e. the Cartesian product of the states in

which an event with higher priority is enabled and the state space. The root
descriptor of ε encodes N̂ε. To encode Enπ>π(ε), we use the EVIDD built by

16

HighestPriority: by selecting only the paths to which the EVIDD assigns a
value larger than π(ε), we can exactly compute Enπ>π(ε).

It is easy to see that the modified saturation algorithm performs the selection
whenever π is compared to the value of a handle and also computes Nε = N̂ε \Eε

on the fly. Edge-labelling therefore enables the compact representation of a series
of sets Enπ>i, where every set is the superset of the previous one. Handling of
intervals instead of values, on the other hand, enables us to encode the highest
priority offline in case of Petri nets.

Compared to the matrix decision diagram-based solution of [8], we expect to
build more compact decision diagrams in the intermediate steps. This assump-
tion is based on the intuition that the efficiency of saturation comes from the
ability to saturate nodes as low as possible, minimizing the size of the diagram
before moving to the next level. Although the firing of an event is similar in the
two approaches both in terms of computing the image and caching (where [8]
has more matrix decision diagram nodes we have more EVIDD nodes to spoil
the cache), the significant difference comes from the iteration order of the whole
saturation algorithm. Because our approach keeps the events as is (as opposed
to modifying them and raising their Top values), it can process more transi-
tions when saturating a node, potentially yielding a smaller (denser) diagram
after every Saturate call. The confirmation of this hypothesis would require a
thorough analysis of the algorithms or the observation of how the state space
MDD evolves in each case. At this stage of the work, we can provide empirical
measurements that seem to confirm our expectations.

Application: Stochastic Petri Nets Tangible state space generation of Gen-
eralized Stochastic Petri nets can be performed efficiently by the proposed satu-
ration method. First, the EVIDD encoding the highest priority of enabled tran-
sitions πmax is constructed by HighestPriority (Fig. 4b). The EVIDD will
encode a nonzero value for each vanishing marking. Then Saturate (Fig. 5a) is
called on the MDD with the initial marking to explore the reachable state of the
GSPN. Finally, tangible states are extracted into a new MDD by simultaneously
traversing the saturated MDD and the EVIDD. This approach is similar to the
“elimination after generation” in [8].

3 Evaluation

A prototype implementation1 of our algorithm has been written in the Scala
programming language. Measurements were run on a 2.50 GHz Intel R⃝ Xeon R⃝

L5420 processor and 32 GB memory under Ubuntu Linux 14.04. Heap space
for the Java 1.8 virtual machine was maximized in 25 GB. Concurrent mark-
and-sweep garbage collection was enabled in the JVM. However, no additional
garbage collection routines were implemented to reclaim unique table and cache
entries during saturation, i.e. MDD node collection was Lazy [3].
1 See https://inf.mit.bme.hu/en/pn2017 for more details about the measurements.

https://inf.mit.bme.hu/en/pn2017

17

3.1 Benchmark Models
We used several scalable families of GSPN models from the literature as bench-
marks. As only the state space of the models are explored, transition timings
were ignored and only transition priorities were kept. Phils is the modified ver-
sion of the dining philosophers model from [8], where the action of picking up a
fork is an immediate transition. The prioritised versions of the Kanban, FMS and
Poll models were also taken from [8]. In particular, the FMS model was modi-
fied from its original version in [5] by setting marking-dependent arc weights to
constant. Courier describes Courier protocol software from [14]. We follow [9]
by setting N = M .

Phils is grown structurally, i.e. by repeating submodels, for increasing values
of N . Poll is grown both structurally and by increasing initial token counts,
while the rest of the model families grow only by initial marking.

No further modifications were needed to analyze the models. We decompose
the models into single places such than the highest priority of enabled transitions
can be encoded as an EVIDD.

3.2 Comparison with Matrix Diagram Methods
Table 1 shows the number of decision diagram nodes and the running times of
our algorithm when applied to generate the tangible state space T as described
in paragraph Application: Stochastic Petri Nets of Section 2.4. Unfortunately,
we were unable to directly compare our algorithm to matrix diagram based ap-
proaches [8, 9] implemented in SMART [2], as the currently available version of
SMART does not support prioritised models. We instead compare to the results
published in [8] and [9]. For Courier, we compare with the best-scaling approach
from [8], Otf. For the other models, we compare with “elimination after gen-
eration” (Eag) from [9]. To account for differences between the hardware used,
the semi-log plots in the Scaling column show normalized running times. The
running times for each algorithm and model family were divided by the run-
ning time of the algorithm on the smallest model of the family before plotting.
For example, the running time of Eag on Phils was divided by 1.3 s, while the
running time of our algorithm was divided by 0.216 s.

Our preliminary measurements indicate that our EVIDD-based modified sat-
uration approach scales better than matrix diagram based approaches that han-
dle priorities by changing the next-state relations. Scaling is especially good with
the structurally grown Phils family. However, further measuremens are needed
to obtain a more accurate comparison.

Table 2 shows the number of decision diagram nodes required for represeting
the highest priority of enabled transitions πmax, the reachable states Sr and
the tangible states T , as well as the unique table and cache utilizations on the
Courier model family. When comparing with the utilizations of Otf published
in [8], it is apparent that – in accordance with our expectations – prioritised
saturation with EVIDDs requires the creation of less temporary MDD nodes
and therefore reduces the size of the cache as well (even though using pairs as
keys would obviously lead to worse cache coherence in itself).

18

Table 1: Comparison with matrix diagram based methods.
DD nodes Comparison

N |T | Final Peak Time Alg. Time Scaling

P
hi

ls

16 4.87× 106 1188 10 662 0.216 s

Eag
[9]

1.3 s
30 3.46× 1012 2364 26 086 0.390 s 10.1 s
60 1.20× 1025 4884 75 449 0.930 s 69.2 s
90 4.15× 1037 7404 147 772 1.420 s 204.4 s

120 1.44× 1050 9924 238 976 2.261 s —

K
an

ba
n 8 4.23× 107 280 1800 0.045 s

Eag
[9]

0.5 s
30 2.36× 1012 1985 21 259 0.638 s 67.0 s
40 2.86× 1013 3240 41 464 1.151 s 280.0 s
50 2.01× 1014 4795 71 569 2.252 s 979.0 s

FM
S

8 4.46× 107 280 5972 0.186 s
Eag
[9]

0.2 s

Evidd

20 8.83× 109 3646 45 031 1.407 s 2.5 s
40 4.97× 1012 13 276 232 061 7.413 s 29.0 s
80 3.71× 1015 50 536 1 352 121 52.009 s 477.0 s

Po
ll

5 5.91× 106 279 2806 0.056 s
Eag
[9]

0.4 s

Eag

10 9.34× 1016 1604 30 602 0.726 s 13.0 s
15 2.28× 1028 4729 135 267 3.867 s 113.1 s
20 3.20× 1040 10 404 398 512 11.831 s 540.1 s

C
ou

rie
r 10 4.25× 109 1433 17 703 0.626 s

Otf
[8]

14 s

Otf

20 2.26× 1012 4193 55 458 2.666 s 82 s
40 2.18× 1015 13 913 191 268 14.789 s 668 s
60 1.44× 1017 29 233 407 478 42.847 s —

3.3 Models with Many Priority Levels

To study the effects of more complicated priority structures, we created three
additional modifications of the Phils model family where we assign multiple
priority levels to transitions. In these models, the picking up of a fork is an
immediate event with π ≥ 0, while the rest of the behaviours are timed with
π = 0. In PhilsRight, picking up the left fork has priority 1, while picking the
right fork has priority 2. In PhilsBH and PhilsTH, picking up the two forks have
equal priorities. However, in PhilsBH, philosophers have sequentially increasing
priority from the top to the bottom of the EVIDD and MDD variable order.
In PhilsTH the order is reversed. All models have the same tangible states.
Moreover, PhilsBH and PhilsTH have isomorphic reachable state spaces, albeit
with different variable ordering.

Fig. 6 shows the number of EVIDD nodes required to encode πmax, the total
number of cache entries created, and the execution time of the tangible state
space generation. Adding another priority level in PhilsRight increased only the
number of EVIDD nodes by a constant factor. The effects of assigning sequential
priorities to philosophers heavily depended on the order of priorities. EVIDDs
could encode priorities increasing from bottom to top in PhilsTH with the same

19

Table 2: Unique table and cache utilization for the Courier model.
EVIDD MDD Otf [8]

N πmax Peak Cache Sr T Peak Cache Peak Cache

C
ou

rie
r 10 69 538 424 3236 1433 17 165 85 414 71 735 304 612

20 69 538 424 9346 4193 54 920 264 639 227 230 857 572
40 69 538 424 30 566 13 913 190 730 891 589 801 920 2 656 692
60 69 538 424 63 786 29 233 406 940 1 876 539 — —

20 40 60 80 100 120

103

104

105

(a) πmax EVIDD nodes
20 40 60 80 100 120

105

106

107

Phils
Right

(b) Total cache size
20 40 60 80 100 120

100

101

BH
TH

(c) Execution time (s)

Fig. 6: Measurements with many priority levels.

number of nodes as Phils; however, the reversed order in PhilsBH increased node
count substantially.

While PhilsRight only increased cache usage moderately compared to Phils,
the more complicated effective next-state relations of PhilsTH and PhilsBH re-
quired much more cache entries in saturation. This problem is further amplified
by the large number of EVIDD nodes that appear in cache keys in PhilsBH.
This effect also manifests in the running times, which were found to be strongly
correlated (R = 0.999) with the number of cache entries.

4 Summary and Future Work

In this work we have introduced a modified saturation algorithm capable of
natively handling prioritised models. To this end, we introduced edge-valued
interval decision diagrams which can efficiently encode the priority-related en-
abledness of transitions and can be constructed before state space generation in
case of Petri nets. We have described the new algorithm in detail and also de-
fined abstract next-state diagrams as an abstraction of next-state representations
compatible with saturation. The results of our empirical experiments have been
compared to the results of [8], demonstrating that handling priorities separately
can indeed yield smaller intermediate diagrams and better performance.

As the direct follow-up of this work, we plan to define a full workflow to effi-
ciently analyse the stochastic behaviour of large GSPNs, also supporting phase-
type distributions and marking-based behaviour.

20

Acknowledgement. This work was partially supported by the ARTEMIS JU and
the Hungarian National Research, Development and Innovation Fund in the
frame of the R5-COP project and the ÚNKP-16-2-I. New National Excellence
Program of the Ministry of Human Capacities.

Special thanks to Andrew S. Miner for sharing his benchmark models.

References

1. Chiola, G., Ajmone, M.M., Balbo, G., Conte, G.: Generalized stochastic Petri nets:
A definition at the net level and its implications. IEEE Trans. Software Eng. 19(2),
89–107 (1993)

2. Ciardo, G., Jones, III, R.L., Miner, A.S., Siminiceanu, R.I.: Logic and stochastic
modeling with SMART. Perform. Eval. 63(6), 578–608 (2006)

3. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An efficient iteration strategy
for symbolic state-space generation. In: Proc. of the 7th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 328–342 (2001)

4. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for sym-
bolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4–25 (2006)

5. Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic reward net
models. Perform. Eval. 18(1), 37–59 (1993)

6. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In: Proc. of the 13th Int. Conf. Correct Hard-
ware Design and Verification Methods. pp. 146–161 (2005)

7. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi-valued decision
diagrams: Theory and applications. Multiple-Valued Logic 4(1), 9–62 (1998)

8. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams.
Perform. Eval. 56(1-4), 145–165 (2004)

9. Miner, A.S.: Saturation for a general class of models. IEEE Trans. Software Eng.
32(8), 559–570 (2006)

10. Molnár, V., Majzik, I.: Constraint programming with multi-valued decision di-
agrams: A saturation approach. In: Proc. of 24th PhD Mini-Symposium of the
Department of Measurement and Information Systems (2017), In preparation.

11. Roux, P., Siminiceanu, R.: Model checking with edge-valued decision diagrams. In:
Proc. of the 2nd NASA Formal Methods Symposium. pp. 222–226 (2010)

12. Teruel, E., Franceschinis, G., Pierro, M.D.: Well-defined generalized stochastic
Petri nets: A net-level method to specify priorities. IEEE Trans. Software Eng.
29(11), 962–973 (2003)

13. Tovchigrechko, A.A.: Efficient symbolic analysis of bounded Petri nets using in-
terval decision diagrams. Ph.D. thesis, Brandenburg University of Technology,
Cottbus-Senftenberg, Germany (2008)

14. Woodside, C.M., Li, Y.: Performance Petri net analysis of communications protocol
software by delay-equivalent aggregation. In: Proc. of 4th Int. Workshop on Petri
Nets and Performance Models. pp. 64–73 (1991)

15. Zhao, Y., Ciardo, G.: Symbolic CTL model checking of asynchronous systems using
constrained saturation. In: Proc. of the 7th Int. Conf. Automated Technology for
Verification and Analysis. pp. 368–381 (2009)

	Getting the Priorities Right:Saturation for Prioritised Petri Nets

